WorldWideScience

Sample records for intestinal crypt stem

  1. Stem cell self-renewal in intestinal crypt

    Energy Technology Data Exchange (ETDEWEB)

    Simons, Benjamin D., E-mail: bds10@cam.ac.uk [Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE (United Kingdom); The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN (United Kingdom); Clevers, Hans, E-mail: h.clevers@hubrecht.eu [Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht (Netherlands)

    2011-11-15

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  2. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging

    NARCIS (Netherlands)

    Ritsma, Laila; Ellenbroek, Saskia I J; Zomer, Anoek; Snippert, Hugo J; de Sauvage, Frederic J; Simons, Benjamin D; Clevers, Hans; van Rheenen, Jacco

    2014-01-01

    The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt. In addition to the Lgr5 marker, intestinal stem cells have been associated with other markers that are expressed heterogeneously within the crypt base region. Previous

  3. Ballroom dancing with stem cells: placement and displacement in the intestinal crypt.

    Science.gov (United States)

    Tajbakhsh, Shahragim

    2014-03-06

    Intestinal homeostasis is dependent upon stem cells that reside in the intestinal crypt, although the identity and dynamics of this population are unclear. Ritsma et al. (2014) recently reported temporal live imaging of mouse intestinal stem cells and their progeny, providing insights into spatial dynamics underlying stem cell behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts

    NARCIS (Netherlands)

    Sato, T.; van Es, J.H.; Snippert, H.J.G.; Stange, D.E.; Vries, R.G.J.; van den Born, M.M.W.; Barker, N.; Shroyer, N.F.; van de Wetering, M.L.; Clevers, H.

    2010-01-01

    Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such

  5. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation

    Science.gov (United States)

    Reddy, Vishruth K.; Short, Sarah P.; Barrett, Caitlyn W.; Mittal, Mukul K.; Keating, Cody E.; Thompson, Joshua J.; Harris, Elizabeth I.; Revetta, Frank; Bader, David M.; Brand, Thomas; Washington, M. Kay; Williams, Christopher S.

    2016-01-01

    Blood Vessel Epicardial Substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves−/− mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wildtype (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves−/− mice. To examine stem cell function after BVES deletion, we employed ex vivo 3D-enteroid cultures. Bves−/− enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar “CBC” and “+4” stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves−/− enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves−/− mice demonstrated significantly greater small intestinal crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves−/− mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. PMID:26891025

  6. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    International Nuclear Information System (INIS)

    Horita, Nobukatsu; Tsuchiya, Kiichiro; Hayashi, Ryohei; Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-01

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus

  7. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Nobukatsu [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Hayashi, Ryohei [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Department of Gastroenterology and Metabolism, Hiroshima University (Japan); Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Okamoto, Ryuichi; Nakamura, Tetsuya [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan)

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  8. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  9. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations

    Science.gov (United States)

    Van Landeghem, Laurianne; Santoro, M. Agostina; Mah, Amanda T.; Krebs, Adrienne E.; Dehmer, Jeffrey J.; McNaughton, Kirk K.; Helmrath, Michael A.; Magness, Scott T.; Lund, P. Kay

    2015-01-01

    Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFPLow) and reserve/facultative ISCs (Sox9-EGFPHigh) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFPLow ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFPHigh ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFPHigh facultative ISCs but not Sox9-EGFPLow actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.—Van Landeghem, L., Santoro, M. A., Mah, A. T., Krebs, A. E., Dehmer, J. J., McNaughton, K. K., Helmrath, M. A., Magness, S. T., Lund, P. K. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. PMID:25837582

  10. Identifying the stem cell of the intestinal crypt: strategies and pitfalls

    NARCIS (Netherlands)

    Barker, N.; van Oudenaarden, A.; Clevers, H.

    2012-01-01

    Decades ago, two nonoverlapping crypt stem cell populations were proposed: Leblond's Crypt Base Columnar (CBC) cell and Potten's +4 cell. The identification of CBC markers including Lgr5 has confirmed Leblond's predictions that CBC cells are anatomically distinct, long-lived stem cells that

  11. Transcriptional corepressor MTG16 regulates small intestinal crypt proliferation and crypt regeneration after radiation-induced injury.

    Science.gov (United States)

    Poindexter, Shenika V; Reddy, Vishruth K; Mittal, Mukul K; Williams, Amanda M; Washington, M Kay; Harris, Elizabeth; Mah, Amanda; Hiebert, Scott W; Singh, Kshipra; Chaturvedi, Rupesh; Wilson, Keith T; Lund, P Kay; Williams, Christopher S

    2015-03-15

    Myeloid translocation genes (MTGs) are transcriptional corepressors implicated in development, malignancy, differentiation, and stem cell function. While MTG16 loss renders mice sensitive to chemical colitis, the role of MTG16 in the small intestine is unknown. Histological examination revealed that Mtg16(-/-) mice have increased enterocyte proliferation and goblet cell deficiency. After exposure to radiation, Mtg16(-/-) mice exhibited increased crypt viability and decreased apoptosis compared with wild-type (WT) mice. Flow cytometric and immunofluorescence analysis of intestinal epithelial cells for phospho-histone H2A.X also indicated decreased DNA damage and apoptosis in Mtg16(-/-) intestines. To determine if Mtg16 deletion affected epithelial cells in a cell-autonomous fashion, intestinal crypts were isolated from Mtg16(-/-) mice. Mtg16(-/-) and WT intestinal crypts showed similar enterosphere forming efficiencies when cultured in the presence of EGF, Noggin, and R-spondin. However, when Mtg16(-/-) crypts were cultured in the presence of Wnt3a, they demonstrated higher enterosphere forming efficiencies and delayed progression to mature enteroids. Mtg16(-/-) intestinal crypts isolated from irradiated mice exhibited increased survival compared with WT intestinal crypts. Interestingly, Mtg16 expression was reduced in a stem cell-enriched population at the time of crypt regeneration. This is consistent with MTG16 negatively regulating regeneration in vivo. Taken together, our data demonstrate that MTG16 loss promotes radioresistance and impacts intestinal stem cell function, possibly due to shifting cellular response away from DNA damage-induced apoptosis and towards DNA repair after injury.

  12. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    Science.gov (United States)

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.

  13. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    Science.gov (United States)

    Joosten, Sander P J; Zeilstra, Jurrit; van Andel, Harmen; Mijnals, R Clinton; Zaunbrecher, Joost; Duivenvoorden, Annet A M; van de Wetering, Marc; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-10-01

    Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (Ah Cre /Met fl/fl /LacZ) or ISC-specific disruption of MET (Lgr5 Creert2 /Met fl/fl /LacZ) and control mice (Ah Cre /Met +/+ /LacZ, Lgr5 Creert2 /Met +/+ /LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5 Creert2 /Met fl/fl /Apc fl/fl and Lgr5 Creert2 /Met +/+ /Apc fl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in Ah Cre /Met fl/fl /Apc fl/+ mice compared with Ah Cre /Met +/+ /Apc fl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44 +/+ , Cd44 -/- , Cd44 s/s , or Cd44 v4-10/v4-10 mice). Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in Ah Cre

  14. File list: His.Dig.05.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.AllAg.Intestinal_crypt mm9 Histone Digestive tract Intestinal crypt http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.05.AllAg.Intestinal_crypt.bed ...

  15. File list: Unc.Dig.05.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.05.AllAg.Intestinal_crypt mm9 Unclassified Digestive tract Intestinal crypt... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Dig.05.AllAg.Intestinal_crypt.bed ...

  16. HIV enteropathy: HAART reduces HIV-induced stem cell hyperproliferation and crypt hypertrophy to normal in jejunal mucosa.

    Science.gov (United States)

    Batman, Philip A; Kapembwa, Moses S; Belmonte, Liliana; Tudor, Gregory; Kotler, Donald P; Potten, Christopher S; Booth, Catherine; Cahn, Pedro; Griffin, George E

    2014-01-01

    To analyse the structural and kinetic response of small intestinal crypt epithelial cells including stem cells to highly active antiretroviral therapy (HAART). Crypt size and proliferative activity of transit and stem cells in jejunal mucosa were quantified using morphometric techniques. Crypt length was measured by counting the number of enterocytes along one side of a number of crypts in each biopsy specimen and the mean crypt length was calculated. Proliferating crypt cells were identified with MIB-1 monoclonal antibody, and the percentage of crypt cells in proliferation was calculated at each cell position along the length of the crypt (proliferation index). Data were obtained from 9 HIV-positive test patients co-infected with microsporidia, 34 HIV-positive patients receiving HAART and 13 control cases. Crypt length was significantly greater in test patients than in controls, but crypt length in patients receiving HAART was normal. The proliferation index was greater in test subjects than in controls in stem and transit cell compartments, and was decreased in patients treated with HAART only in the stem cell region of the crypt. Villous atrophy in HIV enteropathy is attributed to crypt hypertrophy and encroachment of crypt cells onto villi. HAART restores normal crypt structure by inhibition of HIV-driven stem cell hyperproliferation at the crypt bases.

  17. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism.

    Science.gov (United States)

    Zhou, Weinan; Ramachandran, Deepti; Mansouri, Abdelhak; Dailey, Megan J

    2018-04-01

    The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation. © 2017 Wiley Periodicals, Inc.

  18. A reaction–diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2012-07-01

    Full Text Available Abstract Background Colon crypts, a single sheet of epithelia cells, consist of a periodic pattern of stem cells, transit-amplifying cells, and terminally differentiated cells that constantly renew and turnover. Experimental evidence suggests that Wnt signaling promotes and regulates stem cell division, differentiation, and possible cell migrations while intestinal BMP signaling inhibits stem cell self-renewal and repression in crypt formation. As more molecular details on Wnt and BMP in crypts are being discovered, little is still known about how complex interactions among Wnt, BMP, and different types of cells, and surrounding environments may lead to de novo formation of multiple crypts or how such interactions affect regeneration and stability of crypts. Results We present a mathematical model that contains Wnt and BMP, a cell lineage, and their feedback regulations to study formation, regeneration, and stability of multiple crypts. The computational explorations and linear stability analysis of the model suggest a reaction–diffusion mechanism, which exhibits a short-range activation of Wnt plus a long-range inhibition with modulation of BMP signals in a growing tissue of cell lineage, can account for spontaneous formation of multiple crypts with the spatial and temporal pattern observed in experiments. Through this mechanism, the model can recapitulate some distinctive and important experimental findings such as crypt regeneration and crypt multiplication. BMP is important in maintaining stability of crypts and loss of BMP usually leads to crypt multiplication with a fingering pattern. Conclusions The study provides a mechanism for de novo formation of multiple intestinal crypts and demonstrates a synergetic role of Wnt and BMP in regeneration and stability of intestinal crypts. The proposed model presents a robust framework for studying spatial and temporal dynamics of cell lineages in growing tissues driven by multiple signaling

  19. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    Directory of Open Access Journals (Sweden)

    Ann-Marie Baker

    2014-08-01

    Full Text Available Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+. Furthermore, we show that, in adenomatous crypts (APC−/−, there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.

  20. File list: Pol.Dig.20.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.20.AllAg.Intestinal_crypt mm9 RNA polymerase Digestive tract Intestinal cry...pt http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Dig.20.AllAg.Intestinal_crypt.bed ...

  1. File list: NoD.Dig.05.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.05.AllAg.Intestinal_crypt mm9 No description Digestive tract Intestinal cry...pt http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.05.AllAg.Intestinal_crypt.bed ...

  2. File list: ALL.Dig.20.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.20.AllAg.Intestinal_crypt mm9 All antigens Digestive tract Intestinal crypt... SRX871676,SRX871672,SRX871675,SRX871671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.20.AllAg.Intestinal_crypt.bed ...

  3. File list: Pol.Dig.10.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.10.AllAg.Intestinal_crypt mm9 RNA polymerase Digestive tract Intestinal cry...pt http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Dig.10.AllAg.Intestinal_crypt.bed ...

  4. File list: ALL.Dig.10.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.10.AllAg.Intestinal_crypt mm9 All antigens Digestive tract Intestinal crypt... SRX871676,SRX871671,SRX871675,SRX871672 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.10.AllAg.Intestinal_crypt.bed ...

  5. File list: Oth.Dig.05.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.05.AllAg.Intestinal_crypt mm9 TFs and others Digestive tract Intestinal cry...pt SRX871676,SRX871675,SRX871671,SRX871672 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.05.AllAg.Intestinal_crypt.bed ...

  6. File list: NoD.Dig.20.AllAg.Intestinal_crypt [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.20.AllAg.Intestinal_crypt mm9 No description Digestive tract Intestinal cry...pt http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.20.AllAg.Intestinal_crypt.bed ...

  7. Differences in Radiation Dose Response between Small and Large Intestinal Crypts.

    Science.gov (United States)

    Otsuka, Kensuke; Suzuki, Keiji

    2016-09-01

    The protection of intestinal epithelial cells from the lethal effects induced by high-dose radiation is an important issue in radiotherapy and in the treatment of acute radiation syndrome. However, the effects of middle- and low-dose radiation on intestinal epithelial cells remain unclear. Because the accumulation of DNA damage in intestinal stem cells may be crucial for the development of cancer-initiating cells, it is important to understand the kinetics of DNA repair and tissue response (which are involved in the elimination of damaged cells and tissue injury repair) to middle- to low-dose irradiation. In this study, mice were X-ray irradiated with 0.1, 1 or 4 Gy, after which the small intestine (duodenum and ileum) and colon were harvested from the animals. DNA damage repair and the elimination of damaged cells were quantified by measuring the number of foci of 53BP1, a surrogate marker for DNA double-strand breaks. Tissue-proliferative response was evaluated by determining the number of Ki-67(+) and mitotic cells. Intra-crypt response differed considerably between the small intestine and the colon. In the small intestine, 53BP1 foci were detected immediately after irradiation, but rapidly disappeared thereafter, especially noticeable in Lgr5(+) stem cells. Cellular growth was temporally arrested; however, cell numbers and mitotic cell numbers in the crypt did not change. The kinetics of DNA damage repair in Lgr5(+) stem cells were similar to those in the small intestines, while the colon was more susceptible to radiation-induced damage. Preferential cell loss in the lower crypt was clearly observed in the colon; and after low-dose X-ray irradiation, only the colon exhibited considerably reduced cell numbers and dramatic induction of mitosis. These results suggest that differences in radiation dose response between the small and the large intestine may depend on the growth activity of stem cells after DNA repair.

  8. Radioprotection of intestinal crypt cells by cox-inhibitors

    International Nuclear Information System (INIS)

    Bisnar, Paul O.; Dones, Rosa Angela S.A.; Serna, Paulene-Ver A.; Deocaris, Chester C.; Guttierez, Kalangitan V.; Deocaris, Custer C.

    2006-01-01

    The regulation of tissue homeostasis in the gastrointestinal epithelium after epithelial injury focuses on the prostaglandins(PGs) as its major mediators. The two cyclooxygenase isoforms, cox-1 and cox-2, catalyze synthesis of PGs. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation, and in adenomas and carcinomas. To study the effects of various commercially-available cox-inhibitors (Ketorolac: cox-1 selective; Celecoxib: cox-2 selective; and Indocid: cox-1/2 non-selective), we determine mouse crypt epithelial cell fate after genotoxic injury with whole-body gamma-ray exposure at 15 Gy. Intestinal tissues of mice treated with cox-2 inhibitors that showed invariable apoptotic event, however, have increased occurrence of regenerating cells. Our results suggest a potential application of cox-2 selective inhibitors as radioprotective agent for normal cells after radiotherapy. (Author)

  9. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  10. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.

    Science.gov (United States)

    Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L

    2017-06-01

    The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  12. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  13. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  14. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  15. Intestinal lineage commitment of embryonic stem cells.

    Science.gov (United States)

    Cao, Li; Gibson, Jason D; Miyamoto, Shingo; Sail, Vibhavari; Verma, Rajeev; Rosenberg, Daniel W; Nelson, Craig E; Giardina, Charles

    2011-01-01

    Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue. Copyright © 2010 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  16. How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer.

    Science.gov (United States)

    Boman, Bruce M; Fields, Jeremy Z; Cavanaugh, Kenneth L; Guetter, Arthur; Runquist, Olaf A

    2008-05-01

    Based on investigation of the earliest colonic tissue alteration in familial adenomatous polyposis (FAP) patients, we present the hypothesis that initiation of colorectal cancer by adenomatous polyposis coli (APC) mutation is mediated by dysregulation of two cellular mechanisms. One involves differentiation, which normally decreases the proportion (proliferative fraction) of colonic crypt cells that can proliferate; the other is a cell cycle mechanism that simultaneously increases the probability that proliferative cells are in S phase. In normal crypts, stem cells (SC) at the crypt bottom generate rapidly proliferating cells, which undergo differentiation while migrating up the crypt. Our modeling of normal crypts suggests that these transitions are mediated by mechanisms that regulate proliferative fraction and S-phase probability. In FAP crypts, the population of rapidly proliferating cells is shifted upwards, as indicated by the labeling index (LI; i.e., crypt distribution of cells in S phase). Our analysis of FAP indicates that these transitions are delayed because the proliferative fraction and S-phase probability change more slowly as a function of crypt level. This leads to expansion of the proliferative cell population, including a subpopulation that has a low frequency of S-phase cells. We previously reported that crypt SC overpopulation explains the LI shift. Here, we determine that SCs (or cells having high stemness) are proliferative cells with a low probability of being in S phase. Thus, dysregulation of mechanisms that control proliferative fraction and S-phase probability explains how APC mutations induce SC overpopulation at the crypt bottom, shift the rapidly proliferating cell population upwards, and initiate colon tumorigenesis.

  17. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors

    NARCIS (Netherlands)

    Stange, D.E.; Clevers, H.

    2013-01-01

    The intestine has developed over the last few years into a prime model system for adult stem cell research. Intestinal cells have an average lifetime of 5 days, moving within this time from the bottom of intestinal crypts to the top of villi. This rapid self-renewal capacity combined with an easy to

  18. De Novo Formation of Insulin-Producing “Neo-β Cell Islets” from Intestinal Crypts

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2014-03-01

    Full Text Available The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell “reprogramming factors” in a wide spectrum of tissues. We report that transient intestinal expression of these factors—Pdx1, MafA, and Ngn3 (PMN—promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into “neoislets” below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal “organoids” stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells.

  19. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  20. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes

    NARCIS (Netherlands)

    Schepers, A.G.; Vries, R.G.J.; van den Born, M.M.W.; van de Wetering, M.L.; Clevers, H.

    2011-01-01

    Somatic cells have been proposed to be limited in the number of cell divisions they can undergo. This is thought to be a mechanism by which stem cells retain their integrity preventing disease. However, we have recently discovered intestinal crypt stem cells that persist for the lifetime of a mouse,

  1. RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2017-12-01

    Full Text Available Summary: RHOA, a founding member of the Rho GTPase family, is critical for actomyosin dynamics, polarity, and morphogenesis in response to developmental cues, mechanical stress, and inflammation. In murine small intestinal epithelium, inducible RHOA deletion causes a loss of epithelial polarity, with disrupted villi and crypt organization. In the intestinal crypts, RHOA deficiency results in reduced cell proliferation, increased apoptosis, and a loss of intestinal stem cells (ISCs that mimic effects of radiation damage. Mechanistically, RHOA loss reduces YAP signaling of the Hippo pathway and affects YAP effector epiregulin (EREG expression in the crypts. Expression of an active YAP (S112A mutant rescues ISC marker expression, ISC regeneration, and ISC-associated Wnt signaling, but not defective epithelial polarity, in RhoA knockout mice, implicating YAP in RHOA-regulated ISC function. EREG treatment or active β-catenin Catnblox(ex3 mutant expression rescues the RhoA KO ISC phenotypes. Thus, RHOA controls YAP-EREG signaling to regulate intestinal homeostasis and ISC regeneration. : In this article, Zheng and colleagues show that inducible RHOA deletion in mice causes defects in intestine epithelial polarity and deficiencies in intestinal stem cell proliferation, survival, and regeneration. They further demonstrate by genetic rescues that RHOA controls a YAP-EREG axis to mediate canonical Wnt signaling, intestinal stem cell function, and intestinal homeostasis. Keywords: mouse model, intestinal stem cell, regeneration, Rho GTPase, RhoA, Hippo signaling, YAP, Wnt signaling

  2. Fractionation study: survival of mouse intestinal crypts to exposure of 60Co and 11 MeV electrons

    International Nuclear Information System (INIS)

    Coffey, C.W.

    1975-01-01

    The study was conducted to determine a statistical procedure for the quantification of time, dose, fraction relations for mouse intestinal crypt survival after fractionated Co-60 and 11-MeV electron irradiation. In the initial phase of the investigation CDF/1 male mice were exposed to fractionated Co-60 irradiation. A completely randomized experimental design with three factors, total time from initiation to completion of fractionation schedule, number of fractions, and total dose was utilized. The experimental animals were irradiated with a Co-60 panoramic irradiator unit at an absorbed dose rate of approximately 51 rads per minute. Two days after completion of the fractionation schedule, the experimental animals were sacrificed by cervical dislocation. Sections of intestinal jejunum were resected and routine histological preparations performed. The surviving crypts were scored with a compound microscope using a quantitative counting technique. The resulting crypt survival was observed to increase for increasing total times and fraction numbers

  3. RBE of the NCT beam at Petten (The Netherlands) for intestinal crypt regeneration in mice

    International Nuclear Information System (INIS)

    Gueulette, J.; Coster, B.M. de; Wambersie, A.; Stecher-Rasmussen, F.; Huiskamp, R.; Moss, R.; Morrissey, J.

    2000-01-01

    RBE of the BNCT epithermal neutron beam at Petten (The Netherlands) has been determined for intestinal crypt regeneration in mice i.e. an in vivo system. No boron was administered. This experiment is part of an IAEA programme aiming at intercomparing radiobiologically the NCT neutron beams of different facilities world-wide. Six MV photons were used as the reference radiation. For the NCT beam at Petten, irradiation times ranging between 1 and 3 hours were applied. These low dose rate irradiations (∼3 Gy/hour) were found ∼2.4 more effective than acute photon irradiations. This type of experiment - repeated at different BNCT facilities - will improve harmonisation in the radiobiological specification of NCT neutron beams and facilitate exchange of clinical information. (author)

  4. Regeneration of stem-cells in intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Hendry, J.H.

    1979-01-01

    Stem-cells can be defined as pluripotent progenitor cells, capable of both self-renewal and differentitation into all the functional end-cells typical of that cell family. Intestinal crypts contain population of cells which is capable of a) self-renewal following the severe depletion after radiation injury, b) replacing all other cypt cell types, and c) regeneration following repeated depletion (in colon). These are the properties of stem cells. Most measurements of the rate of regeneration of these cells following the severe depletion by radiation have been made by employing large test dose at increasing times. Such measurements have produced widely differing rates of increase in the survival under the test dose, from 4 hours (macrocolonies in jejunum) to 43 hours (microcolonies in stomach). In other tissues, large single test doses have been used to derive the time of doubling survival ratio e.g. for epidermal clones. Although cryptogenic cell number per crypt can be virtually restored by day 4 after a single dose and probably after many such doses, the status quo cannot be reached until the number of crypts is restored to normal. Stem cell numbers form a necessary part of the integrity of epitheliums. The quality of the stem cell function of survivors as expressed in the differentiated progeny, and the maintenance of function of the supportive environment are equally important for late radiation damage. (Yamashita, S.)

  5. The Organoid Reconstitution Assay (ORA) for the Functional Analysis of Intestinal Stem and Niche Cells.

    Science.gov (United States)

    Schewe, Matthias; Sacchetti, Andrea; Schmitt, Mark; Fodde, Riccardo

    2017-11-20

    The intestinal epithelium is characterized by an extremely rapid turnover rate. In mammals, the entire epithelial lining is renewed within 4 - 5 days. Adult intestinal stem cells reside at the bottom of the crypts of Lieberkühn, are earmarked by expression of the Lgr5 gene, and preserve homeostasis through their characteristic high proliferative rate 1 . Throughout the small intestine, Lgr5 + stem cells are intermingled with specialized secretory cells called Paneth cells. Paneth cells secrete antibacterial compounds (i.e., lysozyme and cryptdins/defensins) and exert a controlling role on the intestinal flora. More recently, a novel function has been discovered for Paneth cells, namely their capacity to provide niche support to Lgr5 + stem cells through several key ligands as Wnt3, EGF, and Dll1 2 . When isolated ex vivo and cultured in the presence of specific growth factors and extracellular matrix components, whole intestinal crypts give rise to long-lived and self-renewing 3D structures called organoids that highly resemble the crypt-villus epithelial architecture of the adult small intestine 3 . Organoid cultures, when established from whole crypts, allow the study of self-renewal and differentiation of the intestinal stem cell niche, though without addressing the contribution of its individual components, namely the Lgr5 + and Paneth cells. Here, we describe a novel approach to the organoid assay that takes advantage of the ability of Paneth and Lgr5 + cells to associate and form organoids when co-cultured. This approach, here referred to as "organoid reconstitution assay" (ORA), allows the genetic and biochemical modification of Paneth or Lgr5 + stem cells, followed by reconstitution into organoids. As such, it allows the functional analysis of the two main components of the intestinal stem cell niche.

  6. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration

    NARCIS (Netherlands)

    Beumer, Joep; Clevers, Hans

    2016-01-01

    The intestinal epithelium is the fastest renewing tissue in mammals and has a large flexibility to adapt to different types of damage. Lgr5(+) crypt base columnar (CBC) cells act as stem cells during homeostasis and are essential during regeneration. Upon perturbation, the activity of CBCs is

  7. Deletion of Polycomb Repressive Complex 2 From Mouse Intestine Causes Loss of Stem Cells.

    Science.gov (United States)

    Koppens, Martijn A J; Bounova, Gergana; Gargiulo, Gaetano; Tanger, Ellen; Janssen, Hans; Cornelissen-Steijger, Paulien; Blom, Marleen; Song, Ji-Ying; Wessels, Lodewyk F A; van Lohuizen, Maarten

    2016-10-01

    The polycomb repressive complex 2 (PRC2) regulates differentiation by contributing to repression of gene expression and thereby stabilizing the fate of stem cells and their progeny. PRC2 helps to maintain adult stem cell populations, but little is known about its functions in intestinal stem cells. We studied phenotypes of mice with intestine-specific deletion of the PRC2 proteins embryonic ectoderm development (EED) (a subunit required for PRC2 function) and enhancer of zeste homolog 2 (EZH2) (a histone methyltransferase). We performed studies of AhCre;EedLoxP/LoxP (EED knockout) mice and AhCre;Ezh2LoxP/LoxP (EZH2 knockout) mice, which have intestine-specific disruption in EED and EZH2, respectively. Small intestinal crypts were isolated and subsequently cultured to grow organoids. Intestines and organoids were analyzed by immunohistochemical, in situ hybridization, RNA sequence, and chromatin immunoprecipitation methods. Intestines of EED knockout mice had massive crypt degeneration and lower numbers of proliferating cells compared with wild-type control mice. Cdkn2a became derepressed and we detected increased levels of P21. We did not observe any differences between EZH2 knockout and control mice. Intestinal crypts from EED knockout mice had signs of aberrant differentiation of uncommitted crypt cells-these differentiated toward the secretory cell lineage. Furthermore, crypts from EED-knockout mice had impaired Wnt signaling and concomitant loss of intestinal stem cells, this phenotype was not reversed upon ectopic stimulation of Wnt and Notch signaling in organoids. Analysis of gene expression patterns from intestinal tissues of EED knockout mice showed dysregulation of several genes involved in Wnt signaling. Wnt signaling was regulated directly by PRC2. In intestinal tissues of mice, PRC2 maintains small intestinal stem cells by promoting proliferation and preventing differentiation in the intestinal stem cell compartment. PRC2 controls gene expression in

  8. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  9. Saireito (TJ-114, a Japanese traditional herbal medicine, reduces 5-fluorouracil-induced intestinal mucositis in mice by inhibiting cytokine-mediated apoptosis in intestinal crypt cells.

    Directory of Open Access Journals (Sweden)

    Shinichi Kato

    Full Text Available Clinical chemotherapy frequently causes intestinal mucositis as a side effect, which is accompanied by severe diarrhea. We recently showed that the cytokine-mediated apoptotic pathway might be important for the development of intestinal mucositis induced by 5-fluorouracil (5-FU. Saireito, the traditional Japanese herbal (Kampo medicine, is widely used to treat diarrhea and various inflammatory diseases in Japan. In the present study, we investigated the effect of saireito on 5-FU-induced intestinal mucositis in mice, especially in relation to apoptosis in the intestinal crypt. Male C57BL/6 mice were given 5-FU (50 mg/kg, i.p. once daily for 6 days. Intestinal mucositis was evaluated histochemically. Saireito (100-1000 mg/kg was administered p.o. twice daily for 6 days. Repeated 5-FU treatment caused severe intestinal mucositis including morphological damage, which was accompanied by body weight loss and diarrhea. Daily administration of saireito reduced the severity of intestinal mucositis in a dose-dependent manner. Body weight loss and diarrhea during 5-FU treatment were also significantly attenuated by saireito administration. The number of apoptotic and caspase-3-activated cells in the intestinal crypt was increased, and was accompanied by up-regulated tumor necrosis factor (TNF-α and interleukin (IL-1β mRNA within 24 h of the first 5-FU injection. However, all of these measures were significantly lower after saireito administration. These results suggest that saireito attenuates 5-FU-induced intestinal mucositis. This action may come from the reduction of apoptosis in the intestinal crypt via suppression of the up-regulation of inflammatory cytokines. Therefore, saireito may be clinically useful for the prevention of intestinal mucositis during cancer chemotherapy.

  10. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anita, E-mail: anita.balakrishnan@doctors.org.uk [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); School of Clinical Sciences, Division of Gastroenterology, University of Liverpool, Liverpool L69 3GE (United Kingdom); Stearns, Adam T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD (United Kingdom); Park, Peter J. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Harvard Medical School, Center for Biomedical Informatics, Boston, MA 02115 (United States); Dreyfuss, Jonathan M. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ashley, Stanley W. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Rhoads, David B. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Pediatric Endocrine Unit, MassGeneral Hospital for Children, Boston, MA 02114 (United States); Tavakkolizadeh, Ali, E-mail: atavakkoli@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States)

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  11. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    International Nuclear Information System (INIS)

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-01-01

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  12. Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models

    Directory of Open Access Journals (Sweden)

    Nikolce Gjorevski

    2017-01-01

    Full Text Available Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.

  13. Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells.

    Directory of Open Access Journals (Sweden)

    Nan Ye Lei

    Full Text Available Intestinal epithelial stem cells (ISCs are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation.

  14. Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells.

    Science.gov (United States)

    Lei, Nan Ye; Jabaji, Ziyad; Wang, Jiafang; Joshi, Vaidehi S; Brinkley, Garrett J; Khalil, Hassan; Wang, Fengchao; Jaroszewicz, Artur; Pellegrini, Matteo; Li, Linheng; Lewis, Michael; Stelzner, Matthias; Dunn, James C Y; Martín, Martín G

    2014-01-01

    Intestinal epithelial stem cells (ISCs) are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs) are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation.

  15. Identification of a Developmental Gene Expression Signature, Including HOX Genes, for the Normal Human Colonic Crypt Stem Cell Niche: Overexpression of the Signature Parallels Stem Cell Overpopulation During Colon Tumorigenesis

    OpenAIRE

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R.; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z.; Boman, Bruce M.

    2013-01-01

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region—the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other cryp...

  16. The re-establishment of hypersensitive cells in the crypts of irradiated mouse intestine

    International Nuclear Information System (INIS)

    Ijiri, K.; Potten, C.S.

    1984-01-01

    Two doses of γ-radiation separated by various time intervals have been used to investigate when after irradiation the cell population susceptible to acute cell death is re-established. Dead cells were scored 3 or 6 h after the second dose. Within 1-2 days of small doses (0.5 Gy) the sensitive cells, recognized histologically as apoptotic cells, are re-established at the base of the crypt (around cell position 6). After higher doses (9.0 Gy) they are not re-established until about the fourth day after irradiation. Even in the enlarged regenerating crypts the sensitive cells are found at the same position at the crypt base. It has been estimated that the crypt contains five or six cells that are susceptible to low doses (0.5 Gy) (hypersensitive cells) and up to a total of only seven or eight susceptible cells that can be induced by any dose to enter the sequence of changes implicit in apoptosis. Between 4 and 10 days after an intitial irradiation of 9.0 Gy the total number of susceptible cells increased from seven to eight to about 10 to 13 per crypt. (author)

  17. Robust Cre-Mediated Recombination in Small Intestinal Stem Cells Utilizing the Olfm4 Locus

    Directory of Open Access Journals (Sweden)

    Jurian Schuijers

    2014-08-01

    Full Text Available The epithelium of the small intestine is the most rapidly self-renewing tissue in mammals. We previously demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression at the bottom of intestinal crypts. An Lgr5-eGFP-IRES-CreERT2 knockin allele has been instrumental in characterizing and profiling these cells, yet its low level expression and its silencing in patches of adjacent crypts have not allowed quantitative gene deletion. Olfactomedin-4 (Olfm4 has emerged from a gene signature of Lgr5 stem cells as a robust marker for murine small intestinal stem cells. We observe that Olfm4null animals show no phenotype and report the generation of an Olfm4-IRES-eGFPCreERT2 knockin mouse model that allows visualization and genetic manipulation of Lgr5+ stem cells in the epithelium of the small intestine. The eGFPCreERT2 fusion protein faithfully marks all stem cells in the small intestine and induces the activation of a conditional LacZ reporter with robust efficiency.

  18. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Mandayam O. Nandan

    2015-01-01

    Full Text Available Krüppel-like factor 5 (KLF5 is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5fl/fl were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112 days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC cells that express Lgr5. By 11 days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14 days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112 days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.

  19. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Abo, M.; Abe, Y.; Mariya, Y.; Ando, K.

    2000-01-01

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  20. Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ

    Directory of Open Access Journals (Sweden)

    Victoria Llado

    2015-02-01

    Full Text Available Intestinal epithelial homeostasis requires continuous renewal supported by stem cells located in the base of the crypt. Disruption of this balance results in failure to regenerate and initiates tumorigenesis. The β-catenin and Yap pathways in Lgr5+ stem cells have been shown to be central to this process. However, the precise mechanisms by which these signaling molecules are regulated in the stem cell population are not totally understood. Protein kinase C ζ (PKCζ has been previously demonstrated to be a negative regulator of intestinal tumorigenesis. Here, we show that PKCζ suppresses intestinal stem cell function by promoting the downregulation of β-catenin and Yap through direct phosphorylation. PKCζ deficiency results in increased stem cell activity in organoid cultures and in vivo, accounting for the increased tumorigenic and regenerative activity response of Lgr5+-specific PKCζ-deficient mice. This demonstrates that PKCζ is central to the control of stem cells in intestinal cancer and homeostasis.

  1. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie Plog

    Full Text Available The human CLCA4 (chloride channel regulator, calcium-activated modulates the intestinal phenotype of cystic fibrosis (CF patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.

  2. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development.

    Science.gov (United States)

    Schlieve, Christopher R; Mojica, Salvador Garcia; Holoyda, Kathleen A; Hou, Xiaogang; Fowler, Kathryn L; Grikscheit, Tracy C

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal

  3. Comparison of the dose-response relationship of radiation-induced apoptosis in the hippocampal dentate gyrus and intestinal crypt of adult mice

    International Nuclear Information System (INIS)

    Kim, J. S.; Yang, M.; Kim, J.; Lee, D.; Kim, J. C.; Shin, T.; Kim, S. H.; Moon, C.

    2012-01-01

    The present study compared the dose-response curves for the frequency of apoptosis in mouse hippocampal dentate gyrus (DG) and intestinal crypt using whole-body gamma irradiation. The incidence of gamma-ray-induced apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end-labelling (TUNEL) method. TUNEL-positive apoptotic nuclei in the DG and intestinal crypt were increased in a dose-dependent pattern (0-2 Gy). The dose-response curves were linear-quadratic, with a significant relationship between the appearance of apoptosis and irradiation dose. The slopes of the dose-response curves in the DG were much steeper (∼5-6-fold) than those in the intestinal crypt within the range of 0-1 Gy exposure. Hippocampal DG might be a more effective and sensitive evaluation structure than the intestinal crypt to estimate the degree of radiation exposure in damaged organs of adult mice exposed to low irradiation dose. copy; The Author 2011. Published by Oxford Univ. Press. All rights reserved. (authors)

  4. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...... activity in the intestinal epithelium, where continued cell division takes place. Furthermore, mice haploinsufficient for both Cdc42 and Rab8a in the intestine demonstrated abnormal crypt morphogenesis and epithelial transporter physiology, further supporting their functional interaction. These data...

  5. The RNA Polymerase III Subunit Polr3b Is Required for the Maintenance of Small Intestinal Crypts in MiceSummary

    Directory of Open Access Journals (Sweden)

    Julia E. Kieckhaefer

    2016-11-01

    Full Text Available Background & Aims: The continuously self-renewing mammalian intestinal epithelium, with high cellular turnover, depends on adequate protein synthesis for its proliferative capacity. RNA polymerase III activity is related closely to cellular growth and proliferation. Here, we studied the role of Polr3b, a large RNA polymerase III subunit, in the mammalian intestinal epithelium. Methods: We derived mice with an intestinal epithelium-specific hypomorphic mutation of the Polr3b gene, using VillinCre-mediated gene ablation. Phenotypic consequences of the Polr3b mutation on the intestinal epithelium in mice were assessed using histologic and molecular methodologies, including genetic lineage tracing. Results: The Polr3b mutation severely reduced survival and growth in mice during the first postnatal week, the period when the expansion of the intestinal epithelium, and thus the requirement for protein synthesis, are highest. The neonatal intestinal epithelium of Polr3bloxP/loxP;VillinCre mice was characterized by areas with reduced proliferation, abnormal epithelial architecture, loss of Wnt signaling, and a dramatic increase in apoptotic cells in crypts. Genetic lineage tracing using Polr3bLoxP/LoxP;Rosa26-lox-stop-lox-YFP;VillinCre mice showed that in surviving mutant mice, Polr3b-deficient dying crypts were replaced progressively by Cre-escaper cells that had retained wild-type Polr3b function. In addition, enteroids cultured from Polr3bloxP/loxP;VillinCre mice showed reduced proliferative activity and increased apoptosis. Conclusions: We provide evidence for an essential role of the RNA polymerase III subunit Polr3b in orchestrating the maintenance of the intestinal crypt during early postnatal development in mice. Keywords: Polr3b, Pol III, Intestinal Epithelium, Crypts, Enteroids

  6. The effects of herbs on the radiation-induced apoptosis in intestinal crypt cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; An, Mi Ra; Nah, Seung Yeol; Lee, Jong Hwan; Kim, Jae Ha; Shin, Dong Ho [Chonnam National Univ., Gwangju (Korea, Republic of); Jo, Sung Kee [KAERI, Daejeon (Korea, Republic of); Jang, Jong Sik [Sangju National Univ., Sangju (Korea, Republic of)

    2001-03-15

    This study was performed to determine the effect of several herbs on radiation-induced apoptosis in jejunal crypt cells. Longyanrou(Euphoris logana), Suanzaoren(Zizyphus vulgaris), Yuanzhi(Polygala tenuifolia), Rensan(Panax ginseng), Fuling(Poria cocos), Muxiang(Saussurea lappa), Chuanxiong(Cnidium offcinale), Baishaoyao(Paeonia lactifolia), Shengma(Cimicifuga heracleifolia), Chaihu(Bupleurum falcatum) and Dongchongxiacao(Paecilomyces japonica) reduced the frequency of radiation-induced apoptosis(p<0.05). Although the mechanisms of this effect remain to be elucidated, these results indicated that Longyanrou, Suanzaoren, Yuanzhi, Rensan, Fuling, Muxiang, Chuanxiong, Baishaoyao, Shengma, Chaihu and Dongchongxiacao might be useful inhibitors of apoptosis, especially since these are relative nontoxic natural products.

  7. The effects of herbs on the radiation-induced apoptosis in intestinal crypt cells

    International Nuclear Information System (INIS)

    Kim, Sung Ho; An, Mi Ra; Nah, Seung Yeol; Lee, Jong Hwan; Kim, Jae Ha; Shin, Dong Ho; Jo, Sung Kee; Jang, Jong Sik

    2001-01-01

    This study was performed to determine the effect of several herbs on radiation-induced apoptosis in jejunal crypt cells. Longyanrou(Euphoris logana), Suanzaoren(Zizyphus vulgaris), Yuanzhi(Polygala tenuifolia), Rensan(Panax ginseng), Fuling(Poria cocos), Muxiang(Saussurea lappa), Chuanxiong(Cnidium offcinale), Baishaoyao(Paeonia lactifolia), Shengma(Cimicifuga heracleifolia), Chaihu(Bupleurum falcatum) and Dongchongxiacao(Paecilomyces japonica) reduced the frequency of radiation-induced apoptosis(p<0.05). Although the mechanisms of this effect remain to be elucidated, these results indicated that Longyanrou, Suanzaoren, Yuanzhi, Rensan, Fuling, Muxiang, Chuanxiong, Baishaoyao, Shengma, Chaihu and Dongchongxiacao might be useful inhibitors of apoptosis, especially since these are relative nontoxic natural products

  8. A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development.

    Science.gov (United States)

    De Matteis, Giovanni; Graudenzi, Alex; Antoniotti, Marco

    2013-06-01

    Colon rectal cancers (CRC) are the result of sequences of mutations which lead the intestinal tissue to develop in a carcinoma following a "progression" of observable phenotypes. The actual modeling and simulation of the key biological structures involved in this process is of interest to biologists and physicians and, at the same time, it poses significant challenges from the mathematics and computer science viewpoints. In this report we give an overview of some mathematical models for cell sorting (a basic phenomenon that underlies several dynamical processes in an organism), intestinal crypt dynamics and related problems and open questions. In particular, major attention is devoted to the survey of so-called in-lattice (or grid) models and off-lattice (off-grid) models. The current work is the groundwork for future research on semi-automated hypotheses formation and testing about the behavior of the various actors taking part in the adenoma-carcinoma progression, from regulatory processes to cell-cell signaling pathways.

  9. Determination of Histone 2B-Green Fluorescent Protein (GFP) Retention in Intestinal Stem Cells.

    Science.gov (United States)

    Hughes, Kevin R; Mahida, Yashwant R

    2018-01-01

    The epithelium of the gastrointestinal tract represents the interface between the luminal contents of the gut and that of the host tissues and plays a central role not only in regulating absorption of dietary nutrients but also in providing a barrier to prevent the entry of bacteria and other pathogens. Repair and replacement of damaged aging cells within the epithelium is modulated by stem cells, which are located in the intestinal crypts of the small intestine.Two distinct populations of intestinal stem cells have been described in the literature, one population at the very base of the crypt and a second population of long-lived stem cells located just above the Paneth cell zone. Herein, we describe a method to label this population of long-lived GFP label retaining cells. This method is free from confounding factors of previous methodologies based on radioactive tracers and also enables functional studies not previously possible using the radioactive tracer techniques described in the literature.

  10. Wnt control of stem cells and differentiation in the intestinal epithelium

    International Nuclear Information System (INIS)

    Pinto, Daniel; Clevers, Hans

    2005-01-01

    The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/β-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/β-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas

  11. Biosynthesis of intestinal microvillar proteins. Expression of aminopeptidase N along the crypt-villus axis

    DEFF Research Database (Denmark)

    Danielsen, E M

    1984-01-01

    of aminopeptidase N, either in its mature or in any other immunoreactive molecular form. The expression of aminopeptidase N was markedly stimulated by dexamethasone (1 microgram/ml). During labelling periods of 3 h, dexamethasone caused an approximately threefold increase in the expression of the enzyme...... to glucocorticoids as does the intestinal epithelium during the prenatal and early postnatal phase....

  12. Long-term Renewable Human Intestinal Epithelial Stem Cells as Monolayers: A Potential for Clinical Use

    Science.gov (United States)

    Scott, Andrew; Rouch, Joshua D; Jabaji, Ziyad; Khalil, Hassan A; Solorzano, Sergio; Lewis, Michael; Martín, Martín G.; Stelzner, Matthias G.; Dunn, James C.Y.

    2016-01-01

    Purpose Current culture schema for human intestinal stem cells (hISCs) frequently rely on a 3D culture system using Matrigel™, a laminin-rich matrix derived from murine sarcoma that is not suitable for clinical use. We have developed a novel 2D culture system for the in vitro expansion of hISCs as an intestinal epithelial monolayer without the use of Matrigel. Methods Cadaveric duodenal samples were processed to isolate intestinal crypts from the mucosa. Crypts were cultured on a thin coat of type I collagen or laminin. Intestinal epithelial monolayers were supported with growth factors to promote self-renewal or differentiation of the hISCs. Proliferating monolayers were sub-cultured every 4–5 days. Results Intestinal epithelial monolayers were capable of long-term cell renewal. Less differentiated monolayers expressed high levels of gene marker LGR5, while more differentiated monolayers had higher expressions of CDX2, MUC2, LYZ, DEF5, and CHGA. Furthermore, monolayers were capable of passaging into a 3D culture system to generate spheroids and enteroids. Conclusion This 2D system is an important step to expand hISCs for further experimental studies and for clinical cell transplantation. PMID:26995514

  13. A Notch positive feedback in the intestinal stem cell niche is essential for stem cell self-renewal.

    Science.gov (United States)

    Chen, Kai-Yuan; Srinivasan, Tara; Tung, Kuei-Ling; Belmonte, Julio M; Wang, Lihua; Murthy, Preetish Kadur Lakshminarasimha; Choi, Jiahn; Rakhilin, Nikolai; King, Sarah; Varanko, Anastasia Kristine; Witherspoon, Mavee; Nishimura, Nozomi; Glazier, James A; Lipkin, Steven M; Bu, Pengcheng; Shen, Xiling

    2017-04-28

    The intestinal epithelium is the fastest regenerative tissue in the body, fueled by fast-cycling stem cells. The number and identity of these dividing and migrating stem cells are maintained by a mosaic pattern at the base of the crypt. How the underlying regulatory scheme manages this dynamic stem cell niche is not entirely clear. We stimulated intestinal organoids with Notch ligands and inhibitors and discovered that intestinal stem cells employ a positive feedback mechanism via direct Notch binding to the second intron of the Notch1 gene. Inactivation of the positive feedback by CRISPR/Cas9 mutation of the binding sequence alters the mosaic stem cell niche pattern and hinders regeneration in organoids. Dynamical system analysis and agent-based multiscale stochastic modeling suggest that the positive feedback enhances the robustness of Notch-mediated niche patterning. This study highlights the importance of feedback mechanisms in spatiotemporal control of the stem cell niche. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Winnie Y. Zou

    2018-01-01

    Full Text Available Intestinal stem cells (ISCs maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.

  15. Combination of aging and dimethylhydrazine treatment causes an increase in cancer-stem cell population of rat colonic crypts.

    Science.gov (United States)

    Levi, Edi; Misra, Sandhya; Du, Jianhua; Patel, Bhaumik B; Majumdar, Adhip P N

    2009-07-31

    Aging is associated with increased incidence of colon cancers. It is also becoming evident that cancer stem cells (CSC) play a vital role in the pathogenesis and prognosis of colon cancer. Recently, we reported the presence of colon cancer stem-like cells in macroscopically normal mucosa in patients with adenomatous polyps and that they increase with aging, suggesting that aging may predispose the colon to carcinogenesis. In the current study we have examined the combined effects of aging and carcinogen exposure on the status of colon CSCs in an experimental model. We used young (4-6 months) and aged (22-24 months) rats and exposed them to the carcinogen, dimethylhydroxide (DMH). We investigated the expression of colon cancer stem cell markers, CD44, CD166, EpCam, and ALDH1 as well as EGFR expression in normal colonic crypt epithelium following carcinogen treatment. Our results demonstrate that aging per se or carcinogen treatment alone causes an increase in the number of colon cancer stems cells, as evidenced by increased immunoreactive-CSC-markers positive cells in the colonic mucosa. In aged rats, carcinogen exposure results in a more pronounced increase in colon cancer stem cells. Our study shows that in aging colon the effects of carcinogens are more pronounced, and an increase in colon CSCs is one of the earliest changes preceding tumor development. Moreover, the current investigation of the use of a panel of immunohistochemical markers of colon CSC can potentially serve as a prognostic marker during screening for colon cancer.

  16. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  17. Serum and fecal canine α1-proteinase inhibitor concentrations reflect the severity of intestinal crypt abscesses and/or lacteal dilation in dogs.

    Science.gov (United States)

    Heilmann, Romy M; Parnell, Nolie K; Grützner, Niels; Mansell, Joanne; Berghoff, Nora; Schellenberg, Stefan; Reusch, Claudia E; Suchodolski, Jan S; Steiner, Jörg M

    2016-01-01

    Gastrointestinal (GI) protein loss, due to lymphangiectasia or chronic inflammation, can be challenging to diagnose. This study evaluated the diagnostic accuracy of serum and fecal canine α1-proteinase inhibitor (cα1PI) concentrations to detect crypt abscesses and/or lacteal dilation in dogs. Serum and fecal cα1PI concentrations were measured in 120 dogs undergoing GI tissue biopsies, and were compared between dogs with and without crypt abscesses/lacteal dilation. Sensitivity and specificity were calculated for dichotomous outcomes. Serial serum cα1PI concentrations were also evaluated in 12 healthy corticosteroid-treated dogs. Serum cα1PI and albumin concentrations were significantly lower in dogs with crypt abscesses and/or lacteal dilation than in those without (both P <0.001), and more severe lesions were associated with lower serum cα1PI concentrations, higher 3 days-mean fecal cα1PI concentrations, and lower serum/fecal cα1PI ratios. Serum and fecal cα1PI, and their ratios, distinguished dogs with moderate or severe GI crypt abscesses/lacteal dilation from dogs with only mild or none such lesions with moderate sensitivity (56-92%) and specificity (67-81%). Serum cα1PI concentrations increased during corticosteroid administration. We conclude that serum and fecal α1PI concentrations reflect the severity of intestinal crypt abscesses/lacteal dilation in dogs. Due to its specificity for the GI tract, measurement of fecal cα1PI appears to be superior to serum cα1PI for diagnosing GI protein loss in dogs. In addition, the serum/fecal cα1PI ratio has an improved accuracy in hypoalbuminemic dogs, but serum cα1PI concentrations should be carefully interpreted in corticosteroid-treated dogs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cell organisation in the colonic crypt: a theoretical comparison of the pedigree and niche concepts.

    Directory of Open Access Journals (Sweden)

    Richard C van der Wath

    Full Text Available The intestinal mucosa is a monolayer of rapidly self-renewing epithelial cells which is not only responsible for absorption of water and nutrients into the bloodstream but also acts as a protective barrier against harmful microbes entering the body. New functional epithelial cells are produced from stem cells, and their proliferating progeny. These stem cells are found within millions of crypts (tubular pits spaced along the intestinal tract. The entire intestinal epithelium is replaced every 2-3 days in mice (3-5 days in humans and hence cell production, differentiation, migration and turnover need to be tightly regulated. Malfunctions in this regulation are strongly linked to inflammatory bowel diseases and to the formation of adenomas and ultimately cancerous tumours. Despite a great deal of biological experimentation and observation, precisely how colonic crypts are regulated to produce mature colonocytes remains unclear. To assist in understanding how cell organisation in crypts is achieved, two very different conceptual models of cell behaviour are developed here, referred to as the 'pedigree' and the 'niche' models. The pedigree model proposes that crypt cells are largely preprogrammed and receive minimal prompting from the environment as they move through a routine of cell differentiation and proliferation to become mature colonocytes. The niche model proposes that crypt cells are primarily influenced by the local microenvironments along the crypt, and that predetermined cell behaviour plays a negligible role in their development. In this paper we present a computational model of colonic crypts in the mouse, which enables a comparison of the quality and controllability of mature coloncyte production by crypts operating under these two contrasting conceptual models of crypt regulation.

  19. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    Science.gov (United States)

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z; Boman, Bruce M

    2014-01-15

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.

  20. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells.

    Science.gov (United States)

    Kriz, Vitezslav; Korinek, Vladimir

    2018-01-08

    In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL

  1. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells

    Directory of Open Access Journals (Sweden)

    Vitezslav Kriz

    2018-01-01

    Full Text Available In this review, we address aspects of Wnt, R-Spondin (RSPO and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs, the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC, aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs, is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1 and tafazzin (TAZ, promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1 leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5 DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ signalling and some of the DVL functions were assigned to the

  2. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  3. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  4. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  5. Interactions of radiation and adriamycin, bleomycin, mitomycin C or cis-diamminedichloroplatinum II in intestinal crypt cells

    DEFF Research Database (Denmark)

    von der Maase, H

    1984-01-01

    .40), at which interval the D0 surprisingly increased by a factor of 1.4. Administration of MM-C from 24 h before to 24 h after irradiation enhanced the radiation response. The effect peaked on administration 6 h before irradiation (DEF = 1.21) and diminished by application after irradiation. Cis-DDP enhanced......The interactions of radiation and adriamycin (ADM), bleomycin (BLM), mitomycin C (MM-C), or cis-diamminedichloroplatinum II (cis-DDP) in mouse jejunal crypt cells were studied using the microcolony survival assay. ADM administered from 24 h before to 48 h after irradiation resulted in an almost...... constant enhancement of the radiation response, the dose effect factor (DEF) being 1.19. The effect of BLM was extremely dependent on the sequence and interval between drug administration and irradiation. The most pronounced effect was observed when BLM was given 2 h before irradiation (DEF = 2...

  6. Intestinal TSH production is localized in crypt enterocytes and in villus 'hotblocks' and is coupled to IL-7 production: evidence for involvement of TSH during acute enteric virus infection.

    Science.gov (United States)

    Scofield, Virginia L; Montufar-Solis, Dina; Cheng, Elly; Estes, Mary K; Klein, John R

    2005-06-15

    The immune and neuroendocrine systems have been shown to work conjointly in a number of ways. One aspect of this has to do with a potential role for thyroid stimulating hormone (TSH) in the regulation of the mucosal immune system, although the mechanisms by which this occurs remain vague. To more thoroughly understand how TSH participates in intestinal intraepithelial lymphocyte (IEL) development and immunity, experiments have been conducted to define local sites of intestinal TSH production, and to characterize changes that occur in the synthesis of TSH during acute enteric virus infection. Here, we demonstrate that TSH in the small intestine is specifically localized to regions below villus crypts as seen by immunocytochemical staining, which revealed high-level TSH staining in lower crypts in the absence of IL-7 staining, and TSH and IL-7 co-staining in upper crypt regions. Additionally, prominent TSH staining was evident in TSH 'hotblocks' sparsely dispersed throughout the epithelial layer. In rotavirus-infected mice, the TSH staining pattern differed significantly from that of non-infected animals. Notably, at 2 and 3 days post-infection, TSH expression was high in and near apical villi where virus infection was greatest. These findings lend credence to the notion that TSH plays a role both in the development of intestinal T cells, and in the process of local immunity during enteric virus infection.

  7. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance.

    Science.gov (United States)

    Morgenstern, Yael; Das Adhikari, Upasana; Ayyash, Muneef; Elyada, Ela; Tóth, Beáta; Moor, Andreas; Itzkovitz, Shalev; Ben-Neriah, Yinon

    2017-10-16

    The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co-ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt-villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε-deficient enterocyte populations, with the exception of Lgr5 + ISCs, which exhibit Dvl2-dependent Wnt signaling attenuation. CKIδ/ε-depleted gut organoids cease proliferating and die rapidly, yet survive and resume self-renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine. © 2017 The Authors.

  8. Wnt, stem cells and cancer in the intestine.

    NARCIS (Netherlands)

    Pinto, D.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or

  9. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt.

    Directory of Open Access Journals (Sweden)

    Sophie K Kay

    2017-02-01

    Full Text Available The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant

  10. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt

    KAUST Repository

    Kay, Sophie K.

    2017-03-01

    The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch’s interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain

  11. Culturing intestinal stem cells: applications for colorectal cancer research

    Directory of Open Access Journals (Sweden)

    Masayuki eFujii

    2014-06-01

    Full Text Available Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer. The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and colorectal cancer cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture system. Intestinal organoid culture enabled to expand normal or tumor epithelial cells in vitro retaining their stem cell self-renewal and multiple differentiation. Gene manipulation of these cultured cells may provide an attractive tool for investigating genetic events involved in colorectal carcinogenesis.

  12. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy

    NARCIS (Netherlands)

    Grabinger, T.; Luks, L.; Kostadinova, F.; Zimberlin, C.; Medema, J. P.; Leist, M.; Brunner, T.

    2014-01-01

    Intestinal epithelial cells (IECs) not only have a critical function in the absorption of nutrients, but also act as a physical barrier between our body and the outside world. Damage and death of the epithelial cells lead to the breakdown of this barrier function and inflammation due to access of

  13. Hydrolysed inulin alleviates the azoxymethane-induced preneoplastic aberrant crypt foci by altering selected intestinal microbiota in Sprague-Dawley rats.

    Science.gov (United States)

    Pattananandecha, Thanawat; Sirilun, Sasithorn; Duangjitcharoen, Yodsawee; Sivamaruthi, Bhagavathi Sundaram; Suwannalert, Prasit; Peerajan, Sartjin; Chaiyasut, Chaiyavat

    2016-09-01

    Context Inulin, a non-digestible carbohydrate isolated from Helianthus tuberosus L. (Asteraceae), has been shown to alter the gut beneficial bacteria including Lactobacillus spp. and Bifidobacteria. Inulin also influences the activities of intestinal microbiota that could prevent the colon cancer development. Objective This study determines the effect of hydrolysed inulin with different degrees of polymerisation on alteration of intestinal microbiota and their activities on azoxymethane (AOM)-induced preneoplastic aberrant crypt foci (ACF) in rats. Materials and methods Seventy-two male Sprague-Dawley rats were randomly divided into six groups (three control and three AOM-treated groups) and the animal were fed with either a normal diet or diet containing 10% of long-chain inulin (InuL) or short-chain inulin (InuS), respectively, for 17 weeks. Colon cancer was induced in rats by injecting AOM subcutaneously at the 8th and 9th week of the study period. At the end of the experiment, cecal contents of rats were examined for selected microbiota, organic acids, putrefactive compounds and microbial enzymes. ACF formation was microscopically examined. Results The inulin diets significantly increased the weight and decreased the pH of the caecal content. The rats fed with InuL-supplemented diet showed approximately 2.9- and 6.8-fold increases in the biomass of Lactobacillus spp. and Bifidobacteria, respectively. Naive and AOM-treated rats fed with inulin-supplemented diet showed ∼1.3- and ∼2.2-fold decreases in the biomass of Escherichia coli and Salmonella enterica serovar Typhi, respectively. Inulins significantly decreased the colonic concentration of phenol, p-cresol and indole. Reduction in the activity of microbial enzymes such as β-glucuronidase, azoreductase and nitroreductase were observed in inulin-treated animals. Reduction in the ACF formation has been observed in inulin-treated groups. Discussion and conclusion The present study demonstrates that dietary

  14. Plasticity of intestinal epithelial cells in regeneration and cancer

    NARCIS (Netherlands)

    Tetteh, Paul W.

    2015-01-01

    Cellular plasticity refers to the ability of a cell to change its fate or identity in response to external or intrinsic factors. Regeneration of the intestinal epithelium after injury is driven mainly by plasticity of crypt stem cells that can rapidly divide to replace all the lost cells. Stem cell

  15. File list: Pol.Dig.05.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.05.AllAg.Intestinal_stem_cells mm9 RNA polymerase Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Dig.05.AllAg.Intestinal_stem_cells.bed ...

  16. File list: DNS.Dig.50.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.50.AllAg.Intestinal_stem_cells mm9 DNase-seq Digestive tract Intestinal ste...m cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.50.AllAg.Intestinal_stem_cells.bed ...

  17. File list: Oth.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.AllAg.Intestinal_stem_cells mm9 TFs and others Digestive tract Intestina...l stem cells SRX856961,SRX1141904,SRX1141903 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  18. File list: Oth.Dig.10.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.AllAg.Intestinal_stem_cells mm9 TFs and others Digestive tract Intestina...l stem cells SRX1141904,SRX856961,SRX1141903 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.10.AllAg.Intestinal_stem_cells.bed ...

  19. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic...

  20. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    Science.gov (United States)

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-10-12

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. © 2015. Published by The Company of Biologists Ltd.

  1. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    Directory of Open Access Journals (Sweden)

    Stacy R. Finkbeiner

    2015-11-01

    Full Text Available Short bowel syndrome (SBS is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs or induced pluripotent stem cells (iPSCs, called human intestinal organoids (HIOs, have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue.

  2. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.; Paranjpe, Madhav G.; Seiter, Jennifer M.; Chappell, Mark A.; Tappero, Ryan V.; Suh, Mina; Proctor, Deborah M.; Bichteler, Anne; Haws, Laurie C.; Harris, Mark A.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.

  3. Combination Of Aging And Dimethylhydrazine Treatment Causes An Increase In The Stem Cell Population Of Rat Colonic Crypts

    OpenAIRE

    Levi, Edi; Misra, Sandhya; Du, Jianhua; Patel, Bhaumik B.; Majumdar, Adhip P. N.

    2009-01-01

    Aging is associated with increased incidence of colon cancers. It is also becoming evident that cancer stem cells (CSC) play a vital role in the pathogenesis and prognosis of colon cancer. Recently, we reported the presence of colon cancer stem-like cells in macroscopically normal mucosa in patients with adenomatous polyps and that they increase with aging, suggesting that aging may predispose the colon to carcinogenesis. In the current study we have examined the combined effects of aging and...

  4. Morphological description of limbal epithelium: searching for stem cells crypts in the dog, cat, pig, cow, sheep and horse.

    Science.gov (United States)

    Patruno, M; Perazzi, A; Martinello, T; Blaseotto, A; Di Iorio, E; Iacopetti, I

    2017-06-01

    The cornea provides protection and transparency to the eye, allowing an optimal sharpness view. In some pathological conditions the cornea is able to regenerate thanks to the presence of a stem cells reservoir present at the level of the transition area between cornea and sclera (limbus). Corneal cell therapies in Veterinary Medicine are really limited due to the lacking of knowledge about the anatomy of the limbal area, the putative presence of stem cells and their identification in domestic species. The aim of this study was to provide an overview of the main distinctive structural features of the sclero-corneal junction and conjunctival-corneal junction areas in some species of veterinary importance, using optic microscope observations of histological sections. The resulting data were compared with cornea from humans adapting protocols already used to identify stem cells by means of a specific cellular marker. We tested the expression of ΔNp63α isoform in the cornea basal cells, trying to correlate the distribution profile with areas of highly proliferative turnover. The results obtained from this study represent a first step towards the identification of a corneal stem cells reservoir in different animals.

  5. A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer.

    Science.gov (United States)

    Peñarando, Jon; López-Sánchez, Laura M; Mena, Rafael; Guil-Luna, Silvia; Conde, Francisco; Hernández, Vanessa; Toledano, Marta; Gudiño, Victoria; Raponi, Michela; Billard, Caroline; Villar, Carlos; Díaz, César; Gómez-Barbadillo, José; De la Haba-Rodríguez, Juan; Myant, Kevin; Aranda, Enrique; Rodríguez-Ariza, Antonio

    2018-01-10

    Nitric oxide (NO) has been highlighted as an important agent in cancer-related events. Although the inducible nitric oxide synthase (iNOS) isoform has received most attention, recent studies in the literature indicate that the endothelial isoenzyme (eNOS) can also modulate different tumor processes including resistance, angiogenesis, invasion, and metastasis. However, the role of eNOS in cancer stem cell (CSC) biology and mesenchymal tumors is unknown. Here, we show that eNOS was significantly upregulated in VilCre ERT2 Apc fl/+ and VilCre ERT2 Apc fl/fl mouse intestinal tissue, with intense immunostaining in hyperproliferative crypts. Similarly, the more invasive VilCre ERT2 Apc fl/+ Pten fl/+ mouse model showed an overexpression of eNOS in intestinal tumors whereas this isoform was not expressed in normal tissue. However, none of the three models showed iNOS expression. Notably, when 40 human colorectal tumors were classified into different clinically relevant molecular subtypes, high eNOS expression was found in the poor relapse-free and overall survival mesenchymal subtype, whereas iNOS was absent. Furthermore, Apc fl/fl organoids overexpressed eNOS compared with wild-type organoids and NO depletion with the scavenger carboxy-PTIO (c-PTIO) decreased the proliferation and the expression of stem-cell markers, such as Lgr5, Troy, Vav3, and Slc14a1, in these intestinal organoids. Moreover, specific NO depletion also decreased the expression of CSC-related proteins in human colorectal cancer cells such as β-catenin and Bmi1, impairing the CSC phenotype. To rule out the contribution of iNOS in this effect, we established an iNOS-knockdown colorectal cancer cell line. NO-depleted cells showed a decreased capacity to form tumors and c-PTIO treatment in vivo showed an antitumoral effect in a xenograft mouse model. Our data support that eNOS upregulation occurs after Apc loss, emerging as an unexpected potential new target in poor-prognosis mesenchymal colorectal tumors

  6. Intestinal stem cells and the colorectal cancer microenvironment.

    Science.gov (United States)

    Ong, Bryan A; Vega, Kenneth J; Houchen, Courtney W

    2014-02-28

    Colorectal cancer (CRC) remains a highly fatal condition in part due to its resilience to treatment and its propensity to spread beyond the site of primary occurrence. One possible avenue for cancer to escape eradication is via stem-like cancer cells that, through phenotypic heterogeneity, are more resilient than other tumor constituents and are key contributors to cancer growth and metastasis. These proliferative tumor cells are theorized to possess many properties akin to normal intestinal stem cells. Not only do these CRC "stem" cells demonstrate similar restorative ability, they also share many cell pathways and surface markers in common, as well as respond to the same key niche stimuli. With the improvement of techniques for epithelial stem cell identification, our understanding of CRC behavior is also evolving. Emerging evidence about cellular plasticity and epithelial mesenchymal transition are shedding light onto metastatic CRC processes and are also challenging fundamental concepts about unidirectional epithelial proliferation. This review aims to reappraise evidence supporting the existence and behavior of CRC stem cells, their relationship to normal stem cells, and their possible dependence on the stem cell niche.

  7. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.

  9. Transcriptional control of stem cell maintenance in the Drosophila intestine.

    Science.gov (United States)

    Bardin, Allison J; Perdigoto, Carolina N; Southall, Tony D; Brand, Andrea H; Schweisguth, François

    2010-03-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation.

  10. Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Ryan Forster

    2014-06-01

    Full Text Available Genetically engineered human pluripotent stem cells (hPSCs have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs.

  11. Tissue response after radiation exposure. Intestine

    International Nuclear Information System (INIS)

    Otsuka, Kensuke; Tomita, Masanori; Yamauchi, Motohiro; Iwasaki, Toshiyasu

    2014-01-01

    Gastrointestinal syndrome followed by 'gut death' is due to intestinal disorders. This syndrome is induced by high-dose (>10 Gy) of ionizing radiation. Recovery from the gastrointestinal syndrome would depend on the number of survived clonogens and regeneration capability of crypts. These tissue alterations can be observed by high-dose radiation, however, cellular dynamics in crypts can be affected by low-dose radiation. For example, Potten et al. found that low-dose radiation induce apoptosis of intestinal stem cells, which produce all differentiated function cells. Recently, intestinal stem cells are characterized by molecular markers such as Lgr5. Since intestinal adenomas can be induced by deletion of Apc gene in Lgr5 + stem cells, it is widely recognized that Lgr5 + stem cells are the cell-of-origin of cancer. Duodenal Lgr5 + stem cells are known as radioresistant cells, however, we found that ionizing radiation significantly induces the turnover of colonic Lgr5 + stem cells. Combined with the knowledge of other radioresistant markers, stem-cell dynamics in tissue after irradiation are becoming clear. The present review introduces the history of gastrointestinal syndrome and intestinal stem cells, and discusses those future perspectives. (author)

  12. Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells.

    Science.gov (United States)

    Korzelius, Jerome; Naumann, Svenja K; Loza-Coll, Mariano A; Chan, Jessica Sk; Dutta, Devanjali; Oberheim, Jessica; Gläßer, Christine; Southall, Tony D; Brand, Andrea H; Jones, D Leanne; Edgar, Bruce A

    2014-12-17

    Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1. © 2014 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    International Nuclear Information System (INIS)

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-01-01

    Research highlights: → Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. → Expression profiling of apoptosis-related genes in Apc Min/+ mice revealed the differential expression of pro-apoptotic Bok and Bax. → APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. → Blocking of β-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or β-catenin causes constitutively active β-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc Min/+ mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of β-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the

  14. File list: InP.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.20.AllAg.Intestinal_stem_cells mm9 Input control Digestive tract Intestinal... stem cells SRX856960,SRX1091861,SRX1091862,SRX193723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  15. File list: NoD.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.20.AllAg.Intestinal_stem_cells mm9 No description Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  16. File list: NoD.Dig.10.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.10.AllAg.Intestinal_stem_cells mm9 No description Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.10.AllAg.Intestinal_stem_cells.bed ...

  17. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  18. Crowns and Crypts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 6. Crowns and Crypts - A Fascinating Group of Multidentate Macrocyclic Ligands. Debasis Bandyopadhyay. General Article Volume 6 Issue 6 June 2001 pp 71-79. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Mammalian intestinal epithelial cells in primary culture: a mini-review.

    Science.gov (United States)

    Kaeffer, Bertrand

    2002-03-01

    Epithelial cells lining the digestive tract represent a highly organized system built up by multipotent stem cells. A process of asymmetric mitosis produces a population of proliferative cells that are rapidly renewed and migrate along the crypt-villus axis, differentiating into functional mature cells before dying and exfoliating into the intestinal lumen. Isolated crypts or epithelial cells retaining high viability can be prepared within a few h after tissue sampling. After cells are cultured in serum-free media, short-term studies (16-48 h) can be conducted for endocrinology, energy metabolism, or programmed cell death. However, long-term primary culture of intestinal cells (up to 10 d) is still difficult despite progress in isolation methodologies and manipulation of the cell microenvironment. The main problem in developing primary culture is the lack of structural markers specific to the stem cell compartment. The design of a microscopic multidimensional analytic system to record the expression profiles of biomarkers all along the living intestinal crypt should improve basic knowledge of the survival and growth of adult crypt stem cells, and the selection of totipotent embryonic stem cells capable of differentiating into intestinal tissues should facilitate studies of the genomic basis of endodermal tissue differentiation.

  20. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans

    Science.gov (United States)

    Proctor, Deborah M.; Suh, Mina; Haws, Laurie C.; Kirman, Christopher R.; Harris, Mark A.

    2013-01-01

    Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors. PMID:23445218

  1. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome

    Science.gov (United States)

    DNA methylation is an epigenetic mechanism central to the development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited. We used whole genome bisulfite sequencing, and found that differentiation of mouse colonic intestinal stem cell...

  2. Specific dose-dependent damage of Lieberkuehn crypts promoted by large doses of type 2 ribosome-inactivating protein nigrin b intravenous injection to mice

    International Nuclear Information System (INIS)

    Gayoso, M.J.; Munoz, R.; Arias, Y.; Villar, R.; Rojo, M.A.; Jimenez, P.; Ferreras, J.M.; Aranguez, I.; Girbes, T.

    2005-01-01

    Nigrin b is a non-toxic type 2 ribosome-inactivating protein as active as ricin at ribosomal level but 10 5 and 5 x 10 3 times less toxic for animal cell cultures and mice, respectively, than ricin. The purpose of the present study was to analyze the effects of intravenous injection of large amounts of nigrin b to the mouse. Injection through the tail vein of 16 mg/kg body weight killed all mice studied before 2 days. Analysis of several major tissues by light microscopy did not reveal gross nigrin b-promoted changes, except in the intestines which appeared highly damaged. As a consequence of the injury, the villi and crypt structures of the small intestine disappeared, leading to profuse bleeding and death. In contrast, intravenous injection of 5 mg/kg body weight was not lethal to mice but did trigger reversible toxic effects. In both cases, lethal and sub-lethal doses, the target of nigrin b appeared to be the highly proliferating stem cells of the intestinal crypts, which had undergone apoptotic changes. In contrast to nigrin b, the injection of 3 μg/kg of ricin kills all mice in 5 days but does not trigger apoptosis in the crypts. Therefore, the effect seen with sub-lethal nigrin b concentrations seems to be specific. Nigrin b killed COLO 320 human colon adenocarcinoma cells with an IC 50 of 3.1 x 10 -8 M and the effect was parallel to the extent of DNA fragmentation of these cells. Accordingly, despite the low general toxicity exerted by nigrin b as compared with ricin, intravenous injection of large amounts of nigrin b is able to kill mouse intestinal stem cells without threatening the lives of the animals, thereby opening a door for its use for the targeting of intestinal stem cells

  3. Using crypts as iris minutiae

    Science.gov (United States)

    Shen, Feng; Flynn, Patrick J.

    2013-05-01

    Iris recognition is one of the most reliable biometric technologies for identity recognition and verification, but it has not been used in a forensic context because the representation and matching of iris features are not straightforward for traditional iris recognition techniques. In this paper we concentrate on the iris crypt as a visible feature used to represent the characteristics of irises in a similar way to fingerprint minutiae. The matching of crypts is based on their appearances and locations. The number of matching crypt pairs found between two irises can be used for identity verification and the convenience of manual inspection makes iris crypts a potential candidate for forensic applications.

  4. Transcription Factor Antagonism Controls Enteroendocrine Cell Specification from Intestinal Stem Cells.

    Science.gov (United States)

    Li, Yumei; Pang, Zhimin; Huang, Huanwei; Wang, Chenhui; Cai, Tao; Xi, Rongwen

    2017-04-20

    The balanced maintenance and differentiation of local stem cells is required for Homeostatic renewal of tissues. In the Drosophila midgut, the transcription factor Escargot (Esg) maintains undifferentiated states in intestinal stem cells, whereas the transcription factors Scute (Sc) and Prospero (Pros) promote enteroendocrine cell specification. However, the mechanism through which Esg and Sc/Pros coordinately regulate stem cell differentiation is unknown. Here, by combining chromatin immunoprecipitation analysis with genetic studies, we show that both Esg and Sc bind to a common promoter region of pros. Moreover, antagonistic activity between Esg and Sc controls the expression status of Pros in stem cells, thereby, specifying whether stem cells remain undifferentiated or commit to enteroendocrine cell differentiation. Our study therefore reveals transcription factor antagonism between Esg and Sc as a novel mechanism that underlies fate specification from intestinal stem cells in Drosophila.

  5. The significance of intestinal apoptosis

    International Nuclear Information System (INIS)

    Potten, C.S.

    1997-01-01

    Apoptosis occurs at a low level spontaneously in the small intestine (SI). The levels can be raised by a variety of cytotoxic agents including radiation. The apoptosis induced by radiation, and some drugs and the spontaneous apoptosis, show some specificity for the stem cells in the small intestinal crypt. In the colon, these agents target transit cells in the mid crypt. p53 expression is elevated at the same time as apoptosis in the SI but not in the cells undergoing apoptosis. The expression of bcl-2, a survival gene, is largely absent in the SI, but is expressed, albeit weakly, in the stem cells in the colon. Spontaneous apoptosis is observed in p53 null mice which also develop normally suggesting that spontaneous and developmental apoptosis are p53 independent and that spontaneous apoptosis is part of the homeostatic mechanisms maintaining stem cell numbers. Radiation induced apoptosis is completely absent at these early times post-irradiation in p53 nulls. In bel-2 null mice, the levels of spontaneous and radiation induced apoptosis are elevated in the colon. Bax, a death gene, is expressed on the villus and inter-crypt table in the colon suggesting that cells at the end of their lifespan initiate apoptosis. It has been suggested that apoptosis in the SI is a protective mechanism against carcinogenesis in the stem cells of the SI which rarely develops cancer. Cells that possess genetic damage detected. In the large bowel, this mechanism is not effective due to the action of bcl-2. Thus stem cells may persist in this tissue with genetic damage resulting in a higher cancer risk. Furthermore, the lack of spontaneous apoptosis in the colon may result in a gradual increase of the stem cells with time resulting in more ells at risk. (author)

  6. Radiation, an ideal cytotoxic for the study of cell biology in the small intestine

    International Nuclear Information System (INIS)

    Potten, C.

    2003-01-01

    Epithelial tissues are highly polarised with the proliferative compartment sometimes subdivided into units of proliferation in many instances. My interests have been in trying to understand how many cellular constituents exist, what their function is and intercommunicants are that ensure appropriate steady state cell replacement rates. Radiation has proved to be a valuable tool to induce cell death, reproductive sterilisation, and regenerative proliferation in these systems, the responses to which can provide information on the number of regenerative cells (a function associated with stem cells). Such studies have helped define the epidermal proliferative units and the structurally similar units on the dorsal surface of the tongue. The radiation responses considered in conjunction with a wide range of cell kinetic lineage tracking and somatic mutation studies with complex mathematical modelling, provide insights into the functioning of the poliferative units (crypts) of the small intestine. Comparative studies have then been undertaken with the crypts in the large bowel. In the small intestine, which rarely develops cancer, various protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment. Stem cells in the small intestinal crypts have an intolerance of genotoxic damage (including that induced by very low doses of radiation), they do not undergo cell cycle arrest and repair but commit an altruistic p53 dependent cell suicide (apoptosis). This process is compromised in the large bowel by bcl-2 expression. Recent studies have suggested a second genome protection mechanism operating in the stem cells of the small intestinal crypts that may also have a p53 dependence. Such studies have allowed the cell lineages and genome protection mechanisms operating in the small intestinal crypts to be defined

  7. Stem cell-based growth, regeneration, and remodeling of the planarian intestine

    Science.gov (United States)

    Forsthoefel, David J.; Park, Amanda E.; Newmark, Phillip A.

    2011-01-01

    Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by coordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context. PMID:21664348

  8. Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa.

    Science.gov (United States)

    Lin, Chih-Hsun; Yang, I-Chen; Tsai, Chi-Han; Fang, Hsu-Wei; Ma, Hsu

    2017-08-01

    Ear reconstruction remains a challenge for plastic surgeons. A tissue-engineering approach could provide another route for obtaining shape maintenance in neoauricular tissue. The authors designed a novel tissue-engineering auricular construct by culturing human adipose stem cells, which differentiated into osteocytes but not chondrocytes, in small intestine submucosa scaffolds. The authors evaluated cell growth potential and mechanical properties. An ear-shaped construct was created in vitro and then implanted in the backs of nude mice. The histology, cellularity, neovascularization, mechanical properties, and ear shape maintenance were investigated. In vitro, human adipose stem cells could be successfully seeded in the small intestine submucosa and differentiated toward osteogenesis. The ear-shaped human adipose stem cell/small intestine submucosa construct could maintain its shape in vivo up to 1 year. Alizarin Red S staining confirmed osteogenic differentiation. CD31 stain showed prominent angiogenesis in the human adipose stem cell/small intestine submucosa construct at 6 months and persistence up to 1 year. h-MHC stain revealed the maintenance of cellularity at 6 months and persistence up to 1 year. The mechanical properties were similar to those of native ear cartilage. The authors' study found that the combination of human adipose stem cells and small intestine submucosa could provide a more durable ear-shaped construct in vivo. The mechanical properties, shape, and cellularity were maintained in the constructs for up to 12 months. Therapeutic, V.

  9. Enteroendocrine Cells Support Intestinal Stem-Cell-Mediated Homeostasis in Drosophila

    Directory of Open Access Journals (Sweden)

    Alla Amcheslavsky

    2014-10-01

    Full Text Available Intestinal stem cells in the adult Drosophila midgut are regulated by growth factors produced from the surrounding niche cells including enterocytes and visceral muscle. The role of the other major cell type, the secretory enteroendocrine cells, in regulating intestinal stem cells remains unclear. We show here that newly eclosed scute loss-of-function mutant flies are completely devoid of enteroendocrine cells. These enteroendocrine cell-less flies have normal ingestion and fecundity but shorter lifespan. Moreover, in these newly eclosed mutant flies, the diet-stimulated midgut growth that depends on the insulin-like peptide 3 expression in the surrounding muscle is defective. The depletion of Tachykinin-producing enteroendocrine cells or knockdown of Tachykinin leads to a similar although less severe phenotype. These results establish that enteroendocrine cells serve as an important link between diet and visceral muscle expression of an insulin-like growth factor to stimulate intestinal stem cell proliferation and tissue growth.

  10. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians.

    Science.gov (United States)

    Forsthoefel, David J; James, Noëlle P; Escobar, David J; Stary, Joel M; Vieira, Ana P; Waters, Forrest A; Newmark, Phillip A

    2012-10-16

    Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Crypt Organoid Culture as an in Vitro Model in Drug Metabolism and Cytotoxicity Studies.

    Science.gov (United States)

    Lu, Wenqi; Rettenmeier, Eva; Paszek, Miles; Yueh, Mei-Fei; Tukey, Robert H; Trottier, Jocelyn; Barbier, Olivier; Chen, Shujuan

    2017-07-01

    The gastrointestinal tract is enriched with xenobiotic processing proteins that play important roles in xenobiotic bioactivation, metabolism, and detoxification. The application of genetically modified mouse models has been instrumental in characterizing the function of xenobiotic processing genes (XPG) and their proteins in drug metabolism. Here, we report the utilization of three-dimensional crypt organoid cultures from these animal models to study intestinal drug metabolism and toxicity. With the successful culturing of crypt organoids, we profiled the abundance of Phase I and Phase II XPG expression, drug transporter gene expression, and xenobiotic nuclear receptor (XNR) gene expression. Functions of XNRs were examined by treating crypt cells with XNR prototypical agonists. Real-time quantitative polymerase chain reaction demonstrated that the representative downstream target genes were induced. These findings were validated from cultures developed from XNR-null mice. In crypt cultures isolated from Pxr -/- mice, pregnenolone 16 α -carbonitrile failed to induce Cyp3a11 gene expression; similarly, WY14643 failed to induce Cyp4a10 in the Pparα -/- crypts. Crypt cultures from control ( Ugt1 F/F ) and intestinal epithelial cell (IEC) specific Ugt1 null mice ( Ugt1 ΔIEC ) were treated with camptothecin-11, an anticancer prodrug with severe intestinal toxicity that originates from insufficient UGT1A1-dependent glucuronidation of its active metabolite SN-38. In the absence of Ugt1 gene expression, Ugt1 ΔIEC crypt cultures exhibit very limited production of SN-38 glucuronide, concordant with increased apoptosis in comparison with Ugt1 F/F crypt cultures. This study suggests crypt organoid cultures as an effective in vitro model for studying intestinal drug metabolism and toxicity. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  13. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quiescence Exit of Tert+ Stem Cells by Wnt/β-Catenin Is Indispensable for Intestinal Regeneration

    Directory of Open Access Journals (Sweden)

    Han Na Suh

    2017-11-01

    Full Text Available Fine control of stem cell maintenance and activation is crucial for tissue homeostasis and regeneration. However, the mechanism of quiescence exit of Tert+ intestinal stem cells (ISCs remains unknown. Employing a Tert knockin (TertTCE/+ mouse model, we found that Tert+ cells are long-term label-retaining self-renewing cells, which are partially distinguished from the previously identified +4 ISCs. Tert+ cells become mitotic upon irradiation (IR injury. Conditional ablation of Tert+ cells impairs IR-induced intestinal regeneration but not intestinal homeostasis. Upon IR injury, Wnt signaling is specifically activated in Tert+ cells via the ROS-HIFs-transactivated Wnt2b signaling axis. Importantly, conditional knockout of β-catenin/Ctnnb1 in Tert+ cells undermines IR-induced quiescence exit of Tert+ cells, which subsequently impedes intestinal regeneration. Our results that Wnt-signaling-induced activation of Tert+ ISCs is indispensable for intestinal regeneration unveil the underlying mechanism for how Tert+ stem cells undergo quiescence exit upon tissue injury.

  15. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch

    DEFF Research Database (Denmark)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. T...

  16. Wnt signaling in adult intestinal stem cells and cancer

    Czech Academy of Sciences Publication Activity Database

    Krausová, Michaela; Kořínek, Vladimír

    2014-01-01

    Roč. 26, č. 3 (2014), s. 570-579 ISSN 0898-6568 R&D Projects: GA ČR GAP305/12/2347; GA ČR GAP305/11/1780 Institutional support: RVO:68378050 Keywords : Wnt * intestine * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.315, year: 2014

  17. Regulation of Drosophila intestinal stem cell maintenance and differentiation by the transcription factor Escargot.

    Science.gov (United States)

    Loza-Coll, Mariano A; Southall, Tony D; Sandall, Sharsti L; Brand, Andrea H; Jones, D Leanne

    2014-12-17

    Tissue stem cells divide to self-renew and generate differentiated cells to maintain homeostasis. Although influenced by both intrinsic and extrinsic factors, the genetic mechanisms coordinating the decision between self-renewal and initiation of differentiation remain poorly understood. The escargot (esg) gene encodes a transcription factor that is expressed in stem cells in multiple tissues in Drosophila melanogaster, including intestinal stem cells (ISCs). Here, we demonstrate that Esg plays a pivotal role in intestinal homeostasis, maintaining the stem cell pool while influencing fate decisions through modulation of Notch activity. Loss of esg induced ISC differentiation, a decline in Notch activity in daughter enteroblasts (EB), and an increase in differentiated enteroendocrine (EE) cells. Amun, an inhibitor of Notch in other systems, was identified as a target of Esg in the intestine. Decreased expression of esg resulted in upregulation of Amun, while downregulation of Amun rescued the ectopic EE cell phenotype resulting from loss of esg. Thus, our findings provide a framework for further comparative studies addressing the conserved roles of Snail factors in coordinating self-renewal and differentiation of stem cells across tissues and species. © 2014 The Authors.

  18. Stem Cells in the Intestine: Possible Roles in Pathogenesis of Irritable Bowel Syndrome.

    Science.gov (United States)

    Ratanasirintrawoot, Sutheera; Israsena, Nipan

    2016-07-30

    Irritable bowel syndrome is one of the most common functional gastrointestinal (GI) disorders that significantly impair quality of life in patients. Current available treatments are still not effective and the pathophysiology of this condition remains unclearly defined. Recently, research on intestinal stem cells has greatly advanced our understanding of various GI disorders. Alterations in conserved stem cell regulatory pathways such as Notch, Wnt, and bone morphogenic protein/TGF- β have been well documented in diseases such as inflammatory bowel diseases and cancer. Interaction between intestinal stem cells and various signals from their environment is important for the control of stem cell self-renewal, regulation of number and function of specific intestinal cell types, and maintenance of the mucosal barrier. Besides their roles in stem cell regulation, these signals are also known to have potent effects on immune cells, enteric nervous system and secretory cells in the gut, and may be responsible for various aspects of pathogenesis of functional GI disorders, including visceral hypersensitivity, altered gut motility and low grade gut inflammation. In this article, we briefly summarize the components of these signaling pathways, how they can be modified by extrinsic factors and novel treatments, and provide evidenced support of their roles in the inflammation processes. Furthermore, we propose how changes in these signals may contribute to the symptom development and pathogenesis of irritable bowel syndrome.

  19. Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila

    Directory of Open Access Journals (Sweden)

    Péter Nagy

    2016-05-01

    Full Text Available UV radiation resistance-associated gene (UVRAG is a tumor suppressor involved in autophagy, endocytosis and DNA damage repair, but how its loss contributes to colorectal cancer is poorly understood. Here, we show that UVRAG deficiency in Drosophila intestinal stem cells leads to uncontrolled proliferation and impaired differentiation without preventing autophagy. As a result, affected animals suffer from gut dysfunction and short lifespan. Dysplasia upon loss of UVRAG is characterized by the accumulation of endocytosed ligands and sustained activation of STAT and JNK signaling, and attenuation of these pathways suppresses stem cell hyperproliferation. Importantly, the inhibition of early (dynamin-dependent or late (Rab7-dependent steps of endocytosis in intestinal stem cells also induces hyperproliferation and dysplasia. Our data raise the possibility that endocytic, but not autophagic, defects contribute to UVRAG-deficient colorectal cancer development in humans.

  20. Diurnal variations in proliferation and crypt survival suggest a small target cell population in mouse colon

    International Nuclear Information System (INIS)

    Dobbin, J.; Hamilton, E.

    1986-01-01

    Male C57BLasup(t) mice of two ages, 3-5 months (young) and 14-15 months (old) were given 11 or 15Gy whole body irradiation at different times through the day. The mice were killed after 4.5 days and the number of surviving crypts per circumference of jejunum, ileum, transverse colon and descending colon were scored. These results show crypt survival in the small and large intestine of 15-month-old mice. In the ileum the maximum crypt survival was found at 04.00 h and the minimum at 08.00 h. In the jejunum and both regions of the colon the maximum crypt survival occurred at 16.00 h. The nadir of crypt survival after 15 Gy was at 04.00 h in the jejunum and at 20.00 and 24.00 h in the transverse and descending colon, respectively. In young mice, crypt survival levels were similar to those found in old animals except at 04.00 h. when survival in the jejunum and ileum fell to 0.0004+-0.0002 and 0.0007+-0.0004, respectively. The lowest crypt survival in the colon of young mice also occurred at 04.00 h and in all four tissues the greatest number of crypts survived irradiation at 24.00 h. (author)

  1. The sexual identity of adult intestinal stem cells controls organ size and plasticity

    Science.gov (United States)

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-01-01

    SUMMARY Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised. PMID:26887495

  2. Defining a stem cell hierarchy in the intestine: markers, caveats and controversies

    Science.gov (United States)

    Smith, Nicholas R.; Gallagher, Alexandra C.

    2016-01-01

    Abstract The past decade has appreciated rapid advance in identifying the once elusive intestinal stem cell (ISC) populations that fuel the continual renewal of the epithelial layer. This advance was largely driven by identification of novel stem cell marker genes, revealing the existence of quiescent, slowly‐ and active‐cycling ISC populations. However, a critical barrier for translating this knowledge to human health and disease remains elucidating the functional interplay between diverse stem cell populations. Currently, the precise hierarchical and regulatory relationships between these ISC populations are under intense scrutiny. The classical theory of a linear hierarchy, where quiescent and slowly‐cycling stem cells self‐renew but replenish an active‐cycling population, is well established in other rapidly renewing tissues such as the haematopoietic system. Efforts to definitively establish a similar stem cell hierarchy within the intestinal epithelium have yielded conflicting results, been difficult to interpret, and suggest non‐conventional alternatives to a linear hierarchy. While these new and potentially paradigm‐shifting discoveries are intriguing, the field will require development of a number of critical tools, including highly specific stem cell marker genes along with more rigorous experimental methodologies, to delineate the complex cellular relationships within this dynamic organ system. PMID:26864260

  3. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration.

    Science.gov (United States)

    Flores, Natasha M; Oviedo, Néstor J; Sage, Julien

    2016-10-01

    The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging inDrosophila.

    Science.gov (United States)

    Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2018-03-07

    Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.

  5. Colonic Crypt Changes during Adenoma Development in Familial Adenomatous Polyposis : Immunohistochemical Evidence for Expansion of the Crypt Base Cell Population

    OpenAIRE

    Boman, Bruce M.; Walters, Rhonda; Fields, Jeremy Z.; Kovatich, Albert J.; Zhang, Tao; Isenberg, Gerald A.; Goldstein, Scott D.; Palazzo, Juan P.

    2004-01-01

    Familial adenomatous polyposis patients, who have a germline APC mutation, develop adenomas in normal-appearing colonic mucosa, and in the process usually acquire a mutation in the other APC allele as well. Nonetheless, the cellular mechanisms that link these initiating genetic changes with the earliest tissue changes (upward shift in the labeling index) in colon tumorigenesis are unclear. Based on the tenet that colorectal cancer originates from crypt stem cells (SCs) and on our kinetic mode...

  6. Bodies Folded in Migrant Crypts

    DEFF Research Database (Denmark)

    Galis, Vasilis; Tzokas, Spyros; Tympas, Aristotle

    2016-01-01

    , and to performing mobility in general. Dis/ability and migration have not been associated in the literature. We adopt an analytical symmetry between humans and non-humans, in this case between bodies and crypts. By suggesting an infected, ambivalent, and hybrid approach to the human subject, the body......This article considers media narratives that suggest that hiding in trucks, buses, and other vehicles to cross borders has, in fact, been a common practice in the context of migration to, and within, Europe. We aim to problematize how the tension between the materiality of bordering practices...... and human migrants generates a dis/abled subject. In this context, dis/ability may be a cause or consequence of migration, both in physical/material (the folding of bodies in the crypt) and cultural/semiotic terms, and may become a barrier to accessing protection, to entering and/or crossing a country...

  7. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  8. Stem cell injury and restitution after ionizing irradiation in intestine, liver, salivary gland, mesenteric lymph node

    International Nuclear Information System (INIS)

    Lee, Jae Hyun; Cho, Kyung Ja; Lee, Sun Joo; Jang, Won Suk

    1998-01-01

    There is little information about radiation injury on stem cell resident in other organs. In addition there is little experimental model in which radiation plays a role on proliferation stem cell in adult organ. This study was carried out to evaluate the early response of tissue injury and restitution in intestine, liver, salivary gland and lymph node, and to develop in vivo model to investigate stem cell biology by irradiation. The study is to assay the early response to radiation and setup an animal model for radiation effect on cellular response. Duodenal intestine, liver, submandibular salivary gland and mesenteric lymph node were selected to compare apoptosis and proliferating cell nuclear antigen (PCNA) expression to radiosensitivity. For the effect of radiation on cellular responses, rats were irradiated during starvation. Conclusionly, this study showed the value of apoptosis in detection system for evaluating cellular damage against radiation injury. Because apoptosis was regularly inducted depending on tissue-specific pattern, dose and time sequence as well as cellular activity. Furthermore in vivo model in the study will be helped in the further study to elucidate the relationship between radiation injury and starvation or malnutrition. (author). 22 refs., 6 figs

  9. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    Science.gov (United States)

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  10. Computational models reveal a passive mechanism for cell migration in the crypt.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.

  11. Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Whangbo, J; Ritz, J; Bhatt, A

    2017-02-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is curative for many patients with severe benign and malignant hematologic disorders. The success of allogeneic HSCT is limited by the development of transplant-related complications such as acute graft-versus-host disease (GvHD). Early pre-clinical studies suggested that intestinal microflora contribute to the pathogenesis of acute GvHD, and that growth suppression or eradication of intestinal bacteria prevented the development of acute GvHD even in MHC-mismatched transplants. These observations led to the practice of gut decontamination (GD) with oral non-absorbable antibiotics in patients undergoing allogeneic HSCT as a method of acute GvHD prophylaxis. Microbiome studies in the modern sequencing era are beginning to challenge the benefit of this practice. In this review, we provide a historical perspective on the practice of GD and highlight findings from the limited number of clinical trials evaluating the use of GD for acute GvHD prevention in allogeneic HSCT patients. In addition, we examine the role of the gut microbiota in allogeneic HSCT in the context of recent studies linking the microflora to regulation of intestinal immune homeostasis. We discuss the implications of these findings for future strategies to reduce acute GvHD risk by selective manipulation of the microbiota.

  12. Intestinal Commitment and Maturation of Human Pluripotent Stem Cells Is Independent of Exogenous FGF4 and R-spondin1.

    Directory of Open Access Journals (Sweden)

    Kaisa Tamminen

    Full Text Available Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC into posterior endoderm (hindgut and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1, a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.

  13. Dual role of BMP signaling in the regulation of Drosophila intestinal stem cell self-renewal.

    Science.gov (United States)

    Tian, Aiguo; Jiang, Jin

    2017-10-02

    Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.

  14. Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver.

    Science.gov (United States)

    Degirmenci, Bahar; Hausmann, George; Valenta, Tomas; Basler, Konrad

    2018-01-01

    The term "Wnt signaling" does not refer to one uniform signal transduction cascade. Instead, it describes the multiple discrete signals elicited by Wnt ligands following their interaction with distinct receptor complexes. The interaction of stem cells with niche cells is coordinated by the involvement of different signaling pathways, including Wnt signaling. The stem cell populations are highly sensitive to modulation of Wnt pathway activity. Wnt signaling is of paramount importance for stem cell self-renewal, survival, proliferation, differentiation, movement, and cell polarity. Aberrant activation of Wnt/β-catenin signaling is associated with the pathology of many types of cancer, such as colorectal cancer and hepatocellular carcinoma. Importantly, although often initiated by mutation(s) downstream of the Wnt-receptor complex, the progression of colorectal cancer still seems to be augmented by Wnt ligand-mediated signaling. This chapter focuses on the role of Wnt ligands in the intestine and the liver during homeostasis and cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund

    2002-01-01

    by a general down-regulation of genes in the low abundance class. Similar results were found using mouse small intestinal crypt and villus cells, suggesting that the phenomenon also occurs in the intestine in vivo. The expression data were subsequently used in a search for markers for subsets of epithelial...... cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....

  16. Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis

    NARCIS (Netherlands)

    Qiu, W.; Wang, X.; Leibowitz, B.; Liu, H.; Barker, N.; Okada, H.; Oue, N.; Yasui, W.; Clevers, H.; Schoen, R.E.; Yu, J.; Zhang, L.

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) such as sulindac effectively prevent colon cancer in humans and rodent models. However, their cellular targets and underlying mechanisms have remained elusive. We found that dietary sulindac induced apoptosis to remove the intestinal stem cells with

  17. Stem Cell-Derived Human Intestinal Organoids as an Infection Model for Rotaviruses

    Science.gov (United States)

    Finkbeiner, Stacy R.; Zeng, Xi-Lei; Utama, Budi; Atmar, Robert L.; Shroyer, Noah F.; Estes, Mary K.

    2012-01-01

    ABSTRACT Directed differentiation of stem cell lines into intestine-like tissue called induced human intestinal organoids (iHIOs) is now possible (J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells, Nature 470:105-109, 2011). We tested iHIOs as a new model to cultivate and study fecal viruses. Protocols for infection of iHIOs with a laboratory strain of rotavirus, simian SA11, were developed. Proof-of-principle analyses showed that iHIOs support replication of a gastrointestinal virus, rotavirus, on the basis of detection of nonstructural viral proteins (nonstructural protein 4 [NSP4] and NSP2) by immunofluorescence, increased levels of viral RNA by quantitative reverse transcription-PCR (qRT-PCR), and production of infectious progeny virus. iHIOs were also shown to support replication of 12/13 clinical rotavirus isolates directly from stool samples. An unexpected finding was the detection of rotavirus infection not only in the epithelial cells but also in the mesenchymal cell population of the iHIOs. This work demonstrates that iHIOs offer a promising new model to study rotaviruses and other gastrointestinal viruses. PMID:22761392

  18. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.

    Science.gov (United States)

    Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T

    2013-11-01

    Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands

    NARCIS (Netherlands)

    Lavery, Danielle L.; Nicholson, Anna M.; Poulsom, Richard; Jeffery, Rosemary; Hussain, Alia; Gay, Laura J.; Jankowski, Janusz A.; Zeki, Sebastian S.; Barr, Hugh; Harrison, Rebecca; Going, James; Kadirkamanathan, Sritharan; Davis, Peter; Underwood, Timothy; Novelli, Marco R.; Rodriguez-Justo, Manuel; Shepherd, Neil; Jansen, Marnix; Wright, Nicholas A.; McDonald, Stuart A. C.

    2014-01-01

    Barrett's oesophagus shows appearances described as 'intestinal metaplasia', in structures called 'crypts' but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Cell proliferation and migration within Barrett's glands was assessed by Ki67 and

  20. Plasma GLP-2 levels and intestinal markers in the juvenile pig during intestinal adaptation

    DEFF Research Database (Denmark)

    Paris, Monique C; Fuller, Peter J; Carstensen, Bendix

    2004-01-01

    , villus height, lactase, sucrase, maltase, crypt depth, or villus/crypt ratio. Plasma GLP-2 levels increase in the first weeks following massive small intestinal resection. The increase in plasma GLP-2 levels was enhanced by supplementation of the diet with CPC. The changes in GLP-2 levels observed...

  1. A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt

    KAUST Repository

    Mirams, Gary R.

    2012-11-01

    The surface epithelium lining the intestinal tract renews itself rapidly by a coordinated programme of cell proliferation, migration and differentiation events that is initiated in the crypts of Lieberkühn. It is generally believed that colorectal cancer arises due to mutations that disrupt the normal cellular dynamics of the crypts. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and the proliferative and adhesive properties of the mutant cells, to obtain statistical distributions for the probability of their domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion. By comparing simulation results with those from a simple one-dimensional stochastic model of population dynamics at the base of the crypt, we infer that this sensitivity is due to direct competition between wild-type and mutant cells at the base of the crypt. We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate can give rise to counter-intuitive, non-linear changes to the probability of their fixation, due to effects that cannot be captured in simpler models. © 2012 Elsevier Ltd.

  2. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development.

    Science.gov (United States)

    Okada, Morihiro; Shi, Yun-Bo

    2018-01-01

    The gene ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI encode zinc-finger proteins that have been recognized as important oncogenes in various types of cancer. In contrast to the established role of EVI and MDS/EVI in cancer development, their potential function during vertebrate postembryonic development, especially in organ-specific adult stem cells, is unclear. Amphibian metamorphosis is strikingly similar to postembryonic development around birth in mammals, with both processes taking place when plasma thyroid hormone (T3) levels are high. Using the T3-dependent metamorphosis in Xenopus tropicalis as a model, we show here that high levels of EVI and MDS/EVI are expressed in the intestine at the climax of metamorphosis and are induced by T3. By using the transcription activator-like effector nuclease gene editing technology, we have knocked out both EVI and MDS/EVI and have shown that EVI and MDS/EVI are not essential for embryogenesis and premetamorphosis in X. tropicalis On the other hand, knocking out EVI and MDS/EVI causes severe retardation in the growth and development of the tadpoles during metamorphosis and leads to tadpole lethality at the climax of metamorphosis. Furthermore, the homozygous-knockout animals have reduced adult intestinal epithelial stem cell proliferation at the end of metamorphosis (for the few that survive through metamorphosis) or during T3-induced metamorphosis. These findings reveal a novel role of EVI and/or MDS/EVI in regulating the formation and/or proliferation of adult intestinal adult stem cells during postembryonic development in vertebrates.-Okada, M., Shi, Y.-B. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. © FASEB.

  3. Goblet cells carcinoid with mucinous adenocarcinoma of the vermiform appendix: a step towards the unitary intestinal stem cell theory?

    Science.gov (United States)

    Gravante, G; Yahia, S; Gopalakrishnan, K; Mathew, G

    2014-06-01

    Associations of various histotypes in appendiceal neoplasms may help elucidate the histogenesis of such uncommon tumors. We present the fourth published case of Goblet Cell Carcinoid (GCC) associated with mucinous adenocarcinoma of the appendix. This association has been described only for GCC and not for classic appendix carcinoids which are thought to originate from neuroendocrine-committed cells. The GCC-mucinous association adds more towards the theory of a pluripotent intestinal stem cell with amphicrine possibilities of differentiation.

  4. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals

    Directory of Open Access Journals (Sweden)

    Robin H. Powell

    2017-05-01

    Full Text Available Recent years have seen significant developments in the ability to continuously propagate organoids derived from intestinal crypts. These advancements have been applied to mouse and human samples providing models for gastrointestinal tissue development and disease. We adapt these methods for the propagation of intestinal organoids (enteroids from various large farm and small companion (LF/SC animals, including cat, dog, cow, horse, pig, sheep and chicken. We show that LF/SC enteroids propagate and expand in L-WRN conditioned media containing signaling factors Wnt3a, R-spondin-3, and Noggin (WRN. Multiple successful isolations were achieved for each species, and the growth of LF/SC enteroids was maintained to high passage number. LF/SC enteroids expressed crypt stem cell marker LGR5 and low levels of mesenchymal marker VIM. Labeling with EdU also showed distinct regions of cell proliferation within the enteroids marking crypt-like regions. The ability to grow and maintain LF/SC enteroid cell lines provides additional models for the study of gastrointestinal developmental biology as well as platforms for the study of host-pathogen interactions between intestinal cells and zoonotic enteric pathogens of medical importance.

  5. Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine

    Directory of Open Access Journals (Sweden)

    Ashlee M. Strubberg

    2018-01-01

    Conclusions: CF intestine shows increased ISC proliferation and Wnt/β-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/β-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.

  6. Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome

    DEFF Research Database (Denmark)

    Martin, G R; Wallace, L E; Hartmann, B

    2005-01-01

    of GLP-2 production and adaptation to intestinal resection, the effects of resection-induced malabsorption on GLP-2 production, and the correlation of endogenous serum GLP-2 levels with adaptation as measured by crypt-cell proliferation (CCP). We initially examined the effect of nutrient malabsorption......, induced by a 90% resection of the proximal intestine studied on day 4, on the time course and levels of GLP-2 release. Secondly, the degree of malabsorption was varied by performing intestinal transection or 50, 75, or 90% resection of proximal small intestine. Finally, the relationship of GLP-2 levels...... over time with adaptation to a 90% resection was examined by determining GLP-2 levels on days 7, 14, and 28, and correlating this with intestinal adaptation, as assessed by morphology and CCP rate. A 90% resection significantly increased basal and postprandial GLP-2 levels, with a net increase...

  7. Influence of mesenchymal stem cells on stomach tissue engineering using small intestinal submucosa.

    Science.gov (United States)

    Nakatsu, Hiroki; Ueno, Tomio; Oga, Atsunori; Nakao, Mitsuhiro; Nishimura, Taku; Kobayashi, Sei; Oka, Masaaki

    2015-03-01

    Small intestinal submucosa (SIS) is a biodegradable collagen-rich matrix containing functional growth factors. We have previously reported encouraging outcomes for regeneration of an artificial defect in the rodent stomach using SIS grafts, although the muscular layer was diminutive. In this study, we investigated the feasibility of SIS in conjunction with mesenchymal stem cells (MSCs) for regeneration of the gastrointestinal tract. MSCs from the bone marrow of green fluorescence protein (GFP)-transgenic Sprague-Dawley (SD) rats were isolated and expanded ex vivo. A 1 cm whole-layer stomach defect in SD rats was repaired using: a plain SIS graft without MSCs (group 1, control); a plain SIS graft followed by intravenous injection of MSCs (group 2); a SIS graft co-cultured with MSCs (group 3); or a SIS sandwich containing an MSC sheet (group 4). Pharmacological, electrophysiological and immunohistochemical examination was performed to evaluate the regenerated stomach tissue. Contractility in response to a muscarinic receptor agonist, a nitric oxide precursor or electrical field stimulation was observed in all groups. SIS grafts seeded with MSCs (groups 3 and 4) appeared to support improved regeneration compared with SIS grafts not seeded with MSCs (groups 1 and 2), by enabling the development of well-structured smooth muscle layers of significantly increased length. GFP expression was detected in the regenerated interstitial tissue, with fibroblast-like cells in the seeded-SIS groups. SIS potently induced pharmacological and electrophysiological regeneration of the digestive tract, and seeded MSCs provided an enriched environment that supported tissue regeneration by the SIS graft in the engineered stomach. © 2013 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  8. Magnetic resonance enterography for assessment of intestinal graft-versus-host disease after allogeneic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Derlin, Thorsten [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Hanover Medical School, Department of Nuclear Medicine, Hanover (Germany); Laqmani, Azien; Adam, Gerhard; Bannas, Peter [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Veldhoen, Simon [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); University Medical Center Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Apostolova, Ivayla [Otto-von-Guericke University, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Ayuk, Francis; Kroeger, Nicolaus [University Medical Center Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg (Germany)

    2015-05-01

    To determine the diagnostic performance of MR enterography (MRE) for detection and grading of gastrointestinal graft-versus-host disease (GI GvHD) after hematopoietic stem cell transplantation (SCT). Forty-one patients with known GvHD or suspected GvHD underwent MRE and GI endoscopy with multi-level biopsies. MRE images were reviewed for presence of intestinal wall inflammation. Clinical grading of GI GvHD was performed. Histopathological evaluation (HPE) served as the reference standard. Overall, MRE demonstrated a per-patient sensitivity of 81.5 % for detection of GI GvHD. The most common findings were intestinal wall thickening (81.5 % of GvHD patients), luminal stenosis (81.5 %), mural contrast enhancement (70.4 %), and ascites (59.3 %). These findings were also observed in other conditions than GvHD. The most frequently involved intestinal segment was the sigmoid colon (63.0 %), followed by the ileum (59.3 %) and the jejeunum (51.9 %). The number of involved segments (r{sub s} =0.54, p =0.009) correlated significantly with clinical severity as determined by GvHD grading. After allogeneic stem cell transplantation, MRE may (1) contribute to detection and localization of GI GvHD, and (2) add information indicating the clinical severity of disease, but findings are unspecific. False negative results may be observed not only in low-grade GI GvHD. (orig.)

  9. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  10. Mice overexpressing CD97 in intestinal epithelial cells provide a unique model for mammalian postnatal intestinal cylindrical growth

    NARCIS (Netherlands)

    Aust, Gabriela; Kerner, Christiane; Gonsior, Susann; Sittig, Doreen; Schneider, Hartmut; Buske, Peter; Scholz, Markus; Dietrich, Norman; Oldenburg, Sindy; Karpus, Olga N.; Galle, Jörg; Amasheh, Salah; Hamann, Jörg

    2013-01-01

    Postnatal enlargement of the mammalian intestine comprises cylindrical and luminal growth, associated with crypt fission and crypt/villus hyperplasia, respectively, which subsequently predominate before and after weaning. The bipartite adhesion G protein-coupled receptor CD97 shows an expression

  11. C3a Enhances the Formation of Intestinal Organoids through C3aR1

    Directory of Open Access Journals (Sweden)

    Naoya Matsumoto

    2017-09-01

    Full Text Available C3a is important in the regulation of the immune response as well as in the development of organ inflammation and injury. Furthermore, C3a contributes to liver regeneration but its role in intestinal stem cell function has not been studied. We hypothesized that C3a is important for intestinal repair and regeneration. Intestinal organoid formation, a measure of stem cell capacity, was significantly limited in C3-deficient and C3a receptor (C3aR 1-deficient mice while C3a promoted the growth of organoids from normal mice by supporting Wnt-signaling but not from C3aR1-deficient mice. Similarly, the presence of C3a in media enhanced the expression of the intestinal stem cell marker leucine-rich repeat G-protein-coupled receptor 5 (Lgr5 and of the cell proliferation marker Ki67 in organoids formed from C3-deficient but not from C3aR1-deficient mice. Using Lgr5.egfp mice we showed significant expression of C3 in Lgr5+ intestinal stem cells whereas C3aR1 was expressed on the surface of various intestinal cells. C3 and C3aR1 expression was induced in intestinal crypts in response to ischemia/reperfusion injury. Finally, C3aR1-deficient mice displayed ischemia/reperfusion injury comparable to control mice. These data suggest that C3a through interaction with C3aR1 enhances stem cell expansion and organoid formation and as such may have a role in intestinal regeneration.

  12. Neutral dynamics and cell renewal of colonic crypts in homeostatic regime

    Science.gov (United States)

    Fendrik, A. J.; Romanelli, L.; Rotondo, E.

    2018-05-01

    The self renewal process in colonic crypts is the object of several studies. We present here a new compartment model with the following characteristics: (a) we distinguish different classes of cells: stem cells, six generations of transit amplifying cells and the differentiated cells; (b) in order to take into account the monoclonal character of crypts in homeostatic regimes we include symmetric divisions of the stem cells. We first consider the dynamic differential equations that describe the evolution of the mean values of the populations, but the small observed value of the total number of cells involved plus the huge dispersion of experimental data found in the literature leads us to study the stochastic discrete process. This analysis allows us to study fluctuations, the neutral drift that leads to monoclonality, and the effects of the fixation of mutant clones.

  13. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ijiri, K.; Potter, C.S. (Christie Hospital and Holt Radium Inst., Manchester (UK). Paterson Labs.)

    1983-02-01

    The spatial distribution of cell death among the epithelial cells lining the adult mouse small intestinal mucosa at various times after a range of doses of 10 different drugs as well as after internal or external irradiation (..beta.. particles from tritium, ..gamma..- and X-rays and neutrons) has been recorded. Cell death, expressed as pycnosis or apoptosis, has been recorded for each cell position up the side of the crypts of the small intestine. Adriamycin and the various forms of radiation tend to kill cells preferentially at cell position 4-5 i.e. on cells very early in the lineage, probably stem cells. Isopropyl-methane-sulphonate, nitrogen mustard and possibly Actinomycin-D act on cell position 6-7, while 5-fluorouracil, Myleran, cyclophosphamide, and cycloheximide tend to kill cells at cell position 7-9. Vincristine and hydroxyurea are the 2 agents that exhibit a specificity for cells highest up the crypt, i.e. latest in transit population of the cell lineage by acting on cell positions 10 or 11. The data also suggest that normal healthy cells continue to migrate up the crypt and onto the villus in spite of considerable cell death and reduced cell production.

  14. The Coordinated Activities of nAChR and Wnt Signaling Regulate Intestinal Stem Cell Function in Mice

    Directory of Open Access Journals (Sweden)

    Toshio Takahashi

    2018-03-01

    Full Text Available Cholinergic signaling, which modulates cell activities via nicotinic and muscarinic acetylcholine receptors (n- and mAChRs in response to internal or external stimuli, has been demonstrated in mammalian non-neuronal cells that synthesize acetylcholine (ACh. One of the major pathways of excitatory transmission in the enteric nervous system (ENS is mediated by cholinergic transmission, with the transmitter ACh producing excitatory potentials in postsynaptic effector cells. In addition to ACh-synthesizing and ACh-metabolizing elements in the ENS, the presence of non-neuronal ACh machinery has been reported in epithelial cells of the small and large intestines of rats and humans. However, little is known about how non-neuronal ACh controls physiological function in the intestine. Here, experiments using crypt–villus organoids that lack nerve and immune cells in culture suggest that endogenous ACh is synthesized in the intestinal epithelium to drive organoid growth and differentiation through activation of nAChRs. Treatment of organoids with nicotine enhanced cell growth and the expression of marker genes for stem and epithelial cells. On the other hand, the nAChR antagonist mecamylamine strongly inhibited the growth and differentiation of organoids, suggesting the involvement of nAChRs in the regulation of proliferation and differentiation of Lgr5-positive stem cells. More specifically, RNA sequencing analysis revealed that Wnt5a expression was dramatically upregulated after nicotine treatment, and Wnt5a rescued organoid growth and differentiation in response to mecamylamine. Taken together, our results indicate that coordinated activities of nAChR and Wnt signaling maintain Lgr5-positive stem cell activity and balanced differentiation. Furthermore, we could clearly separate the two groups, neuronal ACh in the ENS and non-neuronal ACh in the intestinal epithelium. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis

  15. Intestinal Adenovirus Shedding Before Allogeneic Stem Cell Transplantation Is a Risk Factor for Invasive Infection Post-transplant

    Directory of Open Access Journals (Sweden)

    Karin Kosulin

    2018-02-01

    Full Text Available Human adenoviruses (HAdV are a major cause of morbidity and mortality in pediatric human stem cell transplant (HSCT recipients. Our previous studies identified the gastrointestinal tract as a site of HAdV persistence, but the role of intestinal virus shedding pre-transplant for the risk of ensuing invasive infection has not been entirely elucidated. Molecular HAdV monitoring of serial stool samples using RQ-PCR was performed in 304 children undergoing allogeneic HSCT. Analysis of stool and peripheral blood specimens was performed pre-transplant and at short intervals until day 100 post-HSCT. The virus was detected in the stool of 129 patients (42%, and 42 tested positive already before HSCT. The patients displaying HAdV shedding pre-transplant showed a significantly earlier increase of intestinal HAdV levels above the critical threshold associated with high risk of invasive infection (p < 0.01. In this subset of patients, the occurrence of invasive infection characterized by viremia was significantly higher than in patients without HAdV shedding before HSCT (33% vs 7%; p < 0.0001. The data demonstrate that intestinal HAdV shedding before HSCT confers a greatly increased risk for invasive infection and disseminated disease post-transplant, and highlights the need for timely HAdV monitoring and pre-emptive therapeutic considerations in HSCT recipients.

  16. Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Stacy R. Finkbeiner

    2015-06-01

    Full Text Available Human intestinal organoids (HIOs are a tissue culture model in which small intestine-like tissue is generated from pluripotent stem cells. By carrying out unsupervised hierarchical clustering of RNA-sequencing data, we demonstrate that HIOs most closely resemble human fetal intestine. We observed that genes involved in digestive tract development are enriched in both fetal intestine and HIOs compared to adult tissue, whereas genes related to digestive function and Paneth cell host defense are expressed at higher levels in adult intestine. Our study also revealed that the intestinal stem cell marker OLFM4 is expressed at very low levels in fetal intestine and in HIOs, but is robust in adult crypts. We validated our findings using in vivo transplantation to show that HIOs become more adult-like after transplantation. Our study emphasizes important maturation events that occur in the intestine during human development and demonstrates that HIOs can be used to model fetal-to-adult maturation.

  17. Onset of transcription of the aminopeptidase N (leukemia antigen CD 13) gene at the crypt/villus transition zone during rabbit enterocyte differentiation

    DEFF Research Database (Denmark)

    Norén, O; Dabelsteen, E; Høyer, P E

    1989-01-01

    The sequence of a cDNA clone (2.82 kbp) of rabbit intestinal aminopeptidase N (CD 13) is reported. Using the corresponding anti-sense RNA probe, the distribution of aminopeptidase N mRNA along the crypt/villus axis of the rabbit small intestine was studied by in situ hybridization....... The aminopeptidase N gene is expressed along the whole length of the villus with a maximum at its base. Expression was not detected in the crypt cells. The distribution of aminopeptidase N mRNA correlates with the presence of active enzyme as monitored by histochemical staining. The results are compatible with onset...... of transcription of the aminopeptidase N gene at the crypt/villus transition zone during the enterocyte differentiation....

  18. Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.

    Directory of Open Access Journals (Sweden)

    Atsuko Ishizuya-Oka

    Full Text Available Amphibian intestinal remodeling, where thyroid hormone (T3 induces some larval epithelial cells to become adult stem cells analogous to the mammalian intestinal ones, serves as a unique model for studying how the adult stem cells are formed. To clarify its molecular mechanisms, we here investigated roles of non-canonical Wnt signaling in the larval-to-adult intestinal remodeling during Xenopus laevis metamorphosis.Our quantitative RT-PCR (qRT-PCR and immunohistochemical analyses indicated that the expressions of Wnt5a and its receptors, frizzled 2 (Fzd2 and receptor tyrosine kinase-like orphan receptor 2 (Ror2 are up-regulated by T3 and are spatiotemporally correlated with adult epithelial development in the X. laevis intestine. Notably, changes in morphology of larval absorptive epithelial cells expressing Ror2 coincide well with formation of the adult stem cells during metamorphosis. In addition, by using organ cultures of the tadpole intestine, we have experimentally shown that addition of exogenous Wnt5a protein to the culture medium causes morphological changes in the larval epithelium expressing Ror2 even in the absence of T3. In contrast, in the presence of T3 where the adult stem cells are formed in vitro, inhibition of endogenous Wnt5a by an anti-Wnt5a antibody suppressed the epithelial morphological changes, leading to the failure of stem cell formation.Our findings strongly suggest that the adult stem cells originate from the larval absorptive cells expressing Ror2, which require Wnt5a/Ror2 signaling for their dedifferentiation accompanied by changes in cell morphology.

  19. Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation

    NARCIS (Netherlands)

    Dominguez-Brauer, Carmen; Hao, Zhenyue; Elia, Andrew J.; Fortin, Jérôme M.; Nechanitzky, Robert; Brauer, Patrick M.; Sheng, Yi; Mana, Miyeko D.; Chio, Iok In Christine; Haight, Jillian; Pollett, Aaron; Cairns, Robert; Tworzyanski, Leanne; Inoue, Satoshi; Reardon, Colin; Marques, Ana; Silvester, Jennifer; Cox, Maureen A.; Wakeham, Andrew; Yilmaz, Omer H.; Sabatini, David M.; van Es, Johan H.; Clevers, Hans; Sato, Toshiro; Mak, Tak W.

    2016-01-01

    The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels

  20. Wnt signaling in cancer stem cells and colon cancer metastasis [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sayon Basu

    2016-04-01

    Full Text Available Overactivation of Wnt signaling is a hallmark of colorectal cancer (CRC. The Wnt pathway is a key regulator of both the early and the later, more invasive, stages of CRC development. In the normal intestine and colon, Wnt signaling controls the homeostasis of intestinal stem cells (ISCs that fuel, via proliferation, upward movement of progeny cells from the crypt bottom toward the villus and differentiation into all cell types that constitute the intestine. Studies in recent years suggested that cancer stem cells (CSCs, similar to ISCs of the crypts, consist of a small subpopulation of the tumor and are responsible for the initiation and progression of the disease. Although various ISC signature genes were also identified as CRC markers and some of these genes were even demonstrated to have a direct functional role in CRC development, the origin of CSCs and their contribution to cancer progression is still debated. Here, we describe studies supporting a relationship between Wnt-regulated CSCs and the progression of CRC.

  1. Investigations of the dependence of radiation effects on the stem cells of the small intestine mucous membrane on dose fractionation

    International Nuclear Information System (INIS)

    Gindele, S.

    1984-01-01

    For the study of the dependence of the radiation effects on the stem cells of the small intestine mucous membrane on dose fractionation mice from the strain C3H were exposed to a one-time irradiation, an irradiation in three fractions, five fractions on one day, five fractions on two days and an irradiation in ten fractions. It was shown, that the survival curves for the higher fractionation numbers were shifted to the right from the ones with higher total doses and have a lower slope than the curves lying more to the left. The accumulation of a total dose for an iso-effect is not proportional to the increase in the number of fractions, but instead in the area above 5 fractions reaches a plateau. The survival curve of the one-time dose which I constructed in the shoulder area showed a strong agreement with the survival curve which was given by Withers and Hussey. (orig.) [de

  2. Cdx2 is essential for embryonic axial growth and identity of the adult intestinal stem cells

    NARCIS (Netherlands)

    Simmini, Salvatore

    2015-01-01

    During mouse development, progenitor cells, allocated along the primitive streak and in the tailbud, lay down descendants that contribute to the generation of all primordia of the trunk and tail tissues of the embryo. Evidence suggested that a pool of these progenitor cells, with stem cell-like

  3. Radioprotective effects of natural β-carotene on villi and crypts in abdominally radiated mice

    International Nuclear Information System (INIS)

    Kurabe, Teruhisa; Itoh, Youko; Matsumura, Eijin; Nakamura, Atsushi; Ayakawa, Yoshio

    2002-01-01

    The protective effect of β-carotene against radiation injury to the small intestine of abdominally radiated mice (15 Gy) was examined with administration given pre-radiation, during (pre- and post-) radiation, and post-radiation. In the β-carotene group, the ratio of villus length to crypt was significantly greater in comparison with the radiation only group at 2 days after radiation. At 7 days after radiation, the ratio of necrotic cells in the crypt vs. the total was significantly lower, and the ratio of necrotic cells in the villus vs. the total was significantly greater with β-carotene administration, which indicated that β-carotene accelerated recovery from radiation injury. Each group administered β-carotene showed a significant radioprotective effect, with pre-radiation administration yielding a smaller effect than administration during radiation and post-radiation. It is concluded that pre-, during, and post-radiation administration of β-carotene protected against radiation injury of the small intestine and accelerated recovery from it. (author)

  4. Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  5. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  6. Molecular characterisation of non-absorptive and absorptive enterocytes in human small intestine

    DEFF Research Database (Denmark)

    Gassler, N; Newrzella, D; Böhm, C

    2006-01-01

    BACKGROUND AND AIMS: Perturbation of differentiation of the crypt-villus axis of the human small intestine is associated with several intestinal disorders of clinical importance. At present, differentiation of small intestinal enterocytes in the crypt-villus axis is not well characterised. SUBJECTS...... genes, and vesicle/transport related genes was found. CONCLUSION: Two types of enterocytes were dissected at the molecular level, the non-absorptive enterocyte located in the upper part of crypts and the absorptive enterocyte found in the middle of villi. These data improve our knowledge about...... the physiology of the crypt-villus architecture in human small intestine and provide new insights into pathophysiological phenomena, such as villus atrophy, which is clinically important....

  7. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration.

    Science.gov (United States)

    Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu

    2014-01-01

    The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.

  8. Generation of L cells in mouse and human small intestine organoids

    DEFF Research Database (Denmark)

    Petersen, Natalia; Reimann, Frank; Bartfeld, Sina

    2014-01-01

    Upon a nutrient challenge, L cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate funct...... lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L cells in mouse and human crypts as a potential basis for novel therapeutic strategies in patients with type 2 diabetes.......Upon a nutrient challenge, L cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate...... functional L cells from three-dimensional cultures of mouse and human intestinal crypts. We show that short-chain fatty acids selectively increase the number of L cells, resulting in an elevation of GLP-1 release. This is accompanied by the upregulation of transcription factors associated with the endocrine...

  9. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  10. Radioprotection of Intestinal Stem Cells and Whole Body Radiation Lethality from Photons and Neutrons by Prostaglandins along or in Combination with WR-2721

    Science.gov (United States)

    1990-12-01

    Hanson, DL. Henninger, and R.J.M. Fry, Time dependence of intestinal proliferative cell risk vs. stem cell risk to radiation or colcemid cytotoxicity...agents, In: Radioprotectors and Anticarcinogens (O.F. Nygaard and M.G. Simic , Eds.) pp. 639-653. Academic Press, Inc. (1983). 9. J. Denekamp, A. Rojas...and F.A. Stewart, Is radioprotection by WR-2721 restricted to normal tissues? In: Radioprotectors and Anticarcinogens (0. F. Nygaard and M.G. Simic

  11. Developmental morphology of the small intestine in Yangzhou ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the development of the weight and the morphological development of the small intestine in Yangzhou geese. The weight, length and perimeter of the small intestine, height and width of the villi, depth of the crypts were measured when geese were 1, 14, 28, 42, 56 and 70 days of ...

  12. Mesenchymal stem cells enhance the viability and proliferation of human fetal intestinal epithelial cells following hypoxic injury via paracrine mechanisms.

    Science.gov (United States)

    Weil, Brent R; Markel, Troy A; Herrmann, Jeremy L; Abarbanell, Aaron M; Meldrum, Daniel R

    2009-08-01

    Mesenchymal stem cells (MSCs) may be used to treat injured tissues. The ability of MSCs to treat injured fetal intestinal epithelial cells (FIEs), similar to those in infants with necrotizing enterocolitis, has not been elucidated. We hypothesized that MSCs would enhance FIE viability and proliferation after hypoxic injury via paracrine mechanisms. LLC-PK1 cells (differentiated control [DC]) and human MSCs were exposed to 1 hour of hypoxia. Cells were reoxygenated for 24 hours and cell-free conditioned media were collected. Human FIEs were exposed to 1 hour of hypoxia and plated for experiments. FIEs were reoxygenated in nonconditioned media, DC-conditioned media, or MSC-conditioned media. Supernatants were analyzed for interleukin-6 (IL-6), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF) via enzyme-linked immunosorbent assay. Cell viability was assessed by trypan blue exclusion and cell counting. Proliferation was determined via 5-bromo-2'-deoxyuridine (BrdU). Expression of caspases-3 and -8 was determined via Western blot. FIEs reoxygenated in MSC-conditioned media demonstrated enhanced viability and increased proliferation after hypoxic injury. Enhanced FIE viability and proliferation were associated with increased IL-6, HGF, and VEGF, as well as decreased expression of caspase-3. MSCs may increase the viability and proliferative capacity of FIEs after hypoxic injury via the paracrine release of IL-6, HGF, and VEGF, as well as downregulation of apoptotic signaling.

  13. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  14. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    Science.gov (United States)

    2016-08-01

    intestinal lumen Cell Migration Radiation damages proliferating crypt cells, causing mitotic arrest and delaying regeneration Burns can...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...the small intestine , reducing the density of the gut barrier. A reduced epithelial lining can result in suppressed nutrient absorption, bacterial

  15. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  16. Data describing the effects of dietary bioactive agents on colonic stem cell microRNA and mRNA expression

    Directory of Open Access Journals (Sweden)

    Manasvi S. Shah

    2016-03-01

    Full Text Available With the identification of Lgr5 as a definitive marker for intestinal stem cells, we used the highly novel, recently described, Lgr5-EGFP-IRES-cre ERT2 knock in mouse model. Mice were injected with azoxymethane (AOM, a colon carcinogen or saline (control and fed a chemo-protective diet containing n-3 fatty acids and fermentable fiber (n-3 PUFA+pectin or a control diet (n-6 PUFA + cellulose. Single cells were isolated from colonic mucosa crypts and three discrete populations of cells were collected via fluorescence activated cell sorting (FACS: Lgr5high (stem cells, Lgr5low (daughter cells and Lgr5negative (differentiated cells. microRNA profiling and RNA sequencing were performed from the same sample and analyzed. These data refer to ‘Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt’ (Shah et al., 2016 [5].

  17. The role of the sympathetic nervous system in radiation-induced apoptosis in jejunal crypt cells of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Shichijo; Kazuko; Nakamura, Yasuko; Ikeda, Yuji; Naito, Shinji; Ito, Masahiro; Okaichi, Kumio; Sekine, Ichiro

    2000-01-01

    To evaluate the effect of the sympathetic nervous system on radiation-induced apoptosis in jejunal crypt cells, apoptosis levels were compared in spontaneously hypertensive rats (SHR), animals which are a genetic hyperfunction model of the sympathetic nervous system, and normotensive Wistar-Kyoto rats (WKY). SHR and WKY were exposed to whole body X-ray irradiation at doses from 0.5 to 2 Gy. The apoptotic index in jejunal crypt cells was significantly greater in SHR than in WKY at each time point after irradiation and at each dose. WKY and SHR were treated with reserpine to induce sympathetic dysfunction, and were subsequently exposed to irradiation. Reserpine administration to SHR or WKY resulted in a significant suppression of apoptosis. p53 accumulation was detected in the jejunum in both WKY and SHR after irradiation by Western blotting analysis. There were no significant differences in the levels of p53 accumulation in irradiated intestine between WKY and SHR. These findings suggested that hyperfunction of the sympathetic nervous system is involved in the mechanism of high susceptibility to radiation-induced apoptosis of the jejunal crypt cells. (author)

  18. Association of iris crypts with acute primary angle closure.

    Science.gov (United States)

    Koh, Victor; Chua, Jacqueline; Shi, Yuan; Thakku, Sri Gowtham; Lee, Ryan; Nongpiur, Monisha E; Baskaran, Mani; Kumar, Rajesh S; Perera, Shamira; Aung, Tin; Cheng, Ching-Yu

    2017-10-01

    To determine the relationship between iris surface features and acute primary angle closure (APAC) in eyes with angle closure. Case-control study involving Asian patients diagnosed with previous APAC, primary angle closure suspect (PACS), primary angle closure (PAC) and primary angle closure glaucoma (PACG) at an eye centre in Singapore between August 2012 and January 2015. Participants underwent ophthalmic examination and digital slit-lamp iris photography. Iris surface features were graded based on crypts, furrows and colour. Fellow eyes of APAC were compared with PACS and PAC/PACG eyes with regard to their iris surface features. Occurrence of APAC. A total of 309 patients (71 APAC, 139 PACS, 47 PAC and 52 PACG) were included (mean age: 67.7±7.2 years and 36.6% male). Compared with PACS, higher crypt grade was significantly associated with lower odds of APAC (OR=0.58 for one grade higher in crypt grade; p=0.027, adjusted for age, gender, ethnicity and pupil diameter). The results remained similar when compared with PAC/PACG group (OR=0.58 for one grade higher in crypt grade; p=0.043). We did not observe any significant associations between iris furrows or colour with presence of APAC. Our study comprising Asian eyes with angle closure suggests that the presence of a higher crypt grading may be protective for APAC. As such, assessing iris surface architecture for crypts could be a new measure for risk stratification of developing APAC in eyes with angle closure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKCλ/ι

    Directory of Open Access Journals (Sweden)

    Yuki Nakanishi

    2016-09-01

    Full Text Available Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5+ stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn’s disease. Kaplan-Meier survival analysis of colorectal cancer (CRC patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis.

  20. An Unusual Presentation of a Myocardial Crypt in Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Danny A. J. P. van de Sande

    2014-01-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is a common inherited cardiovascular disease with prevalence of 0.2% in the population. More than 1000 mutations in more than 10 genes encoding for proteins of the cardiac sarcomere have been identified. Cardiac magnetic resonance imaging (CMR is used to characterize left ventricular morphology with great precision in patients with HCM and it identifies unique structural abnormalities in patients with HCM. We present a case of a 56-year-old man who had positive family history of HCM who was a carrier of the genetic MYH-7 2770 G > C, exon 23 mutation. Transthoracic echocardiography showed thickening of the interventricular septum (16 mm and in particular the basal septum. CMR confirmed the diagnosis of HCM in the anteroseptal myocardium with a thickness of 23 mm and also revealed large and deep myocardial crypts in the anterior wall. These myocardial crypts are rarely found in the so-called genotype positive and phenotype positive patients, as in our case. Also the crypts in this case are deeper and wider than those reported in other cases. So in conclusion, this case reveals an uncommon finding of a myocardial crypt at an unusual myocardial site with the unusual morphology in a patient with genotypic and phenotypic expression of hypertrophic cardiomyopathy.

  1. Membrane properties of rat colonic crypts during early postnatal development

    Czech Academy of Sciences Publication Activity Database

    Beskid, Sergej; Pácha, Jiří

    2003-01-01

    Roč. 13, č. 6 (2003), s. 385-390 ISSN 1015-8987 R&D Projects: GA ČR GA305/01/0281 Institutional research plan: CEZ:AV0Z5011922 Keywords : K conductance * colonocyte * crypt maturation Subject RIV: ED - Physiology Impact factor: 2.480, year: 2003

  2. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism.

    Science.gov (United States)

    Steinhauser, Matthew L; Bailey, Andrew P; Senyo, Samuel E; Guillermier, Christelle; Perlstein, Todd S; Gould, Alex P; Lee, Richard T; Lechene, Claude P

    2012-01-15

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.

  3. LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway.

    Science.gov (United States)

    Carmon, Kendra S; Gong, Xing; Yi, Jing; Wu, Ling; Thomas, Anthony; Moore, Catherine M; Masuho, Ikuo; Timson, David J; Martemyanov, Kirill A; Liu, Qingyun J

    2017-09-08

    Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a bona fide marker of adult stem cells in several epithelial tissues, most notably in the intestinal crypts, and is highly up-regulated in many colorectal, hepatocellular, and ovarian cancers. LGR5 activation by R-spondin (RSPO) ligands potentiates Wnt/β-catenin signaling in vitro ; however, deletion of LGR5 in stem cells has little or no effect on Wnt/β-catenin signaling or cell proliferation in vivo Remarkably, modulation of LGR5 expression has a major impact on the actin cytoskeletal structure and cell adhesion in the absence of RSPO stimulation, but the molecular mechanism is unclear. Here, we show that LGR5 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1), an effector of Rac1/CDC42 GTPases, in the regulation of actin cytoskeleton dynamics and cell-cell adhesion. Specifically, LGR5 decreased levels of IQGAP1 phosphorylation at Ser-1441/1443, leading to increased binding of Rac1 to IQGAP1 and thus higher levels of cortical F-actin and enhanced cell-cell adhesion. LGR5 ablation in colon cancer cells and crypt stem cells resulted in loss of cortical F-actin, reduced cell-cell adhesion, and disrupted localization of adhesion-associated proteins. No evidence of LGR5 coupling to any of the four major subtypes of heterotrimeric G proteins was found. These findings suggest that LGR5 primarily functions via the IQGAP1-Rac1 pathway to strengthen cell-cell adhesion in normal adult crypt stem cells and colon cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Islet1 and its co-factor Ldb1 are expressed in quiescent cells of mouse intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Evgeny Makarev

    Full Text Available Islet1 belongs to Lim homeobox (Lhx gene family which encodes transcription factors that have been conserved in evolution. They form complexes with other transcriptional regulators, among them obligatory co-factors encoded by Ldb genes. Isl1 (Islet1, Lhx and Ldb1 genes play a crucial role in organ patterning, cell fate determination and cell differentiation in both embryonic and adult tissues. In this study we analyzed expression pattern of Isl1 and its co-factor Ldb1 in small intestine. We also studied the biological role of Ldb1 in gut endoderm. Quantitative PCR analysis revealed a relatively high level of expression of Lhx1, Isl1, Isl2, Lmx1a, Ldb1 and Ldb2 mRNAs in the gut tissue as compared to the level of less abundant detectable Lmx1b mRNA. Immunohistochemical studies demonstrated a unique pattern of Ldb1 and Islet1 proteins in the crypt compartment. Ldb1 is produced at a low level in majority of crypt cells; but, its abundant expression was demonstrated for some single cells. Islet1 is also expressed in single cells of the crypt. Double staining experiments with Ldb1 and Isl1 antibodies showed that both genes are co-expressed in certain cells of the crypt. Further analysis revealed the Ldb1-expressing cells in the gut are both of endodermal and mesodermal origin. Proliferation studies using antibodies to phospho-histone H3 and Ki-67 antigens, as well as long-term BrdU labeling, showed that cells prominently expressing Ldb1/Islet1 are quiescent but do not belong to any known terminally differentiated cell lineages. They may represent a group of stem-like cells in the crypt. Further experiments by cell lineage tracing should be performed to better characterize this cell population. Functional studies of mice with Ldb1 gene ablated in gut endoderm revealed no specific role of Ldb1 in that tissue.

  5. Iris Crypts Influence Dynamic Changes of Iris Volume.

    Science.gov (United States)

    Chua, Jacqueline; Thakku, Sri Gowtham; Tun, Tin A; Nongpiur, Monisha E; Tan, Marcus Chiang Lee; Girard, Michael J A; Wong, Tien Yin; Quah, Joanne Hui Min; Aung, Tin; Cheng, Ching-Yu

    2016-10-01

    To determine the association of iris surface features with iris volume change after physiologic pupil dilation in adults. Cross-sectional observational study. Chinese adults aged ≥ 50 years without ocular diseases. Digital iris photographs were taken from eyes of each participant and graded for crypts (by number and size) and furrows (by number and circumferential extent) following a standardized grading scheme. Iris color was measured objectively, using the Commission Internationale de l'Eclairage (CIE) L* color parameter (higher value denoting lighter iris). The anterior segment was imaged by swept-source optical coherence tomography (SS-OCT) (Casia; Tomey, Nagoya, Japan) under bright light and dark room conditions. Iris volumes in light and dark conditions were measured with custom semiautomated software, and the change in iris volume was quantified. Associations of the change in iris volume after pupil dilation with underlying iris surface features in right eyes were assessed using linear regression analysis. Iris volume change after physiologic pupil dilation from light to dark condition. A total of 65 Chinese participants (mean age, 59.8±5.7 years) had gradable data for iris surface features. In light condition, higher iris crypt grade was associated independently with smaller iris volume (β [change in iris volume in millimeters per crypt grade increment] = -1.43, 95% confidence interval [CI], -2.26 to -0.59; P = 0.001) and greater reduction of iris volume on pupil dilation (β [change in iris volume in millimeters per crypt grade increment] = 0.23, 95% CI, 0.06-0.40; P = 0.010), adjusting for age, gender, presence of corneal arcus, and change in pupil size. Iris furrows and iris color were not associated with iris volume in light condition or change in iris volume (all P > 0.05). Although few Chinese persons have multiple crypts on their irides, irides with more crypts were significantly thinner and lost more volume on pupil dilation. In view that

  6. Identification of the Paneth cells in chicken small intestine.

    Science.gov (United States)

    Wang, L; Li, J; Li, J; Li, R X; Lv, C F; Li, S; Mi, Y L; Zhang, C Q

    2016-07-01

    The Paneth cells are highly specialized cells in the epithelium of the small intestine of many vertebrate species. These cells reside at the base of crypts of the Lieberkühn and contain abundant secretory granules. Previous studies suggesting the existence of Paneth cells in the chicken (Gallus gallus) remained controversial. Here we seek to identify the Paneth cells in the chicken small intestine through morphological examination and specific gene expression. Histological staining and transmission electron microscope confirmed the presence of granulated secretory cells at the base of the crypts in the chicken small intestine. Western blotting experiment also manifested the expression of lysozyme protein, which is specifically secreted by the Paneth cells in the small intestine. Moreover, lysozyme c and lysozyme g mRNAs were expressed in the small intestine of chickens at different ages. Lysozyme c mRNA, in particular, was located at the base of the small intestinal crypts as displayed by in situ hybridization. Collectively, we provide evidences that the Paneth cells indeed exist in the small intestine of the chicken. © 2016 Poultry Science Association Inc.

  7. Lentinan diminishes apoptotic bodies in the ileal crypts associated with S-1 administration.

    Science.gov (United States)

    Suga, Yasuyo; Takehana, Kenji

    2017-09-01

    S-1 is an oral agent containing tegafur (a prodrug of 5-fluorouracil) that is used to treat various cancers, but adverse effects are frequent. Two pilot clinical studies have suggested that lentinan (LNT; β-1,3-glucan) may reduce the incidence of adverse effects caused by S-1 therapy. In this study, we established a murine model for assessment of gastrointestinal toxicity associated with S-1 and studied the effect of LNT. S-1 was administered orally to BALB/c mice at the effective dose (8.3mg/kg, as tegafur equivalent) once daily (5days per week) for 3weeks. Stool consistency and intestinal specimens were examined. We investigated the effect of combined intravenous administration of LNT at 0.1mg, which is an effective dose in murine tumor models. We also investigated the effect of a single administration of S-1. During long-term administration of S-1, some mice had loose stools and an increase in apoptotic bodies was observed in the ileal crypts. An increase in apoptotic bodies was also noted after a single administration of S-1 (15mg/kg). Prior or concomitant administration of LNT inhibited the increase in apoptotic bodies in both settings. Administration of LNT also increased the accumulation of CD11b + TIM-4 + cells in the ileum, while depletion of these cells by liposomal clodronate diminished the inhibitory effect of LNT on S-1 toxicity. Combined administration of LNT with S-1 led to a decrease in apoptotic bodies in the ileal crypts, possibly because LNT promoted phagocytosis of damaged cells by CD11b + TIM-4 + cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Small intestinal cytochromes P450.

    Science.gov (United States)

    Kaminsky, L S; Fasco, M J

    1991-01-01

    Small intestinal cytochromes P450 (P450) provide the principal, initial source of biotransformation of ingested xenobiotics. The consequences of such biotransformation are detoxification by facilitating excretion, or toxification by bioactivation. P450s occur at highest concentrations in the duodenum, near the pylorus, and at decreasing concentrations distally--being lowest in the ileum. Highest concentrations occur from midvillus to villous tip, with little or none occurring in the crypts of Lieberkuehn. Microsomal P4503A, 2C8-10, and 2D6 forms have been identified in human small intestine, and P450s 2B1, possibly 2B2, 2A1, and 3A1/2 were located in endoplasmic reticulum of rodent small intestine, while P4502B4 has been purified to electrophoretic homogeneity from rabbit intestine. Some evidence indicates a differential distribution of P450 forms along the length of the small intestine and even along the villus. Rat intestinal P450s are inducible by xenobiotics--with phenobarbital (PB) inducing P4502B1, 3-methylcholanthrene (3-MC) inducing P4501A1, and dexamethasone inducing two forms of P4503A. Induction is most effectively achieved by oral administration of the agents, and is rapid--aryl hydrocarbon hydroxylase (AHH) was increased within 1 h of administration of, for example, 3-MC. AHH, 7-ethoxycoumarin O-deethylase (ECOD), and 7-ethoxyresorufin O-deethylase (EROD) have been used most frequently as substrates to characterize intestinal P450s. Dietary factors affect intestinal P450s markedly--iron restriction rapidly decreased intestinal P450 to beneath detectable values; selenium deficiency acted similarly but was less effective; Brussels sprouts increased intestinal AHH activity 9.8-fold, ECOD activity 3.2-fold, and P450 1.9-fold; fried meat and dietary fat significantly increased intestinal EROD activity; a vitamin A-deficient diet increased, and a vitamin A-rich diet decreased intestinal P450 activities; and excess cholesterol in the diet increased intestinal

  9. The Proliferative Characteristics of Intestinal Stem Cells. Response and Protection to High Energy or Fission Spectrum Neutrons or Photons

    Science.gov (United States)

    1986-04-30

    cell risk vs. stem cell risk to radiation or colcemid cytotoxicity following hydroxyurea, Int. J. Radiat. Oncology, Biol. and Phys. 5. 1685-1689 (1979...Ward, Chemical aspects oZ DNA radioprotection. In: Radioprotectors and Anticarcinogens, (O.F. Nygaard and M.G. Simic , Eds.), Academic Press, N.Y...Radioprotectors and Anticarcinogens, (O.F. Nygaard and M.G. Simic Eds.) Academic Press, N.Y., pp. 695-718 (1983). 24. J.W. Harris, Cellular thiols in

  10. Small intestinal mucosa expression of putative chaperone fls485

    Directory of Open Access Journals (Sweden)

    Raupach Kerstin

    2010-03-01

    Full Text Available Abstract Background Maturation of enterocytes along the small intestinal crypt-villus axis is associated with significant changes in gene expression profiles. fls485 coding a putative chaperone protein has been recently suggested as a gene involved in this process. The aim of the present study was to analyze fls485 expression in human small intestinal mucosa. Methods fls485 expression in purified normal or intestinal mucosa affected with celiac disease was investigated with a molecular approach including qRT-PCR, Western blotting, and expression strategies. Molecular data were corroborated with several in situ techniques and usage of newly synthesized mouse monoclonal antibodies. Results fls485 mRNA expression was preferentially found in enterocytes and chromaffine cells of human intestinal mucosa as well as in several cell lines including Rko, Lovo, and CaCo2 cells. Western blot analysis with our new anti-fls485 antibodies revealed at least two fls485 proteins. In a functional CaCo2 model, an increase in fls485 expression was paralleled by cellular maturation stage. Immunohistochemistry demonstrated fls485 as a cytosolic protein with a slightly increasing expression gradient along the crypt-villus axis which was impaired in celiac disease Marsh IIIa-c. Conclusions Expression and synthesis of fls485 are found in surface lining epithelia of normal human intestinal mucosa and deriving epithelial cell lines. An interdependence of enterocyte differentiation along the crypt-villus axis and fls485 chaperone activity might be possible.

  11. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene.

    Science.gov (United States)

    Oshima, M; Oshima, H; Kitagawa, K; Kobayashi, M; Itakura, C; Taketo, M

    1995-05-09

    Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.

  12. Misoprostol in the intestinal lumen protects against radiation injury of the mucosa of the small bowel

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, J.P.; Bonsack, M.E.; Felemovicius, I. (Univ. of Minnesota Medical School, Minneapolis, MN (United States))

    1994-03-01

    Systemically administered misoprostol, a PGE analog, has been shown to be an intestinal radioprotector. The purpose of this study was to determine if administration of misoprostol into the intestinal lumen can also reduce the severity of acute radiation enteritis. The rat small bowel was operatively exteriorized and segmented by means of suture ties. The remainder of the intestine and the rat were shielded in a lead box. Misoprostol was introduced into the lumen in various doses. After 30 min exposure to misoprostol, the isolated, exteriorized, segmented bowel was subjected to 11 Gy X irradiation. Five days later the animals were sacrificed and the intestines harvested for evaluation. Surviving crypt numbers per circumference and mucosal height were the criteria used for quantification of damage. Mucosa exposed to misoprostol at the time of radiation delivery showed significantly increased crypt numbers and mucosal height compared to adjacent saline-filled intestine. 24 refs., 2 figs., 2 tabs.

  13. Misoprostol in the intestinal lumen protects against radiation injury of the mucosa of the small bowel

    International Nuclear Information System (INIS)

    Delaney, J.P.; Bonsack, M.E.; Felemovicius, I.

    1994-01-01

    Systemically administered misoprostol, a PGE analog, has been shown to be an intestinal radioprotector. The purpose of this study was to determine if administration of misoprostol into the intestinal lumen can also reduce the severity of acute radiation enteritis. The rat small bowel was operatively exteriorized and segmented by means of suture ties. The remainder of the intestine and the rat were shielded in a lead box. Misoprostol was introduced into the lumen in various doses. After 30 min exposure to misoprostol, the isolated, exteriorized, segmented bowel was subjected to 11 Gy X irradiation. Five days later the animals were sacrificed and the intestines harvested for evaluation. Surviving crypt numbers per circumference and mucosal height were the criteria used for quantification of damage. Mucosa exposed to misoprostol at the time of radiation delivery showed significantly increased crypt numbers and mucosal height compared to adjacent saline-filled intestine. 24 refs., 2 figs., 2 tabs

  14. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells on the radiation-induced GI syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Se Hwan; Jang, Won Suk; Lee, Sun Joo; Park, Eun Young; Kim, Youn Joo; Jin, Sung Ho; Park, Sun Hoo; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    The gastrointestinal (GI) tract is one of the most radiosensitive organ systems in the body. Radiation-induced GI injury is described as destruction of crypt cell, decrease in villous height and number, ulceration, and necrosis of intestinal epithelium. Studies show that mesenchymal stem cells (MSCs) treatment may be useful in the repair or regeneration of damaged organs including bone, cartilage, or myocardium. MSCs from umbilical cord blood (UCB) have many advantages because of the immature nature of newborn cells compared to bone marrow derived MSCs. Moreover, UCB-MSCs provide no ethical barriers for basic studies and clinical applications. In this study, we explore the regeneration capability of human UCB-MSCs after radiation-induced GI injury

  15. Effects of a small molecule R-spondin-1 substitute RS-246204 on a mouse intestinal organoid culture.

    Science.gov (United States)

    Nam, Myeong-Ok; Hahn, Soojung; Jee, Joo Hyun; Hwang, Tae-Sun; Yoon, Ho; Lee, Dong Hyeon; Kwon, Min-Soo; Yoo, Jongman

    2018-01-19

    Organoids, a multi-cellular and organ-like structure cultured in vitro , can be used in a variety of fields such as disease modeling, drug discovery, or cell therapy development. When organoids derived from Lgr5 stem cells are cultured ex vivo , recombinant R-spondin-1 protein should be added at a high concentration for the initiation and maintenance of the organoids. Because the addition of large amounts of R-spondin-1 greatly increases the cost of organoids, the organoids grown with R-spondin-1 are not practical for large-scale drug screening and for the development of therapeutic agents. In this study, we tried to find a R-spondin-1 substitute compound that is able initiate small intestinal organoids without the use of the R-spondin-1 protein; thus, using organoid media that each included one compound from among an 8,364 compound library instead of R-spondin-1, we observed whether organoids were established from the crypts of the small intestine. As a result, we found one compound that could promote the initial formation and growth of enteroids in the medium without R-spondin-1 and named it RS-246204. The enteroids grown with RS-246204 had a similar differentiation capacity as well as self-renewal capacity as the enteroids grown with R-spondin-1. Furthermore, the RS-246204-derived enteroids could successfully produce the forskolin induced swelling and the organoid based epithelial to mesenchymal transition model. This compound could be used for developing a cost-efficient culturing method for intestinal organoids as well as for exploring Lgr5 signaling, intestinal stem cell physiology and therapeutics for GI tract diseases.

  16. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model

    Science.gov (United States)

    Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.

    2014-08-01

    Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.

  17. Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Okuchi

    Full Text Available Aging-associated alterations of cellular functions have been implicated in various disorders including cancers. Due to difficulties in identifying aging cells in living tissues, most studies have focused on aging-associated changes in whole tissues or certain cell pools. Thus, it remains unclear what kinds of alterations accumulate in each cell during aging. While analyzing several mouse lines expressing fluorescent proteins (FPs, we found that expression of FPs is gradually silenced in the intestinal epithelium during aging in units of single crypt composed of clonal stem cell progeny. The cells with low FP expression retained the wild-type Apc allele and the tissues composed of them did not exhibit any histological abnormality. Notably, the silencing of FPs was also observed in intestinal adenomas and the surrounding normal mucosae of Apc-mutant mice, and mediated by DNA methylation of the upstream promoter. Our genome-wide analysis then showed that the silencing of FPs reflects specific gene expression alterations during aging, and that these alterations occur in not only mouse adenomas but also human sporadic and hereditary (familial adenomatous polyposis adenomas. Importantly, pharmacological inhibition of DNA methylation, which suppresses adenoma development in Apc-mutant mice, reverted the aging-associated silencing of FPs and gene expression alterations. These results identify aging-associated gene expression signatures that are heterogeneously induced by DNA methylation and precede intestinal tumorigenesis triggered by Apc inactivation, and suggest that pharmacological inhibition of the signature genes could be a novel strategy for the prevention and treatment of intestinal tumors.

  18. Wnt Lipidation and Modifiers in Intestinal Carcinogenesis and Cancer

    Directory of Open Access Journals (Sweden)

    Elke Kaemmerer

    2016-07-01

    Full Text Available The wingless (Wnt signaling is suggested as a fundamental hierarchical pathway in regulation of proliferation and differentiation of cells. The Wnt ligands are small proteins of about 40 kDa essentially for regulation and initiation of the Wnt activity. They are secreted proteins requiring acylation for activity in the Wnt signaling cascade and for functional interactivity with transmembrane proteins. Dual lipidation is important for posttranslational activation of the overwhelming number of Wnt proteins and is probably involved in their spatial distribution. The intestinal mucosa, where Wnt signaling is essential in configuration and maintenance, is an established model to study Wnt proteins and their role in carcinogenesis and cancer. The intestinal crypt-villus/crypt-plateau axis, a cellular system with self-renewal, proliferation, and differentiation, is tightly coordinated by a Wnt gradient. In the review, some attention is given to Wnt3, Wnt3A, and Wnt2B as important members of the Wnt family to address the role of lipidation and modifiers of Wnt proteins in intestinal carcinogenesis. Wnt3 is an important player in establishing the Wnt gradient in intestinal crypts and is mainly produced by Paneth cells. Wnt2B is characterized as a mitochondrial protein and shuttles between mitochondria and the nucleus. Porcupine and ACSL5, a long-chain fatty acid activating enzyme, are introduced as modifiers of Wnts and as interesting strategy to targeting Wnt-driven carcinogenesis.

  19. LGR4 and its role in intestinal protection and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ziru eLi

    2015-08-01

    Full Text Available Leucine-rich repeat-containing G protein-coupled receptors (LGRs were identified by the unique nature of their long leucine-rich repeat extracellular domains. Distinct from classical G protein-coupled receptors which act via G proteins, LGR4 functions mainly through Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system, urinary system, sensory organs, digestive system, and the central nervous system, indicating LGR4 may have multiple functions in development. Here we focus on the digestive system by reviewing its effects on crypt cells differentiation and stem cells maintenance, which are important for cell regeneration after injury. Through effects on Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of energy metabolism, including food intake, energy expenditure and lipid metabolism, as well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the identification of LGR4, its endogenous ligand, ligand-receptor binding and intracellular signaling. Physiological functions include intestinal development and energy metabolism. The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel disease, chemoradiotherapy induced gut damage, colorectal cancer and diabetes are also discussed.

  20. Radiosensitivity of ileum crypt cells in hibernating, arousing, and awake ground squirrels (Citellus tridecemlineatus)

    International Nuclear Information System (INIS)

    Jaroslow, B.N.; Michael Fry, R.J.; Suhrbier, K.M.; Sallese, A.R.

    1976-01-01

    Radiosensitivity of ileal crypt cells, to 60 Co gamma radiation, was studied in ground squirrels (Citellus tridecemlineatus) during hibernation, arousal, and the euthermic state. Survival of ileal crypt cells, assayed by the microcolony technique from stained transverse sections of ileum, was greater in animals irradiated in hibernation or 1 hr after initiation of arousal from hibernation. Crypt survival returned to the level of irradiated nonhibernating controls in animals irradiated 3 to 7 hr after initiation of arousal. Over the exposure range of 1500 to 2400 R, the survival of crypt cells for euthermic controls gave a D 0 = 133 +- 12 R and for animals irradiated in hibernation it gave a D 0 = 487 +- 92 R. In animals irradiated 1 hr after initiation of arousal, when core temperature is within the range of euthermic controls, crypt survival was almost as high as in the hibernators. These results suggest that the increased resistance of ileal crypt cells in hibernating animals could be due to hypoxia, although not direct evidence for hypoxia in hibernation was established. The changes in mitotic index of ileal crypt cells during hibernation and arousal indicate an alteration in the distribution of cells in the phases of the cycle. This change in distribution may also have contributed to the increased radioresistance of hibernators

  1. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  2. Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury

    DEFF Research Database (Denmark)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F

    2013-01-01

    in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region...

  3. Experimentally induced intestinal metaplasia in Wistar rats by x-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H.

    1978-11-01

    The gastric region of 5-week-old female Wistar rats was irradiated daily with 500 rad of x-ray up to a total of six times. Goblet cells and marker enzymes of the small intestine, such as lactase, trehalase, and maltase, appeared in the pyloric region of the glandular stomach of the rats from the 1st week after final irradiation. Intestinal type crypt without Paneth cells was observed from the 8th week. Sucrase activity appeared from the 26th week. Intestinal metaplasia with Paneth cells appeared from the 71st week. The number of goblet cells, intestinal type crypts, and Paneth cells increased with age. Gastric adenocarcinoma did not develop after irradiation.

  4. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  5. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Araújo, C.V.; Lazzarotto, C.R.; Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de; Ribeiro, R.A.; Bertolini, L.R.; Lima, A.A.M.; Brito, G.A.C.; Oriá, R.B.

    2015-01-01

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE -/- ) and wild-type (APOE +/+ ) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE -/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE +/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE -/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  6. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  7. Modification of the intestinal postirradiation proliferative response by intraabdominal H-4-II-E2 tumors

    International Nuclear Information System (INIS)

    Evans, M.J.; Kovacs, C.J.; Schenken, L.L.; Burholt, D.R.

    1981-01-01

    Intraperitoneal injection of H-4-II-E 2 tumor cells gave rise to a number of individually growing intraabdominal tumors concentrated at sites of high abdominal vascularization. During tumor growth, both tumor and intestinal crypt cell proliferative activity were progressively depressed. A linear reduction of [ 3 H]TdR incorporation occurred in individual tumors independent of tumor size, suggesting that total tumor burden determines the proliferative status of individual tumors. Cytokinetic jejunal crypt analyses indicated that both a reduction in crypt cellularity and an abbreviated cell cycle transit time were noted during the depression of proliferative activity in the jejunum. In tumor-bearing rats the migration rate of cells from the jejunal crypt through the villus was reduced in response to a reduction in total cell production in the crypt. The life span of the epithelial cell in both tumor-bearing and normal rats was similar due to a reduction in villus cellularity in the tumor-bearing animals. Following abdominal irradiation of the tumor, the magnitude, but not the time course of hyperproliferative intestinal recovery, was influenced by the tumor mass. For nontumor-bearing animals, maximal hyperproliferation (>200% of control) occurred 96 hr postradiation. With increasing tumor burden the compensatory proliferative response to radiation was progressively reduced

  8. Morphological Profiles of Neutron and X-Irradiated Small Intestine

    OpenAIRE

    K.E., CARR; S.P., HUME; A.C., NELSON; O., O'SHEA; R.A., HAZZARD; J.S., McCULLOUGH; School of Biomedical Science_Anatomy, Medical Biology Centre; MRC Cyclotron Unit, Hammersmith Hospital; Centre for Bioengineering, University of Washington; School of Biomedical Science_Anatomy, Medical Biology Centre; School of Biomedical Science_Anatomy, Medical Biology Centre; School of Biomedical Science_Anatomy, Medical Biology Centre

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile ...

  9. Regulators of Intestinal Epithelial Migration in Sepsis.

    Science.gov (United States)

    Meng, Mei; Klingensmith, Nathan J; Liang, Zhe; Lyons, John D; Fay, Katherine T; Chen, Ching-Wen; Ford, Mandy L; Coopersmith, Craig M

    2018-02-08

    The gut is a continuously renewing organ, with cell proliferation, migration and death occurring rapidly under basal conditions. Since the impact of critical illness on cell movement from crypt base to villus tip is poorly understood, the purpose of this study was to determine how sepsis alters enterocyte migration. Wild type, transgenic and knockout mice were injected with 5-bromo-2'deoxyuridine (BrdU) to label cells in S phase before and after the onset of cecal ligation and puncture and were sacrificed at pre-determined endpoints to determine distance proliferating cells migrated up the crypt-villus unit. Enterocyte migration rate was decreased from 24-96 hours following sepsis. BrdU was not detectable on villi 6 days after sham laparotomy, meaning all cells had migrated the length of the gut and been exfoliated into its lumen. However, BrdU positive cells were detectable on villi 10 days after sepsis. Multiple components of gut integrity altered enterocyte migration. Sepsis decreased crypt proliferation, which further slowed enterocyte transit as mice injected with BrdU after the onset of sepsis (decreased proliferation) had slower migration than mice injected with BrdU prior to the onset of sepsis (normal proliferation). Decreasing intestinal apoptosis via gut-specific overexpression of Bcl-2 prevented sepsis-induced slowing of enterocyte migration. In contrast, worsened intestinal hyperpermeability by genetic deletion of JAM-A increased enterocyte migration. Sepsis therefore significantly slows enterocyte migration, and intestinal proliferation, apoptosis and permeability all affect migration time, which can potentially be targeted both genetically and pharmacologically.

  10. Protective Effects of 5-Androstendiol (5-AED) on Radiation-induced Intestinal Injury

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong Sun; Lee, Seung Sook; Jang, Won Suk; Lee, Sun Joo; Park, Sun Hoo; Kim, MinSook; Cho, Soo Youn [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Moon, Chang Jong; Kim, Sung Ho [Chonnam National University College of Veterinary Medicine, Gwangju (Korea, Republic of)

    2010-11-15

    We examined the radioprotective effects of 5-androstendiol (5-AED), a natural hormone produced in the reticularis of the adrenal cortex, as a result of intestinal damage in gamma-irradiated C3H/HeN mice. Thirty mice (C3H/HeN) were divided into three groups; 1) non-irradiated control group, 2) irradiated group, and 3) 5-AED-treated group prior to irradiation. Next, 5-AED (50 mg/kg per body weight) was subcutaneously injected 24 hours before irradiation. The mice were whole-body irradiated with 10 Gy for the histological examination of jejunal crypt survival and the determination of the villus morphology including crypt depth, crypt size, number of villi, villus height, and length of basal lamina, as well as 5 Gy for the detection of apoptosis. The 5-AED pre-treated group significantly increased the survival of the jejunal crypt, compared to irradiation controls (p<0.05 vs. irradiation controls at 3.5 days after 10 Gy). The evaluation of morphological changes revealed that the administration of 5-AED reduced the radiation-induced intestinal damages such as villus shortening and increased length of the basal lamina of enterocytes (p<0.05 vs irradiation controls on 3.5 day after 10 Gy, respectively). The administration of 5-AED decreased the radiation-induced apoptosis in the intestinal crypt, with no significant difference between the vehicle and 5-AED at 12 hours after 5 Gy. The results of this study suggest that the administration of 5-AED has a protective effect on intestinal damage induced by {gamma}-irradiation. In turn, these results suggest that 5-AED could be a useful candidate for radioprotection against intestinal mucosal injury following irradiation.

  11. The ability of two cooked food mutagens to induce aberrant crypt foci in mice

    DEFF Research Database (Denmark)

    Kristiansen, E.; Meyer, Otto A.; Thorup, I.

    1997-01-01

    The aberrant crypt foci assay has been used extensively to study different compounds for chemopreventive action, but almost all investigations have used initiators not normally found in the diet, In the present study two food-borne initiators, 2-amino-3-methyl-imidazo [4,5-f]quinoline (IQ) and 2...... of aberrant crypt foci were found in the IQ mice (31.8 +/- 5.2) than in the PhIP mice (0.5 +/- 0.3), After 10 weeks aberrant crypt foci were found in all dosed groups, The IQ mice had significantly more (P less than or equal to 0.001) small and total aberrant crypt foci than the other groups, AOM and DMH...... induced a higher percentage of medium or large sized aberrant crypt foci than PhIP or IQ, The interpretation of the aberrant crypt foci as precursor lesions for colon cancer in the PhIP and IQ mice is difficult because PhIP and IQ have not been reported to be colonic carcinogens, If cooked food mutagens...

  12. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  13. Radioprotection of intestinal stem cells and whole body radiation lethality from photons and neutrons by prostaglandins along or in combination with WR-2721. Technical report 24 Feb 86-30 Sep 89

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, W.R.

    1990-12-01

    Prostaglandins (PGs) have been shown to protect the gastrointestinal and hematopoietic cell renewal systems from some degree of radiation damage. The mechanism(s) to account for these observations are unknown. Based on preliminary evidence that PGs varied in the degree to which they afforded protection of intestinal stem cells, we studied protection by several PGs and their analogues. The most protective PGs found to date were 16,16 dm PGE2, misoprostol, a PGE1 analogues, and iloprost, a PGI2 analogue. The relative degrees of protection were 400%, 700% and 800% above control values at a dose of 13.5 137 Cs gamma radiation. These three PGs were used for subsequent studies. Iloprost is a stable PG at room temperature and was found to be protective given orally. In addition to radioprotection of the intestinal stem cells, these Pgs increased the LD50/6, LD50/30 and animal longevity through both the gastrointestinal and hematopoietic syndromes. Misoprostol protected the gut from JANUS neutrons and increased animal longevity following neutron irradiation. Although the mechanism for PG-induced radioprotection is unknown, it appears to be different compared to the widely studied amino thiol, WR-2721. Evidence to support this contention came from data showing that all these analogues were additive to the protective effect of Wr-2721.

  14. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Lokesh Kumar Booupathy

    2016-01-01

    Full Text Available Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF. Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.

  15. Effects of honey to mobilize endogenous stem cells in efforts intestinal and ovarian tissue regeneration in rats with protein energy malnutrition

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2016-05-01

    Conclusions: Expression of CD34+ and CD45+, which significantly different in treatment 2 (2. Furthermore, increase of immune response (decrease Hsp70 expression and increased PGE2 in intestinal tissue. Increased immune response causes expression of GDF-9 in ovarian tissue. Decreased of Hsp70 expression, increased PGE2 and increased GDF-9 followed the process of regeneration of the intestinal and ovarian tissue.

  16. Protective effect of an herbal preparation (HemoHIM) on radiation-induced intestinal injury in mice.

    Science.gov (United States)

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Park, Hae-Ran; Jung, Uhee; Jang, Jong Sik; Jo, Sung Kee

    2009-12-01

    The protective properties of an herbal preparation (HemoHIM) against intestinal damage were examined by evaluating its effects on jejunal crypt survival, morphological changes, and apoptosis in gamma-irradiated mice. The mice were whole-body irradiated with 12 Gy for the examination of jejunal crypt survival and any morphological changes and with 2 Gy for the detection of apoptosis and Ki-67 labeling. Irradiation was conducted using (60)Co gamma-rays. HemoHIM treatment was administered intraperitonially at a dosage of 50 mg/kg of body weight at 36 and 12 hours pre-irradiation and 30 minutes post-irradiation or orally at a dosage of 250 mg/kg of body weight/day for 7 or 11 days before necropsy. The HemoHIM-treated group displayed a significant increase in survival of jejunal crypts, when compared to the irradiation controls. HemoHIM treatment decreased intestinal morphological changes such as crypt depth, villus height, mucosal length, and basal lamina length of 10 enterocytes after irradiation. Furthermore, the administration of HemoHIM protected intestinal cells from irradiation-induced apoptosis. These results suggested that HemoHIM may be therapeutically useful to reduce intestinal injury following irradiation.

  17. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  18. Effects of probiotic on the intestinal morphology with special reference to the growth of broilers

    International Nuclear Information System (INIS)

    Lutfullah, G.; Ahmad, I.

    2011-01-01

    The probiotic (Protexin) increases the growth rate in broilers. It must interfere with the intestinal cell morphology and absorption. The intestinal epithelium is one of the most rapidly renewed tissues in the body and is renewed by a process of continuous cell division. This study was carried out with an aim to establish a link between the use of probiotic doses, growth rate, and intestinal cell proliferation by measuring the length and weight of the intestine and intestinal crypt cell proliferation (CCP) of broiler chicks. The results revealed significant increase in intestinal CCP but no effect was observed on the intestinal weight and length. The increase in CCP has also no significant influence towards growth factor. The increased weight gain in this study is associated with more feed consumption which is observed with Protexin dose 1.0 g / 10 kg of feed. Furthermore, feed consumption reduced beyond this dose may lead to reduced weight gain. (author)

  19. Intestinal Obstruction

    Science.gov (United States)

    ... the obstruction along the intestines. Treatment Suction via nasogastric tube Fluids given by vein Surgery for strangulation Sometimes ... nose and placed in the stomach (called a nasogastric tube) or into the intestine. Suction is applied to ...

  20. Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer

    Science.gov (United States)

    Welge, Weston A.; Barton, Jennifer K.

    2016-03-01

    Aberrant crypt foci (ACF) are abnormal epithelial lesions that precede development of colonic polyps. As the earliest morphological change in the development of colorectal cancer, ACF is a highly studied phenomenon. The most common method of imaging ACF is chromoendoscopy using methylene blue as a contrast agent. Narrow- band imaging is a contrast-agent-free modality for imaging the colonic crypts. Optical coherence tomography (OCT) is an attractive alternative to chromoendoscopy and narrow-band imaging because it can resolve the crypt structure at sufficiently high sampling while simultaneously providing depth-resolved data. We imaged in vivo the distal 15 mm of colon in the azoxymethane (AOM) mouse model of colorectal cancer using a commercial swept-source OCT system and a miniature endoscope designed and built in-house. We present en face images of the colonic crypts and demonstrate that different patterns in healthy and adenoma tissue can be seen. These patterns correspond to those reported in the literature. We have previously demonstrated early detection of colon adenoma using OCT by detecting minute thickening of the mucosa. By combining mucosal thickness measurement with imaging of the crypt structure, OCT can be used to correlate ACF and adenoma development in space and time. These results suggest that OCT may be a superior imaging modality for studying the connection between ACF and colorectal cancer.

  1. Suppressive effects of dietary high fluorine on the intestinal development in broilers.

    Science.gov (United States)

    Luo, Qin; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Liu, Juan; Deng, Yubing

    2013-12-01

    Fluoride (F) is a well-recognized hazardous substance. Ingested F initially acts locally on the intestines. The small intestine plays a critical role in the digestion, absorption, and defense. In this study, therefore, we investigated the effects of fluorine on the intestinal development by light microscopy, transmission electron microscopy, and histochemistry. A total of 280 one-day-old avian broilers were randomly divided into four groups and fed on a corn-soybean basal diet as control diet (fluorine, 22.6 mg/kg) or the same basal diet supplemented with 400, 800, and 1,200 mg/kg fluorine (high fluorine groups I, II, and III) in the form of sodium fluoride for 42 days. The results showed that the intestinal gross, histological, and ultrastructural changes were observed in the high fluorine groups II and III. Meanwhile, the intestinal length, weight, viscera index, villus height, crypt depth, villus height to crypt depth ratio, diameter, muscle layer thickness, and goblet cell numbers were significantly lower (p fluorine groups II and III than those in control group. In conclusion, dietary fluorine in the range of 800-1,200 mg/kg obviously altered the aforementioned parameters of the intestines, implying that the intestinal development was suppressed and the intestinal functions, such as digestion, absorption, defense, or osmoregulation were impaired in broilers.

  2. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  3. Cytochemical localization of small intestinal glycoconjugates by lectin histochemistry in controls and subjects with cystic fibrosis.

    Science.gov (United States)

    Jacobs, L R; De Fontes, D; Cox, K L

    1983-05-01

    Human mucosal glycoconjugates were examined in normal small intestinal biopsies from five control subjects using six different fluorescein-conjugated lectins: Triticum vulgare agglutinin (WGA), Ulex europaeus agglutinin I (UEA1), Ricinus communis agglutinin I (RCA1), glycin max-soy bean agglutinin (SBA), Dolichus biflorus agglutinin (DBA), and Arachis hypogaea peanut agglutinin (PNA). These plant agglutinins bind to specific nonreducing end-terminal carbohydrate residues. Only the lectins derived from WGA, which produced the strongest staining, and UEA1 consistently bound to both intestinal goblet cell mucin and epithelial cell microvillar membranes. The intensity of lectin binding was greatest in the upper villus and diminished down towards the crypt, being weakest in the crypt base. Similar histochemical studies carried out on small bowel biopsies from five patients with cystic fibrosis revealed no major qualitative differences between the intestinal glycoconjugates in normal subjects and those with cystic fibrosis. These results suggest that glycoconjugate biosynthesis of human intestinal goblet cell mucin and epithelial cell membranes may be complete and hence full differentiation achieved only when these cells have migrated out of the crypt and onto the villus.

  4. Small intestine development of laying hens fed different fiber sources diets and crude protein levels

    Directory of Open Access Journals (Sweden)

    MFFM Praes

    2011-09-01

    Full Text Available The objective of the presente study was to evaluate the effects on different dietary fiber sources and crude protein levels on the intestinal morphometry of commercial layers. Isa Brown® layers with 48 weeks of age were distributed in a completely randomized experimental design with a 3 x 2 + 1 factorial arrangement, resulting in seven treatments with seven replicates of eight birds each. At the end of the fourth experimental period (28 days each, birds were 64 weeks of age and were randomly chosen (two birds per replicate, totaling 14 birds per treatment, weighed and sacrificed by neck dislocation. Their intestine was dissected and the duodenum, jejunum and ileum were collected for subsequent analysis of intestinal morphometry. Treatments consisted of diets containing three different fiber sources (cottonseed hulls, soybean hulls or rice husks and two crude protein levels (12% or 16%. Soybean hulls and 16% crude protein level promoted, in general, an increase in villus height and crypt depth in the three intestinal segments. In the duodenum, the control diet resulted in higher villus height and crypt depth relative to the diets containing fiber. In the jejunum, higher crypt depth values. In the ileum, dietary fiber increased villus height as compared to the control diet.

  5. Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy.

    Directory of Open Access Journals (Sweden)

    Jessica Gagné-Sansfaçon

    Full Text Available BACKGROUND: Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. CONCLUSIONS/SIGNIFICANCE: Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.

  6. Cracking ShadowCrypt: Exploring the Limitations of Secure I/O Systems in Internet Browsers

    Directory of Open Access Journals (Sweden)

    Freyberger Michael

    2018-04-01

    Full Text Available An important line of privacy research is investigating the design of systems for secure input and output (I/O within Internet browsers. These systems would allow for users’ information to be encrypted and decrypted by the browser, and the specific web applications will only have access to the users’ information in encrypted form. The state-of-the-art approach for a secure I/O system within Internet browsers is a system called ShadowCrypt created by UC Berkeley researchers [23]. This paper will explore the limitations of ShadowCrypt in order to provide a foundation for the general principles that must be followed when designing a secure I/O system within Internet browsers. First, we developed a comprehensive UI attack that cannot be mitigated with popular UI defenses, and tested the efficacy of the attack through a user study administered on Amazon Mechanical Turk. Only 1 of the 59 participants who were under attack successfully noticed the UI attack, which validates the stealthiness of the attack. Second, we present multiple attack vectors against Shadow-Crypt that do not rely upon UI deception. These attack vectors expose the privacy weaknesses of Shadow DOM—the key browser primitive leveraged by ShadowCrypt. Finally, we present a sketch of potential countermeasures that can enable the design of future secure I/O systems within Internet browsers.

  7. Acute Effects of Vitamin C Exposure On Colonic Crypts: Direct Modulation of pH Regulation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Aldajani

    2017-11-01

    Full Text Available Background/Aim: Colorectal cancer is still considered a leading cause of death in the United States and worldwide. One potential way to improve survival besides detection is to look to new therapeutic agents that can be taken prophylactically to reduce the risk of tumor formation. For cancer cells to grow and invade, a higher (more alkaline intracellular pH must occur. We chose to examine a specific nutraceutical agent, which is Vitamin C. The acute effect of Vitamin C exposure on normal colonic crypts has been studied, providing some insight into how Vitamin C achieve its effect. Methods: Distal colon was excised from rats. Following enzymatic digestion single colonic crypts were isolated. Colonic crypts were loaded with pH sensitive dye to measure the intracellular pH changes. Crypts were exposed to solutions +/- Vitamin C. Results: 10 mM Vitamin C decreased Na+-dependent intracellular pH recovery. Vitamin C modulates SVCT leading to changes in proton extrusion. Vitamin C entry occurs via either SVCT2 on the basolateral membrane or by transcellular passive diffusion through tight junctions to the apical membrane and then active transport via SVCT1. Conclusion: Acute addition of Vitamin C to the basolateral membrane maintains low intracellular pH for a longer period which could halt and/or prevent tumor formation.

  8. The Carcinogenic Agent Azoxymethane (AOM) Enhances Early Inflammation-induced Colon Crypt Pathology

    DEFF Research Database (Denmark)

    Venning, Freja Albjerg; Claesson, Mogens Helweg; Kissow, Hannelouise

    2013-01-01

    Severe combined immunodeficiency (SCID) mice transplanted with CD4+ T cells depleted of CD25+ regulatory T cells develop colitis within 2-3 weeks after the T cell transfer. In the present study we studied the effect of the carcinogen azoxymethane (AOM) on the colon crypt pathology of normal SCID...

  9. Crypt neurons express a single V1R-related ora gene.

    Science.gov (United States)

    Oka, Yuichiro; Saraiva, Luis R; Korsching, Sigrun I

    2012-03-01

    Both ciliated and microvillous olfactory sensory neuron populations express large families of olfactory receptor genes. However, individual neurons generally express only a single receptor gene according to the "one neuron-one receptor" rule. We report here that crypt neurons, the third type of olfactory neurons in fish species, use an even more restricted mode of expression. We recently identified a novel olfactory receptor family of 6 highly conserved G protein-coupled receptors, the v1r-like ora genes. We show now that a single member of this family, ora4 is expressed in nearly all crypt neurons, whereas the other 5 ora genes are not found in this cell type. Consistent with these findings, ora4 is never coexpressed with any of the remaining 5 ora genes. Furthermore, several lines of evidence indicate the absence of any other olfactory receptor families in crypt neurons. These results suggest that the vast majority of the crypt neuron population may select one and the same olfactory receptor gene, a "one cell type-one receptor" mode of expression. Such an expression pattern is familiar in the visual system, with rhodopsin as the sole light receptor of rod photoreceptor cells, but unexpected in the sense of smell.

  10. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  11. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  12. Autoradiographic investigation of age-dependent proliferation kinetics in the mucosa of rat small intestine

    International Nuclear Information System (INIS)

    Kranz, D.; Laue, R.; Fuhrmann, I.

    1980-01-01

    Aging of cells depends on mitotic activity which is particularly evident in multicellular organisms. The cell kinetics of the mucosa of the small intestine in a total of 244 Wistar rats aged 6 days, 6 weeks, 6, 12, 23 and 28 months, resp., were studied histoautoradiographically. It could be demonstrated that the regeneration rate of cells per hour in the crypts of the small intestine and the migration velocity of the enterocytes differ in young and old individuals, and that the intermitotic cells have age-dependent properties as well. In addition, it could be proved that intermitotic cells have a non growth fraction, too, which, at an advanced age, decreases only slightly although significantly in terms of statistics. For the easily vulnerable crypt epithelium it is a reserve capacity and ban be included in the proliferating pool if necessary. (author)

  13. Enhanced gastrointestinal expression of cytosolic malic enzyme (ME1 induces intestinal and liver lipogenic gene expression and intestinal cell proliferation in mice.

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Dwairi

    Full Text Available The small intestine participates in lipid digestion, metabolism and transport. Cytosolic malic enzyme 1 (ME1 is an enzyme that generates NADPH used in fatty acid and cholesterol biosynthesis. Previous work has correlated liver and adipose ME1 expression with susceptibility to obesity and diabetes; however, the contributions of intestine-expressed ME1 to these conditions are unknown. We generated transgenic (Tg mice expressing rat ME1 in the gastrointestinal epithelium under the control of the murine villin1 promoter/enhancer. Levels of intestinal ME1 protein (endogenous plus transgene were greater in Tg than wildtype (WT littermates. Effects of elevated intestinal ME1 on body weight, circulating insulin, select adipocytokines, blood glucose, and metabolism-related genes were examined. Male Tg mice fed a high-fat (HF diet gained significantly more body weight than WT male littermates and had heavier livers. ME1-Tg mice had deeper intestinal and colon crypts, a greater intestinal 5-bromodeoxyuridine labeling index, and increased expression of intestinal lipogenic (Fasn, Srebf1 and cholesterol biosynthetic (Hmgcsr, Hmgcs1, genes. The livers from HF diet-fed Tg mice also exhibited an induction of cholesterol and lipogenic pathway genes and altered measures (Irs1, Irs2, Prkce of insulin sensitivity. Results indicate that gastrointestinal ME1 via its influence on intestinal epithelial proliferation, and lipogenic and cholesterologenic genes may concomitantly impact signaling in liver to modify this tissue's metabolic state. Our work highlights a new mouse model to address the role of intestine-expressed ME1 in whole body metabolism, hepatomegaly, and crypt cell proliferation. Intestinal ME1 may thus constitute a therapeutic target to reduce obesity-associated pathologies.

  14. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  15. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Intestinal Epithelial Cells Synthesize Glucocorticoids and Regulate T Cell Activation

    Science.gov (United States)

    Cima, Igor; Corazza, Nadia; Dick, Bernhard; Fuhrer, Andrea; Herren, Simon; Jakob, Sabine; Ayuni, Erick; Mueller, Christoph; Brunner, Thomas

    2004-01-01

    Glucocorticoids (GCs) are important steroid hormones with widespread activities in metabolism, development, and immune regulation. The adrenal glands are the major source of GCs and release these hormones in response to psychological and immunological stress. However, there is increasing evidence that GCs may also be synthesized by nonadrenal tissues. Here, we report that the intestinal mucosa expresses steroidogenic enzymes and releases the GC corticosterone in response to T cell activation. T cell activation causes an increase in the intestinal expression of the steroidogenic enzymes required for GC synthesis. In situ hybridization analysis revealed that these enzymes are confined to the crypt region of the intestinal epithelial layer. Surprisingly, in situ–produced GCs exhibit both an inhibitory and a costimulatory role on intestinal T cell activation. In the absence of intestinal GCs in vivo, activation by anti-CD3 injection resulted in reduced CD69 expression and interferon-γ production by intestinal T cells, whereas activation by viral infection led to increased T cell activation. We conclude that the intestinal mucosa is a potent source of immunoregulatory GCs. PMID:15596520

  17. Transient, heat-induced thermal resistance in the small intestine of mouse

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1980-01-01

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44 0 C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5 0 C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0 0 C for 60 min) was followed at varying intervals by a test treatment at 43.0 0 C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D 0 and a decrease in n compared with curves from previously unheated intestine

  18. Morphological profiles of neutron and X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; O'Shea, O.; Hazzard, R.A.; McCullough, J.S.; Hume, S.P.; Nelson, A.C.

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes. (author)

  19. Intestinal Ischemia

    Science.gov (United States)

    ... weight loss Intestinal ischemia Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  20. Use of acidifiers and herb-acidifier combinations with encapsulated and non-encapsulated intestinal microflora, intestinal histological and serum characteristics in broiler

    Science.gov (United States)

    Natsir, Muhammad Halim; Hartutik, Sjofjan, Osfar; Widodo, Eko; Widyastuti, Eny Sri

    2017-05-01

    The objective of this experiment was to evaluate the use of acidifier and herb-acidifier combinations on intestinal microflora, intestinal histology and serum characteristics of broilers at 35 days of age when fed a diet supplemented with natural acidifier (lactic acid and citric acid), and herb-acidifier combinations (natural acidifier and herbs (garlic and Phyllanthus niruri L.) encapsulated and non-encapsulated. Here, 192 (Lohmann) broiler chicks were fed a negative control diet, positive control diet (tetracycline), 1.2% acidifier non-encapsulated (ANE), 1.2% acidifier encapsulated (AE), 1.2% herb-acidifier combination non-encapsulated (CNE), or 1.2% herb-acidifier combination encapsulated (CE). The variables measured were the total colony of lactic acid bacteria, Escherichia coli and Salmonella sp., intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and serum (total protein, serum albumin, and serum globulin). Results showed that during the 35-d growth period, there were significant differences (Plactic acid bacteria and a decrease in the total colony of Escherichia coli and Salmonella sp., along with increasing intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and total proteins in the serum, as well as significant effects (P<0.05) on intestinal pH and serum albumin. It is concluded that the use acidifiers or herb-acidifier combinations in encapsulation performed better than without encapsulation. Therefore using 1.2% of encapsulated combinations of herb-acidifiers in broiler diet is recommended.

  1. Appropriate Crypt Formation in the Uterus for Embryo Homing and Implantation Requires Wnt5a-ROR Signaling

    Directory of Open Access Journals (Sweden)

    Jeeyeon Cha

    2014-07-01

    Full Text Available Embryo homing and implantation occur within a crypt (implantation chamber at the antimesometrial (AM pole along the uterus. The mechanism by which this is achieved is not known. Here, we show that villi-like epithelial projections from the main uterine lumen toward the AM pole at regularly spaced intervals that form crypts for embryo implantation were disrupted in mice with uterine loss or gain of function of Wnt5a, or loss of function of both Ror1 and Ror2. This disruption of Wnt5a-ROR signaling resulted in disorderly epithelial projections, crypt formation, embryo spacing, and impaired implantation. These early disturbances under abnormal Wnt5a-ROR signaling were reflected in adverse late pregnancy events, including defective decidualization and placentation, ultimately leading to compromised pregnancy outcomes. This study presents deeper insight regarding the formation of organized epithelial projections for crypt formation and embryo implantation for pregnancy success.

  2. Intestinal Coccidia

    OpenAIRE

    MJ Ggaravi

    2007-01-01

    Intestinal Coccidia are a subclass of Apicomplexa phylum. Eucoccidida are facultative heteroxenous, but some of them are monoxenous. They have sexual and asexual life cycle. Some coccidia are human pathogens, for example: Cryptosporidium: Cryptosporidiums has many species that are mammalian intestinal parasites.C. Parvum specie is a human pathogenic protozoa. Cryptosporidum has circle or ellipse shapes and nearly 4-6 mm. It is transmitted in warm seasons. Oocyst is obtained insexual life cycl...

  3. The effect of melatonin on mouse jejunal crypt cell survival and apoptosis

    International Nuclear Information System (INIS)

    Kang, Jin Oh; Ha, Eun Young; Baik, Hyung Hwan; Cho, Yong Ho; Hong, Seong Eon

    2000-01-01

    To evaluate protective mechanism of melatonin against radiation damage and its relationship with apoptosis in mouse jejunum. 168 mice were divided into 28 groups according to radiation dose and melatonin treatment. To analysis crypt survival, microcolony survival assay was done according to Withers and Elkind's method. To analysis apoptosis, TUNEL assay was done according to Labet-Moleur's method. Radiation protection effect of melatonin was demonstrated by crypt survival assay and its effect was stronger in high radiation dose area. Apoptosis index with 8 Gy irradiation was 18.4% in control group and 16.5% in melatonin treated group. After 18 Gy, apoptosis index was 17.2%in control group and 15.4% in melatonin treated group. Apoptosis index did not show statistically significant difference between melatonin shows clear protective effect in mouse jejunum against radiation damage but its protective effect seems not to be related with apoptosis protection effect

  4. Effect of Polysaccharides from on Intestinal Mucosal Barrier of Lipopolysaccharide Challenged Mice

    Directory of Open Access Journals (Sweden)

    Jie Han

    2016-01-01

    Full Text Available To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS in preventing lipopolysaccharide (LPS-induced intestinal injury, 18 mice (at 5 wk of age were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05, and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05 and villus height:crypt depth ratio (42%, p<0.05, and lower crypt depth in jejunum (15.55%, p<0.05, as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05. ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05 and heat shock protein (HSP70 (77.42%, p<0.05. In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05 and intestinal trefoil peptide (17.75%, p<0.05. Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05 and its receptor (200%, p<0.05 gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.

  5. Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis

    DEFF Research Database (Denmark)

    Jensen, Anders; Fagö-Olsen, Helena; Sørensen, Christian Hjort

    2013-01-01

    were almost exclusively detected in children. In contrast, Streptococcus pseudopneumoniae was present in all samples. Obligate anaerobes like Porphyromonas, Prevotella, and Fusobacterium were abundantly present in children, but the species diversity of Porphyromonas and Prevotella was larger in adults...... and included species that are considered putative pathogens in periodontal diseases, i.e. Porphyromonas gingivalis, Porphyromonas endodontalis, and Tannerella forsythia. Unifrac analysis showed that recurrent tonsillitis is associated with a shift in the microbiota of the tonsillar crypts. Fusobacterium...

  6. The effect of ginkgo biloba extract on radiosensitivity of mouse skin and jejunal crypt

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kyung Hwan; Ha, Sung Whan [Seoul National Univ. Medical College, Seoul (Korea, Republic of)

    1998-06-01

    Ginkgo biloba extract(GBE) is known to increase the peripheral blood circulation. This study was designed to evaluate the effect of GBE on the acute normal tissue radiation reaction. C3H mice were divided into two groups, radiation alone and two doses GBE plus radiation, for both acute skin reaction and jejunal crypt assay. GBE was given i.p. one hour before irradiation with priming dose given one day earlier. Thirty to Fifty Gy for acute skin reaction and 11 to 14 Gy for jejunal crypt were irradiated to right hind leg and whole body, respectively. Radiation doses(RD{sub 50}) for peak skin score of 2.0 were 44.2Gy(40.6-48.2Gy) for radiation alone and 44.4Gy(41.6-47.4Gy) for two doses GBE plus radiation, showing no effect of GBE on acute radiation skin damage. The numbers of regenerating jejunal crypts per circumference were also almost the same for each radiation dose level(p=0.57-0.94), and the mean lethal doses(D{sub o}) were 1.80Gy(1.57-2.09Gy) for radiation alone and 1.88Gy(1.65-2.18Gy) for two doses GBE plus radiation, indicating no effect of GBE on jejunal crypt cell survival after radiation. GBE doesn't increase acute normal tissue radiation reaction in this model system. As GBE was verified to enhance radiation effect on tumor, high therapeutic gain is expected when GBE is combined with radiation therapy.

  7. The ability of two cooked food mutagens to induce aberrant crypt foci in mice

    DEFF Research Database (Denmark)

    Kristiansen, E.; Meyer, Otto A.; Thorup, I.

    1997-01-01

    The aberrant crypt foci assay has been used extensively to study different compounds for chemopreventive action, but almost all investigations have used initiators not normally found in the diet, In the present study two food-borne initiators, 2-amino-3-methyl-imidazo [4,5-f]quinoline (IQ) and 2-...... such as IQ or PhIP are to be used as initiators in the aberrant crypt foci test, the use of rats may be preferable.......The aberrant crypt foci assay has been used extensively to study different compounds for chemopreventive action, but almost all investigations have used initiators not normally found in the diet, In the present study two food-borne initiators, 2-amino-3-methyl-imidazo [4,5-f]quinoline (IQ) and 2......-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) were used, To simulate the human exposure further, we chose a feeding regimen with continuous low IQ- and PhIP-doses, Throughout the study female mice were given diets with or without 0.03% IQ or 0.03% PhIP, Two additional groups were given...

  8. Bodies Folded in Migrant Crypts: Dis/Ability and the Material Culture of Border-Crossing

    Directory of Open Access Journals (Sweden)

    Vasilis Galis

    2016-04-01

    Full Text Available This article considers media narratives that suggest that hiding in trucks, buses, and other vehicles to cross borders has, in fact, been a common practice in the context of migration to, and within, Europe. We aim to problematize how the tension between the materiality of bordering practices and human migrants generates a dis/abled subject. In this context, dis/ability may be a cause or consequence of migration, both in physical/material (the folding of bodies in the crypt and cultural/semiotic terms, and may become a barrier to accessing protection, to entering and/or crossing a country, and to performing mobility in general. Dis/ability and migration have not been associated in the literature. We adopt an analytical symmetry between humans and non-humans, in this case between bodies and crypts. By suggesting an infected, ambivalent, and hybrid approach to the human subject, the body-crypt traveling border challenges the essentialist dichotomies between technology and biology, disability and impairment. The articles and reports upon which we rely were collected through extensive searches of databases/archives of online newspapers and news websites.

  9. Integrated prospecting in the crypt of the Basilica of Saint Nicholas in Bari, Italy

    International Nuclear Information System (INIS)

    Calia, Angela; Leucci, Giovanni; Masini, Nicola; Matera, Loredana; Persico, Raffaele; Sileo, Maria

    2012-01-01

    In this paper, we present the results of non-destructive integrated geophysical surveys (ground penetrating radar (GPR) and seismic sonic) performed in the crypt of the Basilica of St Nicholas in Bari, Italy. The aim was twofold, namely to investigate the consistency of restoration work performed in 1950 and the presence of features of archaeological interest. The GPR technique has also been exploited to characterize the subsurface water content under the crypt. In particular, the existence of buried anomalies, probably due to the restoration work, has been identified. Moreover, by means of an electromagnetic-wave velocity analysis, an estimation of the volumetric water content under the floor has been achieved. The results indicate the main causes of the deterioration and have provided significant information for the safeguard of this historical building. Furthermore, the GPR survey allowed us to identify some anomalies buried under the crypt that are probably of archaeological interest. Finally, both sonic tomography and a GPR survey have been performed on an important mosaic, and have enabled us to identify probable ‘internal’ reasons for its decay. (paper)

  10. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  11. Levamisole improves histomorphometric parameters of small intestinal wall of broiler chickens

    Directory of Open Access Journals (Sweden)

    T. Shomali

    2017-12-01

    Full Text Available Sixty one-day old chickens were divided into 6 equal groups and treated with 0, 2, 5, 10, 15 and 25 mg/kg levamisole from day 1 to 45. Then, all birds sacrificed and samples were taken from duode-num, jejunum and ileum. Cross-sections were made and H&E stained. Histomorphometric parameters including villus height, crypt depth, villus width, sub mucosal width, muscular layer width and the villus height/crypt depth ratio were determined. Duodenal villi became wider in all levamisole treated groups but only the highest dose resulted in taller villi. Jejunal villi became taller without significant change in their width. This was accompanied by a decrease in crypt depth and increased villus height/crypt depth ratio in all treated groups. In ileum, only birds treated with the highest dose had higher villus height, although levamisole at all doses resulted in wider villi. Sub mucosal width in-creased in birds treated with 15 and 25 mg/kg levamisole. In conclusion, levamisole can improve histomorphometric parameters of small intestinal wall of broiler chickens. This can partly explain the mechanism for previously described positive effects of levamisole on performance of broilers.

  12. Effects of size of Trichostrongylus colubriformis infections on histopathology of the mucosa along the whole small intestine in rabbits.

    Science.gov (United States)

    Hoste, H; Mallet, S

    1990-11-01

    The influence of population size of Trichostrongylus colubriformis on the structures of the small intestine, especially with regard to the development and origin of an intestinal adaptive response, was examined in experimentally infected rabbits. The effects of low (500 L3) and high (50,000 L3) infection on histological (villous length, mucosa to serosa ratio, crypt surface) and biochemical (protein content, alkaline phosphatase and leucine aminopeptidase activities) aspects of the mucosa were assessed along the whole small intestine. The presence of a small number of worms induced only minor mucosal changes, indicating a regenerative response of the intestinal epithelium. The role of a local small population of T. colubriformis in the development of a previously described adaptive response appeared thus to be limited. On the other hand, the 50,000 L3 inoculum was associated with severe lesions of villi, marked crypt hyperplasia and with a major reduction of enzyme activities. The changes were found along the whole length of the small intestine. These results suggest that the generally recognized dose-dependent pathogenicity of the intestinal nematode infections could be ascribed to two different processes: firstly, a greater severity of the lesions; secondly, more extensive damage leading to the disappearance of any adaptive intestinal region.

  13. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  14. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kiyoshi [Department of Clinical Cell Biology (F5), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan); Sato, Toru [Department of Medicine and Clinical Oncology (K1), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan); Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology (K1), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan); Nakagawa, Tomoo; Noguchi, Yoshiko [Department of Medicine and Clinical Oncology (K1), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan); Tokumasa, Atsuko; Yokote, Kotaro [Department of Clinical Cell Biology (F5), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan); Yokosuka, Osamu [Department of Medicine and Clinical Oncology (K1), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan); Saito, Yasushi [Department of Clinical Cell Biology (F5), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670 (Japan)

    2011-02-25

    Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonic epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings

  15. The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation.

    Science.gov (United States)

    Parang, Bobak; Rosenblatt, Daniel; Williams, Amanda D; Washington, Mary K; Revetta, Frank; Short, Sarah P; Reddy, Vishruth K; Hunt, Aubrey; Shroyer, Noah F; Engel, Michael E; Hiebert, Scott W; Williams, Christopher S

    2015-03-01

    Notch signaling largely determines intestinal epithelial cell fate. High Notch activity drives progenitors toward absorptive enterocytes by repressing secretory differentiation programs, whereas low Notch permits secretory cell assignment. Myeloid translocation gene-related 1 (MTGR1) is a transcriptional corepressor in the myeloid translocation gene/Eight-Twenty-One family. Given that Mtgr1(-/-) mice have a dramatic reduction of intestinal epithelial secretory cells, we hypothesized that MTGR1 is a key repressor of Notch signaling. In support of this, transcriptome analysis of laser capture microdissected Mtgr1(-/-) intestinal crypts revealed Notch activation, and secretory markers Mucin2, Chromogranin A, and Growth factor-independent 1 (Gfi1) were down-regulated in Mtgr1(-/-) whole intestines and Mtgr1(-/-) enteroids. We demonstrate that MTGR1 is in a complex with Suppressor of Hairless Homolog, a key Notch effector, and represses Notch-induced Hairy/Enhancer of Split 1 activity. Moreover, pharmacologic Notch inhibition using a γ-secretase inhibitor (GSI) rescued the hyperproliferative baseline phenotype in the Mtgr1(-/-) intestine and increased production of goblet and enteroendocrine lineages in Mtgr1(-/-) mice. GSI increased Paneth cell production in wild-type mice but failed to do so in Mtgr1(-/-) mice. We determined that MTGR1 can interact with GFI1, a transcriptional corepressor required for Paneth cell differentiation, and repress GFI1 targets. Overall, the data suggest that MTGR1, a transcriptional corepressor well characterized in hematopoiesis, plays a critical role in intestinal lineage allocation. © FASEB.

  16. Syrian hamsters (Mesocricetus auratus) with simultaneous intestinal Giardia sp., Spironucleus sp., and trichomonad infections.

    Science.gov (United States)

    Sheppard, Barbara J; Stockdale Walden, Heather D; Kondo, Hirotaka

    2013-11-01

    A commercial facility producing hamsters with a history of infection by dwarf tapeworm (Hymenolepis nana) submitted 15 animals for necropsy and postmortem parasitological and microscopic examination. No tapeworms were detected grossly or microscopically. Fecal examination including gastrointestinal mucosal smears demonstrated mixed intestinal bacteria and low numbers of Giardia sp. Histologic examination of small intestine demonstrated filling of the small intestinal crypts by large numbers of 7-9 µm × 3 µm, rod to crescent or teardrop-shaped flagellates consistent with Spironucleus sp. These organisms had two 1-µm, basophilic, oval nuclei and multiple superficial flagella-like structures. Much larger 10-15 µm × 8-10 µm, oval to pear-shaped organisms were also present in lower numbers and usually located with the crypts. These larger flagellates had multiple flagella and a basophilic rod-shaped nucleus. The larger flagellates included Giardia sp., which had an intimate interface with the surface of the mucosal epithelium, bilaterally symmetry, and binucleation. Lower numbers of trichomonads were also present and were distinguished by an undulating surface membrane and a single nucleus. The mucosa was hyperplastic and moderately inflamed. Although the tapeworm infection was resolved, diagnosis of multiple intestinal flagellates by fecal examination is complicated by the varying sensitivity and diagnostic accuracy of different types of fecal analysis for different flagellate types. Key differences in the morphology and location of the different types of flagellates as observed by histology of intestinal tissues provide important additional diagnostic information to distinguish trichomonads, Spironucleus sp., and Giardia sp.

  17. Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats

    DEFF Research Database (Denmark)

    Hartmann, Bolette; Thulesen, Jesper; Hare, Kristine Juul

    2002-01-01

    in the proximal part of the small intestine (10.84+/-0.44 mm(2)). Antibody treatment had no effect on body weight, blood glucose concentrations and food intake. Thus, blocking of endogenous GLP-2 in a model of adaptive intestinal growth reduces the growth response, providing strong evidence for a physiological......Supraphysiological doses of glucagon-like peptide-2 (GLP-2) have been shown to induce intestinal growth by increasing villus height and crypt depth and by decreasing apoptosis, but a physiological effect of GLP-2 has not yet been demonstrated. Earlier, we found elevated levels of endogenous GLP-2...... in untreated streptozotocin diabetic rats associated with marked intestinal growth. In the present study, we investigated the role of endogenous GLP-2 for this adaptive response. We included four groups of six rats: (1) diabetic rats treated with saline, (2) diabetic rats treated with non-specific antibodies...

  18. Effect of taurine on intestinal recovery following intestinal ischemia-reperfusion injury in a rat.

    Science.gov (United States)

    Sukhotnik, I; Aranovich, I; Ben Shahar, Y; Bitterman, N; Pollak, Y; Berkowitz, D; Chepurov, D; Coran, A G; Bitterman, A

    2016-02-01

    Taurine (TAU) is a sulfur-containing amino acid that is involved in a diverse array of biological and physiological functions, including bile salt conjugation, osmoregulation, membrane stabilization, calcium modulation, anti-oxidation, and immunomodulation. Several studies have established that treatment with TAU significantly protects cerebral, cardiac and testicular injury from ischemia-reperfusion (IR). The purpose of the present study was to examine the effect of TAU on intestinal recovery and enterocyte turnover after intestinal IR injury in rats. Male Sprague-Dawley rats were divided into four experimental groups: (1) Sham rats that underwent laparotomy, (2) Sham-TAU rats that underwent laparotomy and were treated with intraperitoneal (IP) TAU (250 mg/kg); (3) IR-rats that underwent occlusion of both superior mesenteric artery and portal vein for 30 min followed by 48 h of reperfusion, and (4) IR-TAU rats that underwent IR and were treated with IP TAU (250 mg/kg) immediately before abdominal closure. Intestinal structural changes, Park's injury score, enterocyte proliferation and enterocyte apoptosis were determined 24 h following IR. The expression of Bax, Bcl-2, p-ERK and caspase-3 in the intestinal mucosa was determined using Western blot and immunohistochemistry. Treatment with TAU resulted in a significant decrease in Park's injury score compared to IR animals. IR-TAU rats also demonstrated a significant increase in mucosal weight in jejunum and ileum, villus height in jejunum and ileum and crypt depth in ileum compared to IR animals. IR-TAU rats also experienced significantly lower apoptotic indices in jejunum and ileum which was accompanied by a higher Bcl-2/Bax ratio compared to IR animals. Treatment with taurine prevents gut mucosal damage and inhibits intestinal epithelial cell apoptosis following intestinal IR in a rat.

  19. Temozolomide Increases the Number of Mismatch Repair - Deficient Intestinal Crypts and Accelerates Tumorigenesis in a Mouse Model of Lynch Syndrome

    NARCIS (Netherlands)

    Wojciechowicz, K.; Cantelli, E.; Van Gerwen, B.; Plug, M.; van der Wal, A.; Delzenne-Goette, E.; Song, J.Y.; de Vries, S.; Dekker, M.; te Riele, H.

    2014-01-01

    Background & Aims Lynch syndrome, a nonpolyposis form of hereditary colorectal cancer, is caused by inherited defects in DNA mismatch repair (MMR) genes. Most patients carry a germline mutation in 1 allele of the MMR genes MSH2 or MLH1. With spontaneous loss of the wild-type allele, cells with

  20. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc.

    NARCIS (Netherlands)

    Muncan, V.; Sansom, O.J.; Tertoolen, L.; Phesse, T.J.; Begthel, H.; Sancho, E.; Cole, A.M.; Gregorieff, A.; Alboran, I.M. de; Clevers, J.C.; Clarke, A.R.

    2006-01-01

    Inhibition of the mutationally activated Wnt cascade in colorectal cancer cell lines induces a rapid G1 arrest and subsequent differentiation. This arrest can be overcome by maintaining expression of a single Tcf4 target gene, the proto-oncogene c-Myc. Since colorectal cancer cells share many

  1. Isolation and gene expression profiling of intestinal epithelial cells: crypt isolation by calcium chelation from in vivo samples.

    LENUS (Irish Health Repository)

    Balfe, Aine

    2018-01-01

    The epithelial layer within the colon represents a physical barrier between the luminal contents and its underlying mucosa. It plays a pivotal role in mucosal homeostasis, and both tolerance and anti-pathogenic immune responses. Identifying signals of inflammation initiation and responses to stimuli from within the epithelial layer is critical to understanding the molecular pathways underlying disease pathology. This study validated a method to isolate and analyze epithelial populations, enabling investigations of epithelial function and response in a variety of disease setting.

  2. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation.

    Science.gov (United States)

    Nasuno, Masanao; Arimura, Yoshiaki; Nagaishi, Kanna; Isshiki, Hiroyuki; Onodera, Kei; Nakagaki, Suguru; Watanabe, Shuhei; Idogawa, Masashi; Yamashita, Kentaro; Naishiro, Yasuyoshi; Adachi, Yasushi; Suzuki, Hiromu; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-04-01

    The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease. © AlphaMed Press.

  3. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants

    DEFF Research Database (Denmark)

    Currie, Cameron R; Poulsen, Michael; Mendenhall, John

    2006-01-01

    Attine ants engage in a quadripartite symbiosis with fungi they cultivate for food, specialized garden parasites, and parasite-inhibiting bacteria. Molecular phylogenetic evidence supports an ancient host-pathogen association between the ant-cultivar mutualism and the garden parasite. Here we show...... that ants rear the antibiotic-producing bacteria in elaborate cuticular crypts, supported by unique exocrine glands, and that these structures have been highly modified across the ants' evolutionary history. This specialized structural evolution, together with the absence of these bacteria and modifications...

  4. Cracking ShadowCrypt: Exploring the Limitations of Secure I/O Systems in Internet Browsers

    OpenAIRE

    Freyberger Michael; He Warren; Akhawe Devdatta; Mazurek Michelle L.; Mittal Prateek

    2018-01-01

    An important line of privacy research is investigating the design of systems for secure input and output (I/O) within Internet browsers. These systems would allow for users’ information to be encrypted and decrypted by the browser, and the specific web applications will only have access to the users’ information in encrypted form. The state-of-the-art approach for a secure I/O system within Internet browsers is a system called ShadowCrypt created by UC Berkeley researchers [23]. This paper wi...

  5. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yasuda, Takeshi [Department of Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Zakrzewska, Malgorzata [Faculty of Biotechnology, University of Wroclaw (Poland); Imamura, Toru [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  6. Micromanaging the gut: unravelling the regulatory pathways that mediate the intestinal adaptive response.

    Science.gov (United States)

    Balakrishnan, A

    2018-03-01

    Short bowel syndrome occurs following the loss of a large portion of functional intestine and is associated with high morbidity and mortality. The intestine exhibits pronounced diurnal rhythms in glucose absorption and mounts a profound proliferative response following massive small bowel resection. Understanding the molecular pathways that underpin this could yield novel treatment options. Two in vivo models were employed using the nocturnally active Sprague Dawley® rat, namely daytime feeding and massive small bowel resection. Glucose absorption exhibited a 24-hour periodicity in the gut and peaked during maximal nutrient delivery, mediated by rhythms in the glucose transporter sodium glucose co-transporter 1 (SGLT1). Feeding during the day shifted the peak in the circadian clock gene PER1 and SGLT1. RNA interference and luciferase assays demonstrated that PER1 transcriptionally regulates SGLT1, linking for the first time clock genes and intestinal glucose absorption. Intestinal proliferation also exhibited diurnal rhythmicity, with peak absorptive surface area occurring during maximal nutrient availability. mir-16 is diurnally expressed in intestinal crypts, exhibiting minimal expression during maximal nutritional availability. mir-16 overexpression increased apoptosis and arrested proliferation in vitro. mir-125a was upregulated in intestinal crypts following 80% small bowel resection, and induced apoptosis and growth arrest upon overexpression in vitro. This work provides novel insights into the role of circadian clock genes, intestinal transporters and microRNAs in regulating intestinal absorption and proliferation and is the first demonstration of a role for microRNAs in these adaptive phenomena. Modulation of these pathways may represent a new therapeutic option for the management of short bowel syndrome.

  7. The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Strandsby, Anne Bystrup; Larsen, Casper Kornbech

    2011-01-01

    The colonic epithelium absorbs and secretes electrolytes and water. Ion and water absorption occurs primarily in surface cells, whereas crypt cells perform secretion. Ion transport in distal colon is regulated by aldosterone, which stimulates both Na+ absorption and K+ secretion. The electrogenic...... Na+ absorption is mediated by epithelial Na+ channel (ENaC) in surface cells. Previously, we identified the large conductance Ca2+-activated K+ channel, KCa1.1 or big potassium (BK) channel, as the only relevant K+ secretory pathway in mouse distal colon. The exact localisation of K(Ca)1.1 channels...... along the crypt axis is, however, still controversial. The aim of this project was to further define the localisation of the K(Ca)1.1 channel in mouse distal colonic epithelium. Through quantification of mRNA extracted from micro-dissected surface and crypt cells, we confirmed that Na+/K+/2Cl- (NKCC1...

  8. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    Science.gov (United States)

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  9. Study of the olfactory epithelium in the developing sturgeon. Characterization of the crypt cells.

    Science.gov (United States)

    Camacho, Susana; Ostos-Garrido, M V; Domezain, A; Carmona, R

    2010-02-01

    In acipenserids, crypt cells (CCs) have only been observed in juvenile specimens, and it has not been clarified whether they differentiate along with olfactory receptor neurons (ORNs) during the lecithotrophic stage or during later development stages. Furthermore, no detailed optical microscopy (OM) or electron microscopy study on the development of CCs has been published to date. In the present study, we used OM and electron microscopy to follow the development of CCs in Acipenser naccarii from hatching to the establishment of exogenous feeding. Based on these observations, we can affirm that CCs are present from the first few posthatching (PH) days. CCs appear with their nucleus close to the basal lamina of the epithelium and enveloped by supporting cells. In addition, from the beginning of day 2 PH, we observed cells with highly similar characteristics to those of CCs (absence of knob, abundant mitochondria and filamentous material in apical cytoplasm, numerous microtubules, and envelopment by supporting cells) but with cilia still remaining on their noninvaginated apical surface. We conclude that these cells may correspond to immature CCs in which the crypt, the final feature of their morphological differentiation, has not yet formed.

  10. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  11. Stem Cells: All that Is Solid Melts into Air

    NARCIS (Netherlands)

    van der Heijden, Maartje; Vermeulen, Louis

    2017-01-01

    The intestinal epithelium displays great resilience, as several cell populations can replenish the stem cell pool upon damage. Two studies in Cell Stem Cell extend this capacity to enteroendocrine cells, addressing the molecular basis underlying cellular plasticity observed in the intestine and the

  12. Effect of growth promoters for pigs on live performance, quality intestinal and the efficiency of biodigestion of wastes

    Directory of Open Access Journals (Sweden)

    David Fernandes Gavioli

    2014-02-01

    Full Text Available This study aimed to evaluate the effects of growth promoters in growing and finishing pigs on performance and carcass characteristics, intestinal histological profile, organs weight of the digestive tract, and the consequences of these treatments on the effluent through the process of biodigestion. We used 80 pigs with an average initial weight of 40.00 ± 1.90 kg, submitted to four treatments, during 61 days, until to reach 100.00 ± 4.50 kg of livewight, corresponding to diets with the following additives: Control (diet without growth promoters; Symbiotic; Colistin (10ppm and Tylosin (40ppm. Difference was observed to the daily feed intake during the growing phase with a greater consumption for the treatment Tylosin regarding treatment Colistin. There was no difference for carcass traits, for the weight of the organs and to the parameters evaluated in the process of digestion of manure (pH, total solids, chemical oxygen demand and biochemical oxygen demand. Regarding the intestinal morphology, animals treated with Tylosin had higher crypt depth (P ? 0.05 in the duodenum compared to animals fed with Control and Symbiotic diets, as well as larger crypt depth in the jejunum (P ? 0.05. There were differences in the rate villi / crypt with the Control treatment showing higher value compared to other treatments. For the ileum, there was a difference to crypt depth treatment of the animals compared to Control and Tylosin treatments. Despite observed differences in the characteristics of intestinal morphology, there was no advantage in the use of additives for the parameters of zootechnical interest. The effects on the fermentation process did not indicate any advantages for the additives evaluated.

  13. Clinical, clinicopathologic, radiographic, and ultrasonographic characteristics of intestinal lymphangiectasia in dogs: 17 cases (1996-1998).

    Science.gov (United States)

    Kull, P A; Hess, R S; Craig, L E; Saunders, H M; Washabau, R J

    2001-07-15

    To characterize the clinical, clinicopathologic, and imaging findings in dogs with intestinal lymphangiectasia and to compare the histologic grade of lymphangiectasia with clinicopathologic and imaging abnormalities. Retrospective study. 17 dogs with a histologic diagnosis of intestinal lymphangiectasia. Medical records of dogs with a histologic diagnosis of intestinal lymphangiectasia were reviewed for signalment, history, clinical signs, results of exploratory laparotomy, and clinicopathologic, radiographic, ultrasonographic, and histologic findings. Mean age of dogs was 8.3 years; the most common clinical signs were diarrhea, anorexia, lethargy, vomiting, and weight loss. Abnormal physical examination findings included dehydration, ascites, and signs of pain on palpation of the abdomen. The most notable clinicopathologic findings were low serum ionized calcium concentration and hypoalbuminemia. Abdominal ultrasonography was performed in 12 dogs and revealed intestinal abnormalities in 8 dogs and peritoneal effusion in 7 dogs. Exploratory laparotomy revealed abnormalities in 9 of 16 dogs including thickened small intestine, dilated lacteals, lymphadenopathy, and adhesions. On histologic examination of the small intestine, concurrent inflammation was observed in 15 of 17 dogs, crypt ectasia in 5 of 17, and lipogranulomas in 2 of 17. Intestinal lymphangiectasia in dogs appears to be a heterogeneous disorder characterized by various degrees of panhypoproteinemia, hypocholesterolemia, lymphocytopenia, and imaging abnormalities. In most dogs, the severity of hypoalbuminemia appears to offer the best correlation with severity of histologic lesions of lymphangiectasia. Imaging abnormalities are common in dogs with intestinal lymphangiectasia but are not specific enough to differentiate this disorder from other gastrointestinal disorders, nor are they predictive of histologic severity.

  14. Intestinal pseudo-obstruction

    Science.gov (United States)

    Primary intestinal pseudo-obstruction; Acute colonic ileus; Colonic pseudo-obstruction; Idiopathic intestinal pseudo-obstruction; Ogilvie syndrome; Chronic intestinal pseudo-obstruction; Paralytic ileus - pseudo-obstruction

  15. Intestinal myiasis

    Directory of Open Access Journals (Sweden)

    U S Udgaonkar

    2012-01-01

    Full Text Available Purpose: Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. Materials and Methods: We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar. This medium is simple and can be easily prepared in the laboratory. Results: Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. Conclusions: S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  16. Appropriate crypt formation in the uterus for embryo homing and implantation requires Wnt5a-ROR signaling.

    Science.gov (United States)

    Cha, Jeeyeon; Bartos, Amanda; Park, Craig; Sun, Xiaofei; Li, Yingju; Cha, Sang-Wook; Ajima, Rieko; Ho, Hsin-Yi Henry; Yamaguchi, Terry P; Dey, Sudhansu K

    2014-07-24

    Embryo homing and implantation occur within a crypt (implantation chamber) at the antimesometrial (AM) pole along the uterus. The mechanism by which this is achieved is not known. Here, we show that villi-like epithelial projections from the main uterine lumen toward the AM pole at regularly spaced intervals that form crypts for embryo implantation were disrupted in mice with uterine loss or gain of function of Wnt5a, or loss of function of both Ror1 and Ror2. This disruption of Wnt5a-ROR signaling resulted in disorderly epithelial projections, crypt formation, embryo spacing, and impaired implantation. These early disturbances under abnormal Wnt5a-ROR signaling were reflected in adverse late pregnancy events, including defective decidualization and placentation, ultimately leading to compromised pregnancy outcomes. This study presents deeper insight regarding the formation of organized epithelial projections for crypt formation and embryo implantation for pregnancy success. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Measurement of the cell membrane capacitance and conductance of colonic crypt cells of the rat using the patch clamp technique

    CERN Document Server

    Schill, C

    2005-01-01

    Using the patch clamp technique the membrane capacitance and membrane conductance of colonic crypt cells of the rat was measured. The influence of the intracellular agonists Ca++, cAMP and of osmotic changes on the membrane capacitance and conductance was studied.

  18. Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats

    NARCIS (Netherlands)

    Wijnands, M.V.W.; Schoterman, H.C.; Bruijntjes, J.P.; Hollanders, V.M.H.; Woutersen, R.A.

    2001-01-01

    The aim of the present study was to investigate the effects of galacto-oligosaccharides (GOS, Elix'or) on the development of aberrant crypt foci (ACF) and colorectal tumours in rats treated with azoxymethane (AOM). Two groups of 102 male Fischer 344 rats were injected twice with AOM to induce

  19. Do aberrant crypt foci have predictive value for the occurrence of colorectal tumours? Potential of gene expression profiling in tumours

    NARCIS (Netherlands)

    Wijnands, M.V.W.; Erk, van M.J.; Doornbos, R.P.; Krul, C.A.M.; Woutersen, R.A.

    2004-01-01

    The effects of different dietary compounds on the formation of aberrant crypt foci (ACF) and colorectal tumours and on the expression of a selection of genes were studied in rats. Azoxymethane-treated male F344 rats were fed either a control diet or a diet containing 10% wheat bran (WB), 0.2%

  20. Early Life and Postnatal Western Diet Feeding and Susceptibility to Chemically Induced Colonic Aberrant Crypt Foci in Male Rats Offspring.

    Science.gov (United States)

    Lopes, Gisele Aparecida Dionísio; Dias, Marcos Correa; Barbisan, Luís Fernando; Marchesan Rodrigues, Maria Aparecida

    2016-07-01

    The modifying effects of a Western diet (WD) during early life on the susceptibility to colon carcinogenesis induced by dimethylhydrazine (DMH) were examined in male rats as later adults. Three groups were studied: a lifetime control diet-fed group, a test group fed WD since pregnancy from dams until postnatal day (PND) 42, and a group fed WD at adulthood. At PND 70, all groups received the carcinogen DMH and were euthanized 10 wk later. Colonic aberrant crypt foci (ACF) were scored (number and crypt multiplicity) and the altered pattern of β-catenin expression was evaluated in the colonic lesions. ACF multiplicity (≥4 crypts) was significantly higher in the group fed WD at early life than in the group fed the control diet. ACF number, crypt multiplicity, and the number of high-grade dysplastic lesions were significantly higher in the group fed WD at adulthood than in the groupfed the control diet. The number of lesions with altered β-catenin expression was higher in the groups receiving WD at early life or at adulthood than in the lifetime control-diet-fed group. These findings indicate that WD exposure at early life increased the susceptibility to colon carcinogenesis at adulthood.

  1. Stem Cells Matter in Response to Fasting

    Directory of Open Access Journals (Sweden)

    Badi Sri Sailaja

    2015-12-01

    Full Text Available The molecular processes underlying intestinal adaptation to fasting and re-feeding remain largely uncharacterized. In this issue of Cell Reports, Richmond et al. report that dormant intestinal stem cells are regulated by PTEN and nutritional status.

  2. Bacterial colonization of colonic crypt mucous gel and disease activity in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    OBJECTIVE: To optimize total bacterial 16S rRNA quantification in microdissected colonic crypts in healthy controls and patients with ulcerative colitis (UC) and to characterize the findings with disease activity. BACKGROUND: Microscopic and molecular techniques have recently converged to allow bacterial enumeration in remote anatomic locations [eg, crypt-associated mucous gel (CAMG)]. The aims of this study were to combine laser capture microdissection (LCM) and 16S rRNA-based quantitative polymerase chain reaction (qPCR) to determine total bacterial copy number in CAMG both in health and in UC and to characterize the findings with disease activity. METHODS: LCM was used to microdissect CAMG from colonic mucosal biopsies from controls (n = 20) and patients with acute (n = 10) or subacute (n = 10) UC. Pan-bacterial 16S rRNA copy number per millimeter square in samples from 6 locations across the large bowel was obtained by qPCR using Desulfovibrio desulfuricans as a reference strain. Copy numbers were correlated with the UC disease activity index (UCDAI) and the simple clinical colitis activity index (SCCAI). RESULTS: Bacterial colonization of CAMG was detectable in all groups. Copy numbers were significantly reduced in acute UC. In subacute colitis, there was a positive correlation between copy number and UCDAI and SCCAI in the ascending, transverse and sigmoid colon. CONCLUSIONS: This study describes a sensitive method of quantitatively assessing bacterial colonization of the colonic CAMG. A positive correlation was found between CAMG bacterial load and subacute disease activity in UC, whereas detectable bacterial load was reduced in acute UC.

  3. Crypts of Hélène Cixous’s Past

    Directory of Open Access Journals (Sweden)

    Nathalie Debrauwere-Miller

    2009-01-01

    Full Text Available Through a reading of Cixous’s Inside (1986, Or: Les lettres de mon père (1997, Reveries of the Wild Woman (2006 and Si Près (2007, this article explores the diverse allegories of “enclosure” in the figure of the crypt containing Cixous’s father. Part of the allegory entails a process of mourning not only for the defunct father but for Algeria as well where he is encrypted. The crypt (father’s cave or tomb as the place and the process of writing imposes the de-cryption of the secret cavities of Cixous’s texts where she is enclosed, inside the father’s cave, in the cavity of his tuberculous lungs, the imagined site from where she writes. The essay focuses on how, with the passage of time, the rapport with the dead father evolves in Cixous’s work and how the figuration of Algeria linked to the disease and death of the father undergoes transformations. The father is described in great detail in Inside and Or, Les lettres de mon père . However in these two early texts, Cixous invents a majestic father incarnating the Law and phallogocentric power as opposed to his condition of a Jew during the Vichy regime, which banned him from practicing his profession and left him powerless. But Cixous never recurs specifically to either identitarian (Jewish or political (Vichy and Algeria values. I assert in this essay that it will not be until her later texts that the father’s tuberculosis becomes a foreshadowing of a Jewish condition in occupied Algeria during the Vichy period.

  4. Intestinal Failure (Short Bowel Syndrome)

    Science.gov (United States)

    Intestinal Failure (Short Bowel Syndrome) What is intestinal failure? Intestinal failure occurs when a significant portion of the small ... intestine does. Who is at risk for intestinal failure? N Babies (usually premature) who have had surgery ...

  5. Repeated mechanical lengthening of intestinal segments in a novel model.

    Science.gov (United States)

    Scott, Andrew; Sullins, Veronica F; Steinberger, Doug; Rouch, Joshua D; Wagner, Justin P; Chiang, Elvin; Lee, Steven L; Wu, Benjamin M; Dunn, James C Y

    2015-06-01

    Currently, animal models used for mechanical intestinal lengthening utilize a single lengthening procedure prior to analysis or restoration back into continuity. Here we developed a novel surgical model to examine the feasibility of repeated lengthening of intestinal segments. A Roux-en-Y jejunojejunostomy with a blind Roux limb was created in rats. An encapsulated polycaprolactone spring was placed into a 1cm segment of the Roux limb. After 4 weeks, a second encapsulated PCL spring was inserted into a 1cm portion of the lengthened segment. After another 4 weeks, the repeatedly lengthened segments were retrieved for histological analyses. Jejunal segments of the Roux limb were successfully lengthened from 1.0 cm to 2.6 ± 0.7 cm. Four weeks after the second PCL spring placement, 1.0 cm of the previously lengthened segment increased to 2.7 ± 0.8 cm. Stronger mechanical force was required to achieve subsequent re-lengthening. Lengthened and re-lengthened segments had increased smooth muscle thickness and crypt depth when compared to normal jejunal mucosa. Using the Roux-en-Y model, previously lengthened segments of intestine can be successfully re-lengthened. Intestinal segments may be subjected to multiple lengthening procedures to achieve clinically significant length for the treatment of short bowel syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life.

    Science.gov (United States)

    Liao, Yalin; Jiang, Rulan; Lönnerdal, Bo

    2012-06-01

    Postnatal modeling of the intestinal epithelium has long-term impacts on the healthy development of infants and relies largely on nutrient composition of the diet. Lactoferrin (Lf) is among the various human milk trophic factors that facilitate the infant intestinal adaptation. Hydrolysis of Lf is minimal at the prevailing postprandial pH of infants, and Lf may therefore have greater biological potential in infants than in adults. Lf bidirectionally stimulates concentration-dependent proliferation and differentiation of small intestinal epithelial cells, and therefore affects small intestinal mass, length, and epithelial digestive enzyme expression. A 105 kDa Lf receptor (LfR) specifically mediates the uptake of Lf into enterocytes and crypt cells. Mechanistically, the complex of Lf and LfR is internalized through clathrin-mediated endocytosis; both iron-free apo-Lf and iron-saturated holo-Lf activate the PI3K/Akt pathway, whereas only apo-Lf triggers ERK1/2 signaling. Lf enters the nucleus, where it can stimulate thymidine incorporation into crypt cells, regulating transcription of genes such as TGF-β1. In the fetus, the plasma membrane LfR is at the highest abundance in the small intestine, and the receptor gene is tightly controlled at multiple levels. Aspecific microRNA, miR-584, is involved in the posttranscriptional regulation of LfR, and in the human LfR DNA promoter, 2 Sp1 binding sites have been characterized functionally. Finally, cell proliferation and global gene expression reveal that native bovine Lf can perform biological activities similar to those exerted by human Lf in postnatal small intestinal development.

  7. Cd1d-dependent regulation of bacterial colonization in the intestine of mice

    Science.gov (United States)

    Nieuwenhuis, Edward E.S.; Matsumoto, Tetsuya; Lindenbergh, Dicky; Willemsen, Rob; Kaser, Arthur; Simons-Oosterhuis, Ytje; Brugman, Sylvia; Yamaguchi, Keizo; Ishikawa, Hiroki; Aiba, Yuji; Koga, Yasuhiro; Samsom, Janneke N.; Oshima, Kenshiro; Kikuchi, Mami; Escher, Johanna C.; Hattori, Masahira; Onderdonk, Andrew B.; Blumberg, Richard S.

    2009-01-01

    The accumulation of certain species of bacteria in the intestine is involved in both tissue homeostasis and immune-mediated pathologies. The host mechanisms involved in controlling intestinal colonization with commensal bacteria are poorly understood. We observed that under specific pathogen–free or germ-free conditions, intragastric administration of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, or Lactobacillus gasseri resulted in increased colonization of the small intestine and bacterial translocation in mice lacking Cd1d, an MHC class I–like molecule, compared with WT mice. In contrast, activation of Cd1d-restricted T cells (NKT cells) with α-galactosylceramide caused diminished intestinal colonization with the same bacterial strains. We also found prominent differences in the composition of intestinal microbiota, including increased adherent bacteria, in Cd1d–/– mice in comparison to WT mice under specific pathogen–free conditions. Germ-free Cd1d–/– mice exhibited a defect in Paneth cell granule ultrastructure and ability to degranulate after bacterial colonization. In vitro, NKT cells were shown to induce the release of lysozyme from intestinal crypts. Together, these data support a role for Cd1d in regulating intestinal colonization through mechanisms that include the control of Paneth cell function. PMID:19349688

  8. Studies on the age-dependent proliferation kinetics of the epithelium of the rat small intestine

    International Nuclear Information System (INIS)

    Kranz, D.; Dietze, F.; Laue, R.; Fuhrmann, I.

    1980-01-01

    The small intestine of 244 Wistar rats, aged 6 days, 6 weeks, 6, 12, 23, and 28 months, respectively. were investigated autoradiographically as to their age-dependent cell proliferation kinetics of the mucosal epithelial cells. There were age-dependent differences concerning the hourly regeneration ratio of the crypt cells and the migration velocity of the enterocytes. Both parameters became greater while the existing non growth fraction became smaller with increasing age. The non growth fraction seems to be a reserve being involved into the proliferating pool if required

  9. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  10. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    Science.gov (United States)

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

  11. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    Science.gov (United States)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    The Wawel ensemble, including the Royal Castle, the Wawel Cathedral and other monuments, is perched on top of the Wawel hill immediately south of the Cracow Old Town, and is by far the most important collection of buildings in Poland. St. Leonard's Crypt is located under the Wawel Cathedral of St Stanislaus BM and St Wenceslaus M. It was built in the years 1090-1117 and was the western crypt of the pre-existing Romanesque Wawel Cathedral, so-called Hermanowska. Pope John Paul II said his first Mass on the altar of St. Leonard's Crypt on November 2, 1946, one day after his priestly ordination. The interior of the crypt is divided by eight columns into three naves with vaulted ceiling and ended with one apse. The tomb of Bishop Maurus, who died in 1118, is in the middle of the crypt under the floor; an inscription "+ MAVRVS EPC MCXVIII +" indicates the burial place and was made in 1938 after the completion of archaeological works which resulted in the discovery of this tomb. Moreover, the crypt hosts the tombs of six Polish kings and heroes: Michał Korybut Wiśniowiecki (King of the Polish-Lithuanian Commonwealth), Jan III Sobieski (King of the Polish-Lithuanian Commonwealth and Commander at the Battle of Vienna), Maria Kazimiera (Queen of the Polish-Lithuanian Commonwealth and consort to Jan III Sobieski), Józef Poniatowski (Prince of Poland and Marshal of France), Tadeusz Kościuszko (Polish general, revolutionary and a Brigadier General in the American Revolutionary War) and Władysław Sikorski (Prime Minister of the Polish Government in Exile and Commander-in-Chief of the Polish Armed Forces). The adjacent six crypts and corridors host the tombs of the other Polish kings, from Sigismund the Old to Augustus II the Strong, their families and several Polish heroes. In May 2015, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" organised and offered a Training School (TS) on the

  12. β-Catenin stabilization imparts crypt progenitor phenotype to hyperproliferating colonic epithelia

    International Nuclear Information System (INIS)

    Sellin, Joseph H.; Wang Yu; Singh, Pomila; Umar, Shahid

    2009-01-01

    Utilizing the Citrobacter rodentium (CR)-induced transmissible murine colonic hyperplasia (TMCH) model, we provide mechanistic basis of changes in β-catenin/APC/CKIε leading to progression and/or regression of hyperplasia in vivo. In response to CR-induced TMCH, crypt lengths increased significantly between days 6-27 post-infection, followed by a steep decline by day 34. β-Cat 45 /total β-catenin were elevated on day 1 post-infection, preceding changes in crypt length, and persisted for 27 days before declining by day 34. Importantly, cellular CKIε and β-catenin co-immunoprecipitated and exhibited remarkable parallel changes in kinetics during hyperplasia/regression phases. β-catenin, phosphorylated at Ser33,37 and Thr41 (β-cat 33,37/41 ), was low till day 12, followed by gradual increase until day 27 before declining by day 34. GSK-3β exhibited significant Ser 9 -phosphorylation/inactivation at days 6-12 with partial recovery at days 27-34. Wild type (wt) APC (p312) levels increased at day 6 with transient proteolysis/truncation to p130 form between days 12 and 15; p312 reappeared by day 19 and returned to baseline by day 34. The kinetics of β-Cat 45 /β-catenin nuclear accumulation and acetylation (Ac-β-Cat Lys49 ) from days 6 to 27, followed by loss of phosphorylation/acetylation by day 34 was almost identical; Tcf-4 co-immunoprecipitated with β-Cat 45 /β-catenin and localized immunohistochemically to β-Cat 41/45 -positive regions leading to elevated cyclin D1 expression, during the hyperproliferative, but not regression phases of TMCH. CKIε mediated phosphorylation of β-Cat 45 , resulting in stabilization/nuclear translocation of β-Cat 45 may be critical for maintaining proliferation at days 6-27. Reversal of GSK-3β phosphorylation and APC changes may be equally critical during the regression phase from days 27 to 34

  13. Morphologic and cytoproliferative patterns of duodenal mucosa in two patients after long-term total parenteral nutrition: changes with oral refeeding and relation to intestinal resection.

    Science.gov (United States)

    Pironi, L; Paganelli, G M; Miglioli, M; Biasco, G; Santucci, R; Ruggeri, E; Di Febo, G; Barbara, L

    1994-01-01

    The morphologic and cytoproliferative patterns of the duodenal mucosa of two adult patients, one of whom had a short bowel, were evaluated after more than 2 months of postoperative total parenteral nutrition and 2 and 12 months after the resumption of oral alimentation. Morphometric analysis was performed on routinely processed duodenal biopsies. Cell proliferation was evaluated by means of in vitro bromodeoxyuridine uptake. The results were compared with those obtained in five healthy controls. After parenteral nutrition, patients showed significantly lower villus height and crypt depth than those of controls and a normal bromodeoxyuridine labeling index. After 2 months of refeeding, villus and crypt returned to normal, and the labeling index was increased. After 12 months of oral refeeding, labeling index, villus height, and crypt depth were similar to those of controls. The patient with the short bowel showed a number of cells per unit length of villus and crypt significantly greater than those of the controls and of the patient who underwent shorter intestinal resection. In human duodenal mucosa, (1) hypoplasia develops after long-term total parenteral nutrition; (2) mucosal recovery occurs through an increased cell proliferation after oral refeeding; and (3) extensive small bowel resection determines the development of relative hyperplasia.

  14. Functional morphology, biology and sexual strategy of the circumboreal, adventitious crypt-building, Crenella decussata (Bivalvia: Mytiloidea: Crenellidae)

    DEFF Research Database (Denmark)

    Morton, Brian; Dinesen, Grete E.; Ockelmann, Kurt W.

    2016-01-01

    The anatomy of Crenella decussata (Mytiloidea) is described. Individuals of this circumboreal species occupy granular crypts composed of sand grains held in place by mucus. The swollen basal region of the tubule is occupied by an individual, which connects to the sediment surface by two posterior...... to the prodissoconch stage. Subsequently, these larvae are transferred to the exhalant tube of the crypt wherein they attach by a single fine byssal thread and are further brooded until the crawl-away juvenile stage is attained. Experimental studies of larval behaviour suggest that parental pheromones sustain...... the female/offspring bond. Newly hatched individuals responded to parental exhalant water by actively attaching themselves using a byssal thread. This response persisted for 28 days, but not after 55 days when, we suggest, the pheromonal response ceases and offspring are developed sufficiently to take up...

  15. Dietary sucrose and starch affect dysplastic characteristics in carcinogen-induced aberrant crypt foci in rat colon.

    Science.gov (United States)

    Caderni, G; Lancioni, L; Luceri, C; Giannini, A; Lodovici, M; Biggeri, A; Dolara, P

    1997-03-19

    To study whether dietary carbohydrates affect dysplasia in aberrant crypt foci (ACF), rats treated with 1,2-dimethilhydrazine (DMH) were fed for three months with diets containing 46% sucrose or corn starch. The number of ACF/colon in the two dietary groups was similar (P = 0.58), but ACF were smaller in the starch than in sucrose group (P colon carcinogenesis while sucrose in the diet is detrimental, promoting the dysplasia of preneoplastic lesions like ACF.

  16. A Reinterpretation of the Crystal Structure Analysis of [K(crypt-222)]+CF3-: No Proof for the Trifluoromethanide Ion.

    Science.gov (United States)

    Becker, Sabine; Müller, Peter

    2017-05-23

    Critically discussing and, if necessary, questioning results presented by other researchers has always been a vitally important process in science. Only through fruitful discourse does science arrive at broadly accepted hypotheses that finally become what we accept as scientific truth. In the spirit of this time-honored tradition, we have examined the crystal structure as well as X-ray diffraction data of the proposed compound [K(crypt-222)] + CF 3 - , which has recently been published. We arrived at the conclusion that the claim of the authors to have successfully and unambiguously characterized the ionic [K(crypt-222)] + CF 3 - through single-crystal X-ray diffraction is not sustainable. Even though it is possible that the original authors have indeed encountered the proposed species, the purpose of this report is to point out that the original authors cannot use the presented crystallographic data and model as proof for the existence of [K(crypt-222)] + CF 3 - . The reason for our conclusion is two-fold: firstly, the crystal structure was not refined to established standards of good crystallographic practice and secondly, even if best practices of structure determination are employed, the submitted diffraction data do not allow establishing conclusively the true nature of the compound at hand. Recognizing that this gives charge unbalance we have not resolved, we nevertheless suggest an alternative molecular model, [K(crypt-222)]⋅CHF 3 , to demonstrate the ambiguity of the diffraction data submitted by the original authors. However, because of this ambiguity, it is important to point out that the purpose of this report is not (and cannot be) the determination of the true nature of the compound at hand; we would merely like to demonstrate that an alternative interpretation of the original diffraction data is possible and, hence, that the conclusion drawn by the original authors is not unambiguously supported by their own data. © 2017 Wiley-VCH Verlag GmbH & Co

  17. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Laurens J Ceulemans

    Full Text Available The farnesoid X receptor (FXR is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA could attenuate intestinal ischemia reperfusion injury.In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping, 3 conditions were tested (n = 16/group: laparotomy only (sham group; ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group; ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group. Vehicle or OCA (INT-747, 2*30mg/kg was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP; histology (morphologic injury to villi/crypts and villus length; intestinal permeability (Ussing chamber; endotoxin translocation (Lipopolysaccharide assay; cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13; apoptosis (cleaved caspase-3; and autophagy (LC3, p62.It was found that intestinal IRI was associated with high mortality (90%; loss of intestinal integrity (structurally and functionally; increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition.Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn

  18. Experimental study on induction of intestinal metaplasia in the gastric mucosa

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu

    1979-01-01

    Attempts were made to learn about an optimal condition for the induction of intestinal metaplasia in the gastric mucosa. The gastric region of 5-week-old female A/HeJ mice or Wistar rats were irradiated with a total of 3,000 rad x-ray. In addition, the effect of immunization by allogenic stomach antigen on the intestinalization was studied in rats irradiated with 500 rads of x-ray daily for 6 times. Disaccharidase and alkaline phosphatase activities appeared but morphological intestinal metaplasia was not observed in A/HeJ mice irradiated with 500 rads x 6 of x-ray. The appearance of marker enzymes of small intestine preceeded that of crypts having a few goblet cell among normal gastric cells in rats irradiated with 500 rads of x-ray. In groups of rats injected with allogenic stomach antigen plus x-irradiation the process of intestinalization was accelerated. The similar results were obtained in rats irradiated with 1,000 rad of x-ray 3 times There was several glands with intestinal metaplasia in the intact pyloric mucosa, but not in the ulcerative mucosa. On the other hand, intestinal metaplasia developed more later in fundic mucosa which was usually atrophy due to the loss of parietal cell mass. There was an intimate association among the parietal cell loss in the fundic gland, a rise in pH value and the development of intestinal metaplasia. In above groups with a smaller divided dose no case of gastric adenocarcinoma was detected during observation period up to 52nd or 80th week. Although a larger divided dose (1,500 rads x 2) was effective in inducing gastric adenocarcinoma (57.1%) but less effective in inducing intestinalization of any kind. No evidence of direct association between intestinalization and cancerization in the glandular stomach was demonstrated in the present study. (author)

  19. THE PROBIOTIC Enterococcus faecium MODIFIES THE INTESTINAL MORPHOMETRIC PARAMETERS IN WEANING PIGLETS

    Directory of Open Access Journals (Sweden)

    Johana Andrea Ciro Galeano

    2016-01-01

    Full Text Available Global trends for animal production have seen a decrease in the use of antimicrobial compounds in feed, generating the need to implement new nutritional strategies that stimulate growth and promote intestinal health. This study aimed to determine whether the addition of E. faecium in drinking water improves intestinal morphometric parameters in post- weaning pigs compared with the probiotics strains L. acidophilus and L. casei on days 1 (21 days of age, 15 and 30 postweaning. The small intestine was completely removed to evaluate the morphometric parameters (length and width of villi and crypts in the different intestinal segments (duodenum, jejunum, and ileum. They were fed for 30 days with two diets: commercial diet with or without antibiotics. The different probiotics, L. acidophillus, L. casei and E. faecium, were administered in the drinking water of the animals that consumed the commercial diet without antibiotics. A randomized block design in split-plot arrangement was used. There was a significant increase (P<0.01 in the width and length of villi, and a decrease (P<0.01 in the values obtained for the width and depth of crypts in the animals that consumed E .faecium, as compared to those that consumed the diet with addition of antibiotics. The use of probiotics, especially E. faecium, is a nutritional treatment strategy when antimicrobial compound are used, improving the intestinal morphometric parameters and, at the same time, the digestive and productive parameters of the animals. Work is in progress to investigate the effects of probiotic supplementation on the mofication of gut microbiota of post-weaning piglets

  20. Mucoadhesive formulation of Bidens pilosa L. (Asteraceae reduces intestinal injury from 5-fluorouracil-induced mucositis in mice

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Marcelino de Ávila

    2015-01-01

    Full Text Available Gastrointestinal mucositis induced during cancer treatment is considered a serious dose-limiting side effect of chemotherapy and/or radiotherapy. Frequently, interruption of the cancer treatment due to this pathology leads to a reduction in cure rates, increase of treatment costs and decrease life quality of the patient. Natural products such as Bidens pilosa L. (Asteraceae, represent a potential alternative for the treatment of mucositis given its anti-inflammatory properties. In this study, B. pilosa glycolic extract was formulated (BPF with poloxamer, a mucoadhesive copolymer, was used for treatment of 5-fluorouracil (5-FU-induced mucositis in mice. As expected, animals only treated with 5-FU (200 mg/kg presented marked weight loss, reduction of intestinal villi, crypts and muscular layer, which was associated with severe disruption of crypts, edema, inflammatory infiltrate and vacuolization in the intestinal tissue, as compared to the control group and healthy animals only treated with BPF. On the other hand, the treatment of intestinal mucositis-bearing mice with BPF (75, 100 or 125 mg/kg managed to mitigate clinical and pathologic changes, noticeably at 100 mg/kg. This dose led to the restoration of intestinal proliferative activity through increasing Ki-67 levels; modulated the expression of Bax, Bcl2 and p53 apoptotic markers protecting intestinal cells from cell death. Moreover, this treatment regulated lipid peroxidation and inflammatory infiltration. No acute toxic effects were observed with this formulation. This work demonstrated that BPF was safe and effective against 5-FU-induced intestinal mucositis in mice. Additional studies are already in progress to further characterize the mechanisms involved in the protective effects of this technological formulation toward the development of a new medicine for the prevention and treatment of intestinal injury in patients undergoing chemotherapy/radiotherapy.

  1. Chemopreventive efficacy of Andrographis paniculata on azoxymethane-induced aberrant colon crypt foci in vivo.

    Directory of Open Access Journals (Sweden)

    Nawal Al-Henhena

    Full Text Available Andrographis paniculata is a grass-shaped medicinal herb, traditionally used in Southeast Asia. The aim of this study was to evaluate the chemoprotective effects of A. paniculata on colorectal cancer. A. paniculata ethanol extract was tested on azoxymethane (AOM-induced aberrant crypt foci (ACF in vivo and in vitro. A. paniculata treated groups showed a significant reduction in the number of ACF of the treated rats. Microscopically, ACF showed remarkably elongated and stratified cells, and depletion of the submucosal glands of AOM group compared to the treated groups. Histologically, staining showed slightly elevated masses above the surrounding mucosa with oval or slit-like orifices. Immunohistochemically, expression of proliferating cell nuclear antigen (PCNA and β-catenin protein were down-regulated in the A. paniculata treated groups compared to the AOM group. When colon tissue was homogenized, malondialdehyde (MDA and nitric oxide (NO levels were significantly decreased, whereas superoxide dismutase (SOD activity was increased in the treated groups compared to the AOM group. A. paniculata ethanol extract showed antioxidant and free radical scavenging activity, as elucidated by the measure of oxidative stress markers. Further, the active fractions were assessed against cell lines of CCD841 and HT29 colon cancer cells.

  2. Effect of NSAIDs on Na⁺/H⁺ exchanger activity in rat colonic crypts.

    Science.gov (United States)

    Roginiel, Aliya C; Kohut, Daniel L; Kaur, Sumanpreet; Saleh, Ahmad M A; Weber, Theresa; Geibel, Peter; Singh, Harmeet; Geibel, John P

    2013-09-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs; 1) are widely recommended for several acute and chronic conditions. For example, both indomethacin and aspirin are taken for pain relief. Aspirin is also used for prevention of myocardial infarction, and indomethacin can be administered orally or as a suppository for patients with rheumatoid disease and other chronic inflammatory states. However, use of NSAIDs can cause damage to the mucosal barrier surrounding the gastrointestinal (GI) tract, increasing the risk of ulcer formation. While microencapsulation of NSAIDs has been shown to reduce upper GI injury, sustained release in the lower GI tract and colon may cause epithelial erosion due to increased acidification. The use of suppositories has also been linked to rectal and lower GI bleeding. In this study, we investigated the role of NSAIDs aspirin and indomethacin on Na⁺/H⁺ exchanger (NHE) activity in rat colonic crypts. By comparing average rates of pH recovery between control and NSAID perfusion runs, we were able to determine that both aspirin and indomethacin increase hydrogen extrusion into the colonic lumen. Through treatment with 5-ethylisopropyl amiloride (EIPA), amiloride, and zoniporide dihydrochloride, we further demonstrated that indomethacin specifically enhances proton excretion through regulation of apical NHE-3 and NHE-2 and to a lesser extent on basolateral NHE-1 and NHE-4. Our results suggest that clinical exposure to NSAIDs may affect colonic tissue at the site of selected NHE isoforms, resulting in modulation of transport and barrier function.

  3. Effects of dark chocolate on azoxymethane-induced colonic aberrant crypt foci.

    Science.gov (United States)

    Hong, Mee Young; Nulton, Emily; Shelechi, Mahshid; Hernández, Lisa M; Nemoseck, Tricia

    2013-01-01

    Epidemiologic evidence supports that diets rich in polyphenols promote health and may delay the onset of colon cancer. Cocoa and chocolate products have some of the highest polyphenolic concentrations compared to other polyphenolic food sources. This study tested the hypothesis that a diet including dark chocolate can protect against colon cancer by inhibiting aberrant crypt foci (ACF) formation, downregulating gene expression of inflammatory mediators, and favorably altering cell kinetics. We also investigated whether bloomed dark chocolate retains the antioxidant capacity and protects against colon cancer. Forty-eight rats received either a diet containing control (no chocolate), regular dark chocolate, or bloomed dark chocolate and were injected subcutaneously with saline or azoxymethane. Relative to control, both regular and bloomed dark chocolate diets lowered the total number of ACF (P = 0.022). Chocolate diet-fed animals downregulated transcription levels of COX-2 (P = 0.035) and RelA (P = 0.045). Both chocolate diets lowered the proliferation index (P = 0.001). These results suggest that a diet including dark chocolate can reduce cell proliferation and some gene expression involving inflammation, which may explain the lower number of early preneoplastic lesions. These results provide new insight on polyphenol-rich chocolate foods and colon cancer prevention.

  4. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Chen Sun

    Full Text Available A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs. Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.

  5. Injury-induced inhibition of small intestinal protein and nucleic acid synthesis

    International Nuclear Information System (INIS)

    Carter, E.A.; Hatz, R.A.; Yarmush, M.L.; Tompkins, R.G.

    1990-01-01

    Small intestinal mucosal weight and nutrient absorption are significantly diminished early after cutaneous thermal injuries. Because these intestinal properties are highly dependent on rates of nucleic acid and protein synthesis, in vivo incorporation of thymidine, uridine, and leucine into small intestinal deoxyribonucleic acid, ribonucleic acid, and proteins were measured. Deoxyribonucleic acid synthesis was markedly decreased with the lowest thymidine incorporation in the jejunum (p less than 0.01); these findings were confirmed by autoradiographic identification of radiolabeled nuclei in the intestinal crypts. Protein synthesis was decreased by 6 h postinjury (p less than 0.01) but had returned to normal by 48 h. Consistent with a decreased rate of protein synthesis, ribonucleic acid synthesis was also decreased 18 h postinjury (p less than 0.01). These decreased deoxyribonucleic acid, ribonucleic acid, and protein synthesis rates are not likely a result of ischemia because in other studies of this injury model, intestinal blood flow was not significantly changed by the burn injury. Potentially, factors initiating the acute inflammatory reaction may directly inhibit nucleic acid and protein synthesis and lead to alterations in nutrient absorption and intestinal barrier function after injury

  6. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  7. Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat

    Directory of Open Access Journals (Sweden)

    Koppelmann Tal

    2012-04-01

    Full Text Available Abstract Background Arginine (ARG and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX-induced intestinal damage in a rat. Methods Male rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression. Results MTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels. Conclusions Treatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat.

  8. The effect of hibernation on the morphology and histochemistry of the intestine of the greater mouse-eared bat, Myotis myotis.

    Science.gov (United States)

    Paksuz, Emine Pinar

    2014-10-01

    Seasonal variations in morphometry and histochemistry of the intestine have been examined in the active and hibernating greater mouse-eared bat, Myotis myotis, using histological and histochemical techniques. The results of morphometric analyses indicated that hibernation affected the villus height, villus width, crypt depth and crypt width of the duodenum, jejunum and ileum. Histochemical analysis showed that goblet cells of the small and large intestine contain acidic and neutral mucosubstances. According to the results obtained with Alcian Blue (pH 5.8)/PAS staining, hyaluronic acid is dominant in the goblet cells of the small and large intestine during both the hibernation and active periods. Chondroitin sulfate and dermatan sulfate, which are sulfated GAGs, were dominant, and very little heparan sulfate, heparin and keratan sulfate were present. Moreover, sulfated glycoproteins were also detected in the goblet cells of the small intestine in the active animals. The present study demonstrates that hibernation altered the examined morphometric and histochemical parameters of the intestine. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Intestinal microbiome landscaping

    NARCIS (Netherlands)

    Shetty, Sudarshan A.; Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; Vos, de Willem M.

    2017-01-01

    High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss

  10. Repairing organs: lessons from intestine and liver.

    Science.gov (United States)

    Gehart, Helmuth; Clevers, Hans

    2015-06-01

    The concept of organ regeneration has fascinated humanity from ancient mythology to modern science fiction. Recent advances offer the potential to soon bring such technology within the grasp of clinical medicine. Rapidly expanding insights into the intrinsic repair processes of the intestine and liver have uncovered significant plasticity in epithelial tissues. Harnessing this knowledge, researchers have recently created culture systems that enable the expansion of stem cells into transplantable tissue in vitro. Here we discuss how the growing tool set of stem cell biology can bring organ repair from fictitious narrative to medical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intestinal barrier integrity and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Pedersen, Jannie; Jørgensen, Peter

    2017-01-01

    of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society. Mucosal healing and re-establishment of barrier integrity is associated......, novel treatment strategies to accomplish mucosal healing and to re-establish normal barrier integrity in inflammatory bowel disease are warranted, and luminal stem cell-based approaches might have an intriguing potential. Transplantation of in vitro expanded intestinal epithelial stem cells derived...

  12. Multifaceted Interpretation of Colon Cancer Stem Cells.

    Science.gov (United States)

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-07-05

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but essential to cure the malignant foci completely. Herein, we review the recent evidence for intestinal stem cells and colon cancer stem cells, methods to detect the tumor-initiating cells, and clinical significance of cancer stem cell markers. We also describe the emerging problems of cancer stem cell theory, including bidirectional conversion and intertumoral heterogeneity of stem cell phenotype.

  13. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  14. Repairing organs: lessons from intestine and liver

    OpenAIRE

    Gehart Helmuth; Clevers Hans

    2015-01-01

    The concept of organ regeneration has fascinated humanity from ancient mythology to modern science fiction. Recent advances offer the potential to soon bring such technology within the grasp of clinical medicine. Rapidly expanding insights into the intrinsic repair processes of the intestine and liver have uncovered significant plasticity in epithelial tissues. Harnessing this knowledge researchers have recently created culture systems that enable the expansion of stem cells into transplantab...

  15. Effect of hypocholesterolemia on cholesterol synthesis in small intestine of diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Feingold, K.R.; Moser, A.H.

    1987-11-01

    Studies by our and other laboratories have demonstrated that cholesterol synthesis is increased in the small intestine of insulinopenic diabetic animals. In normal animals, many factors have been shown to regulate cholesterol synthesis in the small intestine, including changes in plasma cholesterol levels. The purpose of this study was to determine the effect of lowering plasma cholesterol levels on small intestine cholesterol synthesis in streptozocin-induced diabetic rats. In diabetic rats, 4-aminopyrazolo(3,4-d)pyrimidine (4-APP)-induced hypocholesterolemia (plasma cholesterol levels less than 20 mg/dl) resulted in a 2.5-fold increase in small intestine cholesterol synthesis, which was most marked in the distal small intestine, decreasing proximally. In the distal small intestine the incorporation of /sup 3/H/sub 2/O into cholesterol was 0.28 +/- 0.04 mumol.h-1.g-1 in diabetic rats versus 1.60 +/- 0.38 in diabetic rats administered 4-APP (P less than .01). This stimulation of cholesterol synthesis occurred in the upper villus, middle villus, and crypt cells isolated from the middle intestine of the 4-APP-treated diabetic animals. In agreement with these observations, functional hypocholesterolemia due to Triton WR-1339 administration also stimulated cholesterol synthesis 2.5-fold in the small intestine of normal and diabetic animals. In the distal small intestine, cholesterol synthesis was 0.43 +/- 0.10 mumol.h-1.g-1 in the diabetic rats versus 1.08 +/- 0.21 in diabetic rats treated with Triton WR-1339 (P less than .05). In both the 4-APP and Triton WR-1339 experiments, the response of the diabetic rats was similar to that observed in normal rats.

  16. Effect of hypocholesterolemia on cholesterol synthesis in small intestine of diabetic rats

    International Nuclear Information System (INIS)

    Feingold, K.R.; Moser, A.H.

    1987-01-01

    Studies by our and other laboratories have demonstrated that cholesterol synthesis is increased in the small intestine of insulinopenic diabetic animals. In normal animals, many factors have been shown to regulate cholesterol synthesis in the small intestine, including changes in plasma cholesterol levels. The purpose of this study was to determine the effect of lowering plasma cholesterol levels on small intestine cholesterol synthesis in streptozocin-induced diabetic rats. In diabetic rats, 4-aminopyrazolo[3,4-d]pyrimidine (4-APP)-induced hypocholesterolemia (plasma cholesterol levels less than 20 mg/dl) resulted in a 2.5-fold increase in small intestine cholesterol synthesis, which was most marked in the distal small intestine, decreasing proximally. In the distal small intestine the incorporation of 3 H 2 O into cholesterol was 0.28 +/- 0.04 mumol.h-1.g-1 in diabetic rats versus 1.60 +/- 0.38 in diabetic rats administered 4-APP (P less than .01). This stimulation of cholesterol synthesis occurred in the upper villus, middle villus, and crypt cells isolated from the middle intestine of the 4-APP-treated diabetic animals. In agreement with these observations, functional hypocholesterolemia due to Triton WR-1339 administration also stimulated cholesterol synthesis 2.5-fold in the small intestine of normal and diabetic animals. In the distal small intestine, cholesterol synthesis was 0.43 +/- 0.10 mumol.h-1.g-1 in the diabetic rats versus 1.08 +/- 0.21 in diabetic rats treated with Triton WR-1339 (P less than .05). In both the 4-APP and Triton WR-1339 experiments, the response of the diabetic rats was similar to that observed in normal rats

  17. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting.

    Science.gov (United States)

    Ito, Junta; Uchida, Hiroyuki; Machida, Naomi; Ohtake, Kazuo; Saito, Yuki; Kobayashi, Jun

    2017-04-01

    We investigated the effects of endogenous inducible (iNOS) and neuronal nitric oxide synthase on recovery from intestinal mucosal atrophy caused by fasting-induced apoptosis and decreased cell proliferation during refeeding in rats. Rats were divided into five groups, one of which was fed ad libitum, and four of which underwent 72 h of fasting, followed by refeeding for 0, 6, 24, and 48 h, respectively. iNOS and neuronal nitric oxide synthase mRNA and protein levels in jejunal tissues were measured, and mucosal height was histologically evaluated. Apoptotic indices, interferon-γ (IFN-γ) transcription levels, nitrite levels (as a measure of nitric oxide [NO] production),8-hydroxydeoxyguanosine formation (indicating reactive oxygen species [ROS] levels), crypt cell proliferation, and the motility indices (MI) were also estimated. Associations between mucosal height and NOS protein levels were determined using Spearman's rank correlation test. Notably, we observed significant increases in mucosal height and in neuronal nitric oxide synthase mRNA and protein expression as refeeding time increased. Indeed, there was a significant positive correlation between neuronal nitric oxide synthase protein level and mucosal height during the 48-h refeeding period ( r = 0.725, P fasting. Our finding suggests that refeeding likely repairs fasting-induced jejunal atrophy by suppressing iNOS expression and subsequently inhibiting NO, ROS, and IFN-γ as apoptosis mediators, and by promoting neuronal nitric oxide synthase production and inducing crypt cell proliferation via mechanical stimulation. Impact statement Besides providing new data confirming the involvement of iNOS and nNOS in intestinal mucosal atrophy caused by fasting, this study details their expression and function during recovery from this condition following refeeding. We demonstrate a significant negative correlation between iNOS and nNOS levels during refeeding, and associate this with cell proliferation

  18. Aberrant crypt foci and colon cancer: comparison between a short- and medium-term bioassay for colon carcinogenesis using dimethylhydrazine in Wistar rats

    Directory of Open Access Journals (Sweden)

    Rodrigues M.A.M.

    2002-01-01

    Full Text Available Aberrant crypt foci (ACF in the colon of carcinogen-treated rodents are considered to be the earliest hallmark of colon carcinogenesis. In the present study the relationship between a short-term (4 weeks and medium-term (30 weeks assay was assessed in a model of colon carcinogenesis induced by dimethylhydrazine (DMH in the rat. Six-week-old male Wistar rats were given subcutaneous injections of DMH (40 mg/kg twice a week for 2 weeks and killed at the end of the 4th or 30th week. ACF were scored for number, distribution pattern along the colon and crypt multiplicity in 0.1% methylene-blue whole-mount preparations. ACF were distinguished from normal crypts by their larger size and elliptical shape. The incidence, distribution and morphology of colon tumors were recorded. The majority of ACF were present in the middle and distal colon of DMH-treated rats and their number increased with time. By the 4th week, 91.5% ACF were composed of one or two crypts and 8.5% had three or more crypts, while by the 30th week 46.9% ACF had three or more crypts. Thus, a progression of ACF consisting of multiple crypts was observed from the 4th to the 30th week. Nine well-differentiated adenocarcinomas were found in 10 rats by the 30th week. Seven tumors were located in the distal colon and two in the middle colon. No tumor was found in the proximal colon. The present data indicate that induction of ACF by DMH in the short-term (4 weeks assay was correlated with development of well-differentiated adenocarcinomas in the medium-term (30 weeks assay.

  19. A B-Cell Gene Signature Correlates With the Extent of Gluten-Induced Intestinal Injury in Celiac DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Mitchell E. Garber

    2017-07-01

    Full Text Available Background & Aims: Celiac disease (CeD provides an opportunity to study autoimmunity and the transition in immune cells as dietary gluten induces small intestinal lesions. Methods: Seventy-three celiac disease patients on a long-term, gluten-free diet ingested a known amount of gluten daily for 6 weeks. A peripheral blood sample and intestinal biopsy specimens were taken before and 6 weeks after initiating the gluten challenge. Biopsy results were reported on a continuous numeric scale that measured the villus-height–to–crypt-depth ratio to quantify gluten-induced intestinal injury. Pooled B and T cells were isolated from whole blood, and RNA was analyzed by DNA microarray looking for changes in peripheral B- and T-cell gene expression that correlated with changes in villus height to crypt depth, as patients maintained a relatively healthy intestinal mucosa or deteriorated in the face of a gluten challenge. Results: Gluten-dependent intestinal damage from baseline to 6 weeks varied widely across all patients, ranging from no change to extensive damage. Genes differentially expressed in B cells correlated strongly with the extent of intestinal damage. A relative increase in B-cell gene expression correlated with a lack of sensitivity to gluten whereas their relative decrease correlated with gluten-induced mucosal injury. A core B-cell gene module, representing a subset of B-cell genes analyzed, accounted for the correlation with intestinal injury. Conclusions: Genes comprising the core B-cell module showed a net increase in expression from baseline to 6 weeks in patients with little to no intestinal damage, suggesting that these individuals may have mounted a B-cell immune response to maintain mucosal homeostasis and circumvent inflammation. DNA microarray data were deposited at the GEO repository (accession number: GSE87629; available: https://www.ncbi.nlm.nih.gov/geo/. Keywords: Oral Tolerance, Mucosal Immunity, Autoimmunity

  20. Short-term carcinogenicity testing of a potent murine intestinal mutagen, 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), in Apc1638N transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja

    1997-01-01

    Transgenic Apc1638N mice, heterozygous for a targeted frameshift mutation at codon 1638 of the endogenous adenomatous polyposis coli (APC) gene, are predisposed to develop multiple adenomas and adenocarcinomas along the intestinal tract and to a number of extra-intestinal lesions including, among...... increased number of small intestinal tumors as well as an increased number of aberrant crypt foci (ACF) were observed in male Apc(+)/Apc1638N mice compared with untreated transgenic mice, No differences in intestinal and mammary tumor multiplicity were observed between treated and control Apc(+)/Apc1638N...... others, mammary tumors, We have studied these mice in a short-term carcinogenicity test with 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), a potent murine small intestinal mutagen and lymphomagen. Upon dietary administration of 0.03% PhIP in a short-term (6 months) study, a significantly...

  1. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  2. Postirradiation intestinal mucosal kinetics in Indian desert gerbil (Meriones hurrianae Jerdon) after internal 32P β-irradiation

    International Nuclear Information System (INIS)

    Nandchahal, K.; Bhatiya, A.L.

    1988-01-01

    Intestinal mucosal kinetics was studied in Indian desert gerbil injected with 32 P at the dose rate of 2.593 kBq per g body weight. The total cell population, mitotic figures, pycnotic nuclei and necrotic cells in the crypt section were counted at 1, 3, 5, 7 and 14 days. The minimum values for total cell population and mitotic figures were obtained on day 1 when pycnotic nuclei and necrotic cells were highest. On day 3 partial recovery was seen in all the parameters studied and by day 14 recovery was complete. (author)

  3. Dimethoxyflavone isolated from the stem bark of Stereospermum ...

    African Journals Online (AJOL)

    trihydroxy-3/-(8//-acetoxy-7//-methyloctyl)-5, 6-dimethoxyflavone, a flavonoid isolated from the stem bark of Stereospermum kunthianum. The antidiarrhoeal activity was evaluated using rodent models with diarrhoea. The normal intestinal transit, ...

  4. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    Science.gov (United States)

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  5. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents

    Directory of Open Access Journals (Sweden)

    Siqueira Francisco JWS

    2011-08-01

    Full Text Available Abstract Background Methotrexate treatment has been associated to intestinal epithelial damage. Studies have suggested an important role of nitric oxide in such injury. The aim of this study was to investigate the role of nitric oxide (NO, specifically iNOS on the pathogenesis of methotrexate (MTX-induced intestinal mucositis. Methods Intestinal mucositis was carried out by three subcutaneous MTX injections (2.5 mg/kg in Wistar rats and in inducible nitric oxide synthase knock-out (iNOS-/- and wild-type (iNOS+/+ mice. Rats were treated intraperitoneally with the NOS inhibitors aminoguanidine (AG; 10 mg/Kg or L-NAME (20 mg/Kg, one hour before MTX injection and daily until sacrifice, on the fifth day. The jejunum was harvested to investigate the expression of Ki67, iNOS and nitrotyrosine by immunohistochemistry and cell death by TUNEL. The neutrophil activity by myeloperoxidase (MPO assay was performed in the three small intestine segments. Results AG and L-NAME significantly reduced villus and crypt damages, inflammatory alterations, cell death, MPO activity, and nitrotyrosine immunostaining due to MTX challenge. The treatment with AG, but not L-NAME, prevented the inhibitory effect of MTX on cell proliferation. MTX induced increased expression of iNOS detected by immunohistochemistry. MTX did not cause significant inflammation in the iNOS-/- mice. Conclusion These results suggest an important role of NO, via activation of iNOS, in the pathogenesis of intestinal mucositis.

  6. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice.

    Science.gov (United States)

    Swidsinski, Alexander; Ung, Victoria; Sydora, Beate C; Loening-Baucke, Vera; Doerffel, Yvonne; Verstraelen, Hans; Fedorak, Richard N

    2009-03-01

    Detergents and emulsifiers added to food may destroy the mucus barrier, which normally isolates bacteria from the intestinal wall, and lead to chronic bowel inflammation in susceptible persons. We investigated the influence of 2% carboxymethylcellulose (CMC) on the biostructure of the intestinal microbiota in IL-10 gene-deficient mice. Twenty to 27-week-old IL-10 gene-deficient mice received either 2% CMC solution (n = 7) or water (n = 6) orally for 3 weeks. Intestinal bacteria were investigated using fluorescence in situ hybridization in paraffin-fixed sections of the intestine. CMC-treated IL-10 gene-deficient mice demonstrated a massive bacterial overgrowth, distention of spaces between villi, with bacteria filling these spaces, adherence of bacteria to the mucosa, and migration of bacteria to the bottom of the crypts of Lieberkuehn. Leukocytes migrated into the intestinal lumen in 4 of the 7 CMC mice. The changes were similar to those observed in Crohn's disease in humans and were absent in control animals. CMC induces bacterial overgrowth and small bowel inflammation in susceptible animals. Because of its ubiquity in products and its unrestricted use in food of the industrial world, CMC is an ideal suspect to account for the rise of IBD in the 20th century.

  7. Intestinal Development and Function of Broiler Chickens on Diets Supplemented with Clinoptilolite

    Directory of Open Access Journals (Sweden)

    Q. J. Wu

    2013-07-01

    Full Text Available The purpose of this study was to evaluate the effect of natural clinoptilolite (NCLI and modified clinoptilolite (MCLI on broiler performance, gut morphology, intestinal length and weight, and gut digestive enzyme activity. A total of 240 d-old male chicks were randomly assigned to 3 treatments, each of which comprised 8 pens of 10 chicks per pen. Birds in the control group were fed the basal diet, while those in the experimental groups were fed diets supplemented with NCLI at 2% (NCLI group, or MCLI at 2% (MCLI group, respectively, for 42 d. Compared with the control, supplementation with NCLI or MCLI had no significant (p>0.05 effects on productive parameters from d 1 to 42. Supplementation with NCLI or MCLI had no influence on the relative length and weight of small intestine at d 1 to 21. But supplementation with NCLI or MCLI significantly reduced the relative weight of duodenum. Supplementation with MCLI and NCLI was associated with greater (p0.05 influence on the crypt depth in the jejunal and ileal mucosa compared with those in the controls. The addition of either NCLI or MCLI to the diet improved the activities of total protease, and amylase in the small intestinal contents. In conclusion, supplementation with NCLI or MCLI in diets improved intestinal morphology, increased the intestinal length and weigh and gut digestive enzyme activity.

  8. Influence of Different Diets on Development of DMH-Induced Aberrant Crypt Foci and Colon Tumor Incidence in Wistar Rats

    DEFF Research Database (Denmark)

    Kristiansen, E.; Thorup, I.; Meyer, Otto A.

    1995-01-01

    . The composition of the different diets was designed to achieve equivalent intakes of essential nutrients. Animals were killed after 10, 20, and 31 weeks. The study showed a pronounced effect of dietary composition on the development of DMH-induced ACF. The diet high in sucrose and dextrin caused a statistically......The present study was undertaken to investigate certain dietary factors known to affect the development of colon cancer for their ability to modulate aberrant crypt foci (ACI;). Male Wistar rats were initiated with oral noses of dimethylhydrazine dihydrochloride (DMH-2HCl, 20 mg/kg body wt) once...

  9. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  10. Identification and characterization of novel gut-associated lymphoid tissues in rat small intestine.

    Science.gov (United States)

    Hitotsumatsu, Osamu; Hamada, Hiromasa; Naganuma, Makoto; Inoue, Nagamu; Ishii, Hiromasa; Hibi, Toshifumi; Ishikawa, Hiromichi

    2005-10-01

    The crypt lamina propria of the mouse small intestine has been shown to harbor multiple tiny clusters filled with c-kit- and interleukin 7 receptor (IL-7R)-positive lympho-hemopoietic cells (cryptopatches; CPs). However, it has remained an open question whether similar lymphoid tissue are present in the gastrointesitinal tract in other animals. In the present study, we investigated whether the small intestine of rats harbored lymphoid tissues similar to mouse CPs. Immunohistochemical and flow cytometric analyses were carried out using various antibodies, including those to c-kit and IL-7R molecules. Lymphocyte-filled villi (LFVs), populated predominantly with c-kit- and IL-7 receptor (IL-7R)-positive cells and less with T cell receptor (TCR)-alphabeta T cells were found throughout the small intestine of young adult rats. Although LFVs were absent from fetal rat intestine, they were first detected at around 2 weeks after birth. Notably, in most LFVs that settled in the antimesenteric wall of the small intestine in young adult rats, immunoglobulin M-positive B cells were also detectable at the bottom of the LFVs. In aged rats, lymphocytes in some LFVs displayed a different phenotype, comprising a large B-cell area that included a germinal center. Thus, these clusters represent the first description of isolated lymphoid follicles (ILFs) in the rat small intestine. The present study provides the first evidence for c-kit- and IL-7R-positive lymphocyte clusters in the rat small intestine. Our data also indicating that LFVs and ILFs may constitute novel organized gut-associated lymphoid tissues in lamina propria of the rat small intestine.

  11. Identification of chicken lysozyme g2 and its expression in the intestine.

    Science.gov (United States)

    Nile, C J; Townes, C L; Michailidis, G; Hirst, B H; Hall, J

    2004-11-01

    Lysozyme is an important component of the innate immune system, protecting the gastrointestinal tract from infection. The aim of the present study was to determine if lysozyme is expressed in the chicken ( Gallus gallus) intestine and to characterise the molecular forms expressed. Immunohistochemical staining localised lysozyme to epithelial cells of the villous epithelium along the length of the small intestine. There was no evidence for lysozyme expression in crypt epithelium and no evidence for Paneth cells. Immunoblots of chicken intestinal protein revealed three proteins: a 14-kDa band consistent with lysozyme c, and two additional bands of approximately 21 and 23 kDa, the latter consistent with lysozyme g. RT-PCR analyses confirmed that lysozyme c mRNA is expressed in 4-day, but not older chicken intestine and lysozyme g in 4- to 35-day chicken intestine. A novel chicken lysozyme g2 gene was identified by in silico analyses and mRNA for this lysozyme g2 was identified in the intestine from chickens of all ages. Chicken lysozyme g2 shows similarity with fish lysozyme g, including the absence of a signal peptide and cysteines involved in disulphide bond formation of the mammalian and bird lysozyme g proteins. Analyses using SecretomeP predict that chicken lysozyme g2 may be secreted by the non-classical secretory pathway. We conclude that lysozyme is expressed in the chicken small intestine by villous enterocytes. Lysozyme c, lysozyme g and g2 may fulfil complimentary roles in protecting the intestine.

  12. Enterohemorrhagic Escherichia coli Reduces Mucus and Intermicrovillar Bridges in Human Stem Cell-Derived ColonoidsSummary

    Directory of Open Access Journals (Sweden)

    Julie In

    2016-01-01

    Full Text Available Background & Aims: Enterohemorrhagic Escherichia coli (EHEC causes over 70,000 episodes of foodborne diarrhea annually in the United States. The early sequence of events that precede life-threatening hemorrhagic colitis and hemolytic uremic syndrome is not fully understood due to the initial asymptomatic phase of the disease and the lack of a suitable animal model. We determined the initial molecular events in the interaction between EHEC and human colonic epithelium. Methods: Human colonoids derived from adult proximal colonic stem cells were developed into monolayers to study EHEC-epithelial interactions. Monolayer confluency and differentiation were monitored by transepithelial electrical resistance measurements. The monolayers were apically infected with EHEC, and the progression of epithelial damage over time was assessed using biochemical and imaging approaches. Results: Human colonoid cultures recapitulate the differential protein expression patterns characteristic of the crypt and surface colonocytes. Mucus-producing differentiated colonoid monolayers are preferentially colonized by EHEC. Upon colonization, EHEC forms characteristic attaching and effacing lesions on the apical surface of colonoid monolayers. Mucin 2, a main component of colonic mucus, and protocadherin 24 (PCDH24, a microvillar resident protein, are targeted by EHEC at early stages of infection. The EHEC-secreted serine protease EspP initiates brush border damage through PCDH24 reduction. Conclusions: Human colonoid monolayers are a relevant pathophysiologic model that allow the study of early molecular events during enteric infections. Colonoid monolayers provide access to both apical and basolateral surfaces, thus providing an advantage over three-dimensional cultures to study host–pathogen interactions in a controllable and tractable manner. EHEC reduces colonic mucus and affects the brush border cytoskeleton in the absence of commensal bacteria. Keywords

  13. Crypts, Phantoms, and Cultural Trauma: A Hauntological Approach to Recent British First World War Fiction

    Directory of Open Access Journals (Sweden)

    Anna Branach-Kallas

    2017-10-01

    Full Text Available In my article, I analyse selected British novels about the First World War published at the turn of the 20th century, from the theoretical perspectives proposed by Maria Torok and Nicolas Abraham in The Shell and the Kernel: Renewals of Psychoanalysis. Pat Barker in Toby’s Room (2012 and Sue Gee in Earth and Heaven (2000 imagine their protagonists’ difficult evolution from melancholia to mourning after the loss of brothers and/or lovers, at the front. The concepts of incorporation and illness of mourning are used to explore the complicated process of bereavement in Barker’s novel, where hauntology becomes a form of honte-ology, from the French honte, shame. In Gee’s beautifully melancholic novel, the haunting trauma of loss is subtly evoked by images of empty fields, neglected farms, urban vistas filled with spectral figures of unemployed veterans. Moreover, Earth and Heaven affects the reader so deeply because the understated pain of loss becomes movingly tangible after the accidental death of the central protagonist’s six-year-old son, which seems to “condense” the pain of war bereavements a decade after the conflict. My intention is also to demonstrate that Sebastian Faulks in Birdsong (1993, Esther Freud in Summer at Gaglow (1997 and Pat Barker in Another World (1998 approach the Great War as a phantom haunting their contemporary protagonists. The persistence of the unknown past has a profound impact on these characters and only by trying to relate to the Great War do they find answers to their existential dilemmas. This directs our attention to the incomplete processes of First World War mourning, the persistence of endless grief and the potential continuity of unresolved trauma(s in transgenerational memory. The five novels under consideration also problematise the issue of silence—the unsayable family secret and/or the collective disregard for the national past. The psychoanalytic concept of crypt illuminates the relation

  14. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  15. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

    Directory of Open Access Journals (Sweden)

    Zheng Ruan

    Full Text Available Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA supplemented group (orally 20 mg/kg and 50 mg/kg body. Dietary supplementation with CHA decreased (P<0.05 the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05 in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05 villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05 intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05 by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05 in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS.

  16. Intestinal parasites and tuberculosis

    Directory of Open Access Journals (Sweden)

    Anuar Alonso Cedeño-Burbano

    2017-10-01

    Conclusions: The available evidence was insufficient to affirm that intestinal parasites predispose to developing tuberculous. The studies carried out so far have found statistically insignificant results.

  17. Intestinal immunity in hypopituitary dwarf mice: effects of age.

    Science.gov (United States)

    Wang, Xin; Darcy, Justin; Cai, Chuan; Jin, Junfei; Bartke, Andrzej; Cao, Deliang

    2018-03-02

    Hypopituitary dwarf mice demonstrate advantages of longevity, but little is known of their colon development and intestinal immunity. Herein we found that Ames dwarf mice have shorter colon and colonic crypts, but larger ratio of mesenteric lymph nodes (MLNs) over body weight than age-matched wild type (WT) mice. In the colonic lamina propria (cLP) of juvenile Ames mice, more inflammatory neutrophils (Ā: 0.15% vs. 0.03% in WT mice) and monocytes (Ā: 7.97% vs. 5.15%) infiltrated, and antigen presenting cells CD11c+ dendritic cells (Ā: 1.39% vs. 0.87%), CD11b+ macrophages (Ā: 3.22% vs. 0.81%) and gamma delta T (γδ T) cells (Ā: 5.56% vs. 1.35%) were increased. In adult Ames dwarf mice, adaptive immune cells, such as IL-17 producing CD4+ T helper (Th17) cells (Ā: 8.3% vs. 4.7%) were augmented. In the MLNs of Ames dwarf mice, the antigen presenting and adaptive immune cells also altered when compared to WT mice, such as a decrease of T-regulatory (Treg) cells in juvenile Ames mice (Ā: 7.7% vs.10.5%), but an increase of Th17 cells (Ā: 0.627% vs.0.093%). Taken together, these data suggest that somatotropic signaling deficiency influences colon development and intestinal immunity.

  18. Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo.

    Science.gov (United States)

    Aoki-Yoshida, A; Saito, S; Fukiya, S; Aoki, R; Takayama, Y; Suzuki, C; Sonoyama, K

    2016-06-01

    Administration of Lactobacillus rhamnosus GG (LGG) has been reported to be therapeutically effective against acute secretory diarrhoea resulting from the structural and functional intestinal mucosal lesions induced by rotavirus infection; however, the underlying mechanisms remain to be completely elucidated. Because Toll-like receptor 3 (TLR3) plays a key role in the innate immune responses following the recognition of rotavirus, the present study examined whether LGG influences TLR3 gene expression in murine small intestine ex vivo and in vivo. We employed cultured intestinal organoids derived from small intestinal crypts as an ex vivo tissue model. LGG supplementation increased TLR3 mRNA levels in the intestinal organoids, as estimated by quantitative real-time polymerase chain reaction. Likewise, single and 7-day consecutive daily administrations of LGG increased TLR3 mRNA levels in the small intestine of C57BL/6N mice. The mRNA levels of other TLRs were not substantially altered both ex vivo and in vivo. In addition, LGG supplementation increased the mRNA levels of an antiviral type 1 interferon, interferon-α (IFN-α), and a neutrophil chemokine, CXCL1, upon stimulation with a synthetic TLR3 ligand, poly(I:C) in the intestinal organoids. LGG administration did not alter IFN-α and CXCL1 mRNA levels in the small intestine in vivo. Supplementation of other bacterial strains, Bifidobacterium bifidum and Lactobacillus paracasei, failed to increase TLR3 and poly(I:C)-stimulated CXCL1 mRNA levels ex vivo. We propose that upregulation of TLR3 gene expression may play a pivotal role in the therapeutic efficacy of LGG against rotavirus-associated diarrhoea. In addition, we demonstrated that intestinal organoids may be a promising ex vivo tissue model for investigating host-pathogen interactions and the antiviral action of probiotics in the intestinal epithelium.

  19. Red strain oryza sativa-unpolished thai rice prevents oxidative stress and colorectal aberrant crypt foci formation in rats.

    Science.gov (United States)

    Tammasakchai, Achiraya; Reungpatthanaphong, Sareeya; Chaiyasut, Chaiyavat; Rattanachitthawat, Sirichet; Suwannalert, Prasit

    2012-01-01

    Oxidative stress has been proposed to be involved in colorectal cancer development. Many dark pigments of plants have potent oxidative stress preventive properties. In this study, unpolished Thai rice was assessed for antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. Red strain unpolished Thai rice was also administered to rats exposed to azoxymethane (AOM) for induction of aberrant crypt foci (ACF). Serum malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) were investigated for cellular oxidative stress and serum antioxidants, respectively. Red pigment unpolished Thai rice demonstrated high antioxidant activity and was found to significantly and dose dependently decrease the total density and crypt multiplicity of ACF. Consumption of Thai rice further resulted in high serum antioxidant activity and low MDA cellular oxidative stress. Interestingly, the density of ACF was strongly related to MDA at r=0.964, while it was inversely related with FRAP antioxidants (r=-0.915, pred strain of unpolished Thai rice may exert potentially beneficial effects on colorectal cancer through decrease in the level of oxidative stress.

  20. The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Strandsby, Anne Bystrup; Larsen, Casper Kornbech

    2011-01-01

    Na+ absorption is mediated by epithelial Na+ channel (ENaC) in surface cells. Previously, we identified the large conductance Ca2+-activated K+ channel, KCa1.1 or big potassium (BK) channel, as the only relevant K+ secretory pathway in mouse distal colon. The exact localisation of K(Ca)1.1 channels...... along the crypt axis is, however, still controversial. The aim of this project was to further define the localisation of the K(Ca)1.1 channel in mouse distal colonic epithelium. Through quantification of mRNA extracted from micro-dissected surface and crypt cells, we confirmed that Na+/K+/2Cl- (NKCC1......-ENaC and KCa1.1 α-subunit were, however, under these circumstances substantially augmented (KCa1.1 α-subunit, twofold; NKCC1, twofold and ENaC, tenfold). Functionally, we show that ENaC-mediated Na+ absorption and BK channel-mediated K+ secretion are two independent processes. These findings show that KCa1...

  1. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  2. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  3. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  4. Effect of Ozone on Intestinal Epithelial Homeostasis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Igor Sukhotnik

    2015-01-01

    Full Text Available Background: The positive effects of ozone therapy have been described in many gastrointestinal disorders. The mechanisms of this positive effect of ozone therapy are poorly understood. The purpose of the present study was to investigate whether the use of ozone may potentiate the gut intestinal mucosal homeostasis in a rat model. Methods: Adult rats weighing 250–280 g were randomly assigned to one of three experimental groups of 8 rats each: 1 Control rats were given 2 mL of water by gavage and intraperitoneally (IP for 5 days; 2 O3-PO rats were treated with 2 mL of ozone/oxygen mixture by gavage and 2 mL of water IP for 5 days; 3 O3-IP rats were treated with 2 mL of water by gavage and 2 mL of ozone/oxygen mixture IP for 5 days. Rats were sacrificed on day 6. Bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, and cell proliferation and apoptosis were evaluated following sacrifice. Results: The group of O3-IP rats demonstrated a greater jejunal and ileal villus height and crypt depth, a greater enterocyte proliferation index in jejunum, and lower enterocyte apoptosis in ileum compared to control animals. Oral administration of the ozone/oxygen mixture resulted in a less significant effect on cell turnover. Conclusions: Treatment with an ozone/oxygen mixture stimulates intestinal cell turnover in a rat model. Intraperitoneal administration of ozone resulted in a more significant intestinal trophic effect than oral administration.

  5. Intestinal Barrier and Behavior.

    Science.gov (United States)

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses. © 2016 Elsevier Inc. All rights reserved.

  6. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation.

    Science.gov (United States)

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2010-11-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only

  7. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels

    NARCIS (Netherlands)

    Sachs, Norman; Tsukamoto, Yoshiyuki; Kujala, Pekka; Peters, Peter J.; Clevers, Hans

    2017-01-01

    Multiple recent examples highlight how stem cells can self-organize in vitro to establish organoids that closely resemble their in vivo counterparts. Single Lgr5+ mouse intestinal stem cells can be cultured under defined conditions forming ever-expanding epithelial organoids that retain cell

  8. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    Science.gov (United States)

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  9. Ontogenic timing mechanism initiates the expression of rat intestinal sucrase activity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, K.Y.; Holt, P.R.

    1986-03-01

    Morphologic and enzymic differentiation occurs in rat small intestinal epithelium during 16-20 days of postnatal life. This change is considered to be initiated by an ontogenic timing mechanism and is modulated by extrinsic systemic and luminal factors. The importance of the ontogenic timing was tested directly using a transplantation technique in which jejunal isografts from newborn (day 0) and 5-day-old (day 5) rats were implanted under the skin of newborn (day 0) hosts. Isografts showing cryptvillus architecture were obtained in 44% and 21% of transplants, respectively. Day 0 isografts and host intestine expressed sucrase activity at about 16-18 days of age and showed similar crypt cell labeling and epithelial migration after (3H)thymidine injection. Day 5 isografts expressed sucrase activity when the hosts were 13 days of age, whereas host intestine showed no detectable sucrase activity. Isograft lactase activities in both experimental transplant models were significantly higher than host intestinal lactase up to 28 days of age, suggesting that luminal factors are important in modulating lactase activity during the first 4 wk of postnatal life. It is concluded that (a) no systemic factors at day 13 inhibit the expression of sucrase activity and (b) an ontogenic timing mechanism in the jejunum initiates the expression of sucrase activity.

  10. Effect of fasting in the digestive system: histological study of the small intestine in house sparrows.

    Science.gov (United States)

    Funes, Samanta Celeste; Filippa, Verónica Palmira; Cid, Fabricio Damián; Mohamed, Fabián; Caviedes-Vidal, Enrique; Chediack, Juan Gabriel

    2014-10-01

    In birds and mammals the metabolic response to fasting has been studied and can be characterized by three consecutive phases reflecting metabolic and physiological adjustments. An effective way to minimize energy expenditure during food scarcity is to decrease the mass of the organs. As the digestive system is metabolically expensive to maintain, the small intestine and the liver are the most affected organs. We evaluated the effects of phase III starvation on the mass of the different organs and histological parameters on house sparrows, a small non-migrant bird. In a short period of time (34 h) we observed a larger reduction in the digestive organ mass when compared to the mass of the body and non-alimentary tissues. Furthermore, the intestinal mass was proportionally more reduced than its length and nominal surface area. A reduction on the intestinal mucosal layer also resulted in a shortening of villus (length and thickness) and crypt depth. Moreover, the morphology of the enterocytes changed from cylindrical to cubical, suggesting that the surface exposed to the lumen was conserved. This may indicate an adaptive response to the moment of refeeding. The nominal surface area/body mass remained constant in both groups and several histological parameters were reduced, suggesting that starving induces the atrophy of the small intestine. However, the goblet cells were conserved after fasting indicating a protective tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lysozyme transgenic goats' milk positively impacts intestinal cytokine expression and morphology.

    Science.gov (United States)

    Cooper, Caitlin A; Brundige, Dottie R; Reh, Wade A; Maga, Elizabeth A; Murray, James D

    2011-12-01

    In addition to its well-recognized antimicrobial properties, lysozyme can also modulate the inflammatory response. This ability may be particularly important in the gastrointestinal tract where inappropriate inflammatory reactions can damage the intestinal epithelium, leading to significant health problems. The consumption of milk from transgenic goats producing human lysozyme (hLZ) in their milk therefore has the potential to positively impact intestinal health. In order to investigate the effect of hLZ-containing milk on the inflammatory response, young pigs were fed pasteurized milk from hLZ or non-transgenic control goats and quantitative real-time PCR was performed to assess local expression of TNF-α, IL-8, and TGF-β1 in the small intestine. Histological changes were also investigated, specifically looking at villi width, length, crypt depth, and lamina propria thickness along with cell counts for intraepithelial lymphocytes and goblet cells. Significantly higher expression of anti-inflammatory cytokine TGF-β1 was seen in the ileum of pigs fed pasteurized milk containing hLZ (P = 0.0478), along with an increase in intraepithelial lymphocytes (P = 0.0255), and decrease in lamina propria thickness in the duodenum (P = 0.0001). Based on these results we conclude that consuming pasteurized milk containing hLZ does not induce an inflammatory response and improves the health of the small intestine in pigs.

  12. High-dose erythropoietin inhibits apoptosis and stimulates proliferation in neonatal rat intestine.

    Science.gov (United States)

    McPherson, Ronald J; Juul, Sandra E

    2007-10-01

    Erythropoietin (Epo) receptors are widely expressed in the small bowel of neonatal rats and evidence suggests Epo has important trophic effects in developing bowel. To compliment in vitro data, we directly examine in vivo the hypotheses that systemic Epo treatment can promote cell division and enterocyte migration, and arrest apoptosis in the ileum of neonatal rats. Epo (5000 U/kg s.c.) or vehicle treatments were given to one week old Sprague-Dawley rats (n = 86) along with timed injections of the thymidine analog 5-bromo-2-deoxyuridine (BrdU, 50mg/kg s.c.) to label DNA synthesis and track newly proliferating cells. To characterize the time course of effects, animals were killed at scheduled times from 30 min to 24 h after treatment. BrdU-containing cells were immunostained and counted in intestinal crypts, villi, and muscle wall of ileum. Effects of Epo on apoptosis were analyzed by TUNEL staining. Calibrated measurements were made to determine the density or relative proportion of BrdU- and TUNEL-positive cells. Systemic high-dose Epo promoted cell division in intestinal smooth muscle and enterocytes, stimulated migration of intestinal epithelial cells, and arrested apoptosis of enterocytes at the villous tips. These data provide in vivo evidence that Epo functions trophically in developing intestine tissues.

  13. Ghrelin improves intestinal mucosal atrophy during parenteral nutrition: An experimental study.

    Science.gov (United States)

    Yamada, Waka; Kaji, Tatsuru; Onishi, Shun; Nakame, Kazuhiko; Yamada, Koji; Kawano, Takafumi; Mukai, Motoi; Souda, Masakazu; Yoshioka, Takako; Tanimoto, Akihide; Ieiri, Satoshi

    2016-12-01

    Total parenteral nutrition (TPN) has been reported to be associated with mucosal atrophy of the small intestine. Ghrelin has hormonal, orexigenic, and metabolic activities. We investigated whether ghrelin improved intestinal mucosal atrophy using a TPN-supported rat model. Rats underwent jugular vein catheterization and were divided into four groups: TPN alone (TPN), TPN plus low-dose ghrelin (TPNLG), TPN plus high-dose ghrelin (TPNHG), and oral feeding with normal chow (OF). Ghrelin was administered continuously at dosages of 10 or 50 μg/kg/day. On day 6 rats were euthanized, and the small intestine was harvested and divided into the jejunum and ileum. Then the villus height (VH) and crypt depth (CD) were evaluated. The jejunal and ileal VH and CD in the TPN group were significantly decreased compared with those in the OF group. TPNHG improved only VH of the jejunum. TPNLG improved VH and CD of the jejunum and CD of the ileum. The improvement of TPNLG was significantly stronger than that in CD of the jejunum and ileum. TPN was more strongly associated with mucosal atrophy in the jejunum than in the ileum. Low-dose intravenous administration of ghrelin improved TPN-associated intestinal mucosal atrophy more effectively than high-dose administration. Copyright © 2016. Published by Elsevier Inc.

  14. Eicosapentaenoic acid (EPA) efficacy for colorectal aberrant crypt foci (ACF): a double-blind randomized controlled trial

    International Nuclear Information System (INIS)

    Higurashi, Takuma; Ohkubo, Hidenori; Sakai, Eiji; Maeda, Shin; Morita, Satoshi; Natsumeda, Yutaka; Nagase, Hajime; Nakajima, Atsushi; Hosono, Kunihiro; Endo, Hiroki; Takahashi, Hirokazu; Iida, Hiroshi; Uchiyama, Takashi; Ezuka, Akiko; Uchiyama, Shiori; Yamada, Eiji

    2012-01-01

    Colorectal cancer (CRC) is one of the most commonly occurring neoplasms and a leading cause of cancer death worldwide, and new preventive strategies are needed to lower the burden of this disease. Eicosapentaenoic acid (EPA), the omega-3 polyunsaturated fatty acid that is widely used in the treatment of hyperlipidemia and prevention of cardiovascular disease, has recently been suggested to have a suppressive effect on tumorigenesis and cancer cell growth. In CRC chemoprevention trials, in general, the incidence of polyps or of the cancer itself is set as the study endpoint. Although the incidence rate of CRC would be the most reliable endpoint, use of this endpoint would be unsuitable for chemoprevention trials, because of the relatively low occurrence rate of CRC in the general population and the long-term observation period that it would necessitate. Moreover, there is an ethical problem in conducting long-term trials to determine whether a test drug might be effective or harmful. Aberrant crypt foci (ACF), defined as lesions containing crypts that are larger in diameter and stain more darkly with methylene blue than normal crypts, are considered as a reliable surrogate biomarker of CRC. Thus, we devised a prospective randomized controlled trial as a preliminary study prior to a CRC chemoprevention trial to evaluate the chemopreventive effect of EPA against colorectal ACF formation and the safety of this drug, in patients scheduled for polypectomy. This study is a multicenter, double-blind, placebo-controlled, randomized controlled trial to be conducted in patients with both colorectal ACF and colorectal polyps scheduled for polypectomy. Eligible patients shall be recruited for the study and the number of ACF in the rectum counted at the baseline colonoscopy. Then, the participants shall be allocated randomly to either one of two groups, the EPA group and the placebo group. Patients in the EPA group shall receive oral 900-mg EPA capsules thrice daily (total daily

  15. Eicosapentaenoic acid (EPA) efficacy for colorectal aberrant crypt foci (ACF): a double-blind randomized controlled trial.

    Science.gov (United States)

    Higurashi, Takuma; Hosono, Kunihiro; Endo, Hiroki; Takahashi, Hirokazu; Iida, Hiroshi; Uchiyama, Takashi; Ezuka, Akiko; Uchiyama, Shiori; Yamada, Eiji; Ohkubo, Hidenori; Sakai, Eiji; Maeda, Shin; Morita, Satoshi; Natsumeda, Yutaka; Nagase, Hajime; Nakajima, Atsushi

    2012-09-19

    Colorectal cancer (CRC) is one of the most commonly occurring neoplasms and a leading cause of cancer death worldwide, and new preventive strategies are needed to lower the burden of this disease. Eicosapentaenoic acid (EPA), the omega-3 polyunsaturated fatty acid that is widely used in the treatment of hyperlipidemia and prevention of cardiovascular disease, has recently been suggested to have a suppressive effect on tumorigenesis and cancer cell growth. In CRC chemoprevention trials, in general, the incidence of polyps or of the cancer itself is set as the study endpoint. Although the incidence rate of CRC would be the most reliable endpoint, use of this endpoint would be unsuitable for chemoprevention trials, because of the relatively low occurrence rate of CRC in the general population and the long-term observation period that it would necessitate. Moreover, there is an ethical problem in conducting long-term trials to determine whether a test drug might be effective or harmful. Aberrant crypt foci (ACF), defined as lesions containing crypts that are larger in diameter and stain more darkly with methylene blue than normal crypts, are considered as a reliable surrogate biomarker of CRC. Thus, we devised a prospective randomized controlled trial as a preliminary study prior to a CRC chemoprevention trial to evaluate the chemopreventive effect of EPA against colorectal ACF formation and the safety of this drug, in patients scheduled for polypectomy. This study is a multicenter, double-blind, placebo-controlled, randomized controlled trial to be conducted in patients with both colorectal ACF and colorectal polyps scheduled for polypectomy. Eligible patients shall be recruited for the study and the number of ACF in the rectum counted at the baseline colonoscopy. Then, the participants shall be allocated randomly to either one of two groups, the EPA group and the placebo group. Patients in the EPA group shall receive oral 900-mg EPA capsules thrice daily (total daily

  16. Eicosapentaenoic acid (EPA efficacy for colorectal aberrant crypt foci (ACF: a double-blind randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Higurashi Takuma

    2012-09-01

    Full Text Available Abstract Background Colorectal cancer (CRC is one of the most commonly occurring neoplasms and a leading cause of cancer death worldwide, and new preventive strategies are needed to lower the burden of this disease. Eicosapentaenoic acid (EPA, the omega-3 polyunsaturated fatty acid that is widely used in the treatment of hyperlipidemia and prevention of cardiovascular disease, has recently been suggested to have a suppressive effect on tumorigenesis and cancer cell growth. In CRC chemoprevention trials, in general, the incidence of polyps or of the cancer itself is set as the study endpoint. Although the incidence rate of CRC would be the most reliable endpoint, use of this endpoint would be unsuitable for chemoprevention trials, because of the relatively low occurrence rate of CRC in the general population and the long-term observation period that it would necessitate. Moreover, there is an ethical problem in conducting long-term trials to determine whether a test drug might be effective or harmful. Aberrant crypt foci (ACF, defined as lesions containing crypts that are larger in diameter and stain more darkly with methylene blue than normal crypts, are considered as a reliable surrogate biomarker of CRC. Thus, we devised a prospective randomized controlled trial as a preliminary study prior to a CRC chemoprevention trial to evaluate the chemopreventive effect of EPA against colorectal ACF formation and the safety of this drug, in patients scheduled for polypectomy. Methods This study is a multicenter, double-blind, placebo-controlled, randomized controlled trial to be conducted in patients with both colorectal ACF and colorectal polyps scheduled for polypectomy. Eligible patients shall be recruited for the study and the number of ACF in the rectum counted at the baseline colonoscopy. Then, the participants shall be allocated randomly to either one of two groups, the EPA group and the placebo group. Patients in the EPA group shall receive oral

  17. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Synbiotic Containing Enterococcus faecium and Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Wageha Awad

    2008-11-01

    Full Text Available A feeding trial was conducted on broiler chickens to study the effects of the synbiotic BIOMIN IMBO [a combination of Enterococcus faecium, a prebiotic (derived from chicory and immune modulating substances (derived from sea algae], with a dose of 1 kg/ton of the starter diets and 0.5 kg/ton of the grower diets on the intestinal morphometry and nutrient absorption. The general performance was improved (P < 0.05 by the dietary inclusion of synbiotic compared with the controls. Furthermore, the addition of synbiotic increased (P < 0.001 the villus height/crypt depth ratio and villus height in ileum. However, the ileal crypt depth was decreased by dietary supplementation of synbiotic compared with control. The addition of glucose in Ussing chamber produced a significant increase (P ≤ 0.001 in short-circuit current (Isc in jejunum and colon relative to the basal values in both synbiotic and control groups. However, in jejunum the percentage of Isc increase after glucose addition was higher for synbiotic group (333 % than control group (45 %. In conclusion, dietary inclusion of synbiotic BIOMIN IMBO increased the growth performance and improved intestinal morphology and nutrient absorption.

  18. Mycotoxins and the intestine

    Directory of Open Access Journals (Sweden)

    Leon Broom

    2015-12-01

    Full Text Available Fungal biochemical pathways can yield various compounds that are not considered to be necessary for their growth and are thus referred to as secondary metabolites. These compounds have been found to have wide ranging biological effects and include potent poisons (mycotoxins. Mycotoxins invariably contaminate crops and (thus animal feeds. The intestine is the key link between ingested mycotoxins and their detrimental effects on the animal. Effects on the intestine, or intestinal environment, and immune system have been reported with various mycotoxins. These effects are almost certainly occurring across species. Most, if not all, of the reported effects of mycotoxins are negative in terms of intestinal health, for example, decreased intestinal cell viability, reductions in short chain fatty acid (SCFA concentrations and elimination of beneficial bacteria, increased expression of genes involved in promoting inflammation and counteracting oxidative stress. This challenge to intestinal health will predispose the animal to intestinal (and systemic infections and impair efficient digestion and absorption of nutrients, with the associated effect on animal productivity.

  19. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury.

    Science.gov (United States)

    Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the

  20. Effects of high fat fish oil and high fat corn oil diets on initiation of AOM-induced colonic aberrant crypt foci in male F344 rats

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Heemskerk, S.; Berg, H. van den; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of

  1. Further textile artefacts from the Royal Crypt at Prague Castle (CZ). A tablet-woven silk band and fragments of a child's funeral tunic

    Czech Academy of Sciences Publication Activity Database

    Bravermanová, M.; Březinová, Helena

    2015-01-01

    Roč. 2015, č. 57 (2015), s. 104-110 ISSN 2245-7135 R&D Projects: GA ČR(CZ) GA14-06451S Institutional support: RVO:67985912 Keywords : Royal Crypt * Anna Falcká * tablet -weaving * archaeological textile Subject RIV: AC - Archeology, Anthropology, Ethnology

  2. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...... membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption...

  3. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...

  4. AVALIAÇÃO MORFO-HISTOLÓGICA DA MUCOSA INTESTINAL DE COELHOS ALIMENTADOS COM DIFERENTES NÍVEIS E FONTES DE FIBRA

    Directory of Open Access Journals (Sweden)

    Alex Martins Varela de Arruda

    2008-01-01

    Full Text Available To evaluate the effects of fiber level and source in diets on the intestinal morphology and histology of duodenum, jejunum and ileum medium portions, it used 40 rabbits New Zealand White race in growing phase, weaned with 35 days of age, allocated in individual cages in the entirely randomized design with 2x2 factorial outline. Samples of duodenum, jejunum and ileum of animals slaughtered at 45 days of age were collected to the present study. It was observed significant interaction of the dietary treatments on the intestinal morphology and histology parameters, being verify that diets with high e low level of fiber with soybean hulls propitiated the greater values of villus height and those diets with high e low level of fiber with alfalfa hay propitiated the bigger values of crypt depth, while the number of goblet cells was larger to the diet with high level of fiber contained soybean hulls. And so there was significant effect of the food quality in terms of fiber components on the extrusion and turnover in intestinal mucous membrane cells, it was evidenced by the greater villus height:crypt depth ratio provided with the diets contained soybean hulls in relation to those diets contained alfalfa hay.

  5. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model.

    Science.gov (United States)

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine; Chelikani, Prasanth K; Zheng, Huiyuan; Berthoud, Hans-Rudolph; Holst, Jens J; Sigalet, David L

    2010-05-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome. Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days. Weight and serum hormonal levels (glucagon-like peptide-2 [GLP-2], PYY) were quantified. Adaptation was assessed by intestinal morphology and crypt cell kinetics in each intestinal limb of the bypass and the equivalent points in the sham intestine. Mucosal growth factors and expression of transporter proteins were measured in each limb of the model. The GRYB animals lost weight compared to controls and exhibited significant adaptive changes with increased bowel width, villus height, crypt depth, and proliferation indices in the alimentary and common intestinal limbs. Although the biliary limb did not adapt at the mucosa, it did show an increased bowel width and crypt cell proliferation rate. The bypass animals had elevated levels of systemic PYY and GLP-2. At the mucosal level, insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) increased in all limbs of the bypass animals, whereas keratinocyte growth factor (KGF) and epidermal growth factor (EGF) had variable responses. The expression of the passive transporter of glucose, GLUT-2, expression was increased, whereas GLUT-5 was unchanged in all limbs of the bypass groups. Expression of the active mucosal transporter of glucose, SGLT-1 was decreased in the alimentary limb. Adaptation occurred maximally in intestinal segments stimulated by nutrients. Partial adaptation in the biliary limb may reflect the effects of systemic hormones. Mucosal content of IGF-1, bFGF, and EGF appear to be stimulated by systemic hormones

  6. Paneth Cells and Necrotizing Enterocolitis: A novel hypothesis for disease pathogenesis

    OpenAIRE

    McElroy, Steven J.; Underwood, Mark A.; Sherman, Michael P.

    2012-01-01

    Current models of necrotizing enterocolitis (NEC) propose intraluminal microbes destroy intestinal mucosa and activate an inflammatory cascade that ends in necrosis. We suggest an alternate hypothesis wherein NEC is caused by injury to Paneth cells (PCs) in the intestinal crypts. PCs are specialized epithelia that protect intestinal stem cells from pathogens, stimulate stem cell differentiation, shape the intestinal microbiota, and assist in repairing the gut. Our novel model of NEC uses neon...

  7. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine.

    Science.gov (United States)

    Moeser, Adam J; Borst, Luke B; Overman, Beth L; Pittman, Jeremy S

    2012-10-01

    The objective of this study was to investigate intestinal function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Jejunum and distal ileum from control and pigs exhibiting PFTS was harvested at weaning, 4 and 11 days post-weaning (PW) for intestinal barrier function studies and histological analyses (n=6 pigs per group). Marked disturbances in intestinal barrier function was observed in PFTS pigs, compared with controls, indicated by lower (p<0.05) TER and increased (p<0.01) permeability to FITC dextran (4 kDa). Intestines from weaned pigs, subjected to a 4-day fast, exhibited minor disturbances in intestinal barrier function. Villus atrophy and crypt hyperplasia were observed in the PFTS intestine compared with control and fasted pigs. These data demonstrate that PFTS is associated with profound disturbances in intestinal epithelial barrier function and alterations in mucosal and epithelial morphology in which anorexia is not the sole factor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of White Kidney Beans (Phaseolus vulgaris L. var. Beldia) on Small Intestine Morphology and Function in Wistar Rats.

    Science.gov (United States)

    Nciri, Nader; Cho, Namjun; Bergaoui, Nacef; El Mhamdi, Faiçal; Ben Ammar, Aouatef; Trabelsi, Najoua; Zekri, Sami; Guémira, Fathi; Ben Mansour, Abderraouf; Sassi, Fayçal Haj; Ben Aissa-Fennira, Fatma

    2015-12-01

    The chronic ingestion of raw or undercooked kidney beans (Phaseolus vulgaris L.) causes functional and morphological derangement in various tissues. The major objectives of this study were to investigate the gavage effects of a raw Beldia bean variety that is widely consumed in Tunisia, on the small intestine morphology and jejunal absorption of water, electrolytes, and glucose in Wistar rats. Twenty young male rats were randomly divided into two groups of 10 rats. The first group served as the control and was gavaged with 300 mg of a rodent pellet flour suspension (RPFS), whereas the second experimental group was challenged with 300 mg of a Beldia bean flour suspension (BBFS) for 10 days. Histological studies were performed using light and electron microcopy. The intestinal transport of water, sodium, potassium, and glucose was studied by perfusing the jejunal loops of the small bowels in vivo. The feeding experiments indicated that BBFS did not affect weight gain. Histomorphometric analyses showed that the villus heights, crypt depths, and crypt/villus ratios in the jejunum and ileum were greater in the BBFS-fed rats than controls. Electron microscopy studies demonstrated that the rats exposed to RPFS exhibited intact intestinal tracts; however, the BBFS-treated rats demonstrated intestinal alterations characterized by abnormal microvillus architectures, with short and dense or long and slender features, in addition to the sparse presence of vesicles near the brush border membrane. BBFS administration did not significantly affect glucose absorption. However, significant decreases were observed in water and electrolyte absorption compared with the uptake of the controls. In conclusion, raw Beldia beans distorted jejunum morphology and disturbed hydroelectrolytic flux.

  9. Tonsillar crypt epithelium is an important extra-central nervous system site for viral replication in EV71 encephalomyelitis.

    Science.gov (United States)

    He, Yaoxin; Ong, Kien Chai; Gao, Zifen; Zhao, Xishun; Anderson, Virginia M; McNutt, Michael A; Wong, Kum Thong; Lu, Min

    2014-03-01

    Enterovirus 71 (EV71; family Picornaviridae, species human Enterovirus A) usually causes hand, foot, and mouth disease, which may rarely be complicated by fatal encephalomyelitis. We investigated extra-central nervous system (extra-CNS) tissues capable of supporting EV71 infection and replication, and have correlated tissue infection with expression of putative viral entry receptors, scavenger receptor B2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL-1). Formalin-fixed, paraffin-embedded CNS and extra-CNS tissues from seven autopsy cases were examined by IHC and in situ hybridization to evaluate viral antigens and RNA. Viral receptors were identified with IHC. In all seven cases, the CNS showed stereotypical distribution of inflammation and neuronal localization of viral antigens and RNA, confirming the clinical diagnosis of EV71 encephalomyelitis. In six cases in which tonsillar tissues were available, viral antigens and/or RNA were localized to squamous epithelium lining the tonsillar crypts. Tissues from the gastrointestinal tract, pancreas, mesenteric nodes, spleen, and skin were all negative for viral antigens/RNA. Our novel findings strongly suggest that tonsillar crypt squamous epithelium supports active viral replication and represents an important source of viral shedding that facilitates person-to-person transmission by both the fecal-oral or oral-oral routes. It may also be a portal for viral entry. A correlation between viral infection and SCARB2 expression appears to be more significant than for PSGL-1 expression. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine.

    Science.gov (United States)

    Jattan, Javeed; Rodia, Cayla; Li, Diana; Diakhate, Adama; Dong, Hongli; Bataille, Amy; Shroyer, Noah F; Kohan, Alison B

    2017-05-01

    Since its initial report in 2009, the intestinal enteroid culture system has been a powerful tool used to study stem cell biology and development in the gastrointestinal tract. However, a major question is whether enteroids retain intestinal function and physiology. There have been significant contributions describing ion transport physiology of human intestinal organoid cultures, as well as physiology of gastric organoids, but critical studies on dietary fat absorption and chylomicron synthesis in primary intestinal enteroids have not been undertaken. Here we report that primary murine enteroid cultures recapitulate in vivo intestinal lipoprotein synthesis and secretion, and reflect key aspects of the physiology of intact intestine in regard to dietary fat absorption. We also show that enteroids can be used to elucidate intestinal mechanisms behind CVD risk factors, including tissue-specific apolipoprotein functions. Using enteroids, we show that intestinal apoC-III overexpression results in the secretion of smaller, less dense chylomicron particles along with reduced triacylglycerol secretion from the intestine. This model significantly expands our ability to test how specific genes or genetic polymorphisms function in dietary fat absorption and the precise intestinal mechanisms that are critical in the etiology of metabolic disease. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  12. Different effects of short- and long-chained fructans on large intestinal physiology and carcinogen-induced aberrant crypt foci in rats

    DEFF Research Database (Denmark)

    Poulsen, Morten; Molck, Anne-Marie; Jacobsen, Bodil Lund

    2002-01-01

    Inulin-type fructans, which are nondigestible carbohydrates, have been shown to modulate the number of induced preneoplastic lesions in the colon as well as the colonic microflora in laboratory animals. The present study was designed to investigate the effect of a short- and long-chained inulin...

  13. Wireless capsule endoscopy for diagnosis of acute intestinal graft-versus-host disease.

    Science.gov (United States)

    Neumann, Susanne; Schoppmeyer, Konrad; Lange, Thoralf; Wiedmann, Marcus; Golsong, Johannes; Tannapfel, Andrea; Mossner, Joachim; Niederwieser, Dietger; Caca, Karel

    2007-03-01

    The small intestine is the most common location of intestinal graft-versus-host disease (GVHD). EGD with duodenal biopsies yields the highest diagnostic sensitivity, but the jejunum and ileum are not accessible by regular endoscopy. In contrast, wireless capsule endoscopy (WCE) is a noninvasive imaging procedure offering complete evaluation of the small intestine. The objective was to compare the diagnostic value of EGD, including biopsies, with the results of WCE in patients with acute intestinal symptoms who received allogeneic blood stem cell transplantation and to analyze the appearance and distribution of acute intestinal GVHD lesions in these patients. An investigator-blinded, single-center prospective study. Patients with acute intestinal symptoms after allogeneic stem cell transplantation underwent both EGD and WCE within 24 hours. Clinical data were recorded during 2 months of follow-up. Fourteen consecutive patients with clinical symptoms of acute intestinal GVHD were recruited. In 1 patient, the capsule remained in the stomach and was removed endoscopically. In 7 of 13 patients who could be evaluated, acute intestinal GVHD was diagnosed by EGD with biopsies, but 3 of these would have been missed by EGD alone. In all 7 patients with histologically confirmed acute intestinal GVHD, WCE revealed typical signs of GVHD. Lesions were scattered throughout the small intestine, but were most accentuated in the ileum. This study had a small number of patients. WCE, which is less invasive than EGD with biopsies, showed a comparable sensitivity and a high negative predictive value for diagnosing acute intestinal GVHD. It may be helpful to avoid repeated endoscopic procedures in patients who have undergone stem cell transplantation.

  14. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

    Directory of Open Access Journals (Sweden)

    Marini Juan C

    2007-07-01

    Full Text Available Abstract Background To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology. Results Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, B2M, TAP1 and TAPBP demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR and type II (IFNGR interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1, STAT2 and IFN regulatory factor 7 (IRF7 transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (NFκBIA; a.k.a I-kappa-B-alpha, IKBα and toll interacting protein (TOLLIP, both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (GATA1 is consistent with the maintenance of intestinal homeostasis. Conclusion This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to

  15. Finishing pigs that are divergent in feed efficiency show small differences in intestinal functionality and structure.

    Directory of Open Access Journals (Sweden)

    Barbara U Metzler-Zebeli

    Full Text Available Controversial information is available regarding the feed efficiency-related variation in intestinal size, structure and functionality in pigs. The present objective was therefore to investigate the differences in visceral organ size, intestinal morphology, mucosal enzyme activity, intestinal integrity and related gene expression in low and high RFI pigs which were reared at three different geographical locations (Austria, AT; Northern Ireland, NI; Republic of Ireland, ROI using similar protocols. Pigs (n = 369 were ranked for their RFI between days 42 and 91 postweaning and low and high RFI pigs (n = 16 from AT, n = 24 from NI, and n = 60 from ROI were selected. Pigs were sacrificed and sampled on ~day 110 of life. In general, RFI-related variation in intestinal size, structure and function was small. Some energy saving mechanisms and enhanced digestive and absorptive capacity were indicated in low versus high RFI pigs by shorter crypts, higher duodenal lactase and maltase activity and greater mucosal permeability (P < 0.05, but differences were mainly seen in pigs from AT and to a lesser degree in pigs from ROI. Additionally, low RFI pigs from AT had more goblet cells in duodenum but fewer in jejunum compared to high RFI pigs (P < 0.05. Together with the lower expression of TLR4 and TNFA in low versus high RFI pigs from AT and ROI (P < 0.05, these results might indicate differences in the innate immune response between low and high RFI pigs. Results demonstrated that the variation in the size of visceral organs and intestinal structure and functionality was greater between geographic location (local environmental factors than between RFI ranks of pigs. In conclusion, present results support previous findings that the intestinal size, structure and functionality do not significantly contribute to variation in RFI of pigs.

  16. The injury of serotonin on intestinal epithelium cell renewal of weaned diarrhoea mice

    Directory of Open Access Journals (Sweden)

    Y. Dong

    2016-12-01

    Full Text Available Diarrhoea is a common cause of death in children and weaned animals. Recent research has found that serotonin (5-HT in the gastrointestinal tract plays an important role in regulating growth and the maintenance of mucosa, which protect against diarrhoea. To determine the influence of 5-HT on intestinal epithelium cell renewal under weaned stress diarrhoea, a weaned-stress diarrhoea mouse model was established with senna infusion (15 mL/Kg via intragastric administration and stress restraint (SR. Mice with an increase in 5-HT were induced by intraperitoneal injection with citalopram hydrobromide (CH, 10 mg/Kg. The results demonstrated that compared with the control animals, diarrhoea appeared in weaned stress mice and the 5-HT content in the small intestine was significantly increased (P<0.05. Further, the caspase-3 cells and cells undergoing apoptosis in the small intestine were significantly increased, but the VH (villus height, V/C (villus height /crypt depth, and PCNA-positive rate significantly decreased. Compared with the control animals, CH increased the intestinal 5-HT content, caspase-3 cells and cells undergoing apoptosis but decreased the VH and V/C. Compared with both control and weaned stress animals, weaned stress animals that were pre-treated with CH showed higher 5-HT concentrations, positive caspase-3 cells and cells undergoing apoptosis but lower VH, V/C and PCNA-positive rate. In vitro, a low concentration of 5-HT inhibit, IEC-6 cell line apoptosis but a higher concentration of 5-HT promoted it. Therefore, weaned stress diarrhoea mice were accompanied by a 5-HT increase in the small intestine and vice versa, and the increase in 5-HT induced by CH caused diarrhoea. In brief, 5-HT and diarrhoea slowed the intestinal epithelium cell renewal and injured the abortion function and mucosal barrier by decreasing VH, V/C and proliferation and increasing epithelium cell apoptosis.

  17. [Histological and histochemical study of hyperplastic and dysplastic lesions of the large intestine in Cebus Apella (primate) treated with 1,2-dimethylhydrazine].

    Science.gov (United States)

    Sánchez Negrette, M; Borda, J T; Montenegro, M A; Lertora, J W

    1998-01-01

    The main objective of this study was to assess the histological changes of colon ephitelium in Cebus apella induced by 1,2-dimethylhydrazine (DMH) administration. Twelve monkeys, males, (aged x: 30 months) with an average body weight of 2,800 g were utilized. The DMH was injected subcutaneously at 25 mg/kg and continued once a week for 16 weeks. The body weight was assessed once a week during the first 4 months and every 30 days until the end of the experience. Histological changes of intestinal ephitelium and mucins were assessed at the end of the experience in specimens sectioned at 5 microns, stained with Haematoxylin and Eosin, PAS and Alcian blue pH 2.5. The histological and histochemical study permitted to characterize the normal morphology, as well as the mucins characteristics in the three regions: caecum, transverse colon and distal colon. The histological changes in the DMH treated animals were hyperplasia, dysplasia and mucins decreasing. The hyperplastic changes were localizated in glandular crypts, and in the epithelio located over the lymphoid nodules. The dysplastic crypts were observed in the transverse colon and in the last portion of distal colon. These lesions were located in the upper portion as well as the bottom of the mucosa. A decrease of neutral and acids mucopolysaccharides were observed in the crypts. The results of this study suggest that the DMH induced hyperplastic changes in the crypts and in the epithelium located over the lymphoid nodules and dysplastic focus, as well as a decrease of neutral and acids mucopolysaccharides.

  18. STEM Education

    OpenAIRE

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-01-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.’s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainmen...

  19. Involved mechanisms in the radioprotector effect of the insulinic-1 type growth factor (IGF-1) in the mucous of the small intestine

    International Nuclear Information System (INIS)

    Mohamad, N.; Medina, V.; Sambuco, L.; Gutierrez, A.; Nunez, M.; Martin, G.; Cricco, G.; Rivera, E.; Bergoc, R.; Croci, M.; Crescenti, E.

    2006-01-01

    The use of radiant therapies in malignant tissues presents the inconvenience of affecting also to the healthy tissues, mainly when these present a high rate of proliferation like in the case of the mucous of the small intestine. The growth factor of insulinic-1 type (IGF-1) it has been pointed out as a possible protector of normal tissues under irradiation conditions. The objective of this work was to evaluate the effect of the IGF-1 like radioprotector of the mucous of the small intestine in mice irradiated with 10 Gy to whole body, determining the histological characteristics of the tissue, the presence of apoptotic cells, the expression of antigen of cellular proliferation (PCNA) and of anti-oxidant enzymes. Four groups of mice were used: control, treated with IGF-1, irradiated and irradiated and treated with IGF-1. The two treated groups were injected subcutaneously with two dose by day of 2.5 μg of IGF-I /0.1ml during four days (days 1 at 4). The two irradiated groups 10 Gy received to whole body the day 2. The day 5 all the animals were sacrificed and cuts of the mucous of the small intestine were obtained. The histological cuts were evaluated by tint with hematoxyline-eosin; the presence of apoptotic cells its were determined by the Tunnel method (Apoptag kit); the expression of PCNA, superoxide dependent dismutase of copper and zinc (CuZnSOD), superoxide dependent dismutase of manganese (MnSOD), catalase (CAT) and glutathion peroxidase (GPX), by immunohistochemistry. The results demonstrated that the treatment with IGF-1 preserves the partially histology of the mucous of the intestine, the expression of PCNA and the presence of apoptotic cells in the crypts in front of the irradiation. The CuZnSOD it was expressed mainly in the hairiness and, in smaller measure, in the crypts increase in the group IR+IGF-1. The IGF-1 produced the expression of MnSOD in the crypts and in the intestinal hairiness. The expression of CAT in the hairiness increase significantly

  20. Nutrient digestibility parameters as a tool for analysis of the intestinal health of broiler chickens

    Directory of Open Access Journals (Sweden)

    Anderson Mori

    2016-09-01

    Full Text Available The study was performed with the objective of verifying raw soy feed, oxidized oil feed, and a control group. Performance evaluation was done at 7, 14, and 21 days of age. Metabolism assay was carried out between the 17th and 20th days for nutrient digestibility analysis. On the 21st day, two birds per repetition were sent for necropsy and collection of intestine fragments (duodenum and jejunum for histomorphometric analysis. Eight to 14 days after treatment with Salmonella, individuals showed lower feed intake and feed conversion than the control group. Treatment with coccidiosis decreased all performance parameters in the control. Raw soybeans and oxidized oil induce lower weight gain and higher feed conversion compared to the control feed. Unlike after 14 days, at 21 days treatment with salmonella a decrease in weight gain was noted. For the group challenged by coccidiosis feed intake, the feed conversion remained lower than the control group. Undesirable effects on performance in the groups fed raw soybean and oxidized oil remained at up to 21 days. In the evaluation of digestibility, it was observed that raw soy had lower values for digestibility of dry matter, ether extract, and nitrogen balance due to intake. In addition, a lower ratio of villus:crypt measurements was observed. Lower villus height was found in the duodenum of the group challenged by coccidiosis. This group presented a positive correlation between the digestibility of ether extract and the duodenum, indicating that increased villus height implies an increased digestibility of ether extract. The results obtained for the jejunum showed a positive correlation with villus height in groups challenged by coccidiosis, raw soybeans, and oxidized oil; and to crypt depth in the group challenged with oxidized oil. The information obtained in the present study demonstrates that nutrient digestibility parameters can be useful tools for the analysis of the intestinal health of broiler

  1. Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry

    Directory of Open Access Journals (Sweden)

    Alice E. Murakami

    2012-03-01

    Full Text Available The effects of starter diet (days 1 to 21 supplemented with arginine (Arg on the production performance and duodenum and jejunum mucosa morphometry of broilers were studied. Male Cobb broiler chickens (990 were randomly assigned to one of five treatments in a complete random design. Measurements of 33 chicks per treatment were made in six repetitions. The treatments consisted of a basal diet with 1.390% digestible Arg (no supplementation and four dietary levels (1.490%, 1.590%, 1.690%, and 1.790%, providing a relationship with lysine of 1.103; 1.183; 1.262; 1.341 and 1.421%, respectively. From the age of 22 days on, all birds received conventional grower diet. The data were submitted to regression analysis by polynomial decomposition of the degrees of freedom in relation to the levels of Arg. The Arg supplementation increased (P0.05 in the growth phase (days 22 to 42 in the absence of the Arg supplementation. The supplementation of Arg over of NRC recommendation during the starter phase may be necessary for the expression of the maximal weight gain potential in birds. No effect (P<0.05 of Arg dietary supplementation was observed either on small intestine weight and length at any age. However, the duodenum villus:crypt ratio increased and the crypt depth decreased in the first week in response to increasing dietary Arg. It is concluded that broiler Arg dietary supplementation in the starter diet improved production performance and small intestine morphometry, especially in the first week.

  2. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Jiao Cai

    Full Text Available BACKGROUND: Epithelial cells(EC-derived interleukin-7 (IL-7 plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL, and keratinocyte growth factor (KGF exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS: Intestinal epithelial cells (LoVo cells and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA. RESULTS: KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION: KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.

  3. Diagnosis of intestinal and extra intestinal amoebiasis

    International Nuclear Information System (INIS)

    Lopez, Myriam Consuelo; Quiroz, Damian Arnoldo; Pinilla, Analida Elizabeth

    2007-01-01

    The objective is to carry out a review of the national and international literature as of the XXth century in order to update the advances for the diagnosis of complex odd Entamoeba histolytic / Entamoeba dispar and that of intestinal and extra intestinal amoebiasis that may be of use to the scientific community. As well as to unify the diagnostic criteria of this parasitosis known as a public health problem, and as a consequence of that, optimize the quality of population care. Data source: there was a systematic search for the scientific literature Publisher in Spanish and English since 1960 until today, this selection started on the first semester of 2006 until 2007, in the development of the line on intestinal and extra-intestinal amoebiasis of the Medical School of the National University of Colombia. A retrospective search process was carried out, systematically reviewing the most relevant articles as well as the products of this research line. In deciding how to make this article, there was a continuous search in different data bases such as Medline, SciELO and other bases in the library of the National University of Colombia, as well as other classical books related to the subject. For that purpose the terms amoebiasis, odd Entamoeba histolytic, Entamoeba, diagnosis, epidemiology, dysentery, amoebic liver abscess, were used. Studies selection: titles and abstracts were reviewed to select the original publications and the most representative ones related to this article's subject. Data extraction: the articles were classified according to the subject, the chronology and the authors according to the scientific contribution to solve the problem. Synthesis of the data: in the fi rst instance, a chronological critical analysis was carried out to order and synthesize the progress made in the diagnosis until confirmation of the experts' agreements in the field of amoebiasis was obtained throughout the world. Conclusion: this article summarizes what has taken place

  4. STEM Education

    Science.gov (United States)

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-01-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.’s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches. PMID:26778893

  5. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  6. The protective effects of black garlic extract for blood and intestinal mucosa to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Do Young; KIm, Joon Sun; Choi, Hyeong Seok [Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of); Choi, Jun Hyeok; Park, Won Suk; Min, Byung In [Inje University, Kimhae (Korea, Republic of)

    2016-03-15

    The radiation has been utilized in a number of fields, even though the use of plenty cause a variety of side effects. This study was confirmed for radiation protective effects of aged garlic to contribute to the prevention of disasters that are radiation exposure. We studied the Complete Blood cell Count(CBC) and the small intestine after feeding aged garlic extract into Sprague Dawley Rat which irradiated X-ray beam 7 and 13 Gy. Garlic extract was administered to the results in the experimental group showed a notable difference in the CBC of platelets (p<0.05), red blood cells (p<0.05) and early damaged white blood cells (p<0.05). In addition, it was confirmed that experimental group's small intestine crypt is more survival than irradiation group significantly. And experimental group has small intestine villi length almost similar to the normal group. result of the aged garlic study will be able to be of great benefit for the radiation relevant emergency management.

  7. The protective effects of black garlic extract for blood and intestinal mucosa to irradiation

    International Nuclear Information System (INIS)

    Jung, Do Young; KIm, Joon Sun; Choi, Hyeong Seok; Choi, Jun Hyeok; Park, Won Suk; Min, Byung In

    2016-01-01

    The radiation has been utilized in a number of fields, even though the use of plenty cause a variety of side effects. This study was confirmed for radiation protective effects of aged garlic to contribute to the prevention of disasters that are radiation exposure. We studied the Complete Blood cell Count(CBC) and the small intestine after feeding aged garlic extract into Sprague Dawley Rat which irradiated X-ray beam 7 and 13 Gy. Garlic extract was administered to the results in the experimental group showed a notable difference in the CBC of platelets (p<0.05), red blood cells (p<0.05) and early damaged white blood cells (p<0.05). In addition, it was confirmed that experimental group's small intestine crypt is more survival than irradiation group significantly. And experimental group has small intestine villi length almost similar to the normal group. result of the aged garlic study will be able to be of great benefit for the radiation relevant emergency management

  8. Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight

    Science.gov (United States)

    Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.

    It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.

  9. The effect of 45Ca on the intestine of Indian desert gerbil (Meriones hurrianae, Jerdon)

    International Nuclear Information System (INIS)

    Gupta, N.K.; Kumar, A.

    1981-01-01

    Indian desert gerbils (Meriones hurrianae, Jerdon) were given 45 Ca intraperitoneally at the doses of 0.5 and 1.0 μCi/g. b.wt. The animals were autopsied at the intervals of 1, 3, 5, 7 and 14 d following their treatment with the isotope. The animals did not show any discernible symptoms of radiation sickness characteristically seen in case of GI syndrome. The intestine (jejunum) shows maximum damage at 3 d posttreatment. The changes include inhibited mitosis, chromatolysis and vacuolation of crypt nuclei, shortening of villi, i.e. decrease in the number of cells per villus, decrease in the number of goblet cells, hyperemia and lymphocytic infiltration. The cells lining the apical parts of villi show less or no damage. The Paneth's cells lose their property of staining. At day 5 posttreatment, a trend towards normalization is observed. However, relapse of damage is observed at 7 d posttreatment and near normal structure of the intestine is seen at the last interval studied i.e. 14 d posttreatment. The response of the intestine is dose dependent. (author)

  10. Subversion of human intestinal mucosa innate immunity by a Crohn's disease-associated E. coli.

    Science.gov (United States)

    Jarry, A; Crémet, L; Caroff, N; Bou-Hanna, C; Mussini, J M; Reynaud, A; Servin, A L; Mosnier, J F; Liévin-Le Moal, V; Laboisse, C L

    2015-05-01

    Adherent-invasive Escherichia coli (AIEC), associated with Crohn's disease, are likely candidate contributory factors in the disease. However, signaling pathways involved in human intestinal mucosa innate host response to AIEC remain unknown. Here we use a 3D model of human intestinal mucosa explant culture to explore the effects of the AIEC strain LF82 on two innate immunity platforms, i.e., the inflammasome through evaluation of caspase-1 status, and NFκB signaling. We showed that LF82 bacteria enter and survive within a few intestinal epithelial cells and macrophages, without altering the mucosa overall architecture. Although 4-h infection with a Salmonella strain caused crypt disorganization, caspase-1 activation, and mature IL-18 production, LF82 bacteria were unable to activate caspase-1 and induce IL-18 production. In parallel, LF82 bacteria activated NFκB signaling in epithelial cells through IκBα phosphorylation, NFκBp65 nuclear translocation, and TNFα secretion. In addition, NFκB activation was crucial for the maintenance of epithelial homeostasis upon LF82 infection. In conclusion, here we decipher at the whole-mucosa level the mechanisms of the LF82-induced subversion of innate immunity that, by maintaining host cell integrity, ensure intracellular bacteria survival.

  11. Effects of oregano essential oil supplementation to diets of broiler chicks with delayed feeding after hatching. Morphological development of small intestine segments

    Directory of Open Access Journals (Sweden)

    Şenay Sarıca

    2014-04-01

    Full Text Available The study aimed to investigate the effects of dietary supplementation of oregano essential oil (OEO on the morphological development of small intestine of broilers with different feeding times (immediate, 24, 48 or 72 h posthatching delayed feeding from d 0 to 14. The diets were supplemented with: no, 250 or 500 mg/kg of the OEO (OEO250 and OEO500, respectively. Fasting for 72 h significantly increased the weight and length of small intestine segments of broilers on d 14. The OEO250 and OEO500 significantly increased the jejunum villus height of chickens fed immediately and the duodenum villus height of broilers fasted for 48 h. The duodenum villus surface area of chickens fasted for 48 h and the ileum villus surface area of broilers fasted for 24 h were significantly increased by the OEO250. The OEO500 significantly enhanced the duodenum villus surface area of broilers fasted for 24 h and their ileum villus surface area fasted for 48 h. The crypt depths of small intestine segments of broilers fasted for 72 h were significantly reduced by OEO250 and OEO500. In conclusion, the dose of phenolic compounds in OEO reaching the small intestine might be enough for protecting the intestinal epithelial cells from damages of toxins and for removing the negative effects of delayed feeding on the morphological development of all the small intestine segments of broiler chicks on d 14.

  12. Intestinal anisakidosis (anisakiosis).

    Science.gov (United States)

    Takei, Hidehiro; Powell, Suzanne Z

    2007-10-01

    A case of intestinal anisakidosis in a 42-year-old man in Japan is presented. His chief complaint was an acute onset of severe abdominal pain. Approximately 12 hours before the onset of this symptom, he had eaten sliced raw mackerel ("sashimi"). Upper endoscopy was unremarkable. At exploratory laparotomy, an edematous, diffusely thickened segment of jejunum was observed, which was resected. The postoperative course was uneventful. The segment of small intestine showed a granular indurated area on the mucosal surface, and microscopically, a helminthic larva penetrating the intestinal wall, which was surrounded by a cuff of numerous neutrophils and eosinophils, as well as diffuse acute serositis. A cross section of the larva revealed the internal structures, pathognomonic of Anisakis simplex. Although anisakidosis is rare in the United States, with the increasing popularity of Japanese cuisine, the incidence is expected to increase, and pathologists should be familiar with this disease.

  13. Intestinal failure: a review

    Science.gov (United States)

    Allan, Philip; Lal, Simon

    2018-01-01

    Intestinal failure (IF) is the inability of the gut to absorb necessary water, macronutrients (carbohydrate, protein, and fat), micronutrients, and electrolytes sufficient to sustain life and requiring intravenous supplementation or replacement. Acute IF (types 1 and 2) is the initial phase of the illness and may last for weeks to a few months, and chronic IF (type 3) from months to years. The challenge of caring for patients with IF is not merely the management of the underlying condition leading to IF or the correct provision of appropriate nutrition or both but also the prevention of complications, whether thromboembolic phenomenon (for example, venous occlusion), central venous catheter-related bloodstream infection, IF-associated liver disease, or metabolic bone disease. This review looks at recent questions regarding chronic IF (type 3), its diagnosis and management, the role of the multidisciplinary team, and novel therapies, including hormonal treatment for short bowel syndrome but also surgical options for intestinal lengthening and intestinal transplant. PMID:29399329

  14. Small intestine diverticuli

    International Nuclear Information System (INIS)

    Pomakov, P.; Risov, A.

    1991-01-01

    The routine method of contrast matter passage applied to 850 patients with different gastrointestinal diseases proved inefficient to detect any small-intestinal diverticuli. The following modiffications of the method have been tested in order to improve the diagnostic possibilities of the X-ray: study at short intervals, assisted passage, enteroclysm, pharmacodynamic impact, retrograde filling of the ileum by irrigoscopy. Twelve diverticuli of the small-intestinal loops were identified: 5 Meckel's diverticuli, 2 solitary of which one of the therminal ileum, 2 double diverticuli and 1 multiple diverticulosis of the jejunum. The results show that the short interval X-ray examination of the small intestines is the method of choice for identifying local changes in them. The solitary diverticuli are not casuistic scarcity, its occurrence is about 0.5% at purposeful X-ray investigation. The assisted passage method is proposed as a method of choice for detection of the Meckel's diverticulum. 5 figs., 3 tabs. 18 refs

  15. Chronic intestinal pseudoobstruction syndrome

    International Nuclear Information System (INIS)

    Yeon, Kyung Mo; Seo, Jeong Kee; Lee, Yong Seok

    1992-01-01

    Chronic intestinal pseudoobstruction syndrome is a rare clinical condition in which impaired intestinal peristalsis causes recurrent symptoms of bowel obstruction in the absence of a mechanical occlusion. This syndrome may involve variable segments of small or large bowel, and may be associated with urinary bladder retention. This study included 6 children(3 boys and 3 girls) of chronic intestinal obstruction. Four were symptomatic at birth and two were of the ages of one month and one year. All had abdominal distension and deflection difficulty. Five had urinary bladder distension. Despite parenteral nutrition and surgical intervention(ileostomy or colostomy), bowel obstruction persisted and four patients expired from sepses within one year. All had gaseous distension of small and large bowel on abdominal films. In small bowel series, consistent findings were variable degree of dilatation, decreased peristalsis(prolonged transit time) and microcolon or microrectum. This disease entity must be differentiated from congenital megacolon, ileal atresia and megacystis syndrome

  16. Small Intestinal Infections.

    Science.gov (United States)

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections.

  17. Apoptosis and mitosis in the small intestine at radiation injury

    International Nuclear Information System (INIS)

    Hashiguchi, Junichiro; Ito, Masahiro; Onizuka, Shinya; Sekine, Ichiro; Uchida, Shinji

    1990-01-01

    A single whole body irradiation was given at a dose rate of 0.298 Gy/min in 6-week-old male mice. Intestinal crypt apoptosis and mitosis cells were determined by delivering radiation doses of 0.4, 0.6, 1.0, 1.5, 2.0, 5.0, 10.0, and 20.0 Gy. The incidence of apoptosis was linearly increased in a dose-dependent manner up to 5.0 Gy, and thereafter, it was gradually decreased. There was a decreased tendency for mitosis with delivering higher radiation doses. The incidence of apoptosis rapidly increased 2 hours after irradiation with either 0.6 Gy or 2.0 Gy, and reached to the peak 4 hours later. It brought about a 18-fold and 28-fold increase for 0.6 Gy and 2.0 Gy, respectively, relative to that before irradiation. Mitosis cells decreased by half one hour after irradiation with 0.6 Gy, and then returned to the pre-irradiation value through synchronization 24 hours later. The number of cells positive to BrdU was 776 in the group of mice without irradiation and 479 in the group of mice irradiated with 2.0 Gy. (N.K.)

  18. The intestinal calcistat

    Directory of Open Access Journals (Sweden)

    M K Garg

    2013-01-01

    Full Text Available The main physiological function of vitamin D is maintenance of calcium homeostasis by its effect on calcium absorption, and bone health in association with parathyroid gland. Vitamin D deficiency (VDD is defined as serum 25-hydroxy vitamin D (25OHD levels <20 ng/ml. Do all subjects with VDD have clinical disease according to this definition? We hypothesize that there exist an intestinal calcistat, which controls the calcium absorption independent of PTH levels. It consists of calcium sensing receptor (CaSR on intestinal brush border, which senses calcium in intestinal cells and vitamin D system in intestinal cells. CaSR dampens the generation of active vitamin D metabolite in intestinal cells and decrease active transcellular calcium transport. It also facilitates passive paracellular diffusion of calcium in intestine. This local adaptation adjusts the fractional calcium absorption according the body requirement. Failure of local adaptation due to decreased calcium intake, decreased supply of 25OHD, mutation in CaSR or vitamin D system decreases systemic calcium levels and systemic adaptations comes into the play. Systemic adaptations consist of rise in PTH and increase in active vitamin D metabolites. These adaptations lead to bone resorption and maintenance of calcium homeostasis. Not all subjects with varying levels of VDD manifest with secondary hyperparathyroidism and decreased in bone mineral density. We suggest that rise in PTH is first indicator of VDD along with decrease in BMD depending on duration of VDD. Hence, subjects with any degree of VDD with normal PTH and BMD should not be labeled as vitamin D deficient. These subjects can be called subclinical VDD, and further studies are required to assess beneficial effect of vitamin D supplementation in this subset of population.

  19. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  20. Influence of a Dietary Fiber on Development of Dimethylhydrazine-Induced Aberrant Crypt Foci and Colon Tumor Incidence in Wistar Rats

    DEFF Research Database (Denmark)

    Thorup, I.; Meyer, Otto A.; Kristiansen, E.

    1994-01-01

    Formation of aberrant crypt foci (ACF) in archived colon tissue from animals in a previous study was examined. The animals were fed a semisynthetic casein-based diet in which the carbohydrate pool was substituted with a dietary beet fiber (Fibeta) as the only source of fiber. Oral doses...... between duration of intake of high-fiber diet and number of animals with ACF, as well as the total number of ACF and number of small A CF (1-3 crypts) per affected animal. The previously reported data showed no protective effect of the dietary fiber at any stage of the colorectal carcinogenic process...... of dimethylhydrazine dihydrochloride (DMH-2HCl, 20 mg/kg body wt) once a week for 10 weeks were used as initiator. The rats were fed different levels of the fiber in a preinitiation period, during initiation, or in a postinitiation period. In general, the results showed a statistically significant inverse relation...

  1. Intestinal microbiota and ulcerative colitis.

    Science.gov (United States)

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Small intestine aspirate and culture

    Science.gov (United States)

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  3. Epidermal Growth Factor Improves Intestinal Integrity and Survival in Murine Sepsis Following Chronic Alcohol Ingestion.

    Science.gov (United States)

    Klingensmith, Nathan J; Yoseph, Benyam P; Liang, Zhe; Lyons, John D; Burd, Eileen M; Margoles, Lindsay M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-02-01

    Epidermal growth factor (EGF) is a cytoprotective protein that improves survival in preclinical models of sepsis through its beneficial effects on intestinal integrity. Alcohol use disorder worsens intestinal integrity and is associated with increased morbidity and mortality in critical illness. We sought to determine whether chronic alcohol ingestion alters the host response to systemic administration of EGF in sepsis. Six-week-old FVB/N mice were randomized to receive 20% alcohol or water for 12 weeks. All mice then underwent cecal ligation and puncture to induce polymicrobial sepsis. Mice were then randomized to receive either intraperitoneal injection of EGF (150 μg/kg/day) or normal saline. Water-fed mice given EGF had decreased 7-day mortality compared with water-fed mice (18% vs. 55%). Alcohol-fed mice given EGF also had decreased 7-day mortality compared with alcohol-fed mice (48% vs. 79%). Notably, while systemic EGF improved absolute survival to a similar degree in both water-fed and alcohol-fed mice, mortality was significantly higher in alcohol+EGF mice compared with water+EGF mice. Compared with water-fed septic mice, alcohol-fed septic mice had worsened intestinal integrity with intestinal hyperpermeability, increased intestinal epithelial apoptosis, decreased proliferation and shorter villus length. Systemic administration of EGF to septic alcohol-fed mice decreased intestinal permeability compared with septic alcohol-fed mice given vehicle, with increased levels of the tight junction mediators claudin-5 and JAM-A. Systemic administration of EGF to septic alcohol-fed mice also decreased intestinal apoptosis with an improvement in the Bax/Bcl-2 ratio. EGF also improved both crypt proliferation and villus length in septic alcohol-fed mice. EGF administration resulted in lower levels of both pro- and anti-inflammatory cytokines monocyte chemoattractant protein-1, tumor necrosis factor, and interleukin 10 in alcohol-fed mice. EGF is therefore

  4. Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture

    Directory of Open Access Journals (Sweden)

    Federica Lorenzi

    2016-01-01

    Full Text Available Colorectal cancer (CRC is one of the top three cancer-related causes of death worldwide. FBXW7 is a known tumor-suppressor gene, commonly mutated in CRC and in a variety of other epithelial tumors. Low expression of FBXW7 is also associated with poor prognosis. Loss of FBXW7 sensitizes cancer cells to certain drugs, while making them more resistant to other types of chemotherapies. However, is not fully understood how epithelial cells within normal gut and primary tumors respond to potential cancer therapeutics. We have studied genetically engineered mice in which the fbxw7 gene is conditionally knocked-out in the intestine (fbxw7ΔG. To further investigate the mechanism of Fbxw7-action, we grew intestinal crypts from floxed-fbxw7 (fbxw7fl/fl and fbxw7ΔG mice, in a Matrigel-based organoid (mini-gut culture. The fbxw7ΔG organoids exhibited rapid budding events in the crypt region. Furthermore, to test organoids for drug response, we exposed day 3 intestinal organoids from fbxw7fl/fl and fbxw7ΔG mice, to various concentrations of 5-fluorouracil (5-FU for 72 hours. 5-FU triggers phenotypic differences in organoids including changing shape, survival, resistance, and death. 5-FU however, rescues the drug-resistance phenotype of fbxw7ΔG through the induction of terminal differentiation. Our results support the hypothesis that a differentiating therapy successfully targets FBXW7-mutated CRC cells.

  5. An investigation of multi-rate sound decay under strongly non-diffuse conditions: The crypt of the Cathedral of Cadiz

    Science.gov (United States)

    Martellotta, Francesco; Álvarez-Morales, Lidia; Girón, Sara; Zamarreño, Teófilo

    2018-05-01

    Multi-rate sound decays are often found and studied in complex systems of coupled volumes where diffuse field conditions generally apply, although the openings connecting different sub-spaces are by themselves potential causes of non-diffuse behaviour. However, in presence of spaces in which curved surfaces clearly prevent diffuse field behaviour from being established, things become more complex and require more sophisticated tools (or, better, combinations of them) to be fully understood. As an example of such complexity, the crypt of the Cathedral of Cadiz is a relatively small space characterised by a central vaulted rotunda, with five radial galleries with flat and low ceiling. In addition, the crypt is connected to the main cathedral volume by means of several small openings. Acoustic measurements carried out in the crypt pointed out the existence of at least two decay processes combined, in some points, with flutter echoes. Application of conventional methods of analysis pointed out the existence of significant differences between early decay time and reverberation time, but was inconclusive in explaining the origin of the observed phenomena. The use of more robust Bayesian analysis permitted the conclusion that the late decay appearing in the crypt had a different rate than that observed in the cathedral, thus excluding the explanation based on acoustic coupling of different volumes. Finally, processing impulse responses collected by means of a B-format microphone to obtain directional intensity maps demonstrated that the late decay was originated from the rotunda where a repetitive reflection pattern appeared between the floor and the dome causing both flutter echoes and a longer reverberation time.

  6. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model

    Science.gov (United States)

    Jiang, Chun-Bin; Cheng, Mei-Lien; Liu, Chia-Yuan; Chang, Szu-Wen; Chiang Chiau, Jen-Shiu; Lee, Hung-Chang

    2015-01-01

    Background and Aims Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Methods Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. Results Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (Pprobiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (Pprobiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in the future. PMID:26406888

  7. Effect of dietary nucleotides on small intestinal repair after diarrhoea. Histological and ultrastructural changes.

    Science.gov (United States)

    Bueno, J; Torres, M; Almendros, A; Carmona, R; Nuñez, M C; Rios, A; Gil, A

    1994-01-01

    The effects of specific nutrients on intestinal maturation and repair after injury are practically unknown. The purpose of this work was to study the effects of dietary nucleotides on the repair of the intestinal mucosa after chronic diarrhoea induced by a lactose enriched diet in the weanling rat. One group of weanling rats was fed with a standard semipurified diet (control group), and another group was fed with the same diet containing lactose as the only soluble carbohydrate (lactose group). After 14 days the lactose group was allowed to recover for four weeks with the control diet (lactose-control group) or with the control diet supplemented with AMP, GMP, IMP, CMP, and UMP 50 mg/100 g each (lactose-nucleotide group). The control group was divided into two subgroups, which were fed with the control diet and the nucleotide supplemented diet for the same period (control-control group and control-nucleotide group). The lactose diet induced diarrhoea after 24 hours of feeding. Two weeks later there were changes in intestinal structure with loss of enterocyte microvillar surface, significant lymphocyte infiltration, supranuclear cytoplasmic vesiculation, decreased number of goblet cells, and enlarged mitochondria with low density and few cristae. After recovery from diarrhoea, animals fed the nucleotide enriched diet showed an intestinal histology and ultrastructure closer to that of the normal control group. Mitochondrial ultrastructure was closer to normal in comparison with the lactose-control diet group. In this second group the number of goblet cells as well as the villous height/crypt depth ratio was reduced and the number of intraepithelial lymphocytes increased compared with the nucleotide supplemented group. These results suggest that dietary nucleotides may be important nutrients for intestinal repair. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8063220

  8. Effects of Coriander Essential Oil on the Performance, Blood Characteristics, Intestinal Microbiota and Histological of Broilers

    Directory of Open Access Journals (Sweden)

    S Ghazanfari

    2015-12-01

    Full Text Available ABSTRACT Present study was conducted to investigate the effects of the dietary supplementation of coriander oil on broiler performance, blood characteristics, microbiota, and small intestine morphology measurements. A number of one-day-old broiler chickens (Ross 308 were allocated to five treatments, with four replicates according to a completely randomized design (CRD. Birds were offered either a corn-soybean meal basal diet (control, or the basal diet supplemented with 600 mg/kg of a flavophospholipol antibiotic, 100, 200, or 300 mg/kg coriander essential oil. At 42 days of age, two birds per replicate were selected for blood collection, slaughtered, and its intestinal microbiota and morphology were investigated. The results indicated that weight gain, feed intake, and feed conversion ratio significantly improved by the dietary inclusion of the coriander oil and antibiotic compared with the control treatment (p0.05. Birds fed the coriander oil and antibiotic diets had lower populations of Escherichia coli than control group in cecum (p<0.05. The dietary treatments influenced the morphology of small intestinal villi. Birds fed antibiotic and coriander essential oil presented higher villus height and crypt depth compared with those in the control treatment (p<0.01. Coriander essential oil supplementation significantly decreased epithelial thickness and the number of goblet cell of the small intestinal compared with the control treatment (p<0.0001. In conclusion, coriander oil was shown to be an efficient growth promoter. The intestinal health improvement obtained with coriander oil was associated with improvements in broiler growth performance.

  9. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth.

    Science.gov (United States)

    Dreon, Marcos S; Fernández, Patricia E; Gimeno, Eduardo J; Heras, Horacio

    2014-06-01

    The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense

  10. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth.

    Directory of Open Access Journals (Sweden)

    Marcos S Dreon

    2014-06-01

    Full Text Available The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF ingestion on the rat small intestine morphology and physiology.Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days.Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies

  11. Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding.

    Directory of Open Access Journals (Sweden)

    Julia Steinhoff-Wagner

    Full Text Available Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group that were born either preterm (PT; delivered by section 9 d before term or at term (T; spontaneous vaginal delivery or spontaneously born and fed colostrum for 4 days (TC. Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV, total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1 and facilitative glucose transporter 2 (GLUT2 in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.

  12. The Effect of A Single Sub-Lethal Dose of Whole Body Irradiation on the Small Intestine of Rats

    International Nuclear Information System (INIS)

    Al-Ramli, M. A.; Kubba, M. A.; Al-Bassam, L. S.; Belhaj, K.; Al-shawish, N. M.

    2007-01-01

    The effect of whole body radiation with a single sub-lethal dose at 4 Gy on rat small intestine was studied histologically and quantitatively. Irradiated animals were euthanized at 24 hours, 3, 7, 14, 21 and 28 days post- irradiation. Crypts of Leiberkuhn and peyer's patches were especially targeted by irradiation. The crypts showed severe cellular fragmentation in the germinal cellular compartments twenty Four hours after irradiation resulting in partial denudation of villi especially at their Tips. At three days, these cells resumed their proliferative activity with the appearance of unusually large numbers of mitotic figures. Cellular regeneration in the crypts and on the villous surface showed improvement with advancing time till day 28 when the villi had complete epithelial covering and the proliferative activity of the germinal cryptic cells returned to normal. The quantitative study included the measurement of about fifty villi at each time after irradiation. A significant decrease in villous length was noticed at twenty four hours post-irradiation compared to the control values. The length of villi plateaued at about this level till day twenty one when it slightly increased to reach a sub normal mean length on day 28. We concluded that whole body irradiation with a single dose at 4 Gy was enough to induce cryptic cellular necrosis with sloughing of epithelial villous columnar covering. This cellular damage was, however, sub- total since quick regenerative cellular activity was noticed three days post-irradiation. The decrease in the villous length paralleled the cryptic cellular damage whereas full recovery was not achieved despite obvious cellular regeneration.

  13. Stages of Small Intestine Cancer

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  14. Inhibitory Effect of Various Breads on DMH-Induced Aberrant Crypt Foci and Colorectal Tumours in Rats

    Science.gov (United States)

    Qi, Guangying; Zeng, Sien; Takashima, Tiri; Nozoe, Koichiro; Shobayashi, Megumi; Kakugawa, Koji; Murakami, Kaori; Jikihara, Hiroshi; Zhou, Lihua; Shimamoto, Fumio

    2015-01-01

    Bread is rich in dietary fibre and many phytochemical compounds, which may influence chemoprevention of colon cancer. In the present study, we evaluated the effect of three kinds of bread on DMH-induced colorectal tumours in F344 rats. F344 rats were divided into four groups (Steinmetz Three-Grain bread, Steinmetz Country bread, White bread, and MF). All groups were injected with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight) once a week for 8 consecutive weeks from 5 weeks of age. To investigate the antioxidant effect of bread, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging rate of bread and the serum levels of 8-hydroxy-deoxyguanosine (8-OHdG) in rats were examined. The number of colorectal aberrant crypt foci (ACF) and the incidence of colorectal tumours were studied after 34 weeks of DMH treatment. The Steinmetz Three-Grain and Steinmetz Country bread groups had higher scavenging rates of the DPPH free radical and lower serum levels of 8-OHdG and incidence of ACF, adenomas, and adenocarcinomas of colon than the White bread and MF group. Steinmetz Three-Grain bread and Steinmetz Country bread have various ingredient combinations that may inhibit colorectal cancer progression. PMID:26075268

  15. Inhibitory Effect of Various Breads on DMH-Induced Aberrant Crypt Foci and Colorectal Tumours in Rats

    Directory of Open Access Journals (Sweden)

    Guangying Qi

    2015-01-01

    Full Text Available Bread is rich in dietary fibre and many phytochemical compounds, which may influence chemoprevention of colon cancer. In the present study, we evaluated the effect of three kinds of bread on DMH-induced colorectal tumours in F344 rats. F344 rats were divided into four groups (Steinmetz Three-Grain bread, Steinmetz Country bread, White bread, and MF. All groups were injected with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight once a week for 8 consecutive weeks from 5 weeks of age. To investigate the antioxidant effect of bread, the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging rate of bread and the serum levels of 8-hydroxy-deoxyguanosine (8-OHdG in rats were examined. The number of colorectal aberrant crypt foci (ACF and the incidence of colorectal tumours were studied after 34 weeks of DMH treatment. The Steinmetz Three-Grain and Steinmetz Country bread groups had higher scavenging rates of the DPPH free radical and lower serum levels of 8-OHdG and incidence of ACF, adenomas, and adenocarcinomas of colon than the White bread and MF group. Steinmetz Three-Grain bread and Steinmetz Country bread have various ingredient combinations that may inhibit colorectal cancer progression.

  16. Inhibitory effect of various breads on DMH-induced aberrant crypt foci and colorectal tumours in rats.

    Science.gov (United States)

    Qi, Guangying; Zeng, Sien; Takashima, Tiri; Nozoe, Koichiro; Shobayashi, Megumi; Kakugawa, Koji; Murakami, Kaori; Jikihara, Hiroshi; Zhou, Lihua; Shimamoto, Fumio

    2015-01-01

    Bread is rich in dietary fibre and many phytochemical compounds, which may influence chemoprevention of colon cancer. In the present study, we evaluated the effect of three kinds of bread on DMH-induced colorectal tumours in F344 rats. F344 rats were divided into four groups (Steinmetz Three-Grain bread, Steinmetz Country bread, White bread, and MF). All groups were injected with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight) once a week for 8 consecutive weeks from 5 weeks of age. To investigate the antioxidant effect of bread, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging rate of bread and the serum levels of 8-hydroxy-deoxyguanosine (8-OHdG) in rats were examined. The number of colorectal aberrant crypt foci (ACF) and the incidence of colorectal tumours were studied after 34 weeks of DMH treatment. The Steinmetz Three-Grain and Steinmetz Country bread groups had higher scavenging rates of the DPPH free radical and lower serum levels of 8-OHdG and incidence of ACF, adenomas, and adenocarcinomas of colon than the White bread and MF group. Steinmetz Three-Grain bread and Steinmetz Country bread have various ingredient combinations that may inhibit colorectal cancer progression.

  17. Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice.

    Science.gov (United States)

    Watanabe, Toshiaki; Shimada, Ryoko; Matsuyama, Ai; Yuasa, Masahiro; Sawamura, Hiromi; Yoshida, Eriko; Suzuki, Kengo

    2013-11-01

    In the present study, the effects of β-glucans isolated from Euglena on the formation of preneoplastic aberrant crypt foci (ACF) in the colon were examined in mice. Mice were fed a semi-purified AIN-93M diet containing cellulose or the same diet but with the cellulose replaced with β-glucans in the form of Euglena, paramylon, or amorphous paramylon, for 11 weeks. After consuming these dietary supplements for 8 days, half of the mice were intraperitoneally administered 1,2-dimethylhydrazine (DMH) at a dose of 20 mg kg(-1) body weight every week for 6 weeks. Among the DMH-treated groups, the paramylon- and amorphous paramylon-fed mice displayed a significantly lower number of ACF than the control group. Also, the liver weight of the paramylon group was markedly decreased compared with those of the control and Euglena groups, whereas the cecal content weight and fecal volume of the paramylon group were significantly increased. As for the levels of organic acids in the cecal contents, the paramylon group displayed significantly increased lactic acid levels compared with the control and Euglena groups. From these findings, although the mechanism of the ACF-inhibiting effects of paramylon remains unclear, it is considered that β-glucans, such as paramylon and its isomer amorphous paramylon, have preventive effects against colon cancer and are more effective against the condition than Euglena.

  18. PENGGUNAAN BRUTE FORCE ATTACK DALAM PENERAPANNYA PADA CRYPT8 DAN CSA-RAINBOW TOOL UNTUK MENCARI BISS

    Directory of Open Access Journals (Sweden)

    Indra Gunawan

    2016-09-01

    Full Text Available Algoritma Brute Force merupakan suatu aritmatika untuk mencari dan mengetahui sebuah jenis sandi atau kode yang salh satunya sebuah kode acakan misalnya jenis acakan BISS (Basic Interoperable Scrambling System. Algoritma brute force yang umumnya dipakai untuk mencari kasus kode acakan seperti ini umumnya disebut Brute Force Attack.    Brute force attack menggunakan sebuah himpunan karakter atau teks yang akan dipakai untuk referensi karakter-karakter dari kode yang ingin dicari. Himpunan karakter yang dipakai akan menjadi sebuah ukuran keefektifan dari algoritma itu sendiri. Semakin banyak anggota himpunan karakter ini, tentunya persentasi kode biss untuk sebuah kode biss dapat dicari akan tinggi. Namun, semakin banyak karakter yang ada di dalam himpunan itu harus dibayar dengan waktu pengerjaan yang lebih lama. Brute Force ini sudah mulai dikembangkan untuk mencari kode. Salah satu pengembangannya adalah pengumpulan chain sebagai database dan penggunaan Crypt8 dan CSA-Rainbow Tool yang menggunakan algoritma brute force sehingga memungkinkan untuk memangkas waktu yang diperlukan Brute Force Attack.

  19. Intestinal inflammatory myofibroblastic tumour

    African Journals Online (AJOL)

    abdominal X-ray of patients 1, 3 and 4 demonstrated dilated small bowel loops with fluid levels in keeping with intestinal ... myxoid/vascular pattern characterised by a variable admixture of capillary-calibre blood vessels, .... in the present study had a past history of abdominal trauma or surgery. Ancillary histopathological ...

  20. Small intestine and microbiota.

    Science.gov (United States)

    Cotter, Paul D

    2011-03-01

    To highlight the recent studies which have enhanced our appreciation of the composition of the microbiota in the human small intestine and its relevance to the health of the host. In the past number of years, the composition of the microorganisms present in our small intestines has been the subject of greater scrutiny than ever before. These investigations have been possible as a consequence of the development and utilization of new molecular tools which have revolutionized the field of microbial ecology and have focused predominantly on the small intestinal microbiota associated with pediatric celiac disease, inflammatory bowel disease, irritable bowel syndrome and pouchitis. The impact of invasive procedures, such as small bowel transplant, ileostomy and ileal pouch anal anastomosis, on the ileal microbiota has also been investigated. The ever greater appreciation of the link between the small intestinal microbiota and the health status of the host has the potential to lead to the development of new strategies to alter this microbiota in a targeted way to prevent or treat specific disorders.

  1. Intestinal obstruction repair

    Science.gov (United States)

    ... Ileostomy and your diet Ileostomy - caring for your stoma Ileostomy - changing your pouch Ileostomy - discharge Ileostomy - what to ask your doctor Intestinal or bowel obstruction - discharge Low-fiber diet Surgical wound care - open Types of ileostomy When you have nausea ...

  2. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... obstruction. Brit. I. Surg. 1998; 85: 1071-1074. The acute abdomen: Intestinal obstruction. In: Primary surgery, Vol. 1. Edited by Maurice King et al. Oxford. Med. PubL, Oxford. 1990; 142-169. Fluids and electrolyte management. In: Essentials of pediatric surgery. Edited by Marc Rowe et al. Mosby,. St. Louis ...

  3. Intestinal Complications of IBD

    Science.gov (United States)

    ... localized pocket of pus caused by infection from bacteria. More common in Crohn’s than in colitis, an abscess may form in the intestinal wall—sometimes causing it to bulge out. Visible abscesses, such as those around the anus, look like boils and treatment often involves lancing. Symptoms of ...

  4. Intestinal failure in childhood

    African Journals Online (AJOL)

    Short bowel syndrome (SBS) was one of the first recognised conditions of protracted IF. With the increasing and successful use of long-term PN during the last three decades, several other causes of IF have emerged. Long-term PN and home-PN are the mainstay of therapy, independent of the nature of “Intestinal failure” ...

  5. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    OpenAIRE

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; De Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing with the epithelial lineage. However, the functional relevance of these observations is unknown. In the present study we employ a model system in which we cannot only detect cell fusion but also exam...

  6. Protective Effect of Royal Jelly against Phenylhydrazine-induced Histological Injuries of Small Intestine of Mice: Morphometric Analyses

    Directory of Open Access Journals (Sweden)

    Hojat Anbara

    2016-01-01

    Full Text Available Background and Objectives: Phenylhydrazine (PHZ, as a known hemolytic agent, causes toxicity in different tissues at various levels. The aim of the current study was to examine the possible protective effects of royal jelly (RJ against PHZ-induced histological injuries of small intestine in mice.   Methods: In this experimental study, adult male mice were randomly divided into four groups of 8 mice each. PHZ was administered intraperitoneally to two groups of mice (at a dose of 60mg/kg every 48 hours for 35 days. One of the groups received RJ (100mg/kg orally 4 hours before PHZ administration. The third group only received RJ, and the forth group was considered as control. Twenty-four hours after the last treatment, different segments of small intestine were dissected out, then histological sections were prepared and quantitative morphometric assessments were performed. To compare the groups, one-way ANOVA and multiple comparative Tukey tests were used. The significance level was considered to be p<0.05.   Results: In this study, PHZ caused significant decreases in depth of duodenal crypts, distribution rate of the goblet cells in ileal villi, width of duodenal and jejunal villi, and height of villi in all three segments of small intestine. Co-administration of RJ partially improved the changes in the above parameters.   Conclusion: From results of this study, it seems that RJ as a free radical scavenger could reduce PHZ-induced intestinal toxicity in mouse.

  7. Pentoxifylline and prostaglandin E1 action on ischemia and reperfusion of small intestine tissue in rats. An immunohistochemical study.

    Science.gov (United States)

    Brasileiro, José Lacerda; Ramalho, Rondon Tosta; Aydos, Ricardo Dutra; Silva, Iandara Schettert; Takita, Luis Carlos; Marks, Guido; Assis, Peterson Vieira de

    2015-02-01

    To investigate the action of pentoxifylline (PTX) and prostaglandin E1 (PGE1) on ischemia and reperfusion of small intestine tissue in rats, using immunohistochemical analysis. Thirty-five Wistar rats were distributed as follows: group A (n=10): subjected to intestinal ischemia and reperfusion for 60 min, with no drugs; group B (n=10): PTX given during tissue ischemia and reperfusion; group C (n=10): PGE1 given during tissue ischemia and reperfusion; group D (n=5): sham. A segment of the small intestine was excised from each euthanized animal and subjected to immunohistochemical examination. Mean number of cells expressing anti-FAS ligand in the crypts was highest in Group A (78.9 ± 17.3), followed by groups B (16.7 ± 2.8), C (11.3 ± 1.8), and D (2.5 ± 0.9), with very significant differences between groups (pprostaglandin E1 proved beneficial during tissue reperfusion. The immunohistochemical results demonstrated a decrease in apoptotic cells, while protecting other intestinal epithelium cells against death after reperfusion, allowing these cells to renew the epithelial tissue.

  8. Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis.

    Science.gov (United States)

    Zhong, Heju; Li, Hao; Liu, Guangmang; Wan, Haifeng; Mercier, Yves; Zhang, Xiaoling; Lin, Yan; Che, Lianqiang; Xu, Shengyu; Tang, Li; Tian, Gang; Chen, Daiwen; Wu, De; Fang, Zhengfeng

    2016-01-01

    To determine responses of neonatal intestine to maternal increased consumption of DL-methionine (DLM) or DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA), eighteen primiparous sows (Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups (n = 6), with the nutritional treatments introduced from postpartum d0 to d14. The DLM-fed sows showed negative energy balance manifested by lost bodyweight, lower plasma glucose, subdued tricarboxylic acid cycle, and increased plasma lipid metabolites levels. Both villus height and ratio of villus height to crypt depth averaged across the small intestine of piglets were higher in the DLM and HMTBA groups than in the control group. Piglet jejunal oxidized glutathione concentration and ratio of oxidized to reduced glutathione were lower in the HMTBA group than in the DLM and control groups. However, piglet jejunal aminopeptidase A, carnitine transporter 2 and IGF-II precursor mRNA abundances were higher in the DLM group than in the HMTBA and control groups. Increasing maternal consumption of methionine as DLM and HMTBA promoted neonatal intestinal growth by increasing morphological development or up-regulating expression of genes responsible for nutrient metabolism. And increasing maternal consumption of HMTBA promoted neonatal intestinal antioxidant capacity without compromising maternal energy homeostasis during early lactation.

  9. Influence of gastric pH modifiers on development of intestinal metaplasia induced by X-irradiation in rats

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Okamoto, Taro; Fudaba, Yasuhiro; Ogundigie, P.S.; Ito, Akihiro

    1993-01-01

    The influence of gastric pH on intestinal metaplasia was examined in male Crj:CD(SD) rats. At the age of 5 weeks, animals were irradiated with two 10 Gy doses of X-rays to the gastric region at a 3-day interval (total 20 Gy), and 6 months after irradiation, received either secretin or histamine in silicon tubes for 2 months or had their bilateral submandibular salivary glands removed. The incidences of intestinal metaplasia in the fundus of animals after administration of secretin or histamine, or removal of the salivary glands were reduced, along with the pH values, as compared with values for rats given X-rays alone. In both the pyloric and the fundic gland mucosae, the numbers of alkaline phosphatase (ALP)-positive foci and type B metaplasias (intestinal crypts without Paneth cells) were also significantly decreased (P<0.01). In a second experiment, started six months after irradiation, rats were kept on 1% sodium chloride (NaCl) diet for 6 months. Subsequent removal of salivary glands along with histamine treatment brought about a marked drop in pH and in numbers of ALP-positive foci after three and five days. The present results thus indicated that development and maintenance of intestinal metaplasia can be influenced by a decrease of pH value. (author)

  10. Influence of gastric pH modifiers on development of intestinal metaplasia induced by X-irradiation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiromitsu; Okamoto, Taro; Fudaba, Yasuhiro; Ogundigie, P.S.; Ito, Akihiro (Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology)

    1993-10-01

    The influence of gastric pH on intestinal metaplasia was examined in male Crj:CD(SD) rats. At the age of 5 weeks, animals were irradiated with two 10 Gy doses of X-rays to the gastric region at a 3-day interval (total 20 Gy), and 6 months after irradiation, received either secretin or histamine in silicon tubes for 2 months or had their bilateral submandibular salivary glands removed. The incidences of intestinal metaplasia in the fundus of animals after administration of secretin or histamine, or removal of the salivary glands were reduced, along with the pH values, as compared with values for rats given X-rays alone. In both the pyloric and the fundic gland mucosae, the numbers of alkaline phosphatase (ALP)-positive foci and type B metaplasias (intestinal crypts without Paneth cells) were also significantly decreased (P<0.01). In a second experiment, started six months after irradiation, rats were kept on 1% sodium chloride (NaCl) diet for 6 months. Subsequent removal of salivary glands along with histamine treatment brought about a marked drop in pH and in numbers of ALP-positive foci after three and five days. The present results thus indicated that development and maintenance of intestinal metaplasia can be influenced by a decrease of pH value. (author).

  11. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection

    NARCIS (Netherlands)

    Bartfeld, Sina; Bayram, Tülay; van de Wetering, Marc; Huch, Meritxell; Begthel, Harry; Kujala, Pekka; Vries, Robert|info:eu-repo/dai/nl/341413755; Peters, Peter J; Clevers, Hans|info:eu-repo/dai/nl/07164282X

    BACKGROUND & AIMS: We previously established long-term, 3-dimensional culture of organoids from mouse tissues (intestine, stomach, pancreas, and liver) and human intestine and pancreas. Here we describe conditions required for long-term 3-dimensional culture of human gastric stem cells. The

  12. Hymenaea stigonocarpa Mart. ex Hayne: A tropical medicinal plant with intestinal anti-inflammatory activity in TNBS model of intestinal inflammation in rats.

    Science.gov (United States)

    Orsi, Patrícia Rodrigues; Seito, Leonardo Noboru; Di Stasi, Luiz Claudio

    2014-01-01

    Stem bark and fruit pulp of Hymenaea stigonocarpa Mart ex. Hayne (Fabaceae) has been popularly used to treat inflammation and gastrointestinal diseases including ulcers, diarrhea and gastric pain. The aim of this study was to investigate the intestinal anti-inflammatory activity of a methanol extract derived from the stem bark and diet with fruit pulp of Hymenaea stigonocarpa in the TNBS model of intestinal inflammation in rats. The intestinal anti-inflammatory activity of stem bark extract (100, 200 and 400mg/kg) and fruit pulp (10% and 5% in diet) was measured against the intestinal inflammatory process induced by TNBS (trinitrobenzesulphonic acid) in rats. The protective effects were evaluated as follows: evaluation of intestinal damage (damage score, extension of lesion, colon weight/length ratio), incidence of diarrhea and adherence to adjacent organs, colon glutathione (GSH) and malondialdehyde (MDA) contents, myeloperoxidase (MPO) and alkaline phosphatase (AP) activities. In addition, in vitro studies on lipid peroxidation in rat brain membranes and phytochemical profile were performed with both stem bark and fruit pulp. Treatment with 100, 200 and 400mg/kg of stem bark extract and 10% fruit pulp flour showed protective effects in the TNBS-induced colon damage, which was related to inhibition of MPO and AP activities, reduction in colon MDA content, and counteraction of GSH depletion induced by inflammatory process. A concentration-dependent inhibitory effect on the lipid peroxidation in rat brain membranes for stem bark and fruit pulp was determined, with an IC50 value of 5.25 ± 0.23 μg/mL and 27.33 ± 0.09 μg/mL, respectively. Similar phytochemical composition was observed in fruit and stem bark, including mainly flavonoids, condensed tannins and terpenes. Stem bark extract and fruit pulp flour of Hymenaea stigonocarpa prevented TNBS-induced colonic damage in rats and this protective effect were associated to an improvement of intestinal oxidative

  13. Pathology of Rodent Models of Intestinal Cancer: Progress Report and Recommendations

    Science.gov (United States)

    Washington, Mary Kay; Powell, Anne E.; Sullivan, Ruth; Sundberg, John; Wright, Nicholas; Coffey, Robert J.; Dove, William F.

    2013-01-01

    In October 2010, a pathology review of rodent models of intestinal neoplasia was held at The Jackson Laboratory. This review complemented 2 other concurrent events: a workshop on methods of modeling colon cancer in rodents and a conference on current issues in murine and human colon cancer. We summarize the results of the pathology review and the committee’s recommendations for tumor nomenclature. A virtual high-resolution image slide box of these models has been developed. This report discusses significant recent developments in rodent modeling of intestinal neoplasia, including the role of stem cells in cancer and the creation of models of metastatic intestinal cancer. PMID:23415801

  14. Light and electron microscopic studies of the intestinal epithelium in Notoplana humilis (Platyhelminthes, Polycladida): the contribution of mesodermal/gastrodermal neoblasts to intestinal regeneration.

    Science.gov (United States)

    Okano, Daisuke; Ishida, Sachiko; Ishiguro, Sei-ichi; Kobayashi, Kazuya

    2015-12-01

    Some free-living flatworms in the phylum Platyhelminthes possess strong regenerative capability that depends on putative pluripotent stem cells known as neoblasts. These neoblasts are defined based on several criteria, including their proliferative capacity and the presence of cellular components known as chromatoid bodies. Polyclads, which are marine flatworms, have the potential to be a good model system for stem cell research, yet little information is available regarding neoblasts and regeneration. In this study, transmission electron microscopy and immunostaining analyses, using antibodies against phospho-histone H3 and BrdU, were used to identify two populations of neoblasts in the polyclad Notoplana humilis: mesodermal neoblasts (located in the mesenchymal space) and gastrodermal neoblasts (located within the intestine, where granular club cells and phagocytic cells are also located). Light and electron microscopic analyses also suggested that phagocytic cells and mesodermal/gastrodermal neoblasts, but not granular club cells, migrated into blastemas and remodeled the intestine during regeneration. Therefore, we suggest that, in polyclads, intestinal regeneration is accomplished by mechanisms underlying both morphallaxis (remodeling of pre-existing tissues) and epimorphosis (de novo tissue formation derived from mesodermal/gastrodermal neoblasts). Based on the assumption that gastrodermal neoblasts, which are derived from mesodermal neoblasts, are intestinal stem cells, we propose a model to study intestinal regeneration.

  15. Effect of ecoimmunonutrition supports on maintenance of integrity of intestinal mucosal barrier in severe acute pancreatitis in dogs.

    Science.gov (United States)

    Xu, Gui-fang; Lu, Zheng; Gao, Jun; Li, Zhao-shen; Gong, Yan-fang

    2006-04-20

    One of the major causes of death in severe acute pancreatitis (SAP) is severe infection owing to bacterial translocation. Some clinical studies suggested that ecoimmunonutrition (EIN) as a new strategy had better treatment effect on SAP patients. But the experiment studies on the precise mechanism of the effect of EIN were less reported. In this study, we mainly investigated the effects of EIN on bacterial translocation in SAP model of dogs. SAP was induced by retrograde infusion of 5% sodium taurocholate into the pancreatic duct in healthy hybrid dogs. The SAP dogs were supported with either parenteral nutrition (PN) or elemental enteral nutrition (EEN) or EIN. The levels of serum amylase, serum aminotransferase and plasma endotoxin were detected before and after pancreatitis induction. On the 7th day after nutrition supports, peritoneal fluid, mesenteric lymph nodes (MLN), liver, and pancreas were collected for bacterial culture with standard techniques to observe the incidence of bacterial translocation. Pathology changes of pancreas were analyzed by histopathologic grading and scoring of the severity of pancreas, and the degree of intestinal mucosal damage was assessed by measuring mucosal thickness, villus height, and crypt depth of ileum. Compared with PN and EEN, EIN significantly decreased the levels of serum amylase, serum aminotransferase, plasma endotoxin, and the incidence of bacterial translocation. Furthermore, compared with the others, the histology scores of inflammation in pancreas and the ileum injury (ileum mocosa thickness, villus height, and crypt depth) were significantly alleviated by EIN (P dogs. Early EIN was safe and more effective treatment for SAP dogs.

  16. Human mini-guts: new insights into intestinal physiology and host–pathogen interactions

    Science.gov (United States)

    In, Julie G.; Foulke-Abel, Jennifer; Estes, Mary K.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark

    2016-01-01

    The development of indefinitely propagating human ‘mini-guts’ has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5+ intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt–villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host pathogen interactions. PMID:27677718

  17. Small intestinal transplantation.

    LENUS (Irish Health Repository)

    Quigley, E M

    2012-02-03

    The past few years have witnessed a considerable shift in the clinical status of intestinal transplantation. A great deal of experience has been gained at the most active centers, and results comparable with those reported at a similar stage in the development of other solid-organ graft programs are now being achieved by these highly proficient transplant teams. Rejection and its inevitable associate, sepsis, remain ubiquitous, and new immunosuppressant regimes are urgently needed; some may already be on the near horizon. The recent success of isolated intestinal grafts, together with the mortality and morbidity attendant upon the development of advanced liver disease related to total parenteral nutrition, has prompted the bold proposal that patients at risk for this complication should be identified and should receive isolated small bowel grafts before the onset of end-stage hepatic failure. The very fact that such a suggestion has begun to emerge reflects real progress in this challenging field.

  18. The Circadian Clock Gene BMAL1 Coordinates Intestinal RegenerationSummary

    Directory of Open Access Journals (Sweden)

    Kyle Stokes

    2017-07-01

    Full Text Available Background & Aims: The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. Methods: We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. Results: The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. Conclusions: Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology. Keywords: Intestine, Circadian Rhythms, Gastrointestinal Syndrome, TNF, Intestinal Stem Cells

  19. A primary colonic crypt model enriched in enteroendocrine cells facilitates a peptidomic survey of regulated hormone secretion.

    Science.gov (United States)

    Nikoulina, Svetlana E; Andon, Nancy L; McCowen, Kevin M; Hendricks, Michelle D; Lowe, Carolyn; Taylor, Steven W

    2010-04-01

    To enable the first physiologically relevant peptidomic survey of gastrointestinal tissue, we have developed a primary mouse colonic crypt model enriched for enteroendocrine L-cells. The cells in this model were phenotypically profiled using PCR-based techniques and showed peptide hormone and secretory and processing marker expression at mRNA levels that were increased relative to the parent tissue. Co-localization of glucagon-like peptide-1 and peptide YY, a characteristic feature of L-cells, was demonstrated by double label immunocytochemistry. The L-cells displayed regulated hormone secretion in response to physiological and pharmacological stimuli as measured by immunoassay. Using a high resolution mass spectrometry-based platform, more than 50 endogenous peptides (<16 kDa), including all known major hormones, were identified a priori. The influence of culture conditions on peptide relative abundance and post-translational modification was characterized. The relative abundance of secreted peptides in the presence/absence of the stimulant forskolin was measured by label-free quantification. All peptides exhibiting a statistically significant increase in relative concentration in the culture media were derived from prohormones, consistent with a cAMP-coupled response. The only peptides that exhibited a statistically significant decrease in secretion on forskolin stimulation were derived from annexin A1 and calcyclin. Biophysical interactions between annexin A1 and calcyclin have been reported very recently and may have functional consequences. This work represents the first step in characterizing physiologically relevant peptidomic secretion of gastrointestinally derived primary cells and will aid in elucidating new endocrine function.

  20. The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats

    Science.gov (United States)

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Al-Henhena, Nawal; Kunasegaran, Thubasni; Hasanpourghadi, Mohadeseh; Looi, Chung Yeng; Abd Malek, Sri Nurestri; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation

  1. The lid wiper contains goblet cells and goblet cell crypts for ocular surface lubrication during the blink.

    Science.gov (United States)

    Knop, Nadja; Korb, Donald R; Blackie, Caroline A; Knop, Erich

    2012-06-01

    The conjunctival side of the upper and lower inner eyelid borders, termed the lid wiper, has a thickened epithelial lip for apposition to the globe, assumed to distribute the preocular tear film. The human lid wiper structure and its goblet cells are investigated. Conjunctival whole mounts, including lid margins from 17 eyes of human body donors, were investigated by routine histology and semithin plastic sections, using histology, histochemistry, and immunohistochemistry. In routine histology, the conjunctival lid wiper epithelium regularly showed goblet cells, single and in clusters, at the luminal surface and also deep within the epithelium without apparent surface contact. Semithin sections revealed that the deep goblet cells were often connected to cryptal epithelial infoldings that opened to the surface, hence making their mucins available at the surface. The goblet cells produced mucins of neutral (periodic acid-Schiff) and acidic (Alcian blue) type and stained positive for the gel-forming mucin MUC5AC. Surprisingly, MUC5AC-negative goblet cells were also observed in the lid wiper. Contrary to conventional assumptions, the lid wiper is part of the conjunctiva. It contains previously undescribed goblet cell crypts deep in the epithelium, suitable as an internal lubrication system for reduction of friction between the lid margin and the globe. This provides the first evidence of the morphological basis for the hydrodynamic type of lubrication and a more conclusive understanding of lid-margin lubrication and tear film distribution. It is another strong indication that the lid wiper is that area in apposition with the globe for distributing the thin preocular tear film during the blink.

  2. Plant tannins inhibit the induction of aberrant crypt foci and colonic tumors by 1,2-dimethylhydrazine in mice.

    Science.gov (United States)

    Gali-Muhtasib, H U; Younes, I H; Karchesy, J J; el-Sabban, M E

    2001-01-01

    We have shown that naturally occurring tannins possess antitumor promotion activity in mouse skin. In the present investigation, we studied the ability of a hydrolyzable tannin, gallotannin (GT), and a condensed tannin extracted from red alder (RA) bark to inhibit 1,2-dimethylhydrazine (DMH)-induced colonic aberrant crypt foci (ACF) and tumors in Balb/c mice. In addition, we determined the ability of GT to inhibit the proliferation and to induce apoptosis in a human colon cancer cell line (T-84). Mice were given tannins by intraperitoneal injections, by gavage, or in drinking water before treatment with DMH for 24 weeks. Alternatively, mice were given tannins by intraperitoneal injection or gavage for only 2 weeks before DMH administration, then tannin administration was discontinued and mice were treated with DMH for 24 weeks. The multiplicity, size, and distribution of ACF and tumors were significantly inhibited by GT and RA in the above treatment regimens. The most effective treatments included GT by gavage, RA bark extract by intraperitoneal injection, and either tannin dissolved in drinking water. Extent of inhibition of ACF and tumors was gender independent. In cell culture experiments, GT treatment for three days inhibited the growth of T-84 cells, with a concentration resulting in half-maximal inhibition estimated to be 20 micrograms/ml. The treatment was not cytotoxic to cells at 1-40 micrograms/ml. Interestingly, at 10 micrograms/ml, GT induced apoptosis in T-84 cells as determined by the Hoechst DNA staining technique. Collectively, these findings support a potential role for tannins as chemopreventive agents against colon cancer.

  3. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP. The hypothesis was tested in swine offspring born to control mothers (n = 12 or mothers treated with the antibiotic amoxicillin around parturition (n = 11, and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27 and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently

  4. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  5. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  6. Pilot study of lithium to restore intestinal barrier function in severe graft-versus-host disease.

    Directory of Open Access Journals (Sweden)

    Gideon Steinbach

    Full Text Available Severe intestinal graft-vs-host disease (GVHD after allogeneic hematopoietic cell transplantation (HCT causes mucosal ulceration and induces innate and adaptive immune responses that amplify and perpetuate GVHD and the associated barrier dysfunction. Pharmacological agents to target mucosal barrier dysfunction in GVHD are needed. We hypothesized that induction of Wnt signaling by lithium, an inhibitor of glycogen synthase kinase (GSK3, would potentiate intestinal crypt proliferation and mucosal repair and that inhibition of GSK3 in inflammatory cells would attenuate the deregulated inflammatory response to mucosal injury. We conducted an observational pilot study to provide data for the potential design of a randomized study of lithium. Twenty patients with steroid refractory intestinal GVHD meeting enrollment criteria were given oral lithium carbonate. GVHD was otherwise treated per current practice, including 2 mg/kg per day of prednisone equivalent. Seventeen patients had extensive mucosal denudation (extreme endoscopic grade 3 in the duodenum or colon. We observed that 8 of 12 patients (67% had a complete remission (CR of GVHD and survived more than 1 year (median 5 years when lithium administration was started promptly within 3 days of endoscopic diagnosis of denuded mucosa. When lithium was started promptly and less than 7 days from salvage therapy for refractory GVHD, 8 of 10 patients (80% had a CR and survived more than 1 year. In perspective, a review of 1447 consecutive adult HCT patients in the preceding 6 years at our cancer center showed 0% one-year survival in 27 patients with stage 3-4 intestinal GVHD and grade 3 endoscopic appearance in the duodenum or colon. Toxicities included fatigue, somnolence, confusion or blunted affect in 50% of the patients. The favorable outcomes in patients who received prompt lithium therapy appear to support the future conduct of a randomized study of lithium for management of severe GVHD with

  7. Effects of Kluyveromyces marxianus supplementation on immune responses, intestinal structure and microbiota in broiler chickens.

    Science.gov (United States)

    Wang, Weiwei; Li, Zhui; Lv, Zengpeng; Zhang, Beibei; Lv, Hong; Guo, Yuming

    2017-01-01

    To investigate the effects of Kluyveromyces marxianus on immune responses, intestinal structure and microbiota in broilers, 840 1-d-old broiler chicks were randomly divided into seven groups (eight replicates) and were fed basal diets without or with 0.25, 0.50, 1.0, 1.5, 2.0, and 2.5 g/kg of K. marxianus (2.0×1010 CFU/g). Serum and intestine samples were collected at 21 d of age. The results showed that increasing K. marxianus addition linearly reduced feed conversion ratio but linearly elevated relative thymus weight, as well as quadratically increased serum lysozyme and IgG levels, with the medium dose (1.0 g/kg) being the most effective. The ratio of villus height to crypt depth of jejunum and ileum, ileal villus height and sucrase activity, as well as the mRNA expression of ileal mucin-2, claudin-1 and sodium glucose cotransporter 1 linearly responded to the increasing K. marxianus addition. Supplemental K. marxianus at low (0.5 g/kg), medium (1.5 g/kg) and high (2.5 g/kg) dose all decreased the abundance of phylum Cyanobacteria, increased the abundance of phylum Firmicutes and genus Lactobacillus in ileum. The high dose of K. marxianus addition also reduced the abundance of order Rickettsiales and Pseudomonadales along with species Acinetobacter junii. Ileal bacterial communities between K. marxianus-treated and untreated groups formed distinctly different clusters. In summary, K. marxianus supplementation benefits feed efficiency and immune function, as well as intestinal structure in broilers, which might be attributed to the improved ileal microbial structure. Supplemental K. marxianus at high dose (2.5 g/kg) was more effective for feed efficiency and intestinal health of broilers, while the innate immunity was optimized at a medium dose (1.0 g/kg).

  8. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Long-term self-renewal Meiosis Mesenchymal stem cells Mesoderm Microenvironment Mitosis Multipotent Neural stem cell Neurons Oligodendrocyte ... layers. The three layers are the ectoderm , the mesoderm , and the endoderm . Hematopoietic stem cell - A stem ...

  9. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets.

    Science.gov (United States)

    Zhang, Li-Li; Zhang, Hao; Li, Yue; Wang, Tian

    2017-06-01

    It has been shown that there is a relationship between intrauterine growth retardation (IUGR) and postnatal intestinal damage involved in energy deficits. Therefore, the present study was conducted to investigate the effect of medium-chain triglycerides (MCT) on the intestinal morphology, intestinal function and energy metabolism of piglets with IUGR. At weaning (21 ± 1.1 d of age), 24 IUGR piglets and 24 normal birth weight (NBW) piglets were selected according to their birth weights (BW) (IUGR: 0.95 ± 0.04 kg BW; NBW: 1.58 ± 0.04 kg BW) and their weights at the time of weaning (IUGR: 5.26 ± 0.15 kg BW; NBW: 6.98 ± 0.19 kg BW). The piglets were fed a diet of either long-chain triglycerides (LCT) (containing 5% LCT) or MCT (containing 1% LCT and 4% MCT) for 28 d. Then, the piglets' intestinal morphology, biochemical parameters and mRNA abundance related to intestinal damage and energy metabolism were determined. IUGR was found to impair intestinal morphology, with evidence of decreased villus height and increased crypt depth; however, these negative effects of IUGR were ameliorated by MCT treatment. IUGR piglets showed compromised intestinal digestion and absorption functions when compared with NBW piglets. However, feeding MCT increased the maltase activity in the jejunum and alleviated IUGR-induced reductions in plasma d-xylose concentrations and jejunal sucrase activity. IUGR decreased the efficiency of the piglets' intestinal energy metabolism; however, piglets fed an MCT diet exhibited increased adenosine triphosphate (ATP) concentrations and ATP synthase F1 complex beta polypeptide expression, as well as decreased adenosine monophosphate-activated kinase alpha 1 expression in the jejunum of piglets. In addition, up-regulation of the piglets' citrate synthase and succinate dehydrogenase levels was found to occur following MCT treatment at both the activity and the transcriptional levels of the jejunum. Therefore, it can be postulated that

  10. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats

    DEFF Research Database (Denmark)

    Lai, Sarah W; de Heuvel, Elaine; Wallace, Laurie E

    2017-01-01

    .5 nmol/kg/h, n = 9). SBS groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis. All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5) and GLP-2 receptor mRNA, whole......OBJECTIVE: To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats. BACKGROUND: GLP-2 is a gut hormone known to be trophic for small bowel mucosa...... mount immunohistochemistry for neurons (HuC/D, VIP, nNOS), plasma glucose, gut hormones, and body composition. RESULTS: Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal muscularis propria thickness and crypt cell proliferation, which were not recapitulated by GLP-2...

  11. Effects of lethal dose of γ-irradiation on intestinal enzymes of the pigeons Columba livia intermedia Strickland

    International Nuclear Information System (INIS)

    Gadhia, P.K.

    1979-01-01

    Effect of γ-irradiation with lethal dose (1000 rads) on alkaline phosphatase and glucose-6-phosphatase have been studied in two different regions (duodenum and ileum) of small intestine of pigeons. The enzymes were studied at different intervals like 2, 4, 6 and 8 days after irradiation. The sp. activities of enzyme increased significantly both in duodenum and ileum. However, significant increase in alkaline phosphatase and glucose-6-phosphatase were observed at the 2nd and the 4th days post-irradiation respectively. The increase in enzyme activities may present de novo synthesis of these enzymes after lethal dose of irradiation. The histologic picture revealed that after the 4th day of irradiation, the number of goblet cells increased and after the 6th day crypt-villus system was destroyed completely as compared to sham-irradiated pigeons. (author)

  12. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs

    DEFF Research Database (Denmark)

    Jain, Ajay Kumar; Stoll, Barbara; Burrin, Douglas G

    2012-01-01

    Total parenteral nutrition (TPN) is essential for patients with impaired gut function but leads to parenteral nutrition-associated liver disease (PNALD). TPN disrupts the normal enterohepatic circulation of bile acids, and we hypothesized that it would decrease intestinal expression of the newly...... described metabolic hormone fibroblast growth factor-19 (FGF19) and also glucagon-like peptides-1 and -2 (GLP-1 and GLP-2). We tested the effects of restoring bile acids by treating a neonatal piglet PNALD model with chenodeoxycholic acid (CDCA). Neonatal pigs received enteral feeding (EN), TPN, or TPN...... growth marked by weight and villus/crypt ratio was significantly reduced in the TPN group compared with the EN group, and CDCA treatment increased both parameters. These results suggest that decreased circulating FGF19 during TPN may contribute to PNALD. Moreover, we show that enteral CDCA not only...

  13. Development and application of human adult stem or progenitor cell organoids

    NARCIS (Netherlands)

    Rookmaaker, Maarten B; Schutgens, Frans; Verhaar, Marianne C; Clevers, Hans

    Adult stem or progenitor cell organoids are 3D adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells. This organoid culture system was first established in murine intestine and subsequently developed for

  14. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  15. Lgr5 marks cycling, yet long-lived, hair follicle stem cells.

    NARCIS (Netherlands)

    Jaks, V.; Barker, N.; Kasper, M.; van Es, J.H.; Snippert, H.J.G.; Clevers, H.; Toftgard, R.

    2008-01-01

    In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair

  16. Lipo sarcoma in small intestine

    International Nuclear Information System (INIS)

    Rodriguez Iglesias, J.; Pineyro Gutierrez, A.; Taroco Medeiros, L.; Fein Kolodny, C.; Navarrete Pedocchi, H.

    1987-01-01

    A case is presented by primitive liposarcoma in small intestine , an extensive bibliographical review foreigner and national in this case. It detach the exceptional of the intestinal topography of the liposarcomas; and making stress in the relative value of the computerized tomography and ultrasonography in the diagnose of the small intestine tumors . As well as in the sarcomas of another topography, chemo and radiotherapy associated to the exeresis surgery, it can be of benefit [es

  17. DNA damage and aberrant crypt foci as putative biomarkers to evaluate the chemopreventive effect of annatto (Bixa orellana L.) in rat colon carcinogenesis.

    Science.gov (United States)

    Agner, Aniele R; Bazo, Ana P; Ribeiro, Lúcia R; Salvadori, Daisy M F

    2005-04-04

    Chemoprevention opens new perspectives in the prevention of cancer and other degenerative diseases. Use of target-organ biological models at the histological and genetic levels can markedly facilitate the identification of such potential chemopreventive agents. Colon cancer is one of the highest incidence rates throughout the world and some evidences have indicated carotenoids as possible agents that decrease the risk of colorectal cancer. In the present study, we evaluate the activity of annatto (Bixa orellana L.), a natural food colorant rich in carotenoid, on the formation of aberrant crypt foci (ACF) induced by dimethylhydrazine (DMH) in rat colon. Further, we investigate, the effect of annatto on DMH-induced DNA damage, by the comet assay. Male Wistar rats were given s.c. injections of DMH (40 mg/kg body wt.) twice a week for 2 weeks to induce ACF. They also received experimental diets containing annatto at 20, 200 or 1000 ppm for five 5 weeks before (pre-treatment), or 10 weeks after (post-treatment) DMH treatment. In both protocols the rats were sacrificed on week 15th. For the comet assay, the animals were fed with the same experimental diets for 2 weeks. Four hours before the sacrifice, the animals received an s.c. injection of DMH (40 mg/kg body wt.). Under such conditions, dietary administration of 1000 ppm annatto neither induce DNA damage in blood and colon cells nor aberrant crypt foci in rat distal colon. Conversely, annatto was successful in inhibiting the number of crypts/colon (animal), but not in the incidence of DMH-induced ACF, mainly when administered after DMH. However, no antigenotoxic effect was observed in colon cells. These findings suggest possible chemopreventive effects of annatto through their modulation of the cryptal cell proliferation but not at the initiation stage of colon carcinogenesis.

  18. Stem Cells

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Stem Cells: A Dormant Volcano Within Our Body? Devaveena Dey Annapoorni Rangarajan. General Article Volume 12 Issue 3 March 2007 pp 27-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Why STEM?

    Science.gov (United States)

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  20. Morphological criteria for comparing effects of X-rays and neon ions on mouse small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Carr, K.E.; Hayes, T.L.; Indran, M.; Bastacky, S.J.; McAlinden, G.; Ainsworth, E.J.; Ellis, S.

    1987-06-01

    Several techniques have been used to assess changes in different parts of mouse small intestine three days after a single dose of either 16.5 Gy X-rays or 11 Gy neon beam. The doses were chosen to be approximately equivalent in terms of their effect on the number of microcolonies present. In qualitative terms, villous damage was seen after both types of radiation exposure: collared crypts, similar to those seen in biopsies taken from patients suffering from coeliac disease, were conspicuous after neon irradiation. In semi quantitative terms the doses used, although estimated from previous work to give biologically equivalent damage, produced a greater drop in microcolony numbers after X-irradiation. This makes all the more important the fact that significantly greater changes were seen after neon irradiation-a greater drop was seen in the number of villous profiles and the number of goblet cells per villus. There was also greater breakdown in the integrity of the villous basement membrane. Different responses after the two types of irradiation are therefore seen in the cryptal and villous compartment. Progress is being made towards identifying and quantitating radiation induced changes in different populations of cells or tissues in the small intestine.

  1. Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis

    Directory of Open Access Journals (Sweden)

    Brenda Carla Luquetti

    2016-08-01

    Full Text Available ABSTRACT This study aimed to assess the effects of glutamine as feed additive on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. A total of 400 day-old male chicks were randomly assigned to four treatments (NVNG – no vaccination, no glutamine supplementation; NVG – no vaccination, glutamine supplementation (10 g kg−1; VNG – vaccination, no glutamine supplementation; VG – vaccination, glutamine supplementation replicated four times with 25 birds per replicate. A commercial sprayed-on vaccine against coccidiosis containing Eimeria acervulina, E. maxima, E. mivati, and E. tenella was administered at the hatchery. Broiler performance was evaluated from 1-28 days, and morphometric parameters were analyzed at 14, 21, and 28 days of age. Body weight gain and feed intake were negatively affected by vaccination, but not by glutamine. Vaccination increased crypt depth in the duodenum and jejunum at 21 and 28 days. In conclusion, this study showed that glutamine was not able to increase weight gain of broiler chickens, irrespective of whether the animals were vaccinated or not against coccidiosis. Glutamine supplementation was able to improve feed conversion in vaccinated birds suggesting trophic effect on intestinal epithelium improving.

  2. Evidence against a systemic humoral factor controlling the intestinal compensatory response following X-irradiation

    International Nuclear Information System (INIS)

    Sharp, J.G.; Osborne, J.W.; Iowa Univ., Iowa City

    1981-01-01

    The investigation was devised to determine whether changes noted in the unirradiated duodenum and colon of single rats after X-irradiation of only the exteriorized rat jejunum and ileum are mediated by a systemic humoral factor. Littermate Holtzman male rats were joined in parabiosis and one month later, the temporarily exteriorized jejunum and ileum of one member was exposed to 1.000 R of 250 kVp X-irradiation. Two days after X-irradiation, and 1, 12 and 24 h after 1 μCi/g bodyweight 3 H-thymidine was injected i.p. rats were sacrificed and appropriate tissues removed. Single rats which had the exteriorized jejunum and ileum irradiated were studied from 1-3 days after irradiation. Crypt cell migration rates were determined employing autoradiography. Tritium content and columnar cell migration rate in duodenum and colon of unirradiated rats compared to irradiated rats indicated that irradiation of one member of the pair had no effect on tritium incorporation or epithelial cell migration in the duodenum or colon of the unirradiated partner. Epithelial cell proliferation and crypt cell migration were increased in unirradiated duodenum and colon of single intestine-irradiated rats. Essentially the same changes were seen in the irradiated member of a parabiotic pair, but none of these changes were noted in the unirradiated member. The absence of stimulation in the unirradiated parabiont suggests that either a systemic humoral factor is not present after X-irradiation or is not present in sufficient concentration to be detected by these methods. (orig./MG)

  3. TLR4 activates the β-catenin pathway to cause intestinal neoplasia.

    Directory of Open Access Journals (Sweden)

    Rebeca Santaolalla

    Full Text Available Colonic bacteria have been implicated in the development of colon cancer. We have previously demonstrated that toll-like receptor 4 (TLR4, the receptor for bacterial lipopolysaccharide (LPS, is over-expressed in humans with colitis-associated cancer. Genetic epidemiologic data support a role for TLR4 in sporadic colorectal cancer (CRC as well, with over-expression favoring more aggressive disease. The goal of our study was to determine whether TLR4 played a role as a tumor promoter in sporadic colon cancer. Using immunofluorescence directed to TLR4, we found that a third of sporadic human colorectal cancers over-express this marker. To mechanistically investigate this observation, we used a mouse model that over-expresses TLR4 in the intestinal epithelium (villin-TLR4 mice. We found that these transgenic mice had increased epithelial proliferation as measured by BrdU labeling, longer colonic crypts and an expansion of Lgr5+ crypt cells at baseline. In addition, villin-TLR4 mice developed spontaneous duodenal dysplasia with age, a feature that is not seen in any wild-type (WT mice. To model human sporadic CRC, we administered the genotoxic agent azoxymethane (AOM to villin-TLR4 and WT mice. We found that villin-TLR4 mice showed an increased number of colonic tumors compared to WT mice as well as increased β-catenin activation in non-dysplastic areas. Biochemical studies in colonic epithelial cell lines revealed that TLR4 activates β-catenin in a PI3K-dependent manner, increasing phosphorylation of β-catenin(Ser552, a phenomenon associated with activation of the canonical Wnt pathway. Our results suggest that TLR4 can trigger a neoplastic program through activation of the Wnt/β-catenin pathway. Our studies highlight a previously unexplored link between innate immune signaling and activation of oncogenic pathways, which may be targeted to prevent or treat CRC.

  4. Influence of a Dietary Fiber on Development of Dimethylhydrazine-Induced Aberrant Crypt Foci and Colon Tumor Incidence in Wistar Rats

    DEFF Research Database (Denmark)

    Thorup, I.; Meyer, Otto A.; Kristiansen, E.

    1994-01-01

    experimental data. The present state of knowledge could indicate that ACF represent true preneoplastic lesions progressing into colon tumors or that ACF and colon tumors represent two parallel independent events as a consequence of the cancer initiation (i.e., the ACF not being preneoplastic lesions per se)....... between duration of intake of high-fiber diet and number of animals with ACF, as well as the total number of ACF and number of small A CF (1-3 crypts) per affected animal. The previously reported data showed no protective effect of the dietary fiber at any stage of the colorectal carcinogenic process...

  5. Hereditary intestinal polyposis syndromes.

    Science.gov (United States)

    Dean, P A

    1996-01-01

    Colorectal cancer is one of the most common cancers in the world, with overall mortality exceeding 40% even with treatment. Effective efforts for screening and prevention are most likely to succeed in patient groups identified as high risk for colorectal cancer, most notably the hereditary intestinal polyposis syndromes. In these syndromes, benign polyps develop throughout the intestinal tract prior to the development of colorectal cancer, marking the patient and associated family for precancer diagnosis followed by either close surveillance or preventive treatment. This review article was undertaken to discuss the most recent developments in the knowledge of hereditary intestinal polyposis syndromes, emphasizing the clinical approach to diagnosis and treatment relative to preventing the development of cancer. The most common of the hereditary polyposis syndromes is familial adenomatous polyposis (FAP), which is characterized by the development of hundreds to thousands of adenomatous polyps in the colon followed at an early age by colorectal cancer. Colorectal cancer can be prevented in this autosomal dominant condition by p