WorldWideScience

Sample records for intestinal homeostasis relation

  1. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  2. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  3. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  4. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  5. Upper intestinal lipids regulate energy and glucose homeostasis.

    Science.gov (United States)

    Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T

    2009-09-01

    Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

  6. Dietary inhibitors of histone deacetylases in intestinal immunity anc homeostasis

    NARCIS (Netherlands)

    Schilderink, R.; Verseijden, C.; de Jonge, W. J.

    2013-01-01

    Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an

  7. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  8. MicroRNAs at the epicenter of intestinal homeostasis.

    Science.gov (United States)

    Belcheva, Antoaneta

    2017-03-01

    Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis. © 2017 WILEY Periodicals, Inc.

  9. Wine consumption and intestinal redox homeostasis

    Science.gov (United States)

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  10. Neuroimmune interaction and the regulation of intestinal immune homeostasis.

    Science.gov (United States)

    Verheijden, Simon; Boeckxstaens, Guy E

    2018-01-01

    Many essential gastrointestinal functions, including motility, secretion, and blood flow, are regulated by the autonomic nervous system (ANS), both through intrinsic enteric neurons and extrinsic (sympathetic and parasympathetic) innervation. Recently identified neuroimmune mechanisms, in particular the interplay between enteric neurons and muscularis macrophages, are now considered to be essential for fine-tuning peristalsis. These findings shed new light on how intestinal immune cells can support enteric nervous function. In addition, both intrinsic and extrinsic neural mechanisms control intestinal immune homeostasis in different layers of the intestine, mainly by affecting macrophage activation through neurotransmitter release. In this mini-review, we discuss recent insights on immunomodulation by intrinsic enteric neurons and extrinsic innervation, with a particular focus on intestinal macrophages. In addition, we discuss the relevance of these novel mechanisms for intestinal immune homeostasis in physiological and pathological conditions, mainly focusing on motility disorders (gastroparesis and postoperative ileus) and inflammatory disorders (colitis).

  11. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    Science.gov (United States)

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  12. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  13. Hedgehog Signaling and Maintenance of Homeostasis in the Intestinal Epithelium

    NARCIS (Netherlands)

    Büller, Nikè V. J. A.; Rosekrans, Sanne L.; Westerlund, Jessica; van den Brink, Gijs R.

    2012-01-01

    Homeostasis of the rapidly renewing intestinal epithelium depends on a balance between cell proliferation and loss. Indian hedgehog (Ihh) acts as a negative feedback signal in this dynamic equilibrium. We discuss recent evidence that Ihh may be one of the key epithelial signals that indicates

  14. Wine consumption and intestinal redox homeostasis

    Directory of Open Access Journals (Sweden)

    Fiorella Biasi

    2014-01-01

    Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.

  15. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... dependent DCs in the maintenance of intestinal T cell homeostasis....

  16. MicroRNAs and the regulation of intestinal homeostasis.

    Science.gov (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M

    2014-01-01

    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  17. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  18. Intestinal stromal cells in mucosal immunity and homeostasis.

    Science.gov (United States)

    Owens, B M J; Simmons, A

    2013-03-01

    A growing body of evidence suggests that non-hematopoietic stromal cells of the intestine have multiple roles in immune responses and inflammation at this mucosal site. Despite this, many still consider gut stromal cells as passive structural entities, with past research focused heavily on their roles in fibrosis, tumor progression, and wound healing, rather than their contributions to immune function. In this review, we discuss our current knowledge of stromal cells in intestinal immunity, highlighting the many immunological axes in which stromal cells have a functional role. We also consider emerging data that broaden the potential scope of their contribution to immunity in the gut and argue that these so-called "non-immune" cells are reclassified in light of their diverse contributions to intestinal innate immunity and the maintenance of mucosal homeostasis.

  19. Intestinal bacteria and the regulation of immune cell homeostasis.

    Science.gov (United States)

    Hill, David A; Artis, David

    2010-01-01

    The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.

  20. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  1. Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis

    Science.gov (United States)

    Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.

    2018-01-01

    Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250

  2. Rhubarb Supplementation Promotes Intestinal Mucosal Innate Immune Homeostasis through Modulating Intestinal Epithelial Microbiota in Goat Kids.

    Science.gov (United States)

    Jiao, Jinzhen; Wu, Jian; Wang, Min; Zhou, Chuanshe; Zhong, Rongzhen; Tan, Zhiliang

    2018-01-31

    The abuse and misuse of antibiotics in livestock production pose a potential health risk globally. Rhubarb can serve as a potential alternative to antibiotics, and several studies have looked into its anticancer, antitumor, and anti-inflammatory properties. The aim of this study was to test the effects of rhubarb supplementation to the diet of young ruminants on innate immune function and epithelial microbiota in the small intestine. Goat kids were fed with a control diet supplemented with or without rhubarb (1.25% DM) and were slaughtered at days 50 and 60 of age. Results showed that the supplementation of rhubarb increased ileal villus height (P = 0.036), increased jejujal and ileal anti-inflammatory IL-10 production (P immune function were accompanied by shifts in ileal epithelial bacterial ecosystem in favor of Blautia, Clostridium, Lactobacillus, and Pseudomonas, and with a decline in the relative abundance of Staphylococcus (P immune homeostasis by modulating intestinal epithelial microbiota during the early stages of animal development.

  3. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis

    DEFF Research Database (Denmark)

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Zitoun, Carine

    2016-01-01

    Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date......, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose...

  4. Creatine maintains intestinal homeostasis and protects against colitis.

    Science.gov (United States)

    Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R; Beutler, Bruce

    2017-02-14

    Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N -ethyl- N -nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted ( Gatm c/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatm c/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatm c/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.

  5. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  6. Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity.

    Science.gov (United States)

    Metzger, Rebecca N; Krug, Anne B; Eisenächer, Katharina

    2018-03-23

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  7. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca N. Metzger

    2018-03-01

    Full Text Available Pattern recognition receptors (PRRs sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  8. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  9. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Mechanism for maintaining homeostasis in the immune system of the intestine.

    Science.gov (United States)

    Taniguchi, Yoshie; Yoshioka, Noriko; Nakata, Kazue; Nishizawa, Takashi; Inagawa, Hiroyuki; Kohchi, Chie; Soma, Gen-Ichiro

    2009-11-01

    Every organism possesses a mechanism for maintaining homeostasis. We have focused on the immune system as a system that helps maintain homeostasis of the body, and particularly on the intestine as the largest organ of immunity in the body. We have also focused our research on the mechanism that responds to foreign substances in the intestine, especially the toll-like receptors (TLR). The activation of myeloid differentiation primary response gene 88 (MyD88) signal transduction as a response to TLR in the intestine is believed to contribute to the maintenance of homeostasis of the body through the homeostasis of the intestine. Furthermore, significant findings were reported in which signal transduction from TLR4 was essential for the maintenance and regulation of the intestine. These results strongly suggest the possibility that homeostasis in the intestine is maintained by TLR4, and signaling by TLR4 after exposure to lipopolysaccharide (LPS) probably has a role in regulating homeostasis. It is expected that the prevention and treatment of various diseases using TLR4 will continue to develop. As LPS is a substance that enhances the activity of TLR4, it will also attract attention as a valuable substance in its own right.

  11. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shin-Hae; Park, Joung-Sun [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Young-Shin [Research Institute of Genetic Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Chung, Hae-Young [Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  12. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-01-01

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: ► Mmp1 is expressed in the adult midgut. ► Mmp1 is involved in the regulation of ISC proliferation activity. ► Mmp1-related ISC proliferation is associated with EGFR signaling. ► Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  13. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  15. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  16. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    Science.gov (United States)

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  17. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli

    NARCIS (Netherlands)

    Baarlen, van P.; Wells, J.; Kleerebezem, M.

    2013-01-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels

  18. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    Science.gov (United States)

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

    Science.gov (United States)

    van Baarlen, Peter; Wells, Jerry M; Kleerebezem, Michiel

    2013-05-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer

    Science.gov (United States)

    2010-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms. PMID:20679404

  1. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  2. Si-Jun-Zi Decoction Treatment Promotes the Restoration of Intestinal Function after Obstruction by Regulating Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Xiangyang Yu

    2014-01-01

    Full Text Available Intestinal obstruction is a common disease requiring abdominal surgery with significant morbidity and mortality. Currently, an effective medical treatment for obstruction, other than surgical resection or decompression, does not exist. Si-Jun-Zi Decoction is a famous Chinese medicine used to replenish qi and invigorate the functions of the spleen. Modern pharmacological studies show that this prescription can improve gastrointestinal function and strengthen immune function. In this study, we investigated the effects of a famous Chinese herbal formula, Si-Jun-Zi Decoction, on the restoration of intestinal function after the relief of obstruction in a rabbit model. We found that Si-Jun-Zi Decoction could reduce intestinal mucosal injury while promoting the recovery of the small intestine. Further, Si-Jun-Zi Decoction could regulate the intestinal immune system. Our results suggest that Si-Jun-Zi Decoction promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Our observations indicate that Si-Jun-Zi Decoction is potentially a therapeutic drug for intestinal obstruction.

  3. Homing of immune cells: role in homeostasis and intestinal inflammation.

    Science.gov (United States)

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  4. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    Science.gov (United States)

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. © 2015 Wiley Periodicals, Inc.

  5. Intestine immune homeostasis after alcohol and burn injury.

    Science.gov (United States)

    Li, Xiaoling; Hammer, Adam M; Rendon, Juan L; Choudhry, Mashkoor A

    2015-06-01

    Traumatic injury remains one of the most prevalent reasons for patients to be hospitalized. Burn injury accounts for 40,000 hospitalizations in the United States annually, resulting in a large burden on both the health and economic system and costing millions of dollars every year. The complications associated with postburn care can quickly cause life-threatening conditions including sepsis and multiple organ dysfunction and failure. In addition, alcohol intoxication at the time of burn injury has been shown to exacerbate these problems. One of the biggest reasons for the onset of these complications is the global suppression of the host immune system and increased susceptibility to infection. It has been hypothesized that infections after burn and other traumatic injury may stem from pathogenic bacteria from within the host's gastrointestinal tract. The intestine is the major reservoir of bacteria within the host, and many studies have demonstrated perturbations of the intestinal barrier after burn injury. This article reviews the findings of these studies as they pertain to changes in the intestinal immune system after alcohol and burn injury.

  6. Negative regulation of Toll-like receptor signaling plays an essential role in the homeostasis of the intestine

    OpenAIRE

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S.

    2010-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases (IBDs). However it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, c...

  7. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis.

    Science.gov (United States)

    Guo, Zheng; Lucchetta, Elena; Rafel, Neus; Ohlstein, Benjamin

    2016-10-01

    Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  9. Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuying Liu

    2013-10-01

    Full Text Available The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT. The production of immunoglobulin (Ig A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.

  10. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. IRF8 dependent classical dendritic cells are essential for intestinal T cell homeostasis

    DEFF Research Database (Denmark)

    Luda, K.; Joeris, Thorsten; Persson, E. K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 dependent DCs have reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8ab+ andCD4+CD8......aa+ T cells; the latter requiring b8 integrin expression by migratory IRF8 dependent CD103+CD11b- DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI derived MLN DCs......, and inefficient T cell localization to the SI. Finally, mice with a DC deletion in IRF8 lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8...

  12. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis.

    Science.gov (United States)

    Luda, Katarzyna M; Joeris, Thorsten; Persson, Emma K; Rivollier, Aymeric; Demiri, Mimoza; Sitnik, Katarzyna M; Pool, Lieneke; Holm, Jacob B; Melo-Gonzalez, Felipe; Richter, Lisa; Lambrecht, Bart N; Kristiansen, Karsten; Travis, Mark A; Svensson-Frej, Marcus; Kotarsky, Knut; Agace, William W

    2016-04-19

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8αβ(+) and CD4(+)CD8αα(+) T cells; the latter requiring β8 integrin expression by migratory IRF8 dependent CD103(+)CD11b(-) DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8 dependent DCs in the maintenance of intestinal T cell homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair

    Science.gov (United States)

    Parlato, Marianna; Yeretssian, Garabet

    2014-01-01

    The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease. PMID:24886810

  14. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Cupedo, Tom

    2011-01-01

    Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity. Copyright © 2011 S. Karger AG, Basel.

  15. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

    Directory of Open Access Journals (Sweden)

    Bo G Lindberg

    2018-03-01

    Full Text Available Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB, JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic

  16. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine.

    Science.gov (United States)

    Wells, Jerry M; Loonen, Linda M P; Karczewski, Jurgen M

    2010-01-01

    In the intestine innate recognition of microbes is achieved through pattern recognition receptor (PRR) families expressed in immune cells and different cell lineages of the intestinal epithelium. Toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-like receptor (NLR) families are emerging as key mediators of immunity through their role as maturation factors of immune cells and triggers for the production of cytokines and chemokines and antimicrobial factors. At the mucosal surface chronic activation of the immune system is avoided through the epithelial production of a glycocalyx, steady-state production of antimicrobial factors as well as the selective expression and localization of PRRs. Additionally, the polarization of epithelial TLR signaling and suppression of NF-kappaB activation by luminal commensals appears to contribute to the homeostasis of tolerance and immunity. Several studies have demonstrated that TLR signaling in epithelial cells contributes to a range of homeostatic mechanisms including proliferation, wound healing, epithelial integrity, and regulation of mucosal immune functions. The intestinal epithelium appears to have uniquely evolved to maintain mucosal tolerance and immunity, and future efforts to further understand the molecular mechanisms of intestinal homeostasis may have a major impact on human health. Copyright 2009 Elsevier GmbH. All rights reserved.

  17. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense

    Directory of Open Access Journals (Sweden)

    Shuiqing Hu

    2015-12-01

    Full Text Available Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2−/− mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2−/− mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2−/− mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2−/− mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.

  18. Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Sangild, Per Torp; Østergaard, Mette Viberg

    2014-01-01

    A balance between pro- and anti-inflammatory signals from the milk and microbiota controls intestinal homeostasis just after birth, and an optimal balance is particularly important for preterm neonates that are sensitive to necrotizing enterocolis (NEC). We suggest that the intestinal cytokine IL...

  19. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  20. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  1. HIC1 links retinoic acid signalling to group 3 innate lymphoid cell-dependent regulation of intestinal immunity and homeostasis

    Science.gov (United States)

    Antignano, Frann; Korinek, Vladimir; Underhill, T. Michael

    2018-01-01

    The intestinal immune system must be able to respond to a wide variety of infectious organisms while maintaining tolerance to non-pathogenic microbes and food antigens. The Vitamin A metabolite all-trans-retinoic acid (atRA) has been implicated in the regulation of this balance, partially by regulating innate lymphoid cell (ILC) responses in the intestine. However, the molecular mechanisms of atRA-dependent intestinal immunity and homeostasis remain elusive. Here we define a role for the transcriptional repressor Hypermethylated in cancer 1 (HIC1, ZBTB29) in the regulation of ILC responses in the intestine. Intestinal ILCs express HIC1 in a vitamin A-dependent manner. In the absence of HIC1, group 3 ILCs (ILC3s) that produce IL-22 are lost, resulting in increased susceptibility to infection with the bacterial pathogen Citrobacter rodentium. Thus, atRA-dependent expression of HIC1 in ILC3s regulates intestinal homeostasis and protective immunity. PMID:29470558

  2. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis.

    Science.gov (United States)

    Hirota, Simon A; Ng, Jeffrey; Lueng, Alan; Khajah, Maitham; Parhar, Ken; Li, Yan; Lam, Victor; Potentier, Mireille S; Ng, Kelvin; Bawa, Misha; McCafferty, Donna-Marie; Rioux, Kevin P; Ghosh, Subrata; Xavier, Ramnik J; Colgan, Sean P; Tschopp, Jurg; Muruve, Daniel; MacDonald, Justin A; Beck, Paul L

    2011-06-01

    Attenuated innate immune responses to the intestinal microbiota have been linked to the pathogenesis of Crohn's disease (CD). Recent genetic studies have revealed that hypofunctional mutations of NLRP3, a member of the NOD-like receptor (NLR) superfamily, are associated with an increased risk of developing CD. NLRP3 is a key component of the inflammasome, an intracellular danger sensor of the innate immune system. When activated, the inflammasome triggers caspase-1-dependent processing of inflammatory mediators, such as IL-1β and IL-18. In the current study we sought to assess the role of the NLRP3 inflammasome in the maintenance of intestinal homeostasis through its regulation of innate protective processes. To investigate this role, Nlrp3(-/-) and wildtype mice were assessed in the dextran sulfate sodium and 2,4,6-trinitrobenzenesulfonic acid models of experimental colitis. Nlrp3(-/-) mice were found to be more susceptible to experimental colitis, an observation that was associated with reduced IL-1β, reduced antiinflammatory cytokine IL-10, and reduced protective growth factor TGF-β. Macrophages isolated from Nlrp3(-/-) mice failed to respond to bacterial muramyl dipeptide. Furthermore, Nlrp3-deficient neutrophils exhibited reduced chemotaxis and enhanced spontaneous apoptosis, but no change in oxidative burst. Lastly, Nlrp3(-/-) mice displayed altered colonic β-defensin expression, reduced colonic antimicrobial secretions, and a unique intestinal microbiota. Our data confirm an essential role for the NLRP3 inflammasome in the regulation of intestinal homeostasis and provide biological insight into disease mechanisms associated with increased risk of CD in individuals with NLRP3 mutations. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  4. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    Science.gov (United States)

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  5. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

    Directory of Open Access Journals (Sweden)

    Sveta Chakrabarti

    2014-09-01

    Full Text Available The p38 mitogen-activated protein (MAP kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c.

  6. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

    Science.gov (United States)

    Chakrabarti, Sveta; Poidevin, Mickaël; Lemaitre, Bruno

    2014-09-01

    The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c.

  7. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice.

    Science.gov (United States)

    El Aidy, Sahar; van Baarlen, Peter; Derrien, Muriel; Lindenbergh-Kortleve, Dicky J; Hooiveld, Guido; Levenez, Florence; Doré, Joël; Dekker, Jan; Samsom, Janneke N; Nieuwenhuis, Edward E S; Kleerebezem, Michiel

    2012-09-01

    During colonization of germfree mice with the total fecal microbial community of their conventionally born and raised siblings (conventionalization), the intestinal mucosal immune system initiates and maintains a balanced immune response. However, the genetic regulation of these balanced, appropriate responses to the microbiota is obscure. Here, combined analysis of germfree and conventionalized mice revealed that the major molecular responses could be detected initiating at day 4 post conventionalization, with a strong induction of innate immune functions followed by stimulation of adaptive immune responses and development and expansion of adaptive immune cells at later stages of conventionalization. This study provides a comprehensive overview of mouse developmental and immune-related cellular pathways and processes that were co-mediated by the commensal microbiota and suggests which mechanisms were involved in this reprogramming. The dynamic, region-dependent mucosal responses to the colonizing microbiota revealed potential transcriptional signatures for the control of intestinal homeostasis in healthy mice, which may help to decipher the genetic basis of pathway dysregulation in human intestinal inflammatory diseases.

  8. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL/6 mice fed and high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin changed the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  9. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  10. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia.

    Science.gov (United States)

    Bindels, Laure B; Neyrinck, Audrey M; Claus, Sandrine P; Le Roy, Caroline I; Grangette, Corinne; Pot, Bruno; Martinez, Inés; Walter, Jens; Cani, Patrice D; Delzenne, Nathalie M

    2016-06-01

    Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.

  11. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  12. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over......Dietary gluten and its component gliadin are well-known environmental triggers of celiac disease and important actors in type-1 diabetes, and are reported to induce alterations in the intestinal microbiota. However, research on the impact of gluten on type-2 diabetes in non-celiac subjects is more...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  13. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    Science.gov (United States)

    Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie

    2017-01-24

    The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.

  14. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila.

    Science.gov (United States)

    Wen, Jung-Kun; Wang, Yi-Ting; Chan, Chih-Chiang; Hsieh, Cheng-Wen; Liao, Hsiao-Man; Hung, Chin-Chun; Chen, Guang-Chao

    2017-11-16

    Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.

  15. Lynch syndrome-related small intestinal adenocarcinomas.

    Science.gov (United States)

    Jun, Sun-Young; Lee, Eui-Jin; Kim, Mi-Ju; Chun, Sung Min; Bae, Young Kyung; Hong, Soon Uk; Choi, Jene; Kim, Joon Mee; Jang, Kee-Taek; Kim, Jung Yeon; Kim, Gwang Il; Jung, Soo Jin; Yoon, Ghilsuk; Hong, Seung-Mo

    2017-03-28

    Lynch syndrome is an autosomal-dominant disorder caused by defective DNA mismatch repair (MMR) genes and is associated with increased risk of malignancies in multiple organs. Small-intestinal adenocarcinomas are common initial manifestations of Lynch syndrome. To define the incidence and characteristics of Lynch syndrome-related small-intestinal adenocarcinomas, meticulous familial and clinical histories were obtained from 195 patients with small-intestinal adenocarcinoma, and MMR protein immunohistochemistry, microsatellite instability, MLH1 methylation, and germline mutational analyses were performed. Lynch syndrome was confirmed in eight patients (4%), all of whom had synchronous/metachronous malignancies without noticeable familial histories. Small-intestinal adenocarcinomas were the first clinical manifestation in 37% (3/8) of Lynch syndrome patients, and second malignancies developed within 5 years in 63% (5/8). The patients with accompanying Lynch syndrome were younger (≤50 years; P=0.04) and more likely to have mucinous adenocarcinomas (P=0.003), and tended to survive longer (P=0.11) than those with sporadic cases. A meticulous patient history taking, MMR protein immunolabeling, and germline MMR gene mutational analysis are important for the diagnosis of Lynch syndrome-related small-intestinal adenocarcinomas. Identifying Lynch syndrome in patients with small-intestinal adenocarcinoma can be beneficial for the early detection and treatment of additional Lynch syndrome-related cancers, especially in patients who are young or have mucinous adenocarcinomas.

  16. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis

    Science.gov (United States)

    Tojo, Rafael; Suárez, Adolfo; Clemente, Marta G; de los Reyes-Gavilán, Clara G; Margolles, Abelardo; Gueimonde, Miguel; Ruas-Madiedo, Patricia

    2014-01-01

    The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been

  17. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    Science.gov (United States)

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.

  18. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  19. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    Science.gov (United States)

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2018-05-01

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.

  20. Physiologic TLR9-CpG-DNA interaction is essential for the homeostasis of the intestinal immune system.

    Science.gov (United States)

    Hofmann, Claudia; Dunger, Nadja; Doser, Kristina; Lippert, Elisabeth; Siller, Sebastian; Edinger, Matthias; Falk, Werner; Obermeier, Florian

    2014-01-01

    Cytosine-guanosine dinucleotide (CpG) motifs are immunostimulatory components of bacterial DNA and activators of innate immunity through Toll-like receptor 9 (TLR9). Administration of CpG oligodeoxynucleotides before the onset of experimental colitis prevents intestinal inflammation by enforcement of regulatory mechanisms. It was investigated whether physiologic CpG/TLR9 interactions are critical for the homeostasis of the intestinal immune system. Mesenteric lymph node cell and lamina propria mononuclear cell (LPMC) populations from BALB/c wild-type (wt) or TLR9 mice were assessed by flow cytometry and proteome profiling. Cytokine secretion was determined and nuclear extracts were analyzed for nuclear factor kappa B (NF-κB) and cAMP response-element binding protein activity. To assess the colitogenic potential of intestinal T cells, CD4-enriched cells from LPMC of wt or TLR9 donor mice were injected intraperitoneally in recipient CB-17 SCID mice. TLR9 deficiency was accompanied by slight changes in cellular composition and phosphorylation of signaling proteins of mesenteric lymph node cell and LPMC. LPMC from TLR9 mice displayed an increased proinflammatory phenotype compared with wt LPMC. NF-κB activity in cells from TLR9 mice was enhanced, whereas cAMP response-element binding activity was reduced compared with wt. Transfer of lamina propria CD4-enriched T cells from TLR9 mice induced severe colitis, whereas wt lamina propria CD4-enriched T cells displayed an attenuated phenotype. Lack of physiologic CpG/TLR9 interaction impairs the function of the intestinal immune system indicated by enhanced proinflammatory properties. Thus, physiologic CpG/TLR interaction is essential for homeostasis of the intestinal immune system as it is required for the induction of counterregulating anti-inflammatory mechanisms.

  1. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut...... that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet.......Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects...

  2. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis.

    Science.gov (United States)

    Maranduba, Carlos Magno da Costa; De Castro, Sandra Bertelli Ribeiro; de Souza, Gustavo Torres; Rossato, Cristiano; da Guia, Francisco Carlos; Valente, Maria Anete Santana; Rettore, João Vitor Paes; Maranduba, Claudinéia Pereira; de Souza, Camila Maurmann; do Carmo, Antônio Márcio Resende; Macedo, Gilson Costa; Silva, Fernando de Sá

    2015-01-01

    Many immune-based intestinal disorders, such as ulcerative colitis and Crohn's disease, as well as other illnesses, may have the intestines as an initial cause or aggravator in the development of diseases, even apparently not correlating directly to the intestine. Diabetes, obesity, multiple sclerosis, depression, and anxiety are examples of other illnesses discussed in the literature. In parallel, importance of the gut microbiota in intestinal homeostasis and immunologic conflict between tolerance towards commensal microorganisms and combat of pathogens is well known. Recent researches show that the immune system, when altered by the gut microbiota, influences the state in which these diseases are presented in the patient directly and indirectly. At the present moment, a considerable number of investigations about this subject have been performed and published. However, due to difficulties on correlating information, several speculations and hypotheses are generated. Thus, the present review aims at bringing together how these interactions work-gut microbiota, immune system, and their influence in the neuroimmune system.

  3. Intestinal Microbiota as Modulators of the Immune System and Neuroimmune System: Impact on the Host Health and Homeostasis

    Directory of Open Access Journals (Sweden)

    Carlos Magno da Costa Maranduba

    2015-01-01

    Full Text Available Many immune-based intestinal disorders, such as ulcerative colitis and Crohn’s disease, as well as other illnesses, may have the intestines as an initial cause or aggravator in the development of diseases, even apparently not correlating directly to the intestine. Diabetes, obesity, multiple sclerosis, depression, and anxiety are examples of other illnesses discussed in the literature. In parallel, importance of the gut microbiota in intestinal homeostasis and immunologic conflict between tolerance towards commensal microorganisms and combat of pathogens is well known. Recent researches show that the immune system, when altered by the gut microbiota, influences the state in which these diseases are presented in the patient directly and indirectly. At the present moment, a considerable number of investigations about this subject have been performed and published. However, due to difficulties on correlating information, several speculations and hypotheses are generated. Thus, the present review aims at bringing together how these interactions work—gut microbiota, immune system, and their influence in the neuroimmune system.

  4. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine.

    NARCIS (Netherlands)

    Wells, J.; Loonen, L.M.P.; Karczewski, J.

    2010-01-01

    In the intestine innate recognition of microbes is achieved through pattern recognition receptor (PRR) families expressed in immune cells and different cell lineages of the intestinal epithelium. Toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-like receptor (NLR) families

  5. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  6. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    DEFF Research Database (Denmark)

    López-Posadas, Rocío; Becker, Christoph; Günther, Claudia

    2016-01-01

    Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing t...

  7. Lysosome-related organelles as mediators of metal homeostasis.

    Science.gov (United States)

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2014-10-10

    Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Directory of Open Access Journals (Sweden)

    Carolina De Fusco

    2017-01-01

    Full Text Available Osteopontin (OPN is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  9. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis.

    Science.gov (United States)

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  10. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  11. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    Science.gov (United States)

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 Alpha

  12. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  13. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis.

    Directory of Open Access Journals (Sweden)

    Hyun Cheol Roh

    2013-05-01

    Full Text Available Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals.

  15. [Nutrient sensing by the gastro-intestinal nervous system and control of energy homeostasis].

    Science.gov (United States)

    Gilles, Mithieux

    2015-01-01

    The gastrointestinal nerves are crucial in the sensing of nutrients and hormones and its translation in terms of control of food intake. Major macronutrients like glucose and proteins are sensed by the extrinsic nerves located around the portal vein walls, which signal to the brain and account for the satiety phenomenon they promote. Glucose is sensed in the portal vein by neurons expressing the glucose receptor SGLT3, which activates the main regions of the brain involved in the control of food intake. Proteins indirectly act on food intake by inducing intestinal gluconeogenesis and its sensing by the portal glucose sensor. The mechanism involves a prior antagonism by peptides of the μ-opioid receptors present in the portal vein nervous system and a reflex arc with the brain inducing intestinal gluconeogenesis. In a comparable manner, short chain fatty acids produced from soluble fibers act via intestinal gluconeogenesis to exert anti-obesity and anti-diabetic effects. In the case of propionate, the mechanism involves a prior activation of the free fatty acid receptor FFAR3 present in the portal nerves and a reflex arc initiating intestinal gluconeogenesis. © Société de Biologie, 2016.

  16. GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis.

    Science.gov (United States)

    Ranganathan, Punithavathi; Shanmugam, Arulkumaran; Swafford, Daniel; Suryawanshi, Amol; Bhattacharjee, Pushpak; Hussein, Mohamed S; Koni, Pandelakis A; Prasad, Puttur D; Kurago, Zoya B; Thangaraju, Muthusamy; Ganapathy, Vadivel; Manicassamy, Santhakumar

    2018-03-01

    At mucosal sites such as the intestine, the immune system launches robust immunity against invading pathogens while maintaining a state of tolerance to commensal flora and ingested food Ags. The molecular mechanisms underlying this phenomenon remain poorly understood. In this study, we report that signaling by GPR81, a receptor for lactate, in colonic dendritic cells and macrophages plays an important role in suppressing colonic inflammation and restoring colonic homeostasis. Genetic deletion of GPR81 in mice led to increased Th1/Th17 cell differentiation and reduced regulatory T cell differentiation, resulting in enhanced susceptibility to colonic inflammation. This was due to increased production of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and decreased expression of immune regulatory factors (IL-10, retinoic acid, and IDO) by intestinal APCs lacking GPR81. Consistent with these findings, pharmacological activation of GPR81 decreased inflammatory cytokine expression and ameliorated colonic inflammation. Taken together, these findings identify a new and important role for the GPR81 signaling pathway in regulating immune tolerance and colonic inflammation. Thus, manipulation of the GPR81 pathway could provide novel opportunities for enhancing regulatory responses and treating colonic inflammation. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. Immune deficiency vs. immune excess in inflammatory bowel diseases-STAT3 as a rheo-STAT of intestinal homeostasis.

    Science.gov (United States)

    Leppkes, Moritz; Neurath, Markus F; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Genome-wide association studies have provided many genetic alterations, conferring susceptibility to multifactorial polygenic diseases, such as inflammatory bowel diseases. Yet, how specific genetic alterations functionally affect intestinal inflammation often remains elusive. It is noteworthy that a large overlap of genes involved in immune deficiencies with those conferring inflammatory bowel disease risk has been noted. This has provided new arguments for the debate on whether inflammatory bowel disease arises from either an excess or a deficiency in the immune system. In this review, we highlight the functional effect of an inflammatory bowel disease-risk allele, which cannot be deduced from genome-wide association studies data alone. As exemplified by the transcription factor signal transducer and activator of transcription 3 (STAT3), we show that a single gene can have a plethora of effects in various cell types of the gut. These effects may individually contribute to the restoration of intestinal homeostasis on the one hand or pave the way for excessive immunopathology on the other, as an inflammatory "rheo-STAT". © Society for Leukocyte Biology.

  18. The Multibiome: The Intestinal Ecosystem's Influence on Immune Homeostasis, Health, and Disease

    OpenAIRE

    Filyk, Heather A; Osborne, Lisa C

    2016-01-01

    Mammalian evolution has occurred in the presence of mutualistic, commensal, and pathogenic micro- and macro-organisms for millennia. The presence of these organisms during mammalian evolution has allowed for intimate crosstalk between these colonizing species and the host immune system. In this review, we introduce the concept of the ‘multibiome’ to holistically refer to the biodiverse collection of bacteria, viruses, fungi and multicellular helminthic worms colonizing the mammalian intestine...

  19. Signal transduction pathways participating in homeostasis and malignant transformation of the intestinal tissue

    Czech Academy of Sciences Publication Activity Database

    Krausová, Michaela; Kořínek, Vladimír

    2012-01-01

    Roč. 59, č. 6 (2012), s. 708-718 ISSN 0028-2685 R&D Projects: GA ČR GAP305/11/1780; GA ČR GAP305/12/2347; GA ČR GAP304/11/1252; GA ČR GD204/09/H058 Keywords : colorectal cancer * epithelium * gut * intestine * mouse models * stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.574, year: 2012

  20. The Contribution of Intestinal Gluconeogenesis to Glucose Homeostasis Is Low in 2-Day-Old Pigs.

    Science.gov (United States)

    Cherbuy, Claire; Vaugelade, Pierre; Labarthe, Simon; Honvo-Houeto, Edith; Darcy-Vrillon, Béatrice; Watford, Malcolm; Duée, Pierre-Henri

    2017-03-01

    Background: Active gluconeogenesis is essential to maintain blood glucose concentrations in neonatal piglets because of the high glucose requirements after birth. In several adult mammals, the liver, kidney, and possibly the gut may exhibit gluconeogenesis during fasting and insulinopenic conditions. During the postnatal period, the intestine expresses all of the gluconeogenic enzymes, suggesting the potential for gluconeogenesis. Galactose in milk is a potential gluconeogenic precursor for newborns. Objective: Our aim was to quantify the rate of intestinal glucose production from galactose in piglets compared with the overall rate of glucose production. Methods: A single bolus of [U- 14 C]-galactose was injected into 2-d-old piglets (females and males; mean ± SEM weight: 1.64 ± 0.07 kg) through a gastric catheter. Galactosemia, glycemia, and glucose turnover rate (assessed by monitoring d-[6- 3 H]-glucose) were monitored. Intestinal glucose production from [U- 14 C]-galactose was calculated from [U- 14 C]-glucose appearance in the blood and isotopic dilution. Galactose metabolism was also investigated in vitro in enterocytes isolated from 2-d-old piglets that were incubated with increasing concentrations of galactose. Results: In piglet enterocytes, galactose metabolism was active (mean ± SEM maximum rate of reaction: 2.26 ± 0.45 nmol · min -1 · 10 6 cells -1 ) and predominantly oriented toward lactate and pyruvate production (74.0% ± 14.5%) rather than glucose production (26.0% ± 14.5%). In conscious piglets, gastric galactose administration led to an increase in arterial galactosemia (from 0 to 1.0 ± 0.8 mmol/L) and glycemia (35% ± 12%). The initial increase in arterial glycemia after galactose administration was linked to an increase in glucose production rate (33% ± 15%) rather than to a decrease in glucose utilization rate (3% ± 6%). The contribution of intestinal glucose production from galactose was gluconeogenesis in 2-d-old piglets. © 2017

  1. Complication related to colostomy orifice: intestinal evisceration

    Directory of Open Access Journals (Sweden)

    Valdemir José Alegre Salles

    2011-12-01

    Full Text Available Intestinal evisceration at the site of a stoma is a rare event, with high morbimortality. Its clinical manifestation often occurs between the sixth and seventh days after surgery. The risk factors most frequently related to evisceration are: increased intra-abdominal pressure, digestive tract cancer surgery, emergency surgery and stomas in the surgical incision. The authors report the case of a male patient, aged 62, suffering from adenocarcinoma of the rectum with obstructive acute abdomen, who underwent loop transversotomy for decompression. On the fourth day after surgery, he had a bronchospasm crisis, with evisceration of ileum and colon through the colostomic hole. The association of some triggering factors, such as emergency surgery, colorectal malignant neoplasm, increased intra-abdominal pressure and technical failure of colostomy were decisive in the development of this rare peri-colostomy complication.A evisceração intestinal desenvolvida no sítio de um estoma é um evento raro, tendo elevada morbimortalidade. Sua manifestação clínica ocorre frequentemente entre o sexto e o sétimo dias de pós-operatório. Os fatores de risco mais frequentemente relacionados à evisceração são: aumento da pressão intra-abdominal, câncer do aparelho digestório, cirurgia de urgência e estomias na incisão cirúrgica. Os autores relatam o caso de um paciente do sexo masculino, com 62 anos, portador de adenocarcinoma do reto médio com abdômen agudo obstrutivo, sendo submetido à transversostomia em alça, com finalidade descompressiva. No quarto dia de pós-operatório com crise de broncoespasmo, apresentou evisceração do cólon e íleo pelo orifício abdominal colostômico. A associação de alguns fatores desencadeantes, como a cirurgia de urgência, a doença neoplásica colorretal maligna, o aumento da pressão intra-abdominal e a falha técnica na confecção da colostomia, foram determinantes para o desenvolvimento desta rara

  2. The Multibiome: The Intestinal Ecosystem's Influence on Immune Homeostasis, Health, and Disease.

    Science.gov (United States)

    Filyk, Heather A; Osborne, Lisa C

    2016-11-01

    Mammalian evolution has occurred in the presence of mutualistic, commensal, and pathogenic micro- and macro-organisms for millennia. The presence of these organisms during mammalian evolution has allowed for intimate crosstalk between these colonizing species and the host immune system. In this review, we introduce the concept of the 'multibiome' to holistically refer to the biodiverse collection of bacteria, viruses, fungi and multicellular helminthic worms colonizing the mammalian intestine. Furthermore, we discuss new insights into multibiome-host interactions in the context of host-protective immunity and immune-mediated diseases, including inflammatory bowel disease and multiple sclerosis. Finally, we provide reasons to account for the multibiome in experimental design, analysis and in therapeutic applications. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. ROLE OF THE MICROFLORA IN DISTAL INTESTINAL TRACT BY MAINTAINING OXALATE HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Osolodchenko T.P.

    2015-05-01

    Full Text Available Human intestinal microflora is part of the human body and performs numerous function. Considerable research interest is in the field of probiotics for the prevention of kidney stones, which is one of the most common urological diseases.Urolithiasis is one of the most common urological diseases. This is polyetiological disease congenital and acquired character with complex physical and chemical processes that occur not only in the urinary system, but also the whole body. None of the treatments does not guarantee full recovery of the patient and often leads to relapse. The open methods of removal stones yield news minimally invasive the technologys. Development of stone formation depends on the presence of many factors, metabolic disorders, chronic urinary tract infections, genetic disorders and more. Most have the following metabolic disorders as hypercalciuria, hiperurikuria, hipotsytraturia , hyperoxaluria and hipomahniuria. Among all types of urolithiasis kaltsiyoksalatnyy ranked first in the prevalence rate - about 75.0 - 85.0 % of cases. Dietary restriction by oxalates іs the unreliable method of preventing disease. Although there is evidence for the growth inhibition normobiocenosis representatives, which in turn enhances the absorption of salts of oxalic acid oxalate in the application of sodium , magnesium and cobalt in their intragastric administration. Recently published many papers on the impact on the level of oxalate intestinal microflora. The first publications appeared on the influence of gram-negative obligate anaerobes O. formigenes the concentration of oxalate in the urine. This anaerobic bacteria living in the colon, its prevalence - 46.0 % - 77.0 % of the adult population. O. formigenes reveals the symbiotic interaction with the human body by reducing absorption of oxalate in the intestinal cavity with subsequent decrease in their concentration in plasma and urine. O. formigenes has two key enzymes - oksalyl

  4. Challenging homeostasis to define biomarkers for nutrition related health

    NARCIS (Netherlands)

    Ommen, van B.; Keijer, J.; Heil, S.G.; Kaput, J.

    2009-01-01

    A primary goal of nutrition research is to optimize health and prevent or delay disease. Biomarkers to quantify health optimization are needed since many if not most biomarkers are developed for diseases. Quantifying normal homeostasis and developing validated biomarkers are formidable tasks because

  5. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    Science.gov (United States)

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  6. Diminished stress resistance and defective adaptive homeostasis in age-related diseases.

    Science.gov (United States)

    Lomeli, Naomi; Bota, Daniela A; Davies, Kelvin J A

    2017-11-01

    Adaptive homeostasis is defined as the transient expansion or contraction of the homeostatic range following exposure to subtoxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events ( Mol. Aspects Med. (2016) 49, 1-7 ). Adaptive homeostasis allows us to transiently adapt (and then de-adapt) to fluctuating levels of internal and external stressors. The ability to cope with transient changes in internal and external environmental stress, however, diminishes with age. Declining adaptive homeostasis may make older people more susceptible to many diseases. Chronic oxidative stress and defective protein homeostasis (proteostasis) are two major factors associated with the etiology of age-related disorders. In the present paper, we review the contribution of impaired responses to oxidative stress and defective adaptive homeostasis in the development of age-associated diseases. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Utility of Childhood Glucose Homeostasis Variables in Predicting Adult Diabetes and Related Cardiometabolic Risk Factors

    OpenAIRE

    Nguyen, Quoc Manh; Srinivasan, Sathanur R.; Xu, Ji-Hua; Chen, Wei; Kieltyka, Lyn; Berenson, Gerald S.

    2009-01-01

    OBJECTIVE This study examines the usefulness of childhood glucose homeostasis variables (glucose, insulin, and insulin resistance index [homeostasis model assessment of insulin resistance {HOMA-IR}]) in predicting pre-diabetes and type 2 diabetes and related cardiometabolic risk factors in adulthood. RESEARCH DESIGN AND METHODS This retrospective cohort study consisted of normoglycemic (n = 1,058), pre-diabetic (n = 37), and type 2 diabetic (n = 25) adults aged 19–39 years who were followed o...

  8. Age-dependent transition from cell-level to population-level control in murine intestinal homeostasis revealed by coalescence analysis.

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    Full Text Available In multi-cellular organisms, tissue homeostasis is maintained by an exquisite balance between stem cell proliferation and differentiation. This equilibrium can be achieved either at the single cell level (a.k.a. cell asymmetry, where stem cells follow strict asymmetric divisions, or the population level (a.k.a. population asymmetry, where gains and losses in individual stem cell lineages are randomly distributed, but the net effect is homeostasis. In the mature mouse intestinal crypt, previous evidence has revealed a pattern of population asymmetry through predominantly symmetric divisions of stem cells. In this work, using population genetic theory together with previously published crypt single-cell data obtained at different mouse life stages, we reveal a strikingly dynamic pattern of stem cell homeostatic control. We find that single-cell asymmetric divisions are gradually replaced by stochastic population-level asymmetry as the mouse matures to adulthood. This lifelong process has important developmental and evolutionary implications in understanding how adult tissues maintain their homeostasis integrating the trade-off between intrinsic and extrinsic regulations.

  9. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice

    NARCIS (Netherlands)

    Aidy, El S.; Baarlen, van P.; Derrien, M.; Lindenbergh-Kortleve, D.J.; Hooiveld, G.J.; Levenez, F.; Dore, J.; Dekker, J.; Samsom, J.N.; Nieuwenhuis, E.E.S.; Kleerebezem, M.

    2012-01-01

    During colonization of germfree mice with the total fecal microbial community of their conventionally born and raised siblings (conventionalization), the intestinal mucosal immune system initiates and maintains a balanced immune response. However, the genetic regulation of these balanced,

  10. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2013-01-01

    Gut immune system is daily exposed to a plethora of antigens contained in the environment as well as in food. Both secondary lymphoid tissue, such as Peyer's patches, and lymphoid follicles (tertiary lymphoid tissue) are able to respond to antigenic stimuli releasing cytokines or producing antibodies (secretory IgA). Intestinal epithelial cells are in close cooperation with intraepithelial lymphocytes and possess Toll-like receptors on their surface and Nod-like receptors (NLRs) which sense pathogens or pathogen-associated molecular patterns. Intestinal microbiota, mainly composed of Bacteroidetes and Firmicutes, generates tolerogenic response acting on gut dendritic cells and inhibiting the T helper (h)-17 cell anti-inflammatory pathway. This is the case of Bacteroides fragilis which leads to the production of interleukin-10, an anti-inflammatory cytokine, from both T regulatory cells and lamina propria macrophages. Conversely, segmented filamentous bacteria rather induce Th17 cells, thus promoting intestinal inflammation. Intestinal microbiota and its toxic components have been shown to act on both Nod1 and Nod2 receptors and their defective signaling accounts for the development of inflammatory bowel disease (IBD). In IBD a loss of normal tolerance to intestinal microbiota seems to be the main trigger of mucosal damage. In addition, intestinal microbiota thanks to its regulatory function of gut immune response can prevent or retard neoplastic growth. In fact, chronic exposure to environmental microorganisms seems to be associated with low frequency of cancer risk. Major nutraceuticals or functional foods employed in the modulation of intestinal microbiota are represented by prebiotics, probiotics, polyunsaturated fatty acids, amino acids and polyphenols. The cellular and molecular effects performed by these natural products in terms of modulation of the intestinal microbiota and mostly attenuation of the inflammatory pathway are described.

  11. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Khailova, Ludmila; Baird, Christine H; Rush, Aubri A; Barnes, Christopher; Wischmeyer, Paul E

    2017-12-01

    Recent clinical trials and in vivo models demonstrate probiotic administration can reduce occurrence and improve outcome of pneumonia and sepsis, both major clinical challenges worldwide. Potential probiotic benefits include maintenance of gut epithelial barrier homeostasis and prevention of downstream organ dysfunction due to systemic inflammation. However, mechanism(s) of probiotic-mediated protection against pneumonia remain poorly understood. This study evaluated potential mechanistic targets in the maintenance of gut barrier homeostasis following Lactobacillus rhamnosus GG (LGG) treatment in a mouse model of pneumonia. Studies were performed in 6-8 week old FVB/N mice treated (o.g.) with or without LGG (10 9  CFU/ml) and intratracheally injected with Pseudomonas aeruginosa or saline. At 4, 12, and 24 h post-bacterial treatment spleen and colonic tissue were collected for analysis. Pneumonia significantly increased intestinal permeability and gut claudin-2. LGG significantly attenuated increased gut permeability and claudin-2 following pneumonia back to sham control levels. As mucin expression is key to gut barrier homeostasis we demonstrate that LGG can enhance goblet cell expression and mucin barrier formation versus control pneumonia animals. Further as Muc2 is a key gut mucin, we show LGG corrected deficient Muc2 expression post-pneumonia. Apoptosis increased in both colon and spleen post-pneumonia, and this increase was significantly attenuated by LGG. Concomitantly, LGG corrected pneumonia-mediated loss of cell proliferation in colon and significantly enhanced cell proliferation in spleen. Finally, LGG significantly reduced pro-inflammatory cytokine gene expression in colon and spleen post-pneumonia. These data demonstrate LGG can maintain intestinal barrier homeostasis by enhancing gut mucin expression/barrier formation, reducing apoptosis, and improving cell proliferation. This was accompanied by reduced pro-inflammatory cytokine expression in the

  12. Microbiota-specific CD4CD8αα Tregs: role in intestinal immune homeostasis and implications for IBD

    Directory of Open Access Journals (Sweden)

    Guillaume eSARRABAYROUSE

    2015-10-01

    Full Text Available In studies in murine models, active suppression by IL-10-secreting Foxp3 regulatory T cells (Tregs has emerged as an essential mechanism in colon homeostasis. However, the role of the equivalent subset in humans remains unclear, leading to suggestions that other subsets and/or mechanisms may substitute for Foxp3 Tregs in the maintenance of colon homeostasis. We recently described a new subset of CD4CD8αα T cells reactive to the gut bacterium Faecalibacterium prausnitzii and endowed with regulatory/suppressive functions. This subset is abundant in the healthy colonic mucosa, but less common in that of patients with irritable bowel disease (IBD. We discuss here the physiological significance and potential role of these Tregs in preventing inflammation of the gut mucosa and the potential applications of these discoveries for IBD management.

  13. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Jonna Jalanka-Tuovinen

    Full Text Available While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point.A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected.A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The

  14. Vitamin D and prebiotics may benefit the intestinal microbacteria and improve glucose homeostasis in prediabetes and type 2 diabetes.

    Science.gov (United States)

    Barengolts, Elena

    2013-01-01

    To review the role of human large bowel microbacteria (microbiota) in the glucose homeostasis, to address vitamin D (VD) and prebiotics interactions with microbiota, and to summarize recent randomized clinical trials (RCTs) of VD and prebiotics supplementation in prediabetes (PreDM) and type 2 diabetes mellitus (T2DM). Primary literature was reviewed in the following areas: composition and activity of human microbiota associated with PreDM and T2DM, interactions between microbiota and glucose homeostasis, the interaction of microbiota with VD/prebiotics, and RCTs of VD/prebiotics in subjects with PreDM or T2DM. The human microbiota is comprised of 100 trillion bacteria with an aggregate genome that is 150-fold larger than the human genome. Data from the animal models and human studies reveal that an "obesogenic" diet results into the initial event of microbiota transformation from symbiosis to dysbiosis. The microbial antigens, such as Gram(-) bacteria and lipopolysaccharide (LPS), translocate to the host interior and trigger increased energy harvesting and Toll-like receptor (TLR) activation with subsequent inflammatory pathways signaling. The "double hit" of steatosis (ectopic fat accumulation) and "-itis" (inflammation) and contribution of "corisks" (e.g., vitamin D deficiency [VDD]) are required to activate molecular signaling, including impaired insulin signaling and secretion, that ends with T2DM and associated diseases. Dietary changes (e.g., prebiotics, VD supplementation) may ameliorate this process if initiated prior to the process becoming irreversible. Emerging evidence suggests an important role of microbiota in glucose homeostasis. VD supplementation and prebiotics may be useful in managing PreDM and T2DM.

  15. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease.

    Science.gov (United States)

    Gonçalves, Pedro; Araújo, João Ricardo; Di Santo, James P

    2018-02-15

    Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.

  16. Serum PBDE levels in exposed rats in relation to effects on thyroxine homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Darnerud, P.O.; Aune, M.; Larsson, L.; Hallgren, S. [National Food Administration, Uppsala (Sweden)

    2004-09-15

    Brominated flame retardants (BFRs) is a group of environmental chemicals for which lately both interest and knowledge have increased considerably. Among the BFRs, the polybrominated diphenyl ethers (PBDEs) have attained special interest. Much data on environmental and human levels have been presented and several toxicological reviews are now published. Among interesting results is the difference in human PBDE levels that seem to exist between U.S.A. and Europe, results that suggest differences in exposure but without being able to pin-point the exact sources. In experimental studies PBDEs alter serum thyroxin levels, an effect seen both in rats and in mice. The mechanism(s) are still not completely clarified, but are thought to include alterations in serum transport, induced enzymatic degradation and possibly also direct effects on the thyroid gland. As perinatal alterations in thyroid homeostasis could affect brain development, early effects on thyroid hormones may be of special concern. Indeed, PBDEs have been shown to affect behaviour and learning in mice, when given neonatally. The aim of the present study was to relate the serum levels of PBDEs in rats to effects of these compounds on thyroxine homeostasis in these animals. Specifically, the relation between serum PBDE levels and effects on serum thyroxine levels was investigated, after two weeks of daily oral exposure. The result may have consequences for the future risk assessment activities on PBDE and specifically in finding the critical serum PBDE concentration at which the effect on thyroid hormone levels begin to occur.

  17. Related radiation effects on the intestine and their treatment

    International Nuclear Information System (INIS)

    Bardychev, M.S.; Kurpeshcheva, A.K.; Kaplan, M.A.

    1978-01-01

    Late radiation injuries of the intestine are frequent after radiation therapy of malignant tumours of female genitalia and some other tumours due to which the intestine gets into the irradiation field. On the basis of the analysis of 80 patients with late radiation injuries of intestine which developed at remote terms after radiation therapy of cervix uteri cancer and corpus uteri (65 patients) and other tumours, peculiarities of the clinical course and treatment of radiation enterocolitis, rectosigmoidites and rectites are discussed. In 39 patients these injuries were concomitant with late radiation injuries of the skin and subcutaneous soft tissues. The clinical course of radiation unjuries of the intestine was defined by the character of the pathological process in the intestine and was more sharply marked in patients suffering from radiation enterocolites. It was established that one of the pathogenetic mechanisms of late radiation injuries of the intestine was a disorder of the absorption function of the intestine. Local treatment of radiation injuries of the intestine should be combined with a general one the important component of which is a parenteral diet

  18. Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; Langelaar-Makkinje, Miriam; Horvatovich, Peter; Groothuis, Geny M. M.

    The use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the

  19. Congenital cytomegalovirus related intestinal malrotation: a case report.

    Science.gov (United States)

    Colomba, Claudia; Giuffrè, Mario; La Placa, Simona; Cascio, Antonio; Trizzino, Marcello; De Grazia, Simona; Corsello, Giovanni

    2016-12-07

    Cytomegalovirus is the most common cause of congenital infection in the developed countries. Gastrointestinal involvement has been extensively described in both adult and paediatric immunocompromised patients but it is infrequent in congenital or perinatal CMV infection. We report on a case of coexistent congenital Cytomegalovirus infection with intestinal malrotation and positive intestinal Cytomegalovirus biopsy. At birth the neonate showed clinical and radiological evidence of intestinal obstruction. Meconium passed only after evacuative nursing procedures; stooling pattern was irregular; gastric residuals were bile-stained. Laparatomy revealed a complete intestinal malrotation and contextually gastrointestinal biopsy samples of the appendix confirmed the diagnosis of CMV gastrointestinal disease. Intravenous ganciclovir was initiated for 2 weeks, followed by oral valgancyclovir for 6 month. CMV-induced proinflammatory process may be responsible of the interruption of the normal development of the gut or could in turn lead to a disruption in the normal development of the gut potentiating the mechanism causing malrotation. We suggest the hypothesis that an inflammatory process induced by CMV congenital infection may be responsible, in the early gestation, of the intestinal end-organ disease, as the intestinal malrotation. CMV infection should always be excluded in full-term infants presenting with colonic stricture or malrotation.

  20. Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis

    Directory of Open Access Journals (Sweden)

    Alexandra Bédard

    2014-01-01

    Full Text Available Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA. Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P=0.02; women: +9.4%, P=0.63; P for sex-by-time interaction = 0.005. A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P=0.03, for which only men experienced improvements (men: +8.1%, P=0.047; women: −5.9%, P=0.94. No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P=0.06 and an increase in NEFA suppression rate (P=0.06 were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344.

  1. Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis

    Science.gov (United States)

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2014-01-01

    Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet) on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA). Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y) during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P = 0.02; women: +9.4%, P = 0.63; P for sex-by-time interaction = 0.005). A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P = 0.03), for which only men experienced improvements (men: +8.1%, P = 0.047; women: −5.9%, P = 0.94). No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P = 0.06) and an increase in NEFA suppression rate (P = 0.06) were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344. PMID:25371817

  2. Mitochondrial Dysfunctions and Altered Metals Homeostasis: New Weapons to Counteract HCV-Related Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mario Arciello

    2013-01-01

    Full Text Available The hepatitis C virus (HCV infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the “power plants” of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.

  3. intestinal helminthes infestation in relation to some haematological ...

    African Journals Online (AJOL)

    2015-07-09

    Jul 9, 2015 ... Worldwide anemia is an important reproductive health problem because of its association with adverse pregnancy outcome such as increase of rate of maternal and perinatal mortality, premature delivery, low birth weight etc (Dim and Onah, 2007). Intestinal parasitic infections have a worldwide distribution ...

  4. Gut-Brain Glucose Signaling in Energy Homeostasis.

    Science.gov (United States)

    Soty, Maud; Gautier-Stein, Amandine; Rajas, Fabienne; Mithieux, Gilles

    2017-06-06

    Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction.

    Science.gov (United States)

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, Elizabeth M; da Cunha, Andre Pires; Flak, Magdalena B; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, Janelle C; Dery, Ken J; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V; Ho, Joshua W K; Shively, John E; Jobin, Christian; Onderdonk, Andrew B; Bry, Lynn; Weiner, Howard L; Higgins, Darren E; Blumberg, Richard S

    2012-11-16

    Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Changes in transcript related to osmosis and intracellular ion homeostasis in Paulownia tomentosa under salt stress

    Directory of Open Access Journals (Sweden)

    Guoqiang eFan

    2016-03-01

    Full Text Available Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including plant hormone signal transduction, RNA transporter, protein processing in endoplasmic reticulum and plant-pathogen interaction, which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land.

  8. Redox homeostasis and age‐related deficits in neuromuscular integrity and function

    Science.gov (United States)

    Lightfoot, Adam P.; Earl, Kate E.; Stofanko, Martin; McDonagh, Brian

    2017-01-01

    Abstract Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age‐related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this ‘epidemic’ problem, the primary biochemical and molecular mechanisms underlying age‐related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age‐associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age‐related muscle atrophy and weakness. PMID:28744984

  9. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  10. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice

    DEFF Research Database (Denmark)

    Thomsen, Annika Højrup Runegaard; Jensen, Kathrine L; Fitzpatrick, Ciarán M

    2017-01-01

    assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice...

  11. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice.

    Science.gov (United States)

    Olivares, Marta; Neyrinck, Audrey M; Pötgens, Sarah A; Beaumont, Martin; Salazar, Nuria; Cani, Patrice D; Bindels, Laure B; Delzenne, Nathalie M

    2018-05-25

    Dipeptidyl peptidase 4 (DPP-4) inhibitors are agents designed to increase the half-life of incretins. Although they are administered orally, little is known about their effects on the gut microbiota and functions, despite the fact that some bacteria present in the gut microbiota exhibit DPP-4-like activity. Our objective was to study the impact of the DPP-4 inhibitor vildagliptin on gut functions and the intestinal ecosystem in a murine model of obesity induced by a Western diet (WD). Twenty seven male C57BL/6J mice were randomised to receive a control diet, a WD (45% kJ from fat and 17% kJ from sucrose) or a WD + vildagliptin (0.6 mg/ml in drinking water) for 8 weeks. Vildagliptin significantly reduced DPP-4 activity in the caecal content and faeces. Vildagliptin impacted on the composition of the gut microbiota and its metabolic activity. It mainly decreased Oscillibacter spp. (a direct effect independent of DPP-4 activity was shown on cultured O. valericigenes), increased Lactobacillus spp. and propionate, and reduced the ligands of Toll-like receptors 2 and 4. Vildagliptin protected against the reductions in crypt depth and ileal expression of antimicrobial peptides induced by the WD. In the liver, the expression of immune cell populations (Cd3g and Cd11c [also known as Itgax]) and cytokines was decreased in the WD + vildagliptin-fed mice compared with the WD-fed group. Ex vivo exposure of precision-cut liver slices to vildagliptin showed that this response was not related to a direct effect of the drug on the liver tissue. Our study is the first to consider the DPP-4-like activity of the gut microbiota as a target of DPP-4 inhibition. We propose that vildagliptin exerts beneficial effects at the intestinal level in association with modulation of gut microbiota, with consequences for hepatic immunity. If relevant in humans, this could open new therapeutic uses of DPP-4 inhibition to tackle gut dysfunctions in different pathophysiological contexts. The

  12. Basis for the Age-related Decline in Intestinal Mucosal Immunity

    Directory of Open Access Journals (Sweden)

    Douglas L. Schmucker

    2003-01-01

    Full Text Available The elderly are characterized by mucosal immunosenescence and high rates of morbidity and mortality associated with infectious diseases of the intestinal tract. Little is known about how the differentiation of immunoglobulin A (IgA plasma cells in Peyer's patches (PPs and their subsequent homing to the small intestinal lamina propria (LP is affected by aging. Quantitative immunohistochemical analyses demonstrated a 2-fold increase in the number of IgA+ cells in the PPs, coupled with significant declines in the numbers of IgA+ and antibody-positive cells in the intestinal LP of senescent rats compared to young adult animals. These data suggest that aging diminishes the emigration of IgA immunoblasts from these lymphoid aggregates, as well as their migration to the intestinal LP. Flow cytometry and lymphocyte adoptive transfer studies showed 3- to 4-fold age-related declines in the homing of antibody-containing cells and mesenteric lymph node lymphocytes to the small intestines of rhesus macaques and rats, respectively. The number of peripheral blood IgA immunoblasts expressing the homing molecule α4β7 declined 30% in senescent rats. This was accompanied by a >17% decrease in the areal density of LP blood vessels staining positive for the cell adhesion molecule MAdCAM-1. Cumulatively, declines in expression of these homing molecules constitute a substantial age-related diminution of IgA immunoblast homing potential. In vitro antibody secretion by LP plasma cells, i.e. antibody secreted per antibody-positive cell, remains unchanged as a function of donor age. Intestinal mucosal immunosenescence is a consequence of reduced homing of IgA plasma cells to the intestinal LP as a result of declines in homing molecule expression.

  13. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  14. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    International Nuclear Information System (INIS)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue

  15. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Science.gov (United States)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue. PMID:24346830

  16. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto [Universidade Federal da Grande Dourados - UFGD, Dourados, MS (Brazil); Teruya, Roberto [Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, MS (Brazil); Fagundes, Djalma José, E-mail: fsomaio@cardiol.br; Taha, Murched Omar [Universidade Federal de São Paulo - UNIFESP, São Paulo, SP (Brazil)

    2014-02-15

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue.

  17. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    OpenAIRE

    Liu, Z.; Zhang, P.; Zhou, Y.; Qin, H.; Shen, T.

    2010-01-01

    Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithel...

  18. Age-related changes in bone in the dog: calcium homeostasis

    International Nuclear Information System (INIS)

    Williams, E.A.; Kelly, P.J.

    1984-01-01

    To explore the changes in the relationship between skeletal and Ca 2+ homeostasis with age, a study was made of 50 dogs divided into four age groups. The skeletal uptake of 85 Sr decreased markedly with age, and the immunoreactive parathyroid hormone (iPTH) level increased. There was a significant correlation between iPTH value and the calculated short-term exchange of Ca in bone. Bone formation and bone resorption decreased with age except that in the oldest group of dogs the resorption increased. The authors suggest that in aging dogs the skeletal exchange of Ca falls to a very low level that decreases the immediate effect of PTH and thus leads to a chronic net increase in circulating PTH. Concomitant with this is an increase in osteoclastic bone resorption and, over a long time, loss of skeletal mass

  19. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors.

    Science.gov (United States)

    Kawahara, Tomohiro; Makizaki, Yutaka; Oikawa, Yosuke; Tanaka, Yoshiki; Maeda, Ayako; Shimakawa, Masaki; Komoto, Satoshi; Moriguchi, Kyoko; Ohno, Hiroshi; Taniguchi, Koki

    2017-01-01

    Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered

  20. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors.

    Directory of Open Access Journals (Sweden)

    Tomohiro Kawahara

    Full Text Available Human rotavirus (RV infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1, which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in

  1. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamanishi

    Full Text Available Major depressive disorder (MDD is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of

  2. Age-dependent alterations in Ca2+ homeostasis: Role of TRPV5 and TRPV6

    NARCIS (Netherlands)

    M. van Abel (Monique); S. Huybers (Sylvie); J.G. Hoenderop (Joost); A.W.C.M. Kemp (Annemiete); J.P.T.M. van Leeuwen (Hans); R.J.M. Bindels (René)

    2006-01-01

    textabstractAging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in

  3. Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6.

    NARCIS (Netherlands)

    Abel, M. van; Huybers, S.; Hoenderop, J.G.J.; Kemp, J.W.C.M. van der; Leeuwen, J.P.P.M. van; Bindels, R.J.M.

    2006-01-01

    Aging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in renal Ca2+

  4. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  5. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon.

    Science.gov (United States)

    Bettini, Sarah; Boutet-Robinet, Elisa; Cartier, Christel; Coméra, Christine; Gaultier, Eric; Dupuy, Jacques; Naud, Nathalie; Taché, Sylviane; Grysan, Patrick; Reguer, Solenn; Thieriet, Nathalie; Réfrégiers, Matthieu; Thiaudière, Dominique; Cravedi, Jean-Pierre; Carrière, Marie; Audinot, Jean-Nicolas; Pierre, Fabrice H; Guzylack-Piriou, Laurence; Houdeau, Eric

    2017-01-20

    Food-grade titanium dioxide (TiO 2 ) containing a nanoscale particle fraction (TiO 2 -NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO 2 -NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer's patches (PP) as observed with the TiO 2 -NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO 2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO 2 -treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO 2 from dietary sources.

  6. Agaricus brasiliensis (sun mushroom) affects the expression of genes related to cholesterol homeostasis.

    Science.gov (United States)

    de Miranda, Aline Mayrink; Rossoni Júnior, Joamyr Victor; Souza E Silva, Lorena; Dos Santos, Rinaldo Cardoso; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2017-06-01

    The sun mushroom (Agaricus brasiliensis) is considered a major source of bioactive compounds with potential health benefits. Mushrooms typically act as lipid-lowering agents; however, little is known about the mechanisms of action of A. brasiliensis in biological systems. This study aimed to determine the underlying mechanism involved in the cholesterol-lowering effect of A. brasiliensis through the assessment of fecal and serum lipid profiles in addition to gene expression analysis of specific transcription factors, enzymes, and transporters involved in cholesterol homeostasis. Twenty-four albino Fischer rats approximately 90 days old, with an average weight of 205 g, were divided into four groups of 6 each and fed a standard AIN-93 M diet (C), hypercholesterolemic diet (H), hypercholesterolemic diet +1 % A. brasiliensis (HAb), or hypercholesterolemic diet +0.008 % simvastatin (HS) for 6 weeks. Simvastatin was used as a positive control, as it is a typical drug prescribed for lipid disorders. Subsequently, blood, liver, and feces samples were collected for lipid profile and quantitative real-time polymerase chain reaction gene expression analyses. Diet supplementation with A. brasiliensis significantly improved serum lipid profiles, comparable to the effect observed for simvastatin. In addition, A. brasiliensis dietary supplementation markedly promoted fecal cholesterol excretion. Increased expression of 7α-hydroxylase (CYP7A1), ATP-binding cassette subfamily G-transporters (ABCG5/G8), and low-density lipoprotein receptor (LDLR) was observed following A. brasiliensis administration. Our results suggest that consumption of A. brasiliensis improves the serum lipid profile in hypercholesterolemic rats by modulating the expression of key genes involved in hepatic cholesterol metabolism.

  7. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota

    OpenAIRE

    Feng, Ting; Elson, Charles O.; Cong, Yingzi

    2010-01-01

    The intestine is the home to a vast diversity of microbiota and a complex of mucosal immune system. Multiple regulatory mechanisms control host immune responses to microbiota and maintain intestinal immune homeostasis. This mini review will provide evidence indicating a Treg cell-IgA axis and such axis playing a major role in maintenance of intestinal homeostasis.

  8. Should WOC nurses measure health-related quality of life in patients undergoing intestinal ostomy surgery?

    Science.gov (United States)

    Pittman, Joyce; Kozell, Kathryn; Gray, Mikel

    2009-01-01

    Ostomy surgery requires significant reconstruction of the gastrointestinal tract, resulting in uncontrolled passage of fecal effluent from a stoma in the abdominal wall. Concerns about creation of an ostomy often supersede all other concerns. Ostomy-related concerns include impaired body image; fear of incontinence; fear of odor; limitations affecting social, travel-related, and leisure activities; and impaired sexual function. Because the creation of an ostomy affects multiple domains within the construct of health-related quality of life (HRQOL), it is not surprising that quality of life is a frequent outcome measure in ostomy-related research. We reviewed existing research in order to identify the influence of intestinal ostomy surgery on HRQOL. We sought to identify clinical evidence documenting the influence of nursing interventions on HRQOL in patients with an intestinal ostomy. In addition, we systematically reviewed the literature to evaluate the validity and reliability of condition-specific instruments for measuring HRQOL in this patient population. We completed an integrative review using the key terms "quality of life" and "ostomy" in order to identify sufficient evidence to determine the influence of intestinal ostomy surgery on HRQOL. A systematic review using the key terms "ostomy" and "nursing" was completed to identify the effect of specific nursing interventions on HRQOL in patients with intestinal ostomies. Only randomized clinical trials were included in this review. A systematic review using the key terms "quality of life" and "ostomy" was used to review and identify condition-specific HRQOL instruments and evidence of their validity and reliability. MEDLINE and CINAHL databases were used to address all 3 aims of this Evidence-Based Report Card. Searches were limited to studies published between 1980 and January 2009. Hand searches of the ancestry of studies and review articles were completed to identify additional studies. An integrative

  9. Age-related changes in CD8 T cell homeostasis and immunity to infection.

    Science.gov (United States)

    Nikolich-Žugich, Janko; Li, Gang; Uhrlaub, Jennifer L; Renkema, Kristin R; Smithey, Megan J

    2012-10-01

    Studies of CD8 T cell responses to vaccination or infection with various pathogens in both animal models and human subjects have revealed a markedly consistent array of age-related defects. In general, recent work shows that aged CD8 T cell responses are decreased in magnitude, and show poor differentiation into effector cells, with a reduced arsenal of effector functions. Here we review potential mechanisms underlying these defects. We specifically address phenotypic and numeric changes to the naïve CD8 T cell precursor pool, the impact of persistent viral infection(s) and inflammation, and contributions of the aging environment in which these cells are activated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Age- and gender-related hemorheological alterations in intestinal ischemia-reperfusion in the rat.

    Science.gov (United States)

    Mester, Anita; Magyar, Zsuzsanna; Molnar, Akos; Somogyi, Viktoria; Tanczos, Bence; Peto, Katalin; Nemeth, Norbert

    2018-05-01

    Intestinal ischemia-reperfusion (I/R) is a life-threatening clinical disorder. During I/R, the microrheological parameters of blood (red blood cell deformability and aggregation) worsen, which may contribute to microcirculatory deterioration. Age and gender also have a great influence on hemorheological parameters. We aimed to investigate the gender and age-related microrheological alterations during intestinal I/R. After the cannulation of the left femoral artery, median laparotomy was performed in Crl:WI rats under general anesthesia. In the young control animals there were no other interventions (female n = 7; male n = 7). In the young (female n = 7; male n = 7) and older I/R groups (female n = 6; male n = 6), the superior mesenteric artery was clipped for 30 min, and a 120-min reperfusion period was observed afterward. Blood samples were taken before and at the 30-min ischemia, in the 30th, 60th, and 120th min of the reperfusion. Hematological parameters, erythrocyte deformability, and aggregation were determined. Hematocrit increased significantly in the younger female I/R group. Red blood cell count was higher in male and older animals. In case of white blood cell count, male animals had higher values compared with females. Platelet count elevated in the younger male and older female I/R animals. Red blood cell deformability worsened, mainly in the male and older I/R groups. Enhanced erythrocyte aggregation was seen in all groups, being more expressed in the female I/R groups. Microrheological parameters show gender and age-related differences during intestinal I/R. These observations have importance in the planning and evaluation of experimental data. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  12. Hypothalamic Obesity in Craniopharyngioma Patients: Disturbed Energy Homeostasis Related to Extent of Hypothalamic Damage and Its Implication for Obesity Intervention

    Directory of Open Access Journals (Sweden)

    Christian L. Roth

    2015-09-01

    Full Text Available Hypothalamic obesity (HO occurs in patients with tumors and lesions in the medial hypothalamic region. Hypothalamic dysfunction can lead to hyperinsulinemia and leptin resistance. This review is focused on HO caused by craniopharyngiomas (CP, which are the most common childhood brain tumors of nonglial origin. Despite excellent overall survival rates, CP patients have substantially reduced quality of life because of significant long-term sequelae, notably severe obesity in about 50% of patients, leading to a high rate of cardiovascular mortality. Recent studies reported that both hyperphagia and decreased energy expenditure can contribute to severe obesity in HO patients. Recognized risk factors for severe obesity include large hypothalamic tumors or lesions affecting several medial and posterior hypothalamic nuclei that impact satiety signaling pathways. Structural damage in these nuclei often lead to hyperphagia, rapid weight gain, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue. To date, most efforts to treat HO have shown disappointing long-term success rates. However, treatments based on the distinct pathophysiology of disturbed energy homeostasis related to CP may offer options for successful interventions in the future.

  13. Intestinal permeability of 51Cr-labelled ethylenediaminetetraacetic acid in patients with Crohn's disease and their healthy relatives

    International Nuclear Information System (INIS)

    Ainsworth, M.; Eriksen, J.; Rasmussen, J.W.; Muckadell, O.B.S. de

    1989-01-01

    An increased intestinal permeability has been proposed as an aetiologic factor in Crohn's disease. The 24-h urinary excretion of 100 μCi 51 Cr-labelled ethylenediaminetetraacetic acid (EDTA) was used to test the permeability in 15 patients with Crohn's disease and in 20 healthy first-degree relatives, who were known to have a genetic predisposition to inflammatory bowel disease. Twenty-eight healthy persons not related to patients with inflammatory bowel disease served as control material. The 51 Cr-EDTA excretion of the relatives was not significantly higher than that of the controls, whereas patients with Crohn's disease had a significantly higher excretion than both the relatives and the controls. Among patients the increased excretion was found only if the small intestine was involved. It is concluded that 1) as a group, patient with Crohn's disease in the small intestine have an increased intestinal permeability, in contrast to their healthy relatives, who have a normal permeability; 2) a considerable overlap of the results of the 51 Cr-EDTA test was found between the groups studied, and the test is not suitable for evaluating individual patients; 3) the results do not support the hypothesis of an increase in intestinal permeability as an aetiologic factor in Crohn's disease. 29 refs

  14. Cryptosporidium and other intestinal parasitic infections among HIV patients in southern Ethiopia: significance of improved HIV-related care.

    Science.gov (United States)

    Shimelis, Techalew; Tassachew, Yayehyirad; Lambiyo, Tariku

    2016-05-10

    Intestinal parasitic infections are known to cause gastroenteritis, leading to higher morbidity and mortality, particularly in people living with HIV/AIDS. This study aimed to determine the prevalence of Cryptosporidium and other intestinal parasitic infections among HIV patients receiving care at a hospital in Ethiopia where previous available baseline data helps assess if improved HIV-related care has reduced infection rates. A cross-sectional study was conducted at Hawassa University Hospital in southern Ethiopia from May, 2013 to March, 2014. A consecutive sample of 491 HIV- infected patients with diarrhea or a CD4 T cell count intestinal parasites. The study was approved by the Institutional Review Board of the College of Medicine and Health Sciences, Hawassa University. Physicians managed participants found to be infected with any pathogenic intestinal parasite. The overall prevalence of intestinal parasitic infections among the study population was 35.8 %. The most prevalent parasites were Cryptosporidium (13.2 %), followed by Entamoeba histolytica/dispar (10.2 %), and Giardia lamblia (7.9 %). The rate of single and multiple infections were 25.5 and 10.3 %, respectively. Patients with a CD4 T cell count intestinal parasitic infection or cryptosporidiosis compared to those with counts ≥ 200 cells/μl, but with some type of diarrhea. The study shows high prevalence of intestinal parasitic infections in the study population. However, the results in the current report are significantly lower compared to previous findings in the same hospital. The observed lower infection rate is encouraging and supports the need to strengthen and sustain the existing intervention measures in order to further reduce intestinal parasitic infections in people living with HIV/AIDS.

  15. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    International Nuclear Information System (INIS)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-01-01

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber

  16. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gang [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Xu, Zhenjiang [Biofrontiers Institute, University of Colorado, Boulder, CO (United States); Tian, Xiangli, E-mail: xianglitian@ouc.edu.cn [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Dong, Shuanglin [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Peng, Mo [School of Animal Science and Technology, Jiangxi Agricultural University (China)

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  17. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman

    2004-01-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology......-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine....

  18. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  19. Intestinal Parasitosis in Relation to Anti-Retroviral Therapy, CD4(+) T-cell Count and Diarrhea in HIV Patients.

    Science.gov (United States)

    Khalil, Shehla; Mirdha, Bijay Ranjan; Sinha, Sanjeev; Panda, Ashutosh; Singh, Yogita; Joseph, Anju; Deb, Manorama

    2015-12-01

    Intestinal parasitic infections are one of the major causes of diarrhea in human immunodeficiency virus (HIV) seropositive individuals. Antiretroviral therapy has markedly reduced the incidence of many opportunistic infections, but parasite-related diarrhea still remains frequent and often underestimated especially in developing countries. The present hospital-based study was conducted to determine the spectrum of intestinal parasitosis in adult HIV/AIDS (acquired immunodeficiency syndrome) patients with or without diarrhea with the levels of CD4(+) T-cell counts. A total of 400 individuals were enrolled and were screened for intestinal parasitosis. Of these study population, 200 were HIV seropositives, and the remaining 200 were HIV uninfected individuals with or without diarrhea. Intestinal parasites were identified by using microscopy as well as PCR assay. A total of 130 (32.5%) out of 400 patients were positive for any kinds of intestinal parasites. The cumulative number of parasite positive patients was 152 due to multiple infections. A significant association of Cryptosporidium (P<0.001) was detected among individuals with CD4(+) T-cell counts less than 200 cells/μl.

  20. Taurolidine-citrate-heparin lock reduces catheter-related bloodstream infections in intestinal failure patients dependent on home parenteral support

    DEFF Research Database (Denmark)

    Tribler, Siri; Brandt, Christopher F.; Petersen, Anne H.

    2017-01-01

    Background: In patients with intestinal failure who are receiving home parenteral support (HPS), catheter-related bloodstream infections (CRBSIs) inflict health impairment and high costs.Objective: This study investigates the efficacy and safety of the antimicrobial catheter lock solution, taurol...

  1. Chemotherapy modulates intestinal immune gene expression including surfactant Protein-D and deleted in malignant brain tumors 1 in piglets

    DEFF Research Database (Denmark)

    Rathe, Mathias; Thomassen, Mads; Shen, René L.

    2016-01-01

    Background: Information about chemotherapy-induced intestinal gene expression may provide insight into the mechanisms underlying gut toxicity and help identify biomarkers and targets for intervention. Methods: We analyzed jejunal tissue from piglets subjected to two different, clinically relevant...... the upregulated genes for both treatments. Conclusion: In the developing intestine, chemotherapy increases the expression of genes related to innate immune functions involved in surveillance, protection, and homeostasis of mucosal surfaces....

  2. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    Science.gov (United States)

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  3. Markers of Intestinal Damage and their Relation to Cytokine Levels in Cardiac Surgery Patients

    NARCIS (Netherlands)

    Habes, Q.L.M.; Linssen, V.; Nooijen, S.; Kiers, D.; Gerretsen, J.; Pickkers, P.; Scheffer, G.J.; Kox, M.

    2017-01-01

    OBJECTIVES: In patients undergoing cardiac surgery, both extracorporeal circulation (ECC) and intraoperative mesenterial hypoperfusion may account for increased cytokine levels and lead to postoperative gastrointestinal (GI) symptoms. METHODS: We investigated levels of the intestinal damage markers

  4. Radiation-induced hyperproliferation of intestinal crypts results in elevated genome instability with inactive p53-related genomic surveillance.

    Science.gov (United States)

    Zhou, Xin; Ma, Xiaofei; Wang, Zhenhua; Sun, Chao; Wang, Yupei; He, Yang; Zhang, Hong

    2015-12-15

    Radiation-induced hyperproliferation of intestinal crypts is well documented, but its potential tumorigenic effects remain elusive. Here we aim to determine the genomic surveillance process during crypt hyperproliferation, and its consequential outcome after ionizing radiation. Crypt regeneration in the intestine was induced by a single dose of 12Gy abdominal irradiation. γ-H2AX, 53BP1 and DNA-PKcs were used as DNA repair surrogates to investigate the inherent ability of intestinal crypt cells to recognize and repair double-strand breaks. Ki67 staining and the 5-bromo-2'-deoxyuridine incorporation assay were used to study patterns of cell proliferation in regenerating crypts. Staining for ATM, p53, Chk1 and Chk2 was performed to study checkpoint activation and release. Apoptosis was evaluated through H&E staining and terminal deoxynucleotidyl transferase (dUTP) nick-end labeling. The ATM-p53 pathway was immediately activated after irradiation. A second wave of DSBs in crypt cells was observed in regenerating crypts, accompanied with significantly increased chromosomal bridges. The p53-related genomic surveillance pathway was not active during the regeneration phase despite DSBs and chromosomal bridges in the cells of regenerating crypts. Non-homologous end joining (NHEJ) DSBs repair was involved in the DSBs repair process, as indicated by p-DNA-PKcs staining. Intestinal crypt cells retained hyperproliferation with inactive p53-related genomic surveillance system. NHEJ was involved in the resultant genomic instability during hyperproliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  6. Small intestine bacterial overgrowth and irritable bowel syndrome-related symptoms: experience with Rifaximin.

    Science.gov (United States)

    Peralta, Sergio; Cottone, Claudia; Doveri, Tiziana; Almasio, Piero Luigi; Craxi, Antonio

    2009-06-07

    To estimate the prevalence of small intestinal bacterial overgrowth (SIBO) in our geographical area (Western Sicily, Italy) by means of an observational study, and to gather information on the use of locally active, non-absorbable antibiotics for treatment of SIBO. Our survey included 115 patients fulfilling the Rome II criteria for diagnosis of irritable bowel syndrome (IBS); a total of 97 patients accepted to perform a breath test with lactulose (BTLact), and those who had a positive test, received Rifaximin (Normix, Alfa Wassermann) 1200 mg/d for 7 d; 3 wk after the end of treatment, the BTLact was repeated. Based on the BTLact results, SIBO was present in about 56% of IBS patients, and it was responsible for some IBS-related symptoms, such as abdominal bloating and discomfort, and diarrhoea. 1-wk treatment with Rifaximin turned the BTLact to negative in about 50% of patients and significantly reduced the symptoms, especially in those patients with an alternated constipation/diarrhoea-variant IBS. SIBO should be always suspected in patients with IBS, and a differential diagnosis is done by means of a "breath test". Rifaximin may represent a valid approach to the treatment of SIBO.

  7. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers.

    Science.gov (United States)

    Müller, Mattea; Canfora, Emanuel E; Blaak, Ellen E

    2018-02-28

    Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.

  8. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Degarege Abraham

    2012-11-01

    Full Text Available Abstract Background The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. Methods A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Results Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%. Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides, Trichuris trichiura (T. trichiura, Schistosoma mansoni (S. mansoni and hookworm (9.8% were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6% Plasmodium infected cases, 9 (4.1% had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%, T. trichiura alone (23.1% and S. mansoni alone (23.1% compared to those without intestinal helminth infections (9.3% (pP. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (pP. falciparum increased with the number of intestinal helminth species (pPlasmodium density among intestinal helminth infected individuals was significantly increased with the number of intestinal helminths species (p=0.027. Individuals who were co-infected with different

  9. Radiographic diagnosis of mechanical obstruction in dogs based on relative small intestinal external diameters.

    Science.gov (United States)

    Finck, Cyrielle; D'Anjou, Marc-André; Alexander, Kate; Specchi, Swan; Beauchamp, Guy

    2014-01-01

    Mechanical obstruction is a frequent cause of acute vomiting in dogs requiring prompt diagnosis to improve patient management and prognosis. The purpose of this retrospective study was to compare small intestinal radiographic characteristics in dogs with versus without mechanical intestinal obstruction. Fifty dogs with gastrointestinal clinical signs and abdominal radiographs were recruited from hospital record archives and assigned to groups (group 1, obstructive, n = 25; group 2, nonobstructive n = 25). Abdominal radiographs were randomized and independently interpreted by three examiners who were unaware of group status. Intestinal dilation was subjectively scored based on distribution (segmental, regional or diffuse), and severity (absent, mild, moderate or severe). Small intestinal maximal diameter (SImax), L5 vertebral body height, small intestinal minimal diameter (SImin), and an estimated average of small intestinal diameters (SIave) were measured and three ratios were calculated: SImax/L5, SImax/SImin, and SImax/SIave. Segmental dilation was more prevalent in obstructed dogs for all examiners (P ≤ 0.03) and most nonobstructed dogs had no dilation (P ≤ 0.05). All ratios were higher in obstructed dogs (P dogs with SImax/L5 ≤ 1.4, SImax/SImin ≤ 2, and SImax/SIave ≤ 1.3 values are very unlikely to be mechanically obstructed; dogs with SImax/L5 ≥ 2.4, SImax/SImin ≥ 3.4 and SImax/SIave ≥ 1.9 are very likely obstructed, particularly if segmental dilation (less than 25% of the small intestine) is present. Dogs with ratios falling between these thresholds may need further testing unless other signs justify surgical exploration or endoscopy. © 2014 American College of Veterinary Radiology.

  10. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  11. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study.

    Science.gov (United States)

    Degarege, Abraham; Legesse, Mengistu; Medhin, Girmay; Animut, Abebe; Erko, Berhanu

    2012-11-09

    The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (phelminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (phelminth species (phelminth infected individuals was significantly increased with the number of intestinal helminths species (p=0.027). Individuals who were co-infected with

  12. Intestinal commensal microbes as immune modulators.

    Science.gov (United States)

    Ivanov, Ivaylo I; Honda, Kenya

    2012-10-18

    Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The relation between molecular properties of drugs and their transport across the intestinal membrane

    Directory of Open Access Journals (Sweden)

    Zakeri-Milani P.

    2006-07-01

    Full Text Available The aim of this study was to investigate the relationship between the intestinal absorption of structurally diverse model drugs across the rat intestinal mucosa and their molecular properties. Permeability coefficients for 13 compounds were determined in anaesthetized rats. Drug solution in phosphate buffered saline (PBS was perfused through the intestinal segment with flow rate of 0.21 ml/min and samples were taken from outlet tubing at different time points up to 90 min. The permeability values ranged from 1.6×10-5 to 2 ×10-4 cm/sec for atenolol and ibuprofen respectively. Molecular properties of drugs including the number of hydrogen bond donors and acceptors, log P, logD, topological polar surface area and number of rotatable bonds were considered. The results indicated that compounds which meet 10 or fewer number of rotatable bonds and topological surface area equal to or less than 140 A◦ have a high probability of good intestinal permeability and fraction of dose which is absorbed in human. Moreover the results indicated that lower number of hydrogen bond counts and higher logD and logP values are associated with higher permeability and bioavailabilty of drugs. Therefore the experimental and computational methods could be used for the prediction of intestinal drug permeability.

  14. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  15. Role of dietary fibers on health of the gastro-intestinal system and related types of cancer

    OpenAIRE

    Guiné, Raquel

    2015-01-01

    Dietary fibers are classified into water soluble or insoluble, and most plant foods include in their composition variable amounts of a mixture of soluble and insoluble fibers. This soluble or insoluble nature of fiber is related to its physiological effects. Insoluble fibers are characterized by high porosity, low density and the ability to increase fecal bulk, and act by facilitating intestinal transit, thus reducing the exposure to carcinogens in the colon and therefore acting as protectors...

  16. Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far?

    Science.gov (United States)

    Portela-Cidade, José Pedro; Borges-Canha, Marta; Leite-Moreira, Adelino Ferreira; Pimentel-Nunes, Pedro

    2015-01-01

    Metabolic syndrome is an emerging problem in developed countries and presents itself as a potential threat worldwide. The role of diabetes, dyslipidaemia and hepatic steatosis as pivotal components of the metabolic syndrome is well known. However, their common persistent chronic inflammation and its potential cause still elude. This systematic review aims to present evidence of the mechanisms that link the intestinal microbioma, innate immunity and metabolic syndrome. A comprehensive research was made using PubMed database and 35 articles were selected. We found that metabolic syndrome is associated to increased levels of innate immunity receptors, namely, Toll-like receptors, both in intestine and systemically and its polymorphisms may change the risk of metabolic syndrome development. Microbioma dysbiosis is also present in metabolic syndrome, with lower prevalence of Bacteroidetes and increased prevalence of Firmicutes populations. The data suggest that the link between intestinal microbiota and Toll-like receptors can negatively endanger the metabolic homeostasis. Current evidence suggests that innate immunity and intestinal microbiota may be the hidden link in the metabolic syndrome development mechanisms. In the near future, this can be the key in the development of new prophylactic and therapeutic strategies to treat metabolic syndrome patients.

  17. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Matsuzawa, T

    1975-06-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140 to 300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200 to 300 days postirradiation showed mucoid adenocarcinoma.

  18. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    van Elburg, R. M.; Uil, J. J.; Mulder, C. J.; Heymans, H. S.

    1993-01-01

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  19. INTESTINAL PERMEABILITY IN PATIENTS WITH CELIAC-DISEASE AND RELATIVES OF PATIENTS WITH CELIAC-DISEASE

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; MULDER, CJJ; HEYMANS, HSA

    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the

  20. 10 Prevalence of intestinal parasites in relation to CD4 counts and ...

    African Journals Online (AJOL)

    The objective of this study was to determine the prevalence of intestinal ... include the strain and number of the parasites, the size and site, metabolic processes of the ..... nutritional supplement on viral load and haematological parameters in HIV- ... Omoregie, R., Egbeobauwaye, A., Ogefere, H., Omokaro, E.U. & Ehen, C.C. ...

  1. Effects of vasoactive intestinal polypeptide on heart rate in relation to vagal cardioacceleration in conscious dogs

    NARCIS (Netherlands)

    Roossien, A; Brunstig, J.R; Nijmeijer, A; Zaagsma, Hans; Zijlstra, W.G

    Objective: The vagal cardiac accelerator (VCA) system takes part in the nervous control of the heart rate. In the present study we tried to adduce evidence that vasoactive intestinal polypeptide (VLP) contributes to vagally induced cardioacceleration. Methods: The effect of VIP on heart rate and

  2. Sedentary lifestyle related exosomal release of Hotair from gluteal-femoral fat promotes intestinal cell proliferation.

    Science.gov (United States)

    Lu, Xiaozhao; Bai, Danna; Liu, Xiangwei; Zhou, Chen; Yang, Guodong

    2017-03-31

    Pioneering epidemiological work has established strong association of sedentary lifestyle and obesity with the risk of colorectal cancer, while the detailed underlying mechanism remains unknown. Here we show that Hotair (HOX transcript antisense RNA) is a pro-adipogenic long non-coding RNA highly expressed in gluteal-femoral fat over other fat depots. Hotair knockout in adipose tissue results in gluteal-femoral fat defect. Squeeze of the gluteal-femoral fat induces intestinal proliferation in wildtype mice, while not in Hotair knockout mice. Mechanistically, squeeze of the gluteal-femoral fat induces exosomal Hotair secretion mainly by transcriptional upregulation of Hotair via NFκB. And increased exosomal Hotair in turn circulates in the blood and is partially endocytosed by the intestine, finally promoting the stemness and proliferation of intestinal stem/progenitor cells via Wnt activation. Clinically, obese subjects with sedentary lifestyle have much higher exosomal HOTAIR expression in the serum. These findings establish that sedentary lifestyle promotes exosomal Hotair release from the gluteal-femoral fat, which in turn facilitates intestinal stem and/or progenitor proliferation, raising a possible link between sedentary lifestyle with colorectal tumorigenesis.

  3. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Matsuzawa, Taiju.

    1975-01-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140-300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200-300 days postirradiation showed mucoid adenocarcinoma. (author)

  4. Small intestine bacterial overgrowth and irritable bowel syndrome-related symptoms: Experience with Rifaximin

    OpenAIRE

    Peralta, Sergio; Cottone, Claudia; Doveri, Tiziana; Almasio, Piero Luigi; Craxi, Antonio

    2009-01-01

    AIM: To estimate the prevalence of small intestinal bacterial overgrowth (SIBO) in our geographical area (Western Sicily, Italy) by means of an observational study, and to gather information on the use of locally active, non-absorbable antibiotics for treatment of SIBO.

  5. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.

    Science.gov (United States)

    Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue

    2017-01-01

    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.

  6. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study12

    Science.gov (United States)

    van Vliet, Sara J; Di Giovanni, Valeria; Zhang, Ling; Richardson, Susan; van Rheenen, Patrick F

    2016-01-01

    Background: Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. Objective: We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. Design: Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6–59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. Results: Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443–535 mg/kg feces) compared with 698 mg/kg feces (1438–244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112–22 ng/mL) compared with 2036 ng/mL (5800–149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831–131 ng/mL) compared with 3174 ng/mL (5819–357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. Conclusions: Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of

  7. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  8. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  9. Lifespan extension by preserving proliferative homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Benoît Biteau

    2010-10-01

    Full Text Available Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.

  10. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    Science.gov (United States)

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (pBCAA group improved ADG (pBCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (pBCAA supplementation significantly increased BCAA concentrations (pBCAA supplementation increased villous height in the duodenum (pBCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  11. Homeostasis model assessment of insulin resistance in relation to the poor functional outcomes in nondiabetic patients with ischemic stroke

    Science.gov (United States)

    Li, Siou; Yin, Changhao; Zhao, Weina; Zhu, Haifu; Xu, Dan; Xu, Qing; Jiao, Yang; Wang, Xue; Qiao, Hong

    2018-01-01

    Whether insulin resistance (IR) predicts worse functional outcome in ischemic stroke is still a matter of debate. The aim of the present study is to determine the association between IR and risk of poor outcome in 173 Chinese nondiabetic patients with acute ischemic stroke. This is a prospective, population-based cohort study. Insulin sensitivity, expressed by the homeostasis model assessment (HOMA) of insulin sensitivity (HOMA index = (fasting insulin × fasting glucose)/22.5). IR was defined by HOMA-IR index in the top quartile (Q4). Functional impairment was evaluated at discharge using the modified Rankin scale (mRS). The median (interquartile range) HOMA-IR was 2.14 (1.17–2.83), and Q4 was at least 2.83. There was a significantly positive correlation between HOMA-IR and National Institutes of Health Stroke Scale (r = 0.408; PIR group were associated with a higher risk of poor functional outcome (odds ratio (OR) = 3.23; 95% confidence interval (CI) = 1.75–5.08; P=0.001). In multivariate models comparing the third and fourth quartiles against the first quartile of the HOMA-IR, levels of HOMA-IR were associated with poor outcome, and the adjusted risk of poor outcome increased by 207% (OR = 3.05 (95% CI 1.70–4.89), P=0.006) and 429% (5.29 (3.05–9.80), PHOMA-IR to clinical examination variables (P=0.02). High HOMA-IR index is associated with a poor functional outcome in nondiabetic patients with acute ischemic stroke. PMID:29588341

  12. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. The Commensal Microbiota Drives Immune Homeostasis

    OpenAIRE

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  14. Effect of yogurt containing deep sea water on health-related serum parameters and intestinal microbiota in mice.

    Science.gov (United States)

    Kang, Sun Moon; Jhoo, Jin Woo; Pak, Jae In; Kwon, Ill Kyoung; Lee, Sung Ki; Kim, Gur Yoo

    2015-09-01

    Deep sea water (DSW) has health benefits and is widely used as food supplement; however, its effect in fermented products has not been explored. Here, we investigated the effect of DSW-containing yogurt on health-related serum parameters and intestinal microbiota in mice. Animals were assigned to 3 feeding groups, which received water (control), normal yogurt (N-yogurt), or DSW-containing yogurt (DSW-yogurt) with a basal diet. Mice were killed at wk 4 or 8 of feeding and analyzed for serum parameters and microbial population in the small intestine. Both yogurt groups demonstrated increased populations of intestinal lactic acid bacteria compared with the control group. The activity of serum aspartate aminotransferase and alanine aminotransferase was markedly decreased in the DSW-yogurt and N-yogurt groups, and triglyceride level tended to be lower in the DSW-yogurt group compared with that in the control mice. Furthermore, the DSW-yogurt group showed a more significant decrease in the ratio of total cholesterol to high-density lipoprotein-cholesterol than did the N-yogurt group. These findings suggest that DSW supplementation of yogurt can increase its beneficial effects on lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Persistent intestinal bleeding due to severe CMV-related thrombocytopenia in a preterm newborn.

    Science.gov (United States)

    Berardi, Alberto; Spaggiari, Eugenio; Cattelani, Chiara; Roversi, Maria Federica; Pecorari, Monica; Lazzarotto, Tiziana; Ferrari, Fabrizio

    2018-05-01

    The optimal threshold for neonatal platelet transfusions in sick newborns is still uncertain. We report a congenital cytomegalovirus (CMV) infection in a premature neonate with severe thrombocytopenia who subsequently presented with necrotizing enterocolitis and intestinal bleeding. The baby recovered after platelet transfusions were discontinued and the therapy was switched from intravenous ganciclovir to oral valganciclovir. We discuss both measures, speculating on the key role of platelet transfusions.

  16. Sedentary lifestyle related exosomal release of Hotair from gluteal-femoral fat promotes intestinal cell proliferation

    OpenAIRE

    Xiaozhao Lu; Danna Bai; Xiangwei Liu; Chen Zhou; Guodong Yang

    2017-01-01

    Pioneering epidemiological work has established strong association of sedentary lifestyle and obesity with the risk of colorectal cancer, while the detailed underlying mechanism remains unknown. Here we show that Hotair (HOX transcript antisense RNA) is a pro-adipogenic long non-coding RNA highly expressed in gluteal-femoral fat over other fat depots. Hotair knockout in adipose tissue results in gluteal-femoral fat defect. Squeeze of the gluteal-femoral fat induces intestinal proliferation in...

  17. Gastro-jejunostomy tube related intestinal perforation in an infant presenting incidentally with a splenic abscess

    Directory of Open Access Journals (Sweden)

    Kathryn Bell

    2018-07-01

    Conclusion: While complications from GJTs are well described, this case uniquely highlights the risk of intestinal perforation from GJT, with a delayed and subtle presentation. We suggest that patients, specifically those under 12 months of age and weighing under 10 kg, be monitored closely for complications post-operatively, and the use of modified GJTs with jejunal limbs employing smaller/thinner feeding tubes that are placed well beyond LOT be strongly considered.

  18. Application of genomic densitometry for calculating the relative population of Escherichia Coli in the intestine of broiler chicks

    Directory of Open Access Journals (Sweden)

    A.R Seidavi

    2009-05-01

    Full Text Available In this study, the densitometry technique for calculating of the relative population of Escherichia coli in various segments of the intestine of broiler chicks was evaluated. Following preparation of the intestinal contents, the process of extraction and purification of DNA from the contents of duodenum, jejunum, ileum and cecum was undertaken. A specific polymerase chain reaction (PCR using two pairs of primers was employed to detect Escherichia coli and total bacteria present in the gastrointestinal tract of the chicks. Specific bands of E.coli were obtained using densitometry and Gel Proc Analyzer software based on linear regression with extrapolation. E.coli populations at different ages were also determined in various segments of the gastrointestinal tract of the chicks. The Results of this experiment indicated that 0.000004%, 0.07%, 0.64% and 2.51% of total bacteria present in the duodenum, jejunum, ileum and cecum respectively consisted of E.coli. Also, E.coli constitutes 1.76, 0.01 and 0.80% of the total intestinal bacteria of chicks at 4, 14 and 30 days of age respectively. Furthermore, it was shown that at 4 days of age, 0.30, 2.05 and 3.97% of the total bacteria present in the jejunum, ileum and cecum respectively were from E.coli species and this bacteria was absent in the duodenum. At 14 days of age these figures were 0.000009%, 0.00011% and 0.08% respectively while at 30 days of age 0.00011%, 0.009% and 2.40% of all bacteria in the duodenum, ileum and cecum were E.coli species and this bacteria was absent in the jejunum. In conclusion, the densitometry method based on PCR results can be regarded as a useful tool for densitometry the relative population E.coli in the gastrointestinal tract of poultry.

  19. Translocation of Candida albicans is related to the blood flow of individual intestinal villi.

    Science.gov (United States)

    Gianotti, L; Alexander, J W; Fukushima, R; Childress, C P

    1993-08-01

    Splanchnic ischemia is associated with increased bacterial translocation, but previous observations showed that translocation of Candida albicans did not occur uniformly among individual intestinal villi. This study was performed to investigate the relationship between the degree of Candida translocation and the microcirculation of individual villi. Thiry-Vella intestinal loops were created in eight guinea pigs. One week later, the distal aorta and right carotid artery were cannulated, and systemic blood pressure was recorded throughout the entire experiment. C. albicans (1 x 10(10)) was introduced into the Thiry-Vella loop, and the animals underwent a 40% full-thickness burn. Systolic hypotension was observed in the first 75 minutes postburn; then the systemic blood pressure returned to a normal range. Four hours after burn, 8 x 10(7) microspheres (10 microns) were injected into the aorta. The animals were sacrificed, and the Thiry-Vella loops were harvested and processed for light microscopy. At the microscopic level, within each villus, both the number of beads trapped in the arterioles and the number of Candida translocated into the enterocytes were counted. An inverse linear correlation between number of beads and number of translocated yeast per individual villus was found (r = -0.78; P flow is an important determinant of the magnitude of microbial translocation, even within individual villi.

  20. Dysbiosis of Intestinal Microbiota and Decreased Antimicrobial Peptide Level in Paneth Cells during Hypertriglyceridemia-Related Acute Necrotizing Pancreatitis in Rats

    Directory of Open Access Journals (Sweden)

    Chunlan Huang

    2017-05-01

    Full Text Available Hypertriglyceridemia (HTG aggravates the course of acute pancreatitis (AP. Intestinal barrier dysfunction is implicated in the pathogenesis of AP during which dysbiosis of intestinal microbiota contributes to the dysfunction in intestinal barrier. However, few studies focus on the changes in intestine during HTG-related acute necrotizing pancreatitis (ANP. Here, we investigated the changes in intestinal microbiota and Paneth cell antimicrobial peptides (AMPs in HTG-related ANP (HANP in rats. Rats fed a high-fat diet to induce HTG and ANP was induced by retrograde injection of 3.5% sodium taurocholate into biliopancreatic duct. Rats were sacrificed at 24 and 48 h, respectively. Pancreatic and ileal injuries were evaluated by histological scores. Intestinal barrier function was assessed by plasma diamine oxidase activity and D-lactate level. Systemic and intestinal inflammation was evaluated by tumor necrosis factor alpha (TNFα, interleukin (IL-1β, and IL-17A expression. 16S rRNA high throughput sequencing was used to investigate changes in intestinal microbiota diversity and structure. AMPs (α-defensin5 and lysozyme expression was measured by real-time polymerase chain reaction (PCR and immunofluorescence. The results showed that compared with those of normal-lipid ANP (NANP groups, the HANP groups had more severe histopathological injuries in pancreas and distal ileum, aggravated intestinal barrier dysfunction and increased TNFα, IL-1β, and IL-17A expression in plasma and distal ileum. Principal component analysis showed structural segregation between the HANP and NANP group. α-Diversity estimators in the HANP group revealed decreased microbiota diversity compared with that in NANP group. Taxonomic analysis showed dysbiosis of intestinal microbiota structure. In the HANP group, at phyla level, Candidatus_Saccharibacteria and Tenericutes decreased significantly, whereas Actinobacteria increased. At genus level, Allobaculum, Bifidobacterium

  1. Changes in Intestinal Gene Expression of Zebrafish (Danio rerio Related to Sterol Uptake and Excretion upon β-Sitosterol Administration

    Directory of Open Access Journals (Sweden)

    Mai Takase

    2018-01-01

    Full Text Available Replacement of fishmeal with plant ingredients will introduce not only plant oil and protein but also phytosterol to the fish diet. Mammals strictly restrict the uptake of phytosterol at intestinal epithelial cells by regulating the gene expressions of sterol uptake and excretion proteins; however, phytosterol is found in the fish muscle and other organs. In order to assess the ability of phytosterol uptake by the intestinal epithelial cells of fish, no-sterol diet, cholesterol-, and β-sitosterol-containing diet was separately administered to zebrafish, and the relative mRNA expressions related to sterol uptake and excretion were evaluated. Gene expression of Niemann-Pick C1-like protein 1 in the sitosterol-fed group was significantly higher than that of the cholesterol-fed group (p < 0.05. The expression of apolipoprotein A-I gene was also higher in the sitosterol-fed group than that in the no-sterol and cholesterol-fed groups. The expressions of ATP-binding cassette, sub-family G, member 5 and 8, were significantly higher in the sitosterol-fed group, compared to the no-sterol group. Regarding the gene expression of ATP-binding cassette sub-family A, member 1, the sitosterol-fed group showed higher expression level compared to the other groups (p < 0.01. These results suggest that fish should be tolerant to phytosterols in contrast to mammals.

  2. The Role of Intestinal Bacteria Overgrowth in Obesity-Related Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Silvia M. Ferolla

    2014-12-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease worldwide. It is a progressive disorder involving a spectrum of conditions that include pure steatosis without inflammation, nonalcoholic steatohepatitis (NASH, fibrosis and cirrhosis. The key factor in the pathophysiology of NAFLD is insulin resistance that determines lipid accumulation in the hepatocytes, which may be followed by lipid peroxidation, production of reactive oxygen species and consequent inflammation. Recent studies suggest that the characteristics of the gut microbiota are altered in NAFLD, and also, that small intestinal bacterial overgrowth (SIBO contributes to the pathogenesis of this condition. This review presents the chief findings from all the controlled studies that evaluated SIBO, gut permeability and endotoxemia in human NAFLD. We also discuss the possible mechanisms involving SIBO, lipid accumulation and development of NASH. The understanding of these mechanisms may allow the development of new targets for NASH treatment in the future.

  3. Amebiasis intestinal Intestinal amebiasis

    Directory of Open Access Journals (Sweden)

    JULIO CÉSAR GÓMEZ

    2007-03-01

    Full Text Available Entamoeba histolytica es el patógeno intestinal más frecuente en nuestro medio -después de Giardia lamblia-, una de las principales causas de diarrea en menores de cinco años y la cuarta causa de muerte en el mundo debida a infección por protozoarios. Posee mecanismos patogénicos complejos que le permiten invadir la mucosa intestinal y causar colitis amebiana. El examen microscópico es el método más usado para su identificación pero la existencia de dos especies morfológicamente iguales, una patógena ( E. histolytica y una no patógena ( Entamoeba dispar, ha llevado al desarrollo de otros métodos de diagnóstico. El acceso al agua potable y los servicios sanitarios adecuados, un tratamiento médico oportuno y el desarrollo de una vacuna, son los ejes para disminuir la incidencia y mortalidad de esta entidad.Entamoeba histolytica is the most frequent intestinal pathogen seen in our country, after Giardia lamblia, being one of the main causes of diarrhea in children younger than five years of age, and the fourth leading cause of death due to infection for protozoa in the world. It possesses complex pathogenic mechanisms that allow it to invade the intestinal mucosa, causing amoebic colitis. Microscopy is the most used method for its identification, but the existence of two species morphologically identical, the pathogen one ( E. histolytica, and the non pathogen one ( E. dispar, have taken to the development of other methods of diagnosis. The access to drinkable water and appropriate sanitary services, an opportune medical treatment, and the development of a vaccine are the axes to diminish the incidence and mortality of this entity.

  4. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  5. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs.

    Science.gov (United States)

    Leoncini, Silvia; De Felice, Claudio; Signorini, Cinzia; Zollo, Gloria; Cortelazzo, Alessio; Durand, Thierry; Galano, Jean-Marie; Guerranti, Roberto; Rossi, Marcello; Ciccoli, Lucia; Hayek, Joussef

    2015-01-01

    An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  6. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs

    Directory of Open Access Journals (Sweden)

    Silvia Leoncini

    2015-01-01

    Full Text Available An involvement of the immune system has been suggested in Rett syndrome (RTT, a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2 or, more rarely, cyclin-dependent kinase-like 5 (CDKL5. To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg response, as well as chemokines, were investigated in MECP2- (MECP2-RTT (n=16 and CDKL5-Rett syndrome (CDKL5-RTT (n=8, before and after ω-3 polyunsaturated fatty acids (PUFAs supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4 were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  7. Recovery of immune competence following sublethal X irradiation of young and old mice: a model for studying age-related loss of immunologic homeostasis

    International Nuclear Information System (INIS)

    Peterson, W.J.; Perkins, E.H.; Makinodan, T.

    1982-01-01

    Age-related alteration in lymphohematopoietic homeostasis was assessed kinetically by determining immunologic and stem-cell regenerating capacities of young (5-7 months), middle-aged (13 months), and old (23-24 months) C3H and C57BL/6 mice following their exposure to 500 R. Immunologic activities were based on the ability of spleen cells to respond to sheep erythrocytes, phytohemagglutinin, and bacterial lipopolysaccharide. Stem-cell activity was based on the ability of splenic and bone marrow cells to form colonies in vivo. Reflective of age-related homeostatic imbalance was alteration in the (a) time of recovery, (b) rate of regeneration, and (c) capacity of the regenerating system to overshoot the preirradition steady-state level. Most of the immunologic parameters showed a delay in the time of recovery in old mice. In contrast, the time of recovery of stem cells in old mice was equal to or faster than that in young mice. Furthermore, the magnitude of regeneration of stem cells was greater in old than young mice. These results suggest that recovery of immunologic activities in old mice is delayed partly because of the inability of their stem cells to rapidly generate immunocompetent progenies

  8. Intestinal Lymphangiectasia

    Science.gov (United States)

    ... Overview of Crohn Disease Additional Content Medical News Intestinal Lymphangiectasia (Idiopathic Hypoproteinemia) By Atenodoro R. Ruiz, Jr., MD, ... Overview of Malabsorption Bacterial Overgrowth Syndrome Celiac Disease Intestinal ... Intolerance Short Bowel Syndrome Tropical Sprue Whipple ...

  9. Intestinal Obstruction

    Science.gov (United States)

    ... Colostomy ) is required to relieve an obstruction. Understanding Colostomy In a colostomy, the large intestine (colon) is cut. The part ... 1 What Causes Intestinal Strangulation? Figure 2 Understanding Colostomy Gastrointestinal Emergencies Overview of Gastrointestinal Emergencies Abdominal Abscesses ...

  10. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2016-07-26

    Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model. A total of four groups were tested: corn-starch (CS), corn-starch + red pitaya juice (CRP), high-carbohydrate, high-fat (HCHF) and high-carbohydrate, high-fat + red pitaya juice (HRP). The intervention with 5 % red pitaya juice was continued for 8 weeks after 8 weeks initiation of the diet. Retroperitoneal, epididymal and omental fat pads were collected and weighed. Plasma concentration of IL-6 and TNF-α were measured using commercial kits. Gene expression analysis was conducted using RNA extracted from liver samples. A total of eighty-four genes related to obesity were analyzed using PCR array. The rats fed HCHF-diet for 16 weeks increased body weight, developed excess abdominal fat deposition and down-regulated the expression level of IL-1α, IL-1r1, and Cntfr as compared to the control group. Supplementation of red pitaya juice for 8 weeks increased omental and epididymal fat but no change in retroperitoneal fat was observed. Red pitaya juice reversed the changes in energy balance homeostasis in liver tissues by regulation of the expression levels of Pomc and Insr. The increased protein expression levels of IL-6 and TNF-α in HCHF group and red pitaya treated rats confirmed the results of gene expression. Collectively, this study revealed the usefulness of this diet-induced rat model and the beneficial effects of red pitaya on energy balance homeostasis by modulating the anorectic, orexigenic and energy expenditure related

  11. The magnitude and risk factors of intestinal parasitic infection in relation to Human Immunodeficiency Virus infection and immune status, at ALERT Hospital, Addis Ababa, Ethiopia.

    Science.gov (United States)

    Taye, Biruhalem; Desta, Kassu; Ejigu, Selamawit; Dori, Geme Urge

    2014-06-01

    Human Immunodeficiency Virus (HIV) and intestinal parasitic infections are among the main health problems in developing countries like Ethiopia. Particularly, co-infections of these diseases would worsen the progression of HIV to Acquired Immunodeficiency Syndrome (AIDS). The purpose of this study was to determine the magnitude and risk factors for intestinal parasites in relation to HIV infection and immune status. The study was conducted in (1) HIV positive on antiretroviral therapy (ART) and (2) ART naïve HIV positive patients, and (3) HIV-negative individuals, at All African Leprosy and Tuberculosis (TB) Eradication and Rehabilitation Training Center (ALERT) hospital in Addis Ababa, Ethiopia. Study participants were interviewed using structured questionnaires to obtain socio-demographic characteristics and assess risk factors associated with intestinal parasitic infection. Intestinal parasites were identified from fecal samples by direct wet mount, formol ether concentration, and modified Ziehl-Neelsen staining techniques. The immune status was assessed by measuring whole blood CD4 T-cell count. The overall magnitude of intestinal parasite was 35.08%. This proportion was different among study groups with 39.2% (69/176), 38.83% (40/103) and 27.14% (38/140) in ART naïve HIV positives patients, in HIV negatives, and in HIV positive on ART patients respectively. HIV positive patients on ART had significantly lower magnitude of intestinal parasitic infection compared to HIV negative individuals. Intestinal helminths were significantly lower in HIV positive on ART and ART naïve patients than HIV negatives. Low monthly income, and being married, divorced or widowed were among the socio-demographic characteristics associated with intestinal parasitic infection. No association was observed between the magnitude of intestinal parasites and CD4 T-cell count. However, Cryptosporidium parvum, and Isospora belli were exclusively identified in individuals with CD4 T

  12. How patients experience the surroundings in relation to patient participation: a qualitative study of inpatients with intestinal failure

    Directory of Open Access Journals (Sweden)

    Thyssen GD

    2014-04-01

    Full Text Available Gunvor Dichmann Thyssen, Anne BeckDepartment of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, DenmarkIntroduction: Patient participation is known to improve patients' motivation, compliance, treatment results, and satisfaction with the received care. It is well known that the physical environment is of great importance in supporting patient involvement. A systematic literature search has shown a lack of articles on the subject of “surroundings” in relation to patient participation, for all patient groups.Aim: We aimed to investigate how patients with intestinal failure experience their hospital surroundings in relation to patient participation.Methods: The study included eight patients admitted for at least 2 weeks at the Intestinal Failure Unit, H8, Salford Royal NHS Foundation Trust, Manchester, United Kingdom. Included patients had a good level of consciousness with no confusion. The included patients participated in a semistructured interview. The interviews were analyzed using Malterud's principles of systematic text condensation.Results: The patients described that the surroundings enabled them to participate in their treatment and care. The surroundings made it possible for them and encouraged them to participate through: the possibility to seek and get information and the possibility to participate in daily activities. This led to a feeling of independence, reassurance, normality, control, responsibility, and confidence.Conclusion: The findings in this study indicate that the hospital surroundings are essential for the patients with respect to their ability to participate in their own care and treatment. The surroundings, in relation to patient participation, should be considered when planning and organizing nursing care. Further research is needed to increase the understanding of the surroundings in relation to patient participation - this research could, for eg, include the nurse's perspective

  13. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P MIH and CHH gene expression when compared to the control ( P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  15. Influence of fentanyl and morphine on intestinal circulation

    International Nuclear Information System (INIS)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-01-01

    The influence of fentanyl and morphine on the intestinal circulation was evaluated in an isolated loop preparation in 37 dogs anesthetized with pentobarbital intravenously. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mm Hg. A mixture of 86 Rb and 9-micron spheres labeled with 141 Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A strong correlation was found between the clearances of rubidium and microspheres (r = 0.97, P less than 0.0001), suggesting that the shunting of 9-micron spheres through the intestines reflects the shunting of blood through nonnutritive vessels. Intravenous fentanyl decreased oxygen uptake (O 2 up), and vascular resistance (VR), and increased blood flow (BF), rubidium and microsphere clearances (Cl-Rb, Cl-Sph, respectively), and permeability--surface area product (PS) in a dose-related fashion. Intravenous morphine in a dose of 1 mg X kg-1 increased Cl-Rb (nutritive BF) without changes in total (nutritive and nonnutritive) BF. This increase in nutritive BF is probably related to morphine-induced histamine release. Morphine in a dose of 5 mg X kg-1 was accompanied by vasoconstriction that was completely abolished by alpha-adrenoceptor blockade. The data suggest that morphine-induced intestinal vasoconstriction is mediated via a release of epinephrine, apparently from the adrenal medulla. It is concluded that changes in the intestinal circulation during anesthesia with narcotics might play a certain role in the cardiovascular homeostasis during anesthesia and surgery. An increase in oxygen content in portal venous blood, resulting from a decrease in intestinal oxygen uptake, should facilitate hepatic oxygenation

  16. Influence of fentanyl and morphine on intestinal circulation

    Energy Technology Data Exchange (ETDEWEB)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-06-01

    The influence of fentanyl and morphine on the intestinal circulation was evaluated in an isolated loop preparation in 37 dogs anesthetized with pentobarbital intravenously. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mm Hg. A mixture of /sup 86/Rb and 9-micron spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A strong correlation was found between the clearances of rubidium and microspheres (r = 0.97, P less than 0.0001), suggesting that the shunting of 9-micron spheres through the intestines reflects the shunting of blood through nonnutritive vessels. Intravenous fentanyl decreased oxygen uptake (O/sub 2/up), and vascular resistance (VR), and increased blood flow (BF), rubidium and microsphere clearances (Cl-Rb, Cl-Sph, respectively), and permeability--surface area product (PS) in a dose-related fashion. Intravenous morphine in a dose of 1 mg X kg-1 increased Cl-Rb (nutritive BF) without changes in total (nutritive and nonnutritive) BF. This increase in nutritive BF is probably related to morphine-induced histamine release. Morphine in a dose of 5 mg X kg-1 was accompanied by vasoconstriction that was completely abolished by alpha-adrenoceptor blockade. The data suggest that morphine-induced intestinal vasoconstriction is mediated via a release of epinephrine, apparently from the adrenal medulla. It is concluded that changes in the intestinal circulation during anesthesia with narcotics might play a certain role in the cardiovascular homeostasis during anesthesia and surgery. An increase in oxygen content in portal venous blood, resulting from a decrease in intestinal oxygen uptake, should facilitate hepatic oxygenation.

  17. INTESTINAL OBSTRUCTION

    Science.gov (United States)

    Whipple, G. H.; Stone, H. B.; Bernheim, B. M.

    1913-01-01

    formed in no other way than by the activity of the intestinal mucosa and the growth of the intestinal bacteria. This material after dilution, autolysis, sterilization, and filtration produces a characteristic effect when introduced intravenously. When in toxic doses it causes a profound drop in blood pressure, general collapse, drop in temperature, salivation, vomiting, and profuse diarrhea, which is often blood-stained. Splanchnic congestion is the conspicuous feature at autopsy and shows especially in the villi of the duodenal and jejunal mucosæ. Adrenalin, during this period of low blood pressure and splanchnic congestion, will cause the usual reaction when given intravenously, but applied locally or given intravenously it causes no bleaching of the engorged intestinal mucosa. Secretin is not found in the duodenal loop fluid, and the loop material does not influence the pancreatic secretion. Intraportal injection of the toxic material gives a reaction similar to intravenous injection. Intraperitoneal and subcutaneous injections produce a relatively slow reaction which closely resembles the picture seen in the closed duodenal loop dog. In both cases there is a relatively slow absorption, but the splanchnic congestion and other findings, though less intense, are present in both groups. There seems, therefore, to be no escape from the conclusion that a poisonous substance is formed in this closed duodenal loop which is absorbed from it and causes intoxication and death. Injection of this toxic substance into a normal dog gives intoxication and a reaction more intense but similar to that developing in a closed-loop dog. PMID:19867644

  18. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    NARCIS (Netherlands)

    Boer, J.F. de; Schonewille, M.; Boesjes, M.; Wolters, H.; Bloks, V.W.; Bos, T.; Dijk, T.H. van; Jurdzinski, A.; Boverhof, R.; Wolters, J.C.; Kuivenhoven, J.A.; Deursen, J.M.A. van; Elferink, R.P.; Moschetta, A.; Kremoser, C.; Verkade, H.J.; Kuipers, F.; Groen, A.K.

    2017-01-01

    BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE)

  19. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria.

    Science.gov (United States)

    Stecher, Bärbel; Chaffron, Samuel; Käppeli, Rina; Hapfelmeier, Siegfried; Freedrich, Susanne; Weber, Thomas C; Kirundi, Jorum; Suar, Mrutyunjay; McCoy, Kathy D; von Mering, Christian; Macpherson, Andrew J; Hardt, Wolf-Dietrich

    2010-01-01

    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut

  20. A mixed-methods evaluation of health-related quality of life for male veterans with and without intestinal stomas.

    Science.gov (United States)

    Krouse, Robert S; Grant, Marcia; Wendel, Christopher S; Mohler, M Jane; Rawl, Susan M; Baldwin, Carol M; Coons, Stephen Joel; McCorkle, Ruth; Ko, Clifford Y; Schmidt, C Max

    2007-12-01

    Intestinal stomas have a major impact on Cases' lives. It is essential to better understand the areas in which interventions may help to minimize the negative consequences. This was a case-control survey study using validated instruments (City of Hope Quality of Life-Ostomy and Short Form 36 for Veterans). Cases were accrued from Veterans Affairs Medical Centers in Tucson, Indianapolis, and Los Angeles. Eligibility included a major intra-abdominal surgical procedure that led to an ostomy (cases), or a similar procedure that did not mandate a stoma (controls). Analysis included quantitative and qualitative responses. The response rate was 48 percent (511/1,063). Cases and controls had relatively similar demographic characteristics. Because of low numbers of female respondents (13 cases and 11 controls), only results for males are reported. Based on both the City of Hope Quality of Life-Ostomy and Short Form 36 for Veterans, cases reported significantly poorer scores on scales/domains reflecting psychologic and social functioning and well being. Additionally, cases reported poorer scores on Short Form 36 for Veterans scales reflecting physical functioning and significantly lower scores on multiple items in the social domain of the City of Hope Quality of Life-Ostomy compared with controls. Two-thirds of cases replied to an open-ended question on their "greatest challenge" related to their ostomy, which led to further clarification of major issues. Multiple health-related quality of life problems were reported by male veterans with intestinal stomas. The greatest differences between cases and controls were observed in the social and psychologic domains/scales. Findings from this study provide a greater understanding of the challenges faced by ostomates and will inform the development and evaluation of urgently needed intervention strategies.

  1. TRPV5, the gateway to Ca2+ homeostasis.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal

  2. Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis.

    Science.gov (United States)

    Nagarajan, Vinay K; Satheesh, Viswanathan; Poling, Michael D; Raghothama, Kashchandra G; Jain, Ajay

    2016-06-01

    Phosphate (Pi), an essential macronutrient required for growth and development of plants, is often limiting in soils. Pi deficiency modulates the expression of Pi starvation-responsive (PSR) genes including transcription factors (TFs). Here, we elucidated the role of the MYB-related TF HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY ROOT SHORTENING1 HOMOLOG2 (HHO2, At1g68670) in regulating Pi acquisition and signaling in Arabidopsis thaliana HHO2 was specifically and significantly induced in different tissues in response to Pi deprivation. Transgenic seedlings expressing 35S::GFP::HHO2 confirmed the localization of HHO2 to the nucleus. Knockout mutants of HHO2 showed significant reduction in number and length of first- and higher-order lateral roots and Pi content of different tissues compared with the wild-type irrespective of the Pi regime. In contrast, HHO2-overexpressing lines exhibited augmented lateral root development, enhanced Pi uptake rate and higher Pi content in leaf compared with the wild-type. Expression levels of PSR genes involved in Pi sensing and signaling in mutants and overexpressors were differentially regulated as compared with the wild-type. Attenuation in the expression of HHO2 in the phr1 mutant suggested a likely influence of PHR1 in HHO2-mediated regulation of a subset of traits governing Pi homeostasis. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs

    DEFF Research Database (Denmark)

    Jain, Ajay Kumar; Stoll, Barbara; Burrin, Douglas G

    2012-01-01

    Total parenteral nutrition (TPN) is essential for patients with impaired gut function but leads to parenteral nutrition-associated liver disease (PNALD). TPN disrupts the normal enterohepatic circulation of bile acids, and we hypothesized that it would decrease intestinal expression of the newly...... described metabolic hormone fibroblast growth factor-19 (FGF19) and also glucagon-like peptides-1 and -2 (GLP-1 and GLP-2). We tested the effects of restoring bile acids by treating a neonatal piglet PNALD model with chenodeoxycholic acid (CDCA). Neonatal pigs received enteral feeding (EN), TPN, or TPN...... + CDCA for 14 days, and responses were assessed by serum markers, histology, and levels of key regulatory peptides. Cholestasis and steatosis were demonstrated in the TPN group relative to EN controls by elevated levels of serum total and direct bilirubin and also bile acids and liver triglyceride (TG...

  4. The relation between Blastocystis and the intestinal microbiota in Swedish travellers.

    Science.gov (United States)

    Forsell, Joakim; Bengtsson-Palme, Johan; Angelin, Martin; Johansson, Anders; Evengård, Birgitta; Granlund, Margareta

    2017-12-11

    Blastocystis sp. is a unicellular eukaryote that is commonly found in the human intestine. Its ability to cause disease is debated and a subject for ongoing research. In this study, faecal samples from 35 Swedish university students were examined through shotgun metagenomics before and after travel to the Indian peninsula or Central Africa. We aimed at assessing the impact of travel on Blastocystis carriage and seek associations between Blastocystis and the bacterial microbiota. We found a prevalence of Blastocystis of 16/35 (46%) before travel and 15/35 (43%) after travel. The two most commonly Blastocystis subtypes (STs) found were ST3 and ST4, accounting for 20 of the 31 samples positive for Blastocystis. No mixed subtype carriage was detected. All ten individuals with a typable ST before and after travel maintained their initial ST. The composition of the gut bacterial community was not significantly different between Blastocystis-carriers and non-carriers. Interestingly, the presence of Blastocystis was accompanied with higher abundances of the bacterial genera Sporolactobacillus and Candidatus Carsonella. Blastocystis carriage was positively associated with high bacterial genus richness, and negatively correlated to the Bacteroides-driven enterotype. These associations were both largely dependent on ST4 - a subtype commonly described from Europe - while the globally prevalent ST3 did not show such significant relationships. The high rate of Blastocystis subtype persistence found during travel indicates that long-term carriage of Blastocystis is common. The associations between Blastocystis and the bacterial microbiota found in this study could imply a link between Blastocystis and a healthy microbiota as well as with diets high in vegetables. Whether the associations between Blastocystis and the microbiota are resulting from the presence of Blastocystis, or are a prerequisite for colonization with Blastocystis, are interesting questions for further studies.

  5. Telomere Homeostasis: Interplay with Magnesium

    Directory of Open Access Journals (Sweden)

    Donogh Maguire

    2018-01-01

    Full Text Available Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.

  6. Cdx function is required for maintenance of intestinal identity in the adult.

    Science.gov (United States)

    Hryniuk, Alexa; Grainger, Stephanie; Savory, Joanne G A; Lohnes, David

    2012-03-15

    The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Diversity and functions of intestinal mononuclear phagocytes

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Müller-Luda, K; Agace, William Winston

    2017-01-01

    The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the curr......The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation....... In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt...

  8. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing.

    Science.gov (United States)

    Kurashima, Yosuke; Kiyono, Hiroshi

    2017-04-26

    The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.

  9. Regulation of early and delayed radiation responses in rat small intestine by capsaicin-sensitive nerves

    International Nuclear Information System (INIS)

    Wang Junru; Zheng Huaien; Kulkarni, Ashwini; Ou Xuemei; Hauer-Jensen, Martin

    2006-01-01

    Purpose: Mast cells protect against the early manifestations of intestinal radiation toxicity, but promote chronic intestinal wall fibrosis. Intestinal sensory nerves are closely associated with mast cells, both anatomically and functionally, and serve an important role in the regulation of mucosal homeostasis. This study examined the effect of sensory nerve ablation on the intestinal radiation response in an established rat model. Methods and Materials: Rats underwent sensory nerve ablation with capsaicin or sham ablation. Two weeks later, a localized segment of ileum was X-irradiated or sham irradiated. Structural, cellular, and molecular changes were examined 2 weeks (early injury) and 26 weeks (chronic injury) after irradiation. The mast cell dependence of the effect of sensory nerve ablation on intestinal radiation injury was assessed using c-kit mutant (Ws/Ws) mast cell-deficient rats. Results: Capsaicin treatment caused a baseline reduction in mucosal mast cell density, crypt cell proliferation, and expression of substance P and calcitonin gene-related peptide, two neuropeptides released by sensory neurons. Sensory nerve ablation strikingly exacerbated early intestinal radiation toxicity (loss of mucosal surface area, inflammation, intestinal wall thickening), but attenuated the development of chronic intestinal radiation fibrosis (collagen I accumulation and transforming growth factor β immunoreactivity). In mast cell-deficient rats, capsaicin treatment exacerbated postradiation epithelial injury (loss of mucosal surface area), but none of the other aspects of radiation injury were affected by capsaicin treatment. Conclusions: Ablation of capsaicin-sensitive enteric neurons exacerbates early intestinal radiation toxicity, but attenuates development of chronic fibroproliferative changes. The effect of capsaicin treatment on the intestinal radiation response is partly mast cell dependent

  10. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  11. Obesity induced by a pair-fed high fat sucrose diet: methylation and expression pattern of genes related to energy homeostasis

    Directory of Open Access Journals (Sweden)

    Campión Javier

    2010-06-01

    Full Text Available Abstract Background The expression of some genes controlling energy homeostasis could be regulated by epigenetic mechanisms that may play a role in body weight regulation. Thus, it is known that various nutritional factors affect DNA methylation. In order to assess whether the macronutrient composition of the diet could be related to the epigenetic regulation of gene expression and with obesity development, we investigated the effects on methylation and expression patterns of two pair-fed isocaloric diets in rats: control (rich in starch and HFS (rich in fat and sucrose. Results The pair-fed HFS diet induced higher weight gain and adiposity as compared to the controls as well as liver triglyceride accumulation and oxidative stress. Feeding the HFS diet impaired glucose tolerance and serum triglycerides and cholesterol. Liver glucokinase expression, a key glycolytic gene, remained unaltered, as well as the mRNA values of fatty acid synthase and NADH dehydrogenase (ubiquinone 1 beta subcomplex, 6 (NDUFB6 in liver and visceral adipocytes, which regulate lipogenesis and mitochondrial oxidative metabolism, respectively. Liver expression of hydroxyacyl-coenzyme A dehydrogenase (HADHB, a key gene of β-oxidation pathway, was higher in the HFS-fed animals. However, the methylation status of CpG islands in HADHB and glucokinase genes remained unchanged after feeding the HFS diet. Conclusions These results confirm that the distribution and type of macronutrients (starch vs. sucrose, and percent of fat influence obesity onset and the associated metabolic complications. HFS diets produce obesity independently of total energy intake, although apparently no epigenetic (DNA methylation changes accompanied the modifications observed in gene expression.

  12. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Science.gov (United States)

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  13. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    Science.gov (United States)

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  14. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Directory of Open Access Journals (Sweden)

    Paresh Deshpande

    Full Text Available Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear.Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene, and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase, and DMAS (2'-deoxymugineic acid synthase in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement.At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  15. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

    Directory of Open Access Journals (Sweden)

    M. Ren

    2015-12-01

    Full Text Available As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON, a protein restricted diet (17% CP, PR and a BCAA diet (BCAA supplementation in the PR diet for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG (p0.05. The PR and BCAA treatments had a higher (p<0.05 plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc. in plasma of the PR group was lower (p<0.05 than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01 and decreased urea concentration (p<0.01 in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs number (p<0.05 and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA (p = 0.04, secreted IgA (sIgA (p = 0.03 and immunoglobulin M (p = 0.08, and ileal IgA (p = 0.01 and immunoglobulin G (p = 0.08. The BCAA supplementation increased villous height in the duodenum (p<0.01, reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal

  16. Intestinal Surgery.

    Science.gov (United States)

    Desrochers, André; Anderson, David E

    2016-11-01

    A wide variety of disorders affecting the intestinal tract in cattle may require surgery. Among those disorders the more common are: intestinal volvulus, jejunal hemorrhage syndrome and more recently the duodenal sigmoid flexure volvulus. Although general principles of intestinal surgery can be applied, cattle has anatomical and behavior particularities that must be known before invading the abdomen. This article focuses on surgical techniques used to optimize outcomes and discusses specific disorders of small intestine. Diagnoses and surgical techniques presented can be applied in field conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet. Copyright © 2016. Published by Elsevier Ltd.

  18. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  19. Age-related P-glycoprotein expression in the intestine and affecting the pharmacokinetics of orally administered enrofloxacin in broilers.

    Science.gov (United States)

    Guo, Mengjie; Bughio, Shamsuddin; Sun, Yong; Zhang, Yu; Dong, Lingling; Dai, Xiaohua; Wang, Liping

    2013-01-01

    Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg • ml(-1), P=0.009), AUC(14.54 vs. 9.35 μg • ml(-1) • h, P=0.005) and Ka (1.38 vs. 0.43 h(-1), P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2 ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy.

  20. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  1. Relation between reflux of bile acids into the stomach and gastric mucosal atrophy, intestinal metaplasia in biopsy specimens.

    Science.gov (United States)

    Matsuhisa, Takeshi; Tsukui, Taku

    2012-05-01

    During endoscopic examinations we collected fluid in the stomach that included reflux fluid from the duodenum, and assessed the effect of quantitatively determined bile acids on glandular atrophy and intestinal metaplasia using biopsy specimens. A total of 294 outpatients were enrolled in this study. Total bile acid concentration was measured by an enzyme immunoassay. Glandular atrophy and intestinal metaplasia scores were graded according to the Updated Sydney System. An effect of refluxed bile acids on atrophy and intestinal metaplasia was shown in the high-concentration reflux group in comparison with the control group. However, when the odds ratios (ORs) were calculated according to whether Helicobacter pylori (H. pylori) infection was present, no significant associations were shown between reflux bile acids and atrophy in either the H. pylori-positive cases or -negative cases. The same was true for intestinal metaplasia in the H. pylori-positive cases, whereas intestinal metaplasia was more pronounced in the high-concentration reflux group in the H. pylori-negative cases (OR 2.4, 95%CI 1.1-5.6). We could not clarify the effect of the reflux of bile acids into the stomach in the progression of atrophy. High-concentration bile acids had an effect on the progression of intestinal metaplasia in the H. pylori-negative cases.

  2. Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis

    DEFF Research Database (Denmark)

    Foer, D; Zhu, M; Cardone, R L

    2017-01-01

    potentially represents a target for drug discovery in type 2 diabetes and hyperlipidemia. Studies in animal models suggest a physiologic link between LRP5 and glucose and lipid homeostasis; however, whether it plays a similar role in humans is unclear. As current literature links loss-of-function LRP5...... to impaired glucose and lipid metabolism, we hypothesized that individuals with an HBM-causing mutation in LRP5 would exhibit improved glucose and lipid homeostasis. Since studies in animal models have suggested that Wnt signaling augments insulin secretion, we also examined the effect of Wnt signaling...... on glucose-stimulated insulin secretion on human pancreatic islets. METHODS: This was a matched case-control study. We used several methods to assess glucose and lipid metabolism in 11 individuals with HBM-causing mutations in LRP5. Affected study participants were recruited from previously identified...

  3. Environmental aspects related to tuberculosis and intestinal parasites in a low-income community of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Biatriz Araújo Cardoso

    Full Text Available ABSTRACT We carried out a cross-sectional study from January to December 2015 on 1,425 inhabitants from a floating population in the Brazilian Amazon (Murinin district, Pará State to describe the population-based prevalence of tuberculosis (TB from 2011 to 2014, recent TB contacts (rCts latently infected with Mycobacterium tuberculosis (LTBI , the coverage of the local health network, socio-environmental factors, and frequency of intestinal parasitic infection (IPI. We found that the sanitary structure was inadequate, with latrines being shared with other rooms within the same accommodation; well water was the main source of water, and 48% of families had low incomes. The average rate of TB was 105/100, 000 inhabitants per year; one third of TB patients had been household contacts of infected individuals in the past, and 23% of rCts were LTBI. More than half (65% of 44% of the stools examined (representing 76% of the housing had IPIs; the highest prevalence was of fecal-oral transmitted protozoa (40%, Giardia intestinalis , followed by soil-transmitted helminths (23%. TB transmission may be related to insufficient disease control of rCts, frequent relocation, and underreporting. Education, adopting hygienic habits, improving sanitation, provision of a treated water supply and efficient sewage system, further comprehensive epidemiological surveillance of those who enter and leave the community and resources for basic treatment of IPIs are crucial in combating the transmission of these neglected diseases.

  4. Environmental aspects related to tuberculosis and intestinal parasites in a low-income community of the Brazilian Amazon.

    Science.gov (United States)

    Cardoso, Biatriz Araújo; Fonseca, Fabio de Oliveira; Moraes, Antonio Henrique Almeida de; Martins, Ana Caroline Guedes Souza; Oliveira, Nissa Vilhena da Silva; Lima, Luana Nepomuceno Gondim Costa; Dias, George Alberto da Silva; Saad, Maria Helena Féres

    2017-08-07

    We carried out a cross-sectional study from January to December 2015 on 1,425 inhabitants from a floating population in the Brazilian Amazon (Murinin district, Pará State) to describe the population-based prevalence of tuberculosis (TB) from 2011 to 2014, recent TB contacts (rCts) latently infected with Mycobacterium tuberculosis (LTBI) , the coverage of the local health network, socio-environmental factors, and frequency of intestinal parasitic infection (IPI). We found that the sanitary structure was inadequate, with latrines being shared with other rooms within the same accommodation; well water was the main source of water, and 48% of families had low incomes. The average rate of TB was 105/100, 000 inhabitants per year; one third of TB patients had been household contacts of infected individuals in the past, and 23% of rCts were LTBI. More than half (65%) of 44% of the stools examined (representing 76% of the housing) had IPIs; the highest prevalence was of fecal-oral transmitted protozoa (40%, Giardia intestinalis ), followed by soil-transmitted helminths (23%). TB transmission may be related to insufficient disease control of rCts, frequent relocation, and underreporting. Education, adopting hygienic habits, improving sanitation, provision of a treated water supply and efficient sewage system, further comprehensive epidemiological surveillance of those who enter and leave the community and resources for basic treatment of IPIs are crucial in combating the transmission of these neglected diseases.

  5. CT studies of mesentery and related vascular findings in strangulating intestinal obstruction

    International Nuclear Information System (INIS)

    Li Wenhua; Cao Qingxuan; Yang Shifeng; Li Jianhai; Lu Shenglin; Zhang Qiang; Wu Tian

    2006-01-01

    Objective: To investigate the CT appearance of mesentery and related vascular (MRV) findings in strangulating obstruction (SO) and evaluate the value of CT examination for diagnosing SO. Methods: Thirty patients with SO were included in the investigation. The diagnosis was confirmed by operation in 26 cases and 4 cases by clinic. The cause of SO included adhesion in 9 cases, volvulus in 8 cases, intussusception in 6 cases, infarction of mesenteric vesseles in 4 cases, and internal hernia in 3 cases, respectively. All patients was examined with CT and 20 of them with enhanced CT. Results: Eleven items of CT findings were revealed in these patients. The findings could be divided into 3 types: (1) direct signs: including embolism of mesenteric vasculature in 2 cases and mesenteric edema and related vascular enlargement in 19 cases. (2)indirect signs: including bowel wall edema and thickenning in 24 cases, abnormal enhancement of the wall in 6 cases, massive fluid in the bowel in 13 cases, abnormal form of loops in 10 cases, and hemorrhage of bowel wall and mesentery in 1 case each. (3) complicated signs: including intramural gas in 3 cases, intrahepatic portal veins gas in 1 case, gas in mesentery in 1 case, and ascites and pneumoperitoneum in 11 cases. Conclusion: The CT findings of mesenteric edema, ischemia and infarction are reliable and characteristic signs for diagnosing SO. The diagnosis of SO can be correctly made before operation if these signs are recognized, at the same time, CT may demonstrate some complications which can not be revealed by traditional X-ray examinations. (authors)

  6. Postprandial gallbladder emptying is related to intestinal motility at the time of meal ingestion

    DEFF Research Database (Denmark)

    Oster-Jørgensen, E; Qvist, N; Pedersen, S A

    1992-01-01

    The characteristics of meal-induced gallbladder emptying in healthy individuals are subject to wide variation. We hypothesized that some of the observed variation might relate to ingestion of the meal during different phases of the migrating motor complex (MMC). Recording of gastrointestinal...... pressure was combined with scintigraphic recording of bile kinetics during infusion of 99mTc-HIDA. The material consisted of 12 healthy men. Group 1 (n = 6) had a fat-rich meal in phase I, and group 2 (n = 6) had the meal in a phase II. With the end of the meal ingestion as zero, the following results...... emerged. The subjects in group 1 had a median (range) lag period before beginning of gallbladder emptying of 13.5 (9.0-22.5) min. In group 2 gallbladder emptying began during the meal ingestion in four subjects, and the median lag period was 0 min (minimum, -9.0; maximum, 13.5 (p = 0.02)). The median...

  7. Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS.

    Science.gov (United States)

    Di Nardo, G; Barbara, G; Cucchiara, S; Cremon, C; Shulman, R J; Isoldi, S; Zecchi, L; Drago, L; Oliva, S; Saulle, R; Barbaro, M R; Stronati, L

    2014-02-01

    Neuroimmune interactions and inflammation have been proposed as factors involved in sensory-motor dysfunction and symptom generation in adult irritable bowel syndrome (IBS) patients. In children with IBS and healthy controls, we measured ileocolonic mast cell infiltration and fecal calprotectin and evaluated the relationships between these parameters and abdominal pain symptoms and stooling pattern. Irritable bowel syndrome patients diagnosed according to Pediatric Rome III criteria and healthy controls kept a 2-week pain/stooling diary. Ileocolonic mucosal mast cells (MC) and MC in close proximity to nerve fibers (MC-NF) were identified immunohistochemically and quantified. Fecal calprotectin concentration was measured. 21 IBS patients and 10 controls were enrolled. The MC-NF count was significantly higher in the ileum (p = 0.01), right colon (p = 0.04), and left colon (p Abdominal pain intensity score correlated with ileal MC count (r(s) = 0.47, p = 0.030) and right colon MC-NF count (r(s) = 0.52, p = 0.015). In addition, children with IBS with >3 abdominal pain episodes/week had greater ileal (p = 0.002) and right colonic (p = 0.01) MC counts and greater ileal (p = 0.05) and right colonic (p = 0.016) MC-NF counts than children with less frequent pain. No relationship was found between MC and MC-NF and fecal calprotectin or stooling pattern. Mast cells-nerve fibers counts are increased in the ileocolonic mucosa of children with IBS. Mast cells and MC-NF counts are related to the intensity and frequency of abdominal pain. © 2013 John Wiley & Sons Ltd.

  8. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  9. Intestinal leiomyoma

    Science.gov (United States)

    ... most often found when a person has an upper gastrointestinal (GI) endoscopy or colonoscopy for another reason. Rarely, these tumors can cause bleeding, blockage or rupture of the intestines If this ...

  10. Dietary administration of the probiotic SpPdp11: Effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline.

    Science.gov (United States)

    Tapia-Paniagua, S T; Vidal, S; Lobo, C; García de la Banda, I; Esteban, M A; Balebona, M C; Moriñigo, M A

    2015-10-01

    Few antimicrobials are currently authorised in the aquaculture industry to treat infectious diseases. Among them, oxytetracycline (OTC) is one of the first-choice drugs for nearly all bacterial diseases. The objective of this study was to evaluate the effect of the dietary administration of OTC both alone and jointly with the probiotic Shewanella putrefaciens Pdp11 (SpPdp11) on the intestinal microbiota and hepatic expression of genes related to immunity in Senegalese sole (Solea senegalensis) juveniles. The results demonstrated that the richness and diversity of the intestinal microbiota of fish treated with OTC decreased compared with those of the control group but that these effects were lessened by the simultaneous administration of SpPdp11. In addition, specimens that received OTC and SpPdp11 jointly showed a decreased intensity of the Denaturing Gradient Gel Electrophoresis (DGGE) bands related to Vibrio genus and the presence of DGGE bands related to Lactobacillus and Shewanella genera. The relationship among the intestinal microbiota of fish fed with control and OTC diets and the expression of the NADPH oxidase and CASPASE-6 genes was demonstrated by a Principal Components Analysis (PCA) carried out in this study. In contrast, a close relationship between the transcription of genes, such as NKEF, IGF-β, HSP70 and GP96, and the DGGE bands of fish treated jointly with OTC and SpPdp11 was observed in the PCA study. In summary, the results obtained in this study demonstrate that the administration of OTC results in the up-regulation of genes related to apoptosis but that the joint administration of OTC and S. putrefaciens Pdp11 increases the transcription of genes related to antiapoptotic effects and oxidative stress regulation. Further, a clear relationship between these changes and those detected in the intestinal microbiota is established. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  12. Lipo sarcoma in small intestine

    International Nuclear Information System (INIS)

    Rodriguez Iglesias, J.; Pineyro Gutierrez, A.; Taroco Medeiros, L.; Fein Kolodny, C.; Navarrete Pedocchi, H.

    1987-01-01

    A case is presented by primitive liposarcoma in small intestine , an extensive bibliographical review foreigner and national in this case. It detach the exceptional of the intestinal topography of the liposarcomas; and making stress in the relative value of the computerized tomography and ultrasonography in the diagnose of the small intestine tumors . As well as in the sarcomas of another topography, chemo and radiotherapy associated to the exeresis surgery, it can be of benefit [es

  13. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  14. Intestinal Ostomy.

    Science.gov (United States)

    Ambe, Peter C; Kurz, Nadja Rebecca; Nitschke, Claudia; Odeh, Siad F; Möslein, Gabriela; Zirngibl, Hubert

    2018-03-16

    About 100 000 ostomy carriers are estimated to live in Germany today. The creation of an ostomy represents a major life event that can be associated with impaired quality of life. Optimal ostomy creation and proper ostomy care are crucially important determinants of the success of treatment and of the patients' quality of life. This article is based on pertinent publications retrieved by a selective search in PubMed, GoogleScholar, and Scopus, and on the authors' experience. Intestinal stomata can be created using either the small or the large bowel. More than 75% of all stomata are placed as part of the treatment of colorectal cancer. The incidence of stoma-related complications is reported to be 10-70%. Skin irritation, erosion, and ulceration are the most common early complications, with a combined incidence of 25-34%, while stoma prolapse is the most common late complication, with an incidence of 8-75%. Most early complications can be managed conservatively, while most late complications require surgical revision. In 19% of cases, an ostomy that was initially planned to be temporary becomes permanent. Inappropriate stoma location and inadequate ostomy care are the most common causes of early complications. Both surgical and patient-related factors influence late complications. Every step from the planning of a stoma to its postoperative care should be discussed with the patient in detail. Preoperative marking is essential for an optimal stoma site. Optimal patient management with the involvement of an ostomy nurse increases ostomy acceptance, reduces ostomy-related complications, and improves the quality of life of ostomy carriers.

  15. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells

    NARCIS (Netherlands)

    Lebeer, S.; Claes, I.J.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; Ossowski, von I.; Reunanen, J.; Palva, A.; Vos, de W.M.; Keersmaecker, de S.C.; Vanderleyden, J.

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a

  16. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC{sup 1638N/+} Mice

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Strawn, Steve J.; Thakor, Hemang; Fan, Ziling [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States); Shay, Jerry W. [Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas (United States); Fornace, Albert J. [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia); Datta, Kamal, E-mail: kd257@georgetown.edu [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States)

    2016-05-01

    Purpose: There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Methods and Materials: Male and female APC{sup 1638N/+} mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, {sup 12}C, {sup 28}Si, or {sup 56}Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxic doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. Results: The highest number of tumors was observed after {sup 28}Si, followed by {sup 56}Fe and {sup 12}C radiation, and tumorigenesis showed a male preponderance, especially after {sup 28}Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with {sup 28}Si, and lower doses showed greater RBE relative to higher doses. Conclusions: We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions.

  17. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  18. Expression and distribution patterns of Mas-related gene receptor subtypes A-H in the mouse intestine: inflammation-induced changes.

    Science.gov (United States)

    Avula, Leela Rani; Buckinx, Roeland; Favoreel, Herman; Cox, Eric; Adriaensen, Dirk; Van Nassauw, Luc; Timmermans, Jean-Pierre

    2013-05-01

    Mas-related gene (Mrg) receptors constitute a subfamily of G protein-coupled receptors that are implicated in nociception, and are as such considered potential targets for pain therapies. Furthermore, some Mrgs have been suggested to play roles in the regulation of inflammatory responses to non-immunological activation of mast cells and in mast cell-neuron communication. Except for MrgD, E and F, whose changed expression has been revealed during inflammation in the mouse intestine in our earlier studies, information concerning the remaining cloned mouse Mrg subtypes in the gastrointestinal tract during (patho) physiological conditions is lacking. Therefore, the present study aimed at identifying the presence and putative function of these remaining cloned Mrg subtypes (n = 19) in the (inflamed) mouse intestine. Using reverse transcriptase-PCR, quantitative-PCR and multiple immunofluorescence staining with commercial and newly custom-developed antibodies, we compared the ileum and the related dorsal root ganglia (DRG) of non-inflamed mice with those of two models of intestinal inflammation, i.e., intestinal schistosomiasis and 2,4,6-trinitrobenzene sulfonic acid-induced ileitis. In the non-inflamed ileum and DRG, the majority of the Mrg subtypes examined were sparsely expressed, showing a neuron-specific expression pattern. However, significant changes in the expression patterns of multiple Mrg subtypes were observed in the inflamed ileum; for instance, MrgA4, MrgB2and MrgB8 were expressed in a clearly increased number of enteric sensory neurons and in nerve fibers in the lamina propria, while de novo expression of MrgB10 was observed in enteric sensory neurons and in newly recruited mucosal mast cells (MMCs). The MrgB10 expressing MMCs were found to be in close contact with nerve fibers in the lamina propria. This is the first report on the expression of all cloned Mrg receptor subtypes in the (inflamed) mouse intestine. The observed changes in the expression and

  19. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon.

    Science.gov (United States)

    Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild

    2016-09-07

    The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements

  20. Background Intestinal 18F-FDG Uptake Is Related to Serum Lipid Profile and Obesity in Breast Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Hai-Jeon Yoon

    Full Text Available This study investigated the relationships between background intestinal uptake on 18F-FDG PET and cardio-metabolic risk (CMR factors.A total of 326 female patients that underwent 18F-FDG PET to determine the initial stage of breast cancer were enrolled. None of the patients had history of diabetes or hypertension. The background intestinal uptake on PET was visually graded (low vs. high uptake group and quantitatively measured using the maximal standardized uptake value (SUVmax. SUVmax of 7 bowel segments (duodenum, jejunum, ileum, cecum, hepatic flexure, splenic flexure, and descending colon-sigmoid junction were averaged for the total bowel (TB SUVmax. Age, body mass index (BMI, fasting blood glucose level (BST, triglyceride (TG, cholesterol, high density lipoprotein (HDL, and low density lipoprotein (LDL were the considered CMR factors. The relationships between background intestinal 18F-FDG uptake on PET and diverse CMR factors were analyzed.The visual grades based on background intestinal 18F-FDG uptake classified 100 (30.7% patients into the low uptake group, while 226 (69.3% were classified into the high uptake group. Among CMR factors, age (p = 0.004, BMI (p<0.001, and TG (p<0.001 were significantly different according to visual grade of background intestinal 18F-FDG uptake. Quantitative TB SUVmax showed significant positive correlation with age (r = 0.203, p<0.001, BMI (r = 0.373, p<0.001, TG (r = 0.338, p<0.001, cholesterol (r = 0.148, p = 0.008, and LDL (r = 0.143, p = 0.024 and significant negative correlation with HDL (r = -0.147, p = 0.022. Multivariate analysis indicated that BMI and TG were independent factors in both visually graded background intestinal 18F-FDG uptake (p = 0.027 and p = 0.023, respectively and quantitatively measured TB SUVmax (p = 0.006 and p = 0.004, respectively.Increased background intestinal 18F-FDG uptake on PET may suggest alteration of lipid metabolism and risk of cardio-metabolic disease in non

  1. Effect of alkaloids derived from jellyfish (Aeginura sp.) on the intestinal histopathology and relative percentage survival (RPS) of tiger grouper (Epinephelus fuscoguttatus) infected by Vibrio harveyi

    Science.gov (United States)

    Andayani, S.; Fajar, M.; Rahman, M. F.

    2018-04-01

    The purposes of this research were to determine the effect of alkaloid jellyfish compounds on intestinal histopathology of tiger grouper and to determine the best doses to the relative percent survival (RPS) of tiger grouper. The method of this research was descriptive with completely randomized design. The treatment of active alkaloid compound on feed was investigated for 28 days. The fish were then challenged with Vibrio harveyi at 105 CFU/cell for 7 days. Alkaloids were added to the feed with the doses (g alkaloid/kg feed) of 0 (control); A = 0.5; B = 0.75; C = 1.0; and D = 1.25. The intestinal histopathology and RPS were observed. The best RPS was found at a treatment of C with the value of 100 %.

  2. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine.

    Science.gov (United States)

    Nguyen, Duc Ninh; Jiang, Pingping; Stensballe, Allan; Bendixen, Emøke; Sangild, Per T; Chatterton, Dereck E W

    2016-04-29

    Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins associated with glycolysis, energy metabolism and protein synthesis, indicating support of cell survival. In contrast, a high bLF dose (10g/L) up-regulated three apoptosis-inducing proteins, down-regulated five anti-apoptotic and proliferation-inducing proteins and 15 proteins related to energy and amino acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In conclusion, bLF dose-dependently affects IECs via metabolic, apoptotic and inflammatory pathways. It is important to select an appropriate dose when feeding neonates with bLF to avoid detrimental effects exerted by excessive doses. The present work elucidates dose-dependent effects of bLF on the proteomic changes of IECs in vitro supplemented with data from a preterm pig study confirming detrimental effects of enteral feeding with the highest dose of bLF (10g/L). The study contributes to further understanding on mechanisms that bLF, as an important milk protein, can regulate the homeostasis of the immature intestine. Results from this study urge neonatologists to carefully consider the dose of bLF to supplement into infant formula used for preterm neonates. Copyright © 2016 Elsevier B

  3. Towards novel strategies to improve lipid homeostasis - targeting the intestine

    NARCIS (Netherlands)

    Wulp, Mariëtte Ymkje Maria van der

    2012-01-01

    Een overschot aan cholesterol in het bloed (hypercholesterolemie), een belangrijke risicofactor voor hart- en vaatziekten, komt veelvuldig voor. Dit komt door te hoge dagelijkse inname en doordat cholesterol zeer moeilijk afbreekbaar is. Het lichaam kan cholesterol slechts kwijtraken door het ofwel

  4. CLMP-Mediated Regulation of Intestinal Homeostasis in IBD

    Science.gov (United States)

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0334 TITLE: PRINCIPAL INVESTIGATOR: Asma Nusrat CONTRACTING ORGANIZATION: Emory University Atlanta GA 30322...in IBD 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Charles A. Parkos (Initiating PI), Asma Nusrat (Partnering PI

  5. The transcriptional repressor HIC1 regulates intestinal immune homeostasis

    Czech Academy of Sciences Publication Activity Database

    Burrows, K.; Antignano, F.; Bramhall, M.; Chenery, A.; Scheer, S.; Kořínek, Vladimír; Underhill, T. M.; Zaph, C.

    2017-01-01

    Roč. 10, č. 6 (2017), s. 1518-1528 ISSN 1933-0219 Institutional support: RVO:68378050 Keywords : cd4(+) t-cells * anti-interleukin-17 monoclonal-antibody * cd103(+) dendritic cells * acid receptor-alpha * retinoic acid * t(h)17 cells * target genes * double-blind * tgf-beta * differentiation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 7.478, year: 2016

  6. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability.

    Science.gov (United States)

    Mokkala, Kati; Röytiö, Henna; Munukka, Eveliina; Pietilä, Sami; Ekblad, Ulla; Rönnemaa, Tapani; Eerola, Erkki; Laiho, Asta; Laitinen, Kirsi

    2016-09-01

    Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. Women were divided into "low" (zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P zonulin group than those in the high zonulin group. The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal permeability, leading to improved metabolic health of both the mother and fetus. This trial was registered at clinicaltrials.gov as NCT

  7. Somatostatin, substance P and calcitonin gene-related peptide-positive intramural nerve structures of the human large intestine affected by carcinoma.

    Directory of Open Access Journals (Sweden)

    Jerzy Kaleczyc

    2010-11-01

    Full Text Available The aim of this study was to investigate the arrangement and chemical coding of enteric nerve structures in the human large intestine affected by cancer. Tissue samples comprising all layers of the intestinal wall were collected during surgery form both morphologically unchanged and pathologically altered segments of the intestine (n=15, and fixed by immersion in buffered paraformaldehyde solution. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5 and their chemical coding using antibodies against somatostatin (SOM, substance P (SP and calcitonin gene-related peptide (CGRP. The microscopic observations revealed distinct morphological differences in the enteric nerve system structure between the region adjacent to the cancer invaded area and the intact part of the intestine. In general, infiltration of the cancer tissue resulted in the gradual (depending on the grade of invasion first decomposition and reduction to final partial or complete destruction and absence of the neuronal elements. A comparative analysis of immunohistochemically labeled sections (from the unchanged and pathologically altered areas revealed a statistically significant decrease in the number of CGRP-positive neurons and nerve fibres in both submucous and myenteric plexuses in the transitional zone between morphologically unchanged and cancer-invaded areas. In this zone, a decrease was also observed in the density of SP-positive nerve fibres in all intramural plexuses. Conversely, the investigations demonstrated statistically insignificant differences in number of SP- and SOM-positive neurons and a similar density of SOM-positive nerve fibres in the plexuses of the intact and pathologically changed areas. The differentiation between the potential adaptive changes in ENS or destruction of its elements by cancer invasion should be

  8. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  9. RELATION BETWEEN GLUCOLIPID PROFILE AND SMALL INTESTINE HISTOLOGICAL PATTERNS IN DIABETIC RATS EXPOSED TO AN INTERMITTENT DIETARY RESTRICTION

    Directory of Open Access Journals (Sweden)

    Noriyuki Hisano

    2009-01-01

    Full Text Available The effects of an intermittent and prolonged dietary restriction on biochemical variables and histological small intestinal patterns in 12-month-old male eSMT rats are examined. These spontaneously diabetic animals were separated in two groups after weaning: 10 rats fed ad libitum with standard rat chow and 10 rats fed a restricted diet by deprivation of the same food for 24 hours every 72. At 12 months of age, animals were weighed and euthanized after tail vein bleeding for plasma analysis (glycemia- both fasting and 120 minutes after an oral glucose challenge-, triglyceridemia and total cholesterolemia. Small intestines were removed, weighed and measured in length.Intestinal specimens were fixed, embedded in paraffin, semi serially cut at 6 µm and stained with PAS-Hematoxilyn and Hematoxilyn-Eosin. Histometry was performed through a linear devise attached to ocular lens and lectin histochemistry was accomplished employing Canavalis ensiformis, Dolichos biflorus, Arachis hypogea, Ulex europaeus-I, Triticum vulgaris, Ricinus communis and Soy Bean (Glicine Max Agglutinin. Essentially, eSMT rats, a suitable animal model for studying diabetes and/or its complications, revealed at 12 months of age after undergoing the dietary restriction: 1.- An expected improvement in body weight and determined biochemical variables (fasting and after glucose overload glycemias, triglyceridemia and total cholesterolemia without reaching euglycemic values. 2.- Changes in most of the analyzed histometric patterns with no relevant reflection on morphometric ones, and 3.- No modifications in lectinhistochemical patterns.

  10. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling

    NARCIS (Netherlands)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration

  11. Inflammasome in Intestinal Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Tiago Nunes

    2013-01-01

    Full Text Available The activation of specific cytosolic pathogen recognition receptors, the nucleotide-binding-oligomerization-domain- (NOD- like receptors (NLRs, leads to the assembly of the inflammasome, a multimeric complex platform that activates caspase-1. The caspase-1 pathway leads to the upregulation of important cytokines from the interleukin (IL-1 family, IL-1β, and IL-18, with subsequent activation of the innate immune response. In this review, we discuss the molecular structure, the mechanisms behind the inflammasome activation, and its possible role in the pathogenesis of inflammatory bowel diseases and intestinal cancer. Here, we show that the available data points towards the importance of the inflammasome in the innate intestinal immune response, being the complex involved in the maintenance of intestinal homeostasis, correct intestinal barrier function and efficient elimination of invading pathogens.

  12. A Formal Explication of the Concept of Family Homeostasis.

    Science.gov (United States)

    Ariel, Shlomo; And Others

    1984-01-01

    Presents three articles discussing the concept of family homeostasis and the related concepts of family rules and family feedback. Includes a reply by Paul Dell citing the need for family therapy to go beyond homeostasis and further comments by Ariel, Carel, and Tyano. (JAC)

  13. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  14. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    Science.gov (United States)

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  15. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    Science.gov (United States)

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  16. The intestinal microenvironment in sepsis.

    Science.gov (United States)

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  17. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  18. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. Attenuated renal and intestinal injury after use of a mini-cardiopulmonary bypass system

    NARCIS (Netherlands)

    Huybregts, Rien A. J. M.; Morariu, Aurora M.; Rakhorst, Gerhard; Spiegelenberg, Stefan R.; Romijn, Hans W. A.; de Vroege, Roel; van Oeveren, Willem

    Background. Transient, subclinical myocardial, renal, intestinal, and hepatic tissue injury and impaired homeostasis is detectable even in low-risk patients undergoing conventional cardiopulmonary bypass (CPB). Small extracorporeal closed circuits with low priming volumes and optimized perfusion

  20. Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease

    DEFF Research Database (Denmark)

    Lovato, Paola; Brender, Christine; Agnholt, Jørgen

    2003-01-01

    Via cytoplasmic signal transduction pathways, cytokines induce a variety of biological responses and modulate the outcome of inflammatory diseases and malignancies. Crohn's disease is a chronic inflammatory bowel disease of unknown etiology. Perturbation of the intestinal cytokine homeostasis is ...

  1. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    Science.gov (United States)

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    Science.gov (United States)

    Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne

    2017-08-07

    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.

  3. Intestinal Immunomodulatory Cells (T Lymphocytes: A Bridge between Gut Microbiota and Diabetes

    Directory of Open Access Journals (Sweden)

    Qingwei Li

    2018-01-01

    Full Text Available Diabetes mellitus (DM is one of the most familiar chronic diseases threatening human health. Recent studies have shown that the development of diabetes is closely related to an imbalance of the gut microbiota. Accordingly, there is increasing interest in how changes in the gut microbiota affect diabetes and its underlying mechanisms. Immunomodulatory cells play important roles in maintaining the normal functioning of the human immune system and in maintaining homeostasis. Intestinal immunomodulatory cells (IICs are located in the intestinal mucosa and are regarded as an intermediary by which the gut microbiota affects physiological and pathological properties. Diabetes can be regulated by IICs, which act as a bridge linking the gut microbiota and DM. Understanding this bridge role of IICs may clarify the mechanisms by which the gut microbiota contributes to DM. Based on recent research, we summarize this process, thereby providing a basis for further studies of diabetes and other similar immune-related diseases.

  4. Pain emotion and homeostasis.

    Science.gov (United States)

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  5. Effects of pig genotype (Iberian v. Landrace × Large White) on nutrient digestibility, relative organ weight and small intestine structure at two stages of growth.

    Science.gov (United States)

    Barea, R; Nieto, R; Vitari, F; Domeneghini, C; Aguilera, J F

    2011-02-01

    Although the effects of pig genotype on total-tract apparent digestibility (TTAD) have been widely reported in the literature, there is controversial information on the digestive capacity of indigenous breeds compared with lean-type pigs. The strategy of this study was to test the effects of pig genotype and crude protein (CP) supply on performance, digestive utilization of nutrients, relative organ weight and morphometric analysis of the small intestine. Thirty-eight Iberian (IB) and Landrace × Large White (LD) pigs were used. Three pigs per genotype were slaughtered at approximately 15 kg BW. The remaining pigs were fed one of two diets differing in CP content (13% or 17% as fed) using a pair-fed procedure. Feeding level was restricted at 0.8 × ad libitum of IB pigs. Nutrient digestibility and nitrogen (N) balance trials were performed at 30 and 80 kg BW. Four pigs per dietary treatment and genotype were slaughtered at approximately 50 and 115 kg BW. The gastrointestinal tract and the rest of the visceral organs were weighed and samples of the small intestine were taken to carry out histological and histometrical studies. Daily gain and gain-to-feed ratio were higher in LD than in IB pigs during the fattening and growing-fattening periods (P LD pigs at 30 kg BW (P LD pigs at 30 and 80 kg BW (30% as mean value). The proportional weight of the small intestine was greater in LD than in IB pigs at 50 and 115 kg BW. Histometry showed that IB presented a lower muscle layer thickness than LD pigs in ileum, irrespective of the BW (P LD pigs showed approximately 10% higher ileal villi length and villi-to-crypt ratio than IB pigs at 115 kg BW. CP supply affected to a larger extent the small intestinal micro-anatomical structure of LD pigs at 50 kg BW. In conclusion, our results suggests that although the higher growth rate, NR and efficiency of NR observed in LD pigs might be associated with presumably more efficient structural aspects of the small intestine, the main

  6. PREVALENCE OF GIARDIA LAMBLIA AND OTHER INTESTINAL PARASITES IN PRESCHOOL CHILDREN AND ITS RELATION TO RESIDENCE PLACE, SEX AND BLOOD GROUP IN ILAM COUNTY OF IRAN

    Directory of Open Access Journals (Sweden)

    Pourbabak

    1996-06-01

    Full Text Available 1711' object of this study was to determine the prevalence oj asymptomatic infestation with Giardia lamblia lind other intestinal parasites in children of urban anti rural communities oj /lam county and its relation with dwelling place, sex and blood grollp!.. 77w study designed as (l five-month pUTasitoulgica! .m,..£!' oj fecal ami blood specimens from humans anti performed in 10 urban hcalih-trcatmcru clinics of llam city, two urban health treatment clinics of Eyvun city, two rural health-treatment clinics oj Chavar and Sartaf villages, llam province west of fran, 17,e examined population was preschool {, to 7 year-old children without any 'gastrointestinal compliarus. Prevalence oj infestation in subject grOllp W(l."' 32.54% (n=3100. Among intestinal parasites' G. lambliu with 85.43o/c (27.8% oj all, n=JO(JI prevalence rate was the most common. Infestation with 11. nnrm with 1'/.93% and E. coli with 3.07';, were in the second and third ranks, respectively, Infestation shows a distinct relationship with gender (P<0.05 and dwelling place, but it lacks a significant relation with blood groups. This study ."lIOWS that the prevalence of intestinal infestation in 6 to 7 year old child oj llam county hi equivalent to the top oj tile line oj the statistical percentage all over the world. 17,e relation between the severity oj infestation and residence place may arouse the suspicion oj sever contamination oj imbibing water.

  7. Parasitosis intestinal, su relación con factores ambientales en niños del sector "Altos de Milagro", Maracaibo Intestinal parasitosis, its relation to environmental factors in children from the "Altos de Milagro", Maracaibo

    Directory of Open Access Journals (Sweden)

    Madeline Espinosa Morales

    2011-09-01

    Republic of Venezuela including the predominance of children and adolescents due the poor hygienic health condition in the neighborhoods. OBJECTIVE: To determine the presence of some environmental factors present in parasitized children from the "Altos de Milgro Norte" Maracaibo, Zulia state, from December, 2008 to December, 2009. METHODS: A retrospective and descriptive study was conducted to determine the behavior of the intestinal parasitosis in children from that sector and its relation to some environmental factors using a survey carried out the author. RESULTS: Fifty six patients were cared, the 51.7 % was of male sex, this latter was the more parasitized with a 42.7 %, there was predominance of ages from 1 to 4 years with a 39.2 %, the inappropriate disposition of excretes was present in a 86.6 %, as well as the presence of vectors in a 94.6 % and 26 patients drank non-prepared water (57.8 %. CONCLUSIONS: There was high presence of disease where the male sex was the more involved; however, there was not significant differences with the female one and predominance of age group from 1 to 4 years. The high percentage obtained in study environmental factors showed that it was important in appearance, transmission and widespread of the parasitosis. Authors recommended designing programs of community interventions to avoid or to limit the appearance of these diseases.

  8. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat

    Directory of Open Access Journals (Sweden)

    Hale Sayan-Ozacmak

    2015-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: Serious functional and structural alterations of gastrointestinal tract are observed in failure of blood supply, leading to gastrointestinal dismotility. Activation of opioid receptors provides cardioprotective effect against ischemia-reperfusion (I/R injury. The aim of the present study was to determine whether or not remifentanil could reduce I/R injury of small intestine. METHODS: Male Wistar Albino rats were subjected to mesenteric ischemia (30 min followed by reperfusion (3 h. Four groups were designed: sham control; remifentanil alone; I/R control; and remifentanil + I/R. Animals in remifentanil + I/R group were subjected to infusion of remifentanil (2 ug kg-1 min-1 for 60 min, half of which started before inducing ischemia. Collecting the ileum tissues, evaluation of damage was based on contractile responses to carbachol, levels of lipid peroxidation and neutrophil infiltration, and observation of histopathological features in intestinal tissue. RESULTS: Following reperfusion, a significant decrease in carbachol-induced contractile response, a remarkable increase in both lipid peroxidation and neutrophil infiltration, and a significant injury in mucosa were observed. An average contractile response of remifentanil + I/R group was significantly different from that of the I/R group. Lipid peroxidation and neutrophil infiltration were also significantly suppressed by the treatment. The tissue samples of the I/R group were grade 4 in histopathological evaluation. In remifentanil + I/R group, on the other hand, the mucosal damage was moderate, staging as grade 1. CONCLUSIONS: The pretreatment with remifentanil can attenuate the intestinal I/R injury at a remarkable degree possibly by lowering lipid peroxidation and leukocyte infiltration.

  9. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  10. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells

    Science.gov (United States)

    Claes, Ingmar; Tytgat, Hanne L. P.; Verhoeven, Tine L. A.; Marien, Eyra; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; de Vos, Willem M.; De Keersmaecker, Sigrid C. J.; Vanderleyden, Jos

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid. PMID:22020518

  11. The endemiology of helicobacter pylorus infection and gastro-intestinal disease in mine and related factory workers of Tongling city, Anhui

    International Nuclear Information System (INIS)

    He Xiangyang; Jiang Zhonglin; Yang Shunqi; Mei Yanyan; Wen Qin; Cheng Yingzi; Wang Jianmiao

    2006-01-01

    Objective: To investigate the endemiology of H. pylorus infection and related gastro-intestinal disease in mine and factory workers of Tong-Ling area. Methods: 14 C-urea breath test, serum IgG and cytotoxin-producing H. pylorus antibodies determinations were performed in 1076 randomly selected adults among the mine and related factory workers in Tong - Ling area. Gastroscopy was done in 156 subjects (cytotoxin-producing H. pylorus antibody CagA-HP positive 108 and Cag-HP negative 48). Results: Seven hundred and twenty-one subjects of the 1076 (67.0%) examined were positive with the 14 C-urea breath and serological tests, among which 350 (48.5% of the 721 ) were Cag-HP positive. Factors affecting positiveness of HP infection were in the order of: working environment, gastro-intestinal symptoms, past history, vocation, age, history of previous contact, sex and non- hygiene life-style. Conclusion: The HP infection rate in Tong-Ling area was slightly higher than nationwide but with a lower CagA - HP positive rate. HP infection was mostly related to the working environment and life-style. (authors)

  12. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8α+ dendritic cells.

    Science.gov (United States)

    Parekh, Vrajesh V; Pabbisetty, Sudheer K; Wu, Lan; Sebzda, Eric; Martinez, Jennifer; Zhang, Jianhua; Van Kaer, Luc

    2017-08-01

    The class III PI3K Vacuolar protein sorting 34 (Vps34) plays a role in both canonical and noncanonical autophagy, key processes that control the presentation of antigens by dendritic cells (DCs) to naive T lymphocytes. We generated DC-specific Vps34 -deficient mice to assess the contribution of Vps34 to DC functions. We found that DCs from these animals have a partially activated phenotype, spontaneously produce cytokines, and exhibit enhanced activity of the classic MHC class I and class II antigen-presentation pathways. Surprisingly, these animals displayed a defect in the homeostatic maintenance of splenic CD8α + DCs and in the capacity of these cells to cross-present cell corpse-associated antigens to MHC class I-restricted T cells, a property that was associated with defective expression of the T-cell Ig mucin (TIM)-4 receptor. Importantly, mice deficient in the Vps34-associated protein Rubicon, which is critical for a noncanonical form of autophagy called "Light-chain 3 (LC3)-associated phagocytosis" (LAP), lacked such defects. Finally, consistent with their defect in the cross-presentation of apoptotic cells, DC-specific Vps34 -deficient animals developed increased metastases in response to challenge with B16 melanoma cells. Collectively, our studies have revealed a critical role of Vps34 in the regulation of CD8α + DC homeostasis and in the capacity of these cells to process and present antigens associated with apoptotic cells to MHC class I-restricted T cells. Our findings also have important implications for the development of small-molecule inhibitors of Vps34 for therapeutic purposes.

  13. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis.

    Science.gov (United States)

    Tian, Yuhua; Ma, Xianghui; Lv, Cong; Sheng, Xiaole; Li, Xiang; Zhao, Ran; Song, Yongli; Andl, Thomas; Plikus, Maksim V; Sun, Jinyue; Ren, Fazheng; Shuai, Jianwei; Lengner, Christopher J; Cui, Wei; Yu, Zhengquan

    2017-09-05

    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers.

  14. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  15. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  16. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  17. Adaptive mechanisms of homeostasis disorders

    Directory of Open Access Journals (Sweden)

    Anna Maria Dobosiewicz

    2017-08-01

    Full Text Available The ability to preserve a permanent level of internal environment in a human organism, against internal and external factors, which could breach the consistency, can be define as homeostasis. Scientific proven influence on the homeostasis has the periodicity of biological processes, which is also called circadian rhythm. The effect of circadian rhythm is also to see in the functioning of autonomic nervous system and cardiovascular system. Sleep deprivation is an example of how the disorders in circadian rhythm could have the influence on the homeostasis.

  18. Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Fabian Grammes

    Full Text Available Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE. In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM, a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU, Kluyveromyces marxianus (KM, Saccharomyces cerevisiae (SC or the microalgae Chlorella vulgaris (CV. Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects.

  19. Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents.

    Science.gov (United States)

    Kuck, Luiza Siede; Wesolowski, Júlia Lerina; Noreña, Caciano Pelayo Zapata

    2017-09-01

    The stability of microparticles of Bordo grape skin aqueous extract, produced by spray-drying and freeze-drying using polydextrose (5%) and partially hydrolyzed guar gum (5%), was evaluated under accelerated conditions (75 and 90% relative humidity, at 35, 45, and 55°C for 35days) and simulated gastrointestinal digestion. The temperature had a significant effect on the reduction of phenolics content, with retentions varying from 82.5 to 93.5%. The retention of total monomer anthocyanins were in the range of 3.9-42.3%. The antioxidant activity had a final retention of 38.5-59.5%. In the simulated gastrointestinal digestion, a maximum release was observed for the phenolic compounds in the intestinal phase (90.6% for the spray-dried powder and 94.9% for the freeze-dried powder), as well as the antioxidant activity (69.4% for the spray-dried powder and 67.8% for the freeze-dried powder). However, a reduction of monomeric anthocyanins was observed in the intestinal phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Intestinal myiasis

    Directory of Open Access Journals (Sweden)

    U S Udgaonkar

    2012-01-01

    Full Text Available Purpose: Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. Materials and Methods: We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar. This medium is simple and can be easily prepared in the laboratory. Results: Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. Conclusions: S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  1. Intestinal myiasis.

    Science.gov (United States)

    Udgaonkar, U S; Dharamsi, R; Kulkarni, S A; Shah, S R; Patil, S S; Bhosale, A L; Gadgil, S A; Mohite, R S

    2012-01-01

    Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar). This medium is simple and can be easily prepared in the laboratory. Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  2. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach.

    Science.gov (United States)

    Damiran, D; Yu, P

    2011-10-01

    To date, no study has been done of molecular structures in relation to nutrient degradation kinetics and intestinal availability in dairy cattle. The objectives of this study were to (1) reveal molecular structures of hulless barley affected by structural alteration using molecular spectroscopy (diffuse reflectance infrared Fourier transform) as a novel approach, and (2) quantify structure features on a molecular basis in relation to digestive kinetics and nutritive value in the rumen and intestine in cattle. The modeled feeds in this study were 4 types of hulless barley (HB) cultivars modified in starch traits: (a) normal starch cultivar, (b) zero-amylose waxy, (c) waxy, and (d) high-amylose. The molecular structural features were determined using diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (ca. 4,000-800 cm(-1)) of the electromagnetic spectrum. The items assessed included infrared intensity attributed to protein amide I (ca. 1,715-1,575 cm(-1)), amide II (ca. 1,575-1,490 cm(-1)), α-helix (ca. 1,648-1,660 cm(-1)), β-sheet (ca. 1,625-1,640 cm(-1)), and their ratio, β-glucan (ca. 1,445-1,400 cm(-1)), total carbohydrates (CHO; ca. 1,188-820 cm(-1)) and their 3 major peaks, structural carbohydrates (ca. 1,277-1,190 cm(-1)), and ratios of amide I to II and amide I to CHO. The results show that (1) the zero-amylose waxy was the greatest in amide I and II peak areas, as well as in the ratio of protein amide I to CHO among HB; (2) α-helix-to-β-sheet ratio differed among HB: the high-amylose was the greatest, the zero-amylose waxy and waxy were the intermediate, and the normal starch was the lowest; (3) HB were similar in β-glucan and CHO molecular structural makeup; (4) altered starch HB cultivars were similar to each other, but were different from the normal starch cultivar in protein molecular makeup; and (5) the rate and extent of rumen degradation of starch and protein were highly related to the molecular structural

  3. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  4. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  5. The role of gut microbiota in immune homeostasis and autoimmunity.

    Science.gov (United States)

    Wu, Hsin-Jung; Wu, Eric

    2012-01-01

    Keeping a delicate balance in the immune system by eliminating invading pathogens, while still maintaining self-tolerance to avoid autoimmunity, is critical for the body's health. The gut microbiota that resides in the gastrointestinal tract provides essential health benefits to its host, particularly by regulating immune homeostasis. Moreover, it has recently become obvious that alterations of these gut microbial communities can cause immune dysregulation, leading to autoimmune disorders. Here we review the advances in our understanding of how the gut microbiota regulates innate and adaptive immune homeostasis, which in turn can affect the development of not only intestinal but also systemic autoimmune diseases. Exploring the interaction of gut microbes and the host immune system will not only allow us to understand the pathogenesis of autoimmune diseases but will also provide us new foundations for the design of novel immuno- or microbe-based therapies.

  6. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  7. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Science.gov (United States)

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  8. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Directory of Open Access Journals (Sweden)

    Peili Chen

    Full Text Available Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD. We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  9. Effect of a multispecies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbial phylotypes

    Directory of Open Access Journals (Sweden)

    Lyra Anna

    2010-09-01

    Full Text Available Abstract Background Probiotics can alleviate the symptoms of irritable bowel syndrome (IBS, possibly by stabilizing the intestinal microbiota. Our aim was to determine whether IBS-associated bacterial alterations were reduced during multispecies probiotic intervention consisting of Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium breve Bb99. The intervention has previously been shown to successfully alleviate gastrointestinal symptoms of IBS. Methods The faecal microbiotas of 42 IBS subjects participating in a placebo-controlled double-blind multispecies probiotic intervention were analysed using quantitative real-time polymerase chain reaction (qPCR. Eight bacterial targets within the gastrointestinal microbiota with a putative IBS association were measured. Results A phylotype with 94% similarity to Ruminococcus torques remained abundant in the placebo group, but was decreased in the probiotic group during the intervention (P = 0.02 at 6 months. In addition, the clostridial phylotype, Clostridium thermosuccinogenes 85%, was stably elevated during the intervention (P = 0.00 and P = 0.02 at 3 and 6 months, respectively. The bacterial alterations detected were in accordance with previously discovered alleviation of symptoms. Conclusions The probiotic supplement was thus shown to exert specific alterations in the IBS-associated microbiota towards the bacterial 16S rDNA phylotype quantities described previously for subjects free of IBS. These changes may have value as non-invasive biomarkers in probiotic intervention studies.

  10. Increase of faecal tryptic activity relates to changes in the intestinal microbiome: analysis of Crohn's disease with a multidisciplinary platform.

    Directory of Open Access Journals (Sweden)

    Tore Midtvedt

    Full Text Available To investigate-by molecular, classical and functional methods-the microbiota in biopsies and faeces from patients with active Crohn's disease (CD and controls.The microbiota in biopsies was investigated utilizing a novel molecular method and classical cultivation technology. Faecal samples were investigated by classical technology and four functional methods, reflecting alterations in short chain fatty acids pattern, conversion of cholesterol and bilirubin and inactivation of trypsin.By molecular methods we found more than 92% similarity in the microbiota on the biopsies from the two groups. However, 4.6% of microbes found in controls were lacking in CD patients. Furthermore, NotI representation libraries demonstrate two different clusters representing CD patients and controls, respectively. Utilizing conventional technology, Bacteroides (alt. Parabacteroides was less frequently detected in the biopsies from CD patients than from controls. A similar reduction in the number of Bacteroides was found in faecal samples. Bacteroides is the only group of bacteria known to be able to inactivate pancreatic trypsin. Faecal tryptic activity was high in CD patients, and inversely correlated to the levels of Bacteroides.CD patients have compositional and functional alterations in their intestinal microbiota, in line with the global description hypothesis rather than the candidate microorganism theory. The most striking functional difference was high amount of faecal tryptic activity in CD patients, inversely correlated to the levels of Bacteroides in faeces.

  11. Wnt signaling in the intestinal epithelium: from endoderm to cancer.

    NARCIS (Netherlands)

    Gregorieff, A.; Clevers, J.C.

    2005-01-01

    The Wnt pathway controls cell fate during embryonic development. It also persists as a key regulator of homeostasis in adult self-renewing tissues. In these tissues, mutational deregulation of the Wnt cascade is closely associated with malignant transformation. The intestinal epithelium represents

  12. Effects of Immune Stress on Performance Parameters, Intestinal Enzyme Activity and mRNA Expression of Intestinal Transporters in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2012-05-01

    Full Text Available Immune stress is the loss of immune homeostasis caused by external forces. The purpose of this experiment was to investigate the effects of immune stress on the growth performance, small intestinal enzymes and peristalsis rate, and mRNA expression of nutrient transporters in broiler chickens. Four hundred and thirty-two 1-d-old broilers (Cobb500 were randomly assigned to four groups for treatment; each group included nine cages with 12 birds per cage. Group 1 = no vaccine (NV; Group 2 = conventional vaccine (CV; group 3 = lipopolysaccharide (LPS+conventional vaccine (LPS; group 4 = cyclophosphamide (CYP+conventional vaccine (CYP. The results demonstrated that immune stress by LPS and CYP reduced body weight gain (BWG, feed intake (FI, small intestine peristalsis rate and sIgA content in small intestinal digesta (p<0.05. However, the feed conversion ratio (FCR remained unchanged during the feeding period. LPS and CYP increased intestinal enzyme activity, relative expression of SGLT-1, CaBP-D28k and L-FABP mRNAs (p<0.05. LPS and CYP injection had a negative effect on the growth performance of healthy broiler chickens. The present study demonstrated that NV and CV could improve growth performance while enzyme activity in small intestine and relative expression of nutrient transporter mRNA of NV and CV were decreased in the conditions of a controlled rational feeding environment. It is generally recommended that broilers only need to be vaccinated for the diseases to which they might be exposed.

  13. Pancreatic polypeptide controls energy homeostasis via Npy6r signaling in the suprachiasmatic nucleus in mice.

    Science.gov (United States)

    Yulyaningsih, Ernie; Loh, Kim; Lin, Shu; Lau, Jackie; Zhang, Lei; Shi, Yanchuan; Berning, Britt A; Enriquez, Ronaldo; Driessler, Frank; Macia, Laurence; Khor, Ee Cheng; Qi, Yue; Baldock, Paul; Sainsbury, Amanda; Herzog, Herbert

    2014-01-07

    Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Diagnosis of intestinal and extra intestinal amoebiasis

    International Nuclear Information System (INIS)

    Lopez, Myriam Consuelo; Quiroz, Damian Arnoldo; Pinilla, Analida Elizabeth

    2007-01-01

    The objective is to carry out a review of the national and international literature as of the XXth century in order to update the advances for the diagnosis of complex odd Entamoeba histolytic / Entamoeba dispar and that of intestinal and extra intestinal amoebiasis that may be of use to the scientific community. As well as to unify the diagnostic criteria of this parasitosis known as a public health problem, and as a consequence of that, optimize the quality of population care. Data source: there was a systematic search for the scientific literature Publisher in Spanish and English since 1960 until today, this selection started on the first semester of 2006 until 2007, in the development of the line on intestinal and extra-intestinal amoebiasis of the Medical School of the National University of Colombia. A retrospective search process was carried out, systematically reviewing the most relevant articles as well as the products of this research line. In deciding how to make this article, there was a continuous search in different data bases such as Medline, SciELO and other bases in the library of the National University of Colombia, as well as other classical books related to the subject. For that purpose the terms amoebiasis, odd Entamoeba histolytic, Entamoeba, diagnosis, epidemiology, dysentery, amoebic liver abscess, were used. Studies selection: titles and abstracts were reviewed to select the original publications and the most representative ones related to this article's subject. Data extraction: the articles were classified according to the subject, the chronology and the authors according to the scientific contribution to solve the problem. Synthesis of the data: in the fi rst instance, a chronological critical analysis was carried out to order and synthesize the progress made in the diagnosis until confirmation of the experts' agreements in the field of amoebiasis was obtained throughout the world. Conclusion: this article summarizes what has taken place

  15. Two intestinal specific nuclear factors binding to the lactase-phlorizin hydrolase and sucrase-isomaltase promoters are functionally related oligomeric molecules

    DEFF Research Database (Denmark)

    Troelsen, J T; Mitchelmore, C; Sjöström, H

    1994-01-01

    Lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are enterocyte-specific gene products. The identification of regulatory cis-elements in the promoter of these two genes has enabled us to carry out comparative studies of the corresponding intestinal-specific nuclear factors (NF-LPH1...... and SIF1-BP). Electrophoretic mobility shift assays demonstrated that the two nuclear factors compete for binding on the same cis-elements. The molecular size of the DNA binding polypeptide is estimated to be approximately 50 kDa for both factors. In the native form the factors are found as 250 k......Da oligomeric complexes. Based on these results NF-LPH1 and SIF1-BP are suggested to be either identical or closely related molecules....

  16. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  17. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  18. Telescoping Intestine in an Adult

    Directory of Open Access Journals (Sweden)

    Khaldoon Shaheen

    2013-01-01

    Full Text Available Protrusion of a bowel segment into another (intussusception produces severe abdominal pain and culminates in intestinal obstruction. In adults, intestinal obstruction due to intussusception is relatively rare phenomenon, as it accounts for minority of intestinal obstructions in this population demographic. Organic lesion is usually identifiable as the cause of adult intussusceptions, neoplasms account for the majority. Therefore, surgical resection without reduction is almost always necessary and is advocated as the best treatment of adult intussusception. Here, we describe a rare case of a 44-year-old male with a diffuse large B-cell lymphoma involving the terminal ileum, which had caused ileocolic intussusception and subsequently developed intestinal obstruction requiring surgical intervention. This case emphasizes the importance of recognizing intussusception as the initial presentation for bowel malignancy.

  19. Small intestinal transplantation.

    LENUS (Irish Health Repository)

    Quigley, E M

    2012-02-03

    The past few years have witnessed a considerable shift in the clinical status of intestinal transplantation. A great deal of experience has been gained at the most active centers, and results comparable with those reported at a similar stage in the development of other solid-organ graft programs are now being achieved by these highly proficient transplant teams. Rejection and its inevitable associate, sepsis, remain ubiquitous, and new immunosuppressant regimes are urgently needed; some may already be on the near horizon. The recent success of isolated intestinal grafts, together with the mortality and morbidity attendant upon the development of advanced liver disease related to total parenteral nutrition, has prompted the bold proposal that patients at risk for this complication should be identified and should receive isolated small bowel grafts before the onset of end-stage hepatic failure. The very fact that such a suggestion has begun to emerge reflects real progress in this challenging field.

  20. The vagal innervation of the gut and immune homeostasis.

    Science.gov (United States)

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  1. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress

    Science.gov (United States)

    Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki

    2016-01-01

    Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879

  2. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress.

    Directory of Open Access Journals (Sweden)

    Wakana Ohashi

    2016-10-01

    Full Text Available Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders.

  3. EGFR gene amplification is relatively common and associates with outcome in intestinal adenocarcinoma of the stomach, gastro-oesophageal junction and distal oesophagus

    International Nuclear Information System (INIS)

    Birkman, Eva-Maria; Ålgars, Annika; Lintunen, Minnamaija; Ristamäki, Raija; Sundström, Jari; Carpén, Olli

    2016-01-01

    Approximately 50 % of gastric adenocarcinomas belong to a molecular subgroup characterised by chromosomal instability and a strong association with the intestinal histological subtype. This subgroup typically contains alterations in the receptor tyrosine kinase–RAS pathway, for example EGFR or HER2 gene amplifications leading to protein overexpression. In clinical practice, HER2 overexpressing metastatic gastric cancer is known to respond to treatment with anti-HER2 antibodies. By contrast, anti-EGFR antibodies have not been able to provide survival benefit in clinical trials, which, however, have not included patient selection based on the histological subtype or EGFR gene copy number analysis of the tumours. To examine the role of EGFR as a potential biomarker, we studied the prevalence, clinicopathological associations as well as prognostic role of EGFR and HER2 expression and gene amplification in intestinal adenocarcinomas of the stomach, gastro-oesophageal junction and distal oesophagus. Tissue samples from 220 patients were analysed with EGFR and HER2 immunohistochemistry. Those samples with moderate/strong staining intensity were further analysed with silver in situ hybridization to quantify gene copy numbers. The results were associated with clinical patient characteristics and survival. Moderate/strong EGFR protein expression was found in 72/220 (32.7 %) and EGFR gene amplification in 31/220 (14.1 %) of the tumours, while moderate/strong HER2 protein expression was detected in 31/220 (14.1 %) and HER2 gene amplification in 29/220 (13.2 %) of the tumours. EGFR and HER2 genes were co-amplified in eight tumours (3.6 %). EGFR gene amplification was more common in tumours of distal oesophagus/gastro-oesophageal junction/cardia than in those of gastric corpus (p = 0.013). It was associated with shortened time to cancer recurrence (p = 0.026) and cancer specific survival (p = 0.033). EGFR gene amplification is relatively common in intestinal adenocarcinomas

  4. [Changes in expression of Slingshot protein in hypoxic human intestinal epithelial cell and its relation with barrier function of the cells].

    Science.gov (United States)

    Zhang, Jian; Wang, Pei; He, Wen; Wang, Fengjun

    2016-04-01

    To study the effect of hypoxia on Slingshot protein expression in human intestinal epithelial cell and its relation with changes in barrier function of the cells. The human intestinal epithelial cell line Caco-2 was used to reproduce monolayer-cells. One portion of the monolayer-cell specimens were divided into six parts according to the random number table, and they were respectively exposed to hypoxia for 0 (without hypoxia), 1, 2, 6, 12, and 24 h. Transepithelial electrical resistance (TER) was determined with an ohmmeter. Another portion of the monolayer-cell specimens were exposed to hypoxia as above. Western blotting was used to detect the protein expressions of zonula occludens 1 (ZO-1), occludin, claudin-1, Slingshot-1, Slingshot-2, and Slingshot-3. The remaining portion of the monolayer-cell specimens were also exposed to hypoxia as above. The content of fibrous actin (F-actin) and globular actin (G-actin) was determined by fluorescence method. The sample number of above-mentioned 3 experiments was respectively 10, 10, and 18 at each time point. Data were processed with one-way analysis of variance and Dunnett test. (1) Compared with that of cells exposed to hypoxia for 0 h, TER of cells exposed to hypoxia for 1 to 24 h was significantly reduced (P values below 0.01). (2) Compared with those of cells exposed to hypoxia for 0 h (all were 1.00), the protein expressions of ZO-1, occludin, and claudin-1 of cells exposed to hypoxia for 1 to 24 h were generally lower, especially those of cells exposed to hypoxia for 12 h or 24 h (respectively 0.69 ± 0.20, 0.47 ± 0.15, and 0.47 ± 0.22, Pprotein expressions of Slingshot-1 and Slingshot-3 of cells exposed to hypoxia for 1 to 24 h were not obviously changed (P values above 0.05). The protein expression of Slingshot-2 of cells was decreased at first and then gradually increased from hypoxia hour 1 to 24. The protein expression of Slingshot-2 of cells exposed to hypoxia for 24 h (1.54 ± 0.57) was significantly

  5. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.

    Science.gov (United States)

    Mantis, N J; Rol, N; Corthésy, B

    2011-11-01

    Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.

  6. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    Science.gov (United States)

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Analysis of 30 genes (355 SNPS) related to energy homeostasis for association with adiposity in European-American and Yup'ik Eskimo populations.

    Science.gov (United States)

    Chung, Wendy K; Patki, Amit; Matsuoka, Naoki; Boyer, Bert B; Liu, Nianjun; Musani, Solomon K; Goropashnaya, Anna V; Tan, Perciliz L; Katsanis, Nicholas; Johnson, Stephen B; Gregersen, Peter K; Allison, David B; Leibel, Rudolph L; Tiwari, Hemant K

    2009-01-01

    Human adiposity is highly heritable, but few of the genes that predispose to obesity in most humans are known. We tested candidate genes in pathways related to food intake and energy expenditure for association with measures of adiposity. We studied 355 genetic variants in 30 candidate genes in 7 molecular pathways related to obesity in two groups of adult subjects: 1,982 unrelated European Americans living in the New York metropolitan area drawn from the extremes of their body mass index (BMI) distribution and 593 related Yup'ik Eskimos living in rural Alaska characterized for BMI, body composition, waist circumference, and skin fold thicknesses. Data were analyzed by using a mixed model in conjunction with a false discovery rate (FDR) procedure to correct for multiple testing. After correcting for multiple testing, two single nucleotide polymorphisms (SNPs) in Ghrelin (GHRL) (rs35682 and rs35683) were associated with BMI in the New York European Americans. This association was not replicated in the Yup'ik participants. There was no evidence for gene x gene interactions among genes within the same molecular pathway after adjusting for multiple testing via FDR control procedure. Genetic variation in GHRL may have a modest impact on BMI in European Americans.

  8. Dyslipidaemia--hepatic and intestinal cross-talk.

    LENUS (Irish Health Repository)

    Tomkin, Gerald H

    2010-06-01

    Cholesterol metabolism is tightly regulated with the majority of de novo cholesterol synthesis occurring in the liver and intestine. 3 Hydroxy-3-methylglutaryl coenzyme A reductase, a major enzyme involved in cholesterol synthesis, is raised in both liver and intestine in diabetic animals. Niemann PickC1-like1 protein regulates cholesterol absorption in the intestine and facilitates cholesterol transport through the liver. There is evidence to suggest that the effect of inhibition of Niemann PickC1-like1 lowers cholesterol through its effect not only in the intestine but also in the liver. ATP binding cassette proteins G5\\/G8 regulate cholesterol re-excretion in the intestine and in the liver, cholesterol excretion into the bile. Diabetes is associated with reduced ATP binding cassette protein G5\\/G8 expression in both the liver and intestine in animal models. Microsomal triglyceride transfer protein is central to the formation of the chylomicron in the intestine and VLDL in the liver. Microsomal triglyceride transfer protein mRNA is increased in diabetes in both the intestine and liver. Cross-talk between the intestine and liver is poorly documented in humans due to the difficulty in obtaining liver biopsies but animal studies are fairly consistent in showing relationships that explain in part mechanisms involved in cholesterol homeostasis.

  9. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  10. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  11. Parenteral Nutrition and Intestinal Failure.

    Science.gov (United States)

    Bielawska, Barbara; Allard, Johane P

    2017-05-06

    Severe short bowel syndrome (SBS) is a major cause of chronic (Type 3) intestinal failure (IF) where structural and functional changes contribute to malabsorption and risk of micronutrient deficiencies. Chronic IF may be reversible, depending on anatomy and intestinal adaptation, but most patients require long-term nutritional support, generally in the form of parenteral nutrition (PN). SBS management begins with dietary changes and pharmacologic therapies taking into account individual anatomy and physiology, but these are rarely sufficient to avoid PN. New hormonal therapies targeting intestinal adaptation hold promise. Surgical options for SBS including intestinal transplant are available, but have significant limitations. Home PN (HPN) is therefore the mainstay of treatment for severe SBS. HPN involves chronic administration of macronutrients, micronutrients, fluid, and electrolytes via central venous access in the patient's home. HPN requires careful clinical and biochemical monitoring. Main complications of HPN are related to venous access (infection, thrombosis) and metabolic complications including intestinal failure associated liver disease (IFALD). Although HPN significantly impacts quality of life, outcomes are generally good and survival is mostly determined by the underlying disease. As chronic intestinal failure is a rare disease, registries are a promising strategy for studying HPN patients to improve outcomes.

  12. Physiological Roles for mafr-1 in Reproduction and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Akshat Khanna

    2014-12-01

    Full Text Available Maf1 is a conserved repressor of RNA polymerase (Pol III transcription; however, its physiological role in the context of a multicellular organism is not well understood. Here, we show that C. elegans MAFR-1 is functionally orthologous to human Maf1, represses the expression of both RNA Pol III and Pol II transcripts, and mediates organismal fecundity and lipid homeostasis. MAFR-1 impacts lipid transport by modulating intestinal expression of the vitellogenin family of proteins, resulting in cell-nonautonomous defects in the developing reproductive system. MAFR-1 levels inversely correlate with stored intestinal lipids, in part by influencing the expression of the lipogenesis enzymes fasn-1/FASN and pod-2/ACC1. Animals fed a high carbohydrate diet exhibit reduced mafr-1 expression and mutations in the insulin signaling pathway genes daf-18/PTEN and daf-16/FoxO abrogate the lipid storage defects associated with deregulated mafr-1 expression. Our results reveal physiological roles for mafr-1 in regulating organismal lipid homeostasis, which ensure reproductive success.

  13. Intestinal parasitosis in relation to CD4+T cells levels and anemia among HAART initiated and HAART naive pediatric HIV patients in a Model ART center in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Mengist, Hylemariam Mihiretie; Taye, Bineyam; Tsegaye, Aster

    2015-01-01

    Intestinal parasites (IPs) are major concerns in most developing countries where HIV/AIDS cases are concentrated and almost 80% of AIDS patients die of AIDS-related infections. In the absence of highly active antiretroviral therapy (HAART), HIV/AIDS patients in developing countries unfortunately continue to suffer from the consequences of opportunistic and other intestinal parasites. The aim of the study was to determine the prevalence of intestinal parasites in relation to CD4+ T cells levels and anemia among HAART initiated and HAART naïve pediatric HIV patients in a Model ART center in Addis Ababa, Ethiopia. A prospective comparative cross-sectional study was conducted among HAART initiated and HAART naive pediatric HIV/AIDS patients attending a model ART center at Zewditu Memorial Hospital between August 05, 2013 and November 25, 2013. A total of 180 (79 HAART initiated and 101 HAART naïve) children were included by using consecutive sampling. Stool specimen was collected and processed using direct wet mount, formol-ether concentration and modified Ziehl-Neelsen staining techniques. A structured questionnaire was used to collect data on socio-demographic and associated risk factors. CD4+ T cells and complete blood counts were performed using BD FACScalibur and Cell-Dyn 1800, respectively. The data was analyzed by SPSS version 16 software. Logistic regressions were applied to assess any association between explanatory factors and outcome variables. P values intestinal parasites significantly differed by HAART status and cryptosporidium species were found only in HAART naïve patients with low CD4+ T cell counts. Anemia was also more prevalent and significantly associated with IPs in non-HAART patients. This study identified some environmental and associated risk factors for intestinal parasitic infections. Therefore, Public health measures should continue to emphasize the importance of environmental and personal hygiene to protect HIV/AIDS patients from

  14. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  15. [Adult intestinal malrotation associated with intestinal volvulus].

    Science.gov (United States)

    Hernando-Almudí, Ernesto; Cerdán-Pascual, Rafael; Vallejo-Bernad, Cristina; Martín-Cuartero, Joaquín; Sánchez-Rubio, María; Casamayor-Franco, Carmen

    Intestinal malrotation is a congenital anomaly of the intestinal rotation and fixation, and usually occurs in the neonatal age. Description of a clinical case associated with acute occlusive symptoms. A case of intestinal malrotation is presented in a previously asymptomatic woman of 46 years old with an intestinal obstruction, with radiology and surgical findings showing an absence of intestinal rotation. Intestinal malrotation in adults is often asymptomatic, and is diagnosed as a casual finding during a radiological examination performed for other reasons. Infrequently, it can be diagnosed in adults, associated with an acute abdomen. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  16. Intestinal tract diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1985-01-01

    Roentgenoanatomy and physiology of the small intestine are described. Indications for radiological examinations and their possibilities in the diagnosis of the small intestine diseases are considered.Congenital anomalies and failures in the small intestine development, clinical indications and diagnosis methods for the detection of different aetiology enteritis are described. Characteristics of primary malabsorption due to congenital or acquired inferiority of the small intestine, is provided. Radiological picture of intestinal allergies is described. Clinical, morphological, radiological pictures of Crohn's disease are considered in detail. Special attention is paid to the frequency of primary and secondary tuberculosis of intestinal tract. The description of clinical indications and frequency of benign and malignant tumours of the small intestine, methods for their diagnosis are given. Radiological pictures of parasitogenic and rare diseases of the small intestine are presented. Changes in the small intestine as a result of its reaction to pathological processes, developing in other organs and systems of the organism, are described

  17. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    International Nuclear Information System (INIS)

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D.

    2014-01-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation

  18. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2014-06-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation.

  19. Health-related quality of life and occurrence of intestinal side effects after pelvic radiotherapy - evaluation of long-term effects of diagnosis and treatment

    International Nuclear Information System (INIS)

    Bye, A.; Trope, C.; Loge, J.H.; Hjermstad, M.; Kaasa, S.

    2000-01-01

    Health-related quality of life (HRQOL) and occurrence of late intestinal side effects were assessed 3-4 years after pelvic radiotherapy for carcinoma of the endometrium and cervix. During 1988-1990, 143 women were included in a clinical trial to evaluate the effect of a low fat, low lactose diet on radiation-induced diarrhoea. Of 94 survivors, 79 (84%) answered the request. HRQOL was assessed by the EORTC QLQ-C36 and compared with population-based norms. The women scored lower than the general population on role functioning (81.5 versus 90.6 (p < 0.01)) and higher on diarrhoea (23.8 versus 9.5 (p < 0.01)). Compared with pre-treatment conditions, an increase in cases with pain in the lower back, hips and thighs was seen. Substantial pain and diarrhoea were associated with deterioration in HRQOL. In conclusion, few treatment and/or disease-related effects were detected 3-4 years after radiotherapy, with the exception of increased bowel frequency and pain in the lower back, hips and thighs

  20. Nutritional components regulate the gut immune system and its association with intestinal immune disease development.

    Science.gov (United States)

    Lamichhane, Aayam; Kiyono, Hiroshi; Kunisawa, Jun

    2013-12-01

    The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  1. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  2. Measures to minimize small intestine injury in the irradiated pelvis

    International Nuclear Information System (INIS)

    Green, N.; Iba, G.; Smith, W.R.

    1975-01-01

    Small intestine injury causes long-term suffering and high mortality. Five of 187 of our patients had developed serious small intestine injury. Four patients had corrective surgery. Three patients died. All were women. Subsequently, all patients who received definitive pelvic irradiation had small intestine roentgenograms to determine its location and mobility. Female patients, thin patients, and elderly patients had larger amounts of small intestine in the whole pelvis, a deeper cul de sac, and a greater incidence of relatively immobile small intestine. Patients with relatively immobile small intestine in the treatment field may be predisposed to injury. There was no relationship of the incidence of relatively immobile small intestine to prior pelvic surgery. We used the findings from the small intestine roentgenograms to modify individually the radiotherapy regimen so as to minimize the risk for small intestine injury. Patients were placed in the prone position to displace the small intestine out of the treatment fields used for booster dose irradiation. The treatment field was modified to exclude the small intestine. The total tumor dose delivered was determined by expectations for cure vs complications. To date, none of the patients in this study group has developed small intestine injury. Cadaver studies showed the feasibility of elective shortening of the pelvic cul de sac. The small intestine can be displaced away from the bladder, prostate, or cervix. (U.S.)

  3. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Regional-Dependent Intestinal Permeability and BCS Classification: Elucidation of pH-Related Complexity in Rats Using Pseudoephedrine

    OpenAIRE

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-01-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (Peff) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (Fabs) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized Peff–Fabs correlation. The purpose of this study was to elucidate the underlying mechanisms behind the ...

  5. Intestinal pseudo-obstruction

    Science.gov (United States)

    ... Staying in bed for long periods of time (bedridden). Taking drugs that slow intestinal movements. These include ... be tried: Colonoscopy may be used to remove air from the large intestine. Fluids can be given ...

  6. Growth curves and age-related changes in carcass characteristics, organs, serum parameters, and intestinal transporter gene expression in domestic pigeon (Columba livia).

    Science.gov (United States)

    Gao, C Q; Yang, J X; Chen, M X; Yan, H C; Wang, X Q

    2016-04-01

    Two experiments were conducted to fit growth curves, and determine age-related changes in carcass characteristics, organs, serum biochemical parameters, and gene expression of intestinal nutrient transporters in domestic pigeon (Columba livia). In experiment 1, body weight (BW) of 30 pigeons was respectively determined at 1, 3, 7, 14, 21, 28, and 35 days old to fit growth curves and to describe the growth of pigeons. In experiment 2, eighty-four 1-day-old squabs were grouped by weight into 7 groups. On d 1, 3, 7, 14, 21, 28, and 35, twelve birds from each group were randomly selected for slaughter and post-slaughter analysis. The results showed that BW of pigeons increased rapidly from d 1 to d 28 (a 25.7-fold increase), and then had little change until d 35. The Logistic, Gompertz, and Von Bertalanffy functions can all be well fitted with the growth curve of domestic pigeons (R2>0.90) and the Gompertz model showed the highest R2value among the models (R2=0.9997). The equation of Gompertz model was Y=507.72×e-(3.76exp(-0.17t))(Y=BW of pigeon (g); t=time (day)). In addition, breast meat yield (%) increased with age throughout the experiment, whereas the leg meat yield (%) reached to the peak on d 14. Serum total protein, albumin, globulin, and glucose concentration were increased with age, whereas serum uric acid concentration was decreased (P<0.05). Furthermore, the gene expressions of nutrient transporters (y+LAT2, LAT1, B0AT1, PepT1, and NHE2) in jejunum of pigeon were increased with age. The results of correlation analysis showed the gene expressions of B0AT1, PepT1, and NHE2 had positive correlations with BW (0.73intestine might cause the differences in their development patterns. © 2016 Poultry

  7. Energy Homeostasis in Monotremes

    Directory of Open Access Journals (Sweden)

    Stewart C. Nicol

    2017-04-01

    Full Text Available In 1803, the French anatomist Étienne Geoffroy Saint-Hilaire decided that the newly described echidna and platypus should be placed in a separate order, the monotremes, intermediate between reptiles and mammals. The first physiological observations showed monotremes had low body temperatures and metabolic rates, and the consensus was that they were at a stage of physiological development intermediate between “higher mammals” and “lower vertebrates.” Subsequent studies demonstrated that platypuses and echidnas are capable of close thermoregulation in the cold although less so under hot conditions. Because the short-beaked echidna Tachyglossus aculeatus, may show very large daily variations in body temperature, as well as seasonal hibernation, it has been suggested that it may provide a useful model of protoendotherm physiology. Such analysis is complicated by the very significant differences in thermal relations between echidnas from different climates. In all areas female echidnas regulate Tb within 1°C during egg incubation. The lactation period is considered to be the most energetically expensive time for most female mammals but lactating echidnas showed no measurable difference in field metabolic rate from non-lactating females, while the lactation period is more than 200 days for Kangaroo Island echidnas but only 150 days in Tasmania. In areas with mild winters echidnas show reduced activity and shallow torpor in autumn and early winter, but in areas with cold winters echidnas enter true hibernation with Tb falling as low as 4.5°C. Monotremes do not possess brown adipose tissue and maximum rates of rewarming from hibernation in echidnas were only half those of marmots of the same mass. Although echidnas show very large seasonal variations in fat stores associated with hibernation there is no relationship between plasma leptin and adiposity. Leptin levels are lowest during post-reproductive fattening, supporting suggestions that in

  8. Demographic, clinical, and quality of life variables related to embarrassment in veterans living with an intestinal stoma.

    Science.gov (United States)

    Mitchell, Kimberly A; Rawl, Susan M; Schmidt, C Max; Grant, Marcia; Ko, Clifford Y; Baldwin, Carol M; Wendel, Christopher; Krouse, Robert S

    2007-01-01

    The study aims were to identify demographic, clinical, and quality of life variables related to embarrassment for people living with ostomies and to determine the experiences and/or feelings of veterans who were embarrassed by their ostomy. This was a cross-sectional, correlational study. A convenience sample of veterans (n = 239) living with ostomies from 3 VA medical centers was studied. The veterans were primarily Caucasian (84%), male (92%), and older (M = 69). The modified City of Hope Quality of Life-Ostomy questionnaire was used. Additionally, an open-ended question related to living with an ostomy was asked. The questionnaire packets were mailed to participants and self-administered. Approximately half of the participants (48%) rated their embarrassment as low, but 26% reported high embarrassment. Participants with high embarrassment were compared to those with low embarrassment on demographic, clinical, and quality of life variables. High embarrassment was associated with poorer total quality of life (P hopefulness were associated with low embarrassment (P < .001). Sources of embarrassment included leakage, odor, and noise. Embarrassment may negatively impact a person's quality of life; therefore, the variables associated with high embarrassment should be recognized and addressed.

  9. Three-component homeostasis control

    Science.gov (United States)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  10. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling.

    Science.gov (United States)

    He, Xi C; Zhang, Jiwang; Tong, Wei-Gang; Tawfik, Ossama; Ross, Jason; Scoville, David H; Tian, Qiang; Zeng, Xin; He, Xi; Wiedemann, Leanne M; Mishina, Yuji; Li, Linheng

    2004-10-01

    In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.

  11. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  12. Sleep Homeostasis and Synaptic Plasticity

    Science.gov (United States)

    2017-06-01

    Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202...circuit (a homeostat) that operates in concert with the circadian circuitry or does sleep drive accumulate everywhere in the brain? To answer these...neurons is capable of generating sleep drive. RNAi-mediated knockdown of insomniac in R2 neurons abolished sleep homeostasis without affecting baseline

  13. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition.

    Science.gov (United States)

    Attia, Suzanna; Feenstra, Marjon; Swain, Nathan; Cuesta, Melina; Bandsma, Robert H J

    2017-11-01

    Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.

  14. Isotopic identification of intestinal strangulation

    International Nuclear Information System (INIS)

    Anderson, M.C.; Selby, J.B.

    1982-01-01

    A small series of eleven dogs prepared with a strangulating segment of jejunum demonstrated that a radionuclide, 99 mTc-labelled albumin, concentrates in the lumen and bowel wall of the affected intestinal segment. Modern scanning equipment accurately localized the strangulating loop. This technique has the potential of identifying patients with intestinal obstruction, in whom strangulation is a factor, prior to the development of impaired arterial inflow and frank gangrene. These findings confirmed earlier obstructions that were reported when nuclear scanning instrumentation was less sophisticated. Identification of patients at risk for intestinal strangulation requires a high index of suspicion. Excruciating cramping abdominal pain out of proportion to physical findings, roentgenogram evidence, and laboratory studies should alert the physician to the possibility of intestinal ischemia and closed loop obstruction. Radionuclide scanning in such cases may be of assistance in defining or excluding the diagnosis of a strangulating mechanism. The test is simple, relatively economical, and represents a low risk procedure to patients. It would have no place when the classic physical and laboratory findings of intestinal infarction are present

  15. Isotopic identification of intestinal strangulation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.C.; Selby, J.B.

    1982-12-01

    A small series of eleven dogs prepared with a strangulating segment of jejunum demonstrated that a radionuclide, /sup 99/mTc-labelled albumin, concentrates in the lumen and bowel wall of the affected intestinal segment. Modern scanning equipment accurately localized the strangulating loop. This technique has the potential of identifying patients with intestinal obstruction, in whom strangulation is a factor, prior to the development of impaired arterial inflow and frank gangrene. These findings confirmed earlier obstructions that were reported when nuclear scanning instrumentation was less sophisticated. Identification of patients at risk for intestinal strangulation requires a high index of suspicion. Excruciating cramping abdominal pain out of proportion to physical findings, roentgenogram evidence, and laboratory studies should alert the physician to the possibility of intestinal ischemia and closed loop obstruction. Radionuclide scanning in such cases may be of assistance in defining or excluding the diagnosis of a strangulating mechanism. The test is simple, relatively economical, and represents a low risk procedure to patients. It would have no place when the classic physical and laboratory findings of intestinal infarction are present.

  16. MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation.

    Science.gov (United States)

    Lee, Juneyoung; Park, Eun Jeong; Kiyono, Hiroshi

    2016-05-01

    The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation. [BMB Reports 2016; 49(5): 263-269].

  17. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  18. The probiotic mixture VSL#3 has differential effects on intestinal immune parameters in healthy female BALB/c and C57BL/6 mice

    NARCIS (Netherlands)

    Mariman, R.; Tielen, F.; Koning, F.; Nagelkerken, L.

    2015-01-01

    Background: Probiotic bacteria may render mice resistant to the development of various inflammatory and infectious diseases. Objective: This study aimed to identify mechanisms by which probiotic bacteria may influence intestinal immune homeostasis in noninflammatory conditions. Methods: The effect

  19. Intestinal parasite infections in immigrant children in the city of Rome, related risk factors and possible impact on nutritional status

    Directory of Open Access Journals (Sweden)

    Manganelli Laura

    2012-11-01

    Full Text Available Abstract Background Parasitic diseases can represent a social and economic problem among disadvantaged people - even in developed countries. Due to the limited data available concerning Europe, the aims of the present study were to evaluate the presence of parasites in immigrant children and the risk factors favouring the spread of parasites. Subsequently, the possible correlation between nutritional status and parasitic infections was also investigated. Findings A convenience sample of two hundred and forty seven immigrant children (aged 0–15 attending the Poliambulatorio della Medicina Solidale in Rome was examined. Data were collected using structured questionnaires, and parasitological and anthropometric tests were applied. Chi-squared test and binary logistic multiple-regression models were used for statistical analysis. Thirty-seven children (15% tested positive to parasites of the following species: Blastocystis hominis, Entamoeba coli, Giardia duodenalis, Enterobius vermicularis, Ascaris lumbricoides and Strongyloides stercoralis. A monospecific infection was detected in 30 (81% out of 37 parasitized children, while the others (19% presented a polyparasitism. The major risk factors were housing, i.e. living in shacks, and cohabitation with other families (p Conclusions This study shows that parasite infection in children is still quite common, even in a developed country and that children’s growth and parasitism may be related. Extensive improvements in the living, social and economic conditions of immigrants are urgently needed in order to overcome these problems.

  20. Wnt control of stem cells and differentiation in the intestinal epithelium

    International Nuclear Information System (INIS)

    Pinto, Daniel; Clevers, Hans

    2005-01-01

    The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/β-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/β-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas

  1. Comparison of intestinal microbiota and activities of digestive and immune-related enzymes of sea cucumber Apostichopus japonicus in two habitats

    Science.gov (United States)

    Wang, Qi; Zhang, Xiumei; Chen, Muyan; Li, Wentao; Zhang, Peidong

    2017-09-01

    Sea cucumber Apostichopus japonicus stock enhancement by releasing hatchery-produced seeds is a management tool used to recover its population under natural environmental conditions. To assess the suitability of releasing sites, we examined the microbiota of the gut contents of A. japonicus from two populations (one in sandy-muddy seagrass beds and one in rocky intertidal reefs) and the microbiota in their surrounding sediments. The activities of digestive and immune-related enzymes in the A. japonicus were also examined. The results indicated that higher bacterial richness and Shannon diversity index were observed in all the seagrass-bed samples. There were significant differences in intestinal and sediment microorganisms between the two habitats, with a 2.87 times higher abundance of Firmicutes in the seagrass bed sediments than that in the reefs. Meanwhile, Bacteroidetes and Actinobacteria were significantly higher abundant in the gut content of A. japonicus from seagrass bed than those from the reefs. In addition, the seagrass-bed samples exhibited a relatively higher abundance of potential probiotics. Principal coordinates analysis and heatmap showed the bacterial communities were classified into two groups corresponding to the two habitat types. Moreover, compared to A. japonicus obtained from rocky intertidal habitat, those obtained from the seagrass bed showed higher lysozyme, superoxide dismutase and protease activities. Our results suggest that bacterial communities present in seagrass beds might enhance the digestive function and immunity of A. japonicus. Therefore, compared with the rocky intertidal reef, seagrass bed seems to be more beneficial for the survival of A. japonicus.

  2. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    Science.gov (United States)

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  3. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation

    Science.gov (United States)

    Reddy, Vishruth K.; Short, Sarah P.; Barrett, Caitlyn W.; Mittal, Mukul K.; Keating, Cody E.; Thompson, Joshua J.; Harris, Elizabeth I.; Revetta, Frank; Bader, David M.; Brand, Thomas; Washington, M. Kay; Williams, Christopher S.

    2016-01-01

    Blood Vessel Epicardial Substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves−/− mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wildtype (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves−/− mice. To examine stem cell function after BVES deletion, we employed ex vivo 3D-enteroid cultures. Bves−/− enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar “CBC” and “+4” stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves−/− enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves−/− mice demonstrated significantly greater small intestinal crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves−/− mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. PMID:26891025

  4. Very late onset small intestinal B cell lymphoma associated with primary intestinal lymphangiectasia and diffuse cutaneous warts

    OpenAIRE

    Bouhnik, Y; Etienney, I; Nemeth, J; Thevenot, T; Lavergne-Slove, A; Matuchansky, C

    2000-01-01

    As only a handful of lymphoma cases have been reported in conjunction with primary intestinal lymphangiectasia, it is not yet clear if this association is merely fortuitous or related to primary intestinal lymphangiectasia induced immune deficiency. We report on two female patients, 50 and 58 years old, who developed small intestinal high grade B cell lymphoma a long time (45 and 40 years, respectively) after the initial clinical manifestations of primary intestinal lymphangiectasia. They pre...

  5. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  6. Relative biological effectiveness measurements using murine lethality and survival of intestinal and hematopoietic stem cells after Fermilab neutrons compared to JANUS reactor neutrons and 60Co gamma rays

    International Nuclear Information System (INIS)

    Hanson, W.R.; Crouse, D.A.; Fry, R.J.M.; Ainsworth, E.J.

    1984-01-01

    The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD/sub 50/30/) and gut (LD/sub 50/6/) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The LD/sub 50/30/ and LD/sub 50/6/ for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60 Co γ rays. The D 0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60 Co γ rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60 Co γ rays. The RBE estimates for LD/sub 50/30/ were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD/sub 50/6/, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D 0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D 0 1.4 (Fermilab) and 2.8 (JANUS)

  7. Atypical antipsychotics and glucose homeostasis.

    Science.gov (United States)

    Bergman, Richard N; Ader, Marilyn

    2005-04-01

    Persistent reports have linked atypical antipsychotics with diabetes, yet causative mechanisms responsible for this linkage are unclear. Goals of this review are to outline the pathogenesis of nonimmune diabetes and to survey the available literature related to why antipsychotics may lead to this disease. We accessed the literature regarding atypical antipsychotics and glucose homeostasis using PubMed. The search included English-language publications from 1990 through October 2004. Keywords used included atypical antipsychotics plus one of the following: glucose, insulin, glucose tolerance, obesity, or diabetes. In addition, we culled information from published abstracts from several national and international scientific meetings for the years 2001 through 2004, including the American Diabetes Association, the International Congress on Schizophrenia Research, and the American College of Neuropsychopharmacology. The latter search was necessary because of the paucity of well-controlled prospective studies. We examined publications with significant new data or publications that contributed to the overall comprehension of the impact of atypical antipsychotics on glucose metabolism. We favored original peer-reviewed articles and were less likely to cite single case studies and/or anecdotal information. Approximately 75% of the fewer than 150 identified articles were examined and included in this review. Validity of data was evaluated using the existence of peer-review status as well as our own experience with methodology described in the specific articles. The metabolic profile caused by atypical antipsychotic treatment resembles type 2 diabetes. These agents cause weight gain in treated subjects and may induce obesity in both visceral and subcutaneous depots, as occurs in diabetes. Insulin resistance, usually associated with obesity, occurs to varying degrees with different antipsychotics, although more comparative studies with direct assessment of resistance are

  8. [Interaction of effective ingredients from traditional Chinese medicines with intestinal microbiota].

    Science.gov (United States)

    Zu, Xian-Peng; Lin, Zhang; Xie, Hai-Sheng; Yang, Niao; Liu, Xin-Ru; Zhang, Wei-Dong

    2016-05-01

    A large number and wide varieties of microorganisms colonize in the human gastrointestinal tract. They construct an intestinal microecological system in the intestinal environment. The intestinal symbiotic flora regulates a series of life actions, including digestion and absorption of nutrient, immune response, biological antagonism, and is closely associated with the occurrence and development of many diseases. Therefore, it is greatly essential for the host's health status to maintain the equilibrium of intestinal microecological environment. After effective compositions of traditional Chinese medicines are metabolized or biotransformed by human intestinal bacteria, their metabolites can be absorbed more easily, and can even decrease or increase toxicity and then exhibit significant different biological effects. Meanwhile, traditional Chinese medicines can also regulate the composition of the intestinal flora and protect the function of intestinal mucosal barrier to restore the homeostasis of intestinal microecology. The relevant literatures in recent 15 years about the interactive relationship between traditional Chinese medicines and gut microbiota have been collected in this review, in order to study the classification of gut microflora, the relationship between intestinal dysbacteriosis and diseases, the important roles of gut microflora in intestinal bacterial metabolism in effective ingredients of traditional Chinese medicines and bioactivities, as well as the modulation effects of Chinese medicine on intestinal dysbacteriosis. In addition, it also makes a future prospect for the research strategies to study the mechanism of action of traditional Chinese medicines based on multi-omics techniques. Copyright© by the Chinese Pharmaceutical Association.

  9. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.

    Science.gov (United States)

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho

    2016-04-04

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.

  10. Microbiota intestinal en la salud y la enfermedad

    OpenAIRE

    M.E. Icaza-Chávez

    2013-01-01

    La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el de...

  11. Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far?

    Directory of Open Access Journals (Sweden)

    José Pedro Portela-Cidade

    2015-11-01

    Conclusion: Current evidence suggests that innate immunity and intestinal microbiota may be the hidden link in the metabolic syndrome development mechanisms. In the near future, this can be the key in the development of new prophylactic and therapeutic strategies to treat metabolic syndrome patients.

  12. Relation between bile acid reflux into the stomach and the risk of atrophic gastritis and intestinal metaplasia: a multicenter study of 2283 cases.

    Science.gov (United States)

    Matsuhisa, Takeshi; Arakawa, Tetsuo; Watanabe, Tetsuo; Tokutomi, Tadashi; Sakurai, Kouichi; Okamura, Seisuke; Chono, Shinji; Kamada, Tomoari; Sugiyama, Atsushi; Fujimura, Yoshinori; Matsuzawa, Kenji; Ito, Masanori; Yasuda, Mitsugu; Ota, Hiroyoshi; Haruma, Ken

    2013-09-01

    The relationship between bile acid reflux into the stomach and the risk of atrophic gastritis and intestinal metaplasia is still not well understood. Towards obtaining a better understanding, concentrations of bile acids were measured. This study was carried out with the participation of 14 facilities in Japan, and 2283 samples were collected. The subjects with bile acid concentrations equal to or higher than the limit of detection were divided into four groups of equal size (group A: 0-25%, group B: 26-50%, group C: 51-75%, and group D: 76-100%). Thus, including the control group, there were five groups in total. The odds that the control group would develop atrophic gastritis and intestinal metaplasia was set as 1,and the odds ratios (OR) in groups A, B, C and D were calculated based on the odds in the control group. Regarding the development of atrophic gastritis, no increased risk was observed in either the Helicobacter pylori (H. pylori)-positive or -negative cases. The OR for the development of intestinal metaplasia were significantly higher, for both cases with and without H. pylori infection, in group D. High concentrations of bile acid seem to be associated with an elevated risk of intestinal metaplasia. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  13. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    Science.gov (United States)

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-08-01

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Homeostasis, inflammation, and disease susceptibility.

    Science.gov (United States)

    Kotas, Maya E; Medzhitov, Ruslan

    2015-02-26

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microbiota-stimulated immune mechanisms to maintain gut homeostasis.

    Science.gov (United States)

    Chung, Hachung; Kasper, Dennis Lee

    2010-08-01

    In recent years there has been an explosion of interest to identify microbial inhabitants of human and understand their beneficial role in health. In the gut, a symbiotic host-microbial interaction has coevolved as bacteria make essential contributions to human metabolism and bacteria in turn benefits from the nutrient-rich niche in the intestine. To maintain host-microbe coexistence, the host must protect itself against microbial invasion, injury, and overreactions to foreign food antigens, and gut microbes need protection against competing microbes and the host immune system. Perturbation of this homeostatic coexistence has been strongly associated with human disease. This review discusses how gut bacteria regulate host innate and adaptive immunity, with emphasis on how this regulation contributes to host-microbe homeostasis in the gut. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  17. Development of iron homeostasis in infants and young children.

    Science.gov (United States)

    Lönnerdal, Bo

    2017-12-01

    Healthy, term, breastfed infants usually have adequate iron stores that, together with the small amount of iron that is contributed by breast milk, make them iron sufficient until ≥6 mo of age. The appropriate concentration of iron in infant formula to achieve iron sufficiency is more controversial. Infants who are fed formula with varying concentrations of iron generally achieve sufficiency with iron concentrations of 2 mg/L (i.e., with iron status that is similar to that of breastfed infants at 6 mo of age). Regardless of the feeding choice, infants' capacity to regulate iron homeostasis is important but less well understood than the regulation of iron absorption in adults, which is inverse to iron status and strongly upregulated or downregulated. Infants who were given daily iron drops compared with a placebo from 4 to 6 mo of age had similar increases in hemoglobin concentrations. In addition, isotope studies have shown no difference in iron absorption between infants with high or low hemoglobin concentrations at 6 mo of age. Together, these findings suggest a lack of homeostatic regulation of iron homeostasis in young infants. However, at 9 mo of age, homeostatic regulatory capacity has developed although, to our knowledge, its extent is not known. Studies in suckling rat pups showed similar results with no capacity to regulate iron homeostasis at 10 d of age when fully nursing, but such capacity occurred at 20 d of age when pups were partially weaned. The major iron transporters in the small intestine divalent metal-ion transporter 1 (DMT1) and ferroportin were not affected by pup iron status at 10 d of age but were strongly affected by iron status at 20 d of age. Thus, mechanisms that regulate iron homeostasis are developed at the time of weaning. Overall, studies in human infants and experimental animals suggest that iron homeostasis is absent or limited early in infancy largely because of a lack of regulation of the iron transporters DMT1 and ferroportin

  18. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  19. Orexins control intestinal glucose transport by distinct neuronal, endocrine and direct epithelial pathways. : Orexins regulate intestinal glucose absorption

    OpenAIRE

    Ducroc, Robert; Voisin, Thierry; El Firar, Aadil; Laburthe, Marc

    2007-01-01

    International audience; Objective : Orexins are neuropeptides involved in energy homeostasis. We investigated the effect of orexin A (OxA) and OxB on intestinal glucose transport in the rat. Research Design and Methods : Injection of orexins led to a decrease in the blood glucose level in OGTT. Effects of orexins on glucose entry were analysed in Ussing chamber using the Na+-dependent increase in short-circuit current to quantify jejunal glucose transport. Results & Conclusions : The rapid an...

  20. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  1. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  2. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  3. Intestinal lymphangiectasia in children

    Science.gov (United States)

    Isa, Hasan M.; Al-Arayedh, Ghadeer G.; Mohamed, Afaf M.

    2016-01-01

    Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification. PMID:26837404

  4. Intestinal parasites and tuberculosis

    Directory of Open Access Journals (Sweden)

    Anuar Alonso Cedeño-Burbano

    2017-10-01

    Conclusions: The available evidence was insufficient to affirm that intestinal parasites predispose to developing tuberculous. The studies carried out so far have found statistically insignificant results.

  5. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones.

    Science.gov (United States)

    Kovacs, Christopher S

    2014-10-01

    Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium. Copyright © 2014 the American Physiological Society.

  6. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    Science.gov (United States)

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  7. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  8. Prevalence of intestinal parasites in HIV-positive patients on the island of Bioko, Equatorial Guinea: its relation to sanitary conditions and socioeconomic factors.

    Science.gov (United States)

    Roka, Margarita; Goñi, Pilar; Rubio, Encarnación; Clavel, Antonio

    2012-08-15

    The prevalence of intestinal parasitic diseases and their associated factors has been investigated in HIV populations from the Island of Bioko, Equatorial Guinea. The feces of 310 participants from the island of Bioko (260 HIV-positive and 50 HIV-negative) were analyzed by microscopic observation. Immunochromatography was also used to diagnose Giardia, Entamoeba histolytica and Cryptosporidium spp. In addition, patients were asked for sociodemographic, economic and academic status, and CD4+ T cell counts were recorded. For HIV-positive patients, the prevalence of infection by intestinal parasites was 81.5% (212/260), 83.8% (218/260) by pathogenic helminths and 55.4% (168/260) by pathogenic protozoa (E. histolytica/dispar and Giardia duodenalis). Gender association was found between the infection by Ascaris and Schistosoma, a higher proportion being found in women; and between Entamoeba and the place of residence, a higher proportion being observed in the urban belt. Strongyloides stercoralis and Chilomastix mesnili appeared only in the people of this group, all the cases of Chilomastix being in females. For HIV-negative participants, the prevalence of infection by intestinal parasites was 74.0% (37/50), 90.0% (45/50) by pathogenic helminths and 66.0% (43/50) by pathogenic protozoa. Gender, educational level and low hygiene were associated with intestinal parasitic infection. When comparing the two groups (HIV-positive and HIV-negative), statistical association between HIV co-infection and infection by Giardia and Entamoeba was found. Diarrhea was also associated with intestinal parasitic infection in the HIV-positive group. Not only do our findings reflect high rates of intestinal parasitic infections in HIV-positive people, but also in the HIV-negative group, suggesting a closer relationship between sanitary status and living conditions than with immune status, and thus they highlight the need to carry out health education policies in the population. In addition

  9. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  10. CHF: circulatory homeostasis gone awry.

    Science.gov (United States)

    Weber, Karl T; Burlew, Brad S; Davis, Richard C; Newman, Kevin P; D'Cruz, Ivan A; Hawkins, Ralph G; Wall, Barry M; Parker, Robert B

    2002-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) is integral to salt and water retention, particularly by the kidneys. Over time, positive sodium balance leads first to intra- and then to extravascular volume expansion, with subsequent symptomatic heart failure. This report examines the role of the RAAS in regulating a less well recognized component essential to circulatory homeostasis--central blood volume. The regulation of central blood volume draws on integrative cardiorenal physiology and a key role played by the RAAS in its regulation. In presenting insights into the role of the RAAS in regulating central blood volume, this review also addresses other sodium-retaining states with a predisposition to edema formation, such as cirrhosis and nephrosis. (c)2002 CHF, Inc

  11. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  12. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation.

    Science.gov (United States)

    Block, Geoffrey A; Ix, Joachim H; Ketteler, Markus; Martin, Kevin J; Thadhani, Ravi I; Tonelli, Marcello; Wolf, Myles; Jüppner, Harald; Hruska, Keith; Wheeler, David C

    2013-09-01

    Chronic kidney disease (CKD)-mineral and bone disorder is associated with diverse metabolic and endocrine disturbances that ultimately may contribute to further loss of kidney function, bone demineralization, and fatal or nonfatal cardiovascular events. Recent insights into the pathophysiology of the events that unfold during the development of this disorder suggest that disturbances in phosphate metabolism are pivotal. The consequences of abnormal phosphate homeostasis are evident at estimated glomerular filtration rates <70 mL/min/1.73 m(2), long before serum phosphate levels increase. Healthy individuals with blood phosphate levels in the top quartile of the normal range have an increased risk of developing CKD, reaching end-stage renal disease, and experiencing cardiovascular events. Substantial public health consequences may be related to increased dietary phosphorus exposure from additives that contain phosphate in the food supply and from modest increases in serum phosphate levels; however, it remains to be established whether interventions aimed at these targets can impact on the development of adverse clinical outcomes. Current approaches involving dietary intervention and intestinal phosphate binders are based on principles and assumptions that need to be examined more rigorously. Compelling animal, observational, and clinical data indicate that interventions directed at lowering phosphate exposure and serum phosphate levels should be subject to rigorous clinical trials that use appropriate placebo comparators and focus on key clinical outcomes, such as cardiovascular events, progression of CKD, fractures, quality of life, and mortality. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Eosinophils in Homeostasis and Their Contrasting Roles during Inflammation and Helminth Infections.

    Science.gov (United States)

    Strandmark, Julia; Rausch, Sebastian; Hartmann, Susanne

    2016-01-01

    Eosinophil numbers are highly elevated during helminth infections and a range of allergic and inflammatory disorders, but eosinophils are also present in several tissues in the absence of infection. Indeed, new findings demonstrate that eosinophils may be involved in events as diverse as glucose metabolism, mammary gland development, intestinal health, tissue remodeling, thymic selection, and B-cell survival. Although eosinophils often correlate with pathological parameters during conditions such as inflammatory bowel disease and asthma, the evidence for their contribution to tissue pathology remains controversial. Recent research suggests that eosinophils may have additional roles in these settings that are related to control and resolution of inflammation. Controversy also surrounds the involvement of eosinophils in anti-helminth immunity. Their assumed role in fighting parasites has increasingly been questioned, particularly as a result of data from studies of eosinophil-ablated mouse strains in which either no or only very moderate effects on helminth survival has been reported. Helminths are masters of immune regulation, but whether they actively suppress eosinophil function has rarely been considered. Thus, the purpose of this review is threefold: (1) to summarize our knowledge of the wide range of functions of eosinophils during homeostasis, (2) to discuss the role of eosinophil during inflammation and the recent discovery of eosinophils as mediators of inflammatory resolution, and (3) to summarize data on the effect of eosinophils on helminth infections and discuss the possibility of helminth-mediated modulation of eosinophils.

  14. Distribution of E-cadherin and ß-catenin in relation to cell maturation and cell extrusion in rat and mouse small intestines

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge

    2006-01-01

    of programmed cell death (PCD) in mouse small intestinal epithelium. We have studied if this also occurs in the intact rodent small intestine. Our results confirm that extruded cells are negatie for E-cadherin. However, loss of the E-cadherin-interacting protein ß-cetenin preceded both extrusion and loss of E......-cadherin. Thus, all extruded cells as well as all cells in the process of extrusion lacked staining for ß-catenin. Moreover, almost 80% of all cells undergoing programmed cell death, as detected by the TUNEL reaction, lacked ß-catenin whereas over 70% of such cells were positive for E-cadherin. However, most...... ells lacking ß-catenin did not display signs of PCD as detected by the TUNEL method or by staining for active caspase-3. Therefore, these results suggest that loss of ß-catenin precedes the onset of programmed cell death, loss of E-cadherin and extrusion from the villi....

  15. Primary structure and conformational analysis of peptide methionine-tyrosine, a peptide related to neuropeptide Y and peptide YY isolated from lamprey intestine

    DEFF Research Database (Denmark)

    Conlon, J M; Bjørnholm, B; Jørgensen, Flemming Steen

    1991-01-01

    A peptide belonging to the pancreatic-polypeptide-fold family of regulatory peptides has been isolated from the intestine of an Agnathan, the sea lamprey (Petromyzon marinus). The primary structure of the peptide (termed peptide methionine-tyrosine) was established as Met-Pro-Pro-Lys-Pro-Asp-Asn-...... in a preferred structure in which the conformation of the beta-turn between the two helical domains (residues 9-14) is appreciably different....

  16. Primary intestinal lymphangiectasia.

    Science.gov (United States)

    Suresh, N; Ganesh, R; Sankar, Janani; Sathiyasekaran, Malathi

    2009-10-01

    Primary intestinal lymphangiectasia (PIL) is a rare disease of intestinal lymphatics presenting with hypoproteinemia, bilateral lower limb edema, ascites, and protein losing enteropathy. We report a series of 4 children from Chennai, India presenting with anasarca, recurrent diarrhea, hypoproteinemia and confirmatory features of PIL on endoscopy and histopathology.

  17. Aryl hydrocarbon receptor and intestinal immunity.

    Science.gov (United States)

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  18. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  19. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  20. Radioprotection of intestinal crypt cells by cox-inhibitors

    International Nuclear Information System (INIS)

    Bisnar, Paul O.; Dones, Rosa Angela S.A.; Serna, Paulene-Ver A.; Deocaris, Chester C.; Guttierez, Kalangitan V.; Deocaris, Custer C.

    2006-01-01

    The regulation of tissue homeostasis in the gastrointestinal epithelium after epithelial injury focuses on the prostaglandins(PGs) as its major mediators. The two cyclooxygenase isoforms, cox-1 and cox-2, catalyze synthesis of PGs. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation, and in adenomas and carcinomas. To study the effects of various commercially-available cox-inhibitors (Ketorolac: cox-1 selective; Celecoxib: cox-2 selective; and Indocid: cox-1/2 non-selective), we determine mouse crypt epithelial cell fate after genotoxic injury with whole-body gamma-ray exposure at 15 Gy. Intestinal tissues of mice treated with cox-2 inhibitors that showed invariable apoptotic event, however, have increased occurrence of regenerating cells. Our results suggest a potential application of cox-2 selective inhibitors as radioprotective agent for normal cells after radiotherapy. (Author)

  1. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  2. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  3. Congenital intestinal lymphangiectasia

    Directory of Open Access Journals (Sweden)

    Popović Dušan Đ.

    2011-01-01

    Full Text Available Background. Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. Case report. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and suportive therapy. Conclusion. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  4. [Congenital intestinal lymphangiectasia].

    Science.gov (United States)

    Popović, Dugan D j; Spuran, Milan; Alempijević, Tamara; Krstić, Miodrag; Djuranović, Srdjan; Kovacević, Nada; Damnjanović, Svetozar; Micev, Marjan

    2011-03-01

    Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortuous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and supportive therapy. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  5. Dietary incorporation of whey proteins and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Kavadi

    2017-09-01

    Full Text Available Background: The present study was planned to investigate the effectiveness of whey protein isolate (WPI of high purity and a galactooligosaccharides (GOS preparation on glucose homeostasis and insulin resistance under high fat diet (45.47% energy from fat fed conditions in C57BL/6 mice. The mRNA expression of genes related to gluconeogenesis was also examined. Methods: Fasting blood glucose level, serum insulin & GLP-1 (ELISA were measured; HOMA-IR determined in different treatment groups. mRNA expression of gluconeogenesis genes in liver and small intestine tissues analysed by qRT-PCR. Results: Dietary incorporation of WPI/GOS alone or in combination was observed to significantly resist (p [J Complement Med Res 2017; 6(3.000: 326-332

  6. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure.

    Science.gov (United States)

    Korpela, Katri; Mutanen, Annika; Salonen, Anne; Savilahti, Erkki; de Vos, Willem M; Pakarinen, Mikko P

    2017-02-01

    Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent phylogenetic microarray analysis. The microbiota was related to histological liver injury, fecal markers of intestinal inflammation, matrix metalloproteinase 9 and calprotectin, and disease characteristics. Overabundance of Lactobacilli, Proteobacteria, and Actinobacteria was observed in IF, whereas bacteria related to Clostridium clusters III, IV, and XIVa along with overall diversity and richness were reduced. Patients were segregated into 3 subgroups based on dominating bacteria: Clostridium cluster XIVa, Proteobacteria, and bacteria related to Lactobacillus plantarum. In addition to liver steatosis and fibrosis, Proteobacteria were associated with prolonged current parenteral nutrition (PN) as well as liver and intestinal inflammation. Lactobacilli were related to advanced steatosis and fibrosis mostly after weaning off PN without associated inflammation. In multivariate permutational analysis of variance, liver steatosis, bowel length, PN calories, and antibiotic treatment best explained the microbiota variation among patients with IF. Intestinal microbiota composition was associated with liver steatosis in IF and better predicted steatosis than duration of PN or length of the remaining intestine. Our results may be explained by a model in which steatosis is initiated during PN in response to proinflammatory lipopolysaccharides produced by Proteobacteria and progresses after weaning off PN, as the L plantarum group Lactobacilli becomes dominant and affects lipid metabolism by altering bile acid signaling.

  7. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.

    Science.gov (United States)

    Yüksek, Yunus Nadi; Kologlu, Murat; Daglar, Gül; Doganay, Mutlu; Dolapci, Istar; Bilgihan, Ayse; Dolapçi, Mete; Kama, Nuri Aydin

    2004-01-01

    The aim of this study was to evaluate local effects and degree of bacterial translocation related with intestinal ischemia-reperfusion injury in a rat obstructive jaundice model. Thirty adult Sprague-Dawley rats (200-250 g) were divided into three groups; including Group 1 (jaundice group), Group 2 (jaundice-ischemia group) and Group 3 (ischemia group). All rats had 2 laparotomies. After experimental interventions, tissue samples for translocation; liver and ileum samples for histopathological examination, 25 cm of small intestine for mucosal myeloperoxidase and malondialdehyde levels and blood samples for biochemical analysis were obtained. Jaundiced rats had increased liver enzyme levels and total and direct bilirubin levels (p<0.05). Intestinal mucosal myeloperoxidase and malondialdehyde levels were found to be high in intestinal ischemia-reperfusion groups (p<0.05). Intestinal mucosal damage was more severe in rats with intestinal ischemia-reperfusion after bile duct ligation (p<0.05). Degree of bacterial translocation was also found to be significantly high in these rats (p<0.05). Intestinal mucosa is disturbed more severely in obstructive jaundice with the development of ischemia and reperfusion. Development of intestinal ischemia-reperfusion in obstructive jaundice increases bacterial translocation.

  8. Intestinal fatty acid binding protein as a marker for intra-abdominal pressure-related complications in patients admitted to the intensive care unit; study protocol for a prospective cohort study (I-Fabulous study).

    Science.gov (United States)

    Strang, Steven G; Van Waes, Oscar J F; Van der Hoven, Ben; Ali, Samir; Verhofstad, Michael H J; Pickkers, Peter; Van Lieshout, Esther M M

    2015-01-16

    Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) have detrimental effects on all organ systems and are associated with increased morbidity and mortality in critically ill patients admitted to an intensive care unit. Intra-bladder measurement of the intra-abdominal pressure (IAP) is currently the gold standard. However, IAH is not always indicative of intestinal ischemia, which is an early and rapidly developing complication. Sensitive biomarkers for intestinal ischemia are needed to be able to intervene before damage becomes irreversible. Gut wall integrity loss, including epithelial cell disruption and tight junctions breakdown, is an early event in intestinal damage. Intestinal Fatty Acid Binding Protein (I-FABP) is excreted in urine and blood specifically from damaged intestinal epithelial cells. Claudin-3 is a specific protein which is excreted in urine following disruption of intercellular tight junctions. This study aims to investigate if I-FABP and Claudin-3 can be used as a diagnostic tool for identifying patients at risk for IAP-related complications. In a multicenter, prospective cohort study 200 adult patients admitted to the intensive care unit with at least two risk factors for IAH as defined by the World Society of the Abdominal Compartment Syndrome (WSACS) will be included. Patients in whom an intra-bladder IAP measurement is contra-indicated or impossible and patients with inflammatory bowel diseases that may affect I-FABP levels will be excluded. The IAP will be measured using an intra-bladder technique. During the subsequent 72 hours, the IAP measurement will be repeated every six hours. At these time points, a urine and serum sample will be collected for measurement of I-FABP and Claudin-3 levels. Clinical outcome of patients during their stay at the intensive care unit will be monitored using the Sequential Organ Failure Assessment (SOFA) score. Successful completion of this trial will provide evidence on the eventual

  9. FcγRI (CD64): an identity card for intestinal macrophages.

    Science.gov (United States)

    De Calisto, Jaime; Villablanca, Eduardo J; Mora, J Rodrigo

    2012-12-01

    Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury

    DEFF Research Database (Denmark)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F

    2013-01-01

    Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can...... be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate...... in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region...

  11. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Song, Zheng-Xing; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-07-01

    Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  13. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium.

    Science.gov (United States)

    Wang, L Q; Meselhy, M R; Li, Y; Nakamura, N; Min, B S; Qin, G W; Hattori, M

    2001-12-01

    A human intestinal bacterium, Eubacterium (E.) sp. strain SDG-2, was tested for its ability to metabolize various (3R)- and (3S)-flavan-3-ols and their 3-O-gallates. This bacterium cleaved the C-ring of (3R)- and (3S)-flavan-3-ols to give 1,3-diphenylpropan-2-ol derivatives, but not their 3-O-gallates. Furthermore, E. sp. strain SDG-2 had the ability of p-dehydroxylation in the B-ring of (3R)-flavan-3-ols, such as (-)-catechin, (-)-epicatechin, (-)-gallocatechin and (-)-epigallocatechin, but not of (3S)-flavan-3-ols, such as (+)-catechin and (+)-epicatechin.

  14. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review

    Directory of Open Access Journals (Sweden)

    Xiaoshi Ma

    2017-10-01

    Full Text Available The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD. Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.

  15. PTHrP regulates water absorption and aquaporin expression in the intestine of the marine sea bream (Sparus aurata, L.).

    Science.gov (United States)

    Carvalho, Edison S M; Gregório, Sílvia F; Canário, Adelino V M; Power, Deborah M; Fuentes, Juan

    2015-03-01

    Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) or the phospholipase C inhibitor (U73122, 10 μmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 μmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key

  16. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    Science.gov (United States)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  17. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract.

    Science.gov (United States)

    Garfias-López, Julio Adrián; Castro-Escarpuli, Graciela; Cárdenas, Pedro E; Moreno-Altamirano, María Maximina Bertha; Padierna-Olivos, Juan; Sánchez-García, F Javier

    2018-04-01

    A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut. Copyright © 2018. Published by Elsevier B.V.

  18. Intestinal failure in childhood

    African Journals Online (AJOL)

    Insulin influences intestinal structure and absorptive function.36 The favourable effect of .... lipid emulsions, micronutrients provison and cyclic infusion.3 The guidelines on PN .... Classification, epidemiology and aetiology. Best Pract Res Clin ...

  19. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Sílvia F. Gregório

    2018-04-01

    Full Text Available In marine fish, high epithelial intestinal HCO3− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR in the regulation of HCO3− secretion in the intestine of the sea bream (Sparus aurata L.. Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO3− secretion in vitro using the anterior intestine. HCO3− secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO3− secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.

  20. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    Science.gov (United States)

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  1. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  2. Colon in acute intestinal infection.

    Science.gov (United States)

    Guarino, Alfredo; Buccigrossi, Vittoria; Armellino, Carla

    2009-04-01

    The colon is actively implicated in intestinal infections not only as a target of enteric pathogens and their products but also as a target organ for treatment. In the presence of diarrhea, both of osmotic and secretory nature, the colon reacts with homeostatic mechanisms to increase ion absorption. These mechanisms can be effectively exploited to decrease fluid discharge. A model of intestinal infections using rotavirus (RV) in colonic cells was set up and used to define a dual model of secretory and osmotic diarrhea in sequence. Using this model, antidiarrheal drugs were tested, namely zinc and the enkephalinase inhibitor racecadotril. Zinc was able to decrease the enterotoxic activity responsible for secretory diarrhea. It also inhibited the cytotoxic effect of RV. The mechanism of zinc was related at least in part to the activation of MAPK activity, but also a direct antiviral effect was observed. Racecadotril showed a potent and selective inhibition of active secretion, being particularly effective in the first phase of RV diarrhea. The use of drugs active at the colonic level, therefore, offers effective options to treat intestinal infections in childhood. In addition, the colon is the natural site of colonic microflora, a target of probiotic therapy, which is the first line of approach recommended by the European Society for Paediatric Gastroenterology, Hepatology and Nutrition to treat infectious diarrhea.

  3. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  4. Intestinal parasitosis in relation to CD4+T cells levels and anemia among HAART initiated and HAART naive pediatric HIV patients in a Model ART center in Addis Ababa, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Hylemariam Mihiretie Mengist

    Full Text Available Intestinal parasites (IPs are major concerns in most developing countries where HIV/AIDS cases are concentrated and almost 80% of AIDS patients die of AIDS-related infections. In the absence of highly active antiretroviral therapy (HAART, HIV/AIDS patients in developing countries unfortunately continue to suffer from the consequences of opportunistic and other intestinal parasites. The aim of the study was to determine the prevalence of intestinal parasites in relation to CD4+ T cells levels and anemia among HAART initiated and HAART naïve pediatric HIV patients in a Model ART center in Addis Ababa, Ethiopia.A prospective comparative cross-sectional study was conducted among HAART initiated and HAART naive pediatric HIV/AIDS patients attending a model ART center at Zewditu Memorial Hospital between August 05, 2013 and November 25, 2013. A total of 180 (79 HAART initiated and 101 HAART naïve children were included by using consecutive sampling. Stool specimen was collected and processed using direct wet mount, formol-ether concentration and modified Ziehl-Neelsen staining techniques. A structured questionnaire was used to collect data on socio-demographic and associated risk factors. CD4+ T cells and complete blood counts were performed using BD FACScalibur and Cell-Dyn 1800, respectively. The data was analyzed by SPSS version 16 software. Logistic regressions were applied to assess any association between explanatory factors and outcome variables. P values < 0.05 were taken as statistically significant.The overall prevalence of IPs was 37.8% where 27.8% of HAART initiated and 45.5% of HAART naive pediatric HIV/AIDS patients were infected (p < 0.05. Cryptosporidium species, E. histolytica/dispar, Hook worm and Taenia species were IPs associated with CD4+ T cell counts <350 cells/μμL in HAART naive patients. The overall prevalence of anemia was 10% in HAART and 31.7% in non-HAART groups. Hook worm, S. stercoralis and H. nana were helminthes

  5. Primary intestinal lymphangiectasia: Minireview

    Science.gov (United States)

    Ingle, Sachin B; Hinge (Ingle), Chitra R

    2014-01-01

    Primary idiopathic intestinal lymphangiectasia is an unusual disease featured by the presence of dilated lymphatic channels which are located in the mucosa, submucosa or subserosa leading to protein loosing enteropathy.Most often affected were children and generally diagnosed before third year of life but may be rarely seen in adults too. Bilateral pitting oedema of lower limb is the main clinical manifestation mimicking the systemic disease and posing a real diagnostic dilemma to the clinicians to differentiate it from other common systemic diseases like Congestive cardiac failure, Nephrotic Syndrome, Protein Energy Malnutrition, etc. Diagnosis can be made on capsule endoscopy which can localise the lesion but unable to take biopsy samples. Thus, recently double-balloon enteroscopy and biopsy in combination can be used as an effective diagnostic tool to hit the correct diagnosis. Patients respond dramatically to diet constituting low long chain triglycerides and high protein content with supplements of medium chain triglyceride. So early diagnosis is important to prevent untoward complications related to disease or treatment for the sake of accurate pathological diagnosis. PMID:25325063

  6. Haemorrhage and intestinal lymphoma

    Directory of Open Access Journals (Sweden)

    Attilia M. Pizzini

    2013-04-01

    Full Text Available Background: The prevalence of coeliac disease is around 1% in general population but this is often unrecognised. The classical presentation of adult coeliac disease is characterized by diarrhoea and malabsorption syndrome, but atypical presentations are probably more common and are characterized by iron deficiency anaemia, weight loss, fatigue, infertility, arthralgia, peripheral neuropathy and osteoporosis. Unusual are the coagulation disorders (prevalence 20% and these are due to vitamin K malabsorption (prolonged prothrombin time. Clinical case: A 64-year-old man was admitted to our Department for an extensive spontaneous haematoma of the right leg. He had a history of a small bowel resection for T-cell lymphoma, with a negative follow-up and he didn’t report any personal or familiar history of bleeding. Laboratory tests showed markedly prolonged prothrombin (PT and partial-thromboplastin time (PTT, corrected by mixing studies, and whereas platelet count and liver tests was normal. A single dose (10 mg of intravenous vitamin K normalized the PT. Several days before the patient had been exposed to a superwarfarin pesticide, but diagnostic tests for brodifacoum, bromadiolone or difenacoum were negative. Diagnosis of multiple vitamin K-dependent coagulationfactor deficiencies (II, VII, IX, X due to intestinal malabsorption was made and coeliac disease was detected. Therefore the previous lymphoma diagnosis might be closely related to coeliac disease. Conclusions: A gluten free diet improves quality of life and restores normal nutritional and biochemical status and protects against these complications.

  7. High sugar diet disrupts gut homeostasis though JNK and STAT pathways in Drosophila.

    Science.gov (United States)

    Zhang, Xiaoyue; Jin, Qiuxia; Jin, Li Hua

    2017-06-10

    The incidence of diseases associated with a high sugar diet has increased in the past years, and numerous studies have focused on the effect of high sugar intake on obesity and metabolic syndrome. However, how a high sugar diet influences gut homeostasis is still poorly understood. In this study, we used Drosophila melanogaster as a model organism and supplemented a culture medium with 1 M sucrose to create a high sugar condition. Our results indicate that a high sugar diet promoted differentiation of intestinal stem cells through upregulation of the JNK pathway and downregulation of the JAK/STAT pathway. Moreover, the number of commensal bacteria decreased in the high sugar group. Our data suggests that the high caloric diet disrupts gut homeostasis and highlights Drosophila as an ideal model system to explore gastrointestinal disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  9. Intestinal lymphangiectasia in adults.

    Science.gov (United States)

    Freeman, Hugh James; Nimmo, Michael

    2011-02-15

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial

  10. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Bromhaar Mechteld

    2008-05-01

    Full Text Available Abstract Background Obesity and insulin resistance are two major risk factors underlying the metabolic syndrome. The development of these metabolic disorders is frequently studied, but mainly in liver, skeletal muscle, and adipose tissue. To gain more insight in the role of the small intestine in development of obesity and insulin resistance, dietary fat-induced differential gene expression was determined along the longitudinal axis of small intestines of C57BL/6J mice. Methods Male C57BL/6J mice were fed a low-fat or a high-fat diet that mimicked the fatty acid composition of a Western-style human diet. After 2, 4 and 8 weeks of diet intervention small intestines were isolated and divided in three equal parts. Differential gene expression was determined in mucosal scrapings using Mouse genome 430 2.0 arrays. Results The high-fat diet significantly increased body weight and decreased oral glucose tolerance, indicating insulin resistance. Microarray analysis showed that dietary fat had the most pronounced effect on differential gene expression in the middle part of the small intestine. By overrepresentation analysis we found that the most modulated biological processes on a high-fat diet were related to lipid metabolism, cell cycle and inflammation. Our results further indicated that the nuclear receptors Ppars, Lxrs and Fxr play an important regulatory role in the response of the small intestine to the high-fat diet. Next to these more local dietary fat effects, a secretome analysis revealed differential gene expression of secreted proteins, such as Il18, Fgf15, Mif, Igfbp3 and Angptl4. Finally, we linked the fat-induced molecular changes in the small intestine to development of obesity and insulin resistance. Conclusion During dietary fat-induced development of obesity and insulin resistance, we found substantial changes in gene expression in the small intestine, indicating modulations of biological processes, especially related to lipid

  11. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Taeko K.; Kazanjian, Avedis [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Whitsett, Jeffrey [Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Neonatology and Pulmonary Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Shroyer, Noah F., E-mail: noah.shroyer@cchmc.org [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  12. Coupling between phosphate and calcium homeostasis: a mathematical model.

    Science.gov (United States)

    Granjon, David; Bonny, Olivier; Edwards, Aurélie

    2017-12-01

    We developed a mathematical model of calcium (Ca) and phosphate (PO 4 ) homeostasis in the rat to elucidate the hormonal mechanisms that underlie the regulation of Ca and PO 4 balance. The model represents the exchanges of Ca and PO 4 between the intestine, plasma, kidneys, bone, and the intracellular compartment, and the formation of Ca-PO 4 -fetuin-A complexes. It accounts for the regulation of these fluxes by parathyroid hormone (PTH), vitamin D 3 , fibroblast growth factor 23, and Ca 2+ -sensing receptors. Our results suggest that the Ca and PO 4 homeostatic systems are robust enough to handle small perturbations in the production rate of either PTH or vitamin D 3 The model predicts that large perturbations in PTH or vitamin D 3 synthesis have a greater impact on the plasma concentration of Ca 2+ ([Ca 2+ ] p ) than on that of PO 4 ([PO 4 ] p ); due to negative feedback loops, [PO 4 ] p does not consistently increase when the production rate of PTH or vitamin D 3 is decreased. Our results also suggest that, following a large PO 4 infusion, the rapidly exchangeable pool in bone acts as a fast, transient storage PO 4 compartment (on the order of minutes), whereas the intracellular pool is able to store greater amounts of PO 4 over several hours. Moreover, a large PO 4 infusion rapidly lowers [Ca 2+ ] p owing to the formation of CaPO 4 complexes. A large Ca infusion, however, has a small impact on [PO 4 ] p , since a significant fraction of Ca binds to albumin. This mathematical model is the first to include all major regulatory factors of Ca and PO 4 homeostasis. Copyright © 2017 the American Physiological Society.

  13. Local intravascular coagulation and fibrin deposition on intestinal ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Schoots, Ivo G.; Levi, Marcel; Roossink, E. H. Paulina; Bijlsma, Pieter B.; van Gulik, Thomas M.

    2003-01-01

    Background. This study investigates intravascular coagulation and thrombotic obstruction in the splanchnic vasculature after intestinal ischemia in relation to epithelial integrity and function. Methods. Intestinal ischemia was induced in rats by superior mesenteric artery occlusion for 20 or 40

  14. Preliminary study of the effects of Okadaic Acid in the intestinal tract of mouse

    Directory of Open Access Journals (Sweden)

    Diego Alberto Fernández

    2014-06-01

    Our results support the little morphological effect of OA on intestinal cells. However, more interdisciplinary research is needed to obtain precise and reliable data to clarify the effects of OA in the intestinal epithelium and its relation with the diarrhea.

  15. CT diagnosis of concealed rupture of intestine following abdominal trauma

    International Nuclear Information System (INIS)

    Ji Jiansong; Wei Tiemin; Wang Zufei; Zhao Zhongwei; Tu Jianfei; Fan Xiaoxi; Xu Min

    2009-01-01

    Objective: To investigate CT findings of concealed rupture of intestine following abdominal trauma. Methods: CT findings of 11 cases with concealed rupture of intestine following abdominal trauma proved by surgery were identified retrospectively. Results: The main special signs included: (1) Free air in 4 cases, mainly around injured small bowel or under the diaphragm, or in the retroperitoneal space or and in the lump. (2) High density hematoma between the intestines or in the bowel wall (4 cases). (3) Bowel wall injury sign, demonstrated as low density of the injured intestinal wall, attenuated locally but relatively enhanced in neighbor wall on enhanced CT. (4) Lump around the injured bowel wall with obvious ring-shaped enhancement (4 cases). Other signs included: (1) Free fluid in the abdominal cavity or between the intestines with blurred borders. (2) Bowel obstruction. Conclusion: CT is valuable in diagnosing concealed rupture of intestine following abdominal trauma. (authors)

  16. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Samuel Rout

    2016-12-01

    Full Text Available Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30-40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein

  17. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...... homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...

  18. Regulation of leucocyte homeostasis in the circulation.

    Science.gov (United States)

    Scheiermann, Christoph; Frenette, Paul S; Hidalgo, Andrés

    2015-08-01

    The functions of blood cells extend well beyond the immune functions of leucocytes or the respiratory and hemostatic functions of erythrocytes and platelets. Seen as a whole, the bloodstream is in charge of nurturing and protecting all organs by carrying a mixture of cell populations in transit from one organ to another. To optimize these functions, evolution has provided blood and the vascular system that carries it with various mechanisms that ensure the appropriate influx and egress of cells into and from the circulation where and when needed. How this homeostatic control of blood is achieved has been the object of study for over a century, and although the major mechanisms that govern it are now fairly well understood, several new concepts and mediators have recently emerged that emphasize the dynamism of this liquid tissue. Here we review old and new concepts that relate to the maintenance and regulation of leucocyte homeostasis in blood and briefly discuss the mechanisms for platelets and red blood cells. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Nutrition and protein energy homeostasis in elderly.

    Science.gov (United States)

    Boirie, Yves; Morio, Béatrice; Caumon, Elodie; Cano, Noël J

    2014-01-01

    Protein-energy homeostasis is a major determinant of healthy aging. Inadequate nutritional intakes and physical activity, together with endocrine disturbances are associated with of sarcopenia and frailty. Guidelines from scientific societies mainly address the quantitative aspects of protein and energy nutrition in elderly. Besides these quantitative aspects of protein load, perspective strategies to promote muscle protein synthesis and prevent sarcopenia include pulse feeding, the use of fast proteins and the addition of leucine or citrulline to dietary protein. An integrated management of sarcopenia, taking into account the determinants of muscle wasting, i.e. nutrition, physical activity, anabolic factors such as androgens, vitamin D and n-3 polyunsaturated fatty acids status, needs to be tested in the prevention and treatment of sarcopenia. The importance of physical activity, specifically resistance training, is emphasized, not only in order to facilitate muscle protein anabolism but also to increase appetite and food intake in elderly people at risk of malnutrition. According to present data, healthy nutrition in elderly should respect the guidelines for protein and energy requirement, privilege a Mediterranean way of alimentation, and be associated with a regular physical activity. Further issues relate to the identification of the genetics determinants of protein energy wasting in elderly. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Silvia I. Cazorla

    2018-04-01

    Full Text Available The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431 and L. paracasei CNCM I-1518 (Lp 1518 to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old to old age (180 days old. Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  1. Homeostasis between gut-associated microorganisms and the immune system in Drosophila.

    Science.gov (United States)

    You, Hyejin; Lee, Won Jun; Lee, Won-Jae

    2014-10-01

    The metabolic activities of a given gut bacterium or gut commensal community fluctuate in a manner largely depending on the physicochemical parameters within the gut niche. Recognition of the bacterial metabolic status in situ, by a sensing of the gut metabolites as a signature of a specific bacterial metabolic activity, has been suggested to be a highly beneficial means for the host to maintain gut-microbe homeostasis. Recently, analysis of Drosophila gut immunity revealed that bacterial-derived uracil and uracil-modulated intestinal reactive oxygen species (ROS) generation play a pivotal role in diverse aspects of host-microbe interactions, such as pathogen clearance, commensal protection, intestinal cell regeneration, colitogenesis, and possibly also interorgan immunological communication. A deeper understanding of the role of uracil in Drosophila immunity will provide additional insight into the molecular mechanisms underlying host-microbe symbiosis and dysbiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds.

    Science.gov (United States)

    Bar, Arie

    2008-12-01

    Egg laying and shell calcification impose severe extra demands on ionic calcium (Ca2+) homeostasis; especially in birds characterized by their long clutches (series of eggs laid sequentially before a "pause day"). These demands induce vitamin D metabolism and expression. The metabolism of vitamin D is also altered indirectly, by other processes associated with increased demands for calcium, such as growth, bone formation and egg production. A series of intestinal, renal or bone proteins are consequently expressed in the target organs via mechanisms involving a vitamin D receptor. Some of these proteins (carbonic anhydrase, calbindin and calcium-ATPase) are also found in the uterus (eggshell gland) or are believed to be involved in calcium transport in the intestine or kidney (calcium channels). The present review deals with vitamin D metabolism and the expression of the above-mentioned proteins in birds, with special attention to the strongly calcifying laying bird.

  3. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  4. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  5. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  6. Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity.

    Science.gov (United States)

    Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B

    2017-04-19

    Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.

  7. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    Science.gov (United States)

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  8. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  9. Small intestine diverticuli

    International Nuclear Information System (INIS)

    Pomakov, P.; Risov, A.

    1991-01-01

    The routine method of contrast matter passage applied to 850 patients with different gastrointestinal diseases proved inefficient to detect any small-intestinal diverticuli. The following modiffications of the method have been tested in order to improve the diagnostic possibilities of the X-ray: study at short intervals, assisted passage, enteroclysm, pharmacodynamic impact, retrograde filling of the ileum by irrigoscopy. Twelve diverticuli of the small-intestinal loops were identified: 5 Meckel's diverticuli, 2 solitary of which one of the therminal ileum, 2 double diverticuli and 1 multiple diverticulosis of the jejunum. The results show that the short interval X-ray examination of the small intestines is the method of choice for identifying local changes in them. The solitary diverticuli are not casuistic scarcity, its occurrence is about 0.5% at purposeful X-ray investigation. The assisted passage method is proposed as a method of choice for detection of the Meckel's diverticulum. 5 figs., 3 tabs. 18 refs

  10. Chronic intestinal pseudoobstruction syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Kyung Mo; Seo, Jeong Kee; Lee, Yong Seok [Seoul National University Children' s Hospital, Seoul (Korea, Republic of)

    1992-03-15

    Chronic intestinal pseudoobstruction syndrome is a rare clinical condition in which impaired intestinal peristalsis causes recurrent symptoms of bowel obstruction in the absence of a mechanical occlusion. This syndrome may involve variable segments of small or large bowel, and may be associated with urinary bladder retention. This study included 6 children(3 boys and 3 girls) of chronic intestinal obstruction. Four were symptomatic at birth and two were of the ages of one month and one year. All had abdominal distension and deflection difficulty. Five had urinary bladder distension. Despite parenteral nutrition and surgical intervention(ileostomy or colostomy), bowel obstruction persisted and four patients expired from sepses within one year. All had gaseous distension of small and large bowel on abdominal films. In small bowel series, consistent findings were variable degree of dilatation, decreased peristalsis(prolonged transit time) and microcolon or microrectum. This disease entity must be differentiated from congenital megacolon, ileal atresia and megacystis syndrome.

  11. Small Intestinal Infections.

    Science.gov (United States)

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections.

  12. Role of Snf3 in glucose homeostasis of Saccharomyces cerevisiae (review)

    DEFF Research Database (Denmark)

    Kielland-Brandt, Morten

    signal pathways in directions opposite to those caused by extracellular nutrients (6,7), a phenomenon predicted to contribute to intracellular nutrient homeostasis. Although significant, the influence of intracellular leucine on signaling from Ssy1 is relatively modest (6), whereas the conditions...... with enhanced intracellular glucose concentrations (7) caused a strong decrease in signaling from Snf3, suggesting an important role of Snf3 in intracellular glucose homeostasis. Strategies for studies of this role will be discussed....

  13. prevalence and predictors of intestinal helminthiasis among school

    African Journals Online (AJOL)

    Abrham

    2011-11-03

    Nov 3, 2011 ... Gilgel Gibe Hydroelectric Power to determine the prevalence and predictors of intestinal parasitic infections among school children. This study is conducted as sub-study to the main study; the objective of which was to determine the prevalence of intestinal schistosomiasis, and related factors such as risk ...

  14. Small intestine aspirate and culture

    Science.gov (United States)

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  15. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    Science.gov (United States)

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. © 2014 British Society for Immunology.

  16. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    Science.gov (United States)

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  17. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Factors determining colorectal cancer: the role of the intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Esther eNistal

    2015-10-01

    Full Text Available The gastrointestinal tract, in particular the colon, holds a complex community of microorganisms, which are essential for maintaining homeostasis. However, in recent years, many studies have implicated microbiota in the development of colorectal cancer (CRC, with this disease considered a major cause of death in the western world. The mechanisms underlying bacterial contribution in its development are complex and are not yet fully understood. However, there is increasing evidence showing a connection between intestinal microbiota and CRC. Intestinal microorganisms cause the onset and progression of CRC using different mechanisms, such as the induction of a chronic inflammation state, the biosynthesis of genotoxins that interfere with cell cycle regulation, the production of toxic metabolites or heterocyclic amine activation of pro-diet carcinogenic compounds. Despite these advances additional studies in humans and animal models will further decipher the relationship between microbiota and CRC, and aid in developing alternate therapies based on microbiota manipulation.

  19. Neuronal and molecular mechanisms of sleep homeostasis.

    Science.gov (United States)

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    2010-01-01

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...

  1. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng

    The interplay between the gut microbiota and the intestinal mucus layer is important both in the maintenance of the epithelial barrier as part of the innate immune defense, and in the conservation of gut homeostasis. Little is known about how the microbiota regulates mucin proteins, which protect...

  2. Intestinal inflammatory myofibroblastic tumour

    African Journals Online (AJOL)

    abdominal X-ray of patients 1, 3 and 4 demonstrated dilated small bowel loops with fluid levels in keeping with intestinal ... myxoid/vascular pattern characterised by a variable admixture of capillary-calibre blood vessels, .... in the present study had a past history of abdominal trauma or surgery. Ancillary histopathological ...

  3. Human Intestinal Spirochaetosis

    NARCIS (Netherlands)

    Westerman, L.J.

    2013-01-01

    Human intestinal spirochaetosis is a condition of the colon that is characterized by the presence of spirochaetes attached to the mucosal cells of the colon. These spirochaetes belong to the family Brachyspiraceae and two species are known to occur in humans: Brachyspira aalborgi and Brachyspira

  4. Intestinal health in carnivores

    NARCIS (Netherlands)

    Hagen-Plantinga, Esther A.; Hendriks, W.H.

    2015-01-01

    The knowledge on the influence of gastro-intestinal (GI) microbiota on the health status of humans and animals is rapidly expanding. A balanced microbiome may provide multiple benefits to the host, like triggering and stimulation of the immune system, acting as a barrier against possible pathogenic

  5. Intestinal Complications of IBD

    Science.gov (United States)

    ... localized pocket of pus caused by infection from bacteria. More common in Crohn’s than in colitis, an abscess may form in the intestinal wall—sometimes causing it to bulge out. Visible abscesses, such as those around the anus, look like boils and treatment often involves lancing. Symptoms of ...

  6. Intestinal volvulus in cetaceans.

    Science.gov (United States)

    Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I

    2013-07-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition.

  7. Small intestinal motility

    NARCIS (Netherlands)

    Smout, André J. P. M.

    2004-01-01

    PURPOSE OF REVIEW: In the past year, many studies were published in which new and relevant information on small intestinal motility in humans and laboratory animals was obtained. RECENT FINDINGS: Although the reported findings are heterogeneous, some themes appear to be particularly interesting and

  8. Small Intestinal Obstruction Caused by Anisakiasis

    Directory of Open Access Journals (Sweden)

    Yuichi Takano

    2013-01-01

    Full Text Available Small intestinal anisakiasis is a rare disease that is very difficult to diagnose, and its initial diagnosis is often surgical. However, it is typically a benign disease that resolves with conservative treatment, and unnecessary surgery can be avoided if it is appropriately diagnosed. This case report is an example of small intestinal obstruction caused by anisakiasis that resolved with conservative treatment. A 63-year-old man admitted to our department with acute abdominal pain. A history of raw fish (sushi ingestion was recorded. Abdominal CT demonstrated small intestinal dilatation with wall thickening and contrast enhancement. Ascitic fluid was found on the liver surface and in the Douglas pouch. His IgE (RIST was elevated, and he tested positive for the anti-Anisakis antibodies IgG and IgA. Small intestinal obstruction by anisakiasis was highly suspected and conservative treatment was performed, ileus tube, fasting, and fluid replacement. Symptoms quickly resolved, and he was discharged on the seventh day of admission. Small intestinal anisakiasis is a relatively uncommon disease, the diagnosis of which may be difficult. Because it is a self-limiting disease that usually resolves in 1-2 weeks, a conservative approach is advisable to avoid unnecessary surgery.

  9. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    Full Text Available Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC. We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1 increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2 tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3 loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4 chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression

  10. [Intrauterine intestinal volvulus].

    Science.gov (United States)

    Gawrych, Elzbieta; Chojnacka, Hanna; Wegrzynowski, Jerzy; Rajewska, Justyna

    2009-07-01

    Intrauterine intestinal volvulus is an extremely rare case of acute congenital intestinal obstruction. The diagnosis is usually possible in the third trimester of a pregnancy. Fetal midgut volvulus is most likely to be recognized by observing a typical clockwise whirlpool sign during color Doppler investigation. Multiple dilated intestinal loops with fluid levels are usually visible during the antenatal ultrasound as well. Physical and radiographic findings in the newborn indicate intestinal obstruction and an emergency surgery is required. The authors describe intrauterine volvulus in 3 female newborns in which surgical treatment was individualized. The decision about primary or delayed anastomosis after resection of the gangrenous part of the small bowel was made at the time of the surgery and depended on the general condition of the newborn, as well as presence or absence of meconium peritonitis. Double loop jejunostomy was performed in case of two newborns, followed by a delayed end-to-end anastomosis. In case of the third newborn, good blood supply of the small intestine after untwisting and 0.25% lignocaine injections into mesentery led to the assumption that the torsion was not complete and ischemia was reversible. In the two cases of incomplete rotation the cecum was sutured to the left abdominal wall to prevent further twisting. The postoperative course was uneventful and oral alimentation caused no problems. Physical development of all these children has been normal (current age: 1-2 years) and the parents have not observed any disorders or problems regarding passage of food through the alimentary canal. Prompt antenatal diagnosis of this surgical emergency and adequate choice of intervention may greatly reduce mortality due to intrauterine volvulus.

  11. Relationships between intestinal parasitosis and handedness.

    Science.gov (United States)

    Uslu, Hakan; Dane, Senol; Uyanik, M Hamidullah; Ayyildiz, Ahmet

    2010-07-01

    The aim of the study was to investigate if there is a possible relation between intestinal parasitosis and handedness in patients with suspected intestinal parasitosis. Hand preference was assessed on the Edinburgh Handedness Inventory. Stool samples were examined microscopically for the presence of parasite. In the present study right-handers had many more helminth infections and left-handers had many more protozoon infections. Lower rate of helminth infections in the present study, and higher asthma incidences in the left-handed population in literature, may be associated with different immune machinery in left-handed people than in right-handed ones.

  12. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP technique to study the effect of food compounds. In vitro digested yellow (YOd and white onion extracts (WOd were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.

  13. Esophageal development and epithelial homeostasis

    NARCIS (Netherlands)

    Rosekrans, Sanne L.; Baan, Bart; Muncan, Vanesa; van den Brink, Gijs R.

    2015-01-01

    The esophagus is a relatively simple organ that evolved to transport food and liquids through the thoracic cavity. It is the only part of the gastrointestinal tract that lacks any metabolic, digestive, or absorptive function. The mucosa of the adult esophagus is covered by a multilayered squamous

  14. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Olivia I. Coleman

    2018-01-01

    Full Text Available The gastrointestinal (GI tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD and colorectal cancer (CRC. Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.

  15. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.

    Science.gov (United States)

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.

  16. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism.

    Science.gov (United States)

    Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2013-03-01

    Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  18. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  19. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... of the cells to cisplatin may result from the interaction of specific proteins with ..... respiration, which is similar to uncoupling of oxidative phosphorylation (Binet ... cellular ion homeostasis with decreased cellular K+ content, increased ... of sodium and hydrogen ions will take place passively. Also, magnesium ...

  20. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  1. Molecular monitoring of equine joint homeostasis

    NARCIS (Netherlands)

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally

  2. Brain glucose sensing, counterregulation, and energy homeostasis.

    Science.gov (United States)

    Marty, Nell; Dallaporta, Michel; Thorens, Bernard

    2007-08-01

    Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.

  3. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody.

    Science.gov (United States)

    Kunisawa, Jun

    2017-04-01

    To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.

  4. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  5. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality

    Directory of Open Access Journals (Sweden)

    Rebecca I. Clark

    2015-09-01

    Full Text Available Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.

  6. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  8. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Ultrasonographic findings of intestinal intussusception in seven cats.

    Science.gov (United States)

    Patsikas, M N; Papazoglou, L G; Papaioannou, N G; Savvas, I; Kazakos, G M; Dessiris, A K

    2003-12-01

    The medical records of seven cats with intestinal intussusception that were diagnosed by abdominal ultrasonography and exploratory laparotomy were reviewed. In transverse ultrasonographic sections the intussusception appeared as a target-like mass consisting of one, two or more hyperechoic and hypoechoic concentric rings surrounding a C-shaped, circular or non-specific shaped hyperechoic centre. Part of the intestine representing the inner intussusceptum, located close to the hyperechoic centre and surrounded by concentric rings, was also detected. In longitudinal sections the intussusception appeared as multiple hyperechoic and hypoechoic parallel lines in four cases and as an ovoid mass in three cases. In one case the ovoid mass had a 'kidney' configuration. Additional ultrasonographic findings associated with intestinal intussusception included an intestinal neoplasm in one cat. The results of the present study demonstrate that the ultrasonographic findings of intestinal intussusception in cats bear some similarities to those described in dogs and humans, are relatively consistent, and facilitate a specific diagnosis.

  10. Primary intestinal hodgkin′s lymphoma: An uncommon presentation

    Directory of Open Access Journals (Sweden)

    Shruti Sharma

    2013-01-01

    Full Text Available Primary intestinal lymphoma is a rare lymphoproliferative neoplasm of the small intestine. The primary nature is established on the basis of lack of evidence of lymphoma on chest X-ray, computerized tomographic scan, peripheral blood or bone marrow puncture. Tumor involvement is limited to the gastrointestinal tract, the criteria for inclusion are that the symptoms related to the small intestine are predominant or the only symptoms at the time of laparotomy. Hodgkin′s lymphoma (HL primarily in the small intestine is a rare entity and an uncommon presentation of the disease. Ileum is the more common site of infliction than the jejunum because of its abundant lymphoid follicles. Here, we present a case of primary intestinal HL, in a 30-year-old male.

  11. Intestinal mal-rotation in adults. CT findings

    International Nuclear Information System (INIS)

    Vazquez Munoz, Enrique; Ramiro Ramiro, Esther; Perez Villacastin, Benjamin; Learra Martinez, Maria C.; Franco Lopez, Maria A.

    2004-01-01

    We review 7 adult cases of intestinal mal-rotation who were studied with CT. All patients had a small bowel located in the right hemi abdomen, abnormal location of superior mesenteric vein relative to superior mesenteric artery. Superior mesenteric vein was located anteriorly and to the left of superior mesenteric artery. In patients who suffered intestinal volvulus a 'whirlpool' sign was observed, due to the helicoidal torsion of the intestine and mesentery surrounding superior mesenteric artery. In 3 cases CT demonstrated absence or poor development of the pancreas uncinate process. In 2 patients CT revealed polysplenia. CT played a major role in 3 patients with volvulus as a complication of intestinal mal-rotation. CT also demonstrated unsuspected mal-rotation in one asymptomatic patient. In 3 cases with classic symptoms CT confirmed the intestinal mal-rotation diagnosed by barium studies. (author)

  12. Calcium homeostasis in diabetes mellitus.

    Science.gov (United States)

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  13. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    Directory of Open Access Journals (Sweden)

    Eva Latorre

    Full Text Available TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved