WorldWideScience

Sample records for intestinal epithelium implications

  1. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...... of inflammatory bowel disease (IBD). Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets....

  2. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  3. Radiobiology of intestinal epithelium stem cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.

    1988-01-01

    After a single or three-fold whole body irradiation of mice with a dose of 4 Gy and the time interval for the proliferation to be restored (5 days or 3 weeks) the survival curve for stem cells of small intestine epithelium with regard to radiation dose was the same as that for non-preirradiated mice. This indicated that the proliferative potential of stem cells in these experimental conditions was not reduced

  4. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  5. Hedgehog Signaling and Maintenance of Homeostasis in the Intestinal Epithelium

    NARCIS (Netherlands)

    Büller, Nikè V. J. A.; Rosekrans, Sanne L.; Westerlund, Jessica; van den Brink, Gijs R.

    2012-01-01

    Homeostasis of the rapidly renewing intestinal epithelium depends on a balance between cell proliferation and loss. Indian hedgehog (Ihh) acts as a negative feedback signal in this dynamic equilibrium. We discuss recent evidence that Ihh may be one of the key epithelial signals that indicates

  6. Wnt signaling in the intestinal epithelium: from endoderm to cancer.

    NARCIS (Netherlands)

    Gregorieff, A.; Clevers, J.C.

    2005-01-01

    The Wnt pathway controls cell fate during embryonic development. It also persists as a key regulator of homeostasis in adult self-renewing tissues. In these tissues, mutational deregulation of the Wnt cascade is closely associated with malignant transformation. The intestinal epithelium represents

  7. Lymphoid cells in chicken intestinal epithelium

    DEFF Research Database (Denmark)

    Bjerregaard, P

    1975-01-01

    The intraepithelial lymphoid cells of chicken small intestine were studied by light microscopy using 1 mu Epon sections, and by electron microscopy. Three cell types were found: small lymphocytes, large lymphoid cells, and granular cells. These cells correspond to the theliolymphocytes and globule...

  8. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium.

    Science.gov (United States)

    Pukkila-Worley, Read; Ausubel, Frederick M

    2012-02-01

    Intestinal epithelial cells provide an essential line of defense for Caernohabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some of the basic principles of epithelial immunity that may also be of relevance in higher order hosts. Copyright © 2012. Published by Elsevier Ltd.

  9. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    Science.gov (United States)

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  10. Regeneration of stem-cells in intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Hendry, J.H.

    1979-01-01

    Stem-cells can be defined as pluripotent progenitor cells, capable of both self-renewal and differentitation into all the functional end-cells typical of that cell family. Intestinal crypts contain population of cells which is capable of a) self-renewal following the severe depletion after radiation injury, b) replacing all other cypt cell types, and c) regeneration following repeated depletion (in colon). These are the properties of stem cells. Most measurements of the rate of regeneration of these cells following the severe depletion by radiation have been made by employing large test dose at increasing times. Such measurements have produced widely differing rates of increase in the survival under the test dose, from 4 hours (macrocolonies in jejunum) to 43 hours (microcolonies in stomach). In other tissues, large single test doses have been used to derive the time of doubling survival ratio e.g. for epidermal clones. Although cryptogenic cell number per crypt can be virtually restored by day 4 after a single dose and probably after many such doses, the status quo cannot be reached until the number of crypts is restored to normal. Stem cell numbers form a necessary part of the integrity of epitheliums. The quality of the stem cell function of survivors as expressed in the differentiated progeny, and the maintenance of function of the supportive environment are equally important for late radiation damage. (Yamashita, S.)

  11. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F

    2005-01-01

    , the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium......, when symmetrically bathed with Ringer solution, develops a net Cl- current giving rise to a negative transepithelial potential at the basolateral side of the epithelium. The eel intestinal epithelium responded to a hypotonic challenge with a biphasic decrease in the transepithelial voltage (V......(te)) and the short circuit current (I(sc)). This electrophysiological response correlated with a regulatory volume decrease (RVD) response, recorded by morphometrical measurement of the epithelium height. Changes in the transepithelial resistance were also observed following the hypotonicity exposure...

  12. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    Science.gov (United States)

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  13. Effect of syngeneic thymocytes on proliferation of the small intestinal epithelium in mice

    International Nuclear Information System (INIS)

    Shmakov, A.N.; Aparovich, G.G.; Trufakin, V.A.

    1986-01-01

    This paper describes the study of the action of syngeneic thymocytes on proliferation of the epithelium of the mouse small intestine. The mice were injected with 3 H-thymidine in the experiments. Under the experimental conditions presented here, syngeneic thymocytes can reduce the number of DNA-synthesizing cells in the intestinal epithelium, causing narrowing of the zone of proliferation and enlargement of the zone of differentiation of the enterocytes

  14. Differential proteiomic analysis of mouse intestinal epithelium irradiated by γ-ray

    International Nuclear Information System (INIS)

    Zhang Bo; Su Yongping; Liu Xiaohong; Ai Guoping; Ran Xinze; Wei Yongjiang; Wang Junping; Cheng Tianmin

    2003-01-01

    Objective: For elucidating the molecular mechanism of reconstruction of intestinal epithelium damaged by ionizing radiation, the proteomes of murine intestinal epithelium from normal and irradiated mice were compared by 2-D electrophoresis. Methods: Histopathologic sections of whole small intestine made from BALB/c mice 3 h and 72 h after total-body irradiation were stained with hematoxylin-eosin. Intestinal epithelial cells were isolated from normal and irradiated mice. The total protein samples prepared by one-step method were used in 2-D electrophoresis, the protein maps were compared and the differential spots were detected with PDQuest analysis software. Twenty-eight different spots were cut off from the gels, digested in gel with trypsin, measured with MALDI-TOF-MS and searched in database. Results: Small intestinal epithelium was damaged as early as 3 h after irradiation, and reconstructed 72 h later. After Coomassie-staining, the 2-DE image analysis by PDQuest software detected 638 ± 39 protein spots in normal mice group, 566 ± 32 spots in 3 hours post irradiation group, and 591 ± 29 spots in 3 days post irradiation group. The 2-DE images showed that proteomes of intestinal epithelium were altered with γ-irradiation. The proteins identified by peptide mass fingerprinting involved in cellular events, including signal transduction, metabolism and oxidative stress responses. Conclusions: Gamma-irradiation can induce the protein expression of intestinal epithelium. The technique of 2-D electrophoresis is a useful tool in the study of molecular mechanism of radiation damage

  15. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  16. Epithelium

    Science.gov (United States)

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Kierszenbaum AL, Tres LL. Epithelium. In: Kierszenbaum AL, Tres LL, ... to Pathology . 4th ed. Philadelphia, PA: Elsevier Saunders; ...

  17. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    Full Text Available Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R injury.Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA. The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.

  18. A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium

    OpenAIRE

    Mabbott, Neil A.

    2015-01-01

    In the intestine, a single layer of epithelial cells sealed together at their apical surfaces by tight junctions helps to prevent the luminal commensal and pathogenic micro-organisms and their toxins from entering host tissues. The intestinal epithelium also helps to maintain homoeostasis in the mucosal immune system by expressing anti-inflammatory cytokines in the steady state and inflammatory cytokines in response to pathogens. Although the function of the mucosal immune system is impaired ...

  19. Identification of Lgr5-Independent Spheroid-Generating Progenitors of the Mouse Fetal Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Roxana C. Mustata

    2013-10-01

    Full Text Available Immortal spheroids were generated from fetal mouse intestine using the culture system initially developed to culture organoids from adult intestinal epithelium. Spheroid proportion progressively decreases from fetal to postnatal period, with a corresponding increase in production of organoids. Like organoids, spheroids show Wnt-dependent indefinite self-renewing properties but display a poorly differentiated phenotype reminiscent of incompletely caudalized progenitors. The spheroid transcriptome is strikingly different from that of adult intestinal stem cells, with minimal overlap of Wnt target gene expression. The receptor LGR4, but not LGR5, is essential for their growth. Trop2/Tacstd2 and Cnx43/Gja1, two markers highly enriched in spheroids, are expressed throughout the embryonic-day-14 intestinal epithelium. Comparison of in utero and neonatal lineage tracing using Cnx43-CreER and Lgr5-CreERT2 mice identified spheroid-generating cells as developmental progenitors involved in generation of the prenatal intestinal epithelium. Ex vivo, spheroid cells have the potential to differentiate into organoids, qualifying as a fetal type of intestinal stem cell.

  20. Impact of thymectomy and antilymphocytic serum on stem cells of the intestinal epithelium

    International Nuclear Information System (INIS)

    Aparovich, G.G.; Trufakin, V.A.

    1982-01-01

    The population of stem cells of the intestinal epithelium was studied under conditions of the disturbed balance in the immune system on F 1 (CBAxC57B1) mice. It has been shown that thymectomy in adult mice does not influence the stem region of the intestinal epithelium at early time of observation but causes a tendency to the changed number of epithelial stem cells in 4-6 months. Administration of specific sera against T-, B- and mixed lymphoid populations on the 1st day of observation produces an ambi us effect on the stem region and results in an increase of the number of epithelial stem cells on the 5th day. After administration of the antilymphocytic serum there have been determined morphological changes in the population of mature erythrocytes and undulatory fluctuations in the number of mitotic cells of the intestinal epithelium. These data suggest functional correlation of the intestinal epithelium and the state of the immunocompetent tissue [ru

  1. Neural influences on human intestinal epithelium in vitro.

    Science.gov (United States)

    Krueger, Dagmar; Michel, Klaus; Zeller, Florian; Demir, Ihsan E; Ceyhan, Güralp O; Slotta-Huspenina, Julia; Schemann, Michael

    2016-01-15

    We present the first systematic and, up to now, most comprehensive evaluation of the basic features of epithelial functions, such as basal and nerve-evoked secretion, as well as tissue resistance, in over 2200 surgical specimens of human small and large intestine. We found no evidence for impaired nerve-evoked epithelial secretion or tissue resistance with age or disease pathologies (stomach, pancreas or colon cancer, polyps, diverticulitis, stoma reversal). This indicates the validity of future studies on epithelial secretion or resistance that are based on data from a variety of surgical specimens. ACh mainly mediated nerve-evoked and basal secretion in the small intestine, whereas vasoactive intestinal peptide and nitric oxide were the primary pro-secretory transmitters in the large intestine. The results of the present study revealed novel insights into regional differences in nerve-mediated secretion in the human intestine and comprise the basis by which to more specifically target impaired epithelial functions in the diseased gut. Knowledge on basic features of epithelial functions in the human intestine is scarce. We used Ussing chamber techniques to record basal tissue resistance (R-basal) and short circuit currents (ISC; secretion) under basal conditions (ISC-basal) and after electrical field stimulation (ISC-EFS) of nerves in 2221 resectates from 435 patients. ISC-EFS was TTX-sensitive and of comparable magnitude in the small and large intestine. ISC-EFS or R-basal were not influenced by the patients' age, sex or disease pathologies (cancer, polyps, diverticulitis). Ion substitution, bumetanide or adenylate cyclase inhibition studies suggested that ISC-EFS depended on epithelial cAMP-driven chloride and bicarbonate secretion but not on amiloride-sensitive sodium absorption. Although atropine-sensitive cholinergic components prevailed for ISC-EFS of the duodenum, jejunum and ileum, PG97-269-sensitive [vasoactive intestinal peptide (VIP) receptor 1

  2. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  3. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    Science.gov (United States)

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  4. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alistair eWalsham

    2016-03-01

    Full Text Available Enteropathogenic E. coli (EPEC is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC A/E lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  5. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    Science.gov (United States)

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  6. The role of natural growth stimulators in regulation of regeneration processes in small intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Dziekiewicz, M.

    1996-01-01

    In this paper, basing on recently published data, the influence of growth factors on small intestine epithelium regeneration after irradiation is presented. Our knowledge of growth control in the small intestine mucosa may become an accepted mode of radio-, chemotherapy and the treatment of acute radiation sickness in the future. Results of recent studies suggest that there are different factors which can modulate the process of epithelium regeneration. Some of them such as gastrin, enteroglucagon, CCK, EGF, FGF, TGF and IL-11 are able to enhance this process. In addition, other factor-PGE-2 is responsible for not only stimulation of small intestine epithelium growth but radioprotection as well. (author)

  7. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  8. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium

    DEFF Research Database (Denmark)

    Xia, Dengning; He, Yuan; Li, Qiuxia

    2018-01-01

    are transported. To improve cellular uptake and transport of pure nanodrug in cells, here, a lipid covered saquinavir (SQV) pure drug NP (Lipo@nanodrug) was designed by modifying a pure SQV NP (nanodrug) with a phospholipid bilayer. We studied their endocytosis, intracellular trafficking mechanism using Caco-2...... their intracellular processing, helping to improve drug transport across intestinal epithelium. To our knowledge, this is the first presentation of the novel phospholipid bilayer covered SQV pure drug NP design, and a mechanistic study on intracellular trafficking in in vitro cell models has been described......Pure drug nanoparticles (NPs) represent a promising formulation for improved drug solubility and controlled dissolution velocity. However, limited absorption by the intestinal epithelium remains challenge to their clinical application, and little is known about how these NPs within the cells...

  9. The crypt and cell size kinetics in the irradiated intestinal epithelium in mice

    International Nuclear Information System (INIS)

    Kononenko, A.M.; Gagarin, A.U.

    1975-01-01

    A study has been made of changes in the average values of the axial cross-sectional area of the crypt and of cell area in this cross-section for eight days after a single whole-body exposure of male mice to 400 rad of X-rays. A small reduction in the crypt area in the destructive period gives way to a much greater increase in the normal dimensions of the area in the regenerative period. Two very considerable waves of anomalous increase are observed in the dimensions of the cryptal cell cross-sections, the first in the destructive and the second in the regenerative period. These fluctuations in cell dimensions do not occur around but above the control level, attaining the latter level only at the minimum (4th day). The size of the cryptal cells of the intact intestinal epithelium is evidently close to the minimum needed for enterocyte proliferation. The considerable increase in crypt dimensions in the regenerative period (beginning from the 6th day) is not due to the larger number of cells (they are even somewhat fewer than normal) but rather to a substantial increase in cell dimensions. Thus, according to these data, on the 6th-8th day after irradiation the intestinal epithelium deviates strongly from the stationary state. The index I sub(v), where I is the mitotic index and v the cell volume, was used to evaluate the changes in the value of the material stream, connected with proliferation, to the intestinal epithelium per cryptal cell. A considerable increase was found in this stream (hypertrophy of proliferative cells) in the intestinal epithelium restored after irradiation. (author)

  10. Intestinal metabolism of PAH: in vitro demonstration and study of its impact on PAH transfer through the intestinal epithelium

    International Nuclear Information System (INIS)

    Cavret, Severine; Feidt, Cyril

    2005-01-01

    Food would seem to be one of the main ways of animal and human contamination with polycyclic aromatic hydrocarbons (PAHs). In vivo studies suggest a transfer in intestinal epithelium by diffusion, which appears extensively governed by the physicochemical properties of PAHs, particularly lipophilicity. However, other mechanisms, such as metabolism, are considered to intervene. Our work aimed at testing in vitro intestinal metabolism and defining its impact on transepithelial transport of PAHs. Caco-2 cells were cultivated on permeable filters and incubated with 14 C-labeled benzo[a]pyrene (BaP), pyrene (Pyr), and phenanthrene (Phe), which differ in their physicochemical properties. The results showed that the cells were able to metabolize the compounds. In basal media, Phe appeared to be the least hydroxylated molecule (45% after a 6-h exposure), followed by Pyr (65%) and finally BaP (96%). Inhibition of PAH metabolism showed a determinant effect on kinetics profiles. Transfer in the basal compartment of BaP, Pyr, and Phe radioactivities was, respectively, 26, 4, and 2 times lower with inhibitors, corroborating that intestinal metabolism of PAHs would have a positive impact on their transfer, an impact that increased with their lipophilicity. Furthermore, after a 6-h incubation, metabolites were also detected in apical medium. These findings suggested that intestinal metabolism might play a key role in intestinal barrier permeability and thus in the bioavailability of tested micropollutants

  11. Capsule impairs efficient adherence of Streptococcus agalactiae to intestinal epithelium in tilapias Oreochromis sp.

    Science.gov (United States)

    Barato, P; Martins, E R; Vasquez, G M; Ramirez, M; Melo-Cristino, J; Martínez, N; Iregui, C

    2016-11-01

    Streptococcosis caused by Streptococcus agalactiae is one of the most important diseases in the tilapia aquaculture industry. The role of the capsule of Streptococcus agalactiae in adherence to fish surfaces has not been evaluated and the mechanism of capsular regulation during adhesion has not been described. The aim of this study was to evaluate the role of the capsule of S. agalactiae during adhesion to intestinal epithelium of tilapia (Oreochromis sp.) in an ex vivo infection model. We show that the capsule impairs the adhesion of bacteria to host intestinal epithelium. Wild type (WT) strain SaTiBe08-18 (S. agalactiae recovered from tilapia) had reduced adhesion (P S. agalactiae to tilapia intestine and that the acidic milieu could regulate adherence of encapsulated strains. We found GlcNAc on the surface of adherent Δcps but not over the capsule in WT. This difference could be explained by the GlcNAc composition of Lancefield group B antigen and the peptidoglycan in GBS (Group B Streptococcus) and also may be related with better exposure of glycosylated adhesins in unencapsulated fish GBS. Understanding capsular regulation during adhesion of S. agalactiae may provide new leads to find a successful anti-adherence therapy to prevent streptococcosis in tilapia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mechanism for radiation-induced damage via TLR3 on the intestinal epithelium

    International Nuclear Information System (INIS)

    Takemura, Naoki; Uematsu, Satoshi

    2014-01-01

    When the small-intestinal epithelium is injured due to high-dose radiation exposure, radiation-induced gastrointestinal syndrome (GIS) such as absorption inhibition and intestinal bacterial infection occurs, and lead to subacute death. The authors immunologically analyzed the disease onset mechanism of GIS. In the small-intestinal mucosal epithelium, the intestinal epithelial stem cells of crypt structure and their daughter cells are renewed through proliferation and differentiation in the cycle of 3 or 4 days. When DNA is damaged by radiation, although p53 gene stops cell cycle and repairs DNA, cell death is induced if the repair is impossible. When stem cells perish, cell supply stops resulting in epithelial breakdown and fatal GIS. The authors analyzed the involvement in GIS of toll-like receptor (TLR) with the function of natural immunity, based on lethal γ-ray irradiation on KO mice and other methods. The authors found the mechanism, in which RNA that was leaked due to cell death caused by p53 gene elicits inflammation by activating TLR3, and leads to GIS through a wide range of cell death induction and stem cell extinction. The administration of a TLR3/RNA binding inhibitor before the irradiation of mice decreased crypt cell death and greatly improved survival rate. The administration one hour after the irradiation also showed improvement. The administration of the TLR3 specific inhibitor within a fixed time after the exposure is hopeful for the prevention of GIS, without affecting the DNA repair function of p53 gene. (A.O.)

  13. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Shu, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-07-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.

  14. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    International Nuclear Information System (INIS)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng; Shu, Yongqian; Gu, Yanhong; Wu, Xudong; Xu, Qiang

    2014-01-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction

  15. Growth of intestinal epithelium in organ culture is dependent on EGF signalling

    International Nuclear Information System (INIS)

    Abud, Helen E.; Watson, Nadine; Heath, Joan K.

    2005-01-01

    Differentiation of endoderm into intestinal epithelium is initiated at E13.5 of mouse development when there are significant changes in morphology resulting in the conversion of undifferentiated stratified epithelium into a mature epithelial monolayer. Here we demonstrate that monolayer formation is associated with the selective apoptosis of superficial cells lining the lumen while cell proliferation is progressively restricted to cells adjacent to the basement membrane. We describe an innovative embryonic gut culture system that maintains the three-dimensional architecture of gut and in which these processes are recapitulated in vitro. Explants taken from specific regions of the gut and placed into organ culture develop and express molecular markers (Cdx1, Cdx2 and A33 antigen) in the same spatial and temporal pattern observed in vivo indicating that regional specification is maintained. Inhibition of the epidermal growth factor receptor (EGFR) tyrosine kinase using the specific inhibitor AG1478 significantly reduced the proliferation and survival of cells within the epithelial cell layer of cultured gut explants. This demonstrates an essential role for the EGF signalling pathway during the early stages of intestinal development

  16. Segment-specific responses of intestinal epithelium transcriptome to in-feed antibiotics in pigs.

    Science.gov (United States)

    Yu, Kaifan; Mu, Chunlong; Yang, Yuxiang; Su, Yong; Zhu, Weiyun

    2017-10-01

    Despite widespread use of antibiotics for treatment of human diseases and promotion of growth of agricultural animals, our understanding of their effects on the host is still very limited. We used a model in which pigs were fed with or without a cocktail of antibiotics and found, based on the denaturing gradient gel electrophoresis (DGGE) patterns, that the fecal bacteria from the treatment and control animals were distinct. Furthermore, the total bacterial population in the feces tended to be decreased by the antibiotic treatment ( P = 0.07), and the counts of Lactobacillus and Clostridium XIVa were significantly reduced ( P epithelium, we assessed gene expression profiles of the jejunum and ileum and their response to antibiotic administration. The results indicate that in-feed antibiotics increased expression of genes involved in immune functions in both the jejunum and ileum, some of which were clustered in the coexpression network. Gene ontology terms of metabolic processes were altered predominantly in the jejunum but not in the ileum. Notably, antibiotics diminished intestinal segment-specific transcriptional changes, especially for genes associated with metabolic functions. This study reveals segment-specific responses of host intestinal epithelium to in-feed antibiotics, which can be a valuable resource for deciphering antibiotic-microbiota-host interactions. Copyright © 2017 the American Physiological Society.

  17. The effect of PGE2, gastrin and CCK-8 on postirradiation recovery of small intestine epithelium

    International Nuclear Information System (INIS)

    Dziekiewicz, M.; Chomiczewski, K.; Jablonska, H.

    1997-01-01

    The role of some natural factors in the postirradiation recovery of intestinal epithelium is a very interesting and inscrutable problem. In our experiment the comparative effect of PGE 2 , Gastrin and CCK-8 fragment of Cholecystokinin on this problem has been investigated. Male Swiss PZH mice 8 weeks old were irradiated to the whole body with a dose of 5.5 Gy and to abdomen with a dose of 12 Gy of gamma rays. The first experimental group received PGE 2 before 30 min. irradiation, the second received Gastrin after irradiation during 5 days, the third was injected with CCK-8 after irradiation during 5 days too. Unirradiated and only irradiated animals served as control groups. Survival of 30 mice in every group was registered during 30 days after irradiation. The another part of animals in every group were killed between 1 and 12 days after irradiation. Changes in the body weight were registered. Using computer image analysis system , some histological slides were examined, adding the statistical analysis of results. The preliminary results suggest that all those factors are able to stimulate the postirradiation regeneration of small intestinal epithelium (author)

  18. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine

    DEFF Research Database (Denmark)

    Pedersen, Jens; B. Pedersen, Nis; Brix, Sophie W.

    2015-01-01

    fibrillary acidic protein in these isolated tissue fractions was quantified with qRT-PCR. Expression of the Glp2r was confined to compartments containing enteric neurons and receptor expression was absent in the epithelium. Our findings provide evidence for the expression of the GLP-2R in intestinal...... compartments rich in enteric neurons and, importantly they exclude significant expression in the epithelium of rat jejunal mucosa....

  19. Comparison of the effects of an ornithine decarboxylase inhibitor on the intestinal epithelium and on intestinal tumors.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-12-01

    Ornithine decarboxylase (ODC) catalyzes the rate-limiting step in the synthesis of polyamines, it has a short half-life, and its synthesis is under hormonal control. Recently, insight into the role of ODC and thus into the physiology of polyamines has been gained by the use of an inhibitor of ODC, difluoromethylornithine (DFMO). In the present report cell proliferation was measured by a stathmokinetic method in the crypt epithelium of the jejunum and colon of normal rats and in dimethylhydrazine-induced colonic tumors. Growth of human colon tumor xenografts in immunosuppressed mice and mouse colon tumor isografts was also assessed. Cell proliferation in primary colonic tumors was substantially suppressed by a single dose of DFMO at 100 mg/kg whereas the normal crypt epithelium of the small and large intestine required two doses at 400 mg/kg to produce a similar magnitude of inhibition of cell proliferation. DFMO was also found to suppress cell proliferation in, and the growth of, the transplantable colon cancers. Because of the apparent selectivity of the antimitotic activity of DFMO towards tumors, ODC inhibitors may prove to be useful anticancer drugs.

  20. Wnt control of stem cells and differentiation in the intestinal epithelium

    International Nuclear Information System (INIS)

    Pinto, Daniel; Clevers, Hans

    2005-01-01

    The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/β-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/β-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas

  1. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Science.gov (United States)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  2. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium

    NARCIS (Netherlands)

    Gerbe, F.; van Es, J.H.; Makrini, L.; Brulin, B.; Mellitzer, G.; Robine, S.; Romagnolo, B.; Shroyer, N.F.; Bourgaux, J.F.; Pignodel, C.; Clevers, H.; Jay, P.

    2011-01-01

    The unique morphology of tuft cells was first revealed by electron microscopy analyses in several endoderm-derived epithelia. Here, we explore the relationship of these cells with the other cell types of the intestinal epithelium and describe the first marker signature allowing their unambiguous

  3. Roles of the cytoskeleton and of Protein Phosphorylation Events in the Osmotic Stress Response in EEL Intestinal Epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Pedersen, Stine F; Hoffmann, Else K

    2002-01-01

    The eel intestinal epithelium responds to an acute hypertonic challenge by a biphasic increase of the rate of Cl(-) absorption (measured as short circuit current, Isc, and creating a negative transepithelial potential, V(te), at the basolateral side of the epithelium). While the first, transient...... phase is bumetanide-insensitive, the second, sustained phase is bumetanide-sensitive, reflecting activation of the apically located Na(+)-K(+)-2Cl(-) (NKCC) cotransporter, which correlates with the cellular RVI response. Here, we investigated the involvement of the cytoskeleton and of serine....../threonine phosphorylation events in the osmotic stress-induced ion transport in the eel intestinal epithelium, focusing on the sustained RVI phase, as well as on the previously uncharacterized response to hypotonic stress. The study was carried out using confocal laser scanning microscopy, a quantitative F-actin assay...

  4. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Science.gov (United States)

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  5. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  6. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    Science.gov (United States)

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  7. Radiosensitivity of mice of different lines and age as determinated with reference to ''intestinal'' death and DNA repair in intestinal epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Konoplyannikova, O.A.; Sklobovskaya, M.V.; Konoplyannikov, A.G.; Saenko, A.S. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the influence of strain- and age-related differences on mouse mortality after irradiation with doses lying within the ''intestinal'' dose range, and also damages to stem cells of intestinal epithelium and induction and repair of single-strand DNA breaks in intestinal epitherium cells. Mice of different lines and age vary in LDsub(50/4) and stem cell radiosensitivity. There are no differences in the sedimentation constants of DNA fragments in alkaline lysates of intestinal crypts of intact mice of different age. Radiosensitivity determined with reference to single-strand breaks induction in DNA is similar with different mouse groups. Repair of single-strand DNA breaks of elderly mice is slower than that of young animals.

  8. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  9. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  10. Serosal Zn2+ inhibits 8-Br-cAMP stimulated chloride secretion in piglet small intestinal epithelium in vitro

    DEFF Research Database (Denmark)

    Carlson, Dorthe; Sehested, Jakob; Poulsen, Hanne Damgaard

    2010-01-01

    . Piglets (n = 24) were weaned at 28 days of age and allocated at two dietary treatments (ZnO0 and ZnO2500) and at 5-6 days after weaning the piglets were slaughtered and small intestinal epithelium from each piglet was mounted into 8 Ussing chambers. The effect of 23 μM serosal Zn2+ on 8-Br-cAMP (8...

  11. Histological studies on the regeneration of small-intestine epithelium of rats irradiated with sublethal doses of x rays

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Z; Figurski, R; Sulikowska, A

    1975-01-01

    The dynamics of regeneration of small-intestine epithelium was studied in rats irradiated with x rays in sublethal doses of 550, 600, or 750 R. Sixty-two irradiated and 22 control animals were used in the experiment. They were killed 1, 2, 4, 6, 8, 14, and 25 days after the irradiation. Specimens of duodenum and jejunum were examined histologically, the sections being stained with H. E. and p.a.S. Already 1 and 2 days after irradiation the intestinal villi became shorter and deformed. The blood vessels were damaged, the enterocytes showed features of degeneration and vacuolization, the epithelium was detached by the exudate which accumulated in the strong. Irradiation markedly disturbed the regeneration of intestinal epithelium in the period from the 1st to the 6th day. Cytological calculations indicate tha on the 1st and 2nd days after irradiation the number of epithelial cells of the villi, and particularly of young cryptal ones, markedly dropped. On the 4th and 6th days increased proliferation of young cryptal cells considerably surpassed the physiological rate. The accompanying disturbances in differentiation consisted in a decreased acidophilic to basophilic cells ration and in retardation of maturation of goblet cells. The absolute number of goblet cells was increased, as well as their proportion to the number of enterocytes.

  12. Radiosensitivity of mice of different lines and age as determinated with reference to ''intestinal'' death and DNA repair in intestinal epithelium cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.; Sklobovskaya, M.V.; Konoplyannikov, A.G.; Saenko, A.S.

    1982-01-01

    A study was made of the influence of strain- and age-related differences on mouse mortality after irradiation with doses lying within the ''intest+nal'' dose range, and also damages to stem cells of intestinal epithelium and induction and repair of single-strand DNA breaks in intestinal epitherium cells. Mice of different lines and age vary in LDsub(50/4) and stem cell radiosensitivity. There are no differences in the sedimentation constants of DNA fragments in alkaline lysates of intestinal crypts of intact mice of different age. Radiosensitivity determined with reference to single-strand breaks induction in DNA is similar with different mo use groups. Repair of single-strand DNA breaks of eldery mice is slower than that of young animals

  13. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery

    DEFF Research Database (Denmark)

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei

    2018-01-01

    , especially to avoid lysosomal degradation, and basolateral release. Here, the functional material, deoxycholic acid-conjugated chitosan, is synthesized and loaded with the model protein drug insulin into deoxycholic acid-modified nanoparticles (DNPs). The DNPs designed in this study are demonstrated......Oral absorption of protein/peptide-loaded nanoparticles is often limited by multiple barriers of the intestinal epithelium. In addition to mucus translocation and apical endocytosis, highly efficient transepithelial absorption of nanoparticles requires successful intracellular trafficking...... to endolysosomal escape of DNPs. Additionally, DNPs can interact with a cytosolic ileal bile acid-binding protein that facilitates the intracellular trafficking and basolateral release of insulin. In rats, intravital two-photon microscopy also reveals that the transport of DNPs into the intestinal villi...

  14. The impact of non-steroidal anti-inflammatory drugs on the small intestinal epithelium

    OpenAIRE

    Handa, Osamu; Naito, Yuji; Fukui, Akifumi; Omatsu, Tatsushi; Yoshikawa, Toshikazu

    2013-01-01

    The small intestine has been called as a dark continent of digestive tract and it had been very difficult to diagnose or treat the disease of small intestine. However recent technological development including video capsule endoscopy or balloon-assisted endoscopy has made us to aware the various diseases of small intestine. By using capsule endoscopy, many researchers reported that more than 70% of patients treated continuously with non-steroidal anti-inflammatory drugs (NSAID) exhibit the mu...

  15. Organ Culture as a Model System for Studies on Enterotoxin Interactions with the Intestinal Epithelium

    DEFF Research Database (Denmark)

    Lorenzen, Ulver Spangsberg; Hansen, Gert H; Danielsen, E Michael

    2015-01-01

    Studies on bacterial enterotoxin-epithelium interactions require model systems capable of mimicking the events occurring at the molecular and cellular levels during intoxication. In this chapter, we describe organ culture as an often neglected alternative to whole-animal experiments or enterocyte......-like cell lines. Like cell culture, organ culture is versatile and suitable for studying rapidly occurring events, such as enterotoxin binding and uptake. In addition, it is advantageous in offering an epithelium with more authentic permeability/barrier properties than any cell line, as well...

  16. Impaired Growth of Small Intestinal Epithelium by Adrenalectomy in Weaning Rats

    International Nuclear Information System (INIS)

    Miyata, Tohru; Minai, Yuji; Haga, Minoru

    2008-01-01

    Functional maturation of the small intestine occurs during the weaning period in rats. It is known that this development is facilitated by glucocorticoid. However, the effect of glucocorticoid on morphological development of small intestine has yet to be clarified. The present study evaluated the morphological development and cell proliferation of the small intestine in adrenalectomized (ADX) rat pups. To further understand the mechanism of glucocorticoid effects on intestinal development, we examined the localization of the glucocorticoid receptor in the small intestine. Microscopic analysis showed that growth of villi and crypts is age-dependent, and is significantly attenuated in ADX rats compared with sham-operated rats. BrdU-positive cells, i.e. proliferating cells, were primarily observed in crypt compartments and rapidly increased in number during the early weaning period. The increase in BrdU-positive cells could be attenuated by adrenalectomy. The morphological development of small intestine may be associated with increased proliferation of epithelial cells. On the other hand, glucocorticoid receptors were found in epithelial cells of the mid- and lower villi and not in crypts where BrdU-positive cells were localized. These results indicate that the growth of small intestine is attenuated by adrenalectomy, and that glucocorticoid indirectly acts on proliferation of epithelial cells during the weaning period

  17. Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient Zebrafish

    NARCIS (Netherlands)

    de Jong-Curtain, Tanya A.; Parslow, Adam C.; Trotter, Andrew J.; Hall, Nathan E.; Verkade, Heather; Tabone, Tania; Christie, Elizabeth L.; Crowhurst, Meredith O.; Layton, Judith E.; Shepherd, Iain T.; Nixon, Susan J.; Parton, Robert G.; Zon, Leonard I.; Stainier, Didier Y. R.; Lieschke, Graham J.; Heath, Joan K.

    Background & Aims: Zebrafish mutants generated by ethylnitrosourea-mutagenesis provide a powerful toot for dissecting the genetic regulation of developmental processes, including organogenesis. One zebrafish mutant, "flotte lotte" (flo), displays striking defects in intestinal, liver, pancreas, and

  18. Multi-level interactions between the nuclear receptor TRα1 and the WNT effectors β-catenin/Tcf4 in the intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Maria Sirakov

    Full Text Available Intestinal homeostasis results from complex cross-regulation of signaling pathways; their alteration induces intestinal tumorigenesis. Previously, we found that the thyroid hormone nuclear receptor TRα1 activates and synergizes with the WNT pathway, inducing crypt cell proliferation and promoting tumorigenesis. Here, we investigated the mechanisms and implications of the cross-regulation between these two pathways in gut tumorigenesis in vivo and in vitro. We analyzed TRα1 and WNT target gene expression in healthy mucosae and tumors from mice overexpressing TRα1 in the intestinal epithelium in a WNT-activated genetic background (vil-TRα1/Apc mice. Interestingly, increased levels of β-catenin/Tcf4 complex in tumors from vil-TRα1/Apc mice blocked TRα1 transcriptional activity. This observation was confirmed in Caco2 cells, in which TRα1 functionality on a luciferase reporter-assay was reduced by the overexpression of β-catenin/Tcf4. Moreover, TRα1 physically interacted with β-catenin/Tcf4 in the nuclei of these cells. Using molecular approaches, we demonstrated that the binding of TRα1 to its DNA target sequences within the tumors was impaired, while it was newly recruited to WNT target genes. In conclusion, our observations strongly suggest that increased β-catenin/Tcf4 levels i correlated with reduced TRα1 transcriptional activity on its target genes and, ii were likely responsible for the shift of TRα1 binding on WNT targets. Together, these data suggest a novel mechanism for the tumor-promoting activity of the TRα1 nuclear receptor.

  19. Intestinal cholesterol secretion: future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  20. Intestinal cholesterol secretion : future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  1. Effect of an inhibitor of noradrenaline uptake, desipramine, on cell proliferation in the intestinal crypt epithelium.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1989-01-01

    The intestinal mucosa receives an adrenergic innervation for which there is no commonly accepted function. However, in recent years, cell kinetic studies have raised the possibility that this innervation may be an important regulator of crypt cell proliferation. The effects of noradrenaline released from adrenergic nerves is terminated principally by re-uptake of the amine into the nerve and this process can be inhibited by the antidepressant drug, desipramine. In this report desipramine is shown to accelerate crypt cell proliferation in intact, but not in chemically sympathectomized rats, thus adding support to the notion that regulation of crypt cell division is an important function of the sympathetic nervous system.

  2. Studies on the age-dependent proliferation kinetics of the epithelium of the rat small intestine

    International Nuclear Information System (INIS)

    Kranz, D.; Dietze, F.; Laue, R.; Fuhrmann, I.

    1980-01-01

    The small intestine of 244 Wistar rats, aged 6 days, 6 weeks, 6, 12, 23, and 28 months, respectively. were investigated autoradiographically as to their age-dependent cell proliferation kinetics of the mucosal epithelial cells. There were age-dependent differences concerning the hourly regeneration ratio of the crypt cells and the migration velocity of the enterocytes. Both parameters became greater while the existing non growth fraction became smaller with increasing age. The non growth fraction seems to be a reserve being involved into the proliferating pool if required

  3. Intestinal Failure: New Definition and Clinical Implications.

    Science.gov (United States)

    Kappus, Matthew; Diamond, Sarah; Hurt, Ryan T; Martindale, Robert

    2016-09-01

    Intestinal failure (IF) is a state in which the nutritional demands of the body are not met by the gastrointestinal absorptive surface. It is a long-recognized complication associated with short bowel syndrome, which results in malabsorption after significant resection of the intestine for many reasons or functional dysmotility. Etiologies have included Crohn's disease, vascular complications, and the effects of radiation enteritis, as well as the effects of intestinal obstruction, dysmotility, or congenital defects. While IF has been long-recognized, it has historically not been uniformly defined, which has made both recognition and management challenging. This review examines the previous definitions of IF as well as the newer definition and classification of IF and how it is essential to IF clinical guidelines.

  4. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been...

  5. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krûger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell- or tissue-type. Novel methods including ChIP-chip and ChIP-Seq have...

  6. Cloning of radiation-induced new gene RS1 expressed in mouse intestinal epithelium by enhanced RACE

    International Nuclear Information System (INIS)

    Wang Fengchao; Wang Junping; Su Yongping; Gao Jinsheng; Lou Shufen; Liu Xiaohong; Ren Jiong; Zhang Bo

    2003-01-01

    Objective: To obtain full-length cDNA of radiation-induced new gene RS1 expressed in mouse intestinal epithelium. Methods: The tissue expression profile of RS1 was analyzed by semi-quantitative RT-PCR to find the target tissue which highly expresses RS1. The total RNA extracted from the corresponding tissue was taken as the template for reverse-transcription. Enhanced RACE PCR was used to clone the full-length cDNA of RS1, including enrichment of the target gene through biotin-labeled probe for magnetic bead purification and nested PCR. Results: About a 2 kb long 3' end was successfully cloned and cloning of the 5' end proceeded well. Conclusion: The result is consistent with our experiment design. The set of combined techniques has been identified with the cloning of full-length cDNA from EST sequence especially when the optimal gene-specific primers are not available or the expression level of target gene is low

  7. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium.

    Science.gov (United States)

    Iacomino, Giuseppe; Di Stasio, Luigia; Fierro, Olga; Picariello, Gianluca; Venezia, Antonella; Gazza, Laura; Ferranti, Pasquale; Mamone, Gianfranco

    2016-12-01

    A growing interest in developing new strategies for preventing coeliac disease has motivated efforts to identify cereals with null or reduced toxicity. In the current study, we investigate the biological effects of ID331 Triticum monococcum gliadin-derived peptides in human Caco-2 intestinal epithelial cells. Triticum aestivum gliadin derived peptides were employed as a positive control. The effects on epithelial permeability, zonulin release, viability, and cytoskeleton reorganization were investigated. Our findings confirmed that ID331 gliadin did not enhance permeability and did not induce zonulin release, cytotoxicity or cytoskeleton reorganization of Caco-2 cell monolayers. We also demonstrated that ID331 ω-gliadin and its derived peptide ω(105-123) exerted a protective action, mitigating the injury of Triticum aestivum gliadin on cell viability and cytoskeleton reorganization. These results may represent a new opportunity for the future development of innovative strategies to reduce gluten toxicity in the diet of patients with gluten intolerance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic...... and predictive significance in CRC patients. This review provides an overview of the intestinal stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), B cell–specific Moloney murine leukemia virus insertion site 1 (BMI1), Musashi1 (MSI1), and sex-determining region y-box 9 (SOX9......) and their implications in human CRC. The exact roles of the intestinal stem cell markers in CRC development and progression remain unclear; however, high expression of these stem cell markers have a potential prognostic significance and might be implicated in chemotherapy resistance...

  9. Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium.

    Science.gov (United States)

    Jabaji, Ziyad; Sears, Connie M; Brinkley, Garrett J; Lei, Nan Ye; Joshi, Vaidehi S; Wang, Jiafang; Lewis, Michael; Stelzner, Matthias; Martín, Martín G; Dunn, James C Y

    2013-12-01

    Methods for the in vitro culture of primary small intestinal epithelium have improved greatly in recent years. A critical barrier for the translation of this methodology to the patient's bedside is the ability to grow intestinal stem cells using a well-defined extracellular matrix. Current methods rely on the use of Matrigel(™), a proprietary basement membrane-enriched extracellular matrix gel produced in mice that is not approved for clinical use. We demonstrate for the first time the capacity to support the long-term in vitro growth of murine intestinal epithelium in monoculture, using type I collagen. We further demonstrate successful in vivo engraftment of enteroids co-cultured with intestinal subepithelial myofibroblasts in collagen gel. Small intestinal crypts were isolated from 6 to 10 week old transgenic enhanced green fluorescent protein (eGFP+) mice and suspended within either Matrigel or collagen gel; cultures were supported using previously reported media and growth factors. After 1 week, cultures were either lysed for DNA or RNA extraction or were implanted subcutaneously in syngeneic host mice. Quantitative real-time polymerase chain reaction (qPCR) was performed to determine expansion of the transgenic eGFP-DNA and to determine the mRNA gene expression profile. Immunohistochemistry was performed on in vitro cultures and recovered in vivo explants. Small intestinal crypts reliably expanded to form enteroids in either Matrigel or collagen in both mono- and co-cultures as confirmed by microscopy and eGFP-DNA qPCR quantification. Collagen-based cultures yielded a distinct morphology with smooth enteroids and epithelial monolayer growth at the gel surface; both enteroid and monolayer cells demonstrated reactivity to Cdx2, E-cadherin, CD10, Periodic Acid-Schiff, and lysozyme. Collagen-based enteroids were successfully subcultured in vitro, whereas pure monolayer epithelial sheets did not survive passaging. Reverse transcriptase-polymerase chain reaction

  10. Binding and movement of silver in the intestinal epithelium of a marine teleost fish, the European flounder (Platichthys flesus)

    DEFF Research Database (Denmark)

    Hogstrand, C.; Wood, C. M.; Bury, N.R.

    2002-01-01

    The intestine has been indicated as a site of waterborne silver toxicity in marine fish and chronic effects at the intestine have been observed at concentrations far below acutely toxic level. Thus, models of silver toxicity to marine fish need to consider the intestine as a biotic ligand....... The present study characterises binding of silver to the intestine of the European flounder (Platichthys flesus). Everted intestinal sacks were prepared and submersed in a solution mimicking the intestinal fluid of the fish at the acclimation salinity (21‰). Silver was added as 110mAgNO3 or 110mAgNO3/AgNO3...... mixtures at concentrations ranging from 1.6 to 950 nM total silver. Appearance of 110mAg was analysed in mucosal scrapings, muscle layers, and in the plasma saline on the serosal side of the intestine. The latter represented uptake into blood and other extra-intestinal compartments. Mucosal scrapings...

  11. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21

    Directory of Open Access Journals (Sweden)

    Schneider Yves-Jacques

    2006-05-01

    Full Text Available Abstract Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules.

  12. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21)

    Science.gov (United States)

    Nollevaux, Géraldine; Devillé, Christelle; El Moualij, Benaïssa; Zorzi, Willy; Deloyer, Patricia; Schneider, Yves-Jacques; Peulen, Olivier; Dandrifosse, Guy

    2006-01-01

    Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium) did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules. PMID:16670004

  13. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  14. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Andresen, Lars; Matthiessen, M W

    2005-01-01

    Recognition of repeat CpG motifs, which are common in bacterial, but not in mammalian, DNA, through Toll-like receptor (TLR)9 is an integral part of the innate immune system. As the role of TLR9 in the human gut is unknown, we determined the spectrum of TLR9 expression in normal and inflamed colo...... in vitro despite spontaneous TLR9 gene expression. This suggests that the human epithelium is able to avoid inappropriate immune responses to luminal bacterial products through modulation of the TLR9 pathway....

  15. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... was to investigate the functional and molecular expression of BK in the eel intestine, which is a useful experimental model for cell volume regulation research. In the present paper using rat BK channel-specific primer, a RT-PCR signal of 696 pb cDNA was detected in eel intestine, whole nucleotide sequence showed...... high similarity (83%) to the alpha subunit of BK channel family. BK channel protein expression was verified by immunoblotting and confocal microscopy, while the functional role of BK channels in epithelial ion transport mechanisms and cell volume regulation was examined by electrophysiological...

  16. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea.

    Science.gov (United States)

    Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing

    2018-02-01

    Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.

  17. Review: Exogenous butyrate: implications for the functional development of ruminal epithelium and calf performance.

    Science.gov (United States)

    Niwińska, B; Hanczakowska, E; Arciszewski, M B; Klebaniuk, R

    2017-09-01

    The importance of the use of exogenous butyrate in calves' diets is due to its role as a factor stimulating the functional development of ruminal epithelium and improving calf performance during the transition from preruminant to ruminant status. Our review will first present results related to effects of the administration of butyrate in calves' diets on the development of ruminal epithelium toward a more effective absorption and metabolism of fermentation products from the rumen. The introduction of sodium butyrate at a level of about 0.3% of diet dry matter is accompanied by an increase to 35% in butyrate concentration in the rumen of 33-day-old calves. Mutual reliance between an enhanced ruminal concentration of butyrate and the activities of transcription factors, genes and proteins involved in cell proliferation, ketogenesis and the maintenance of cell pH homeostasis in the ruminal epithelial cells has been clearly confirmed in many experiments. Second, the review presents results related to the effects of the introduction of butyrate salts in the diet on calf performance. Of 11 studies a positive effect was found in six; five of these were obtained from the calves that started receiving butyrate supplement at a level of about 0.3% diet dry matter from the age of 3 to 5 days. Results indicate that when a supplement is given to calves soon after birth the functional development of ruminal epithelium in cooperation with the endocrine and digestion systems is transferred into improving the efficiency of rearing. There have been no studies on the effects of greater amounts of butyrate salts in milk replacer; butyrate constitutes about 1.2% of the whole cow's milk dry matter. In older calves, when butyrate administration is provided as a component of a starter concentrate at the increasing inclusion rate from 0.3% to 3.0%, the practical effect in calf performance relates to the risk of depression of rumen pH below 5.5 and accompanying disruption of the

  18. Interaction of PHM, PHI and 24-glutamine PHI with human VIP receptors from colonic epithelium: comparison with rat intestinal receptors

    International Nuclear Information System (INIS)

    Laburthe, M.; Couvineau, A.; Rouyer-Fessard, C.; Moroder, L.

    1985-01-01

    PHM, the human counterpart of porcine Peptide Histidine Isoleucine amide (PHI), is shown to be a VIP agonist with low potency on human VIP receptors located in colonic epithelial cell membranes. Its potency is identical to that of PHI but by 3 orders of magnitude lower than that of VIP itself in inhibiting 125 I-VIP binding and in stimulating adenylate cyclase activity. This contrasts markedly with the behavior of PHI on rat VIP receptors located in intestinal epithelial cell membranes where PHI is a potent agonist with a potency that is 1/5 that of VIP. In another connection, the authors show that 24-glutamine PHI has the same affinity as 24-glutamic acid PHI (the natural peptide) for rat or human VIP receptors. These results indicate that while PHI may exert some physiological function through its interaction with VIP receptors in rodents, its human counterpart PHM is a very poor agonist of VIP in human. Furthermore, they show that the drastic change in position 24 of PHI (neutral versus acid residue) does not affect the activity of PHI, at least on VIP receptors. 21 references, 1 figure

  19. Bilateral lesions of suprachiasmatic nuclei affect circadian rhythms in [3H]-thymidine incorporation into deoxyribonucleic acid in mouse intestinal tract, mitotic index of corneal epithelium, and serum corticosterone

    International Nuclear Information System (INIS)

    Scheving, L.E.; Tsai, T.H.; Powell, E.W.; Pasley, J.N.; Halberg, F.; Dunn, J.

    1983-01-01

    Investigations into the role of the suprachiasmatic nuclei (SCN) in the coordination of circadian rhythms have presented differing results. Several reports have shown that ablation of the suprachiasmatic nuclei (SCNA) alters the phase and amplitude of rhythms but does not abolish them. The present study investigates the effect of SCNA on the rhythms in cell proliferation in various regions of the intestinal tract as measured by the incorporation of [ 3 H]-thymidine into deoxyribonucleic acid, in the mitotic activity of the corneal epithelium, and in serum corticosterone levels. The study involved mice with verified lesions of the SCN (six to 13 mice per time point) and control groups of both sham-operated and unoperated mice (seven of each per time point). The mice were killed in groups that represented seven time points over a single 24 hr span (3 hr intervals with the 0800 hr sampled both at start and end of the series). The tissues examined were the tongue, esophagus, gastric stomach, and colon for DNA synthesis, the corneal epithelium for mitotic index, and blood serum for corticosterone level. The most consistent result of SCNA was a phase advance in the rhythms in cell proliferation in the tongue, esophagus, gastric stomach, colon, and corneal epithelium. A reduction in rhythm amplitude occurred in the tongue, esophagus, and corneal epithelium; however, there was an amplitude increase for the stomach, colon, and serum corticosterone. The mesor (rhythm-adjusted mean) was increased by SCNA in all tissues except the corneal epithelium. These findings further support the role of the suprachiasmatic nuclear area in the control of rhythms in cell proliferation and corticosterone production, by acting as a ''phase-resetter'' and as a modulator of rhythm amplitude

  20. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Directory of Open Access Journals (Sweden)

    Oh-oka Kyoko

    Full Text Available BACKGROUND & AIMS: The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. METHODS: The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m. In addition, the susceptibility to dextran sodium sulfate (DSS-induced colitis was compared between wild-type mice and mPer2(m/m mice. RESULTS: The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m mice. mPer2(m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. CONCLUSIONS: Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  1. Bidirectional Signaling of Mammary Epithelium and Stroma: Implications for Breast Cancer—Preventive Actions of Dietary Factors

    Science.gov (United States)

    The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation, and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells, and adipocytes that c...

  2. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, A.; Gorgels, T.G.M.F.; ten Brink, J.B.; van der Spek, P.J.; Bossers, K.; Heine, V.M.; Bergen, A.A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  3. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles : Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G M F; Ten Brink, Jacoline B; van der Spek, Peter J; Bossers, Koen; Heine, Vivi M; Bergen, Arthur A

    2015-01-01

    BACKGROUND: The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  4. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new

  5. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications.

    Science.gov (United States)

    Rokhsefat, Sana; Lin, Aifeng; Comelli, Elena M

    2016-06-01

    The mucus layer and gut microbiota interplay contributes to host homeostasis. The mucus layer serves as a scaffold and a carbon source for gut microorganisms; conversely, gut microorganisms, including mucin degraders, influence mucin gene expression, glycosylation, and secretion. Conjointly they shield the epithelium from luminal pathogens, antigens, and toxins. Importantly, the mucus layer and gut microbiota are established in parallel during early postnatal life. During this period, the development of gut microbiota and mucus layer is coupled with that of the immune system. Developmental changes of different mucin types can impact the age-dependent patterns of intestinal infection in terms of incidence and severity. Altered mucus layer, dysbiotic microbiota, and abnormal mucus-gut microbiota interaction have the potential for inducing systemic effects, and accompany several intestinal diseases such as inflammatory bowel disease, colorectal cancer, and radiation-induced mucositis. Early life provides a pivotal window of opportunity to favorably modulate the mucus-microbiota interaction. The support of a health-compatible mucin-microbiota maturation in early life is paramount for long-term health and serves as an important opportunity for clinical intervention.

  6. Progenitor Epithelium

    Science.gov (United States)

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  7. Cranberry extract inhibits in vitro adhesion of F4 and F18+Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18+ verotoxigenic E. coli.

    Science.gov (United States)

    Coddens, Annelies; Loos, Michaela; Vanrompay, Daisy; Remon, Jean Paul; Cox, Eric

    2017-04-01

    F4 + E. coli and F18 + E. coli infections are an important threat for pig industry worldwide. Antibiotics are commonly used to treat infected piglets, but the emerging development of resistance against antibiotics raises major concerns. Hence, alternative therapies to prevent pigs from F4 + E. coli and F18 + E. coli infections need to be developed. Since cranberry previously showed anti-adhesive activity against uropathogenic E. coli, we aimed to investigate whether cranberry extract could also inhibit binding of F4 + E. coli and F18 + E. coli to pig intestinal epithelium. Using the in vitro villus adhesion assay, we found that low concentrations of cranberry extract (20μg or 100μg/ml) have strong inhibitory activity on F4 + E. coli (75.3%, S.D.=9.31 or 95.8%, S.D.=2.56, respectively) and F18 + E. coli adherence (100% inhibition). This effect was not due to antimicrobial activity. Moreover, cranberry extract (10mg or 100mg) could also abolish in vivo binding of F4 and F18 fimbriae to the pig intestinal epithelium in ligated loop experiments. Finally, two challenge experiments with F18 + E. coli were performed to address the efficacy of in-feed or water supplemented cranberry extract. No effect could be observed in piglets that received cranberry extract only in feed (1g/kg or 10g/kg). However, supplementation of feed (10g/kg) and drinking water (1g/L) significantly decreased excretion and diarrhea. The decreased infection resulted in a decreased serum antibody response indicating reduced exposure to F18 + E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.

    Science.gov (United States)

    Motoya, Tomoyuki; Ogawa, Noriko; Nitta, Tetsuya; Rafiq, Ashiq Mahmood; Jahan, Esrat; Furuya, Motohide; Matsumoto, Akihiro; Udagawa, Jun; Otani, Hiroki

    2016-05-01

    Interkinetic nuclear migration (INM) is a phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium, which is characterized by the presence of apical primary cilia, in synchrony with the cell cycle in a manner of apical mitosis. INM is suggested to regulate not only stem/progenitor cell proliferation/differentiation but also organ size and shape. INM has been reported in epithelia of both ectoderm and endoderm origin. We examined whether INM exists in the mesoderm-derived ureteric epithelium. At embryonic day (E) 11.5, E12.5 and E13.5, C57BL/6J mouse dams were injected with 5-bromo-2'-deoxyuridine (BrdU) and embryos were killed 1, 2, 4, 6, 8, 10 and 12 h later. We immunostained transverse sections of the ureter for BrdU, and measured the position of BrdU (+) nuclei in the ureteric epithelia along the apico-basal axis at each time point. We analyzed the distribution patterns of BrdU (+) nuclei in histograms using the multidimensional scaling. Changes in the nucleus distribution patterns suggested nucleus movement characteristic of INM in the ureteric epithelia, and the mode of INM varied throughout the ureter development. While apical primary cilia are related with INM by providing a centrosome for the apical mitosis, congenital anomalies of the kidney and urinary tract (CAKUT) include syndromes linked to primary ciliary dysfunction affecting epithelial tubular organs such as kidney, ureter, and brain. The present study showed that INM exists in the ureteric epithelium and suggests that INM may be related with the CAKUT etiology via primary ciliary protein function. © 2015 Japanese Teratology Society.

  9. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Antoine Soliman

    Full Text Available Necrotizing enterocolitis (NEC is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF, bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line. PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.

  10. Influence of ionizing radiation, photoperiod, and environmental temperature on cell proliferation in the intestinal epithelium of the rough-skinned newt (Taricha granulosa)

    International Nuclear Information System (INIS)

    Filipy, R.E.

    1977-01-01

    Kinetics of cell division in the intestinal epithelial proliferative cells (cell nests) of the rough-skinned newt, Taricha granulosa, were studied using tritiated thymidine autoradiography and the mitotic arresting properties of colcemid. Percent labeled mitoses (PLM) curves were drawn from the autoradiographic data from two separate experiments in which the newts were maintained at room temperature (22 to 23 0 C). In those experiments, groups of newts were intraperitoneally injected with tritiated thymidine at times ranging between 5 and 58 hours before they were killed. Each newt in both experiments was intraperitoneally injected with colcemid five hours before it was killed. Data from both experiments were very similar and the PLM curves were used to estimate cell cycle phase durations in the cell nests. The DNA synthetic phase was estimated to be 41 hours long and the sum of the G 2 phase duration and one-half the duration of mitosis was approximately seven hours. The duration of the entire cell cycle was considered to be longer than 100 hours and the duration of the G 1 phase longer than 50 hours. Whole-body exposure of newts to 100 R x irradiation essentially stopped mitotic activity in the intestinal cell nests for 32 hours and exposure to 200 R stopped the mitotic activity for 56 hours. Recovery of mitotic activity in the cell nests was in evidence in data from both groups of animals after both those time periods. Whole-body exposure of newts to 1000 R x irradiation severely depressed mitotic activity in the intestinal cell nests for at least 78 hours and resulted in diminished numbers of the cell nests although the mature cells of the intestinal cells appeared to be relatively radioresistant

  11. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5.

    Science.gov (United States)

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-05-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  12. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Patricia Cuellar

    2017-08-01

    Full Text Available During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs reflected by transepithelial electrical resistance (TEER dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112 on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.

  13. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  14. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    Science.gov (United States)

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  15. Reparo de esôfago cervical de cães com segmento intestinal livre autólogo desprovido de epitélio e de lâmina própria da túnica mucosa Canine cervical esophagus repair using of free autograft intestinal segment without epithelium and lamina propria of the mucosa

    Directory of Open Access Journals (Sweden)

    Patrícia Maria Coletto Freitas

    2002-06-01

    Full Text Available Doze cães foram separados em dois grupos de igual número e submetidos à remoção de um retalho de 3,0 x 3,5cm do esôfago cervical. A abertura foi ocluída com enxerto de segmento intestinal livre autólogo desprovido de epitélio e lâmina própria da túnica mucosa, com pontos simples separados por fio poliglactina 910. Os animais do grupo 1 foram observados durante 15 dias de pós-operatório, e os do grupo 2, durante 30 dias. Observou-se epitelização e discreta estenose no local do enxerto com invasão de tecido conjuntivo denso rico em fibras colágenas. O enxerto de segmento intestinal livre autólogo foi eficiente no reparo de rupturas do esôfago cervical de cães.Twelve dogs were allocated in two groups with same number of animals and submitted to removal of a 3.0 x 3.5cm piece of the cervical esophagus. The incision was occluded with a autograft of free intestinal segment without epithelium and lamina propria of the mucosa, with separate simples points using poliglactina 910 line. Animals of the group 1 were observed for 15 days post-surgery, and the animals from group 2, for 30 days. Epithelization and discreet stenosis in the place of the graft with invasion of dense conjunctive tissue, rich in collagen fibers was noticed. The autograft free intestinal segment was efficient in the repair of ruptures in the cervical segment of the canine esophagous.

  16. Morphological and Functional Characterization of IL-12Rβ2 Chain on Intestinal Epithelial Cells: Implications for Local and Systemic Immunoregulation.

    Science.gov (United States)

    Regoli, Mari; Man, Angela; Gicheva, Nadhezda; Dumont, Antonio; Ivory, Kamal; Pacini, Alessandra; Morucci, Gabriele; Branca, Jacopo J V; Lucattelli, Monica; Santosuosso, Ugo; Narbad, Arjan; Gulisano, Massimo; Bertelli, Eugenio; Nicoletti, Claudio

    2018-01-01

    that this event was not directly linked to the IEC-associated IL-12Rβ2 chain. We interpreted these data as showing that IEC-associated IL12Rβ2 is a component of the cytokine network operating at the interface between the intestinal epithelium and immune system that plays a role in immune regulation.

  17. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  18. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  19. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    Science.gov (United States)

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Transport across the choroid plexus epithelium

    DEFF Research Database (Denmark)

    Praetorius, Jeppe; Damkier, Helle Hasager

    2017-01-01

    The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus...... is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature......, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1) the choroid plexus epithelium as the source of mediators necessary for central nervous system...

  1. Hippo signalling directs intestinal fate

    DEFF Research Database (Denmark)

    le Bouteiller, Marie Catherine M; Jensen, Kim Bak

    2015-01-01

    Hippo signalling has been associated with many important tissue functions including the regulation of organ size. In the intestinal epithelium differing functions have been proposed for the effectors of Hippo signalling, YAP and TAZ1. These are now shown to have a dual role in the intestinal...

  2. The mucosal firewalls against commensal intestinal microbes.

    Science.gov (United States)

    Macpherson, Andrew J; Slack, Emma; Geuking, Markus B; McCoy, Kathy D

    2009-07-01

    Mammals coexist with an extremely dense microbiota in the lower intestine. Despite the constant challenge of small numbers of microbes penetrating the intestinal surface epithelium, it is very unusual for these organisms to cause disease. In this review article, we present the different mucosal firewalls that contain and allow mutualism with the intestinal microbiota.

  3. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    International Nuclear Information System (INIS)

    Ikuta, Togo; Kurosumi, Masafumi; Yatsuoka, Toshimasa; Nishimura, Yoji

    2016-01-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc"M"i"n"/"+mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  4. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp [Department of Cancer Prevention, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp [Division of Pathology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Nishimura, Yoji, E-mail: yojinish@cancr-c.pref.saitama.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan)

    2016-05-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  5. GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small IntestineSummary

    Directory of Open Access Journals (Sweden)

    Cayla A. Thompson

    2017-05-01

    Full Text Available Background & Aims: Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4 is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. Methods: To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. Results: We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15, which encodes an enterokine that has been implicated in an increasing number of human diseases. Conclusions: Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4’s function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into

  6. Physiological, Pathological, and Therapeutic Implications of Zonulin-Mediated Intestinal Barrier Modulation

    Science.gov (United States)

    Fasano, Alessio

    2008-01-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields. PMID:18832585

  7. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria

    International Nuclear Information System (INIS)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama; Boyron, Marilyn; Caporiccio, Bertrand; Fantini, Jacques

    2008-01-01

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator of intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1β), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1β on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects

  8. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Postnatal development of intestinal immune system in piglets: implications for the process of weaning

    OpenAIRE

    Stokes , Christopher; Bailey , Michael; Haverson , Karin; Harris , Cecilla; Jones , Philip; Inman , Charlotte; Pié , Sandrine; Oswald , Isabelle; Williams , Barbara; Akkermans , Antoon; Sowa , Eveline; Rothkötter , Hermann-Josef; Miller , Bevis

    2004-01-01

    International audience; European-wide directives are in place to establish a sustainable production of pigs without using production enhancers and chemotherapeutics. Thus, an economically-viable pig production is now only possible when the physiological mechanisms of defense against pathogens and tolerance against nutrients and commensal bacteria in the intestinal immune system are taken into account. During the postnatal period the piglet is facing first the time large amounts of new antigen...

  10. Compartmentalization of Aquaporins in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Rajendram V. Rajnarayanan

    2008-06-01

    Full Text Available Improper localization of water channel proteins called aquaporins (AQP induce mucosal injury which is implicated in Crohn’s disease and ulcerative colitis. The amino acid sequences of AQP3 and AQP10 are 79% similar and belong to the mammalian aquaglyceroporin subfamily. AQP10 is localized on the apical compartment of the intestinal epithelium called the glycocalyx while AQP3 is selectively targeted to the basolateral membrane. Despite the high sequence similarity and evolutionary relatedness, the molecular mechanism involved in the polarity, selective targeting and function of AQP3 and AQP10 in the intestine is largely unknown. Our hypothesis is that the differential polarity and selective targeting of AQP3 and AQP10 in the intestinal epithelial cells is influenced by amino acid signal motifs. We performed sequence and structural alignments to determine differences in signals for localization and posttranslational glycosylation. The basolateral sorting motif “YRLL” is present in AQP3 but absent in AQP10; while Nglycosylation signals are present in AQP10 but absent in AQP3. Furthermore, the C-terminal region of AQP3 is longer compared to AQP10. The sequence and structural differences between AQP3 and AQP10 provide insights into the differential compartmentalization and function of these two aquaporins commonly expressed in human intestines.

  11. Effect of dose rate on intestinal tolerance in mice. Implications in radiotherapy

    International Nuclear Information System (INIS)

    Wambersie, A.; Stienon-Smoes, M.R.; Octave-Prignot, M.

    1978-01-01

    Effect of dose rate on intestinal tolerance after 60 Co irradiation was studied in BALB/c mice. Intestinal tolerance was assessed from LD50, after selective abdominal irradiation and after total body irradiation. Three dose rates were compared, corresponding to irradiation times of about 15-20 minutes ('acute irradiation' taken as reference), 5-6 hours and 10-15 hours. Irradiations were performed simultaneously, with three telecobaltherapy units, the dose rates being adjusted with lead shields and by increasing the distances. Comparison of the experimental data already published indicates that, for some biological systems and effects, additional dose necessary to reach a given effect when passing from 'acute' to 'continuous low dose rate' irradiation is comparable to that expected when considering only repair of sublethal lesions. For other biological systems and effects, it is necessary to consider, besides repair of sublethal lesions, other mechanisms such as cell distribution and, for tumours, the oxygen effect. A differential effect then appears to be possible. However, as far as the clinical applications are concerned, a general agreement is not yet reached on the exact shape of the iso-effect curves as a function of irradiation time for the effects relevant to radiation therapy [fr

  12. Crystalloids versus colloids: implications in fluid therapy of dogs with intestinal obstruction.

    Science.gov (United States)

    Allen, D; Kvietys, P R; Granger, D N

    1986-08-01

    Responses of jejunal transcapillary and transmucosal fluid fluxes to IV infusion of crystalloid or colloid solutions were evaluated in 12 dogs. One isolated intestinal segment in each dog was used as the control segment, and 2 segments were distended to a intraluminal hydrostatic pressure of 10 cm of H2O. The artery supplying 1 of the 2 distended (autoperfused) segments was cannulated and perfused with blood from the femoral artery. One of the 2 distended segments was autoperfused from the femoral artery. Intraluminal pressure was increased in the autoperfused segment and in 1 other segment for three, 20-minute periods after administration of the crystalloid or colloid solution. Net transmucosal fluid flux was estimated, using a volume recovery method. In each autoperfused segment, blood flow, capillary pressure, lymph flow, and plasma protein and lymph protein concentrations were measured during each 20-minute distention period. Systemic arterial pressure was monitored throughout the procedure. Plasma and tissue oncotic pressures were calculated from the plasma protein and lymph protein concentrations. Total vascular resistance and precapillary and postcapillary resistances were determined. Capillary pressure increased after infusion with colloids and crystalloids, with the effects being more prolonged in the colloid group. Plasma oncotic pressure transiently increased after infusion with colloids and decreased after infusion with crystalloids. Lymph flow increased only in crystalloid-treated dogs. Due to alterations in transcapillary fluid filtration, crystalloids induced a net loss of fluid into the intestinal lumen, whereas the fluid absorptive capacity of the jejunum was unaltered by colloid treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Taurine uptake by human retinal pigment epithelium: implications for the transport of small solutes between the choroid and the outer retina.

    Science.gov (United States)

    Hillenkamp, Jost; Hussain, Ali A; Jackson, Timothy L; Cunningham, Joanna R; Marshall, John

    2004-12-01

    To characterize the Michaelis-Menten kinetics of the taurine transporter (TT) in retinal pigment epithelium (RPE) freshly isolated from human donor eyes. To identify the rate limiting compartment in the pathway of taurine delivery from the choroidal blood supply to the outer retina composed by Bruch's-choroid (BC) and the RPE in the human older age group. In human donor samples (4 melanoma-affected eyes, and 14 control eyes; age range, 62-93 years), radiochemical techniques were used to determine the RPE taurine accumulation at various exogenous concentrations. The transport capability of human RPE was obtained from a kinetic analysis of the high-affinity carrier over a substrate concentration of 1 to 60 microM taurine. Uptake of taurine into human RPE at a taurine concentration of 1 microM was independent of donor age (P > 0.05) and averaged at 2.83 +/- 0.27 (SEM) pmol/10 minutes per 6-mm trephine. Taurine transport by human RPE was mediated by a high-affinity carrier of K(m) 50 microM and V(max) of 267 pmol/10 minutes per 5-mm disc. In human donor RPE, uptake of taurine remained viable in the age range 62 to 93 years. Taurine transport rates in the RPE were lower than across the isolated BC complex, and thus the data suggest that the former compartment houses the rate-limiting step in the delivery of taurine to the outer retina.

  14. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  15. Tissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis

    Science.gov (United States)

    Hasebe, Takashi; Fu, Liezhen; Heimeier, Rachel A.; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo

    2013-01-01

    Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells. PMID:23383234

  16. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress

    Science.gov (United States)

    Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki

    2016-01-01

    Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879

  17. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress.

    Directory of Open Access Journals (Sweden)

    Wakana Ohashi

    2016-10-01

    Full Text Available Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders.

  18. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    International Nuclear Information System (INIS)

    Zhang Fengli; Luecke, Christian; Baier, Leslie J.; Sacchettini, James C.; Hamilton, James A.

    1997-01-01

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel β-strands which form two nearly orthogonal β-sheets of five strands each, and two short α-helices that connect the β-strands A and B. The interior of the protein consists of a water-filled cavity between the two β-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand

  19. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  20. Transport across the choroid plexus epithelium.

    Science.gov (United States)

    Praetorius, Jeppe; Damkier, Helle Hasager

    2017-06-01

    The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1 ) the choroid plexus epithelium as the source of mediators necessary for central nervous system development, 2 ) the choroid plexus as a route for microorganisms and immune cells into the central nervous system, and 3 ) the choroid plexus as a potential route for drug delivery into the central nervous system, bypassing the blood-brain barrier. Thus, the purpose of this review is to highlight current active areas of research in the choroid plexus physiology and a few matters of continuous controversy. Copyright © 2017 the American Physiological Society.

  1. Preliminary study of the effects of Okadaic Acid in the intestinal tract of mouse

    Directory of Open Access Journals (Sweden)

    Diego Alberto Fernández

    2014-06-01

    Our results support the little morphological effect of OA on intestinal cells. However, more interdisciplinary research is needed to obtain precise and reliable data to clarify the effects of OA in the intestinal epithelium and its relation with the diarrhea.

  2. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  3. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  4. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications.

    Science.gov (United States)

    Fasano, Alessio

    2012-10-01

    One of the most important and overlooked functions of the gastrointestinal tract is to provide a dynamic barrier to tightly controlled antigen trafficking through both the transcellular and paracellular pathways. Intercellular tight junctions (TJ) are the key structures regulating paracellular trafficking of macromolecules. Although steady progress has been made in understanding TJ ultrastructure, relatively little is known about their pathophysiological regulation. Our discovery of zonulin, the only known physiological modulator of intercellular TJ described so far, increased understanding of the intricate mechanisms that regulate gut permeability and led us to appreciate that its up-regulation in genetically susceptible individuals may lead to immune-mediated diseases. This information has translational implications, because the zonulin pathway is currently exploited to develop both diagnostic and therapeutic applications pertinent to a variety of immune-mediated diseases. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Long-term follow-up of patients on home parenteral nutrition in Europe: implications for intestinal transplantation

    DEFF Research Database (Denmark)

    Pironi, Loris; Joly, Francisca; Forbes, Alastair

    2011-01-01

    The indications for intestinal transplantation (ITx) are still debated. Knowing survival rates and causes of death on home parenteral nutrition (HPN) will improve decisions.......The indications for intestinal transplantation (ITx) are still debated. Knowing survival rates and causes of death on home parenteral nutrition (HPN) will improve decisions....

  6. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    Science.gov (United States)

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 Alpha

  7. A prospective randomized controlled study of erythromycin on gastric and small intestinal distention: Implications for MR enterography

    Energy Technology Data Exchange (ETDEWEB)

    Bharucha, Adil E., E-mail: bharucha.adil@mayo.edu [Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) Program, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Fidler, Jeff L., E-mail: fidler.jeff@mayo.edu [Department of Radiology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Huprich, James E., E-mail: huprich@mayo.edu [Department of Radiology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Ratuapli, Shiva K., E-mail: ratuapli.shiva@mayo.edu [Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) Program, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Holmes, David R., E-mail: holmes.david3@mayo.edu [Biomedical Imaging Resource, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Riederer, Stephen J., E-mail: riederer@mayo.edu [MR Research Laboratory, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Zinsmeister, Alan R., E-mail: zinsmeis@mayo.edu [Division of Biomedical Statistics and Informatics, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States)

    2014-11-15

    Highlights: • Suboptimal small intestinal distention limits jejunal visualization during MRI. • In this controlled study, erythromycin increased gastric emptying measured with MRI. • However, effects on small intestinal dimensions were variable. - Abstract: Objectives: To assess if erythromycin increases gastric emptying and hence improves small intestinal distention during MR enterography. Methods: Gastric, small intestinal, and large intestinal volumes were assessed with MR after neutral oral contrast (1350 ml in 45 min) and balanced randomization to erythromycin (200 mg i.v., age 31 ± 3y, 13 females), or placebo (37 ± 3y, 13 females) in 40 healthy asymptomatic volunteers. Fat-suppressed T2-weighted MR images of the abdomen were acquired on a 1.5 T magnet at standard delay times for enterography. Gastric, small, and large intestinal volumes were measured by specialized software. In addition, two radiologists manually measured diameters and percentage distention of jejunal and ileal loops. Treatment effects were evaluated by an ITT analysis based on ANCOVA models. Results: All subjects tolerated erythromycin. MRI scans of the stomach and intestine were obtained at 62 ± 2 (mean ± SEM) and 74 ± 2 min respectively after starting oral contrast. Gastric volumes were lower (P < 0.0001) after erythromycin (260 ± 49 ml) than placebo (688 ± 63 ml) but jejunal, ileal, and colonic volumes were not significantly different. However, maximum (76–100%) jejunal distention was more frequently observed (P = 0.03) after erythromycin (8/20 subjects [40%]) than placebo (2/20 subjects [10%]). The diameter of a representative ileal loop was greater (P = 0.001) after erythromycin (18.8 ± 4.3 mm) than placebo (17.3 ± 2.8 mm) infusion. Conclusions: After ingestion of oral contrast, erythromycin accelerated gastric emptying but effects on small intestinal dimensions were variable. In balance, erythromycin did not substantially enhance small intestinal distention during

  8. A prospective randomized controlled study of erythromycin on gastric and small intestinal distention: Implications for MR enterography

    International Nuclear Information System (INIS)

    Bharucha, Adil E.; Fidler, Jeff L.; Huprich, James E.; Ratuapli, Shiva K.; Holmes, David R.; Riederer, Stephen J.; Zinsmeister, Alan R.

    2014-01-01

    Highlights: • Suboptimal small intestinal distention limits jejunal visualization during MRI. • In this controlled study, erythromycin increased gastric emptying measured with MRI. • However, effects on small intestinal dimensions were variable. - Abstract: Objectives: To assess if erythromycin increases gastric emptying and hence improves small intestinal distention during MR enterography. Methods: Gastric, small intestinal, and large intestinal volumes were assessed with MR after neutral oral contrast (1350 ml in 45 min) and balanced randomization to erythromycin (200 mg i.v., age 31 ± 3y, 13 females), or placebo (37 ± 3y, 13 females) in 40 healthy asymptomatic volunteers. Fat-suppressed T2-weighted MR images of the abdomen were acquired on a 1.5 T magnet at standard delay times for enterography. Gastric, small, and large intestinal volumes were measured by specialized software. In addition, two radiologists manually measured diameters and percentage distention of jejunal and ileal loops. Treatment effects were evaluated by an ITT analysis based on ANCOVA models. Results: All subjects tolerated erythromycin. MRI scans of the stomach and intestine were obtained at 62 ± 2 (mean ± SEM) and 74 ± 2 min respectively after starting oral contrast. Gastric volumes were lower (P < 0.0001) after erythromycin (260 ± 49 ml) than placebo (688 ± 63 ml) but jejunal, ileal, and colonic volumes were not significantly different. However, maximum (76–100%) jejunal distention was more frequently observed (P = 0.03) after erythromycin (8/20 subjects [40%]) than placebo (2/20 subjects [10%]). The diameter of a representative ileal loop was greater (P = 0.001) after erythromycin (18.8 ± 4.3 mm) than placebo (17.3 ± 2.8 mm) infusion. Conclusions: After ingestion of oral contrast, erythromycin accelerated gastric emptying but effects on small intestinal dimensions were variable. In balance, erythromycin did not substantially enhance small intestinal distention during

  9. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  10. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  11. Phagocytosis of Giardia muris by macrophages in Peyer's patch epithelium in mice.

    OpenAIRE

    Owen, R L; Allen, C L; Stevens, D P

    1981-01-01

    No mechanism for the initiation of immunological clearance of Giardia from the mammalian intestinal tract has been identified. In normal and nude mice experimentally infected with G. muris, we examined antigen-sampling epithelium over Peyer's patch follicles by electron microscopy for evidence of interaction between G. muris and lymphoid cells. Invading G. muris were found in the epithelium near dying or desquamating columnar cells. Macrophages beneath the basal lamina extended pseudopods int...

  12. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  13. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  14. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  15. (--Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance

    Directory of Open Access Journals (Sweden)

    Eleonora Cremonini

    2018-04-01

    Full Text Available Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (--epicatechin (EC supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2–20 mg/kg body weight mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption. Keywords: Intestinal permeability, (--Epicatechin, Steatosis, Insulin resistance, Endotoxemia, NADPH oxidase

  16. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall.

    Science.gov (United States)

    Fasano, Alessio

    2008-11-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields.

  17. Signal transduction pathways involved in intestinal salt and water secretion

    NARCIS (Netherlands)

    W. van den Berghe (Nina)

    1992-01-01

    textabstractThis thesis describes some novel aspects of the regulation of salt and water secretion in the intestinal epithelium. This process is not unique for the intestine, but a common and necessary function of many other organs, including the stomach (gastric juice), kidney (urine), sweatglands

  18. Wnt, stem cells and cancer in the intestine.

    NARCIS (Netherlands)

    Pinto, D.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or

  19. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  20. Intestinal T lymphocytes of different rat strains in immunotoxicity

    NARCIS (Netherlands)

    Bruder, M.C.; Spanhaak, S.; Bruijntjes, J.P.; Michielsen, C.P.P.C.; Vos, J.G.; Kuper, C.F.

    1999-01-01

    In order to study the intestinal mucosal immune cells, with emphasis on single T lymphocytcs, an inventory was made of single and organized lymphocytes in the epithelium and lamina propria of the small intestines of untreated Wistar, Fischer 344, and Lewis rats. The single and organized lymphocytes

  1. An intestinal Trojan horse for gene delivery.

    Science.gov (United States)

    Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun

    2015-03-14

    The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.

  2. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium

    NARCIS (Netherlands)

    Pretzer, G.; Meulen, van der J.; Snel, J.; Meer, van der R.; Kleerebezem, M.; Niewold, Th.; Hulst, M.M.; Smits, M.A.

    2008-01-01

    Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using

  3. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  4. Control mechanisms of cell proliferation in intestinal epithelium

    NARCIS (Netherlands)

    R.P.C. Rijke (Rudy)

    1977-01-01

    textabstractIn the adult organism some organs and tissues still contain proliferating and differentiating cells, whereas other organs only consist of non-dividing specialized cells. On the basis of their proliferative activity cell populations may be classified into three categories (135, 138,208).

  5. Amebiasis intestinal Intestinal amebiasis

    Directory of Open Access Journals (Sweden)

    JULIO CÉSAR GÓMEZ

    2007-03-01

    Full Text Available Entamoeba histolytica es el patógeno intestinal más frecuente en nuestro medio -después de Giardia lamblia-, una de las principales causas de diarrea en menores de cinco años y la cuarta causa de muerte en el mundo debida a infección por protozoarios. Posee mecanismos patogénicos complejos que le permiten invadir la mucosa intestinal y causar colitis amebiana. El examen microscópico es el método más usado para su identificación pero la existencia de dos especies morfológicamente iguales, una patógena ( E. histolytica y una no patógena ( Entamoeba dispar, ha llevado al desarrollo de otros métodos de diagnóstico. El acceso al agua potable y los servicios sanitarios adecuados, un tratamiento médico oportuno y el desarrollo de una vacuna, son los ejes para disminuir la incidencia y mortalidad de esta entidad.Entamoeba histolytica is the most frequent intestinal pathogen seen in our country, after Giardia lamblia, being one of the main causes of diarrhea in children younger than five years of age, and the fourth leading cause of death due to infection for protozoa in the world. It possesses complex pathogenic mechanisms that allow it to invade the intestinal mucosa, causing amoebic colitis. Microscopy is the most used method for its identification, but the existence of two species morphologically identical, the pathogen one ( E. histolytica, and the non pathogen one ( E. dispar, have taken to the development of other methods of diagnosis. The access to drinkable water and appropriate sanitary services, an opportune medical treatment, and the development of a vaccine are the axes to diminish the incidence and mortality of this entity.

  6. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    International Nuclear Information System (INIS)

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W.

    1990-01-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments

  7. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  8. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  9. Intestinal Lymphangiectasia

    Science.gov (United States)

    ... Overview of Crohn Disease Additional Content Medical News Intestinal Lymphangiectasia (Idiopathic Hypoproteinemia) By Atenodoro R. Ruiz, Jr., MD, ... Overview of Malabsorption Bacterial Overgrowth Syndrome Celiac Disease Intestinal ... Intolerance Short Bowel Syndrome Tropical Sprue Whipple ...

  10. Intestinal Obstruction

    Science.gov (United States)

    ... Colostomy ) is required to relieve an obstruction. Understanding Colostomy In a colostomy, the large intestine (colon) is cut. The part ... 1 What Causes Intestinal Strangulation? Figure 2 Understanding Colostomy Gastrointestinal Emergencies Overview of Gastrointestinal Emergencies Abdominal Abscesses ...

  11. Requirement of the Epithelium-specific Ets Transcription Factor Spdef for Mucous Gland Cell Function in the Gastric Antrum*

    OpenAIRE

    Horst, David; Gu, Xuesong; Bhasin, Manoj; Yang, Quanli; Verzi, Michael; Lin, Dongxu; Joseph, Marie; Zhang, Xiaobo; Chen, Wei; Li, Yi-Ping; Shivdasani, Ramesh A.; Libermann, Towia A.

    2010-01-01

    Mucus-secreting cells of the stomach epithelium provide a protective barrier against damage that might result from bacterial colonization or other stimuli. Impaired barrier function contributes to chronic inflammation and cancer. Knock-out mice for the epithelium-specific transcription factor Spdef (also called Pdef) have defects in terminal differentiation of intestinal and bronchial secretory cells. We sought to determine the physiologic function of Spdef in the stomach, another site of sig...

  12. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens

    Science.gov (United States)

    Kiryluk, Krzysztof; Li, Yifu; Scolari, Francesco; Sanna-Cherchi, Simone; Choi, Murim; Verbitsky, Miguel; Fasel, David; Lata, Sneh; Prakash, Sindhuri; Shapiro, Samantha; Fischman, Clara; Snyder, Holly J.; Appel, Gerald; Izzi, Claudia; Viola, Battista Fabio; Dallera, Nadia; Vecchio, Lucia Del; Barlassina, Cristina; Salvi, Erika; Bertinetto, Francesca Eleonora; Amoroso, Antonio; Savoldi, Silvana; Rocchietti, Marcella; Amore, Alessandro; Peruzzi, Licia; Coppo, Rosanna; Salvadori, Maurizio; Ravani, Pietro; Magistroni, Riccardo; Ghiggeri, Gian Marco; Caridi, Gianluca; Bodria, Monica; Lugani, Francesca; Allegri, Landino; Delsante, Marco; Maiorana, Mariarosa; Magnano, Andrea; Frasca, Giovanni; Boer, Emanuela; Boscutti, Giuliano; Ponticelli, Claudio; Mignani, Renzo; Marcantoni, Carmelita; Di Landro, Domenico; Santoro, Domenico; Pani, Antonello; Polci, Rosaria; Feriozzi, Sandro; Chicca, Silvana; Galliani, Marco; Gigante, Maddalena; Gesualdo, Loreto; Zamboli, Pasquale; Maixnerová, Dita; Tesar, Vladimir; Eitner, Frank; Rauen, Thomas; Floege, Jürgen; Kovacs, Tibor; Nagy, Judit; Mucha, Krzysztof; Pączek, Leszek; Zaniew, Marcin; Mizerska-Wasiak, Małgorzata; Roszkowska-Blaim, Maria; Pawlaczyk, Krzysztof; Gale, Daniel; Barratt, Jonathan; Thibaudin, Lise; Berthoux, Francois; Canaud, Guillaume; Boland, Anne; Metzger, Marie; Panzer, Ulf; Suzuki, Hitoshi; Goto, Shin; Narita, Ichiei; Caliskan, Yasar; Xie, Jingyuan; Hou, Ping; Chen, Nan; Zhang, Hong; Wyatt, Robert J.; Novak, Jan; Julian, Bruce A.; Feehally, John; Stengel, Benedicte; Cusi, Daniele; Lifton, Richard P.; Gharavi, Ali G.

    2014-01-01

    We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six novel genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geo-spatial distribution of risk alleles is highly suggestive of multi-locus adaptation and the genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic landscape of IgAN. PMID:25305756

  13. Claudin expression in follicle-associated epithelium of rat Peyer's patches defines a major restriction of the paracellular pathway.

    Science.gov (United States)

    Markov, A G; Falchuk, E L; Kruglova, N M; Radloff, J; Amasheh, S

    2016-01-01

    Members of the tight junction protein family of claudins have been demonstrated to specifically determine paracellular permeability of the intestinal epithelium. In small intestinal mucosa, which is generally considered to be a leaky epithelium, Peyer's patches are a primary part of the immune system. The aim of this study was to analyse the tight junctional barrier of follicle-associated epithelium covering Peyer's patches (lymphoid follicles). Employing small intestinal tissue specimens of male Wistar rats, electrophysiological analyses including the Ussing chamber technique, marker flux measurements and one-path impedance spectroscopy were performed. Morphometry of HE-stained tissue sections was taken into account. Claudin expression and localization was analysed by immunoblotting and confocal laser scanning immunofluorescence microscopy. Almost twofold higher parameters of epithelial and transepithelial tissue resistance and a markedly lower permeability for the paracellular permeability markers 4 and 20 kDa FITC-dextran were detected in follicle-associated epithelium compared to neighbouring villous epithelium. Analysis of claudin expression and localization revealed a stronger expression of major sealing proteins in follicle-associated epithelium, including claudin-1, claudin-4, claudin-5 and claudin-8. Therefore, the specific expression and localization of claudins is in accordance with barrier properties of follicle-associated epithelium vs. neighbouring villous epithelium. We demonstrate that follicle-associated epithelium is specialized to ensure maximum restriction of the epithelial paracellular pathway in Peyer's patches by selective sealing of tight junctions. This results in an exclusive transcellular pathway of epithelial cells as the limiting and mandatory route for a controlled presentation of antigens to the underlying lymphocytes under physiological conditions. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Migrant Workers in Malaysia: Current Implications of Sociodemographic and Environmental Characteristics in the Transmission of Intestinal Parasitic Infections.

    Directory of Open Access Journals (Sweden)

    Norhidayu Sahimin

    2016-11-01

    Full Text Available A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%, followed by Nepal (n = 81, 20.9%, Bangladesh (n = 70, 18%, India (n = 47, 12.1% and Myanmar (n = 23, 5.9.2%. A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms, one cestode (Hymenolepis nana and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp. were identified. High prevalence of infections with A. lumbricoides (43.3% was recorded followed by hookworms (13.1%, E. histolytica/dispar (11.6%, Giardia sp. (10.8%, T. trichura (9.5%, Cryptosporodium spp. (3.1%, H. nana (1.8% and E. vermicularis (0.5%. Infections were significantly influenced by socio-demographic (nationality, and environmental characteristics (length of working years in the country, employment sector and educational level. Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year's residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country.

  15. Migrant Workers in Malaysia: Current Implications of Sociodemographic and Environmental Characteristics in the Transmission of Intestinal Parasitic Infections

    Science.gov (United States)

    Sahimin, Norhidayu; Lim, Yvonne A. L.; Ariffin, Farnaza; Behnke, Jerzy M.; Lewis, John W.

    2016-01-01

    A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%), followed by Nepal (n = 81, 20.9%), Bangladesh (n = 70, 18%), India (n = 47, 12.1%) and Myanmar (n = 23, 5.9.2%). A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms), one cestode (Hymenolepis nana) and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp.) were identified. High prevalence of infections with A. lumbricoides (43.3%) was recorded followed by hookworms (13.1%), E. histolytica/dispar (11.6%), Giardia sp. (10.8%), T. trichura (9.5%), Cryptosporodium spp. (3.1%), H. nana (1.8%) and E. vermicularis (0.5%). Infections were significantly influenced by socio-demographic (nationality), and environmental characteristics (length of working years in the country, employment sector and educational level). Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year’s residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country. PMID:27806046

  16. Migrant Workers in Malaysia: Current Implications of Sociodemographic and Environmental Characteristics in the Transmission of Intestinal Parasitic Infections.

    Science.gov (United States)

    Sahimin, Norhidayu; Lim, Yvonne A L; Ariffin, Farnaza; Behnke, Jerzy M; Lewis, John W; Mohd Zain, Siti Nursheena

    2016-11-01

    A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%), followed by Nepal (n = 81, 20.9%), Bangladesh (n = 70, 18%), India (n = 47, 12.1%) and Myanmar (n = 23, 5.9.2%). A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms), one cestode (Hymenolepis nana) and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp.) were identified. High prevalence of infections with A. lumbricoides (43.3%) was recorded followed by hookworms (13.1%), E. histolytica/dispar (11.6%), Giardia sp. (10.8%), T. trichura (9.5%), Cryptosporodium spp. (3.1%), H. nana (1.8%) and E. vermicularis (0.5%). Infections were significantly influenced by socio-demographic (nationality), and environmental characteristics (length of working years in the country, employment sector and educational level). Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year's residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country.

  17. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  18. Preparation and properties of monoclonal antibodies to individual prekeratins of simple rat epithelium

    International Nuclear Information System (INIS)

    Troyanovskii, S.M.; Krutovskikh, V.A.; Bannikov, G.A.

    1986-01-01

    The authors study the properties of a series of hybridoma clones producing antibodies to individual prekeratins (PK) from simple types of epithelium. BALB/c mice were immunized with a preparation of intermediate filaments isolated from the mucosa of the rat large intestine. The specificity of the five clones studied was studied by monoautoradiography. For a more detailed study of the specificity of the experimentally obtained antibodies, the authors used the same immunoautoradiographic method to study their reaction with proteins of cells of other types. The authors have obtained monoclonal antibodies to three individual PK of simple types of rat epithelium: PK40, PK49, and PK55

  19. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function.

    Science.gov (United States)

    Sanz, Yolanda; De Palma, Giada

    2009-01-01

    The intestinal tract mucosa is exposed to a vast number of environmental antigens and a large community of commensal bacteria. The mucosal immune system has to provide both protection against pathogens and tolerance to harmless bacteria. Immune homeostasis depends on the interaction of indigenous commensal and transient bacteria (probiotics) with various components of the epithelium and the gut-associated lymphoid tissue. Herein, an update is given of the mechanisms by which the gut microbiota and probiotics are translocated through the epithelium, sensed via pattern-recognition receptors, and activate innate and adaptive immune responses.

  20. Wnt target gene analysis in colorectal cancer and intestinal stem cells

    NARCIS (Netherlands)

    van der Flier, L.G.

    2009-01-01

    The intestinal epithelium is a specialized simple epithelium that lines the gut and performs primary functions of digestion, absorption and forms a barrier against luminal pathogens. It is organized in invaginations called crypts and finger-like protrusions called villi. The crypts harbor

  1. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

    NARCIS (Netherlands)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R.; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A.

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In

  2. Intestinal Surgery.

    Science.gov (United States)

    Desrochers, André; Anderson, David E

    2016-11-01

    A wide variety of disorders affecting the intestinal tract in cattle may require surgery. Among those disorders the more common are: intestinal volvulus, jejunal hemorrhage syndrome and more recently the duodenal sigmoid flexure volvulus. Although general principles of intestinal surgery can be applied, cattle has anatomical and behavior particularities that must be known before invading the abdomen. This article focuses on surgical techniques used to optimize outcomes and discusses specific disorders of small intestine. Diagnoses and surgical techniques presented can be applied in field conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders

    Directory of Open Access Journals (Sweden)

    Ruolin Ma

    2018-03-01

    Full Text Available Gastrointestinal (GI motility disorders such as irritable bowel syndrome (IBS can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+ channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR, immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.

  4. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling

    NARCIS (Netherlands)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration

  5. Multilayered epithelium in a rat model and human Barrett's esophagus: Similar expression patterns of transcription factors and differentiation markers

    Directory of Open Access Journals (Sweden)

    Yang Chung S

    2008-01-01

    Full Text Available Abstract Background In rats, esophagogastroduodenal anastomosis (EGDA without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia, columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765. The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32 of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4 in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2 in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.

  6. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  7. Glucose, epithelium, and enteric nervous system: dialogue in the dark.

    Science.gov (United States)

    Pfannkuche, H; Gäbel, G

    2009-06-01

    The gastrointestinal epithelium is in close contact with the various components of the chymus, including nutrients, bacteria and toxins. The epithelial barrier has to decide which components are effectively absorbed and which components are extruded. In the small intestine, a nutrient like glucose is mainly absorbed by the sodium linked glucose cotransporter 1 (SGLT1) and the glucose transporter 2 (GLUT2). The expression and activity of both transport proteins is directly linked to the amount of intraluminal glucose. Besides the direct interaction between glucose and the enterocytes, glucose also stimulates different sensory mechanisms within the intestinal wall. The most important types of cells involved in the sensing of intraluminal contents are enteroendocrine cells and neurones of the enteric nervous system. Regarding glucosensing, a distinct type of enteroendocrine cells, the enterochromaffine (EC) cells are involved. Excitation of EC cells by intraluminal glucose results in the release of serotonin (5-HT), which modulates epithelial functions and activates enteric secretomotorneurones. Enteric neurones are not only activated by 5-HT, but also directly by glucose. The activation of different cell types and the subsequent crosstalk between these cells may trigger appropriate absorptive and secretory processes within the intestine.

  8. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  9. The intestinal microenvironment in sepsis.

    Science.gov (United States)

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  10. Report of a case combining solitary Peutz-Jeghers polyp, colitis cystica profunda, and high-grade dysplasia of the epithelium of the colon.

    Science.gov (United States)

    Papalampros, Alexandros; Vailas, Michail G; Sotiropoulou, Maria; Baili, Efstratia; Davakis, Spiridon; Moris, Demetrios; Felekouras, Evangelos; Deladetsima, Ioanna

    2017-10-18

    Colitis cystica profunda is a rare nonneoplastic disease defined by the presence of intramural cysts that contain mucus, usually situated in the rectosigmoid area, which can mimic various malignant lesions and polyps. Its etiology still remains not fully elucidated, and several mechanisms such as congenital, post-traumatic, and infectious have been implicated in the development of this rare entity. Herein, we describe a unique case of colitis cystica profunda in the setting of Peutz-Jeghers-type polyp of the sigmoid colon, associated with high-grade dysplasia of the overlying epithelium in a 48-year-old female patient, who presented to the emergency room with signs of intestinal obstruction. To the best of our insight, this is the first manifestation ever reported in the literature regarding the coexistence of solitary Peutz-Jeghers-type polyp, colitis cystica profunda, and high-grade dysplasia of the epithelium of the colon. The purpose of this case report is to highlight colitis cystica profunda and its clinical significance. An uncommon nonneoplastic entity, many times masquerading as malignant lesion of the rectosigmoid area of the colon. Clinicians and pathologists should be aware of this benign condition that is found incidentally postoperatively in patients undergoing colectomies, leading to unnecessary increase of morbidity and mortality in these patients, who otherwise could have been cured with conservative treatment only.

  11. Conditional inactivation of p53 in mouse ovarian surface epithelium does not alter MIS driven Smad2-dominant negative epithelium-lined inclusion cysts or teratomas.

    Directory of Open Access Journals (Sweden)

    Suzanne M Quartuccio

    Full Text Available Epithelial ovarian cancer is the most lethal gynecological malignancy among US women. The etiology of this disease, although poorly understood, may involve the ovarian surface epithelium or the epithelium of the fallopian tube fimbriae as the progenitor cell. Disruptions in the transforming growth factor beta (TGFβ pathway and p53 are frequently found in chemotherapy-resistant serous ovarian tumors. Transgenic mice expressing a dominant negative form of Smad2 (Smad2DN, a downstream transcription factor of the TGFβ signaling pathway, targeted to tissues of the reproductive tract were created on a FVB background. These mice developed epithelium-lined inclusion cysts, a potential precursor lesion to ovarian cancer, which morphologically resembled oviductal epithelium but exhibited protein expression more closely resembling the ovarian surface epithelium. An additional genetic "hit" of p53 deletion was predicted to result in ovarian tumors. Tissue specific deletion of p53 in the ovaries and oviducts alone was attempted through intrabursal or intraoviductal injection of Cre-recombinase expressing adenovirus (AdCreGFP into p53 (flox/flox mice. Ovarian bursal cysts were detected in some mice 6 months after intrabursal injection. No pathological abnormalities were detected in mice with intraoviductal injections, which may be related to decreased infectivity of the oviductal epithelium with adenovirus as compared to the ovarian surface epithelium. Bitransgenic mice, expressing both the Smad2DN transgene and p53 (flox/flox, were then exposed to AdCreGFP in the bursa and oviductal lumen. These mice did not develop any additional phenotypes. Exposure to AdCreGFP is not an effective methodology for conditional deletion of floxed genes in oviductal epithelium and tissue specific promoters should be employed in future mouse models of the disease. In addition, a novel phenotype was observed in mice with high expression of the Smad2DN transgene as validated

  12. Intestinal leiomyoma

    Science.gov (United States)

    ... most often found when a person has an upper gastrointestinal (GI) endoscopy or colonoscopy for another reason. Rarely, these tumors can cause bleeding, blockage or rupture of the intestines If this ...

  13. Salmonella Typhimurium infection in the porcine intestine

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Olsen, John Elmerdahl; Larsson, Lars-Inge

    2005-01-01

    The normal intestinal epithelium is renewed with a turnover rate of 3-5 days. During Salmonella infection increased cell loss is observed, possibly as a result of programmed cell death (PCD). We have, therefore, studied the effects of Salmonella Typhimurium infection on three elements involved...... in scattered epithelial cells and the number of positive cells increased with increasing times of exposure to Salmonella (P

  14. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine.

    NARCIS (Netherlands)

    Wells, J.; Loonen, L.M.P.; Karczewski, J.

    2010-01-01

    In the intestine innate recognition of microbes is achieved through pattern recognition receptor (PRR) families expressed in immune cells and different cell lineages of the intestinal epithelium. Toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-like receptor (NLR) families

  15. Intestinal immune response to chicken Coccidiosis in the context of Th1 and Th17 response

    Science.gov (United States)

    Coccidiosis is one of the most economically important diseases of the chickens caused by several different Eimeria spp. The primary target tissue of Eimeria parasites is the intestinal mucosa and coccidiosis infection destroys intestinal epithelium resulting in nutrient malabsorption, body weight lo...

  16. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  17. Phagocytosis of Giardia muris by macrophages in Peyer's patch epithelium in mice.

    Science.gov (United States)

    Owen, R L; Allen, C L; Stevens, D P

    1981-08-01

    No mechanism for the initiation of immunological clearance of Giardia from the mammalian intestinal tract has been identified. In normal and nude mice experimentally infected with G. muris, we examined antigen-sampling epithelium over Peyer's patch follicles by electron microscopy for evidence of interaction between G. muris and lymphoid cells. Invading G. muris were found in the epithelium near dying or desquamating columnar cells. Macrophages beneath the basal lamina extended pseudopods into the epithelium, trapping invading G. muris and enclosing them in phagolysosomes. In normal mice, which clear G. muris in 4 to 6 weeks, macrophages containing digested G. muris were surrounded by rosettes of lymphoblasts in the epithelium. In nude mice deficient in lymphocytes, there was apparent hyperplasia of macrophages, which filled the follicle domes, resulting in more frequent entrapment of G. muris but no contact between macrophages and lymphoblasts in the epithelium. In nude mice, which require 6 months to control G. muris infection, lymphoblast contact with macrophages containing distinctive microtubular remnants of G. muris was only identified in the follicle dome. This close physical association of lymphoblasts and macrophages containing G. muris remnants suggests that this macrophage activity represents intraepithelial antigen processing as well as a defense against the effects of the uncontrolled entrance of microorganisms and other antigenic particles into Peyer's patch lymphoid follicles.

  18. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  19. Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium

    Science.gov (United States)

    Chen, Jichao; Krasnow, Mark A.

    2012-01-01

    Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215

  20. Extensive intestinal metaplasia of renal pelvis: Report of a case and literature review

    Directory of Open Access Journals (Sweden)

    Prakriti Shukla

    2015-01-01

    Full Text Available Transformation of the urothelium to the intestinal type of epithelium is rare in the pelvis with very few cases reported in the literature. The present study reports extensive intestinal metaplasia of the pelvi-calyceal system without residual urothelium in a 35-years-old woman with a 2 years history of renal calculi. Right - sided Nephrectomy was undertaken. Immunohistochemistry of the metaplastic epithelium revealed positive expression of CK20, low Ki-67 index and negative expression of p53. In this patient long standing metaplastic changes did not progress to adenocarcinoma which indicates that extensive intestinal metaplasia is not always associated with malignancy.

  1. Reinstatement of "germinal epithelium" of the ovary

    Directory of Open Access Journals (Sweden)

    Nishida Naoyo

    2006-08-01

    Full Text Available Abstract Background The existing dogma that the former term ovarian "germinal epithelium" resulted from a mistaken belief that it could give rise to new germ cells is now strongly challenged. Discussion Two years ago, a research group of the University of Tennessee led by Antonin Bukovsky successfully demonstrated the oogenic process from the human ovarian covering epithelium now commonly called the ovarian surface epithelium. They showed the new oocyte with zona pellucida and granulosa cells, both originated from the surface epithelium arising from mesenchymal cells in the tunica albuginea, and stressed that the human ovary could form primary follicles throughout the reproductive period. This gives a big impact not only to the field of reproductive medicine, but also to the oncologic area. The surface epithelium is regarded as the major source of ovarian cancers, and most of the neoplasms exhibit the histology resembling müllerian epithelia. Since the differentiating capability of the surface epithelium has now expanded, the histologic range of the neoplasms in this category may extend to include both germ cell tumors and sex cord-stromal cell tumors. Summary Since the oogenic capability of ovarian surface cells has been proven, it is now believed that the oocytes can originate from them. The term "germinal epithelium", hence, might reasonably be reinstated.

  2. Effect of zinc treatment on intestinal motility in experimentally ...

    African Journals Online (AJOL)

    olayemitoyin

    4Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria. Summary: Zinc ... regeneration of the intestinal epithelium, increase the ... cells (Berni et al., 2005). ... The student t-test was used to ... faeces after 24 hours of diarrhea induction and drug .... the gastrointestinal relaxing effects of the stem.

  3. Endocrine regulation of ion transport in the avian lower intestine

    DEFF Research Database (Denmark)

    Laverty, Gary; Elbrønd, Vibeke Sødring; Árnason, Sighvatur S.

    2006-01-01

    The lower intestine (colon and coprodeum) of the domestic fowl maintains a very active, transporting epithelium, with a microvillus brush border, columnar epithelial cells, and a variety of transport systems. The colon of normal or high salt-acclimated hens expresses sodium-linked glucose and amino...

  4. Plasticity of intestinal epithelial cells in regeneration and cancer

    NARCIS (Netherlands)

    Tetteh, Paul W.

    2015-01-01

    Cellular plasticity refers to the ability of a cell to change its fate or identity in response to external or intrinsic factors. Regeneration of the intestinal epithelium after injury is driven mainly by plasticity of crypt stem cells that can rapidly divide to replace all the lost cells. Stem cell

  5. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    OpenAIRE

    Liu, Z.; Zhang, P.; Zhou, Y.; Qin, H.; Shen, T.

    2010-01-01

    Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithel...

  6. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  7. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    Science.gov (United States)

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  8. Permeability and ultrastructure of human bladder epithelium

    DEFF Research Database (Denmark)

    Eldrup, J; Thorup, Jørgen Mogens; Nielsen, S L

    1983-01-01

    Leakage of tight junctions as observed with electron microscopy and demonstration of solute transport across bladder epithelium was investigated in 13 patients with different bladder diseases: urinary retention and infection, bladder tumours and interstitial cystitis. The latter group showed...

  9. Human organoids: a model system for intestinal diseases

    OpenAIRE

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the diseased intestine to take up certain food. A cell layer, the epithelium, covers the intestine, and harbors the main functions of the intestine: uptake, digestion of food, and a barrier against unwanted...

  10. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  11. Loss of the Wnt receptor frizzled 7 in the mouse gastric epithelium is deleterious and triggers rapid repopulation in vivo

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2017-08-01

    Full Text Available The gastric epithelium consists of tubular glandular units, each containing several differentiated cell types, and populations of stem cells, which enable the stomach to secrete the acid, mucus and various digestive enzymes required for its function. Very little is known about which cell signalling pathways are required for homeostasis of the gastric epithelium. Many diseases, such as cancer, arise as a result of deregulation of signalling pathways that regulate homeostasis of the diseased organ. Therefore, it is important to understand the biology of how normal conditions are maintained in a tissue to help inform the mechanisms driving disease in that same tissue, and to identify potential points of therapeutic intervention. Wnt signalling regulates several cell functions, including proliferation, differentiation and migration, and plays a crucial role during homeostasis of several tissues, including the intestinal epithelium. Wnt3a is required in the culture medium of gastric organoids, suggesting it is also important for the homeostasis of the gastric epithelium, but this has not been investigated in vivo. Here, we show that the Wnt receptor frizzled 7 (Fzd7, which is required for the homeostasis of the intestine, is expressed in the gastric epithelium and is required for gastric organoid growth. Gastric-specific loss of Fzd7 in the adult gastric epithelium of mice is deleterious and triggers rapid epithelial repopulation, which we believe is the first observation of this novel function for this tissue. Taken together, these data provide functional evidence of a crucial role for Wnt signalling, via the Fzd7 receptor, during homeostasis of the gastric epithelium.

  12. Loss of the Wnt receptor frizzled 7 in the mouse gastric epithelium is deleterious and triggers rapid repopulation in vivo.

    Science.gov (United States)

    Flanagan, Dustin J; Barker, Nick; Nowell, Cameron; Clevers, Hans; Ernst, Matthias; Phesse, Toby J; Vincan, Elizabeth

    2017-08-01

    The gastric epithelium consists of tubular glandular units, each containing several differentiated cell types, and populations of stem cells, which enable the stomach to secrete the acid, mucus and various digestive enzymes required for its function. Very little is known about which cell signalling pathways are required for homeostasis of the gastric epithelium. Many diseases, such as cancer, arise as a result of deregulation of signalling pathways that regulate homeostasis of the diseased organ. Therefore, it is important to understand the biology of how normal conditions are maintained in a tissue to help inform the mechanisms driving disease in that same tissue, and to identify potential points of therapeutic intervention. Wnt signalling regulates several cell functions, including proliferation, differentiation and migration, and plays a crucial role during homeostasis of several tissues, including the intestinal epithelium. Wnt3a is required in the culture medium of gastric organoids, suggesting it is also important for the homeostasis of the gastric epithelium, but this has not been investigated in vivo Here, we show that the Wnt receptor frizzled 7 (Fzd7), which is required for the homeostasis of the intestine, is expressed in the gastric epithelium and is required for gastric organoid growth. Gastric-specific loss of Fzd7 in the adult gastric epithelium of mice is deleterious and triggers rapid epithelial repopulation, which we believe is the first observation of this novel function for this tissue. Taken together, these data provide functional evidence of a crucial role for Wnt signalling, via the Fzd7 receptor, during homeostasis of the gastric epithelium. © 2017. Published by The Company of Biologists Ltd.

  13. Adrenergic factors regulating cell division in the colonic crypt epithelium during carcinogenesis and in colonic adenoma and adenocarcinoma.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-01

    Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour.

  14. Importance of Absent Neoplastic Epithelium in Patients Treated With Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy.

    Science.gov (United States)

    Enblad, Malin; Birgisson, Helgi; Wanders, Alkwin; Sköldberg, Filip; Ghanipour, Lana; Graf, Wilhelm

    2016-04-01

    The importance of absent neoplastic epithelium in specimens from cytoreductive surgery (CRS) is unknown. This study aimed to investigate the prevalence and prognostic value of histopathology without neoplastic epithelium in patients treated with CRS and hyperthermic intraperitoneal chemotherapy (HIPEC). Data were extracted from medical records and histopathology reports for patients treated with initial CRS and HIPEC at Uppsala University Hospital, Sweden, between 2004 and 2012. Patients with inoperable disease and patients undergoing palliative non-CRS surgery were excluded from the study. Patients lacking neoplastic epithelium in surgical specimens from CRS, with or without mucin, were classified as "neoplastic epithelium absent" (NEA), and patients with neoplastic epithelium were classified as "neoplastic epithelium present" (NEP). The study observed NEA in 78 of 353 patients (22 %). Mucin was found in 28 of the patients with NEA. For low-grade appendiceal mucinous neoplasms and adenomas, the 5-year overall survival rate was 100 % for NEA and 84 % for NEP, and the 5-year recurrence-free survival rate was 100 % for NEA and 59 % for NEP. For appendiceal/colorectal adenocarcinomas (including tumors of the small intestine), the 5-year overall survival rate was 61 % for NEA and 38 % for NEP, and the 5-year recurrence-free survival rate was 60 % for NEA and 14 % for NEP. Carcinoembryonic antigen level, peritoneal cancer index, and completeness of the cytoreduction score were lower in patients with NEA. A substantial proportion of patients undergoing CRS and HIPEC have NEA. These patients have a favorable prognosis and a decreased risk of recurrence. Differences in patient selection can affect the proportion of NEA and hence explain differences in survival rates between reported series.

  15. Regional specialization within the intestinal immune system

    DEFF Research Database (Denmark)

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...... implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout...... the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease...

  16. A pSMAD/CDX2 Complex Is Essential for the Intestinalization of Epithelial Metaplasia

    Directory of Open Access Journals (Sweden)

    Luigi Mari

    2014-05-01

    Full Text Available The molecular mechanisms leading to epithelial metaplasias are poorly understood. Barrett's esophagus is a premalignant metaplastic change of the esophageal epithelium into columnar epithelium, occurring in patients suffering from gastroesophageal reflux disease. Mechanisms behind the development of the intestinal subtype, which is associated with the highest cancer risk, are unclear. In humans, it has been suggested that a nonspecialized columnar metaplasia precedes the development of intestinal metaplasia. Here, we propose that a complex made up of at least two factors needs to be activated simultaneously to drive the expression of intestinal type of genes. Using unique animal models and robust in vitro assays, we show that the nonspecialized columnar metaplasia is a precursor of intestinal metaplasia and that pSMAD/CDX2 interaction is essential for the switch toward an intestinal phenotype.

  17. Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury

    DEFF Research Database (Denmark)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F

    2013-01-01

    Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can...... be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate...... in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region...

  18. Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations in vitro

    NARCIS (Netherlands)

    Gee, J.M.; Wortley, G.M.; Johnson, I.T.; Price, K.R.; Rutten, A.A.J.J.L.; Houben, G.F.; Penninks, A.H.

    1996-01-01

    The effects of potato and tomato glycoalkaloids and a saponin mixture from Gypsophila were investigated in cytotoxicity studies (neutral red uptake, mitochondrial MTT reduction and release of lactate dehydrogenase), using cultured cell lines of rat and human intestinal mucosal epithelium.

  19. Expression of an Intestine-Specific Transcription Factor (CDX1) in Intestinal Metaplasia and in Subsequently Developed Intestinal Type of Cholangiocarcinoma in Rat Liver

    Science.gov (United States)

    Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.

    2000-01-01

    CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391

  20. Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Okuchi

    Full Text Available Aging-associated alterations of cellular functions have been implicated in various disorders including cancers. Due to difficulties in identifying aging cells in living tissues, most studies have focused on aging-associated changes in whole tissues or certain cell pools. Thus, it remains unclear what kinds of alterations accumulate in each cell during aging. While analyzing several mouse lines expressing fluorescent proteins (FPs, we found that expression of FPs is gradually silenced in the intestinal epithelium during aging in units of single crypt composed of clonal stem cell progeny. The cells with low FP expression retained the wild-type Apc allele and the tissues composed of them did not exhibit any histological abnormality. Notably, the silencing of FPs was also observed in intestinal adenomas and the surrounding normal mucosae of Apc-mutant mice, and mediated by DNA methylation of the upstream promoter. Our genome-wide analysis then showed that the silencing of FPs reflects specific gene expression alterations during aging, and that these alterations occur in not only mouse adenomas but also human sporadic and hereditary (familial adenomatous polyposis adenomas. Importantly, pharmacological inhibition of DNA methylation, which suppresses adenoma development in Apc-mutant mice, reverted the aging-associated silencing of FPs and gene expression alterations. These results identify aging-associated gene expression signatures that are heterogeneously induced by DNA methylation and precede intestinal tumorigenesis triggered by Apc inactivation, and suggest that pharmacological inhibition of the signature genes could be a novel strategy for the prevention and treatment of intestinal tumors.

  1. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    Science.gov (United States)

    Arason, Ari Jon; Jonsdottir, Hulda R; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.

  2. INTESTINAL OBSTRUCTION

    Science.gov (United States)

    Whipple, G. H.; Stone, H. B.; Bernheim, B. M.

    1913-01-01

    Closed duodenal loops may be made in dogs by ligatures placed just below the pancreatic duct and just beyond the duodenojejunal junction, together with a posterior gastro-enterostomy. These closed duodenal loop dogs die with symptoms like those of patients suffering from volvulus or high intestinal obstruction. This duodenal loop may simulate closely a volvulus in which there has been no vascular disturbance. Dogs with closed duodenal loops which have been washed out carefully survive a little longer on the average than animals with unwashed loops. The duration of life in the first instance is one to three days, with an average of about forty-eight hours. The dogs usually lose considerable fluid by vomiting and diarrhea. A weak pulse, low blood pressure and temperature are usually conspicuous in the last stages. Autopsy shows more or less splanchnic congestion which may be most marked in the mucosa of the upper small intestine. The peritoneum is usually clear and the closed loop may be distended with thin fluid, or collapsed, and contain only a small amount of pasty brown material. The mucosa of the loop may show ulceration and even perforation, but in the majority of cases it is intact and exhibits only a moderate congestion. Simple intestinal obstruction added to a closed duodenal loop does not modify the result in any manner, but it may hasten the fatal outcome. The liver plays no essential role as a protective agent against this poison, for a dog with an Eck fistula may live three days with a closed loop. A normal dog reacts to intraportal injection and to intravenous injection of the toxic substance in an identical manner. Drainage of this loop under certain conditions may not interfere with the general health over a period of weeks or months. Excision of the part of the duodenum included in this loop causes no disturbance. The material from the closed duodenal loops contains no bile, pancreatic juice, gastric juice, or split products from the food. It can be

  3. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus.

    Directory of Open Access Journals (Sweden)

    Douglas B Stairs

    Full Text Available Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD. Despite this well-defined epidemiologic association between acid reflux and Barrett's esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined.To begin to identify the genetic changes responsible for transdifferentiaiton in Barrett's esophagus, we performed a microarray analysis of normal esophageal, Barrett's esophagus and small intestinal biopsy specimens to identify candidate signaling pathways and transcription factors that may be involved. Through this screen we identified the Cdx1 homeodomain transcription factor and the c-myc pathway as possible candidates. Cdx1 and c-myc were then tested for their ability to induce transdifferentiation in immortalized human esophageal keratinocytes using organotypic culturing methods. Analyses of these cultures reveal that c-myc and cdx1 cooperate to induce mucin production and changes in keratin expression that are observed in the epithelium of Barrett's esophagus.These data demonstrate the ability of Cdx1 and c-myc to initiate the earliest stages of transdifferentiation of esophageal keratinocytes toward a cell fate characteristic of Barrett's esophagus.

  4. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier

    Directory of Open Access Journals (Sweden)

    Ana eCamelo

    2014-01-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterised by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5b genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic TGF-β and continuous deposition of extracellular matrix stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation and myofibroblast activation in the fibrotic lung.

  5. Conjugated effects of thyroxine and X-rays on the intestinal wall of Alytes obstetricans Larvae (Anuran Amphibian)

    International Nuclear Information System (INIS)

    Dauca, M.; Hourdry, J.

    1979-01-01

    The conjoined effects of thyroxine and X-rays on the intestinal wall were studied using Alytes obstetricans tadpoles in premetamorphosis. Thyroxine alone induced degeneration of the larval epithelium (primary epithelium) and its replacement by a secondary epithelium. The latter is derived from stem cells via the development of islets. In animals submitted to irradiation only, many of these stem cells showed signs of necrosis. In irradiated larvae treated with thyroxine, the secondary epitheliocytes were rare and never formed islets. Radioautographic observations confirmed their very low proliferation rate. Contrary to what was observed in the hormone treated larvae, cell fragments of the primary epithelium were extruded in the connective tissue, and phagocytes appear to infiltrate the epithelium. In animals treated with thyroxine and later submitted to irradiation, islets of secondary epitheliocytes developed while some cells degenerated. There again, the phagocytes were noted in both the connective tissue and the epithelium. (orig.) [de

  6. Intestinal myiasis

    Directory of Open Access Journals (Sweden)

    U S Udgaonkar

    2012-01-01

    Full Text Available Purpose: Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. Materials and Methods: We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar. This medium is simple and can be easily prepared in the laboratory. Results: Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. Conclusions: S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  7. Intestinal myiasis.

    Science.gov (United States)

    Udgaonkar, U S; Dharamsi, R; Kulkarni, S A; Shah, S R; Patil, S S; Bhosale, A L; Gadgil, S A; Mohite, R S

    2012-01-01

    Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar). This medium is simple and can be easily prepared in the laboratory. Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  8. Expressions of TRPVs in the cholesteatoma epithelium.

    Science.gov (United States)

    Do, Ba Hung; Koizumi, Hiroki; Ohbuchi, Toyoaki; Kawaguchi, Rintaro; Suzuki, Hideaki

    2017-10-01

    We have recently proposed a hypothesis that acid leakage through the cholesteatoma epithelium mediates bone resorption in middle ear cholesteatoma. In the present study, we investigated the expressions of transient receptor potential vanilloid (TRPV) channels, which have been shown to play roles in the regulation of epidermal barrier function, in the cholesteatoma epithelium in comparison with the normal skin. Cholesteatoma epithelium and postauricular skin were collected from 17 patients with primary acquired middle ear cholesteatoma who underwent tympanomastoidectomy. Expressions of TRPV1, TRPV3, TRPV4, and TRPV6 were explored by fluorescence immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). TRPV1, TRPV3, TRPV4, and TRPV6 mRNAs were all detected by qRT-PCR both in the skin and cholesteatoma tissue. Immunohistochemical staining showed that TRPV1 and TRPV3 were positive in the viable cell layers of the epidermis of the skin, and only TRPV3 was positive in those of the cholesteatoma epithelium. The immunoreactivity for TRPV3 was significantly weaker in cholesteatoma than in the skin. The lower expression of TRPV3 in cholesteatoma may be one of the mechanisms underlying the increased permeability of this tissue. On the other hand, TRPV1, TRPV4, and TRPV6 are unlikely to be involved in the regulation of epithelial permeability in cholesteatoma.

  9. Effects of probiotic on the intestinal morphology with special reference to the growth of broilers

    International Nuclear Information System (INIS)

    Lutfullah, G.; Ahmad, I.

    2011-01-01

    The probiotic (Protexin) increases the growth rate in broilers. It must interfere with the intestinal cell morphology and absorption. The intestinal epithelium is one of the most rapidly renewed tissues in the body and is renewed by a process of continuous cell division. This study was carried out with an aim to establish a link between the use of probiotic doses, growth rate, and intestinal cell proliferation by measuring the length and weight of the intestine and intestinal crypt cell proliferation (CCP) of broiler chicks. The results revealed significant increase in intestinal CCP but no effect was observed on the intestinal weight and length. The increase in CCP has also no significant influence towards growth factor. The increased weight gain in this study is associated with more feed consumption which is observed with Protexin dose 1.0 g / 10 kg of feed. Furthermore, feed consumption reduced beyond this dose may lead to reduced weight gain. (author)

  10. Cdx function is required for maintenance of intestinal identity in the adult.

    Science.gov (United States)

    Hryniuk, Alexa; Grainger, Stephanie; Savory, Joanne G A; Lohnes, David

    2012-03-15

    The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Neoplasia versus hyperplasia of the retinal pigment epithelium

    DEFF Research Database (Denmark)

    Heegaard, Steffen; Larsen, J.N.B.; Fledelius, Hans C.

    2001-01-01

    ophthalmology, retinal pigment epithelium, adenoma, tumor-like hyperplasia, histology, immunohistochemistry, tumor, neoplasm, ultrasonography......ophthalmology, retinal pigment epithelium, adenoma, tumor-like hyperplasia, histology, immunohistochemistry, tumor, neoplasm, ultrasonography...

  12. The Structure of Urethral Epithelium in Merinos Lambs

    Directory of Open Access Journals (Sweden)

    Vasile RUS

    2018-05-01

    Full Text Available The aim of this study was to investigate by histological techniques the structure of urethral epithelium in lambs. In this study, we harvested several fragments (prostatic, membranous and cavernous from urethra from 5 merino’s lambs of 3 months old. The first anatomical segment, the prostatic urethra, is lined by a urinary epithelium. The intermediary layer of this epithelium is formed of 5-6 rows of oval cells. The second segment of urethra has the same type of epithelium but the intermediary layer is formed of 6-7 rows of oval cells. In the last anatomical segment, the penile urethra, the epithelium is the same, but the intermediary layer has 3-4 rows of oval cells. In lambs, the urethra is lined by urinary epithelium. The urethral epithelium does not have the same thickness in all segments. The thinner epithelium it is in the cavernous urethra, the ticker is the membranous urethra.

  13. Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuying Liu

    2013-10-01

    Full Text Available The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT. The production of immunoglobulin (Ig A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.

  14. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine

    Directory of Open Access Journals (Sweden)

    Mary Ann S. Crissey

    2008-01-01

    Full Text Available The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  15. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  16. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  17. Barrier properties of cultured retinal pigment epithelium.

    Science.gov (United States)

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Development of the ovarian follicular epithelium.

    Science.gov (United States)

    Rodgers, R J; Lavranos, T C; van Wezel, I L; Irving-Rodgers, H F

    1999-05-25

    A lot is known about the endocrine control of the development of ovarian follicles, but a key question now facing researchers is which molecular and cellular processes take part in control of follicular growth and development. The growth and development of ovarian follicles occurs postnatally and throughout adult life. In this review, we focus on the follicular epithelium (membrana granulosa) and its basal lamina. We discuss a model of how granulosa cells arise from a population of stem cells and then enter different lineages before differentiation. The structure of the epithelium at the antral stage of development is presented, and the effects that follicle growth has on the behavior of the granulosa cells are discussed. Finally, we discuss the evidence that during follicle development the follicular basal lamina changes in composition. This would be expected if the behavior of the granulosa cells changes, or if the permeability of the basal lamina changes. It will be evident that the follicular epithelium has similarities to other epithelia in the body, but that it is more dynamic, as gross changes occur during the course of follicle development. This basic information will be important for the development of future reproductive technologies in both humans and animals, and possibly for understanding polycystic ovarian syndrome in women.

  19. In vivo models of human airway epithelium repair and regeneration

    Directory of Open Access Journals (Sweden)

    C. Coraux

    2005-12-01

    Full Text Available Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions. The in vivo study of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to reconstitute a functional respiratory epithelium after several weeks. Humanised tracheal xenograft models have been developed in immunodeficient nude and severe combined immunodeficient (SCID mice in order to mimic the natural regeneration process of the human airway epithelium and to analyse the cellular and molecular events involved during the different steps of airway epithelial reconstitution. These models represent very powerful tools for analysing the modulation of the biological functions of the epithelium during its regeneration. They are also very useful for identifying stem/progenitor cells of the human airway epithelium. A better knowledge of the mechanisms involved in airway epithelium regeneration, as well as the characterisation of the epithelial stem and progenitor cells, may pave the way to regenerative therapeutics, allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases, such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.

  20. c-Kit mutation reduce intestinal epithelial cell proliferation and migration, but not influence intestinal permeability stimulated by lipopolysaccharide.

    Science.gov (United States)

    Xue, Hong; Wang, Feng Yun; Kang, Qian; Tang, Xu Dong

    2018-06-20

    The proto-oncogene c-kit, as a marker of interstitial cells of Cajal (ICCs) in the gastrointestinal tract, plays an important role in the ICCs. Although limited evidences showed c-kit is present in the colonic epithelium but its roles remain unclear. In the present study, we aimed to investigate the expression, location and function of c-kit in the intestinal epithelium. Immunofluorescence, western blotting, and RT-PCR were performed to detect the expression and location of c-kit in the intestinal mucosa of WT mice. We investigated intestinal epithelial proliferation and migration in vivo by performing 5-Bromodeoxyuridine (BrdU) incorporation and Ki-67 staining in WT and Wads m/m mice. An Ussing chamber with fluorescein-isothiocyanate dextran 4000 was used to detect the transepithelial electric resistance (TER), short circuit current (ISC) and permeability across ex vivo colon segments under control and endotoxaemia conditions. We demonstrated that c-kit was located and expressed in the gut crypt compartment in WT mice, which was demonstrated in the c-kit mutant mice (Wads m/m ). In addition, both the number of proliferating cells and the percentage of the distance migrated were lower in the Wads m/m mice than those in the WT mice. Moreover, the intestinal permeability, TER and tight junction were unaltered in the Wads m/m mice under endotoxic conditions compared with those in both the control condition and the WT mice. Altogether, these observations imply that the expression of c-kit in the colonic epithelium is involved in the proliferation and permeability of the colonic epithelium. Copyright © 2018. Published by Elsevier GmbH.

  1. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  2. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  3. Intestinal spirochetosis and colon diverticulosis Espiroquetose intestinal e diverticulose do cólon

    Directory of Open Access Journals (Sweden)

    Marcus Aurelho de Lima

    2005-02-01

    Full Text Available A case of intestinal spirochetosis in a 62-year-old white male is reported. The condition was characterized by chronic flatulence and episodes of intestinal hemorrhage, in addition to the evidence of hypotonic diverticular disease, with a large number of slender organisms in the colon epithelium and cryptae. Spirochetes were demonstrated by Whartin-Starry stain. The serologic tests for syphilis and HIV were positive. Spirochetosis was treated with penicillin G, and the patient remains free of intestinal complaints 20 months later.Um caso de espiroquetose intestinal é relatado em um homem branco de 62 anos. A condição foi caracterizada por flatulência crônica e episódios de hemorragia intestinal, além da evidência de doença diverticular hipotônica dos cólons, com numerosos organismos filamentosos no epitélio e nas criptas do cólon. Os espiroquetas foram demonstrados pela coloração de Whartin-Starry. Os testes sorológicos para sífilis e HIV foram positivos. A espiroquetose foi tratada com penicilina G e o paciente permanece sem queixas intestinais após 20 meses.

  4. [Adult intestinal malrotation associated with intestinal volvulus].

    Science.gov (United States)

    Hernando-Almudí, Ernesto; Cerdán-Pascual, Rafael; Vallejo-Bernad, Cristina; Martín-Cuartero, Joaquín; Sánchez-Rubio, María; Casamayor-Franco, Carmen

    Intestinal malrotation is a congenital anomaly of the intestinal rotation and fixation, and usually occurs in the neonatal age. Description of a clinical case associated with acute occlusive symptoms. A case of intestinal malrotation is presented in a previously asymptomatic woman of 46 years old with an intestinal obstruction, with radiology and surgical findings showing an absence of intestinal rotation. Intestinal malrotation in adults is often asymptomatic, and is diagnosed as a casual finding during a radiological examination performed for other reasons. Infrequently, it can be diagnosed in adults, associated with an acute abdomen. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  5. Intestinal Ostomy.

    Science.gov (United States)

    Ambe, Peter C; Kurz, Nadja Rebecca; Nitschke, Claudia; Odeh, Siad F; Möslein, Gabriela; Zirngibl, Hubert

    2018-03-16

    About 100 000 ostomy carriers are estimated to live in Germany today. The creation of an ostomy represents a major life event that can be associated with impaired quality of life. Optimal ostomy creation and proper ostomy care are crucially important determinants of the success of treatment and of the patients' quality of life. This article is based on pertinent publications retrieved by a selective search in PubMed, GoogleScholar, and Scopus, and on the authors' experience. Intestinal stomata can be created using either the small or the large bowel. More than 75% of all stomata are placed as part of the treatment of colorectal cancer. The incidence of stoma-related complications is reported to be 10-70%. Skin irritation, erosion, and ulceration are the most common early complications, with a combined incidence of 25-34%, while stoma prolapse is the most common late complication, with an incidence of 8-75%. Most early complications can be managed conservatively, while most late complications require surgical revision. In 19% of cases, an ostomy that was initially planned to be temporary becomes permanent. Inappropriate stoma location and inadequate ostomy care are the most common causes of early complications. Both surgical and patient-related factors influence late complications. Every step from the planning of a stoma to its postoperative care should be discussed with the patient in detail. Preoperative marking is essential for an optimal stoma site. Optimal patient management with the involvement of an ostomy nurse increases ostomy acceptance, reduces ostomy-related complications, and improves the quality of life of ostomy carriers.

  6. Intestinal tract diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1985-01-01

    Roentgenoanatomy and physiology of the small intestine are described. Indications for radiological examinations and their possibilities in the diagnosis of the small intestine diseases are considered.Congenital anomalies and failures in the small intestine development, clinical indications and diagnosis methods for the detection of different aetiology enteritis are described. Characteristics of primary malabsorption due to congenital or acquired inferiority of the small intestine, is provided. Radiological picture of intestinal allergies is described. Clinical, morphological, radiological pictures of Crohn's disease are considered in detail. Special attention is paid to the frequency of primary and secondary tuberculosis of intestinal tract. The description of clinical indications and frequency of benign and malignant tumours of the small intestine, methods for their diagnosis are given. Radiological pictures of parasitogenic and rare diseases of the small intestine are presented. Changes in the small intestine as a result of its reaction to pathological processes, developing in other organs and systems of the organism, are described

  7. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  8. Substrate metabolism in isolated rat jejunal epithelium. Analysis using 14C-radioisotopes

    International Nuclear Information System (INIS)

    Mallet, R.T.

    1986-01-01

    The jejunal epithelium absorbs nutrients from the intestinal lumen and is therefore the initial site for metabolism of these compounds. The purpose of this investigation is to analyze substrate metabolism in a preparation of jejunal epithelium relatively free of other tissues. Novel radioisotopic labelling techniques allow quantitation of substrate metabolism in the TCA cycle, Embden-Meyerhof (glycolytic) pathway, and hexose monophosphate shunt. For example, ratios of 14 CO 2 production from pairs of 14 C-pyruvate, and 14 C-succinate radioisotopes (CO 2 ratios) indicate the probability of TCA cycle intermediate efflux to generate compounds other than CO 2 . With (2,3- 14 C)succinate as tracer, the ratio of 14 C in carbon 4 + 5 versus carbon 2 + 3 of citrate, the citrate labelling ratio, equals the probability of TCA intermediate flux to the acetyl CoA-derived portion of citrate versus flux to the oxaloacetate-derived portion. The principal metabolic substrates for the jejunal epithelium are glucose and glutamine. CO 2 ratios indicate that glutamine uptake and metabolism is partially Na + -independent, and is saturable, with a half-maximal rate at physiological plasma glutamine concentrations. Glucose metabolism in the jejunal epithelium proceeds almost entirely via the Embden-Meyerhof pathway. Conversion of substrates to multi-carbon products in this tissue allows partial conservation of reduced carbon for further utilization in other tissues. In summary, metabolic modeling based on 14 C labelling ratios is a potentially valuable technique for analysis of metabolic flux patterns in cell preparations

  9. Circadian disorganization alters intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Robin M Voigt

    Full Text Available Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  10. Indian Hedgehog Suppresses a Stromal Cell–Driven Intestinal Immune Response

    Directory of Open Access Journals (Sweden)

    B. Florien Westendorp

    2018-01-01

    Conclusions: We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.

  11. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response

    NARCIS (Netherlands)

    Westendorp, B. Florien; Büller, Nikè V. J. A.; Karpus, Olga N.; van Dop, Willemijn A.; Koster, Jan; Versteeg, Rogier; Koelink, Pim J.; Snel, Clinton Y.; Meisner, Sander; Roelofs, Joris J. T. H.; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E.; van den Brink, Gijs R.

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor

  12. Intestinal pseudo-obstruction

    Science.gov (United States)

    ... Staying in bed for long periods of time (bedridden). Taking drugs that slow intestinal movements. These include ... be tried: Colonoscopy may be used to remove air from the large intestine. Fluids can be given ...

  13. Differential effect of IP- and IV-injected nitrogen mustard on subsequently-irradiated intestinal crypts: implications for 'dose-effect factors' predicted by experimental, combined modality therapy

    International Nuclear Information System (INIS)

    Moore, J.V.

    1984-01-01

    In experimental chemotherapy-radiotherapy, cytotoxic drugs are almost invariably injected by the intraperitoneal (IP) route. This contrasts with normal clinical practice, which is to employ the intravenous (IV) route. We have used a clonogenic assay of gastrointestinal (GI) injury in mice to show that a given administered dose of nitrogen mustard (HN 2 ), injected IP, results in a much greater reduction in the subsequent radiation dose required to achieve an isoeffect, than if the drug is injected IV. At an administered dose of 3.5 mg kg -1 of HN 2 (the animal LDsub(10/30) for IP injection), the radiation dose-reduction factor for 10% survival of intestinal crypts, was 1.94 for IP HN 2 and only 1.28 for IV HN 2 . Even the grossly-equitoxic (mouse LDsub(10/30)) dose of IV HN 2 resulted in a smaller predicted radiation dose reduction for GI injury, by a factor of 1.45. The validity of using the IP route in combined chemotherapy-radiotherapy studies designed to generate quantitative estimates of toxicity is discussed. (author)

  14. GATA4 Regulates Epithelial Cell Proliferation to Control Intestinal Growth and Development in MiceSummary

    Directory of Open Access Journals (Sweden)

    Bridget M. Kohlnhofer

    2016-03-01

    Full Text Available Background & Aims: The embryonic small intestinal epithelium is highly proliferative, and although much is known about mechanisms regulating proliferation in the adult intestine, the mechanisms controlling epithelial cell proliferation in the developing intestine are less clear. GATA4, a transcription factor that regulates proliferation in other developing tissues, is first expressed early in the developing gut in midgut endoderm. GATA4 function within midgut endoderm and the early intestinal epithelium is unknown. Methods: By using Sonic Hedgehog Cre to eliminate GATA4 in the midgut endoderm of mouse embryos, we determined the impact of loss of GATA4 on intestinal development, including epithelial cell proliferation, between embryonic day (E9.5 and E18.5. Results: We found that intestinal length and width were decreased in GATA4 mutants compared with controls. GATA4-deficient intestinal epithelium contained fewer cells, and epithelial girth was decreased. We further observed a decreased proportion of proliferating epithelial cells at E10.5 and E11.5 in GATA4 mutants. We showed that GATA4 binds to chromatin containing GATA4 consensus binding sites within cyclin D2 (Ccnd2, cyclin-dependent kinase 6 (Cdk6, and frizzled 5 (Fzd5. Moreover, Ccnd2, Cdk6, and Fzd5 transcripts were reduced at E11.5 in GATA4 mutant tissue. Villus morphogenesis was delayed, and villus structure was abnormal in GATA4 mutant intestine. Conclusions: Our data identify GATA4 as an essential regulator of early intestinal epithelial cell proliferation. We propose that GATA4 controls proliferation in part by directly regulating transcription of cell-cycle mediators. Our data further suggest that GATA4 affects proliferation through transcriptional regulation of Fzd5, perhaps by influencing the response of the epithelium to WNT signaling. Keywords: Transcriptional Regulation, WNT Signaling, Villus Morphogenesis

  15. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    Science.gov (United States)

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  17. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1.

    Science.gov (United States)

    Elatrech, Imen; Marzaioli, Viviana; Boukemara, Hanane; Bournier, Odile; Neut, Christel; Darfeuille-Michaud, Arlette; Luis, José; Dubuquoy, Laurent; El-Benna, Jamel; My-Chan Dang, Pham; Marie, Jean-Claude

    2015-05-01

    Increased reactive oxygen species (ROS) production is associated with inflamed ileal lesions in Crohn's disease colonized by pathogenic adherent-invasive Escherichia coli LF82. We investigated whether such ileal bacteria can modulate ROS production by epithelial cells, thus impacting on inflammation and mucin expression. Ileal bacteria from patients with Crohn's disease were incubated with cultured epithelial T84 cells, and ROS production was assayed using the luminol-amplified chemiluminescence method. The gentamicin protection assay was used for bacterial invasion of T84 cell. The expression of NADPH oxidase (NOX) subunits, mucin, and IL-8 was analyzed by quantitative real-time PCR and Western blots. Involvement of NOX and ROS was analyzed using diphenyleneiodonium (DPI) and N-acetylcysteine (NAC). Among different bacteria tested, only LF82 induced an increase of ROS production by T84 cells in a dose-dependent manner. This response was inhibited by DPI and NAC. Heat- or ethanol-attenuated LF82 bacteria and the mutant LF82ΔFimA, which does not express pili type 1 and poorly adheres to epithelial cells, did not induce the oxidative response. The LF82-induced oxidative response coincides with its invasion in T84 cells, and both processes were inhibited by DPI. Also, we observed an increased expression of NOX1 and NOXO1 in response to LF82 bacteria versus the mutant LF82ΔFimA. Furthermore, LF82 inhibited mucin gene expression (MUC2 and MUC5AC) in T84 cells while increasing the chemotactic IL-8 expression, both in a DPI-sensitive manner. Adherent-invasive E. coli LF82 induced ROS production by intestinal NADPH oxidase and altered mucin and IL-8 expression, leading to perpetuation of inflammatory lesions in Crohn's disease.

  18. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease.

    Science.gov (United States)

    Schwiertz, Andreas; Spiegel, Jörg; Dillmann, Ulrich; Grundmann, David; Bürmann, Jan; Faßbender, Klaus; Schäfer, Karl-Herbert; Unger, Marcus M

    2018-02-12

    Intestinal inflammation and increased intestinal permeability (both possibly fueled by dysbiosis) have been suggested to be implicated in the multifactorial pathogenesis of Parkinson's disease (PD). The objective of the current study was to investigate whether fecal markers of inflammation and impaired intestinal barrier function corroborate this pathogenic aspect of PD. In a case-control study, we quantitatively analyzed established fecal markers of intestinal inflammation (calprotectin and lactoferrin) and fecal markers of intestinal permeability (alpha-1-antitrypsin and zonulin) in PD patients (n = 34) and controls (n = 28, group-matched for age) by enzyme-linked immunosorbent assay. The study design controlled for potential confounding factors. Calprotectin, a fecal marker of intestinal inflammation, and two fecal markers of increased intestinal permeability (alpha-1-antitrypsin and zonulin) were significantly elevated in PD patients compared to age-matched controls. Lactoferrin, as a second fecal marker of intestinal inflammation, showed a non-significant trend towards elevated concentrations in PD patients. None of the four fecal markers correlated with disease severity, PD subtype, dopaminergic therapy, or presence of constipation. Fecal markers reflecting intestinal inflammation and increased intestinal permeability have been primarily investigated in inflammatory bowel disease so far. Our data indicate that calprotectin, alpha-1-antitrypsin and zonulin could be useful non-invasive markers in PD as well. Even though these markers are not disease-specific, they corroborate the hypothesis of an intestinal inflammation as contributing factor in the pathogenesis of PD. Further investigations are needed to determine whether calprotectin, alpha-1-antitrypsin and zonulin can be used to define PD subgroups and to monitor the effect of interventions in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  20. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    Science.gov (United States)

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence

  1. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  2. Radioprotection of intestinal crypt cells by cox-inhibitors

    International Nuclear Information System (INIS)

    Bisnar, Paul O.; Dones, Rosa Angela S.A.; Serna, Paulene-Ver A.; Deocaris, Chester C.; Guttierez, Kalangitan V.; Deocaris, Custer C.

    2006-01-01

    The regulation of tissue homeostasis in the gastrointestinal epithelium after epithelial injury focuses on the prostaglandins(PGs) as its major mediators. The two cyclooxygenase isoforms, cox-1 and cox-2, catalyze synthesis of PGs. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation, and in adenomas and carcinomas. To study the effects of various commercially-available cox-inhibitors (Ketorolac: cox-1 selective; Celecoxib: cox-2 selective; and Indocid: cox-1/2 non-selective), we determine mouse crypt epithelial cell fate after genotoxic injury with whole-body gamma-ray exposure at 15 Gy. Intestinal tissues of mice treated with cox-2 inhibitors that showed invariable apoptotic event, however, have increased occurrence of regenerating cells. Our results suggest a potential application of cox-2 selective inhibitors as radioprotective agent for normal cells after radiotherapy. (Author)

  3. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  4. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Nives Hörmann

    Full Text Available The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs. Here, we report that colonization of germ-free (GF Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2 and protein-kinase B (AKT induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

  5. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  6. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  7. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis.

    Science.gov (United States)

    Guo, Zheng; Lucchetta, Elena; Rafel, Neus; Ohlstein, Benjamin

    2016-10-01

    Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    Science.gov (United States)

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  9. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    International Nuclear Information System (INIS)

    Alleaume, Celine; Eychene, Alain; Harnois, Thomas; Bourmeyster, Nicolas; Constantin, Bruno; Caigneaux, Evelyne; Muller, Jean-Marc; Philippe, Michel

    2004-01-01

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  10. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  11. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn; Liu, Hongchun, E-mail: liuhch@aliyun.com; Zhang, Shuncai, E-mail: zhang.shuncai@zs-hospital.sh.cn

    2016-02-19

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGF in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1

  12. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    Science.gov (United States)

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. © 2015 Wiley Periodicals, Inc.

  13. Challenges and opportunities for tissue-engineering polarized epithelium.

    Science.gov (United States)

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  14. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine

    Directory of Open Access Journals (Sweden)

    Lam Siew

    2010-06-01

    Full Text Available Abstract Background The zebrafish intestine is a simple tapered tube that is folded into three sections. However, whether the intestine is functionally similar along its length remains unknown. Thus, a systematic structural and functional characterization of the zebrafish intestine is desirable for future studies of the digestive tract and the intestinal biology and development. Results To characterize the structure and function of the adult zebrafish intestine, we divided the intestine into seven roughly equal-length segments, S1-S7, and systematically examined the morphology of the mucosal lining, histology of the epithelium, and molecular signatures from transcriptome analysis. Prominent morphological features are circumferentially-oriented villar ridges in segments S1-S6 and the absence of crypts. Molecular characterization of the transcriptome from each segment shows that segments S1-S5 are very similar while S6 and S7 unique. Gene ontology analyses reveal that S1-S5 express genes whose functions involve metabolism of carbohydrates, transport of lipids and energy generation, while the last two segments display relatively limited function. Based on comparative Gene Set Enrichment Analysis, the first five segments share strong similarity with human and mouse small intestine while S6 shows similarity with human cecum and rectum, and S7 with human rectum. The intestinal tract does not display the anatomical, morphological, and molecular signatures of a stomach and thus we conclude that this organ is absent from the zebrafish digestive system. Conclusions Our genome-wide gene expression data indicate that, despite the lack of crypts, the rostral, mid, and caudal portions of the zebrafish intestine have distinct functions analogous to the mammalian small and large intestine, respectively. Organization of ridge structures represents a unique feature of zebrafish intestine, though they produce similar cross sections to mammalian intestines

  15. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  16. Colon in acute intestinal infection.

    Science.gov (United States)

    Guarino, Alfredo; Buccigrossi, Vittoria; Armellino, Carla

    2009-04-01

    The colon is actively implicated in intestinal infections not only as a target of enteric pathogens and their products but also as a target organ for treatment. In the presence of diarrhea, both of osmotic and secretory nature, the colon reacts with homeostatic mechanisms to increase ion absorption. These mechanisms can be effectively exploited to decrease fluid discharge. A model of intestinal infections using rotavirus (RV) in colonic cells was set up and used to define a dual model of secretory and osmotic diarrhea in sequence. Using this model, antidiarrheal drugs were tested, namely zinc and the enkephalinase inhibitor racecadotril. Zinc was able to decrease the enterotoxic activity responsible for secretory diarrhea. It also inhibited the cytotoxic effect of RV. The mechanism of zinc was related at least in part to the activation of MAPK activity, but also a direct antiviral effect was observed. Racecadotril showed a potent and selective inhibition of active secretion, being particularly effective in the first phase of RV diarrhea. The use of drugs active at the colonic level, therefore, offers effective options to treat intestinal infections in childhood. In addition, the colon is the natural site of colonic microflora, a target of probiotic therapy, which is the first line of approach recommended by the European Society for Paediatric Gastroenterology, Hepatology and Nutrition to treat infectious diarrhea.

  17. The Circadian Clock Gene BMAL1 Coordinates Intestinal RegenerationSummary

    Directory of Open Access Journals (Sweden)

    Kyle Stokes

    2017-07-01

    Full Text Available Background & Aims: The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. Methods: We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. Results: The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. Conclusions: Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology. Keywords: Intestine, Circadian Rhythms, Gastrointestinal Syndrome, TNF, Intestinal Stem Cells

  18. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp.

    Directory of Open Access Journals (Sweden)

    Kaisa Hiippala

    2016-10-01

    Full Text Available Sutterella species have been frequently associated with human diseases, such as autism, Down syndrome and inflammatory bowel disease (IBD, but the impact of these bacteria on health still remains unclear. Especially the interactions of Sutterella spp. with the host are largely unknown, despite of the species being highly prevalent. In this study, we addressed the interaction of three known species of Sutterella with the intestinal epithelium and examined their adhesion properties, the effect on intestinal barrier function and the pro-inflammatory capacity in vitro. We also studied the relative abundance and prevalence of the genus Sutterella and S. wadsworthensis in intestinal biopsies of healthy individuals and patients with celiac disease (CeD or IBD. Our results show that Sutterella spp. are abundant in the duodenum of healthy adults with a decreasing gradient towards the colon. No difference was detected in the prevalence of Sutterella between the pediatric IBD or CeD patients and the healthy controls. Sutterella parvirubra adhered better than the two other Sutterella spp. to differentiated Caco-2 cells and was capable of decreasing the adherence of S. wadsworthensis, which preferably bound to mucus and human extracellular matrix (ECM proteins. Furthermore, only S. wadsworthensis induced an interleukin-8 (IL-8 production in enterocytes, which could be due to different lipopolysaccharide (LPS structures between the species. However, its pro-inflammatory activity was modest as compared to non-pathogenic Escherichia coli. Sutterella spp. had no effect on the enterocyte monolayer integrity in vitro. Our findings indicate that the members of genus Sutterella are widely prevalent commensals with mild pro-inflammatory capacity in the human gastrointestinal tract and do not contribute significantly to the disrupted epithelial homeostasis associated with microbiota dysbiosis and increase of Proteobacteria. The ability of Sutterella spp. to adhere to

  19. File list: Unc.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Olfactory_epithelium.bed ...

  20. File list: Unc.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Olfactory_epithelium.bed ...

  1. File list: Unc.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Olfactory_epithelium.bed ...

  2. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  3. Intestinal enzyme distribution after supralethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Gerber, G B; Buracchi, A; Deroo, J [Florence Univ. (Italy). Istituto di Radiologia; Centre d' Etude de l' Energie Nucleaire, Mol (Belgium). Dept. de Radiobiologie)

    1977-07-01

    The activity of some intestinal enzymes has been studied after 2 kR irradiation. Brush border enzymes, maltase and leucineaminopeptidase (LAP) show an increase 20 hours after irradiation, while after 72 hours their activities are reduced to very low levels. Lysosomal enzymes show a completely different behaviour: acid phosphatase activity increases only 72 hours after irradiation, whereas ..beta.. glucuronidase increases significantly after 20 hours and reaches values two or three times higher than controls after 72 hours. The histologic picture at the first interval after irradiation shows gross alterations in the crypt region, but the villi appear nearly normal. Seventy-two hours after irradiation the whole epithelium is affected and very numerous leukocytes are present in the stroma.

  4. Intestinal lymphangiectasia in children

    Science.gov (United States)

    Isa, Hasan M.; Al-Arayedh, Ghadeer G.; Mohamed, Afaf M.

    2016-01-01

    Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification. PMID:26837404

  5. Intestinal parasites and tuberculosis

    Directory of Open Access Journals (Sweden)

    Anuar Alonso Cedeño-Burbano

    2017-10-01

    Conclusions: The available evidence was insufficient to affirm that intestinal parasites predispose to developing tuberculous. The studies carried out so far have found statistically insignificant results.

  6. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  7. Fine-structural effects of 1200-R abdominal x irradiation on rat intestinal epithelium

    International Nuclear Information System (INIS)

    Lieb, R.J.; McDonald, T.F.; McKenney, J.R.

    1977-01-01

    Male Charles River CD rats were shielded from the xiphoid process cranially with lead and were exposed to 1200-R abdominal x irradiation. Animals were sacrificed at 1 through 4 days following irradiation and tissues from both ileum and jejunum were prepared for electron microscopic examination. At the fine-structural level early changes were confined to a proliferation and dilation of smooth endoplasmic reticulum and to an increase in the number of lysosomes. At 4 days postirradiation, cells covering the villi were cuboidal rather than columnar and appeared to be immature crypt-type cells. The appearance of these cells was coincident with the onset of diarrhea in these animals

  8. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    OpenAIRE

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-indu...

  9. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-08-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-induced colonic tumours in rats, and to retard the growth of 2 out of 3 lines of human colonic tumours propagated as xenografts in immune-deprived mice.

  10. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  11. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  12. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  13. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Nielsen, Robert

    1999-01-01

    Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+......Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+...

  14. Ultraviolet induced lysosome activity in corneal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm/sup -2/ to 10.000 Jm/sup -2/ and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm/sup -2/ and lens threshold (Hsub(L)) was 7.500 Jm/sup -2/. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared.

  15. Ultraviolet induced lysosome activity in corneal epithelium

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm -2 to 10.000 Jm -2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm -2 and lens threshold (Hsub(L)) was 7.500 Jm -2 . The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. (orig.) [de

  16. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    Science.gov (United States)

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  17. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    International Nuclear Information System (INIS)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung; Xu Anlong; Duan Wei; Zhu Yizhun; Sheu, F.-S.; Boelsterli, Urs Alex; Chan, Eli; Zhang Qiang; Wang, J.-C.; Ee, Pui Lai Rachel; Koh, H.L.; Huang Min; Zhou Shufeng

    2006-01-01

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1β, IL-2, IL-6), interferon (IFN-γ) and tumor necrosis factor-α (TNF-α) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1β, IL-2, IL-6, IFN-γ and TNF-α and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1β, IFN-γ and TNF-α was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-α mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities

  18. Primary intestinal lymphangiectasia.

    Science.gov (United States)

    Suresh, N; Ganesh, R; Sankar, Janani; Sathiyasekaran, Malathi

    2009-10-01

    Primary intestinal lymphangiectasia (PIL) is a rare disease of intestinal lymphatics presenting with hypoproteinemia, bilateral lower limb edema, ascites, and protein losing enteropathy. We report a series of 4 children from Chennai, India presenting with anasarca, recurrent diarrhea, hypoproteinemia and confirmatory features of PIL on endoscopy and histopathology.

  19. Effect of Glucagon-like Peptide 2 on Tight Junction in Jejunal Epithelium of Weaned Pigs though MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Changsong Yu

    2014-05-01

    Full Text Available The glucagon-like peptide 2 (GLP-2 that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets’ intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK signaling pathway in piglets’ intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco’s modified Eagle’s medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1, occludin and claudin-1 were increased (p<0.05. U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05. In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs’ jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.

  20. IL-33 activates tumor stroma to promote intestinal polyposis.

    Science.gov (United States)

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  1. Congenital intestinal lymphangiectasia

    Directory of Open Access Journals (Sweden)

    Popović Dušan Đ.

    2011-01-01

    Full Text Available Background. Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. Case report. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and suportive therapy. Conclusion. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  2. [Congenital intestinal lymphangiectasia].

    Science.gov (United States)

    Popović, Dugan D j; Spuran, Milan; Alempijević, Tamara; Krstić, Miodrag; Djuranović, Srdjan; Kovacević, Nada; Damnjanović, Svetozar; Micev, Marjan

    2011-03-01

    Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortuous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and supportive therapy. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  3. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  4. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  5. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  6. Buccal Epithelium in treating Ocular Surface Disorders

    Directory of Open Access Journals (Sweden)

    Srinivas KR

    2008-11-01

    Full Text Available Background - Ocular surface disorders due to limbal stem cell deficiency are an important cause of ocular morbidity and visual loss. Although autologous limbal stem cell transplants have helped in the management of unilateral disease, allografts in those with bilateral disease often fail due to immunological reasons. The use of autologous buccal epithelium cultivated on amniotic membrane has been described as a useful approach in the management of this condition. It is the purpose of this study to explore the feasibility of using a novel thermo-gelatin polymer (TGP as a substrate to culture these cells, and to characterize them using RNA extraction and RT-PCR. Methods - Oral cheek mucosal biopsies were obtained from 5 adult patients undergoing Modified Osteo-Odonto Keratoprosthesis surgery. The specimens were transported to the laboratory in transport medium. The cells were released using enzymatic digestion and seeded in both convention culture medium and TGP. The resulting cellular growth was characterized using RNA extraction and RT-PCR. Results - Cells could be cultured from 4 of the 5 specimens. In one specimen, contamination occurred and this was discarded. In the other specimens, the cheek epithelial cells could be cultured in both the conventional culture medium and TGP, with equal ease. RT-PCR revealed the presence of K3, a marker for epithelial cells, and GAPDH indicating the presence of some adipose tissue as well. Conclusions - It is possible to culture autologous cheek mucosal epithelial cells using TGP, a synthetic scaffold, without the need for other biological substrates. Since the specimens are obtained from the oral cavity, stringent asepsis is required. Further studies are required for histopathological characterization of the cultured cells and to create a model for delivery onto the ocular surface of eyes with bilateral surface disease due to limbal stem cell deficiency.

  7. Effect of Psychoneural Factors on Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    M Cecilia Berin

    1997-01-01

    Full Text Available Stress has been associated with abnormal gastrointestinal function, including diarrhea and abdominal pain, and stress-associated gastric ulceration has frequently been documented. Stress can also exacerbate ongoing pathophysiology and often precedes relapses in patients with inflammatory bowel disease or irritable bowel syndrome. The relatively new field of psychoneuroimmunology is involved with the elucidation of mechanisms that explain the link between the central nervous system and immune-mediated pathophysiology. Recent progress examining the interaction among the nervous system, the immune system and the epithelium of the intestine is discussed, and the evidence for central nervous sysytem control of this interaction is examined.

  8. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  9. Cyclosporine a inhibits apoptosis of rat gingival epithelium.

    Science.gov (United States)

    Ma, Su; Liu, Peihong; Li, Yanwu; Hou, Lin; Chen, Li; Qin, Chunlin

    2014-08-01

    The use of cyclosporine A (CsA) induces hyperplasia of the gingival epithelium in a site-specific response manner, but the molecular mechanism via which the lesion occurs is unclear. The present research aims to investigate the site-specific effect of CsA on the apoptosis of gingival epithelium associated with gingival hyperplasia. Forty Wistar rats were divided into CsA-treated and non-treated groups. Paraffin-embedded sections of mandibular first molars were selected for hematoxylin and eosin staining, immunohistochemistry analyses of bcl-2 and caspase-3, and the staining of terminal deoxynucleotidyl transfer-mediated dUTP nick-end labeling (TUNEL). The area of the whole gingival epithelium and the length of rete pegs were measured, and the number of bcl-2- and caspase-3-positive cells in the longest rete peg were counted. The analysis of variance for factorial designs and Fisher least significant difference test for post hoc analysis were used to determine the significance levels. In CsA-treated rats, bcl-2 expression was significantly upregulated, whereas caspase-3 expression was downregulated, along with a reduced number of TUNEL-positive cells. The site-specific distribution of bcl-2 was consistent with the site-specific hyperplasia of the gingival epithelium in CsA-treated rats. CsA inhibited gingival epithelial apoptosis via the mitochondrial pathway and common pathway. The antiapoptotic protein bcl-2 might play a critical role in the pathogenesis of the site-specific hyperplasia of gingival epithelium induced by CsA. There were mechanistic differences in the regulation of apoptosis for cells in the attached gingival epithelium, free gingival epithelium, and junctional epithelium.

  10. Childhood malnutrition and the intestinal microbiome.

    Science.gov (United States)

    Kane, Anne V; Dinh, Duy M; Ward, Honorine D

    2015-01-01

    Malnutrition contributes to almost half of all deaths in children under the age of 5 y, particularly those who live in resource-constrained areas. Those who survive frequently suffer from long-term sequelae including growth failure and neurodevelopmental impairment. Malnutrition is part of a vicious cycle of impaired immunity, recurrent infections, and worsening malnutrition. Recently, alterations in the gut microbiome have also been strongly implicated in childhood malnutrition. It has been suggested that malnutrition may delay the normal development of the gut microbiota in early childhood or force it toward an altered composition that lacks the required functions for healthy growth and/or increases the risk for intestinal inflammation. This review addresses our current understanding of the beneficial contributions of gut microbiota to human nutrition (and conversely the potential role of changes in that community to malnutrition), the process of acquiring an intestinal microbiome, potential influences of malnutrition on the developing microbiota, and the evidence directly linking alterations in the intestinal microbiome to childhood malnutrition. We review recent studies on the association between alterations in the intestinal microbiome and early childhood malnutrition and discuss them in the context of implications for intervention or prevention of the devastation caused by malnutrition.

  11. Oestrus synchronization treatment induces histomorphological changes on the uterine tube epithelium of the gilt.

    Science.gov (United States)

    Juárez-Mosqueda, M L; Anzaldúa Arce, S R; Palma Lara, I; García Dalmán, C; Cornejo Cortés, M A; Córdova Izquierdo, A; Villaseñor Gaona, H; Trujillo Ortega, M E

    2015-12-01

    -positive and PAS-negative cells, and the epithelium height. This has influence in the secretory activity of the epithelium and possibly alters the fluid microenvironment of the gilt's uterine tube. The biological impact of regional variations in the epithelial cells of the gilt's uterine tube needs further investigation to understand the implications that the reproductive processes can have in the uterine tube. © 2014 Blackwell Verlag GmbH.

  12. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    Science.gov (United States)

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease

  13. Proteomic analysis of the intestinal adaptation response reveals altered expression of fatty acid binding proteins following massive small bowel resection.

    Science.gov (United States)

    Stephens, Andrew N; Pereira-Fantini, Prue M; Wilson, Guineva; Taylor, Russell G; Rainczuk, Adam; Meehan, Katie L; Sourial, Magdy; Fuller, Peter J; Stanton, Peter G; Robertson, David M; Bines, Julie E

    2010-03-05

    Intestinal adaptation in response to the loss of the small intestine is essential to restore enteral autonomy in patients who have undergone massive small bowel resection (MSBR). In a proportion of patients, intestinal function is not restored, resulting in chronic intestinal failure (IF). Early referral of such patients for transplant provides the best prognosis; however, the molecular mechanisms underlying intestinal adaptation remain elusive and there is currently no convenient marker to predict whether patients will develop IF. We have investigated the adaptation response in a well-characterized porcine model of intestinal adaptation. 2D DIGE analysis of ileal epithelium from piglets recovering from massive small bowel resection (MSBR) identified over 60 proteins that changed specifically in MSBR animals relative to nonoperational or sham-operated controls. Three fatty acid binding proteins (L-FABP, FABP-6, and I-FABP) showed changes in MSBR animals. The expression changes and localization of each FABP were validated by immunoblotting and immunohistochemical analysis. FABP expression changes in MSBR animals occurred concurrently with altered triglyceride and bile acid metabolism as well as weight gain. The observed FABP expression changes in the ileal epithelium occur as part of the intestinal adaptation response and could provide a clinically useful marker to evaluate adaptation following MSBR.

  14. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  15. Segmental reversal of distal small intestine in short bowel syndrome

    DEFF Research Database (Denmark)

    Grave, Pernille Kock; Thomsen, Sabrina Valentin; Clark, Pia Susanne

    2018-01-01

    were the influence on cell proliferation and mucosal architecture shown by histological analysis. Methods: Sixteen piglets underwent a 60% resection of the distal small intestine and were randomized into two groups. Group 1 short bowel syndrome alone (SBS) (n = 8) and group 2 with reversal of a distal...... small intestinal segment (SBS-RS) (n = 8). Body weight was measured daily and the pigs were euthanized after 1 month. Crypt depths, villus heights and muscle layers thicknesses were measured. For the evaluation of microvilli of the brush border of the epithelium and cell proliferation...... was found in the SBS group and increase in the thickness of the circular and longitudinal muscle layers in the SBS-RS group. In the distal ileal segment the longitudinal muscle layer thicknesses were increased in the SBS group. Otherwise, no significant changes were found. Conclusion: Reversal of a 20-cm...

  16. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    Science.gov (United States)

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  17. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  18. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2017-01-01

    Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular...... for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border...

  19. Compartmentalised expression of meprin in small intestinal mucosa: enhanced expression in lamina propria in coeliac disease.

    Science.gov (United States)

    Lottaz, Daniel; Buri, Caroline; Monteleone, Giovanni; Rösmann, Sandra; Macdonald, Thomas T; Sanderson, Ian R; Sterchi, Erwin E

    2007-03-01

    Epithelial cells in the human small intestine express meprin, an astacin-like metalloprotease, which accumulates normally at the brush border membrane and in the gut lumen. Therefore, meprin is targeted towards luminal components. In coeliac disease patients, peptides from ingested cereals trigger mucosal inflammation in the small intestine, disrupting epithelial cell differentiation and function. Using in situ hybridisation on duodenal tissue sections, we observed a marked shift of meprin mRNA expression from epithelial cells, the predominant expression site in normal mucosa, to lamina propria leukocytes in coeliac disease. Meprin thereby gains access to the substrate repertoire present beneath the epithelium.

  20. Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell NicheSummary

    Directory of Open Access Journals (Sweden)

    Reina Aoki

    2016-03-01

    Full Text Available Background & Aims: Intestinal epithelial stem cells that express leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 and/or B cell specific Moloney murine leukemia virus integration site 1 (Bmi1 continuously replicate and generate differentiated cells throughout life. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells. However, ablating Paneth cells has no effect on the maintenance of functional stem cells. Here, we show definitively that a small subset of mesenchymal subepithelial cells expressing the winged-helix transcription factor forkhead box l1 (Foxl1 are a critical component of the intestinal stem cell niche. Methods: We genetically ablated Foxl1+ mesenchymal cells in adult mice using 2 separate models by expressing either the human or simian diphtheria toxin receptor under Foxl1 promoter control. Conclusions: Killing Foxl1+ cells by diphtheria toxin administration led to an abrupt cessation of proliferation of both epithelial stem- and transit-amplifying progenitor cell populations that was associated with a loss of active Wnt signaling to the intestinal epithelium. Therefore, Foxl1-expressing mesenchymal cells constitute the fundamental niche for intestinal stem cells. Keywords: Intestinal Stem Cell Niche, Wnt, Mesenchyme

  1. Overview of Current Concepts in Gastric Intestinal Metaplasia and Gastric Cancer

    Science.gov (United States)

    Adam, Jason D.; Borum, Marie L.; Koh, Joyce M.; Stephen, Sindu

    2018-01-01

    Gastric intestinal metaplasia is a precancerous change of the mucosa of the stomach with intestinal epithelium, and is associated with an increased risk of dysplasia and cancer. The pathogenesis to gastric cancer is proposed by the Correa hypothesis as the transition from normal gastric epithelium to invasive cancer via inflammation followed by intramucosal cancer and invasion. Multiple risk factors have been associated with the development of gastric intestinal metaplasia interplay, including Helicobacter pylori infection and associated genomics, host genetic factors, environmental milieu, rheumatologic disorders, diet, and intestinal microbiota. Globally, screening guidelines have been established in countries with high incidence. In the United States, no such guidelines have been developed due to lower, albeit increasing, incidence. The American Society for Gastrointestinal Endoscopy recommends a case-by-case patient assessment based upon epidemiology, genetics, and environmental risk factors. Studies have examined the use of a serologic biopsy to stratify risk based upon factors such as H pylori status and virulence factors, along with serologic markers of chronic inflammation including pepsinogen I, pepsinogen II, and gastrin. High-risk patients may then be advised to undergo endoscopic evaluation with mapping biopsies from the antrum (greater curvature, lesser curvature), incisura angularis, and corpus (greater curvature, lesser curvature). Surveillance guidelines have not been firmly established for patients with known gastric intestinal metaplasia, but include repeat endoscopy at intervals according to the histologic risk for malignant transformation. PMID:29606921

  2. Overview of Current Concepts in Gastric Intestinal Metaplasia and Gastric Cancer.

    Science.gov (United States)

    Jencks, David S; Adam, Jason D; Borum, Marie L; Koh, Joyce M; Stephen, Sindu; Doman, David B

    2018-02-01

    Gastric intestinal metaplasia is a precancerous change of the mucosa of the stomach with intestinal epithelium, and is associated with an increased risk of dysplasia and cancer. The pathogenesis to gastric cancer is proposed by the Correa hypothesis as the transition from normal gastric epithelium to invasive cancer via inflammation followed by intramucosal cancer and invasion. Multiple risk factors have been associated with the development of gastric intestinal metaplasia interplay, including Helicobacter pylori infection and associated genomics, host genetic factors, environmental milieu, rheumatologic disorders, diet, and intestinal microbiota. Globally, screening guidelines have been established in countries with high incidence. In the United States, no such guidelines have been developed due to lower, albeit increasing, incidence. The American Society for Gastrointestinal Endoscopy recommends a case-by-case patient assessment based upon epidemiology, genetics, and environmental risk factors. Studies have examined the use of a serologic biopsy to stratify risk based upon factors such as H pylori status and virulence factors, along with serologic markers of chronic inflammation including pepsinogen I, pepsinogen II, and gastrin. High-risk patients may then be advised to undergo endoscopic evaluation with mapping biopsies from the antrum (greater curvature, lesser curvature), incisura angularis, and corpus (greater curvature, lesser curvature). Surveillance guidelines have not been firmly established for patients with known gastric intestinal metaplasia, but include repeat endoscopy at intervals according to the histologic risk for malignant transformation.

  3. Spontaneous and x-irradiation induced carcinomas of small intestine in Wistar-Furth rats

    Energy Technology Data Exchange (ETDEWEB)

    Maeura, Y; Kosaki, G; Kitamura, H [Osaka Univ. (Japan). Faculty of Medicine; Nagatomo, T

    1980-04-01

    Spontaneous carcinoma of the small intestine in Wistar-Furth (WF) rats and carcinoma of the small intestine induced by local x-ray irradiation to the abdomen of WF rats without carcinoma were observed, and x-ray sensitivity of the small intestine mucosa was reported. Out of 19 rats with spontaneous carcinoma of the small intestine, 18 also had carcinoma of the colon, and 4 also had gastric cancer. They already had spontaneous carcinoma of the small intestine within 2 weeks after their birth, and the ratio of female and male was 13 : 6. Histological type of this carcinoma in all 19 rats was highly differentiated adenocarcinoma, and small intestine epithelium around carcinoma presented atypical epithelium. As to mice without carcinoma, x-ray, 1,000 R, 1,500 R, and 2,000 R, was irradiated to the abdomen of Sprague-Dawley (SD) and WF rats. In the irradiation with 1,000 R, carcinogenesis was not found in rats of both strains. In the irradiation with 1,500 R, carcinogenesis was hardly found, but in the irradiation with 2,000 R, carcinoma of small intestine occurred in 5 of 17 rats 15 weeks after the irradiation, 9 of 19 rats 25 weeks after the irradiation, and 9 of 14 rats 35 weeks after the irradiation. Histological type of carcinoma in irradiated rats was highly differentiated adenocarcinoma. The incidence of carcinoma in irradiated rats was higher in WF rats than SD rats through the course after the irradiation, which suggested that x-ray sensitivity of WF rats was higher than that of SD rats. Therefore, carcinoma of the small intestine in irradiated mice seemed to be induced by x-ray.

  4. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Colin R Lickwar

    2017-08-01

    Full Text Available The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development

  5. Prevalence of ciliated epithelium in apical periodontitis lesions.

    Science.gov (United States)

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Hair cell regeneration in the avian auditory epithelium.

    Science.gov (United States)

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  7. Comparison of transepithelial corneal crosslinking with epithelium-off crosslinking (epithelium-off CXL in adult Pakistani population with progressive keratoconus

    Directory of Open Access Journals (Sweden)

    Bushra Akbar

    2017-01-01

    CONCLUSION: Transepithelial CXL is not recommended to be replaced completely by standard epithelium-off CXL due to continued ectatic progression in 25% of cases. However, thin corneas, unfit for standard epithelium-off CXL, can benefit from transepithelial CXL.

  8. Intestinal failure in childhood

    African Journals Online (AJOL)

    Insulin influences intestinal structure and absorptive function.36 The favourable effect of .... lipid emulsions, micronutrients provison and cyclic infusion.3 The guidelines on PN .... Classification, epidemiology and aetiology. Best Pract Res Clin ...

  9. Mathematical modelling of the death rate dynamics in mammals with intestinal form of radiation sicleness

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1990-01-01

    A mathematical models has been developed to describe the death rate dynamics in irradiated mammals. The model links statistical biometric functions with statistical and dynamic characteristics of the organism's 'critical' system. There is an agreement between the results of modelling and experiments with respect to death rate dynamics of small laboratory animals subjected to acute and chronic irradiation with doses and dose-rates at which small intestine epithelium is 'ctitical'

  10. Signal transduction pathways participating in homeostasis and malignant transformation of the intestinal tissue

    Czech Academy of Sciences Publication Activity Database

    Krausová, Michaela; Kořínek, Vladimír

    2012-01-01

    Roč. 59, č. 6 (2012), s. 708-718 ISSN 0028-2685 R&D Projects: GA ČR GAP305/11/1780; GA ČR GAP305/12/2347; GA ČR GAP304/11/1252; GA ČR GD204/09/H058 Keywords : colorectal cancer * epithelium * gut * intestine * mouse models * stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.574, year: 2012

  11. The Ciona intestinalis immune-related galectin genes (CiLgals-a and CiLgals-b) are expressed by the gastric epithelium.

    Science.gov (United States)

    Parrinello, Daniela; Sanfratello, Maria Antonietta; Vizzini, Aiti; Testasecca, Lelia; Parrinello, Nicolò; Cammarata, Matteo

    2017-03-01

    The transcription of two Ciona intestinalis galectin genes (CiLgals-a and CiLgals-b) is uparegulated by LPS in the pharynxis (hemocytes, vessel epithelium, endostilar zones) which is retained the main organ of the immunity. In this ascidian, for the first time we show, by immunohistochemistry and in situ hybridization methods, that these two immune-related genes are expressed in the gastric epithelium of naïve ascidians, whereas the galectins appear to be only contained in the intestine columnar epithelium. In addition, according to previous results on the pharynx, the genes are also expressed and galectins produced by hemocytes scattered in the connective tissue surrounding the gut. The genes expression and galectin localization in several tissues, including the previous findings on the transcription upregulation, the constitutive expression of these genes by endostylar zones and by the gastric epithelium suggest a potential multifunctional role of these galectins. In this respect, it is of interest to define where the CiLgals are normally found as related to the tissue functions. Such an approach should be a starting point for further investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Increase of corneal epithelium cell radioresistance during regeneration

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1985-01-01

    A comparative study of the radiosensitivity of the normal and regenerating cornea epithelium of C 57 Bl mice was performed on the cellular level, the duration of the cell cycle being taken into account. Criteria of radiation injuries were the number of chromosome aberrations, mitotic index and duration of mitotic block. The anterior part of the head was irradiated singly with 1.75, 3.5 or 7.0 Gy and also repeatedly 3.5 + 3.5 at a 24-hours interval. The corneas were fixed 2, 4, 6, 12, 24, 48, 72 and 96 hours after irradiation. In all cases of irradiated mice the regenerating epithelium showed a shorter mitotic block and significantly lower cytogenetic injury as compared with the controls. Effects of fractionated irradiation were only shown in the regenerating epithelium. The results obtained indicate that regenerating epithelium cells of the cornea are significantly more radioresistant than normal epithelium due to activation of post-radiation recovery, and also, possibly, due to an increase in the content of endogenous radioprotectors. (author)

  13. Developmental origin of the posterior pigmented epithelium of iris.

    Science.gov (United States)

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  14. Respiratory Epithelium Lined Cyst of the Maxilla: Differential Diagnosis

    Directory of Open Access Journals (Sweden)

    C. P. Martinelli-Kläy

    2017-01-01

    Full Text Available Maxillary cysts, including the cysts lined by respiratory epithelium, can present a diagnostic challenge. We report an unusual case of a maxillary cyst on an endodontically treated tooth #16, in which the cavity was totally lined by a respiratory epithelium. The patient, a 35-year-old male, presented with a generalized chronic periodontitis and complained of a pain in the tooth #16 region. A periodontal pocket extending to the root apices with pus coming out from the gingival was found. A combined endodontic periodontal was observed on a panoramic radiography. CBCT-scan revealed a well-circumscribed radiolucent lesion at the apices of the distobuccal root of the 16. A communication with the right maxillary sinus cavity and a maxillary and ethmoidal sinusitis were also observed. The lesion was removed and histological examination revealed a cyst lined exclusively by respiratory epithelium. Ciliated and rare mucous cells were also observed. The diagnosis could evoke a surgical ciliated cyst mimicking the radicular cyst but the patient has no previous history of trauma or surgery in the maxillofacial region. It could also be an unusual radicular cyst in which the stratified squamous epithelium was destroyed by inflammation and replaced by a respiratory epithelium of the maxillary sinus.

  15. Intestinal lymphangiectasia in adults.

    Science.gov (United States)

    Freeman, Hugh James; Nimmo, Michael

    2011-02-15

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial

  16. Autoradiographic study of the permeability characteristics of the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Kingham, J G.C.; Baker, J H; Loehry, C A [Royal Victoria Hospital, Bournemouth (UK)

    1978-02-01

    This autoradiographic study demonstrates the distribution of a range of small solutes and macromolecules in the mucosa of the guinea-pig small intestine after intracardiac injection. The substances investigated were: /sup 14/C-urea, /sup 3/H-mannose, /sup 3/H-inulin, and /sup 125/I polyvinylpyrrolidone (PVP). Small bowel biopsies were taken at intervals from one to 60 minutes after injection and the tissues processed for autoradiography. Light microscopic examination of the autoradiographs showed that the compartmental distribution depended on the molecular size of the substances being studied. Urea and mannose, as small solutes, were uniformly distributed throughout the intravascular, extravascular, and epithelial compartments. Inulin was evenly distributed in the vessel lumen and extravascular space but there was a considerable drop in concentration in the epithelium. PVP exhibited the most marked gradients, the concentration being greatest in the vascular lumina, lower in the extravascular space, least in the epithelium. Thus there appear to be two barriers to macromolecular passage which are freely permeable to small solutes: the capillary wall and the epithelium. At a light microscopical level it was not possible to observe whether the limiting membrane of each of these barriers is the cell plasmalemmal membrane or the basement membrane. The selectivity of the epithelial barrier was greater than that of the capillary barrier.

  17. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Science.gov (United States)

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  18. Studies on colon cancer prone rats. Spontaneous small intestinal carcinomas and tumor induction of small intestine by x-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maeura, Y [Osaka Univ. (Japan). Faculty of Medicine

    1979-12-01

    Histological investigation was carried out for Wister-Furth (WF) rats, prone to cancers of the colon and small intestine. Gastric cancer was observed in about 1/4 of the rats with the cancers of the colon and the small intestine, indicating that these rats could be the model animals of the cancer family syndrome with multi-cancers in the gastrointestinal tracts. The small intestine of WF and SD (Sprague-Dowley) rats as exposed to 1000, 2 x 1000, 1500, and 2000 R of x-rays at a dose rate of 157 R/min. In each group the stomach, small intestine, cecum, and colon were histologically investigated, immediately and 15, 25, and 35 weeks after irradiation. The rates of cancer occurrence in 15, 25, and 35 weeks were 5/17, 9/19, and 9/14 for WF strain and 1/8, 2/7, and 2/8 for SD strain, respectively. The rate increased with the increment of the days after irradiation. It was suggested that the atypical epithelium of the gastrointestinal tracts induced the cancer in high rates when some trigger was added.

  19. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  20. Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4

    Directory of Open Access Journals (Sweden)

    Judith Radloff

    2017-08-01

    Full Text Available The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE covering porcine Peyer's patches (PP has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE, employing the Ussing chamber technique. Transepithelial resistance (TER and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ proteins (claudin-1, -2, -3, -4, -5, and -8 were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology.

  1. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  2. Effect of ochratoxin A on the intestinal mucosa and mucosa-associated lymphoid tissues in broiler chickens.

    Science.gov (United States)

    Solcan, Carmen; Pavel, Geta; Floristean, Viorel Cezar; Chiriac, Ioan Sorin Beschea; Şlencu, Bogdan Gabriel; Solcan, Gheorghe

    2015-03-01

    The immunotoxic effect of ochratoxin A (OTA) on the intestinal mucosa-associated lymphoid tissue and its cytotoxic action on the intestinal epithelium were studied in broiler chickens experimentally treated with the toxin. From the 7th day of life, 80 male broiler chickens (Ross 308) were randomly divided into four groups of 20 birds each. The three experimental groups (E1-3) were treated with OTA for 28 days (E1: 50 μg/kg body weight [bw]/day; E2: 20 μg/kg bw/day; E3: 1 μg/kg bw/day) and the fourth group served as control. Histological examination of the intestinal mucosa and immunohistochemical staining for identification of CD4+, CD8+, TCR1 and TCR2 lymphocytes in the duodenum, jejunum and ileocaecal junction were performed, and CD4+/CD8+ and TCR1/TCR2 ratios were calculated. OTA toxicity resulted in decreased body weight gain, poorer feed conversion ratio, lower leukocyte and lymphocyte count, and altered intestinal mucosa architecture. After 14 days of exposure to OTA, immunohistochemistry showed a significant reduction of the lymphocyte population in the intestinal epithelium and the lamina propria. After 28 days of exposure, an increase in the CD4+ and CD8+ values in both the duodenum and jejunum of chickens in Groups E1 and E2 was observed, but the TCR1 and TCR2 lymphocyte counts showed a significant reduction. No significant changes were observed in Group E3. The results indicate that OTA induced a decrease in leukocyte and lymphocyte counts and was cytotoxic to the intestinal epithelium and the mucosa-associated lymphoid tissue, altering the intestinal barrier and increasing susceptibility to various associated diseases.

  3. The distribution of free calcium ions in the cholesteatoma epithelium

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Rasmussen, Gurli; Ottosen, Peter D

    2005-01-01

    The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside...... appeared where oblong accumulations of free calcium ions were found basally in the stratum. These findings provide evidence that fluctuations in epidermal calcium in cholesteatoma epithelium may underlie the abnormal desquamation, may contribute to the formation of an abnormal permeability barrier and may...

  4. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    Science.gov (United States)

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  5. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    Science.gov (United States)

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  6. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  7. Diagnosis of intestinal and extra intestinal amoebiasis

    International Nuclear Information System (INIS)

    Lopez, Myriam Consuelo; Quiroz, Damian Arnoldo; Pinilla, Analida Elizabeth

    2007-01-01

    The objective is to carry out a review of the national and international literature as of the XXth century in order to update the advances for the diagnosis of complex odd Entamoeba histolytic / Entamoeba dispar and that of intestinal and extra intestinal amoebiasis that may be of use to the scientific community. As well as to unify the diagnostic criteria of this parasitosis known as a public health problem, and as a consequence of that, optimize the quality of population care. Data source: there was a systematic search for the scientific literature Publisher in Spanish and English since 1960 until today, this selection started on the first semester of 2006 until 2007, in the development of the line on intestinal and extra-intestinal amoebiasis of the Medical School of the National University of Colombia. A retrospective search process was carried out, systematically reviewing the most relevant articles as well as the products of this research line. In deciding how to make this article, there was a continuous search in different data bases such as Medline, SciELO and other bases in the library of the National University of Colombia, as well as other classical books related to the subject. For that purpose the terms amoebiasis, odd Entamoeba histolytic, Entamoeba, diagnosis, epidemiology, dysentery, amoebic liver abscess, were used. Studies selection: titles and abstracts were reviewed to select the original publications and the most representative ones related to this article's subject. Data extraction: the articles were classified according to the subject, the chronology and the authors according to the scientific contribution to solve the problem. Synthesis of the data: in the fi rst instance, a chronological critical analysis was carried out to order and synthesize the progress made in the diagnosis until confirmation of the experts' agreements in the field of amoebiasis was obtained throughout the world. Conclusion: this article summarizes what has taken place

  8. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation.

    Science.gov (United States)

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2010-11-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only

  10. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  11. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Nitric oxide (NO) production in mammalian non-tumorigenic epithelial cells of the small intestine and macrophages induced by individual strains of lactobacilli and bifidobacteria

    DEFF Research Database (Denmark)

    Pipenbaher, Natasa; Møller, Peter Lange; Dolinsek, Jan

    2009-01-01

    and absence of interferon gamma (INF-¿). Production of NO in intestinal epithelium was stimulated by individual strains of lactobacilli without INF-¿ priming. While none of the tested bifidobacteria were capable of inducing NO production, most constitutively secreted NO. Most tested strains induced...

  13. Lipopolysaccharide Binding Protein Enables Intestinal Epithelial Restitution Despite Lipopolysaccharide Exposure

    Science.gov (United States)

    Richter, Juli M.; Schanbacher, Brandon L.; Huang, Hong; Xue, Jianjing; Bauer, John A.; Giannone, Peter J.

    2011-01-01

    Intestinal epithelial restitution is the first part in the process of mucosal repair after injury in the intestine. Integrity of the intestinal mucosal barrier is important as a first line of defense against bacteria and endotoxin. Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in extremely low birth weight infants, but its mechanisms are not well defined. Abnormal bacterial colonization, immature barrier function, innate immunity activation and inflammation likely play a role. Lipopolysaccharide (LPS) binding protein (LBP) is secreted by enterocytes in response to inflammatory stimuli and has concentration-dependent effects. At basal concentrations, LBP stimulates the inflammatory response by presenting LPS to its receptor. However, at high concentrations, LBP is able to neutralize LPS and prevent an exaggerated inflammatory response. We sought to determine how LBP would affect wound healing in an in vitro model of intestinal cell restitution and protect against intestinal injury in a rodent model of NEC. Immature intestinal epithelial cells (IEC-6) were seeded in poly-l-lysine coated 8 chamber slides and grown to confluence. A 500μm wound was created using a cell scraper mounted on the microscope to achieve uniform wounding. Media was replaced with media containing LPS +/− LBP. Slide wells were imaged after 0, 8, and 24 hours and then fixed. Cellular restitution was evaluated via digital images captured on an inverted microscope and wound closure was determined by automated analysis. TLR4 was determined by rtPCR after RNA isolation from wounded cells 24 hours after treatment. LPS alone attenuated wound healing in immature intestinal epithelium. This attenuation is reversed by 24 hours with increasing concentrations of LBP so that wound healing is equivalent to control (p< 0.001). TLR4 was increased with LPS alone but levels returned to that of control after addition of LBP in the higher concentrations. LBP had no effect on the

  14. Small intestine diverticuli

    International Nuclear Information System (INIS)

    Pomakov, P.; Risov, A.

    1991-01-01

    The routine method of contrast matter passage applied to 850 patients with different gastrointestinal diseases proved inefficient to detect any small-intestinal diverticuli. The following modiffications of the method have been tested in order to improve the diagnostic possibilities of the X-ray: study at short intervals, assisted passage, enteroclysm, pharmacodynamic impact, retrograde filling of the ileum by irrigoscopy. Twelve diverticuli of the small-intestinal loops were identified: 5 Meckel's diverticuli, 2 solitary of which one of the therminal ileum, 2 double diverticuli and 1 multiple diverticulosis of the jejunum. The results show that the short interval X-ray examination of the small intestines is the method of choice for identifying local changes in them. The solitary diverticuli are not casuistic scarcity, its occurrence is about 0.5% at purposeful X-ray investigation. The assisted passage method is proposed as a method of choice for detection of the Meckel's diverticulum. 5 figs., 3 tabs. 18 refs

  15. Chronic intestinal pseudoobstruction syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Kyung Mo; Seo, Jeong Kee; Lee, Yong Seok [Seoul National University Children' s Hospital, Seoul (Korea, Republic of)

    1992-03-15

    Chronic intestinal pseudoobstruction syndrome is a rare clinical condition in which impaired intestinal peristalsis causes recurrent symptoms of bowel obstruction in the absence of a mechanical occlusion. This syndrome may involve variable segments of small or large bowel, and may be associated with urinary bladder retention. This study included 6 children(3 boys and 3 girls) of chronic intestinal obstruction. Four were symptomatic at birth and two were of the ages of one month and one year. All had abdominal distension and deflection difficulty. Five had urinary bladder distension. Despite parenteral nutrition and surgical intervention(ileostomy or colostomy), bowel obstruction persisted and four patients expired from sepses within one year. All had gaseous distension of small and large bowel on abdominal films. In small bowel series, consistent findings were variable degree of dilatation, decreased peristalsis(prolonged transit time) and microcolon or microrectum. This disease entity must be differentiated from congenital megacolon, ileal atresia and megacystis syndrome.

  16. Small Intestinal Infections.

    Science.gov (United States)

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections.

  17. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  18. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Science.gov (United States)

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  19. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay.

    Science.gov (United States)

    Yilmaz, Ozlem

    2008-10-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues.

  20. Small intestine aspirate and culture

    Science.gov (United States)

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  1. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    Science.gov (United States)

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  2. DIFFERENTIAL HISTOMORPHOMETRIC CHANGES IN NORMAL AND INFLAMED GINGIVAL EPITHELIUM

    Directory of Open Access Journals (Sweden)

    Tanaskovic Stankovic Sanja

    2016-12-01

    Full Text Available Introduction and aim: In recent decades, many factors such as smoking, unhealthy diet as well as high alcohol intake were marked as risk factors that can lead to increased incidence of malignant alterations, gingivitis, periodontal disease and other oral epithelium pathological changes. Having in mind that in the group of non-malignant and non-dental oral pathology gingivitis and periodontal disease are the most common oral mucosa alterations aim of our research was to investigate histomorphometric characteristics of healthy and altered oral and gingival epithelium. Material and methods: Tissue samples of 24 oral and gingival mucosa specimens were collected. Samples were fixed in 10% buffered paraformaldehyde, routinely processed and embedded in paraffin blocks. From each block sections 5 micrometer thin were made and standard H/E staining as well as immunocytochemical detection of Ki-67 proliferation marker and CD79a lymphocyte marker were performed. Measurements and image analysis was performed with Image Pro Plus software (Media Cybernetics, USA and Axiovision (Ziess, USA. Results: We showed that inflamed gingival epithelium is increasing its thickness in proportion to the severity of adjacent inflammation. Furthermore, mitotic index is rising (up to 132% in the same manner as well as basal lamina length (up to 70% when normal and inflamed gingiva is compared. Architecture of epithelial ridges is changed from straightforward to mesh-like. Conclusion: Assessment of the free gingival epithelium thickness is directly related to the severity of the inflammation process i

  3. Examination of the reticular epithelium of the bovine pharyngeal tonsil

    Science.gov (United States)

    The nasopharyngeal tonsil (adenoid), located at the posterior of the nasopharynx is ideally positioned to sample antigens entering through the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular composition of this important epithe...

  4. Coelomic epithelium-derived cells in visceral morphogenesis.

    Science.gov (United States)

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans. © 2015 Wiley Periodicals, Inc.

  5. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-01-01

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  6. Structure and development of the saccular sensory epithelium in ...

    African Journals Online (AJOL)

    Structure and development of the saccular sensory epithelium in relation to otolith growth in the perch Perca fluviatilis (Telostei) ... Electron microscopy indicated: 1) The apical surface of each hair cell is covered with a ciliary bundle which varies in length in different epithelial regions. Each bundle is formed from a long ...

  7. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    Science.gov (United States)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  8. Adhesion of Porphyromonas gingivalis serotypes to pocket epithelium

    NARCIS (Netherlands)

    Dierickx, K; Pauwels, M; Laine, ML; Van Eldere, J; Cassiman, JJ; van Winkelhoff, AJ; van Steenberghe, D; Quirynen, M

    Background: Porphyromonas gingivalis, a key pathogen in periodontitis, is able to adhere to and invade the pocket epithelium. Different capsular antigens of P gingivalis have been identified (K-serotyping). These P gingivalis capsular types show differences in adhesion capacity to human cell lines

  9. Radioautographic DNA synthesis study on mice Mus musculus gingival epithelium

    International Nuclear Information System (INIS)

    Silveira Tarelho, Z.V. da; Hetem, S.

    1984-01-01

    The DNA-synthetizing cells frequency in the gingival epithelium basal layer of the first lower molar region in young and adult mice were studied. The 3H-thymidine and radioautography were used. The labeled cells frequency was determined by calculating their proportions. The data were statiscally analysed. (M.A.C.) [pt

  10. The ultrastructure of the midgut epithelium in millipedes (Myriapoda, Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Sosinka, A.; Rost-Roszkowska, M.M.; Vilímová, J.; Tajovský, Karel; Kszuk-Jendrysik, M.; Chajec, Ł.; Sonakowska, L.; Kamińska, K.; Hyra, M.; Poprawa, I.

    2014-01-01

    Roč. 43, č. 5 (2014), s. 477-492 ISSN 1467-8039 Institutional support: RVO:60077344 Keywords : digestive cells * midgut epithelium * millipedes * regenerative cells * secretory cells * ultrastructure Subject RIV: EG - Zoology Impact factor: 1.650, year: 2014

  11. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine.

    Science.gov (United States)

    Wells, Jerry M; Loonen, Linda M P; Karczewski, Jurgen M

    2010-01-01

    In the intestine innate recognition of microbes is achieved through pattern recognition receptor (PRR) families expressed in immune cells and different cell lineages of the intestinal epithelium. Toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-like receptor (NLR) families are emerging as key mediators of immunity through their role as maturation factors of immune cells and triggers for the production of cytokines and chemokines and antimicrobial factors. At the mucosal surface chronic activation of the immune system is avoided through the epithelial production of a glycocalyx, steady-state production of antimicrobial factors as well as the selective expression and localization of PRRs. Additionally, the polarization of epithelial TLR signaling and suppression of NF-kappaB activation by luminal commensals appears to contribute to the homeostasis of tolerance and immunity. Several studies have demonstrated that TLR signaling in epithelial cells contributes to a range of homeostatic mechanisms including proliferation, wound healing, epithelial integrity, and regulation of mucosal immune functions. The intestinal epithelium appears to have uniquely evolved to maintain mucosal tolerance and immunity, and future efforts to further understand the molecular mechanisms of intestinal homeostasis may have a major impact on human health. Copyright 2009 Elsevier GmbH. All rights reserved.

  12. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Steroid hormones as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1988-01-01

    Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.

  14. Disruption of estrogen receptor signaling enhances intestinal neoplasia in ApcMin/+ mice

    Science.gov (United States)

    Cleveland, Alicia G.; Oikarinen, Seija I.; Bynoté, Kimberly K.; Marttinen, Maija; Rafter, Joseph J.; Gustafsson, Jan-Åke; Roy, Shyamal K.; Pitot, Henry C.; Korach, Kenneth S.; Lubahn, Dennis B.; Mutanen, Marja; Gould, Karen A.

    2009-01-01

    Estrogen receptors (ERs) [ERα (Esr1) and ERβ (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERα and ERβ is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERα knockout and ApcMin mouse strains, we demonstrate that ERα deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in ApcMin/+ mice. Within the normal intestinal epithelium of ApcMin/+ mice, ERα deficiency is associated with an accumulation of nuclear β-catenin, an indicator of activation of the Wnt–β-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERα deficiency is associated with activation of Wnt–β-catenin signaling, ERα deficiency in the intestinal epithelium of ApcMin/+ mice also correlated with increased expression of Wnt–β-catenin target genes. Through crosses between an ERβ knockout and ApcMin mouse strains, we observed some evidence that ERβ deficiency is associated with an increased incidence of colon tumors in ApcMin/+ mice. This effect of ERβ deficiency does not involve modulation of Wnt–β-catenin signaling. Our studies suggest that ERα and ERβ signaling modulate colorectal carcinogenesis, and ERα does so, at least in part, by regulating the activity of the Wnt–β-catenin pathway. PMID:19520794

  15. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  16. Improved cell line IPEC-J2, characterized as a model for porcine jejunal epithelium.

    Directory of Open Access Journals (Sweden)

    Silke S Zakrzewski

    Full Text Available Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS or species-specific (porcine serum, PS conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS, compared to conventional FBS culture (IPEC-J2/FBS, the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line's initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.

  17. Histomorphology of the corneal epithelium of anastrozole treated rabbits

    International Nuclear Information System (INIS)

    Khalil, A.; Qamar, K.; Butt, S.A.

    2013-01-01

    Objective: To evaluate the effects of prolonged use of anastrozole as an endocrine treatment of breast cancer on the corneal epithelium in an animal model. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Anatomy, Army Medical College, Rawalpindi in collaboration with National Institute of Health, Islamabad, six months from Jun 2012 to Nov 2012. Material and Methods: Twenty adult female NewZealand white rabbits were taken. Ten rabbits were placed in control group taking normal diet and 10 were given anastrozole orally in the normal dose of 1 mg/day (0.02 mg/kg/day). After the completion of the study, corneas were removed and grossly examined. The specimen were fixed and slides prepared for histomorphological examination. The epithelium in each slide was examined for any deposits, edema or increase in stratification and the height of the epithelium was measured for each eye. The results were compared between the groups for statistical significance. Results: The epithelium had normal shape with no areas of any deposits, edema or ulceration. The mean epithelial height in the control group was 21.25 +- 4.29 mu m and 21.00 +- 4.28 mu m in the right corneas and left corneas, respectively. The mean epithelial height taken from the experimental group was 20.50 +- 4.97 mu m and 21.00 +- 4.28 mu m in right sided and left sided corneas, respectively. The p value was calculated to be 0.722 and 1.00 for the right and left corneas, respectively and no statistical significance was found in between the two groups. Conclusion: Long term administration of anastrozole has no effect on the histological morphology of the corneal epithelium. (author)

  18. Kinetics of corneal epithelium turnover in vivo. Studies of lovastatin

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1990-01-01

    The authors developed a direct chemical approach for estimating the rate of turnover of the corneal epithelium in vivo. The method was used to examine the effects of lovastatin, a potent inhibitor of cholesterol biosynthesis, on proliferation and turnover of the epithelium. Corneal DNA was labeled by pulse injection (IP) of the rat with 3H-thymidine, and 3H-labeled DNA was recovered from peripheral and central corneas over the next 15 days. Only the epithelium became labeled, and the loss of label by cell desquamation began 3 days after injection. The loss of 3H-DNA from the cornea (peripheral plus central region) followed first-order kinetics. The half-life of the disappearance was about 3 days. The peripheral cornea became more highly labeled than the central cornea and began to lose 3H-DNA before the central cornea. These observations support the possibility of a higher mitotic rate in the peripheral region and the centripetal movement of a population of peripheral epithelial cells in the normal cornea. The half-lives of the disappearance of 3H-DNA from peripheral and central corneas measured between days 5 and 15 postinjection were identical, both at 3 days. Complete turnover of the corneal epithelium would, therefore, require about 2 weeks (4-5 half-lives). Treatment of the rat with lovastatin had no obvious effects upon the proliferation or turnover of the corneal epithelium. Although lovastatin inhibited corneal 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key regulatory enzyme of cholesterol synthesis, the cornea compensated by induction of this enzyme so that there was no net inhibition of cholesterol synthesis in the cornea

  19. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells.

    Science.gov (United States)

    Kriz, Vitezslav; Korinek, Vladimir

    2018-01-08

    In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL

  20. Intestinal inflammatory myofibroblastic tumour

    African Journals Online (AJOL)

    abdominal X-ray of patients 1, 3 and 4 demonstrated dilated small bowel loops with fluid levels in keeping with intestinal ... myxoid/vascular pattern characterised by a variable admixture of capillary-calibre blood vessels, .... in the present study had a past history of abdominal trauma or surgery. Ancillary histopathological ...

  1. Human Intestinal Spirochaetosis

    NARCIS (Netherlands)

    Westerman, L.J.

    2013-01-01

    Human intestinal spirochaetosis is a condition of the colon that is characterized by the presence of spirochaetes attached to the mucosal cells of the colon. These spirochaetes belong to the family Brachyspiraceae and two species are known to occur in humans: Brachyspira aalborgi and Brachyspira

  2. Intestinal health in carnivores

    NARCIS (Netherlands)

    Hagen-Plantinga, Esther A.; Hendriks, W.H.

    2015-01-01

    The knowledge on the influence of gastro-intestinal (GI) microbiota on the health status of humans and animals is rapidly expanding. A balanced microbiome may provide multiple benefits to the host, like triggering and stimulation of the immune system, acting as a barrier against possible pathogenic

  3. Intestinal Complications of IBD

    Science.gov (United States)

    ... localized pocket of pus caused by infection from bacteria. More common in Crohn’s than in colitis, an abscess may form in the intestinal wall—sometimes causing it to bulge out. Visible abscesses, such as those around the anus, look like boils and treatment often involves lancing. Symptoms of ...

  4. Intestinal volvulus in cetaceans.

    Science.gov (United States)

    Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I

    2013-07-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition.

  5. Small intestinal motility

    NARCIS (Netherlands)

    Smout, André J. P. M.

    2004-01-01

    PURPOSE OF REVIEW: In the past year, many studies were published in which new and relevant information on small intestinal motility in humans and laboratory animals was obtained. RECENT FINDINGS: Although the reported findings are heterogeneous, some themes appear to be particularly interesting and

  6. NORMAL GENE EXPRESSION IN MALE F344 RAT NASAL TRANSITIONAL/RESPIRATORY EPITHELIUM

    Science.gov (United States)

    Abstract The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Ce...

  7. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development.

    Science.gov (United States)

    Fung, Camille M; White, Jessica R; Brown, Ashley S; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R; McElroy, Steven J

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent "first hit", rendering IUGR intestine susceptible to further injury, infection, or inflammation.

  8. Metabolism of all-trans-retinoic acid and all-trans-retinyl acetate. Demonstration of common physiological metabolites in rat small intestinal mucosa and circulation

    International Nuclear Information System (INIS)

    Cullum, M.E.; Zile, M.H.

    1985-01-01

    The kinetics and metabolism of physiological doses of all-trans-retinoic acid were examined in blood and small intestinal mucosa of vitamin A-depleted rats. A major portion of intrajugularly injected retinoic acid is rapidly (within 2 min) sequestered by tissues; subsequently 13-cis-retinoic acid and polar metabolites are released into circulation. All-trans-retinoic acid appears in small intestinal epithelium within 2 min after dosing and is the major radioactive compound there for at least 2 h. Retinoyl glucuronide and 13-cis-retinoic acid are early metabolites of all-trans-retinoic acid in the small intestine of bile duct-cannulated rats. Retinoyl glucuronide, the major metabolite of retinoic acid intestinal epithelium, in contrast to other polar metabolites, was not detected in circulation. An examination of [ 3 H]retinyl acetate metabolites under steady state conditions in vitamin A-repleted rats demonstrates the occurrence of all-trans-retinoic acid and 13-cis-retinoic acid in circulation and in intestinal epithelium, in a pattern similar to that found after injection of retinoic acid into vitamin A-depleted rats. These data establish that all-trans-retinoic acid, 13-cis-retinoic acid, and retinoyl glucuronide are physiological metabolites of vitamin A in target tissues, and therefore are important candidates as mediators of the biological effect of the vitamin

  9. [Intrauterine intestinal volvulus].

    Science.gov (United States)

    Gawrych, Elzbieta; Chojnacka, Hanna; Wegrzynowski, Jerzy; Rajewska, Justyna

    2009-07-01

    Intrauterine intestinal volvulus is an extremely rare case of acute congenital intestinal obstruction. The diagnosis is usually possible in the third trimester of a pregnancy. Fetal midgut volvulus is most likely to be recognized by observing a typical clockwise whirlpool sign during color Doppler investigation. Multiple dilated intestinal loops with fluid levels are usually visible during the antenatal ultrasound as well. Physical and radiographic findings in the newborn indicate intestinal obstruction and an emergency surgery is required. The authors describe intrauterine volvulus in 3 female newborns in which surgical treatment was individualized. The decision about primary or delayed anastomosis after resection of the gangrenous part of the small bowel was made at the time of the surgery and depended on the general condition of the newborn, as well as presence or absence of meconium peritonitis. Double loop jejunostomy was performed in case of two newborns, followed by a delayed end-to-end anastomosis. In case of the third newborn, good blood supply of the small intestine after untwisting and 0.25% lignocaine injections into mesentery led to the assumption that the torsion was not complete and ischemia was reversible. In the two cases of incomplete rotation the cecum was sutured to the left abdominal wall to prevent further twisting. The postoperative course was uneventful and oral alimentation caused no problems. Physical development of all these children has been normal (current age: 1-2 years) and the parents have not observed any disorders or problems regarding passage of food through the alimentary canal. Prompt antenatal diagnosis of this surgical emergency and adequate choice of intervention may greatly reduce mortality due to intrauterine volvulus.

  10. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2009-01-01

    Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  11. Helicobacter pylori as a crucial factor in intestinal metaplasia development of gastric mucosa

    Directory of Open Access Journals (Sweden)

    Sergii Vernygorodskyi

    2016-06-01

    Full Text Available Helicobacter pylori (H. pylori is detected on the surface of gastric epithelium and in goblet cells, predominantly in patients with chronic atrophic gastritis and incomplete intestinal metaplasia (IM. H. pylori infection persistence leads to the formation of gastrointestinal phenotype of IM. H. pylori can be considered as an etiological factor of IM. It inhibits the expression of SOX2 in gastric epithelial cells, hence activating transcription factor CDX2 as a counterpart to MUC5AC gene inhibition and MUC2 gene induction. Thus, in metaplastic cells, programming differentiation after intestinal phenotype will develop. The role of H. pylori in the origin of intestinal metaplasia of gastric mucosa was defined in this study to elucidate the probable mechanism of cell reprogramming. The activation of CDX2, with simultaneous inactivation and decreased number of genes (e.g., SHH, SOX2, and RUNX3 responsible for gastric differentiation, was identified to cause the appearance of IM.

  12. Expression of cyclooxygenase-2 in intestine of pigs of different ages and hygiene status

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte; Whiting, C; Lewis, M

    2010-01-01

    treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56...... of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX......-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P = 0.053). No significant effect...

  13. Morphological and functional alterations of small intestine in chronic pancreatitis.

    Science.gov (United States)

    Gubergrits, Natalya B; Linevskiy, Yuri V; Lukashevich, Galina M; Fomenko, Pavel G; Moroz, Tatyana V; Mishra, Tapan

    2012-09-10

    The small intestine in chronic pancreatitis has not been investigated yet thoroughly. It would be important to understand fat metabolism in the course of this disease and could be explained if the small intestine has some pathological conditions and, due to this reason, pancreatic enzyme substitution does not work in all patients. To investigate the pathophysiology of small intestine in chronic pancreatitis and to show the reason why in some cases pancreatic enzyme substitution does not work properly. In the process of the study 33 chronic pancreatitis patients have been examined. The control group includes 30 subjects without chronic pancreatitis similar for age, sex and alcohol consumption to the patients with chronic pancreatitis patients. Aspiration biopsy of jejunum mucosa followed by histological examination and investigation of intestinal enzymes by aspiration has been performed. Metabolism at membranic level has been studied by enzymatic activity of amylase and lipase in the small intestine. Production of enzymes (monoglyceride lipase, lactase, saccharase, maltase, glycyl-l-leucine dipeptidase) promoting metabolism in enterocytes has been estimated as to their activity in homogenates of jejunum mucosa samples. Participation of mucosa in intestinal digestion has been assessed by alkaline phosphatase activity in a secretory chyme from proximal portion of jejunum. Absorptive capacity of jejunum was evaluated by D-xylose test results. DNA, lysozyme, immunoglobulin contents of chyme have also been calculated and bacteriological study of chyme has been also performed. Secondary enteritis, accompanied by moderate dystrophic changes of mucous membrane, thinning of limbus, and decrease of Paneth cell mitotic index, was found to occur in chronic pancreatitis patients. Enteritis is followed by changes in enzymatic processes in the sphere of membrane and intestinal digestion, decrease of absorption, accelerated desquamation of epithelium, fall in local immunity and

  14. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  15. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice.

    Science.gov (United States)

    Pierre, Christina C; Longo, Joseph; Mavor, Meaghan; Milosavljevic, Snezana B; Chaudhary, Roopali; Gilbreath, Ebony; Yates, Clayton; Daniel, Juliet M

    2015-09-01

    Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    Science.gov (United States)

    Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie

    2017-01-24

    The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.

  17. Effects of colchicine on the intestinal transport of endogenous lipid. Ultrastructural, biochemical, and radiochemical studies in fasting rats

    International Nuclear Information System (INIS)

    Pavelka, M.; Gangl, A.

    1983-01-01

    The involvement of microtubules in the transepithelial transport of exogenous lipid in intestinal absorptive cells has been suggested. Using electronmicroscopic, biochemical, and radiochemical methods, researchers have studied the effects of the antimicrotubular agent colchicine on the intestinal mucosa and on the intestinal transport of endogenous lipid of rats in the fasting state. After colchicine treatment, the concentration of triglycerides in intestinal mucosa of rats fasted for 24 h doubled, and electron microscopic studies showed a striking accumulation of lipid particles in absorptive epithelial cells of the tips of jejunal villi. These findings suggest that colchicine interferes with the intestinal transepithelial transport of endogenous lipoproteins. Additional studies, using an intraduodenal pulse injection of [ 14 C]linoleic acid, showed that colchicine does not affect the uptake of fatty acids by intestinal mucosa. However, it had divergent effects on fatty acid esterification, enhancing their incorporation into triglycerides relative to phospholipids, and caused a significant accumulation of endogenous diglycerides, triglycerides, and cholesterol esters within the absorptive intestinal epithelium. Detailed ultrastructural and morphometric studies revealed a decrease of visible microtubules, and a displacement of the smooth and rough endoplasmic reticulum and Golgi apparatus. Furthermore, it is shown that after colchicine treatment, microvilli appear at the lateral plasma membrane of intestinal absorptive cells, a change not previously reported to our knowledge. Thus, our study shows that colchicine causes significant changes in enterocyte ultrastructure and colchicine perturbs the reesterification of absorbed endogenous fatty acids and their secretion in the form of triglyceride-rich lipoproteins from the enterocyte

  18. Humoral immunity provides resident intestinal eosinophils access to luminal antigen via eosinophil-expressed low affinity Fc gamma receptors

    Science.gov (United States)

    Smith, Kalmia M.; Rahman, Raiann S.; Spencer, Lisa A.

    2016-01-01

    Eosinophils are native to the healthy gastrointestinal tract, and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g. food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct antigen engagement elicits eosinophil effector functions including degranulation and antigen presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food antigens by a columnar epithelium might similarly engage food antigens. Using an intestinal ligated loop model in mice, here we determined that resident intestinal eosinophils acquire antigen from the lumen of antigen-sensitized but not naïve mice in vivo. Antigen acquisition was immunoglobulin-dependent; intestinal eosinophils were unable to acquire antigen in sensitized immunoglobulin-deficient mice, and passive immunization with immune serum or antigen-specific IgG was sufficient to enable intestinal eosinophils in otherwise naïve mice to acquire antigen in vivo. Intestinal eosinophils expressed low affinity IgG receptors, and the activating receptor FcγRIII was necessary for immunoglobulin-mediated acquisition of antigens by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food antigens in sensitized mice via FcγRIII antigen focusing, and may therefore participate in antigen-driven secondary immune responses to oral antigens. PMID:27683752

  19. File list: InP.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX143806,SRX185883,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Olfactory_epithelium.bed ...

  20. File list: InP.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.50.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.50.AllAg.Olfactory_epithelium.bed ...

  1. File list: Oth.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Olfactory_epithelium.bed ...

  2. File list: Pol.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.20.AllAg.Olfactory_epithelium.bed ...

  3. File list: InP.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.20.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.20.AllAg.Olfactory_epithelium.bed ...

  4. File list: InP.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.10.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.10.AllAg.Olfactory_epithelium.bed ...

  5. File list: NoD.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.10.AllAg.Olfactory_epithelium.bed ...

  6. File list: Pol.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Olfactory_epithelium.bed ...

  7. File list: ALL.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...536,SRX378534,SRX378544,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Olfactory_epithelium.bed ...

  8. File list: DNS.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Olfactory_epithelium.bed ...

  9. Dynamics of Bovine Sperm Interaction with Epithelium Differ Between Oviductal Isthmus and Ampulla1

    Science.gov (United States)

    Ardon, Florencia; Markello, Ross D.; Hu, Lian; Deutsch, Zarah I.; Tung, Chih-Kuan; Wu, Mingming; Suarez, Susan S.

    2016-01-01

    In mammals, many sperm that reach the oviduct are held in a reservoir by binding to epithelium. To leave the reservoir, sperm detach from the epithelium; however, they may bind and detach again as they ascend into the ampulla toward oocytes. In order to elucidate the nature of binding interactions along the oviduct, we compared the effects of bursts of strong fluid flow (as would be caused by oviductal contractions), heparin, and hyperactivation on detachment of bovine sperm bound in vitro to epithelium on intact folds of isthmic and ampullar mucosa. Intact folds of oviductal mucosa were used to represent the strong attachments of epithelial cells to each other and to underlying connective tissue that exist in vivo. Effects of heparin on binding were tested because heparin binds to the Binder of SPerm (BSP) proteins that attach sperm to oviductal epithelium. Sperm bound by their heads to beating cilia on both isthmic and ampullar epithelia and could not be detached by strong bursts of fluid flow. Addition of heparin immediately detached sperm from isthmic epithelium but not ampullar epithelium. Addition of 4-aminopyridine immediately stimulated hyperactivation of sperm but did not detach them from isthmic or ampullar epithelium unless added with heparin. These observations indicate that the nature of binding of sperm to ampullar epithelium differs from that of binding to isthmic epithelium; specifically, sperm bound to isthmic epithelium can be detached by heparin alone, while sperm bound to ampullar epithelium requires both heparin and hyperactivation to detach from the epithelium. PMID:27605344

  10. File list: NoD.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Olfactory_epithelium.bed ...

  11. File list: ALL.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...534,SRX378545,SRX378544,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.20.AllAg.Olfactory_epithelium.bed ...

  12. File list: Pol.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.10.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.10.AllAg.Olfactory_epithelium.bed ...

  13. File list: His.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX37...378533,SRX472910,SRX378534,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Olfactory_epithelium.bed ...

  14. File list: NoD.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.20.AllAg.Olfactory_epithelium.bed ...

  15. File list: ALL.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...533,SRX472910,SRX378534,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Olfactory_epithelium.bed ...

  16. File list: His.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX18...378531,SRX378536,SRX378534,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Olfactory_epithelium.bed ...

  17. File list: His.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX11...472910,SRX378534,SRX378533,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Olfactory_epithelium.bed ...

  18. File list: Oth.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Olfactory_epithelium.bed ...

  19. File list: Oth.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Olfactory_epithelium.bed ...

  20. File list: DNS.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Olfactory_epithelium.bed ...

  1. File list: Oth.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.20.AllAg.Olfactory_epithelium.bed ...

  2. File list: NoD.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.50.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.50.AllAg.Olfactory_epithelium.bed ...

  3. File list: His.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX18...378533,SRX378536,SRX378534,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.AllAg.Olfactory_epithelium.bed ...

  4. File list: DNS.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.20.AllAg.Olfactory_epithelium.bed ...

  5. File list: Pol.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX143827,SRX112963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Olfactory_epithelium.bed ...

  6. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    Directory of Open Access Journals (Sweden)

    Christensen Jon

    2012-06-01

    Full Text Available Abstract Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models

  7. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    Full Text Available The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2, double (SPI-1/2 and complete T3SS knockout (SPI-1/SPI-2: flhDC also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.

  8. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  9. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  10. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    International Nuclear Information System (INIS)

    Aw, Tak Yee

    2005-01-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium

  11. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  12. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Science.gov (United States)

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Pwarm summer months.

  13. Abortive Intestinal Infection With an Escherichia coli-Shigella flexneri Hybrid Strain

    Science.gov (United States)

    Formal, Samuel B.; LaBrec, E. H.; Kent, T. H.; Falkow, S.

    1965-01-01

    Formal, Samuel B., (Walter Reed Army Institute of Research, Washington, D.C.), E. H. LaBrec, T. H. Kent, and S. Falkow. Abortive intestinal infection with an Escherichia coli-Shigella flexneri hybrid strain. J. Bacteriol. 89:1374–1382. 1965.—The mechanism of the apparent loss of virulence of an Escherichia coli-Shigella flexneri hybrid strain was studied. The parent Shigella strain caused a fatal enteric infection when fed to starved guinea pigs, and signs of dysentery followed its oral administration to monkeys. The hybrid strain failed to produce any apparent symptoms when fed to either of these species. The parent strain was shown to invade the intestinal mucosa of starved guinea pigs. This caused a severe inflammatory reaction in the lamina propria, which progressed to ulceration of the intestinal epithelium and resulted in death of the animal. The hybrid strain also invaded the intestinal mucosa and produced an inflammatory reaction. In this case, the inflammatory reaction subsided, the intestine returned to normal within 4 days after challenge, and the animal survived. Both fluorescent-antibody techniques and in vivo growth studies have shown that the hybrid strain can not maintain itself in the intestinal mucosa. Preliminary studies have indicated that a similar situation also exists in the monkey. It is concluded that the virulence of dysentery bacilli rests not only in the capacity to reach the lamina propria, but also in the ability to multiply in this region. Images PMID:14293011

  14. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  15. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish.

    Science.gov (United States)

    Whittamore, Jonathan M

    2012-01-01

    For teleost fish living in seawater, drinking the surrounding medium is necessary to avoid dehydration. This is a key component of their osmoregulatory strategy presenting the challenge of excreting excess salts while achieving a net retention of water. The intestine has an established role in osmoregulation, and its ability to effectively absorb fluid is crucial to compensating for water losses to the hyperosmotic environment. Despite this, the potential for the teleost intestine to serve as a comparative model for detailed, integrative experimental studies on epithelial water transport has so far gone largely untapped. The following review aims to present an assessment of the teleost intestine as a fluid-transporting epithelium. Beginning with a brief overview of marine teleost osmoregulation, emphasis shifts to the processing of ingested seawater by the gastrointestinal tract and the characteristics of intestinal ion and fluid transport. Particular attention is given to acid-base transfers by the intestine, specifically bicarbonate secretion, which creates the distinctly alkaline gut fluids responsible for the formation of solid calcium carbonate precipitates. The respective contributions of these unique features to intestinal fluid absorption, alongside other recognised ion transport processes, are then subsequently considered within the wider context of the classic physiological problem of epithelial water transport.

  16. Spatial Localization and Binding of the Probiotic Lactobacillus farciminis to the Rat Intestinal Mucosa: Influence of Chronic Stress.

    Directory of Open Access Journals (Sweden)

    Stéphanie Da Silva

    Full Text Available The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS. The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2.

  17. Rupture, Invasion and Inflammatory Destruction of the Intestinal Barrier by Shigella: The Yin and Yang of Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philippe J Sansonetti

    2006-01-01

    Full Text Available Shigella is a Gram-negative bacterial species of the family Enterobacteriaceae that causes bacillary dysentery in humans. This acute colitis reflects the capacity of the microorganism to disrupt, invade and cause the inflammatory destruction of the intestinal epithelium. The pathogenesis of the Shigella infection can be seen as a disruption of the homeostatic balance that protects the gut against inflammation in the presence of its commensal flora. This provides the unified view that enteroinvasive pathogens allow for the identification of key signalling molecules and pathways involved in the regulation of intestinal inflammation, and more generally, in the regulation of the innate and adaptive immune response.

  18. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  19. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  20. Small intestinal transplantation.

    LENUS (Irish Health Repository)

    Quigley, E M

    2012-02-03

    The past few years have witnessed a considerable shift in the clinical status of intestinal transplantation. A great deal of experience has been gained at the most active centers, and results comparable with those reported at a similar stage in the development of other solid-organ graft programs are now being achieved by these highly proficient transplant teams. Rejection and its inevitable associate, sepsis, remain ubiquitous, and new immunosuppressant regimes are urgently needed; some may already be on the near horizon. The recent success of isolated intestinal grafts, together with the mortality and morbidity attendant upon the development of advanced liver disease related to total parenteral nutrition, has prompted the bold proposal that patients at risk for this complication should be identified and should receive isolated small bowel grafts before the onset of end-stage hepatic failure. The very fact that such a suggestion has begun to emerge reflects real progress in this challenging field.

  1. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  2. Measurement of the thickness of the bronchial epithelium

    International Nuclear Information System (INIS)

    Bowden, D.H.; Baldwin, F.

    1989-02-01

    Cancer of the lung in uranium miners is thought to be related to the inhalation of gaseous radon daughters which become attached to molecules of water vapour or to dust particles. Since, the depth of tissue penetration by alpha particles is short, the thickness of the epithelium that lines the bronchial tree may be a critical factor in the development of cancers at specific sites in the lung. The objectives of the present study were: 1) to measure the thickness of human bronchial epithelium; 2) to determine the distribution and depth of the nuclei of basal cells in the bronchial epithelium; and 3) to compare these parameters in groups of smokers and non-smokers. Twenty-nine surgically removed specimens of the lung were examined (26 smokers, 3 non-smokers). The specimens were fixed and prepared for examination by light and electron microscopy. Blocks of tissue were oriented so that the maximum number of bronchi were cut in cross-section; measurements included bronchi of all sizes from bronchial generations (1≥ 9.01 mm) diameter to the smallest bronchioles, generations 7 - 16 (0.26 - 2.0 mm). Comparison of measurements in smokers and non-smokers show no significant differences, so that the 29 cases are considered to represent a homogeneous group. With progressive divisions of the bronchi, the epithelium decreases in thickness. Of more importance are the figures relating to the distance from the cell surface to the underlying nucleus. Here too, with the exception of goblet cells, the measurements are significantly smaller in generations 7 - 16 than in generation 1

  3. Cytogenetic damage and postradiation restoration of eye cornea epithelium of Rodentia characterizing by different radiosensitivity

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.

    1983-01-01

    Intensity of beam damage and reparation of eye cornea epithelium of animals inhabiting under different conditions and differing by radiosensitivity has been studied. Mice differing by high radiosensitivity have the hardest cytogenetic damage. Cornea epithelium of bank voles is more radiostable than that of mice. The most negligible damages of cornea epithelium is observed in Mongolian sandwort despite the fact that their total radiation stability is lower than that of bank voles. High protective-restoring properties of eye cornea epithelium of Mongolian sandwort are explained by the structure of epithelium cells diffe-- ring by a large number of cytoplasm

  4. Commensal-pathogen interactions in the intestinal tract

    Science.gov (United States)

    Reynolds, Lisa A; Smith, Katherine A; Filbey, Kara J; Harcus, Yvonne; Hewitson, James P; Redpath, Stephen A; Valdez, Yanet; Yebra, María J; Finlay, B Brett; Maizels, Rick M

    2016-01-01

    The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other’s persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations. PMID:25144609

  5. Zinc uptake in vitro by human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Newsome, D.A.; Rothman, R.J.

    1987-01-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied 65 Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM 65 Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM 65 Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of 65 Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to 65 Zn retained approximately 70% of accumulated 65 Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of 65 Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc

  6. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  7. Recovery of Vocal Fold Epithelium after Acute Phonotrauma.

    Science.gov (United States)

    Rousseau, Bernard; Kojima, Tsuyoshi; Novaleski, Carolyn K; Kimball, Emily E; Valenzuela, Carla V; Mizuta, Masanobu; Daniero, James J; Garrett, C Gaelyn; Sivasankar, M Preeti

    2017-01-01

    We investigated the timeline of tissue repair of vocal fold epithelium after acute vibration exposure using an in vivo rabbit model. Sixty-five New Zealand white breeder rabbits were randomized to 120 min of modal- or raised-intensity phonation. After the larynges were harvested at 0, 4, 8, and 24 h, and at 3 and 7 days, the vocal fold tissue was evaluated using electron microscopy and quantitative real-time polymerase chain reaction. There was an immediate decrease in the microprojection depth and height following raised-intensity phonation, paired with upregulation of cyclooxygenase-2. This initial 24-h period was also characterized by the significant downregulation of junction proteins. Interleukin 1β and transforming growth factor β1 were upregulated for 3 and 7 days, respectively, followed by an increase in epithelial cell surface depth at 3 and 7 days. These data appear to demonstrate a shift from inflammatory response to the initiation of a restorative process in the vocal fold epithelium between 24 h and 3 days. Despite the initial damage from raised-intensity phonation, the vocal fold epithelium demonstrates a remarkable capacity for the expeditious recovery of structural changes from transient episodes of acute phonotrauma. While structurally intact, the return of functional barrier integrity may be delayed by repeated episodes of phonotrauma and may also play an important role in the pathophysiology of vocal fold lesions. © 2017 S. Karger AG, Basel.

  8. Solitary chemoreceptor cell proliferation in adult nasal epithelium.

    Science.gov (United States)

    Gulbransen, Brian D; Finger, Thomas E

    2005-03-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein alpha-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cbeta2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs.

  9. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

    Science.gov (United States)

    Westendorp, B Florien; Büller, Nikè V J A; Karpus, Olga N; van Dop, Willemijn A; Koster, Jan; Versteeg, Rogier; Koelink, Pim J; Snel, Clinton Y; Meisner, Sander; Roelofs, Joris J T H; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E; van den Brink, Gijs R

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Hedgehog activity was modulated genetically in both cell type-specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast

  10. Curcumin Attenuates Gamma Radiation Induced Intestinal Damage in Rats

    International Nuclear Information System (INIS)

    EI-Tahawy, N.A.

    2009-01-01

    Small Intestine exhibits numerous morphological and functional alterations during radiation exposure. Oxidative stress, a factor implicated in the intestinal injury may contribute towards some of these alterations. The present work was designed to evaluate the efficacy of curcumin, a yellow pigment of turmeric on y-radiation-induced oxidative damage in the small intestine by measuring alterations in the level of thiobarbituric acid reactive substances (TSARS), serotonin metabolism, catecholamine levels, and monoamine oxidase (MAO) activity in parallel to changes in the architecture of intestinal tissues. In addition, monoamine level, MAO activity and TSARS level were determined in the serum. Curcumin was supplemented orally via gavages, to rats at a dose of (45 mg/ Kg body wt/ day) for 2 weeks pre-irradiation and the last supplementation was 30 min pre exposure to 6.5 Gy gamma radiations (applied as one shot dose). Animals were sacrificed on the 7th day after irradiation. The results demonstrated that, whole body exposure of rats to ionizing radiation has induced oxidative damage in small intestine obvious by significant increases of TSARS content, MAO activity and 5-hydroxy indole acetic acid (5-HIAA) and by significant decreases of serotonin (5-HT), dopamine (DA), norepinephrine (NE) and epinephrine (EPI) levels. In parallel histopathological studies of the small intestine of irradiated rats through light microscopic showed significant decrease in the number of villi, villus height, mixed sub mucosa layer with more fibres and fibroblasts. Intestinal damage was in parallel to significant alterations of serum MAO activity, TBARS, 5-HT, DA, NE and EPI levels. Administration of curcumin before irradiation has significantly improved the levels of monoamines in small intestine and serum of irradiated rats, which was associated with significant amelioration in MAO activity and TBARS contents

  11. Location and pathogenic potential of Blastocystis in the porcine intestine.

    Directory of Open Access Journals (Sweden)

    Wenqi Wang

    Full Text Available Blastocystis is an ubiquitous, enteric protozoan of humans and many other species. Human infection has been associated with gastrointestinal disease such as irritable bowel syndrome, however, this remains unproven. A relevant animal model is needed to investigate the pathogenesis/pathogenicity of Blastocystis. We concluded previously that pigs are likely natural hosts of Blastocystis with a potentially zoonotic, host-adapted subtype (ST, ST5, and may make suitable animal models. In this study, we aimed to characterise the host-agent interaction of Blastocystis and the pig, including localising Blastocystis in porcine intestine using microscopy, PCR and histopathological examination of tissues. Intestines from pigs in three different management systems, i.e., a commercial piggery, a small family farm and a research herd (where the animals were immunosuppressed were examined. This design was used to determine if environment or immune status influences intestinal colonisation of Blastocystis as immunocompromised individuals may potentially be more susceptible to blastocystosis and development of associated clinical signs. Intestines from all 28 pigs were positive for Blastocystis with all pigs harbouring ST5. In addition, the farm pigs had mixed infections with STs 1 and/or 3. Blastocystis organisms/DNA were predominantly found in the large intestine but were also detected in the small intestine of the immunosuppressed and some of the farm pigs, suggesting that immunosuppression and/or husbandry factors may influence Blastocystis colonisation of the small intestine. No obvious pathology was observed in the histological sections. Blastocystis was present as vacuolar/granular forms and these were found within luminal material or in close proximity to epithelial cells, with no evidence of attachment or invasion. These results concur with most human studies, in which Blastocystis is predominantly found in the large intestine in the absence of

  12. Lipo sarcoma in small intestine

    International Nuclear Information System (INIS)

    Rodriguez Iglesias, J.; Pineyro Gutierrez, A.; Taroco Medeiros, L.; Fein Kolodny, C.; Navarrete Pedocchi, H.

    1987-01-01

    A case is presented by primitive liposarcoma in small intestine , an extensive bibliographical review foreigner and national in this case. It detach the exceptional of the intestinal topography of the liposarcomas; and making stress in the relative value of the computerized tomography and ultrasonography in the diagnose of the small intestine tumors . As well as in the sarcomas of another topography, chemo and radiotherapy associated to the exeresis surgery, it can be of benefit [es

  13. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  14. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration.

    Science.gov (United States)

    Feng, Lili; Ju, Meihua; Lee, Kei Ying V; Mackey, Ashley; Evangelista, Mariasilvia; Iwata, Daiju; Adamson, Peter; Lashkari, Kameran; Foxton, Richard; Shima, David; Ng, Yin Shan

    2017-10-01

    Current treatments for choroidal neovascularization, a major cause of blindness for patients with age-related macular degeneration, treat symptoms but not the underlying causes of the disease. Inflammation has been strongly implicated in the pathogenesis of choroidal neovascularization. We examined the inflammatory role of Toll-like receptor 2 (TLR2) in age-related macular degeneration. TLR2 was robustly expressed by the retinal pigment epithelium in mouse and human eyes, both normal and with macular degeneration/choroidal neovascularization. Nuclear localization of NF-κB, a major downstream target of TLR2 signaling, was detected in the retinal pigment epithelium of human eyes, particularly in eyes with advanced stages of age-related macular degeneration. TLR2 antagonism effectively suppressed initiation and growth of spontaneous choroidal neovascularization in a mouse model, and the combination of anti-TLR2 and antivascular endothelial growth factor receptor 2 yielded an additive therapeutic effect on both area and number of spontaneous choroidal neovascularization lesions. Finally, in primary human fetal retinal pigment epithelium cells, ligand binding to TLR2 induced robust expression of proinflammatory cytokines, and end products of lipid oxidation had a synergistic effect on TLR2 activation. Our data illustrate a functional role for TLR2 in the pathogenesis of choroidal neovascularization, likely by promoting inflammation of the retinal pigment epithelium, and validate TLR2 as a novel therapeutic target for reducing choroidal neovascularization. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Intestinal crosstalk: a new paradigm for understanding the gut as the "motor" of critical illness.

    Science.gov (United States)

    Clark, Jessica A; Coopersmith, Craig M

    2007-10-01

    For more than 20 years, the gut has been hypothesized to be the "motor" of multiple organ dysfunction syndrome. As critical care research has evolved, there have been multiple mechanisms by which the gastrointestinal tract has been proposed to drive systemic inflammation. Many of these disparate mechanisms have proved to be important in the origin and propagation of critical illness. However, this has led to an unusual situation where investigators describing the gut as a "motor" revving the systemic inflammatory response syndrome are frequently describing wholly different processes to support their claim (i.e., increased apoptosis, altered tight junctions, translocation, cytokine production, crosstalk with commensal bacteria, etc). The purpose of this review is to present a unifying theory as to how the gut drives critical illness. Although the gastrointestinal tract is frequently described simply as "the gut," it is actually made up of (1) an epithelium; (2) a diverse and robust immune arm, which contains most of the immune cells in the body; and (3) the commensal bacteria, which contain more cells than are present in the entire host organism. We propose that the intestinal epithelium, the intestinal immune system, and the intestine's endogenous bacteria all play vital roles driving multiple organ dysfunction syndrome, and the complex crosstalk between these three interrelated portions of the gastrointestinal tract is what cumulatively makes the gut a "motor" of critical illness.

  16. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    Science.gov (United States)

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  17. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  18. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  19. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection

    Directory of Open Access Journals (Sweden)

    Yuka Matsumoto

    2017-09-01

    Full Text Available Ileocecal resection (ICR, one of several types of intestinal resection that results in short bowel syndrome (SBS, causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.

  20. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jang, Won-Suk; Lee, Sun-Joo [Laboratory of Experimental Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Lee, Seung-Sook [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Department of Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Sunhoo, E-mail: sunhoo@kcch.re.kr [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Department of Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  1. Effects of size of Trichostrongylus colubriformis infections on histopathology of the mucosa along the whole small intestine in rabbits.

    Science.gov (United States)

    Hoste, H; Mallet, S

    1990-11-01

    The influence of population size of Trichostrongylus colubriformis on the structures of the small intestine, especially with regard to the development and origin of an intestinal adaptive response, was examined in experimentally infected rabbits. The effects of low (500 L3) and high (50,000 L3) infection on histological (villous length, mucosa to serosa ratio, crypt surface) and biochemical (protein content, alkaline phosphatase and leucine aminopeptidase activities) aspects of the mucosa were assessed along the whole small intestine. The presence of a small number of worms induced only minor mucosal changes, indicating a regenerative response of the intestinal epithelium. The role of a local small population of T. colubriformis in the development of a previously described adaptive response appeared thus to be limited. On the other hand, the 50,000 L3 inoculum was associated with severe lesions of villi, marked crypt hyperplasia and with a major reduction of enzyme activities. The changes were found along the whole length of the small intestine. These results suggest that the generally recognized dose-dependent pathogenicity of the intestinal nematode infections could be ascribed to two different processes: firstly, a greater severity of the lesions; secondly, more extensive damage leading to the disappearance of any adaptive intestinal region.

  2. Cytokine gene expression in intestine of rat during the postnatal developmental period: increased IL-1 expression at weaning.

    Science.gov (United States)

    Mengheri, E; Ciapponi, L; Vignolini, F; Nobili, F

    1996-01-01

    In the present study we have investigate whether cytokines are constitutively and differently expressed in intestine during the differentiative processes that take place at weaning. We have analyzed the expression of IL-1 beta, IL-2, IL-4 and IFN gamma by polymerase chain reaction in Peyer's patches (PP) and in intestine deprived of PP (I-PP) of rats from 16 to 30 days of age. The results showed a constitutive and marked expression of the cytokines already before weaning, with the exception of IL-2 in PP and IFN gamma in I-PP. IL-beta was the only cytokine to show a different expression at various ages with an initial increase at 19 days and a further elevation at 21 days when intestinal epithelium passes through major differentiative stages, suggesting an involvement of this cytokine in intestinal development. We have also tested whether treatment of rats with the immunosuppressor cyclosporin A (CsA) could affect intestinal differentiation. The results showed that only some markers of differentiation were affected (proliferation of staminal crypt cells and length of crypts). This was probably due to a direct effect rather than an immunomediated effect of CsA, since treatment of three intestinal cell lines (Caco-2, HT-29, FRIC) with CsA indicated that this drug can exert a cytostatic activity on intestinal cells.

  3. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis.

    Science.gov (United States)

    Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-04-01

    Targeted IL-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic Inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild-type (WT) littermates (n = 127) were subjected to cecal ligation and puncture with a 27-gauge needle. The 7-day survival rate was 45% in transgenic animals and 30% in WT animals (P < or = 0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals regardless of whether they expressed the transgene. Local parameter of injury, including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines, and stimulated cytokines from intraepithelial lymphocytes, were similar between transgenic and WT mice. However, in stimulated splenocytes, proinflammatory cytokines monocyte chemoattractant protein 1 (189 +/- 43 vs. 40 +/- 8 pg/mL) and IL-6 (116 +/- 28 vs. 34 +/- 9 pg/mL) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (P < 0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the 2 groups, as were circulating LPS levels. Transgenic mice also had lower white blood cell counts associated with lower absolute neutrophil counts (0.5 +/- 0.1 vs. 1.0 +/- 0.2 10(3)/mm3; P < 0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage.

  4. Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection.

    Science.gov (United States)

    Talbot, Pauline; Radziwill-Bienkowska, Joanna M; Kamphuis, Jasper B J; Steenkeste, Karine; Bettini, Sarah; Robert, Véronique; Noordine, Marie-Louise; Mayeur, Camille; Gaultier, Eric; Langella, Philippe; Robbe-Masselot, Catherine; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-06-19

    Titanium dioxide (TiO 2 ) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO 2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO 2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO 2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO 2 particles accumulated inside "patchy" regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular "islands" located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO 2 particles was attributed to this mucus patchy structure. We compared TiO 2 -mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. Food-grade TiO 2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under "healthy gut

  5. Intestinal parasites : associations with intestinal and systemic inflammation

    NARCIS (Netherlands)

    Zavala, Gerardo A; García, Olga P; Camacho, Mariela; Ronquillo, Dolores; Campos-Ponce, Maiza; Doak, Colleen; Polman, Katja; Rosado, Jorge L

    2018-01-01

    AIMS: Evaluate associations between intestinal parasitic infection with intestinal and systemic inflammatory markers in school-aged children with high rates of obesity. METHODS AND RESULTS: Plasma concentrations of CRP, leptin, TNF-α, IL-6 and IL-10 were measured as systemic inflammation markers and

  6. Small Intestine Cancer—Health Professional Version

    Science.gov (United States)

    Adenocarcinoma is the most common type of small intestine cancer. Other types of small intestine cancer are sarcomas, carcinoid tumors, gastrointestinal stromal tumors, and lymphomas. Find evidence-based information on small intestine cancer treatment, research, and statistics.

  7. STUDIES ON HUMAN FALLOPIAN TUBAL EPITHELIUM IN DIFFERENT AGE GROUPS

    Directory of Open Access Journals (Sweden)

    Jayasri

    2016-02-01

    Full Text Available BACKGROUND AND AIMS The “fallopian tubes” (oviducts or uterine tubes are long paired flexuous reproductive organ which transports ova, spermatozoa, zygotes, the pre-implantation morulae and blastocyst. It has major role during reproductive period, but it remains as if vestigial organ before puberty and after menopause. Due to increasing rate of tubal block and infertility, oviducts and their structures gaining importance and have become a subject of research in present days particularly epithelium. The aim of the study is to ascertain any histological difference of tubal epithelium in different age groups and the research work could be utilized for investigation and management of infertility. MATERIALS AND METHODS Seven samples of each group i.e., prereproductive, reproductive & postmenopausal were collected from fresh unembalmed human cadavers received in the department of Anatomy, FAA Medical College, Barpeta, Assam. The slides were prepared using the standard laboratory procedure. Under low and high power objectives the type of cells were observed and epithelial height was measured in the different segments. Stress was given for any significant difference of epithelial height between the different age groups. RESULTS Study revealed that among the groups within the same segment, epithelial height was recorded highest (33.57µm in reproductive group as against the lowest (22.91µm in post-menopausal group. Epithelial structures of the prereproductive and reproductive groups were significantly differed (p<0.01 from the postmenopausal group. CONCLUSIONS From the findings of the present study it can be concluded that: 1. In all the groups fallopian tubal epithelium is of simple columnar type and contains three types of cells. Cells are ciliated, secretory & peg (intercalary cells. 2. In all the groups same type of increasing trend of epithelial height from intramural segment to ampullary segment was recorded. 3. In intergroup comparison of

  8. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  9. NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair

    Science.gov (United States)

    Parlato, Marianna; Yeretssian, Garabet

    2014-01-01

    The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease. PMID:24886810

  10. Lymphatic deletion of calcitonin receptor–like receptor exacerbates intestinal inflammation

    Science.gov (United States)

    Davis, Reema B.; Kechele, Daniel O.; Blakeney, Elizabeth S.; Pawlak, John B.

    2017-01-01

    Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor–like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation. PMID:28352669

  11. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  12. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review

    Directory of Open Access Journals (Sweden)

    Xiaoshi Ma

    2017-10-01

    Full Text Available The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD. Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.

  13. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  14. Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets

    NARCIS (Netherlands)

    Pieper, R.; Janzcyk, P.; Zeyner, A.; Smidt, H.; Guiard, V.; Souffrant, W.B.

    2008-01-01

    Weaning of the pig is generally regarded as a stressful event which could lead to clinical implications because of the changes in the intestinal ecosystem. The functional properties of microbiota inhabiting the pig's small intestine (SI), including lactobacilli which are assumed to exert

  15. Solitary Chemoreceptor Cell Proliferation in Adult Nasal Epithelium

    OpenAIRE

    Gulbransen, Brian D.; Finger, Thomas E.

    2005-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein α-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cβ2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These ...

  16. Intestinal bacteria and the regulation of immune cell homeostasis.

    Science.gov (United States)

    Hill, David A; Artis, David

    2010-01-01

    The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.

  17. Ultrastructure of respiratory tract epithelium following irradiation or application of cytostatics

    International Nuclear Information System (INIS)

    Konradova, V.; Smelhaus, V.; Kanta, J.

    1988-01-01

    The ultrastructure was studied of the large bronchi epithelium in 3 patients with malignant tumors where signs of pulmonary fibrosis were found following irradiation and combined therapy. In 2 patients, pseudostratified cylindrical epithelium was observed with signs of pathological alteration, in the third patient an altered pseudostratified cylindrical epithelium with ultrastructural signs of commencing reconstructure into stratified squamous epithelium. The findings in the respiratory track epithelium of the patients were similar to those observed in a group of children with chronic or relapsing bronchitis and bronchopneumonia. The findings show marked disturbance of the ciliary border caused by reduction in the number of kinocilia which is associated with an impairment of the self-cleaning capacity of epithelium. (author). 1 tab., 10 refs

  18. Regional differences in DNA replication in nasal epithelium following acute ozone or cigarette smoke exposure

    International Nuclear Information System (INIS)

    Johnson, N.F.; Hotchkiss, J.A.; Harkema, J.R.; Henderson, R.F.; Mauderly, J.L.; Cuddihy, R.G.

    1988-01-01

    The epithelium of the anterior nasal cavity is composed of four cell types, squamous, respiratory, cuboidal, and olfactory cells. We monitored proliferation In these tissues by bromodeoxy-uridine (BrdUrd) incorporation; the labeled cells were identified by using a monoclonal antibody that recognizes BrdUrd. The respiratory, cuboidal and olfactory epithelia had low cell turnover (1-labeled ceIl/mm basal lamina). Squamous epithelium contained 40-labeled cells per mm basal lamina. Following exposure to diluted mainstream cigarette smoke, a transient, but marked increase in DNA replication was seen in the cuboidal epithelium. In contrast, ozone exposure was associated with DNA replication in the olfactory and respiratory epithelium, as well as in the cuboidal epithelium. These studies show that the sensitivity of nasal epithelium to irritants can be assayed by measuring DNA replication. (author)

  19. Regional differences in DNA replication in nasal epithelium following acute ozone or cigarette smoke exposure

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N F; Hotchkiss, J A; Harkema, J R; Henderson, R F; Mauderly, J L; Cuddihy, R G

    1988-12-01

    The epithelium of the anterior nasal cavity is composed of four cell types, squamous, respiratory, cuboidal, and olfactory cells. We monitored proliferation In these tissues by bromodeoxy-uridine (BrdUrd) incorporation; the labeled cells were identified by using a monoclonal antibody that recognizes BrdUrd. The respiratory, cuboidal and olfactory epithelia had low cell turnover (1-labeled ceIl/mm basal lamina). Squamous epithelium contained 40-labeled cells per mm basal lamina. Following exposure to diluted mainstream cigarette smoke, a transient, but marked increase in DNA replication was seen in the cuboidal epithelium. In contrast, ozone exposure was associated with DNA replication in the olfactory and respiratory epithelium, as well as in the cuboidal epithelium. These studies show that the sensitivity of nasal epithelium to irritants can be assayed by measuring DNA replication. (author)

  20. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Rune M. Pedersen

    2018-02-01

    Full Text Available Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial surfaces. Measurement of bacterial adhesion to epithelial cells is therefore standard procedure in studies of bacterial virulence. Traditionally, such measurements have been conducted with microtiter plate cell cultures to which bacteria are added, followed by washing procedures and final quantification of retained bacteria by agar plating. This approach is fast and straightforward, but yields only a rough estimate of the adhesive properties of the bacteria upon contact, and little information on the ability of the bacterium to colonize these surfaces under relevant physiological conditions. Here, we present a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell layers is then performed by in situ time-lapse fluorescence microscopy and automatic detection of bacterial surface coverage. The method is demonstrated in three different infection models, simulating Staphylococcus aureus endothelial infection and Escherichia coli intestinal- and uroepithelial infection. The approach yields valuable information on the fitness of the bacterium to successfully adhere to and colonize epithelial surfaces and can be used

  1. Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state.

    Science.gov (United States)

    Tomas, Julie; Reygner, Julie; Mayeur, Camille; Ducroc, Robert; Bouet, Stephan; Bridonneau, Chantal; Cavin, Jean-Baptiste; Thomas, Muriel; Langella, Philippe; Cherbuy, Claire

    2015-01-01

    We investigated the effects of early colonizing bacteria on the colonic epithelium. We isolated dominant bacteria, Escherichia coli, Enterococcus faecalis, Lactobacillus intestinalis, Clostridium innocuum and a novel Fusobacterium spp., from the intestinal contents of conventional suckling rats and transferred them in different combinations into germfree (GF) adult rats. Animals were investigated after various times up to 21 days. Proliferative cell markers (Ki67, proliferating cell nuclear antigen, phospho-histone H3, cyclin A) were higher in rats monocolonized with E. coli than in GF at all time points, but not in rats monocolonized with E. faecalis. The mucin content of goblet cells declined shortly after E. coli administration whereas the mucus layer doubled in thickness. Fluorescence in situ hybridization analyses revealed that E. coli resides in this mucus layer. The epithelial mucin content progressively returned to baseline, following an increase in KLF4 and in the cell cycle arrest-related proteins p21(CIP1) and p27(KIP1). Markers of colonic differentiated cells involved in electrolyte (carbonic anhydrase II and slc26A3) and water (aquaglyceroporin3 (aqp3)) transport, and secretory responses to carbachol were modulated after E. coli inoculation suggesting that ion transport dynamics were also affected. The colonic responses to simplified microbiotas differed substantially according to whether or not E. coli was combined with the other four bacteria. Thus, proliferation markers increased substantially when E. coli was in the mix, but very much less when it was absent. This work demonstrates that a pioneer strain of E. coli elicits sequential epithelial remodeling affecting the structure, mucus layer and ionic movements and suggests this can result in a microbiota-compliant state.

  2. FMRFamide- and neurotensin-immunoreactive elements in the intestine of some polyclad and triclad flatworms (Turbellaria).

    Science.gov (United States)

    Punin MYu; Markosova, T G

    2000-01-01

    By means of immunohistochemistry with antisera to tetrapeptide FMRFamide and regulatory peptides neurotensin and calcitonin intestines of marine turbellarians Notoplana atomata, N. humilis (Polycladida) and Procerodes littoralis (Tricladida) were investigated. In all flatworms polymorphous cells and processes reacting with antibodies to FMRFamide and neurotensin but not with calcitonin were revealed. These cell elements are localized both in the epithelium and beneath it. FMRFamide-immunoreactive cells and processes of investigated turbellarians and neurotensin-immunoreactive elements in P. littoralis obviously belong to the nervous system, while intraepithelial neurotensin-immunoreactive cells of polyclads share some morphological features with endocrine-like cells.

  3. An in vitro model of murine middle ear epithelium.

    Science.gov (United States)

    Mulay, Apoorva; Akram, Khondoker M; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P; Brown, Steve D M; Bingle, Lynne; Bingle, Colin D

    2016-11-01

    Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. © 2016. Published by The Company of Biologists Ltd.

  4. Embryo-epithelium interactions during implantation at a glance.

    Science.gov (United States)

    Aplin, John D; Ruane, Peter T

    2017-01-01

    At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur. © 2017. Published by The Company of Biologists Ltd.

  5. Nanotopography follows force in TGF-β1 stimulated epithelium

    International Nuclear Information System (INIS)

    Thoelking, Gerold; Oberleithner, Hans; Riethmuller, Christoph; Reiss, Bjoern; Wegener, Joachim; Pavenstaedt, Hermann

    2010-01-01

    Inflammation and cellular fibrosis often imply an involvement of the cytokine TGF-β1. TGF-β1 induces epithelial-to-mesenchymal transdifferentiation (EMT), a term describing the loss of epithelium-specific function. Indicative for this process are an elongated cell shape parallel to stress fibre formation. Many signalling pathways of TGF-β1 have been discovered, but mechanical aspects have not yet been investigated. In this study, atomic force microscopy (AFM) was used to analyse surface topography and mechanical properties of EMT in proximal kidney tubule epithelium (NRK52E). Elongated cells, an increase of stress fibre formation and a loss of microvillus compatible structures were observed as characteristic signs of EMT. Furthermore, AFM could identify an increase in stiffness by 71% after six days of stimulation with TGF-β1. As a novel topographical phenomenon, nodular protrusions emerged at the cell-cell junctions. They occurred preferentially at sites where stress fibres cross the border. Since these nodular protrusions were sensitive to inhibitors of force generation, they can indicate intracellular tension. The results demonstrate a manifest impact of elevated tension on the cellular topography.

  6. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    Science.gov (United States)

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  7. Ethanol impedes embryo transport and impairs oviduct epithelium

    International Nuclear Information System (INIS)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-01-01

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50 ± 6 mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy.

  8. Radio-iodination of plasma membranes of toad bladder epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, H J; Edelman, I S [California Univ., San Francisco (USA). Cardiovascular Research Inst.; California Univ., San Francisco (USA). Dept. of Medicine; California Univ., San Francisco (USA). Dept. of Biochemistry and Biophysics)

    1979-01-01

    The present report describes high yield enzymatic radio-iodination of the apical and basal-lateral plasma membranes of toad bladder epithelium with /sup 125/I-Na, by a procedure that does not breach the functional integrity of the epithelium, as assessed by the basal and vasopressin-sensitive short-circuit current (SCC). Iodination of basal-lateral plasma membranes, at a yield comparable to that obtained with apical labelling, was attained after about 30 min of exposure of the intact bladder to the labelling solutions. Approximately 25% of the basal-lateral labeling was lost when the epithelial cells were harvested after collagenase treatment, implying that some iodination of the basement membrane had taken place. Less than 10% of iodination of the apical or basal-lateral surfaces was accounted for by lipid-labeling. Analysis of the labeled apical and basal-lateral species by enzymatic digestion and thin layer chromatography disclosed that virtually all the radioactivity was present as mono-iodotyrosine (MIT). (orig./AJ).

  9. Choline transport in the isolated rabbit corneal epithelium

    International Nuclear Information System (INIS)

    Faust, R.L.

    1988-01-01

    In the present study, isolated epithelial sheets were obtained by performing two sequential anterior keratectomies, three weeks apart, on rabbit corneas. Light microscopy of the isolated sheets revealed a multilayered epithelium with an intact basal cell layer without contamination from other cell types. The accumulation of [ 3 H]choline into the epithelial sheets was studied at substrate concentrations varying from 1 to 100 μMoles with and without the addition of specific metabolic and stereochemical inhibitors. Accumulation of [ 3 H]choline into these sheets was saturable. Kinetic analysis, performed by estimation from double-reciprocal plots, revealed a single component system with a K m of 24.9 μM. The metabolic inhibitors potassium cyanide and ouabain showed no effect on the uptake of [ 3 H]choline; however, the stereochemical inhibitor hemicholinium-3 significantly reduced the accumulation of radiolabel at both high and low substrate concentrations. The results suggest a non-energy dependent yet a highly specific transport system for the accumulation of choline into the rabbit epithelium

  10. An in vitro model of murine middle ear epithelium

    Directory of Open Access Journals (Sweden)

    Apoorva Mulay

    2016-11-01

    Full Text Available Otitis media (OM, or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs at an air–liquid interface (ALI that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi, suggesting that the model can be successfully utilised to study host–pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development.

  11. Ethanol impedes embryo transport and impairs oviduct epithelium.

    Science.gov (United States)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. [Treatment of children with intestinal failure: intestinal rehabilitation, home parenteral nutrition or small intestine transplantation?

    NARCIS (Netherlands)

    Neelis, E.G.; Oers, H.A. van; Escher, J.C.; Damen, G.M.; Rings, E.H.; Tabbers, M.M.

    2014-01-01

    Intestinal failure is characterised by inadequate absorption of food or fluids, which is caused by insufficient bowel surface area or functioning. Children with chronic intestinal failure are dependent on parenteral nutrition (PN), which can be provided at home (HPN). In the Netherlands, HPN for

  13. The role of intestinal microbiota and the immune system.

    Science.gov (United States)

    Purchiaroni, F; Tortora, A; Gabrielli, M; Bertucci, F; Gigante, G; Ianiro, G; Ojetti, V; Scarpellini, E; Gasbarrini, A

    2013-02-01

    The human gut is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the intestinal innate and adaptive immune system, affecting different aspects of its development and function. To review the immunological functions of gut microbiota and improve knowledge of its therapeutic implications for several intestinal and extra-intestinal diseases associated to dysregulation of the immune system. Significant articles were identified by literature search and selected based on content, including atopic diseases, inflammatory bowel diseases and treatment of these conditions with probiotics. Accumulating evidence indicates that intestinal microflora has protective, metabolic, trophic and immunological functions and is able to establish a "cross-talk" with the immune component of mucosal immunity, comprising cellular and soluble elements. When one or more steps in this fine interaction fail, autoimmune or auto-inflammatory diseases may occur. Furthermore, it results from the data that probiotics, used for the treatment of the diseases caused by the dysregulation of the immune system, can have a beneficial effect by different mechanisms. Gut microbiota interacts with both innate and adaptive immune system, playing a pivotal role in maintenance and disruption of gut immune quiescence. A cross talk between the mucosal immune system and endogenous microflora favours a mutual growth, survival and inflammatory control of the intestinal ecosystem. Based on these evidences, probiotics can be used as an ecological therapy in the treatment of immune diseases.  

  14. The intestinal barrier function and its involvement in digestive disease

    Directory of Open Access Journals (Sweden)

    Eloísa Salvo-Romero

    2015-11-01

    Full Text Available The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  15. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Marlies; Mayassi, Toufic; Fehlner-Peach, Hannah; Koval, Jason C.; O' Brien, Sarah L.; Hinterleitner, Reinhard; Lesko, Kathryn; Kim, Sangman; Bouziat, Romain; Chen, Li; Weber, Christopher R.; Mazmanian, Sarkis K.; Jabri, Bana; Antonopoulos, Dionysios A.

    2016-09-20

    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin 15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and play a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). While the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S rRNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (v-IL-15tg mice) shows distinct changes in the composition of the intestinal bacteria. While some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum, and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.

  16. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    The administration of helminths is considered a promising strategy for the treatment of autoimmune diseases due to their immunomodulatory properties. Currently, the application of the helminth Trichuris suis as a treatment for Crohn's disease is being studied in large multi-center clinical trials....... The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...

  17. FcγRI (CD64): an identity card for intestinal macrophages.

    Science.gov (United States)

    De Calisto, Jaime; Villablanca, Eduardo J; Mora, J Rodrigo

    2012-12-01

    Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Creatine maintains intestinal homeostasis and protects against colitis.

    Science.gov (United States)

    Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R; Beutler, Bruce

    2017-02-14

    Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N -ethyl- N -nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted ( Gatm c/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatm c/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatm c/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.

  19. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Dengqun Liu

    2010-01-01

    Full Text Available Interstitial cells of Cajal (ICCs in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65%±3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25%±4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders.

  20. Intestinal transplantation: The anesthesia perspective.

    Science.gov (United States)

    Dalal, Aparna

    2016-04-01

    Intestinal transplantation is a complex and challenging surgery. It is very effective for treating intestinal failure, especially for those patients who cannot tolerate parenteral nutrition nor have extensive abdominal disease. Chronic parental nutrition can induce intestinal failure associated liver disease (IFALD). According to United Network for Organ Sharing (UNOS) data, children with intestinal failure affected by liver disease secondary to parenteral nutrition have the highest mortality on a waiting list when compared with all candidates for solid organ transplantation. Intestinal transplant grafts can be isolated or combined with the liver/duodenum/pancreas. Organ Procurement and Transplantation Network (OPTN) has defined intestinal donor criteria. Living donor intestinal transplant (LDIT) has the advantages of optimal timing, short ischemia time and good human leukocyte antigen matching contributing to lower postoperative complications in the recipient. Thoracic epidurals provide excellent analgesia for the donors, as well as recipients. Recipient management can be challenging. Thrombosis and obstruction of venous access maybe common due to prolonged parenteral nutrition and/or hypercoaguability. Thromboelastography (TEG) is helpful for managing intraoperative product therapy or thrombosis. Large fluid shifts and electrolyte disturbances may occur due to massive blood loss, dehydration, third spacing etc. Intestinal grafts are susceptible to warm and cold ischemia and ischemia-reperfusion injury (IRI). Post-reperfusion syndrome is common. Cardiac or pulmonary clots can be monitored with transesophageal echocardiography (TEE) and treated with recombinant tissue plasminogen activator. Vasopressors maybe used to ensure stable hemodynamics. Post-intestinal transplant patients may need anesthesia for procedures such as biopsies for surveillance of rejection, bronchoscopy, endoscopy, postoperative hemorrhage, anastomotic leaks, thrombosis of grafts etc. Asepsis

  1. The application of fluorescence in situ hybridization (FISH technique for studying the microbial communities in intestinal tissues of white shrimp (Penaeus vannamei

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2005-02-01

    Full Text Available Fluorescence in situ hybridization technique is very useful for the evaluation of microbial communities in various environments. It is possible to apply this technique to study the intestinal microflora in white shrimp (Penaeus vannamei. Different fixatives and storage temperature were tested in this technique. It was found that fixation with 10% buffered formalin for 12 hours and changed to 70% ethanol shown positive results when compared to the fixation with Davidson's fixative or RF fixative. The best signaling was obtainedfrom the samples which were stored in -20ºC. By using the DNA probe targeted to the Eubacteria domain (EUB338 probe, 5′-GCT GCC TCC CGT AGG AGT-3′ labeled with fluorescein as a hybridizing probe, it was found that most intestinal microflora were aggregated with the intestinal contents, or dispersed in the lumen. There was not evidence of the attachment of the microflora with the intestinal epithelium in this study.

  2. Indispensable role of Notch ligand-dependent signaling in the proliferation and stem cell niche maintenance of APC-deficient intestinal tumors

    International Nuclear Information System (INIS)

    Nakata, Toru; Shimizu, Hiromichi; Nagata, Sayaka; Ito, Go; Fujii, Satoru; Suzuki, Kohei; Kawamoto, Ami; Ishibashi, Fumiaki; Kuno, Reiko; Anzai, Sho; Murano, Tatsuro; Mizutani, Tomohiro; Oshima, Shigeru; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Hozumi, Katsuto; Watanabe, Mamoru; Okamoto, Ryuichi

    2017-01-01

    Ligand-dependent activation of Notch signaling is required to maintain the stem-cell niche of normal intestinal epithelium. However, the precise role of Notch signaling in the maintenance of the intestinal tumor stem cell niche and the importance of the RBPJ-independent non-canonical pathway in intestinal tumors remains unknown. Here we show that Notch signaling was activated in LGR5 +ve cells of APC-deficient mice intestinal tumors. Accordingly, Notch ligands, including Jag1, Dll1, and Dll4, were expressed in these tumors. In vitro studies using tumor-derived organoids confirmed the intrinsic Notch activity-dependent growth of tumor cells. Surprisingly, the targeted deletion of Jag1 but not RBPJ in LGR5 +ve tumor-initiating cells resulted in the silencing of Hes1 expression, disruption of the tumor stem cell niche, and dramatic reduction in the proliferation activity of APC-deficient intestinal tumors in vivo. Thus, our results highlight the importance of ligand-dependent non-canonical Notch signaling in the proliferation and maintenance of the tumor stem cell niche in APC-deficient intestinal adenomas. - Highlights: • Notch signaling is activated in LGR5 +ve cells of APC-deficient intestinal tumors. • Lack of Jag1 but not RBPJ disrupts stem cell niche formation in those tumors. • Lack of Jag1 reduces the proliferation activity of APC-deficient intestinal tumors.

  3. Humoral Immunity Provides Resident Intestinal Eosinophils Access to Luminal Antigen via Eosinophil-Expressed Low-Affinity Fcγ Receptors.

    Science.gov (United States)

    Smith, Kalmia M; Rahman, Raiann S; Spencer, Lisa A

    2016-11-01

    Eosinophils are native to the healthy gastrointestinal tract and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g., food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct Ag engagement elicits eosinophil effector functions, including degranulation and Ag presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food Ags by a columnar epithelium might similarly engage food Ags. Using an intestinal ligated loop model in mice, in this study we determined that resident intestinal eosinophils acquire Ag from the lumen of Ag-sensitized but not naive mice in vivo. Ag acquisition was Ig-dependent; intestinal eosinophils were unable to acquire Ag in sensitized Ig-deficient mice, and passive immunization with immune serum or Ag-specific IgG was sufficient to enable intestinal eosinophils in otherwise naive mice to acquire Ag in vivo. Intestinal eosinophils expressed low-affinity IgG receptors, and the activating receptor FcγRIII was necessary for Ig-mediated acquisition of Ags by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food Ags in sensitized mice via FcγRIII Ag focusing and that they may therefore participate in Ag-driven secondary immune responses to oral Ags. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    Science.gov (United States)

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  5. Autoradiographic investigation of age-dependent proliferation kinetics in the mucosa of rat small intestine

    International Nuclear Information System (INIS)

    Kranz, D.; Laue, R.; Fuhrmann, I.

    1980-01-01

    Aging of cells depends on mitotic activity which is particularly evident in multicellular organisms. The cell kinetics of the mucosa of the small intestine in a total of 244 Wistar rats aged 6 days, 6 weeks, 6, 12, 23 and 28 months, resp., were studied histoautoradiographically. It could be demonstrated that the regeneration rate of cells per hour in the crypts of the small intestine and the migration velocity of the enterocytes differ in young and old individuals, and that the intermitotic cells have age-dependent properties as well. In addition, it could be proved that intermitotic cells have a non growth fraction, too, which, at an advanced age, decreases only slightly although significantly in terms of statistics. For the easily vulnerable crypt epithelium it is a reserve capacity and ban be included in the proliferating pool if necessary. (author)

  6. Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha

    International Nuclear Information System (INIS)

    Wu, S.G.; Miyamoto, T.

    1990-01-01

    Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic

  7. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  8. Megacystis microcolon intestinal hypoperistalsis syndrome

    Science.gov (United States)

    Hiradfar, Mehran; Shojaeian, Reza; Dehghanian, Paria; Hajian, Sara

    2013-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a multisystemic disorder in which impaired intestinal motor activity causes recurrent symptoms of intestinal obstruction in the absence of mechanical occlusion, associated with bladder distention without distal obstruction of the urinary tract. MMIHS and prune belly syndrome may overlap in most of the clinical features and discrimination of these two entities is important because the prognosis, management and consulting with parents are completely different. MMIHS outcome is very poor and in this article we present two neonates with MMIHS that both died in a few days. PMID:23729700

  9. Antibiotic concentrations in intestinal mucosa.

    Science.gov (United States)

    Malmborg, A S

    1985-01-01

    The concentrations in the intestinal mucosa after the initial dose of cefoxitin, piperacillin and clindamycin have been studied. The antibiotics were given at the induction of anesthesia as prophylaxis to patients undergoing elective colorectal surgery. The concentrations of the antibiotics in serum and intestinal mucosa taken during the operation were determined by the microbiological agar diffusion method. Therapeutic concentrations in intestinal mucosa were maintained during the major part of the operation period. The mean mucosa/serum concentration ratios were for cefoxitin 0.4, for piperacillin 0.5 and for clindamycin 1.2.

  10. INFANTS’ INTESTINAL COLICS. MODERN DATA

    Directory of Open Access Journals (Sweden)

    N.I. Ursova

    2011-01-01

    Full Text Available The article analyzes modern data on infants’ intestinal colics. Peculiarities of nutrition, intestinal microbiocenose in healthy infants, methods of colcs’ correction are discussed. Author describes the principles of probiotics choice based on their clinical effectiveness in infants. Milk formula «Nan Comfort» can be useful in prophylaxis and treatment of functional disorders of gastrointestinal tract in children.Key words: infants, gastrointestinal tract, anatomy, physiology, intestinal colics, nutrition, probiotics.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2011; 10 (2: 125–131

  11. Interactions between bacteria and the intestinal mucosa: Do enteric neurotransmitters acting on epithelium cells influence mucosal colonization or infection?

    Science.gov (United States)

    The mechanisms governing the ability of bacteria to adhere to and colonize human and animal hosts in health and disease are still incompletely understood. Throughout the extensive mucosal surfaces of the body that are in contact with the external environment, epithelial cells represent the first po...

  12. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Science.gov (United States)

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  13. Role of yqiC in the pathogenicity of Salmonella and innate immune responses of human intestinal epithelium

    Directory of Open Access Journals (Sweden)

    Ke-Chuan Wang

    2016-10-01

    Full Text Available The yqiC gene of Salmonella enterica serovar Typhimurium (S. Typhimurium regulates bacterial growth at different temperatures and mice survival after infection. However, the role of yqiC in bacterial colonization and host immunity remains unknown. We infected human LS174T, Caco-2, HeLa, and THP-1 cells with S. Typhimurium wild-type SL1344, its yqiC mutant, and its complemented strain. Bacterial colonization and internalization in the four cell lines significantly reduced on yqiC depletion. Postinfection production of interleukin-8 and human β-defensin-3 in LS174T cells significantly reduced because of yqiC deleted in S. Typhimurium. The phenotype of yqiC mutant exhibited few and short flagella, fimbriae on the cell surface, enhanced biofilm formation, upregulated type-1 fimbriae expression, and reduced bacterial motility. Type-1 fimbriae, flagella, SPI-1, and SPI-2 gene expression was quantified using real-time PCR. The data show that deletion of yqiC upregulated fimA and fimZ expression and downregulated flhD, fliZ, invA, and sseB expression. Furthermore, thin-layer chromatography and high-performance liquid chromatography revealed the absence of menaquinone in the yqiC mutant, thus validating the importance of yqiC in the bacterial electron transport chain. Therefore, YqiC can negatively regulate FimZ for type-1 fimbriae expression and manipulate the functions of its downstream virulence factors including flagella, SPI-1, and SPI-2 effectors.

  14. Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium

    DEFF Research Database (Denmark)

    Lotz, M M; Nusrat, A; Madara, J L

    1997-01-01

    laminins 5, 6, and 7 as indicated by immunostaining using laminin subunit-specific monoclonal antibodies (MAbs). A MAb (BM2) specific for the laminin alpha 3 subunit, a component of laminins 5, 6, and 7, completely inhibited the closure of mechanical wounds in T84 monolayers. Confocal microscopy using MAbs...... BM2 (laminin alpha 3 subunit) and 6F12 (laminin beta 3 subunit) revealed that laminin-5 is deposited in a basal matrix that extends into the wound. The MAbs 4E10 (laminin beta 1 subunit) and C4 (laminin beta 2 subunit) stained the lateral membranes between T84 cells. This staining was enhanced...

  15. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium.

    Science.gov (United States)

    Pickering, Janessa; Teo, Teck Hui; Thornton, Ruth B; Kirkham, Lea-Ann; Zosky, Graeme R; Clifford, Holly D

    2018-07-01

    Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM 10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM 10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM 10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM 10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM 10 . We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with cells treated with heat-treated geogenic dust PM 10 (p respiratory epithelium. The impact on respiratory

  16. Toxic death of mouse small intestinal enterocytes as a function of intervals between injections of the S-phase-specific agent hydroxyurea

    International Nuclear Information System (INIS)

    Churikova, L.I.; Krinskaya, A.V.; Dibrov, B.F.; Zhabotinskii, A.M.; Neifakh, Yu.A.; Gel'fand, E.V.

    1986-01-01

    The authors study optimal conditions for administration of hydroxyurea to mice to ensure minimal damage to intestinal enterocytes. Before receiving an injection of hydroxyurea the mice were irradiated in a dose of 200 rads from a 137 Cs source to activate proliferation of the epithelial cells. The morphometric parameters of the epithelium after injection of hydroxyurea are given. A resonance increase in the survival rate of the enterocytes was revealed if the cytostatic was injected with a period close to the average duration of the cell cycle of the regenerating intestinal cells

  17. Demonstration of Brachyspira aalborgi lineages 2 and 3 in human colonic biopsies with intestinal spirochaetosis by specific fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Teglbjærg, Peter S.; Lindboe, Christian F.

    2004-01-01

    of these organisms in human intestinal spirochaetosis. Seventeen human colonic biopsies from Norway and Denmark with intestinal spirochaetosis caused by Brachyspira-like organisms different from the type strain of B. aalborgi (lineage 1) were examined. Application of the probe gave a positive signal in two Norwegian...... biopsies, whereas the 15 other biopsies were hybridization-negative. The positive reaction visualized the spirochaetes as a fluorescent, 3-5 mum-high fringe on the surface epithelium, extending into the crypts. The study verified the presence of B. aalborgi lineages 2 and 3 and identified the bacteria...

  18. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism.

    Science.gov (United States)

    Zhou, Weinan; Ramachandran, Deepti; Mansouri, Abdelhak; Dailey, Megan J

    2018-04-01

    The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation. © 2017 Wiley Periodicals, Inc.

  19. Piezoelectric materials mimic the function of the cochlear sensory epithelium.

    Science.gov (United States)

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-11-08

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application.

  20. Intestinal Failure (Short Bowel Syndrome)

    Science.gov (United States)

    ... at the beginning to maintain nutrition and good hydration although it is hoped that the small intestine ... life. For more information or to locate a pediatric gastroenterologist in your area please visit our website ...