WorldWideScience

Sample records for intestinal barrier function

  1. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  2. Can probiotics modulate human disease by impacting intestinal barrier function?

    NARCIS (Netherlands)

    Bron, Peter A.; Kleerebezem, Michiel; Brummer, Robert Jan; Cani, Patrice D.; Mercenier, Annick; MacDonald, Thomas T.; Garcia-Ródenas, Clara L.; Wells, Jerry M.

    2017-01-01

    Intestinal barrier integrity is a prerequisite for homeostasis of mucosal function, which is balanced to maximise absorptive capacity, while maintaining efficient defensive reactions against chemical and microbial challenges. Evidence is mounting that disruption of epithelial barrier integrity is

  3. The intestinal barrier function and its involvement in digestive disease.

    Science.gov (United States)

    Salvo Romero, Eloísa; Alonso Cotoner, Carmen; Pardo Camacho, Cristina; Casado Bedmar, Maite; Vicario, María

    2015-11-01

    The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  4. Intestinal barrier function and the brain-gut axis.

    Science.gov (United States)

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

  5. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    Science.gov (United States)

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  6. Intestinal Barrier and Behavior.

    Science.gov (United States)

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses. © 2016 Elsevier Inc. All rights reserved.

  7. Clinical implications of the sugar absorption test: intestinal permeability test to assess mucosal barrier function

    NARCIS (Netherlands)

    Uil, J. J.; van Elburg, R. M.; van Overbeek, F. M.; Mulder, C. J.; vanBerge-Henegouwen, G. P.; Heymans, H. S.

    1997-01-01

    Functional integrity as an aspect of the mucosal barrier function of the small bowel can be estimated by the intestinal permeability for macromolecules. In the first part of this paper, an overview of intestinal permeability and its measurement is given. In the second part of the paper our own

  8. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  9. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  10. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional...... interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise....... permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional...

  11. The effect of wellsolve, a novel solubilizing agent, on the intestinal barrier function and intestinal absorption of griseofulvin in rats.

    Science.gov (United States)

    Hamid, Khuriah Abdul; Lin, Yulian; Gao, Yang; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2009-11-01

    The effect of Wellsolve, a new solubilizing agent, on the function of intestinal membrane barrier and transporters including P-glycoprotein (P-gp) and peptide transporter (PEPT1) was examined by an in vitro diffusion chamber and an in situ closed loop method. The model drugs used in this study were 5(6)-carboxyfluorescein (CF), rhodamine123 (a P-glycoprotein substrate), cephalexin (a typical substrate for PEPT1) and griseofulvin (a BCS Class II drug). Intestinal absorption of CF was not affected by the addition of 1-10% (v/v) Wellsolve, while 20% (v/v) Wellsolve significantly enhanced its intestinal absorption by the in situ absorption study. Therefore, this finding suggested that high concentration of Wellsolve might alter the intestinal barrier function. The mucosal to serosal (absorptive) and serosal to mucosal (secretory) transport of rhodamine123 was significantly inhibited in the presence of 5.0-20% (v/v) of Wellsolve, suggesting that Wellsolve might not affect the function of P-gp in the intestine. The intestinal transport of cephalexin was not affected in the presence of Wellsolve, suggesting that this solubilizing agent might not change the function of PEPT1 in the intestine. In the toxicity studies, we found that 1-10% (v/v) Wellsolve did not change the release of lactate hydrogenase (LDH) and protein from the intestinal membranes. Furthermore, intestinal absorption of griseofulvin in the presence of 10% (v/v) Wellsolve significantly increased as compared with the control. In summary, Wellsolve at lower concentrations might be a potent and safe solubilizing agent for improving the solubility and absorption of poorly water-soluble drugs including griseofulvin.

  12. Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.

    Science.gov (United States)

    Jin, Mingliang; Zhu, Yimin; Shao, Dongyan; Zhao, Ke; Xu, Chunlan; Li, Qi; Yang, Hui; Huang, Qingsheng; Shi, Junling

    2017-01-01

    The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  14. Exogenous lysozyme influences Clostridium perfringens colonization and intestinal barrier function in broiler chickens.

    Science.gov (United States)

    Liu, Dan; Guo, Yuming; Wang, Zhong; Yuan, Jianmin

    2010-02-01

    Necrotic enteritis is a worldwide poultry disease caused by the overgrowth of Clostridium perfringens in the small intestine. An experiment with a 2x2 factorial design (supplementation with or without 40 mg lysozyme/kg diet for chickens challenged with or without C. perfringens) was conducted to investigate the inhibitory efficacy of exogenous lysozyme against intestinal colonization by C. perfringens in chickens subject to oral inoculation of C. perfringens type A on days 17 to 20. The C. perfringens challenge resulted in significant increase of C. perfringens, Escherichia coli and Lactobacillus populations in the ileum, bacteria translocation to the spleen, the intestinal lesion scores , There was significantly lower intestinal lysozyme activity in the duodenum and jejunum and weight gain during days 14 to 28 of the experiment. The addition of exogenous lysozyme significantly reduced the concentration of C. perfringens in the ileum and the intestinal lesion scores, inhibited the overgrowth of E. coli and Lactobacillus in the ileum and intestinal bacteria translocation to the spleen, and improved intestinal lysozyme activity in the duodenum and the feed conversion ratio of chickens. These findings suggest that exogenous lysozyme could decrease C. perfringens colonization and improve intestinal barrier function and growth performance of chickens.

  15. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    Science.gov (United States)

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  16. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    Science.gov (United States)

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.

  17. EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.

    Science.gov (United States)

    Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei

    2015-10-01

    indicate that EPA pretreatment is more effective than DHA pretreatment in attenuating heat-induced intestinal dysfunction and preventing TJ damage. Enhanced expression of TJ proteins that support the epithelial barrier integrity may be important for maintaining a functional intestinal barrier during heatstroke.

  18. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Science.gov (United States)

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  19. Protective effect of perioperative recombinant human growth hormone application on intestinal mucosal barrier function in patients with intestinal obstruction and the assessment of immune inflammatory response

    Directory of Open Access Journals (Sweden)

    Jun-Yi Jia

    2017-05-01

    Full Text Available Objective: To study the protective effect of perioperative recombinant human growth hormone (r-hGH application on intestinal mucosal barrier function in patients with intestinal obstruction and the influence on the immune inflammatory response. Methods: 60 patients with intestinal obstruction who underwent surgical treatment in our hospital between February 2013 and July 2016 were selected as the research subjects and divided into the control group (n=34 who received conventional surgical treatment and the observation group (n=26 who received surgery combined with perioperative r-hGH treatment. The serum levels of intestinal mucosal barrier indexes, immunoglobulin and inflammatory response indicators were compared between two groups of patients before and after treatment. Results: Before treatment, differences in serum levels of intestinal mucosal barrier indexes, immunoglobulin and inflammatory response indicators were not statistically significant between the two groups of patients. After treatment, serum intestinal mucosal barrier indexes Endotoxin, D-Lactate and DAO levels in observation group were lower than those in control group, immunoglobulin IgA, IgM and IgG levels were higher than those in control group, and inflammatory response indicators IL-1, IL-6, PCT and TNF-α levels were lower than those in control group patients. Conclusion: Perioperative r-hGH application in patients with intestinal obstruction can protect the intestinal mucosal barrier, also optimize the humoral immunity and suppress the systemic inflammatory response.

  20. Hypoxia Inducible Factor (HIF Hydroxylases as Regulators of Intestinal Epithelial Barrier FunctionSummary

    Directory of Open Access Journals (Sweden)

    Mario C. Manresa

    2017-05-01

    Full Text Available Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia. Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs, which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms. Keywords: Epithelial Barrier, Inflammatory Bowel Disease, Hypoxia, Hypoxia-Inducible Factor (HIF Hydroxylases

  1. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome.

    Science.gov (United States)

    Keszthelyi, D; Troost, F J; Jonkers, D M; van Eijk, H M; Lindsey, P J; Dekker, J; Buurman, W A; Masclee, A A M

    2014-08-01

    Alterations in serotonergic (5-HT) metabolism and/or intestinal integrity have been associated with irritable bowel syndrome (IBS). To assess the effects of the precursor of 5-HT, 5-hydroxytryptophan (5-HTP), on mucosal 5-HT availability and intestinal integrity, and to assess potential differences between healthy controls and IBS patients. Fifteen IBS patients and 15 healthy volunteers participated in this randomised double-blind placebo-controlled study. Intestinal integrity was assessed by dual-sugar test and by determining the mucosal expression of tight junction proteins after ingestion of an oral bolus of 100 mg 5-HTP or placebo. Mucosal serotonergic metabolism was assessed in duodenal biopsy samples. 5-HTP administration significantly increased mucosal levels of 5-HIAA, the main metabolite of 5-HT, in both healthy controls (7.1 ± 1.7 vs. 2.5 ± 0.7 pmol/mg, 5-HTP vs. placebo, P = 0.02) and IBS patients (20.0 ± 4.8 vs. 8.1 ± 1.3 pmol/mg, 5-HTP vs. placebo, P = 0.02), with the latter group showing a significantly larger increase. Lactulose/L-rhamnose ratios were significantly lower after administration of 5-HTP (P HTP resulted in a further decrease in occludin expression. Oral 5-HTP induced alterations in mucosal 5-HT metabolism. In healthy controls, a reinforcement of the intestinal barrier was seen whereas such reaction was absent in IBS patients. This could indicate the presence of a serotonin-mediated mechanism aimed to reinforce intestinal barrier function, which seems to dysfunction in IBS patients. © 2014 John Wiley & Sons Ltd.

  2. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    Science.gov (United States)

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.

  3. Dietary soy isoflavone attenuated growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide.

    Science.gov (United States)

    Zhu, Cui; Wu, Yunpeng; Jiang, Zongyong; Zheng, Chuntian; Wang, Li; Yang, Xuefen; Ma, Xianyong; Gao, Kaiguo; Hu, Youjun

    2015-09-01

    This study was conducted to investigate the protective roles of soy isoflavone in weaned pigs challenged with lipopolysaccharide (LPS). A total of 72 weaned piglets (14 days of age) were randomly allotted into either 0 (control group) or 40 mg/kg soy isoflavone (ISO) supplementation group. On days 7 and 14, half of the pigs in each group were challenged with LPS. Soy isoflavone increased average daily gain (ADG) and average daily feed intake (ADFI) of piglets challenged with LPS at days 7-14 (PSoy isoflavone reduced the incidence of diarrhea and plasma concentrations of endotoxin in piglets challenged with LPS (Psoy isoflavone upregulated (Psoy isoflavone reduced their activations (Psoy isoflavone could partly attenuate the barrier-damaged effects of LPS and improve the intestinal barrier function of weaned piglets, at least partially by inhibiting activations of p38 and TLR4 dependent pathways induced by LPS. This study provides a potential usage of soy isoflavone for alleviating intestinal barrier damages of neonates and piglets. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    Directory of Open Access Journals (Sweden)

    Guiping Guan

    2016-01-01

    Full Text Available The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group or a dietary supplementation with 30 mg/kg dose of chitosan (COS group for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P<0.05 and a decreased jejunal diamine oxidase (DAO activity (P<0.05. Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P<0.05 and a reduced expression of occludin in the ileum (P<0.05. The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements.

  5. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  6. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat

    NARCIS (Netherlands)

    Visser, J. T. J.; Lammers, K.; Hoogendijk, A.; Boer, M. W.; Brugman, S.; Beijer-Liefers, S.; Zandvoort, A.; Harmsen, H.; Welling, G.; Stellaard, F.; Bos, N. A.; Fasano, A.; Rozing, J.

    2010-01-01

    Aims/hypothesis Impaired intestinal barrier function is observed in type I diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading

  7. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    . The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...... in an increased passage of soluble compounds to the basolateral side that affected DC function. In addition, T. suis E/S suppressed LPS-induced pro-inflammatory cytokine production by CMT93/69 cells, whereas the production of the TH2 response-inducing cytokine thymic stromal lymphopoietin (TSLP) was induced. Our...

  8. Brain-derived neurotrophic factor preserves intestinal mucosal barrier function and alters gut microbiota in mice

    Directory of Open Access Journals (Sweden)

    Chen Li

    2018-03-01

    Full Text Available The intestinal mucosal barrier (IMB enables the intestine to provide adequate containment of luminal microorganisms and molecules while preserving the ability to absorb nutrients. In this study, we explored the effect of brain-derived neurotrophic factor (BDNF on IMB function and gut microbiota in mice. BDNF gene knock-out mice (the BDNF+/− group and wild-type mice (the BDNF+/+ group were selected. The gut microbiota of these mice was analyzed by denaturing gradient gel electrophoresis (DGGE assay. The ultrastructure of the ileum and the colonic epithelium obtained from decapitated mice were observed by transmission electron microscopy. The protein expression of epithelial tight junction proteins, zonula occludens-1 (ZO-1 and occludin was detected by immunohistochemistry staining. The protein expression of claudin-1 and claudin-2 was determined by Western blotting. The DGGE band patterns of gut microbiota in the BDNF+/− group were significantly different from that in the BDNF+/+ group, which indicated that the BDNF expression alters the gut microbiota in mice. Compared with the BDNF+/+ group, the BDNF+/− group presented no significant difference in the ultrastructure of ileal epithelium; however, a significant difference was observed in the colonic epithelial barrier, manifested by decreased microvilli, widening intercellular space and bacterial invasion. Compared with the BDNF+/+ group, the expression of ZO-1 and occludin in the BDNF+/− group was significantly decreased. The expression of claudin-1 in the BDNF+/− group was significantly reduced, while the expression of claudin-2 was elevated. These findings indicate that BDNF preserves IMB function and modulates gut microbiota in mice.

  9. Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse.

    Science.gov (United States)

    Dawson, P A; Huxley, S; Gardiner, B; Tran, T; McAuley, J L; Grimmond, S; McGuckin, M A; Markovich, D

    2009-07-01

    Sulfate (SO(4)(2-)) is an abundant component of intestinal mucins and its content is decreased in certain gastrointestinal diseases, including inflammatory bowel disease. In this study, the hyposulfataemic NaS1 sulfate transporter null (Nas1(-/-)) mice were used to investigate the physiological consequences of disturbed sulfate homeostasis on (1) intestinal sulfomucin content and mRNA expression; (2) intestinal permeability and proliferation; (3) dextran sulfate sodium (DSS)-induced colitis; and (4) intestinal barrier function against the bacterial pathogen, Campylobacter jejuni. Intestinal sulfomucins and sialomucins were detected by high iron diamine staining, permeability was assessed by fluorescein isothiocyanate (FITC)-dextran uptake, and proliferation was assessed by 5-bromodeoxyuridine (BrdU) incorporation. Nas1(-/-) and wild-type (Nas1(+/+)) mice received DSS in drinking water, and intestinal damage was assessed by histological, clinical and haematological measurements. Mice were orally inoculated with C jejuni, and intestinal and systemic infection was assessed. Ileal mRNA expression profiles of Nas1(-/-) and Nas1(+/+) mice were determined by cDNA microarrays and validated by quantitative real-time PCR. Nas1(-/-) mice exhibited reduced intestinal sulfomucin content, enhanced intestinal permeability and DSS-induced colitis, and developed systemic infections when challenged orally with C jejuni. The transcriptional profile of 41 genes was altered in Nas1(-/-) mice, with the most upregulated gene being pancreatic lipase-related protein 2 and the most downregulated gene being carbonic anhydrase 1 (Car1). Sulfate homeostasis is essential for maintaining a normal intestinal metabolic state, and hyposulfataemia leads to reduced intestinal sulfomucin content, enhanced susceptibility to toxin-induced colitis and impaired intestinal barrier to bacterial infection.

  10. Lactic Acid Bacteria May Impact Intestinal Barrier Function by Modulating Goblet Cells.

    Science.gov (United States)

    Ren, Chengcheng; Dokter-Fokkens, Jelleke; Figueroa Lozano, Susana; Zhang, Qiuxiang; de Haan, Bart J; Zhang, Hao; Faas, Marijke M; de Vos, Paul

    2018-01-15

    Lactic acid bacteria (LAB) are recognized to promote gastrointestinal health by mechanisms that are not fully understood. LABs might modulate the mucus and thereby enhance intestinal barrier function. Herein, we investigate effects of different LAB strains and species on goblet cell genes involved in mucus synthesis. Gene expression profiles of goblet-cell-associated products (mucin MUC2, trefoil factor 3, resistin-like molecule β, carbohydrate sulfotransferase 5, and galactose-3-O-sulfotransferase 2) induced by LAB or their derived conditioned medium in human goblet cell line LS174T are studied. Effects of LAB on gene transcription are assessed with or without exposure to TNF-α, IL-13, or the mucus damaging agent tunicamycin. LAB do impact the related genes in a species- and strain-specific fashion and their effects are different in the presence of the cytokines and tunicamycin. Bioactive factors secreted by some strains are also found to regulate goblet cell-related genes. Our findings provide novel insights in differences in modulatory efficacy on mucus genes between LAB species and strains. This study further unravels direct interactions between LAB and intestinal goblet cells, and highlights the importance of rationally selecting appropriate LAB candidates to achieve specific benefits in the gut. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.

    Science.gov (United States)

    Clemente, M G; De Virgiliis, S; Kang, J S; Macatagney, R; Musu, M P; Di Pierro, M R; Drago, S; Congia, M; Fasano, A

    2003-02-01

    Despite the progress made in understanding the immunological aspects of the pathogenesis of coeliac disease (CD), the early steps that allow gliadin to cross the intestinal barrier are still largely unknown. The aim of this study was to establish whether gliadin activates a zonulin dependent enterocyte intracellular signalling pathway(s) leading to increased intestinal permeability. The effect of gliadin on the enterocyte actin cytoskeleton was studied on rat intestinal epithelial (IEC-6) cell cultures by fluorescence microscopy and spectrofluorimetry. Zonulin concentration was measured on cell culture supernatants by enzyme linked immunosorbent assay. Transepithelial intestinal resistance (Rt) was measured on ex vivo intestinal tissues mounted in Ussing chambers. Incubation of cells with gliadin led to a reversible protein kinase C (PKC) mediated actin polymerisation temporarily coincident with zonulin release. A significant reduction in Rt was observed after gliadin addition on rabbit intestinal mucosa mounted in Ussing chambers. Pretreatment with the zonulin inhibitor FZI/0 abolished the gliadin induced actin polymerisation and Rt reduction but not zonulin release. Gliadin induces zonulin release in intestinal epithelial cells in vitro. Activation of the zonulin pathway by PKC mediated cytoskeleton reorganisation and tight junction opening leads to a rapid increase in intestinal permeability.

  12. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Chen Sun

    Full Text Available A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs. Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.

  13. Alteration of intestinal barrier function during activity-based anorexia in mice.

    Science.gov (United States)

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. [THE INTESTINAL BARRIER, THE MICROBIOTA, MICROBIOME].

    Science.gov (United States)

    Mar'yanovich, A T

    2016-01-01

    The review examined modern condition of development directions physiology of digestion, like structure and function of the intestinal barrier, the microbiota of the digestive tract in its relations with the microorganism.

  15. Astilbin from Engelhardtia chrysolepis enhances intestinal barrier functions in Caco-2 cell monolayers.

    Science.gov (United States)

    Nakahara, Tatsuo; Nishitani, Yosuke; Nishiumi, Shin; Yoshida, Masaru; Azuma, Takeshi

    2017-06-05

    Astilbin, which is one of polyphenolic compounds isolated from the leaves of Engelhardtia chrysolepis H ANCE (Chinese name, huang-qui), is available as the effective component in food and cosmetics because of its anti-oxidant and anti-inflammatory effects. The tight junction (TJ) proteins, which protect the body from foreign substances, are related to adhesion between a cell and a cell. Previously, the enhancement of TJ's functions induced by aglycones of flavonoids has been demonstrated, but the effects of the glycosides such as astilbin have not been observed yet. In this study, we investigated the effects of astilbin on the TJ's functions, and human colon carcinoma Caco-2 cell monolayers were used to evaluate the effects of astilbin on transepithelial electrical resistance (TER) value and the mRNA and proteins expressions of TJ-related molecules. Astilbin increased the TER value, mRNA expression levels of claudin-1 and ZO-2, and protein expression levels of occludin and ZO-2 in Caco-2 cells. Astilbin also increased the TER value in Caco-2 cells co-stimulated with TNF-α plus IFN-γ, and moreover upregulated the protein expression of TJ-related molecules in Caco-2 cells co-treated with TNF-α plus IFN-γ. These results suggest that astilbin can enhance the expressions of TJ-related molecules, leading to upregulation of the barrier functions in the intestinal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  17. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  18. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  19. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  20. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice.

    Science.gov (United States)

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-08-03

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota.

  1. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  2. Cathelicidin-WA Improves Intestinal Epithelial Barrier Function and Enhances Host Defense against Enterohemorrhagic Escherichia coli O157:H7 Infection.

    Science.gov (United States)

    Yi, Hongbo; Hu, Wangyang; Chen, Shan; Lu, Zeqing; Wang, Yizhen

    2017-02-15

    Impaired epithelial barrier function disrupts immune homeostasis and increases inflammation in intestines, leading to many intestinal diseases. Cathelicidin peptides suppress intestinal inflammation and improve intestinal epithelial barrier function independently of their antimicrobial activity. In this study, we investigated the effects of Cathelicidin-WA (CWA) on intestinal epithelial barrier function, as well as the underlying mechanism, by using enterohemorrhagic Escherichia coli (EHEC)-infected mice and intestinal epithelial cells. The results showed that CWA attenuated EHEC-induced clinical symptoms and intestinal colitis, as did enrofloxacin (Enro). CWA decreased IL-6 production in the serum, jejunum, and colon of EHEC-infected mice. Additionally, CWA alleviated the EHEC-induced disruption of mucin-2 and goblet cells in the intestine. Interestingly, CWA increased the mucus layer thickness, which was associated with increasing expression of trefoil factor 3, in the jejunum of EHEC-infected mice. CWA increased the expression of tight junction proteins in the jejunum of EHEC-infected mice. Using intestinal epithelial cells and a Rac1 inhibitor in vitro, we demonstrated that the CWA-mediated increases in the tight junction proteins might depend on the Rac1 pathway. Furthermore, CWA improved the microbiota and short-chain fatty acid concentrations in the cecum of EHEC-infected mice. Although Enro and CWA had similar effects on intestinal inflammation, CWA was superior to Enro with regard to improving intestinal epithelial barrier and microbiota in the intestine. In conclusion, CWA attenuated EHEC-induced inflammation, intestinal epithelial barrier damage, and microbiota disruption in the intestine of mice, suggesting that CWA may be an effective therapy for many intestinal diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Pilot study of lithium to restore intestinal barrier function in severe graft-versus-host disease.

    Directory of Open Access Journals (Sweden)

    Gideon Steinbach

    Full Text Available Severe intestinal graft-vs-host disease (GVHD after allogeneic hematopoietic cell transplantation (HCT causes mucosal ulceration and induces innate and adaptive immune responses that amplify and perpetuate GVHD and the associated barrier dysfunction. Pharmacological agents to target mucosal barrier dysfunction in GVHD are needed. We hypothesized that induction of Wnt signaling by lithium, an inhibitor of glycogen synthase kinase (GSK3, would potentiate intestinal crypt proliferation and mucosal repair and that inhibition of GSK3 in inflammatory cells would attenuate the deregulated inflammatory response to mucosal injury. We conducted an observational pilot study to provide data for the potential design of a randomized study of lithium. Twenty patients with steroid refractory intestinal GVHD meeting enrollment criteria were given oral lithium carbonate. GVHD was otherwise treated per current practice, including 2 mg/kg per day of prednisone equivalent. Seventeen patients had extensive mucosal denudation (extreme endoscopic grade 3 in the duodenum or colon. We observed that 8 of 12 patients (67% had a complete remission (CR of GVHD and survived more than 1 year (median 5 years when lithium administration was started promptly within 3 days of endoscopic diagnosis of denuded mucosa. When lithium was started promptly and less than 7 days from salvage therapy for refractory GVHD, 8 of 10 patients (80% had a CR and survived more than 1 year. In perspective, a review of 1447 consecutive adult HCT patients in the preceding 6 years at our cancer center showed 0% one-year survival in 27 patients with stage 3-4 intestinal GVHD and grade 3 endoscopic appearance in the duodenum or colon. Toxicities included fatigue, somnolence, confusion or blunted affect in 50% of the patients. The favorable outcomes in patients who received prompt lithium therapy appear to support the future conduct of a randomized study of lithium for management of severe GVHD with

  4. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning.

    NARCIS (Netherlands)

    Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W.A.

    2001-01-01

    Compromising alterations in gastrointestinal architecture are common during the weaning transition of pigs. The relation between villous atrophy and epithelial barrier function at weaning is not well understood. This study evaluated in vitro transepithelial transport by Ussing metabolic chambers,

  5. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine.

    Science.gov (United States)

    Moeser, Adam J; Borst, Luke B; Overman, Beth L; Pittman, Jeremy S

    2012-10-01

    The objective of this study was to investigate intestinal function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Jejunum and distal ileum from control and pigs exhibiting PFTS was harvested at weaning, 4 and 11 days post-weaning (PW) for intestinal barrier function studies and histological analyses (n=6 pigs per group). Marked disturbances in intestinal barrier function was observed in PFTS pigs, compared with controls, indicated by lower (p<0.05) TER and increased (p<0.01) permeability to FITC dextran (4 kDa). Intestines from weaned pigs, subjected to a 4-day fast, exhibited minor disturbances in intestinal barrier function. Villus atrophy and crypt hyperplasia were observed in the PFTS intestine compared with control and fasted pigs. These data demonstrate that PFTS is associated with profound disturbances in intestinal epithelial barrier function and alterations in mucosal and epithelial morphology in which anorexia is not the sole factor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Impairment of intestinal barrier and secretory function as well as egg excretion during intestinal schistosomiasis occur independently of mouse mast cell protease-1.

    NARCIS (Netherlands)

    Rychter, J.|info:eu-repo/dai/nl/304810584; van Nassauw, L.; Brown, J.K.; van Marck, E.; Knight, P.A.; Miller, H.R.P.; Kroese, A.|info:eu-repo/dai/nl/068352247; Timmermans, J.P.

    2010-01-01

    Deposition of Schistosoma mansoni eggs in the intestinal mucosa is associated with recruitment of mucosal mast cells (MMC) expressing mouse mast cell protease-1 (mMCP-1). We investigated the involvement of mMCP-1 in intestinal barrier disruption and egg excretion by examining BALB/c mice lacking

  8. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function

    Science.gov (United States)

    Wu, Richard Y.; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C.; Scruten, Erin; Johnson-Henry, Kathene C.; Napper, Scott; O’Brien, Catherine; Jones, Nicola L.; Sherman, Philip M.

    2017-01-01

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics. PMID:28098206

  9. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function.

    Science.gov (United States)

    Wu, Richard Y; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C; Scruten, Erin; Johnson-Henry, Kathene C; Napper, Scott; O'Brien, Catherine; Jones, Nicola L; Sherman, Philip M

    2017-01-18

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics.

  10. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome

    NARCIS (Netherlands)

    Keszthelyi, D.; Troost, F.J.; Jonkers, D.M.; Eijk, van H.M.; Lindsey, P.J.; Dekker, J.; Buurman, W.A.; Masclee, A.A.M.

    2014-01-01

    Background Alterations in serotonergic (5-HT) metabolism and/or intestinal integrity have been associated with irritable bowel syndrome (IBS). Aims To assess the effects of the precursor of 5-HT, 5-hydroxytryptophan (5-HTP), on mucosal 5-HT availability and intestinal integrity, and to assess

  11. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure.

    Science.gov (United States)

    El Asmar, Ramzi; Panigrahi, Pinaki; Bamford, Penelope; Berti, Irene; Not, Tarcisio; Coppa, Giovanni V; Catassi, Carlo; Fasano, Alessio; El Asmar, Rahzi

    2002-11-01

    Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability. Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers. Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex. This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.

  12. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat.

    Science.gov (United States)

    Visser, J T J; Lammers, K; Hoogendijk, A; Boer, M W; Brugman, S; Beijer-Liefers, S; Zandvoort, A; Harmsen, H; Welling, G; Stellaard, F; Bos, N A; Fasano, A; Rozing, J

    2010-12-01

    Impaired intestinal barrier function is observed in type 1 diabetes patients and animal models of the disease. Exposure to diabetogenic antigens from the intestinal milieu due to a compromised intestinal barrier is considered essential for induction of the autoimmune process leading to type 1 diabetes. Since a hydrolysed casein (HC) diet prevents autoimmune diabetes onset in diabetes-prone (DP)-BioBreeding (BB) rats, we studied the role of the HC diet on intestinal barrier function and, therefore, prevention of autoimmune diabetes onset in this animal model. DP-BB rats were fed the HC diet from weaning onwards and monitored for autoimmune diabetes development. Intestinal permeability was assessed in vivo by lactulose-mannitol test and ex vivo by measuring transepithelial electrical resistance (TEER). Levels of serum zonulin, a physiological tight junction modulator, were measured by ELISA. Ileal mRNA expression of Myo9b, Cldn1, Cldn2 and Ocln (which encode the tight junction-related proteins myosin IXb, claudin-1, claudin-2 and occludin) and Il-10, Tgf-ß (also known as Il10 and Tgfb, respectively, which encode regulatory cytokines) was analysed by quantitative PCR. The HC diet reduced autoimmune diabetes by 50% in DP-BB rats. In DP-BB rats, prediabetic gut permeability negatively correlated with the moment of autoimmune diabetes onset. The improved intestinal barrier function that was induced by HC diet in DP-BB rats was visualised by decreasing lactulose:mannitol ratio, decreasing serum zonulin levels and increasing ileal TEER. The HC diet modified ileal mRNA expression of Myo9b, and Cldn1 and Cldn2, but left Ocln expression unaltered. Improved intestinal barrier function might be an important intermediate in the prevention of autoimmune diabetes by the HC diet in DP-BB rats. Effects on tight junctions, ileal cytokines and zonulin production might be important mechanisms for this effect.

  13. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2015-07-01

    Full Text Available Fecal microbiota transplantation (FMT is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR. Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.

  14. Effects of Tylosin on Bacterial Mucolysis, Clostridium perfringens Colonization, and Intestinal Barrier Function in a Chick Model of Necrotic Enteritis

    Science.gov (United States)

    Collier, C. T.; van der Klis, J. D.; Deplancke, B.; Anderson, D. B.; Gaskins, H. R.

    2003-01-01

    Necrotic enteritis (NE) is a worldwide poultry disease caused by the alpha toxin-producing bacterium Clostridium perfringens. Disease risk factors include concurrent coccidial infection and the dietary use of cereal grains high in nonstarch polysaccharides (NSP), such as wheat, barley, rye, and oats. Outbreaks of NE can be prevented or treated by the use of in-feed antibiotics. However, the current debate regarding the prophylactic use of antibiotics in animal diets necessitates a better understanding of factors that influence intestinal colonization by C. perfringens as well as the pathophysiological consequences of its growth. We report a study with a chick model of NE, which used molecular (16S rRNA gene [16S rDNA]) and culture-based microbiological techniques to investigate the impact of the macrolide antibiotic tylosin phosphate (100 ppm) and a dietary NSP (pectin) on the community structure of the small intestinal microbiota relative to colonization by C. perfringens. The effects of tylosin and pectin on mucolytic activity of the microbiota and C. perfringens colonization and their relationship to pathological indices of NE were of particular interest. The data demonstrate that tylosin reduced the percentage of mucolytic bacteria in general and the concentration of C. perfringens in particular, and these responses correlated in a temporal fashion with a reduction in the occurrence of NE lesions and an improvement in barrier function. The presence of pectin did not significantly affect the variables measured. Thus, it appears that tylosin can control NE through its modulation of C. perfringens colonization and the mucolytic activity of the intestinal microbiota. PMID:14506046

  15. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    Science.gov (United States)

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  16. Toll-Like Receptor 2 Activation by beta 2 -> 1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length-Dependent Manner

    NARCIS (Netherlands)

    Vogt, Leonie M.; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M.; Venema, Koen; Ramasamy, Uttara; Schols, Henk A.; de Vos, Paul

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that beta 2 -> 1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2

  17. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, de Paul; Boekschoten, Mark; Govers, Coen; Pieters, Harm J.H.M.; Wit, de Nicole; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement,

  18. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; A randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, De Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm J.H.M.; Wit, De Nicole J.W.; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  19. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  20. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice

    OpenAIRE

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-01-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue sampl...

  1. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway.

    Science.gov (United States)

    Sun, Lihua; Xu, Chao; Chen, Guoqing; Yu, Min; Yang, Songwei; Qiu, Yuan; Peng, Ke; Wang, Wensheng; Xiao, Weidong; Yang, Hua

    2015-01-01

    OS-9 is a lectin required for efficient ubquitination of glycosylated substrates of endoplasmic reticulum-associated degradation (ERAD). OS-9 has previously been implicated in ER-to-Golgi transport and transcription factor turnover. However, we know very little about other functions of OS-9 under endoplasmic reticulum stress. Here, we used gene knockdown and overexpression approaches to study the protective effect of OS-9 on intestinal barrier function of intestinal epithelial cell Caco-2 monolayer. We found that OS-9 attenuated intestinal epithelial barrier dysfunction under hypoxia through up-regulating occludin and claudin-1 protein expression. Furthermore, we showed that the up-regulation of occludin and claudin-1 induced by OS-9 was mediated by p38 and ERK1/2 phosphorylation and did not involve HIF-1α. In summary, our results demonstrate that OS-9 up-regulates occludin and claudin-1 by activating the MAP kinase (MAPK) pathway, and thus protects the epithelial barrier function of Caco-2 monolayer under hypoxia condition.

  2. Correlation of NOX1 and NOX2 expression in ulcerative colitis tissue with intestinal mucosal oxidative stress response and barrier function injury

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-10-01

    Full Text Available Objective: To study the correlation of NOX1 and NOX2 expression in ulcerative colitis tissue with intestinal mucosal oxidative stress response and barrier function injury. Methods: A total of 69 patients who were diagnosed with ulcerative colitis in Yan’an People’s Hospital between May 2015 and March 2017 were selected as the UC group of the research, and 78 patients who were diagnosed with colon polyps were selected as the polyps group of the research. The ulcerative colitis lesion and polyp lesion were collected to detect the expression of NOX1 and NOX2, the generation of oxygen free radicals as well as the contents of apoptosis molecules and mucosal barrier molecules. Results: The mRNA expression and protein expression of NOX1 and NOX2 in the intestinal mucosa of UC group were significantly higher than those of polyps group; LPO, MDA, AOPP, NO, PDCD5 and Bax levels in intestinal mucosa of UC group were significantly higher than those of polyps group and positively correlated with the mRNA expression and protein expression of NOX1 and NOX2 while Bcl-2, Cdx1, Cdx2, galectin-1, galectin-3, OCLN, cingulin and ZO-1 levels were significantly lower than those of polyps group and negatively correlated with the mRNA expression and protein expression of NOX1 and NOX2. Conclusion: The high expression of NOX1 and NOX2 in ulcerative colitis tissue can activate the intestinal mucosal oxidative stress response and result in the intestinal mucosal barrier function injury.

  3. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  4. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    Science.gov (United States)

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Effects of glutamine alone or in combination with zinc and vitamin A on growth, intestinal barrier function, stress and satiety-related hormones in Brazilian shantytown children.

    Science.gov (United States)

    Lima, Aldo A M; Anstead, Gregory M; Zhang, Qiong; Figueiredo, Ítalo L; Soares, Alberto M; Mota, Rosa M S; Lima, Noélia L; Guerrant, Richard L; Oriá, Reinaldo B

    2014-01-01

    To determine the impact of supplemental zinc, vitamin A, and glutamine alone or in combination on growth, intestinal barrier function, stress and satiety-related hormones among Brazilian shantytown children with low median height-for-age z-scores. A randomized, double-blind, placebo-controlled trial was conducted in children aged two months to nine years from the urban shanty compound community of Fortaleza, Brazil. Demographic and anthropometric information was assessed. The random treatment groups available for testing (a total of 120 children) were as follows: (1) glutamine alone, n = 38; (2) glutamine plus vitamin A plus zinc, n = 37; and a placebo (zinc plus vitamin A vehicle) plus glycine (isonitrogenous to glutamine) control treatment, n = 38. Leptin, adiponectin, insulin-like growth factor (IGF-1), and plasma levels of cortisol were measured with immune-enzymatic assays; urinary lactulose/mannitol and serum amino acids were measured with high-performance liquid chromatography. ClinicalTrials.gov: NCT00133406. Glutamine treatment significantly improved weight-for-height z-scores compared to the placebo-glycine control treatment. Either glutamine alone or all nutrients combined prevented disruption of the intestinal barrier function, as measured by the percentage of lactulose urinary excretion and the lactulose:mannitol absorption ratio. Plasma leptin was negatively correlated with plasma glutamine (p = 0.002) and arginine (p = 0.001) levels at baseline. After glutamine treatment, leptin was correlated with weight-for-age (WAZ) and weight-for-height z-scores (WHZ) (p≤0.002) at a 4-month follow-up. In addition, glutamine and all combined nutrients (glutamine, vitamin A, and zinc) improved the intestinal barrier function in these children. Taken together, these findings reveal the benefits of glutamine alone or in combination with other gut-trophic nutrients in growing children via interactions with leptin.

  6. Effect of enteral immunonutrition after radical surgery for esophageal carcinoma on anti-tumor immune response and intestinal mucosal barrier function

    Directory of Open Access Journals (Sweden)

    Tong He

    2017-07-01

    Full Text Available Objective: To study the effect of enteral immunonutrition after radical surgery for esophageal carcinoma on anti-tumor immune response and intestinal mucosal barrier function. Methods: A total of 102 patients who received radical surgery for esophageal carcinoma in our hospital between May 2013 and December 2016 were selected and randomly divided into observation group and control group who received postoperative enteral immunonutrition and routine enteral nutrition respectively. 1 d before operation as well as 1 d and 7 d after operation, peripheral blood immune cell marker expression and serum intestinal mucosal barrier injury marker levels were detected. Results: 1 d after operation, peripheral blood T-bet, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of both groups of patients were significantly lower than those 1d before operation while peripheral blood GATA-3 and Foxp3 fluorescence intensity as well as serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly higher than those 1d before operation; peripheral blood T-bet, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of observation group 7 d after operation were significantly higher than those 1 d after operation while peripheral blood GATA-3 and Foxp3 fluorescence intensity as well as serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly lower than those 1 d after operation; peripheral blood T-bet, GATA-3, Foxp3, NKG2D, NKp30, NKp44 and NKp46 fluorescence intensity of control group 7 d after operation were not significant different from those 1 d after operation, and serum DAO, Occludin, ZO-1 and claudin-1 levels were significantly lower than those 1d after operation. Conclusion: Enteral immunonutrition after radical surgery for esophageal carcinoma can enhance the anti-tumor immune response and improve the intestinal mucosal barrier function.

  7. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  8. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial.

    Science.gov (United States)

    Wilms, E; Gerritsen, J; Smidt, H; Besseling-van der Vaart, I; Rijkers, G T; Garcia Fuentes, A R; Masclee, A A M; Troost, F J

    2016-01-01

    Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern. Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study. Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6) per day) or control supplements for two weeks. Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention. Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025). Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005) and in the synbiotic group (P = 0.017). Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039) and higher compared to control intervention (P = 0.045). Two weeks Ecologic® 825/FOS P6 supplementation increased stool frequency

  9. Effects of Supplementation of the Synbiotic Ecologic® 825/FOS P6 on Intestinal Barrier Function in Healthy Humans: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    E Wilms

    Full Text Available Probiotics, prebiotics and synbiotics have been suggested as dietary strategies to improve intestinal barrier function. This study aimed to assess the effect of two weeks synbiotic supplementation on intestinal permeability under basal and stressed conditions. Secondary aims were the assessment of two weeks synbiotic supplementation on systemic immune function and gastrointestinal symptoms including defecation pattern.Twenty healthy adults completed a double-blind, controlled, randomized, parallel design study.Groups either received synbiotic (1.5 × 1010 CFU Ecologic® 825 + 10 g fructo-oligosaccharides (FOS P6 per day or control supplements for two weeks.Intestinal segment specific permeability was assessed non-invasively by oral administration of multiple sugar probes and, subsequently, assessing the excretion of these probes in urine. This test was conducted at baseline and at the end of intervention, in the absence and in the presence of an indomethacin challenge. Indomethacin was applied to induce a compromised gut state. Plasma zonulin, cytokines and chemokines were measured at baseline and at the end of intervention. Gastrointestinal symptoms and stool frequency were recorded at baseline and daily during intervention.Significantly more male subjects were in the synbiotic group compared to the control group (P = 0.025. Indomethacin significantly increased urinary lactulose/rhamnose ratio versus without indomethacin, both in the control group (P = 0.005 and in the synbiotic group (P = 0.017. Urinary sugar recoveries and ratios, plasma levels of zonulin, cytokines and chemokines, and gastrointestinal symptom scores were not significantly different after control or synbiotic intervention. Stool frequency within the synbiotic group was significantly increased during synbiotic intervention compared to baseline (P = 0.039 and higher compared to control intervention (P = 0.045.Two weeks Ecologic® 825/FOS P6 supplementation increased stool

  10. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.

    Science.gov (United States)

    Shao, Yuxin; Wolf, Patricia G; Guo, Shuangshuang; Guo, Yuming; Gaskins, H Rex; Zhang, Bingkun

    2017-05-01

    Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks.

    Science.gov (United States)

    Wils-Plotz, E L; Jenkins, M C; Dilger, R N

    2013-03-01

    Coccidiosis is a major contributor to economic losses in the poultry industry due to its detrimental effects on growth performance and nutrient utilization. We hypothesized that the combined effects of supplemental dietary Thr and purified fiber may modulate the intestinal environment and positively affect intestinal immune responses and barrier function in broiler chicks infected with Eimeria maxima. A Thr-deficient basal diet (3.1 g of Thr/kg of diet) was supplemented with 70 g/kg of silica sand (control) or high-methoxy pectin and 1 of 2 concentrations of Thr (1.8 or 5.3 g/kg of diet; 4 diets total), and fed to chicks from hatch to d 16 posthatch. On d 10 posthatch, chicks received 0.5 mL of distilled water or an acute dose of Eimeria maxima (1.5 × 10(3) sporulated oocytes) with 6 replicate pens of 6 chicks per each of 8 treatment combinations (4 diets and 2 inoculation states). Body weight gain, feed intake, and G:F increased (P coccidiosis, Thr supplementation had the greatest effect on intestinal immune response and maintenance of near normal growth in young broiler chicks infected with E. maxima.

  12. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60 on the intestinal barrier function and gut peptides in breast cancer patients: an observational study

    Directory of Open Access Journals (Sweden)

    Russo Francesco

    2013-02-01

    Full Text Available Abstract Background Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2, epidermal growth factor (EGF and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD. Methods Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+ patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21. Results During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27% suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+ patients compared to CTD(− patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+ patients than CTD(− ones, respectively. Finally in CTD(+ patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Conclusions Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2

  13. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study.

    Science.gov (United States)

    Russo, Francesco; Linsalata, Michele; Clemente, Caterina; D'Attoma, Benedetta; Orlando, Antonella; Campanella, Giovanna; Giotta, Francesco; Riezzo, Giuseppe

    2013-02-04

    Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD). Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21). During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(-) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(-) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14. Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In CTD(+) patients, a different GI peptide

  14. In ovo feeding of l-arginine regulates intestinal barrier functions of posthatch broilers by activating the mTOR signaling pathway.

    Science.gov (United States)

    Gao, Tian; Zhao, Minmeng; Zhang, Lin; Li, Jiaolong; Yu, Lanlin; Gao, Feng; Zhou, Guanghong

    2018-03-01

    During the last phase of incubation, dramatic physiological and metabolic changes occur in chick embryos, and supplies of nutrients and energy are always insufficient. This study investigated the effects of in ovo feeding (IOF) of l-arginine (Arg) on the hatchability, growth performance, intestinal development and functions of posthatch broilers. The IOF of Arg increased (P < 0.05) the feed intake and body weight gain during 1-21 days and 1-42 days, and the intestinal weight of 7- and 21-day-old broilers, compared with non-injected control and diluent-injected groups. The IOF of Arg increased (P < 0.05) villus height (VH), ratio of VH to crypt depth (CD) and density of goblet cells, and decreased (P < 0.05) the CD in jejunum of 1-, 7- and 21-day-old broilers. The IOF of Arg also increased (P < 0.05) the percentage of proliferating cell nuclear antigen positive cells of villus, and the mRNA expressions of mucin-2, claudin-1, zonula occludens-1 and -2 in jejunal mucosa of 21-day-old broilers. Meanwhile, IOF of Arg increased (P < 0.05) the protein abundance of phosphorylated mechanistic target of rapamycin (mTOR), ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 in jejunal mucosa. The IOF of Arg improved the development and barrier functions of small intestine, which might be associated with activating the mTOR pathway. In addition, the improved intestinal development might explain the improvement in feed intake and consequently the growth performance of broilers. Therefore, IOF of Arg solution could be an effective technology for regulating early nutrition supply and subsequent growth development in the poultry industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Intestinal barrier integrity and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Pedersen, Jannie; Jørgensen, Peter

    2017-01-01

    of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society. Mucosal healing and re-establishment of barrier integrity is associated......, novel treatment strategies to accomplish mucosal healing and to re-establish normal barrier integrity in inflammatory bowel disease are warranted, and luminal stem cell-based approaches might have an intriguing potential. Transplantation of in vitro expanded intestinal epithelial stem cells derived...

  16. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hans Linde Nielsen

    Full Text Available Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (R(t and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in R(t either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05, by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001, suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10(-6 cm/s in control, P<0.05 but showed no difference in permeability for 4 kDa FITC-dextran (FD-4. The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction.In conclusion, epithelial barrier dysfunction by oral and

  17. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens.

    Science.gov (United States)

    Lei, K; Li, Y L; Yu, D Y; Rajput, I R; Li, W F

    2013-09-01

    This experiment was conducted to evaluate the effects of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Hy-Line Variety W-36 hens (n = 540; 28 wk of age) were randomized into 6 groups, each group with 6 replications (n = 15). The control group received the basal diet formulated with maize and soybean meal. The treatment groups received the same basal diets supplemented with 0.01, 0.02, 0.03, 0.06, and 0.09% Bacillus licheniformis powder (2 × 10(10) cfu/g) for an 8-wk trial. The results showed that dietary supplementation with 0.01 and 0.03% B. licheniformis significantly increased egg production and egg mass. However, no significant differences were observed in egg weight, feed consumption, and feed conversion efficiency among the 6 groups. Supplementation with different levels of B. licheniformis was found to be effective in improvement of egg quality by increasing egg shell thickness and strength. Compared with control, d-lactate content, diamine oxidase activity, and adrenocorticotropic hormone level in serum decreased significantly, and the level of estradiol and follicle-stimulating hormone increased significantly in plasma of all the experimental groups. Dietary supplementation with B. licheniformis increased the intestinal villus height and reduced the crypt depth. In conclusion, dietary inclusion of B. licheniformis could improve laying performance and egg quality significantly in a dose-dependent manner by decreasing the stress response, upregulating the growth hormone, and improving intestinal health.

  18. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    Science.gov (United States)

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis

  19. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    barrier integrity, factors influencing the penetration of the skin, influence of wet work, and guidance for prevention and saving the barrier. Distinguished researchers have contributed to this book, providing a comprehensive and thorough overview of the skin barrier function. Researchers in the field...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  20. Enteric glial cells and their role in the intestinal epithelial barrier

    OpenAIRE

    Yu, Yan-Bo; Li, Yan-Qing

    2014-01-01

    The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population ...

  1. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery

    DEFF Research Database (Denmark)

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei

    2018-01-01

    to endolysosomal escape of DNPs. Additionally, DNPs can interact with a cytosolic ileal bile acid-binding protein that facilitates the intracellular trafficking and basolateral release of insulin. In rats, intravital two-photon microscopy also reveals that the transport of DNPs into the intestinal villi...

  2. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 - a probiotic strain of Indian gut origin.

    Science.gov (United States)

    Rokana, Namita; Singh, Rajbir; Mallappa, Rashmi Hogarehalli; Batish, Virender Kumar; Grover, Sunita

    2016-12-01

    Probiotic Lactobacillus plantarum MTCC 5690, a probiotic strain of Indian gut origin, and milk formulations produced with the same were explored in this study as biotherapeutics by evaluating their functional efficacy against Salmonella infection in mice. The efficacy of milk formulations (fermented/unfermented) of MTCC 5690 for enhancement of intestinal barrier function was determined by monitoring the permeability and histopathology of the intestine. Infected mice fed with probiotic Dahi, fermented probiotic drink and sweetened fermented probiotic drink maintained the health and integrity of the intestinal epithelium as compared to those fed with PBS, milk, unfermented probiotic milk and Dahi. Our relative expression data revealed that the changes caused by MTCC 5690 in intestinal barrier function components were established through modulation of the key regulatory receptors Toll-like receptor 2 and Toll-like receptor 4. The results suggest that fermented milks of MTCC 5690 could enhance the defences of the intestinal barrier in enteric infection condition and, therefore, can be explored as a dietary-based strategy to reduce Salmonella infection in the human gut.

  3. Investigation of the effect of the uneven distribution of CYP3A4 and P-glycoprotein in the intestine on the barrier function against xenobiotics: a simulation study.

    Science.gov (United States)

    Watanabe, Takao; Maeda, Kazuya; Nakai, Chikako; Sugiyama, Yuichi

    2013-09-01

    CYP3A4 and P-glycoprotein (P-gp) have similar substrate specificities and work together to form an intestinal absorption barrier against xenobiotics. Previous reports have indicated that CYP3A4 expression decreases gradually, whereas P-gp expression increases, from the upper to lower small intestine. The physiological rationale for this uneven distribution of CYP3A4 and P-gp as a barrier against xenobiotics has not been determined. To clarify the effect of these distribution patterns on barrier function, we constructed a mathematical model that included passive membrane permeation, P-gp-mediated apical efflux, and CYP3A4-mediated metabolism, and we simulated the effects of these distribution patterns on the fraction absorbed of co-substrates without changing their overall activities. The simulation showed that the physiological distribution patterns of both CYP3A4 and P-gp result in the lowest fraction absorbed, but not for drugs with low CYP3A4 and high P-gp-mediated clearances. These results suggest that the distribution pattern of CYP3A4 is especially important for the barrier function. On the other hand, physiological distribution pattern of P-gp exerts the maximum barrier function for dual good substrates for P-gp and CYP3A4, but even distribution of P-gp mostly suppresses the intestinal absorption of good P-gp, but poor CYP3A4 substrates. Copyright © 2013 Wiley Periodicals, Inc.

  4. Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats.

    Science.gov (United States)

    Liu, Min; Gao, Rui; Meng, Qingwei; Zhang, Yuanyuan; Bi, Chongpeng; Shan, Anshan

    2014-01-01

    The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses.

  5. Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available The present study was conducted to investigate the effects of maternal zearalenone (ZEN exposure on the intestine of pregnant Sprague-Dawley (SD rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43 in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8 and increased expression of gastrointestinal glutathione peroxidase (GPx2 mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses.

  6. Enteric glial cells and their role in the intestinal epithelial barrier.

    Science.gov (United States)

    Yu, Yan-Bo; Li, Yan-Qing

    2014-08-28

    The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population of astrocyte-like cells that are known as enteric glia. The morphological characteristics and expression markers of these enteric glia cells were identical to the astrocytes of the central nervous system. In the past few years, enteric glia have been demonstrated to have a trophic and supporting relationship with intestinal epithelial cells. Enteric glia lesions and/or functional defects can be involved in the barrier dysfunction. Besides, factors secreted by enteric glia are important for the regulation of gut barrier function. Moreover, enteric glia have an important impact on epithelial cell transcriptome and induce a shift in epithelial cell phenotype towards increased cell adhesion and cell differentiation. Enteric glia can also preserve epithelial barrier against intestinal bacteria insult. In this review, we will describe the current body of evidence supporting functional roles of enteric glia on intestinal barrier.

  7. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  8. Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Wei-Bing Song

    Full Text Available BACKGROUND: Intestinal mucosa barrier (IMB dysfunction results in many notorious diseases for which there are currently few effective treatments. We studied curcumin's protective effect on IMB and examined its mechanism by using methotrexate (MTX induced rat enteritis model and lipopolysaccharide (LPS treated cell death model. METHODOLOGY/PRINCIPAL FINDINGS: Curcumin was intragastrically administrated from the first day, models were made for 7 days. Cells were treated with curcumin for 30 min before exposure to LPS. Rat intestinal mucosa was collected for evaluation of pathological changes. We detected the activities of D-lactate and diamine oxidase (DAO according to previous research and measured the levels of myeloperoxidase (MPO and superoxide dismutase (SOD by colorimetric method. Intercellular adhesion molecule-1 (ICAM-1, tumor necrosis factor α (TNF-α and interleukin 1β (IL-1β were determined by RT-PCR and IL-10 production was determined by ELISA. We found Curcumin decreased the levels of D-lactate, DAO, MPO, ICAM-1, IL-1β and TNF-α, but increased the levels of IL-10 and SOD in rat models. We further confirmed mitogen-activated protein kinase phosphatase-1 (MKP-1 was activated but phospho-p38 was inhibited by curcumin by western blot assay. Finally, NF-κB translocation was monitored by immunofluorescent staining. We showed that curcumin repressed I-κB and interfered with the translocation of NF-κB into nucleus. CONCLUSIONS/SIGNIFICANCE: The effect of curcumin is mediated by the MKP-1-dependent inactivation of p38 and inhibition of NF-κB-mediated transcription. Curcumin, with anti-inflammatory and anti-oxidant activities may be used as an effective reagent for protecting intestinal mucosa barrier and other related intestinal diseases.

  9. TREM-1 Promotes Pancreatitis-Associated Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Shengchun Dang

    2012-01-01

    Full Text Available Severe acute pancreatitis (SAP can cause intestinal barrier dysfunction (IBD, which significantly increases the disease severity and risk of mortality. We hypothesized that the innate immunity- and inflammatory-related protein-triggering receptor expressed on myeloid cells-1 (TREM-1 contributes to this complication of SAP. Thus, we investigated the effect of TREM-1 pathway modulation on a rat model of pancreatitis-associated IBD. In this study we sought to clarify the role of TREM-1 in the pathophysiology of intestinal barrier dysfunction in SAP. Specifically, we evaluated levels of serum TREM-1 and membrane-bound TREM-1 in the intestine and pancreas from an animal model of experimentally induced SAP. TREM-1 pathway blockade by LP17 treatment may suppress pancreatitis-associated IBD and ameliorate the damage to the intestinal mucosa barrier.

  10. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Li, Shuang-An; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Tang, Xu; Shi, He-Qun; Zhou, Xiao-Qiu

    2017-08-01

    In this study, we investigated the effects of dietary myo-inositol on the growth and intestinal physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.83 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with optimal myo-inositol levels, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes [not glutathione-S-transferase (gst) p1 and gstp2] and NF-E2-related factor 2 (nrf2), whereas up-regulated the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, and the mRNA levels of Kelch-like-ECH-associated protein 1 (keap1) in three intestinal segments of young grass carp (P inositol deficiency could damage physical barrier function in three intestinal segments of fish. Finally, the myo-inositol requirements based on the percent weight gain (PWG), reactive oxygen species (ROS) contents in the proximal intestine (PI), relative mRNA levels of caspase-2 (PI), cyclin b (MI) as well as claudin-b (PI) were estimated to be 276.7, 304.1, 327.9, 416.7 and 313.2 mg/kg diet, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine.

    Science.gov (United States)

    Ren, Xiaomeng; Zhu, Yanyan; Gamallat, Yaser; Ma, Shenhao; Chiwala, Gift; Meyiah, Abdo; Xin, Yi

    2017-10-01

    Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota.

    Science.gov (United States)

    Allain, Thibault; Amat, Christina B; Motta, Jean-Paul; Manko, Anna; Buret, André G

    2017-01-02

    Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.

  13. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease.

    Science.gov (United States)

    Nalle, S C; Turner, J R

    2015-07-01

    Compromised intestinal barrier function is a prominent feature of inflammatory bowel disease (IBD). However, links between intestinal barrier loss and disease extend much further, including documented associations with celiac disease, type I diabetes, rheumatoid arthritis, and multiple sclerosis. Intestinal barrier loss has also been proposed to have a critical role in the pathogenesis of graft-versus-host disease (GVHD), a serious, potentially fatal consequence of hematopoietic stem cell transplantation. Experimental evidence has begun to support this view, as barrier loss and its role in initiating and establishing a pathogenic inflammatory cycle in GVHD is emerging. Here we discuss similarities between IBD and GVHD, mechanisms of intestinal barrier loss in these diseases, and the crosstalk between barrier loss and the immune system, with a special focus on natural killer (NK) cells. Unanswered questions and future research directions on the topic are discussed along with implications for treatment.

  14. Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

    Directory of Open Access Journals (Sweden)

    Min Jeong Gu

    2014-04-01

    Full Text Available Intestinal epithelial cells (IECs forming the barrier for the first-line of protection are interconnected by tight junction (TJ proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2. We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.

  15. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality

    Directory of Open Access Journals (Sweden)

    Rebecca I. Clark

    2015-09-01

    Full Text Available Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.

  16. Effects of synbiotics on intestinal mucosal barrier in rat model

    Directory of Open Access Journals (Sweden)

    Zhigang Xue

    2017-06-01

    Conclusions: Probiotics can improve the concentration of colonic probiotics, while synbiotics can improve probiotics concentration and mucosa thickness in colon, decrease L/M ratio and bacterial translocation. Synbiotics shows more protective effects on intestinal mucosal barrier in rats after cecectomy and gastrostomy and the intervention of specific antibiotics.

  17. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  18. Loss of guanylyl cyclase C (GCC signaling leads to dysfunctional intestinal barrier.

    Directory of Open Access Journals (Sweden)

    Xiaonan Han

    2011-01-01

    Full Text Available Guanylyl Cyclase C (GCC signaling via uroguanylin (UGN and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT and GCC deficient (GCC-/- mice with and without lipopolysaccharide (LPS challenge, as well as in UGN deficient (UGN-/- mice. IFNγ and myosin light chain kinase (MLCK levels were determined by real time PCR. Expression of tight junction proteins (TJPs, phosphorylation of myosin II regulatory light chain (MLC, and STAT1 activation were examined in intestinal epithelial cells (IECs and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi. We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.

  19. Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions.

    Science.gov (United States)

    Putt, Kelley K; Pei, Ruisong; White, Heather M; Bolling, Bradley W

    2017-01-25

    Chronic inflammation disrupts intestinal barrier function and may contribute to the pathology of obesity and other diseases. The goal of this study was to determine the mechanism by which yogurt improves intestinal barrier function. Caco-2 cells were differentiated on Transwell inserts and used as a model of intestinal barrier permeability. Transepithelial electrical resistance (TEER) and flux of 4 kDa fluorescein isothiocyanate-dextran (FD) and lucifer yellow (LY) were used as indicators of monolayer integrity and paracellular permeability. Immunofluorescence microscopy and real time quantitative polymerase chain were used to assess the localization and expression of tight junction proteins known to regulate intestinal permeability. Differentiated cells were treated with a vehicle control (C), inflammatory stimulus (I) (interleukin-1β, tumor necrosis factor-α, interferon-γ, and lipopolysaccharide), or I and 0.03 g mL -1 yogurt (IY). After 48 h, I reduced Caco-2 TEER by 46%, while IY reduced TEER by only 27% (P effect on barrier function was reduced at latter stages of digestion.

  20. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    Science.gov (United States)

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  1. Time course study of intestinal epithelial barrier disruption in acute mesenteric venous thrombosis.

    Science.gov (United States)

    Yang, Shuofei; Chen, Jiaquan; Ni, Qihong; Qi, Haozhe; Guo, Xiangjiang; Zhang, Lan; Xue, Guanhua

    2018-04-01

    Acute superior mesenteric venous thrombosis (ASMVT) is an abdominal vascular condition. Early recanalization is essential to successful treatment. The aim of the study was to establish rabbit models of ASMVT and assess the time course of intestinal epithelial barrier disruption. After surgical exposure of superior mesenteric vein (Sham group), large-vessel (L-group) and small-vessel (S-group) models were established by endothelium damage, stenosis creation, and thrombin injection. At baseline, 6, 9, and 12 h, hemodynamic and serum parameters were tested. Serum from ASMVT patients diagnosed at 24, 36, 48, and 60 h from symptom onset was collected. Intestinal barrier disruption was assessed by tight junction (TJ) protein expression, morphology changes, and bacterial translocation. Mesenteric arteriospasm was measured by flow velocity and intestinal wet/dry weight ratio. The serum level of intestinal fatty acid-binding protein and endotoxin in patients was also measured as an indicator for intestinal barrier function. Severe acidosis and lacticemia were observed in both the groups. The L-group experienced greater hemodynamic alteration than the S-group. Intestinal barrier disruption was detected by significantly decreased TJ protein expression, histology and ultrastructure injury of TJ, increased permeability, and bacterial translocation, at 9 h in the S-group and 12 h in the L-group. Secondary mesenteric arteriospasm occurred at the same time of complete intestinal barrier disruption and could be a significant cause of bowel necrosis. Significant increased level of intestinal fatty acid-binding protein and endotoxin was found in patients at 48 h in the S-group type and 60 h in the L-group type. The ASMVT animal models of both the types were first established. The loss of intestinal barrier function occurred at 6 h in the S-group model and 9 h in the L-group model. For clinical patients, the time window extended to 36 h in the S-group type and 48 h in the L

  2. Physiological, Pathological, and Therapeutic Implications of Zonulin-Mediated Intestinal Barrier Modulation

    Science.gov (United States)

    Fasano, Alessio

    2008-01-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields. PMID:18832585

  3. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  4. A coculture model mimicking the intestinal mucosa reveals a regulatory role for myofibroblasts in immune-mediated barrier disruption

    NARCIS (Netherlands)

    Willemsen, L. E. M.; Schreurs, C. C. H. M.; Kroes, H.; Spillenaar Bilgen, E. J.; van Deventer, S. J. H.; van Tol, E. A. F.

    2002-01-01

    The pathogenesis of Crohn's disease involves a mucosal inflammatory response affecting the barrier function of the gut. Myofibroblasts directly underlining the intestinal epithelium may have a regulatory role in immune-mediated barrier disruption. A coculture system of T84 epithelial and CCD-18Co

  5. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Fang He

    2018-01-01

    Full Text Available Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD, irritable bowel syndrome (IBS, and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs, conditionally essential amino acids (CEAAs, and nonessential amino acids (NEAAs, improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR, inducible nitric oxide synthase (iNOS, calcium-sensing receptor (CaSR, nuclear factor-kappa-B (NF-κB, mitogen-activated protein kinase (MAPK, nuclear erythroid-related factor 2 (Nrf2, general controlled nonrepressed kinase 2 (GCN2, and angiotensin-converting enzyme 2 (ACE2.

  6. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Song, Zheng-Xing; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-07-01

    Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Short-Chain Fatty Acids Activate AMP-Activated Protein Kinase and Ameliorate Ethanol-Induced Intestinal Barrier Dysfunction in Caco-2 Cell Monolayers

    NARCIS (Netherlands)

    Eamin, E.E.; Masclee, A.A.; Dekker, J.; Pieters, H.J.; Jonkers, D.M.

    2013-01-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier

  8. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation.

    Science.gov (United States)

    Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-11-08

    Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.

  10. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    Directory of Open Access Journals (Sweden)

    Daniela Catanzaro

    Full Text Available Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD, however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA, were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study

  11. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of

  12. Loss of HLTF function promotes intestinal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sandhu Sumit

    2012-03-01

    Full Text Available Abstract Background HLTF (Helicase-like Transcription Factor is a DNA helicase protein homologous to the SWI/SNF family involved in the maintenance of genomic stability and the regulation of gene expression. HLTF has also been found to be frequently inactivated by promoter hypermethylation in human colon cancers. Whether this epigenetic event is required for intestinal carcinogenesis is unknown. Results To address the role of loss of HLTF function in the development of intestinal cancer, we generated Hltf deficient mice. These mutant mice showed normal development, and did not develop intestinal tumors, indicating that loss of Hltf function by itself is insufficient to induce the formation of intestinal cancer. On the Apcmin/+ mutant background, Hltf- deficiency was found to significantly increase the formation of intestinal adenocarcinoma and colon cancers. Cytogenetic analysis of colon tumor cells from Hltf -/-/Apcmin/+ mice revealed a high incidence of gross chromosomal instabilities, including Robertsonian fusions, chromosomal fragments and aneuploidy. None of these genetic alterations were observed in the colon tumor cells derived from Apcmin/+ mice. Increased tumor growth and genomic instability was also demonstrated in HCT116 human colon cancer cells in which HLTF expression was significantly decreased. Conclusion Taken together, our results demonstrate that loss of HLTF function promotes the malignant transformation of intestinal or colonic adenomas to carcinomas by inducing genomic instability. Our findings highly suggest that epigenetic inactivation of HLTF, as found in most human colon cancers, could play an important role in the progression of colon tumors to malignant cancer.

  13. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... to increased levels of Th17 cells and its associated cytokines. As for AD, a positive association to CS has been established in epidemiological studies, but is still unresolved. Experimental studies show, however, an inverse relationship between AD and CS. The opposing and antagonistic influences of Th1 (CS...

  14. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  15. Diversity and functions of intestinal mononuclear phagocytes

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Müller-Luda, K; Agace, William Winston

    2017-01-01

    The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the curr......The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation....... In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt...

  16. Effects of dietary clays on performance and intestinal mucus barrier of broiler chicks challenged with Salmonella enterica serovar Typhimurium and on goblet cell function in vitro.

    Science.gov (United States)

    Almeida, J A S; Ponnuraj, N P; Lee, J J; Utterback, P; Gaskins, H R; Dilger, R N; Pettigrew, J E

    2014-04-01

    In vivo and in vitro experiments were conducted to test for beneficial effects of dietary clays on broiler chicks challenged with Salmonella enterica serovar Typhimurium and to explore potential mechanisms. First, two hundred forty 1-d-old male broilers (initial BW: 41.6 ± 0.4 g) were allotted in a 2 × 4 factorial arrangement in a randomized complete block design. There were 2 infection treatments (with or without Salmonella) and 4 diets: basal (BAS), 0.3% smectite A (SMA), 0.3% smectite B, and 0.3% zeolite. The Salmonella reduced (P clay largely restored it (challenge × diet interaction, P clays (P clays restored the growth depression caused by Salmonella, and changes in goblet cell function may contribute to the benefits of one of the clays, specifically SMA.

  17. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall.

    Science.gov (United States)

    Fasano, Alessio

    2008-11-01

    The anatomical and functional arrangement of the gastrointestinal tract suggests that this organ, beside its digestive and absorptive functions, regulates the trafficking of macromolecules between the environment and the host through a barrier mechanism. Under physiological circumstances, this trafficking is safeguarded by the competency of intercellular tight junctions, structures whose physiological modulation is mediated by, among others, the recently described protein zonulin. To prevent harm and minimize inflammation, the same paracellular pathway, in concert with the gut-associated lymphoid tissue and the neuroendocrine network, controls the equilibrium between tolerance and immunity to nonself antigens. The zonulin pathway has been exploited to deliver drugs, macromolecules, or vaccines that normally would not be absorbed through the gastrointestinal mucosal barrier. However, if the tightly regulated trafficking of macromolecules is jeopardized secondary to prolonged zonulin up-regulation, the excessive flow of nonself antigens in the intestinal submucosa can cause both intestinal and extraintestinal autoimmune disorders in genetically susceptible individuals. This new paradigm subverts traditional theories underlying the development of autoimmunity, which are based on molecular mimicry and/or the bystander effect, and suggests that the autoimmune process can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing intestinal barrier competency. Understanding the role of zonulin-dependent intestinal barrier dysfunction in the pathogenesis of autoimmune diseases is an area of translational research that encompasses many fields.

  18. Estudio de la función de barrera gástrica e intestinal y su evolución en el tiempo en pacientes quemados Study of gastric and intestinal barrier function and its temporal evolution in burn patients

    Directory of Open Access Journals (Sweden)

    F. Olguín

    2007-12-01

    la permeabilidad gástrica tarda más en normalizarse, no alcanzando los valores normales durante las 3 semanas que duró este estudio.Gut barrier function is impaired in burn patients, leading to increased odds of bacterial penetration and resulting in multiple organic failure. It is unknown how long does it take to the normalization of the gut barrier, nor the gastric barrier. The purpose of our study is trying to answer those questions, analyzing the rate of gastric permeability and gut barrier normalization in this kind of patients We studied 15 burn patients, 10 males and 5 females, with medium burn total body surface of 18%(+/-7,4 , with 2nd and 3rd degree burn injuries according to the Converse Smith classification, hospitalized within the first 24 hours of injury. Gastric and intestinal permeability were measured in 24h, and days 3rd, 7th, 14th and 21st after injury and compared with 18 normal patients as controls. Sacarose excretion on admission was 94,6 (44,7-198,3 mg, 5 times higher than controls; these levels decreased within the 3 weeks of the study, but never reached the levels of the controls subjects. In contrast, the rate lactulose/manitol, 0,080 (0,042-0,153% was 4 times higher than controls on day 1st, but reached normal levels after 2 weeks. The levels of sacarose and lactulose/manitol were not related to burn total body surface. There is a strong correlation between gastric and gut permeability in burn patients. The intestinal permeability takes about 2 weeks to begin to normalize, and the gastric permeability improves but did not normalize during the 3 week duration of this study.

  19. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model.

    Science.gov (United States)

    Huang, Xiao-Zhong; Li, Zhong-Rong; Zhu, Li-Bin; Huang, Hui-Ya; Hou, Long-Long; Lin, Jing

    2014-08-01

    Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.

  20. The Anti-Inflammatory Effect and Intestinal Barrier Protection of HU210 Differentially Depend on TLR4 Signaling in Dextran Sulfate Sodium-Induced Murine Colitis.

    Science.gov (United States)

    Lin, Sisi; Li, Yongyu; Shen, Li; Zhang, Ruiqin; Yang, Lizhi; Li, Min; Li, Kun; Fichna, Jakub

    2017-02-01

    Ulcerative colitis (UC) is strongly associated with inflammation and intestinal barrier disorder. The nonselective cannabinoid receptor agonist HU210 has been shown to ameliorate inflamed colon in colitis, but its effects on intestinal barrier function and extraintestinal inflammation are unclear. To investigate the effects and the underlying mechanism of HU210 action on the UC in relation to a role of TLR4 and MAP kinase signaling. Wild-type (WT) and TLR4 knockout (Tlr4 -/- ) mice were exposed to 4% dextran sulfate sodium (DSS) for 7 days. The effects of HU210 on inflammation and intestinal barrier were explored. Upon DSS challenge, mice suffered from bloody stool, colon shortening, intestinal mucosa edema, pro-inflammatory cytokine increase and intestinal barrier destruction with goblet cell depletion, increased intestinal microflora accompanied with elevated plasma lipopolysaccharide, reduced mRNA expression of the intestinal tight junction proteins, and abnormal ratio of CD4 + /CD8 + T cells in the intestinal Peyer's patches. Pro-inflammatory cytokines in the plasma and the lung, as well as pulmonary myeloperoxidase activity, indicators of extraintestinal inflammation were increased. Protein expression of p38α and pp38 was up-regulated in the colon of WT mice. Tlr4 -/- mice showed milder colitis. HU210 reversed the intestinal barrier changes in both strains of mice, but alleviated inflammation only in WT mice. Our study indicates that in experimental colitis, HU210 displays a protective effect on the intestinal barrier function independently of the TLR4 signaling pathway; however, in the extraintestinal tissues, the anti-inflammatory action seems through affecting TLR4-mediated p38 mitogen-activated protein kinase pathway.

  1. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption.

    Science.gov (United States)

    Vaziri, Nosratola D; Yuan, Jun; Khazaeli, Mahyar; Masuda, Yuichi; Ichii, Hirohito; Liu, Shuman

    2013-01-01

    Chronic kidney disease (CKD) impairs intestinal barrier function which by allowing influx of noxious products causes systemic inflammation. We have recently shown that intestinal barrier dysfunction in CKD is due to degradation of epithelial tight junction (TJ) which is, in part, mediated by influx of urea and its conversion to ammonia by microbial urease. We hypothesized that by adsorbing urea and urea-derived ammonia, oral activated charcoal (AST-120) may ameliorate CKD-induced intestinal epithelial barrier disruption and systemic inflammation. Rats were randomized to the CKD or control groups. The CKD group was fed a chow containing 0.7% adenine for 2 weeks. They were then randomized to receive a chow with or without AST-120 (4 g/kg/day) for 2 weeks. Rats consuming regular diet served as controls. Animals were then euthanized, colons were removed and processed for Western blot and immunohistology, and plasma was used to measure endotoxin and oxidative and inflammatory markers. Compared with the controls, the untreated CKD rats showed elevated plasma endotoxin, IL-6, TNF-α, MCP-1, CINC-3, L-selectin, ICAM-1, and malondialdehyde, and depletions of colonic epithelial TJ proteins, claudin-1, occludin, and ZO1. Administration of AST-120 resulted in partial restoration of the epithelial TJ proteins and reduction in plasma endotoxin and markers of oxidative stress and inflammation. CKD animals exhibited depletion of the key protein constituents of the colonic epithelial TJ which was associated with systemic inflammation, oxidative stress and endotoxemia. Administration of AST-120 attenuated uremia-induced disruption of colonic epithelial TJ and the associated endotoxemia, oxidative stress and inflammation. Copyright © 2013 S. Karger AG, Basel.

  2. Intestinal alkaline phosphatase: novel functions and protective effects.

    Science.gov (United States)

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  3. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation

    OpenAIRE

    Fang He; Chenlu Wu; Pan Li; Nengzhang Li; Dong Zhang; Quoqiang Zhu; Wenkai Ren; Yuanyi Peng

    2018-01-01

    Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestin...

  4. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

    NARCIS (Netherlands)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R.; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A.

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In

  5. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  6. Bacterial antigens alone can influence intestinal barrier integrity, but live bacteria are required for initiation of intestinal inflammation and injury.

    Science.gov (United States)

    Sydora, Beate C; Martin, Sarah M; Lupicki, Maryla; Dieleman, Levinus A; Doyle, Jason; Walker, John W; Fedorak, Richard N

    2006-06-01

    Intestinal flora plays a critical role in the initiation and perpetuation of inflammatory bowel disease. This study examined whether live fecal bacteria were necessary for the initiation of this inflammatory response or whether sterile fecal material would provoke a similar response. Three preparations of fecal material were prepared: (1) a slurry of live fecal bacteria, (2) a sterile lysate of bacterial antigens, and (3) a sterile filtrate of fecal water. Each preparation was introduced via gastric gavage into the intestines of axenic interleukin-10 gene-deficient mice genetically predisposed to develop inflammatory bowel disease. Intestinal barrier integrity and degrees of mucosal and systemic inflammations were determined for each preparation group. Intestinal barrier integrity, as determined by mannitol transmural flux, was altered by both live fecal bacterial and sterile lysates of bacterial antigens, although it was not altered by sterile filtrates of fecal water. However, only live fecal bacteria initiated mucosal inflammation and injury and a systemic immune response. Fecal bacterial antigens in the presence of live bacteria and sterile fecal bacterial antigens have different effects on the initiation and perpetuation of intestinal inflammation.

  7. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian; Zhang, Lin [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Dai, Weiqi [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Li, Sainan [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Wang, Jingjie; Li, Huanqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Guo, Chuanyong [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Fan, Xiaoming, E-mail: xiaomingfan57@sina.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China)

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  8. (--Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance

    Directory of Open Access Journals (Sweden)

    Eleonora Cremonini

    2018-04-01

    Full Text Available Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (--epicatechin (EC supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2–20 mg/kg body weight mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption. Keywords: Intestinal permeability, (--Epicatechin, Steatosis, Insulin resistance, Endotoxemia, NADPH oxidase

  9. Stimulation of intestinal growth and function with DPP-IV inhibition in a mouse short bowel syndrome model

    DEFF Research Database (Denmark)

    Sueyoshi, Ryo; Ignatoski, Kathleen M Woods; Okawada, Manabu

    2014-01-01

    , and 7 days followed by 23 days washout period. Adaptive response was assessed by morphology, intestinal epithelial cell (IEC) proliferation (PCNA), epithelial barrier function (transepithelial resistance), RT-PCR for intestinal transport proteins, GLP-2R, and IGF-1R, and GLP-2 plasma levels. Glucose-stimulated...... sodium transport was assessed for intestinal absorptive function. Seven days of DPP4-I treatment facilitated an increase in GLP-2R levels, intestinal growth, and IEC proliferation. Treatment led to differential effects over time with greater absorptive function early, and enhanced proliferation at later...

  10. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  11. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation.

    Science.gov (United States)

    Andersen, Kirstin; Kesper, Marie Sophie; Marschner, Julian A; Konrad, Lukas; Ryu, Mi; Kumar Vr, Santhosh; Kulkarni, Onkar P; Mulay, Shrikant R; Romoli, Simone; Demleitner, Jana; Schiller, Patrick; Dietrich, Alexander; Müller, Susanna; Gross, Oliver; Ruscheweyh, Hans-Joachim; Huson, Daniel H; Stecher, Bärbel; Anders, Hans-Joachim

    2017-01-01

    CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression. CKD-related systemic inflammation in these mice associated with intestinal dysbiosis of proteobacterial blooms, translocation of living bacteria across the intestinal barrier into the liver, and increased serum levels of bacterial endotoxin. Uremia did not affect secretory IgA release into the ileum lumen or mucosal leukocyte subsets. To test for causation between dysbiosis and systemic inflammation in CKD, we eradicated facultative anaerobic microbiota with antibiotics. This eradication prevented bacterial translocation, significantly reduced serum endotoxin levels, and fully reversed all markers of systemic inflammation to the level of nonuremic controls. Therefore, we conclude that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD. Uremic dysbiosis and intestinal barrier dysfunction may be novel therapeutic targets for intervention to suppress CKD-related systemic inflammation and its consequences. Copyright © 2016 by the American Society of Nephrology.

  13. Molecular and cellular studies on the absorption, function, and safety of food components in intestinal epithelial cells.

    Science.gov (United States)

    Satsu, Hideo

    2017-03-01

    The intestinal tract comes into direct contact with the external environment despite being inside the body. Intestinal epithelial cells, which line the inner face of the intestinal tract, have various important functions, including absorption of food substances, immune functions such as cytokine secretion, and barrier function against xenobiotics by means of detoxification enzymes. It is likely that the functions of intestinal epithelial cells are regulated or modulated by these components because they are frequently exposed to food components at high concentrations. This review summarizes our research on the interaction between intestinal epithelial cells and food components at cellular and molecular levels. The influence of xenobiotic contamination in foods on the cellular function of intestinal epithelial cells is also described in this review.

  14. Robust bioengineered 3D functional human intestinal epithelium.

    Science.gov (United States)

    Chen, Ying; Lin, Yinan; Davis, Kimberly M; Wang, Qianrui; Rnjak-Kovacina, Jelena; Li, Chunmei; Isberg, Ralph R; Kumamoto, Carol A; Mecsas, Joan; Kaplan, David L

    2015-09-16

    Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments.

  15. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens.

    Science.gov (United States)

    Awad, Wageha A; Hess, Claudia; Hess, Michael

    2017-02-10

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird's health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction's molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as "leaky gut". A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can

  16. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Zhao, Yunli; Zhi, Lingtong; Wu, Qiuli; Yu, Yonglin; Sun, Qiqing; Wang, Dayong

    2016-12-01

    Biological barrier plays a crucial role for organisms against the possible toxicity from engineered nanomaterials (ENMs). Graphene oxide (GO) has been proven to cause potential toxicity on organisms. However, the molecular mechanisms for intestinal barrier of animals against GO toxicity are largely unclear. Using in vivo assay system of Caenorhabditis elegans, we found that mutation of genes encoding core p38 mitogen-activated protein kinase (MAPK) signaling pathway caused susceptible property to GO toxicity and enhanced translocation of GO into the body of nematodes. Genetic assays indicated that SKN-1/Nrf functioned downstream of p38 MAPK signaling pathway to regulate GO toxicity and translocation. Transcription factor of SKN-1 could regulate GO toxicity and translocation at least through function of its targeted gene of gst-4 encoding one of phase II detoxification proteins. Moreover, intestine-specific RNA interference (RNAi) assay demonstrated that the p38 MAPK-SKN-1/Nrf signaling cascade could function in intestine to regulate GO toxicity and intestinal permeability in GO exposed nematodes. Therefore, p38 MAPK-SKN-1/Nrf signaling cascade may act as an important molecular basis for intestinal barrier against GO toxicity in organisms. Exposure to GO induced significantly increased expression of genes encoding p38 MAPK-SKN-1/Nrf signaling cascade, which further implies that the identified p38 MAPK-SKN-1/Nrf signaling cascade may encode a protection mechanism for nematodes in intestine to be against GO toxicity.

  17. Effects of positive acceleration exposure on intestinal mucosal barrier and sIgA level in rats

    Directory of Open Access Journals (Sweden)

    Jie QIU

    2016-10-01

    Full Text Available Objective  To explore the effect of positive acceleration (+Gz on immune barrier of intestinal mucosa in rats. Methods  Thirty two male SD rats were randomly divided into 4 groups (8 each: Group A (control group, Group B (+5Gz group, Group C (+10Gz group and Group D (repeated exposure group. The animal centrifuge was used to simulate the exposure of acceleration. Group A was no disposed. +5Gz group and +10Gz group were subjected to centrifugal force of +5Gz and +10Gz respectively for 5min; repeated exposure group was continuously exposed to 1.5min under +5Gz value, 2min under +10Gz value and 1.5min under +5Gz. All groups were exposed to the respective acceleration once daily for 5 days. The damage of intestinal mucosa was observed by light microscopy after the experiment was finished, and the content of sIgA in intestinal mucosa was detected by ELISA. Results  Except for group A, intestinal mucosal injury was observed in the other three groups. Group D was shown as the most serious one, followed by group C and group B. Compared with group A, the level of sIgA was significantly lower in other three groups (P<0.05. The level of sIgA in group C was significantly lower than that in group B (P<0.05 and higher than that in group D (P<0.05. Conclusion  +Gz exposure can result in intestinal injury and weaken the function of immune barrier of intestinal mucosa in rats. DOI: 10.11855/j.issn.0577-7402.2016.10.14

  18. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC.

    Science.gov (United States)

    Minghetti, Matteo; Drieschner, Carolin; Bramaz, Nadine; Schug, Hannah; Schirmer, Kristin

    2017-12-01

    The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow trout (Oncorhynchus mykiss). In order to exploit the opportunities arising from RTgutGC cells for exploring fish intestinal physiology and toxicology, we present here the establishment of cells on commercially available permeable membrane supports and evaluate its suitability as a model of polarized intestinal epithelia. Within 3 weeks of culture, RTgutGC cells show epithelial features by forming tight junctions and desmosomes between adjacent cells. Cells develop a transepithelial electrical resistance comparable to in vivo measured values, reflecting the leaky nature of the fish intestine. Immunocytochemistry reveals evidence of polarization, such as basolateral localization of Na + /K + -ATPase (NKA) and apical localization of the tight junction protein ZO-1. NKA mRNA abundance was induced as physiological response toward a saltwater buffer, mimicking the migration of rainbow trout from fresh to seawater. Permeation of fluorescent molecules proved the barrier function of the cells, with permeation coefficients being comparable to those reported in fish. Finally, we demonstrate that cells on permeable supports are more resistant to the toxicity elicited by silver ions than cells grown the conventional way, likely due to improved cellular silver excretion.

  19. [Effect of perioperative intestinal probiotics on intestinal flora and immune function in patients with colorectal cancer].

    Science.gov (United States)

    Zhu, Dajian; Chen, Xiaowu; Wu, Jinhao; Ju, Yongle; Feng, Jing; Lu, Guangsheng; Ouyang, Manzhao; Ren, Baojun; Li, Yong

    2012-08-01

    To investigate the effect of perioperative application of intestinal probiotics to substitute oral intestinal antimicrobial agents on intestinal flora and immune function in surgical patients with colorectal cancer. Sixty patients with colorectal cancer undergoing elective laparoscopic radical surgery were randomized to receive preoperative bowel preparation using oral intestinal antimicrobial agents (n=20) or using oral intestinal probiotics (Jinshuangqi Tablets, 2.0 g, 3 times daily) since the fifth day before the operation and at 24 h after the operation for 7 consecutive days. Upon admission and 7 days after the operation, fecal samples and fasting peripheral venous blood were collected from the patients to examine the intestinal flora and serum levels of interleukin-2 (IL-2), IgA, IgG, and IgM, NK cell activity, T lymphocytes subsets CD3(+), CD4(+), CD8(+) and CD4(+)/CD8(+) ratio. At 7 days after the operation, the patients receiving probiotics showed significantly increased counts of intestinal Bifidobacterium, Lactobacillus, and Enterococcus (Pprobiotics group compared with those in patients with conventional intestinal preparation (Pprobiotics to replace preoperative oral intestinal antimicrobial agents can effectively correct intestinal flora imbalance and improve the immune function of surgical patients with colorectal cancer.

  20. Inhalation of methane preserves the epithelial barrier during ischemia and reperfusion in the rat small intestine.

    Science.gov (United States)

    Mészáros, András T; Büki, Tamás; Fazekas, Borbála; Tuboly, Eszter; Horváth, Kitti; Poles, Marietta Z; Szűcs, Szilárd; Varga, Gabriella; Kaszaki, József; Boros, Mihály

    2017-06-01

    Methane is part of the gaseous environment of the intestinal lumen. The purpose of this study was to elucidate the bioactivity of exogenous methane on the intestinal barrier function in an antigen-independent model of acute inflammation. Anesthetized rats underwent sham operation or 45-min occlusion of the superior mesenteric artery. A normoxic methane (2.2%)-air mixture was inhaled for 15 min at the end of ischemia and at the beginning of a 60-min or 180-min reperfusion. The integrity of the epithelial barrier of the ileum was assessed by determining the lumen-to-blood clearance of fluorescent dextran, while microvascular permeability changes were detected by the Evans blue technique. Tissue levels of superoxide, nitrotyrosine, myeloperoxidase, and endothelin-1 were measured, the superficial mucosal damage was visualized and quantified, and the serosal microcirculation and mesenteric flow was recorded. Erythrocyte deformability and aggregation were tested in vitro. Reperfusion significantly increased epithelial permeability, worsened macro- and microcirculation, increased the production of proinflammatory mediators, and resulted in a rapid loss of the epithelium. Exogenous normoxic methane inhalation maintained the superficial mucosal structure, decreased epithelial permeability, and improved local microcirculation, with a decrease in reactive oxygen and nitrogen species generation. Both the deformability and aggregation of erythrocytes improved with incubation of methane. Normoxic methane decreases the signs of oxidative and nitrosative stress, improves tissue microcirculation, and thus appears to modulate the ischemia-reperfusion-induced epithelial permeability changes. These findings suggest that the administration of exogenous methane may be a useful strategy for maintaining the integrity of the mucosa sustaining an oxido-reductive attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  2. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation

    DEFF Research Database (Denmark)

    Bøgh, Marie; García-Díaz, María; Müllertz, Anette

    2015-01-01

    The mucus lining of the gastrointestinal tract epithelium is recognized as a barrier to efficient oral drug delivery. Recently, a new in vitro model for assessment of drug permeation across intestinal mucosa was established by applying a biosimilar mucus matrix to the surface of Caco-2 cell...

  3. Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity.

    Science.gov (United States)

    Anderson, Rachel C; MacGibbon, Alastair K H; Haggarty, Neill; Armstrong, Kelly M; Roy, Nicole C

    2018-01-01

    Appropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation.

  4. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases.

    Science.gov (United States)

    Sturgeon, Craig; Fasano, Alessio

    2016-01-01

    Beside digesting nutrients and absorbing solutes and electrolytes, the intestinal epithelium with its barrier function is in charge of a tightly controlled antigen trafficking from the intestinal lumen to the submucosa. This trafficking dictates the delicate balance between tolerance and immune response causing inflammation. Loss of barrier function secondary to upregulation of zonulin, the only known physiological modulator of intercellular tight junctions, leads to uncontrolled influx of dietary and microbial antigens. Additional insights on zonulin mechanism of action and the recent appreciation of the role that altered intestinal permeability can play in the development and progression of chronic inflammatory disorders has increased interest of both basic scientists and clinicians on the potential role of zonulin in the pathogenesis of these diseases. This review focuses on the recent research implicating zonulin as a master regulator of intestinal permeability linked to the development of several chronic inflammatory disorders.

  5. Effect of Polysaccharides from on Intestinal Mucosal Barrier of Lipopolysaccharide Challenged Mice

    Directory of Open Access Journals (Sweden)

    Jie Han

    2016-01-01

    Full Text Available To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS in preventing lipopolysaccharide (LPS-induced intestinal injury, 18 mice (at 5 wk of age were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05, and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05 and villus height:crypt depth ratio (42%, p<0.05, and lower crypt depth in jejunum (15.55%, p<0.05, as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05. ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05 and heat shock protein (HSP70 (77.42%, p<0.05. In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05 and intestinal trefoil peptide (17.75%, p<0.05. Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05 and its receptor (200%, p<0.05 gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.

  6. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers.

    Science.gov (United States)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In this work, Caco-2 intestinal epithelial cells were used as a well-established model for the intestinal barrier, and the uptake, trafficking and translocation of model silica nanoparticles of different sizes were investigated using a combination of imaging, flow cytometry and transport studies. Compared to typical observations in standard cell lines commonly used for in vitro studies, silica nanoparticle uptake into well-developed Caco-2 cellular barriers was found to be very low. Instead, nanoparticle association to the apical outer membrane was substantial and these particles could easily be misinterpreted as internalised in the absence of imaging. Passage of nanoparticles through the barrier was very limited, suggesting that the low amount of internalised nanoparticles was due to reduced uptake into cells, rather than a considerable transport through them.

  7. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier.

    Science.gov (United States)

    Zhai, Qixiao; Tian, Fengwei; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-07-15

    The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. Our previous work demonstrated that oral administration of probiotics can significantly inhibit Cd absorption in the intestines of mice, but further evidence is needed to gain insights into the related protection mode. The goal of this study was to evaluate whether probiotics can inhibit Cd absorption through routes other than the Cd binding, with a focus on gut barrier protection. In the in vitro assay, both the intervention and therapy treatments of Lactobacillus plantarum CCFM8610 alleviated Cd-induced cytotoxicity in the human intestinal cell line HT-29 and protected the disruption of tight junctions in the cell monolayers. In a mouse model, probiotics with either good Cd-binding or antioxidative ability increased fecal Cd levels and decreased Cd accumulation in the tissue of Cd-exposed mice. Compared with the Cd-only group, cotreatment with probiotics also reversed the disruption of tight junctions, alleviated inflammation, and decreased the intestinal permeability of mice. L. plantarum CCFM8610, a strain with both good Cd binding and antioxidative abilities, exhibited significantly better protection than the other two strains. These results suggest that along with initial intestinal Cd sequestration, probiotics can inhibit Cd absorption by protecting the intestinal barrier, and the protection is related to the alleviation of Cd-induced oxidative stress. A probiotic with both good Cd-binding and antioxidative capacities can be used as a daily supplement for the prevention of oral Cd exposure. The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. For the general population, food and drinking water are the main sources of Cd exposure due to the biomagnification of Cd within the food chain; therefore, the intestinal tract is the first organ that is susceptible to Cd contamination

  8. Physiological and pathophysiological functions of intestinal mast cells.

    Science.gov (United States)

    Bischoff, Stephan C

    2009-07-01

    The normal gastrointestinal (GI) mucosa is equipped with mast cells that account for 2-3% of lamina propria cells under normal conditions. Mast cells are generally associated with allergic disease, and indeed, food allergy that manifests in the GI tract is usually mast cell dependent. On the other hand, mast cells have a number of physiological functions in the GI tract, namely regulatory functions such as control of blood flow and coagulation, smooth muscle contraction and peristalsis, and secretion of acid, electrolytes, and mucus by epithelial cells. One of the most intriguing functions of intestinal mast cells is their role in host defense against microbes like bacteria, viruses, or parasites. Mast cells recognize microbes by antibody-dependent mechanisms and through pattern-recognition receptors. They direct the subsequent immune response by attracting both granulocytes and lymphocytes to the site of challenge via paracrine cytokine release. Moreover, mast cells initiate, by releasing proinflammatory mediators, innate defense mechanisms such as enhanced epithelial secretion, peristalsis, and alarm programs of the enteric nervous This initiation can occur in response to a primary contact to the microbe or other danger signals, but becomes much more effective if the triggering antigen reappears and antibodies of the IgE or IgG type have been generated in the meantime by the specific immune system. Thus, mast cells operate at the interface between innate and adaptive immune responses to enhance the defense against pathogens and, most likely, the commensal flora. In this respect, it is important to note that mast cells are directly involved in controlling the function of the intestinal barrier that turned out to be a crucial site for the development of infectious and immune-mediated diseases. Hence, intestinal mast cells perform regulatory functions to maintain tissue homeostasis, they are involved in host defense mechanisms against pathogens, and they can induce

  9. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  10. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers

    International Nuclear Information System (INIS)

    Kaushik, Gaurav; Huber, David P.; Aho, Ken; Finney, Bruce; Bearden, Shawn; Zarbalis, Konstantinos S.; Thomas, Michael A.

    2016-01-01

    Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding 2 H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post–conception days), and quantifying 2 H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of 2 H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at typical

  11. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Gaurav, E-mail: kausgaur@isu.edu [Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007 (United States); Department of Medical Pathology and Laboratory Medicine, University of California at Davis, Davis, CA 95817 (United States); Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817 (United States); Huber, David P., E-mail: hubedavi@isu.edu [Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007 (United States); Aho, Ken, E-mail: ahoken@isu.edu [Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007 (United States); Finney, Bruce, E-mail: finney@isu.edu [Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007 (United States); Bearden, Shawn, E-mail: bearshaw@isu.edu [Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007 (United States); Zarbalis, Konstantinos S., E-mail: kzarbalis@ucdavis.edu [Department of Medical Pathology and Laboratory Medicine, University of California at Davis, Davis, CA 95817 (United States); Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817 (United States); Thomas, Michael A., E-mail: mthomas@isu.edu [Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007 (United States)

    2016-05-27

    Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding {sup 2}H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post–conception days), and quantifying {sup 2}H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of {sup 2}H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at

  12. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair.

    Science.gov (United States)

    Bui, Triet M; Mascarenhas, Lorraine A; Sumagin, Ronen

    2018-02-02

    Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.

  13. Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation.

    Science.gov (United States)

    Liu, Xiaoxi; Li, Huanrong; Lu, An; Zhong, Yougang; Hou, Xiaolin; Wang, Ning; Jia, Dan; Zan, Junlan; Zhao, Hong; Xu, Jianqin; Liu, Fenghua

    2012-01-01

    The aim of this study was to further understand the effects and mechanism of heat stress on the intestinal mucosal immune system of the rat, including changes in the intestinal mucosal barrier and immune function and their effects on bacterial translocation. Sprague Dawley (SD) rats were randomly divided into control and heat-stress groups. Both groups were housed in a 25°C environment of 60% relative humidity. The heat-stress group was subjected to 40°C for 2 h daily over 3 days. Compared with the control group villi length in the small intestines of the heat-stress group was shortened. Jejunal mucosa were seriously damaged and the number of goblet cells in the epithelia of the duodenum and jejunum was significantly reduced. Electron microscopy revealed intestinal mucosal disorder, a large number of exudates of inflammatory fibrous material, fuzzy tight junction structure between epithelial cells, and cell gap increases in the heat-stress group. Transcription of IFN-γ, IL-2, IL-4, and IL-10, was significantly reduced, as was that of the intestinal mucosal immune-related proteins TLR2, TLR4, and IgA. The number of CD3(+) T cells and CD3(+)CD4(+)CD8(-) T cells in the mesenteric lymph nodes (MLNs) was significantly lower, while the number of CD3(+)CD4(-)CD8(+) T cells was significantly increased. The bacteria isolated from the MLNs were Escherichia coli. Heat stress damages rat intestinal mechanical and mucosal immune barriers, and reduces immune function of the intestinal mucosa and mesenteric lymphoid tissues, leading to bacterial translocation.

  14. Activation of the Epithelial-to-Mesenchymal Transition Factor Snail Mediated Acetaldehyde-Induced Intestinal Epithelial Barrier Disruption

    NARCIS (Netherlands)

    Elamin, E.; Masclee, A.; Troost, F.; Dekker, J.; Jonkers, D.

    2014-01-01

    Background : Acetaldehyde (AcH) is mutagenic and can reach high concentrations in colonic lumen after ethanol consumption and is associated with intestinal barrier dysfunction and an increased risk of progressive cancers, including colorectal carcinoma. Snail, the transcription factor of

  15. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC

    OpenAIRE

    Minghetti, Matteo; Drieschner, Carolin; Bramaz, Nadine; Schug, Hannah; Schirmer, Kristin

    2017-01-01

    The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow tr...

  16. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.

    Science.gov (United States)

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-14

    To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P jaundice group than in the GLP-2 group (P jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.

  17. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... The gastrointestinal tract serves as a potent barrier that prevents luminal bacteria from entering the host. This barrier function is maintained by a well-balanced intestinal flora, an unaltered perme- ability of the intestinal mucosa, and a normal functioning immune system. Furthermore, the intestinal mucosa, in.

  18. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. Mixing and pumping functions of the intestine of zebrafish larvae.

    Science.gov (United States)

    Yang, Jinyou; Shimogonya, Yuji; Ishikawa, Takuji

    2017-04-21

    Due to its transparency, the intestine of zebrafish larvae has been widely used in studies of gastrointestinal diseases and the microbial flora of the gut. However, transport phenomena in the intestine of zebrafish larvae have not been fully clarified. In this study, therefore, transport caused by peristaltic motion in the intestine of zebrafish larvae was investigated by numerical simulation. An anatomically realistic three-dimensional geometric model of the intestine at various times after feeding was constructed based on the experimental data of Field et al. (2009). The flow of digested chyme was analyzed using the governing equations of fluid mechanics, together with peristaltic motion and long-term contraction of the intestinal wall. The results showed that retrograde peristaltic motion was the main contributor to the mixing function. The dispersion caused by peristalsis over 30min was in the order of 10 -12 m 2 /s, which is greater than the Brownian diffusion of a sphere of 0.4µm diameter. In contrast, anterograde peristaltic motion contributed mainly to the pumping function. The pressure decrease due to peristalsis was in the order of millipascals, which may reduce the activation and maintenance heat of intestinal muscle. These findings enhance our understanding of the mixing and pumping functions of the intestine of zebrafish larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Permanent isolation surface barrier: Functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release.

  1. Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6 J mice.

    NARCIS (Netherlands)

    Steegenga, W.T.; Wit, de N.J.W.; Boekschoten, M.V.; IJssenagger, N.; Lute, C.; Keshtkar, S.; Grootte Bromhaar, M.M.; Kampman, E.; Groot, de C.P.G.M.; Muller, M.R.

    2012-01-01

    Background By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the functional decline

  2. The intestinal barrier in irritable bowel syndrome: subtype-specific effects of the systemic compartment in an in vitro model.

    Directory of Open Access Journals (Sweden)

    Samefko Ludidi

    Full Text Available Irritable bowel syndrome (IBS is a disorder with multifactorial pathophysiology. Intestinal barrier may be altered, especially in diarrhea-predominant IBS (IBS-D. Several mediators may contribute to increased intestinal permeability in IBS.We aimed to assess effects of tryptase and LPS on in vitro permeability using a 3-dimensional cell model after basolateral cell exposure. Furthermore, we assessed the extent to which these mediators in IBS plasma play a role in intestinal barrier function.Caco-2 cells were grown in extracellular matrix to develop into polarized spheroids and were exposed to tryptase (10 - 50 mU, LPS (1 - 50 ng/mL and two-fold diluted plasma samples of 7 patients with IBS-D, 7 with constipation-predominant IBS (IBS-C and 7 healthy controls (HC. Barrier function was assessed by the flux of FITC-dextran (FD4 using live cell imaging. Furthermore, plasma tryptase and LPS were determined.Tryptase (20 and 50 mU and LPS (6.25 - 50 ng/mL significantly increased Caco-2 permeability versus control (all P< 0.05. Plasma of IBS-D only showed significantly elevated median tryptase concentrations (7.1 [3.9 - 11.0] vs. 4.2 [2.2 - 7.0] vs. 4.2 [2.5 - 5.9] μg/mL; P<0.05 and LPS concentrations (3.65 [3.00 - 6.10] vs. 3.10 [2.60-3.80] vs. 2.65 [2.40 - 3.40] EU/ml; P< 0.05 vs. IBS-C and HC. Also, plasma of IBS-D increased Caco-2 permeability versus HC (0.14450 ± 0.00472 vs. 0.00021 ± 0.00003; P < 0.001, which was attenuated by selective inhibition of tryptase and LPS (P< 0.05.Basolateral exposure of spheroids to plasma of IBS-D patients resulted in a significantly increased FD4 permeation, which was partially abolished by selective inhibition of tryptase and LPS. These findings point to a role of systemic tryptase and LPS in the epithelial barrier alterations observed in patients with IBS-D.

  3. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Qinghua eYu

    2015-03-01

    Full Text Available Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells, or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection.

  4. Protective Effects of Let-7b on the Expression of Occludin by Targeting P38 MAPK in Preventing Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2018-01-01

    Full Text Available Background/Aims: Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. Methods: A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Results: Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ proteins were significantly decreased in let-7b IKO mice (both P<0.05. Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Conclusion: Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction.

  5. Protective Effects of Let-7b on the Expression of Occludin by Targeting P38 MAPK in Preventing Intestinal Barrier Dysfunction.

    Science.gov (United States)

    Liu, Zhihua; Tian, Yinghai; Jiang, Yanqiong; Chen, Shihua; Liu, Ting; Moyer, Mary Pat; Qin, Huanlong; Zhou, Xinke

    2018-01-01

    Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO) mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ) proteins were significantly decreased in let-7b IKO mice (both P<0.05). Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens

    Science.gov (United States)

    The present study investigated the effects of B. subtilis-based probiotics on performance, modulation of host inflammatory responses and intestinal barrier integrity of broilers subjected to LPS challenge. Birds at day 0 of age were randomly allocated to one of the 3 dietary treatments - controls, ...

  7. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation: Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-04-01

    Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  8. Human Oral Isolate Lactobacillus fermentum AGR1487 Reduces Intestinal Barrier Integrity by Increasing the Turnover of Microtubules in Caco-2 Cells

    Science.gov (United States)

    Anderson, Rachel C.; Young, Wayne; Clerens, Stefan; Cookson, Adrian L.; McCann, Mark J.; Armstrong, Kelly M.; Roy, Nicole C.

    2013-01-01

    Lactobacillus fermentum is found in fermented foods and thought to be harmless. In vivo and clinical studies indicate that some L. fermentum strains have beneficial properties, particularly for gastrointestinal health. However, L. fermentum AGR1487 decreases trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity. The hypothesis was that L. fermentum AGR1487 decreases the expression of intestinal cell tight junction genes and proteins, thereby reducing barrier integrity. Transcriptomic and proteomic analyses of Caco-2 cells (model of human intestinal epithelial cells) treated with L. fermentum AGR1487 were used to obtain a global view of the effect of the bacterium on intestinal epithelial cells. Specific functional characteristics by which L. fermentum AGR1487 reduces intestinal barrier integrity were examined using confocal microscopy, cell cycle progression and adherence bioassays. The effects of TEER-enhancing L. fermentum AGR1485 were investigated for comparison. L. fermentum AGR1487 did not alter the expression of Caco-2 cell tight junction genes (compared to L. fermentum AGR1485) and tight junction proteins were not able to be detected. However, L. fermentum AGR1487 increased the expression levels of seven tubulin genes and the abundance of three microtubule-associated proteins, which have been linked to tight junction disassembly. Additionally, Caco-2 cells treated with L. fermentum AGR1487 did not have defined and uniform borders of zona occludens 2 around each cell, unlike control or AGR1485 treated cells. L. fermentum AGR1487 cells were required for the negative effect on barrier integrity (bacterial supernatant did not cause a decrease in TEER), suggesting that a physical interaction may be necessary. Increased adherence of L. fermentum AGR1487 to Caco-2 cells (compared to L. fermentum AGR1485) was likely to facilitate this cell-to-cell interaction. These findings illustrate that bacterial strains of the same species can

  9. A defect in epithelial barrier integrity is not required for a systemic response to bacterial antigens or intestinal injury in T cell receptor-alpha gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; Tavernini, Michele M; Doyle, Jason; Fedorak, Richard N

    2006-08-01

    Genetically induced disruption of the intestinal epithelial barrier leads to development of intestinal inflammation. In the interleukin-10 gene-deficient inflammatory bowel disease (IBD) mouse model, for instance, a primary defect in intestinal epithelial integrity occurs before the development of enterocolitis. In humans, a causal role for epithelial barrier disruption is still controversial. Although studies with first-degree relatives of IBD patients suggests an underlying role of impaired barrier function, a primary epithelial barrier defect in IBD patients has not been confirmed. The purpose of this article is to examine whether a primary epithelial barrier disruption is a prerequisite for the development of intestinal inflammation or whether intestinal inflammation can develop in the absence of epithelial disruption. We examined the intestinal epithelial integrity of the T cell receptor (TCR)-alpha gene-deficient mouse model of IBD. In vivo colonic permeability, determined by mannitol transmural flux, was assessed in 6-week-, 12-week-, and 25-week-old TCR-alpha gene-deficient and wild-type control mice using a single-pass perfusion technique. Mice were scored for intestinal histological injury and intestinal cytokine levels measured in organ cultures. Systemic responses to bacterial antigens were determined through 48-h spleen cell cultures stimulated with sonicate derived from endogenous bacterial strains. In contrast with previous findings in the interleukin-10 gene-deficient IBD model, TCR-alpha gene-deficient mice did not demonstrate evidence of primary intestinal epithelial barrier disruption at any age, despite developing a moderate to severe colitis within 12 weeks. A rise in intestinal interferon (IFN)-gamma levels preceded the onset of mucosal inflammation and then correlated closely with the degree of intestinal inflammation and injury. Spleen cells from TCR-alpha gene-deficient mice released IFN-gamma in response to stimulation with endogenous

  10. Barriers to coliphage infection of commensal intestinal flora of laboratory mice

    Directory of Open Access Journals (Sweden)

    Kasman Laura M

    2005-04-01

    Full Text Available Abstract Background Growth characteristics of coliphage viruses indicate that they are adapted to live with their Eschericia coli hosts in the intestinal tract. However, coliphage experimentally introduced by ingestion persist only transiently if at all in the gut of humans and other animals. This study attempted to identify the barriers to long term establishment of exogenous coliphage in the gastrointestinal (GI tracts of laboratory mice. Intestinal contents were screened for the presence of coliphage and host bacteria, and strains of E. coli bacteria from different segments of the GI tract were tested for susceptibility to six common laboratory coliphages. Results Contrary to expectations, coliphage were not evident in the GI tracts of laboratory mice, although they were occasionally detected in feces. Commensal flora showed extreme variability within groups of mice despite identical handling and diet. Less than 20% of 48 mice tested carried E. coli in their gut, and of 22 commensal E. coli strains isolated and tested, 59% were completely resistant to infection by lambda, M13, P1, T4, T7, and PhiX174 coliphage. Lysogeny could not be demonstrated in the commensal strains as mitomycin C failed to induce detectable phage. Pre-existing immunity to phages was not evident as sera and fecal washes did not contain significant antibody titers to six laboratory phage types. Conclusion Lack of sufficient susceptible host bacteria seems to be the most likely barrier to establishment of new coliphage infections in the mouse gut.

  11. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Science.gov (United States)

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Palkaline phosphatase activity decreased (46 and 59%, respectively; P<0.05) over time in HS pigs, while the immune cell marker, myeloperoxidase activity, was increased (P<0.05) in the jejunum at d 3 and 7. These results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability. We hypothesize that these events may lead to increased inflammation, which might contribute to reduced pig performance during warm summer months.

  12. Anti-inflammatory and Intestinal Barrier-protective Activities of Commensal Lactobacilli and Bifidobacteria in Thoroughbreds: Role of Probiotics in Diarrhea Prevention in Neonatal Thoroughbreds.

    Science.gov (United States)

    Tanabe, Soichi; Suzuki, Takuya; Wasano, Yuichiro; Nakajima, Fumihiko; Kawasaki, Hiroshi; Tsuda, Tomonori; Nagamine, Natsuko; Tsurumachi, Takashi; Sugaya, Kiyoshi; Akita, Hiroaki; Takagi, Misako; Takagi, Kunihiko; Inoue, Yoshinobu; Asai, Yo; Morita, Hidetoshi

    2014-01-01

    We previously isolated the commensal bacteria lactobacilli and bifidobacteria from the Thoroughbred intestine and prepared the horse probiotics LacFi(TM), consisting of Lactobacillus ruminis KK14, L. equi KK 15, L. reuteri KK18, L. johnsonii KK21, and Bifidobacterium boum HU. Here, we found that the five LacFi(TM) constituent strains remarkably suppressed pro-inflammatory interleukin-17 production in mouse splenocytes stimulated with interleukin-6 and transforming growth factor-β. The protective effects of the probiotic on impaired intestinal barrier function were evaluated in Caco-2 cells treated with tumor necrosis factor-α. Evaluation of transepithelial resistance showed that all the strains exhibited intestinal barrier protective activity, with significant suppression of barrier impairment by L. reuteri KK18. The LacFi(TM) constituent strains were detected in neonatal LacFi(TM)-administered Thoroughbred feces using polymerase chain reaction denaturing gradient gel electrophoresis and culture methods. These five strains were found to be the predominant lactobacilli and bifidobacteria in the intestinal microbiota of LacFi(TM)-administered Thoroughbreds. Administration of LacFi(TM) to neonatal Thoroughbreds decreased diarrhea incidence from 75.9% in the control group (n=29 neonatal Thoroughbreds) to 30.7% in the LacFi(TM)-administered group (n=101 neonatal Thoroughbreds) immediately after birth to 20 weeks after birth. LacFi(TM) treatment also prevented diarrhea especially at and around 4 weeks and from 10 to 16 weeks. The duration of diarrhea was also shorter in the probiotics-administered group (7.4 ± 0.8 days) than in the control group (14.0 ± 3.2 days). These results indicate that the LacFi(TM) probiotics regulates intestinal function and contributes to diarrhea prevention.

  13. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  14. Effect of subchronic exposure to inorganic arsenic on the structure and function of the intestinal epithelium.

    Science.gov (United States)

    Chiocchetti, G M; Vélez, D; Devesa, V

    2018-04-01

    Inorganic arsenic (As), the most toxic form of As found in water and food, is considered a human carcinogen. Numerous studies show its systemic toxicity, describing pathologies associated with chronic exposure. The main pathway of exposure to inorganic As is oral, but many of the events that occur during its passage through the gastrointestinal tract are unknown. This study evaluates the effect of subchronic exposure to inorganic As [As(III): 0.025-0.1 mg/L; As(V): 0.25-1 mg/L, up to 21 days] on the intestinal epithelium, using Caco-2 cells as in vitro model. Inorganic As produces a pro-inflammatory response throughout the exposure time, with an increase in IL-8 release (up to 488%). It also causes changes in the program of cell proliferation and differentiation, which leads to impairment of the cell repair process. In addition, subchronic exposure affects the epithelial structure, causing loss of microvilli, fundamental structures in the processes of intestinal absorption and digestion. Moreover, the exposure affects the epithelial barrier function, evidenced by an increase of Lucifer Yellow transport (103-199%). Therefore, it can be concluded that subchronic exposure to inorganic As can alter intestinal homeostasis, affecting the mucosal layer, which performs the most important functions of the intestinal wall. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Protective effect of lactobacillus acidophilus and isomaltooligosaccharide on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2008-01-01

    Objective: To investigate the protective effect of synbiotics combined lactobacillus acidophilus and iso-malto-oligosaccharide (IMO) on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea(AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 5 days. The synbiotics was orally administered to the AAD rats daily at three different strengths for 7 days. The intestinal flora and intestinal mucus SIgA levels were determined on d6, d9 and d13. The histopathological changes of ileal mucosa were studied on d13. Results: In the prepared AAD model rats (on d6) there were lower intestinal mucus SIgA levels and intestinal flora disorders were demonstrated. The intestinal floras of the rats administering synbiotics were readjusted to the similar pattern of healthy rats with bacterial translocation corrected on d13 and the levels of SIgA were not significantly different from of the control (P>0.05). The histopathological picture was basically normal in the treated models on d13. Conclusion: The synbiotics combined lactobacillus acidophilus and isomaltooligosaccharide possessed good protective effect on the intestinal mucosal barrier in lincomycin induced rat models of AAD. (authors)

  16. Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period

    NARCIS (Netherlands)

    Rouwet, Ellen V.; Heineman, Erik; Buurman, Wim A.; ter Riet, Gerben; Ramsay, Graham; Blanco, Carlos E.

    2002-01-01

    Immaturity of intestinal epithelial barrier function and absorptive capacity may play a role in the pathophysiology of intestinal complications in preterm neonates during the early postnatal period. We determined the intestinal permeability and carrier-mediated absorption of monosaccharides in

  17. Modulation of immune development and function by intestinal microbiota.

    Science.gov (United States)

    Kabat, Agnieszka M; Srinivasan, Naren; Maloy, Kevin J

    2014-11-01

    The immune system must constantly monitor the gastrointestinal tract for the presence of pathogens while tolerating trillions of commensal microbiota. It is clear that intestinal microbiota actively modulate the immune system to maintain a mutually beneficial relation, but the mechanisms that maintain homeostasis are not fully understood. Recent advances have begun to shed light on the cellular and molecular factors involved, revealing that a range of microbiota derivatives can influence host immune functions by targeting various cell types, including intestinal epithelial cells, mononuclear phagocytes, innate lymphoid cells, and B and T lymphocytes. Here, we review these findings, highlighting open questions and important challenges to overcome in translating this knowledge into new therapies for intestinal and systemic immune disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. STUDYING OF FUNCTIONAL CONDITION OF THE SMALL INTESTINE IN CHOLELITHIASIS

    Directory of Open Access Journals (Sweden)

    Ya. M. Vakhrushev

    2015-01-01

    Full Text Available Aim. Complex research of the functional condition of the small intestine in different stages of cholelithiasis.Materials and methods. 47 patients with different stages of cholelithiasis were examined. There were 29 patients with the first (prestone stage and 18 — with the second (stone stage of cholelithiasis. In an assessment of the functional condition of the small intestine were used clinical data and results of the load tests by sugars. Cavitary digestion was studied by load test with polysaccharide (soluble starch, membrane digestion — with disaccharide (sucrose, absorption — with monosaccharide (glucose. Glucose level in blood was determined on an empty stomach, then after oral reception of 50g of glucose, sucrose or starch in 30, 60 and 120 minutes.Results. Researchers showed that in the most of patients with cholelithiasis there were disturbances in clinical and functional condition of the small intestine. In an assessment of the cavitary digestion the level of glycemia was authentically lowered by 43% in prestone stage and by 66% in stone stage of cholelithiasis in comparison with control. In an assessment of membrane digestion in patients with the stone stage of cholelithiasis the level of glycemia was lowered in comparison with group of control and with the prestone stage by 30% and 19% respectively.Conclusion. In prestone stage of cholelithiasis there were decrease of the cavitary digestion primary, and in stone stage of cholelithiasis — all stages of hydrolysis-resorptive process in the small intestine were disturbed.

  19. Microbial products induce claudin-2 to compromise gut epithelial barrier function.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    Full Text Available The epithelial barrier dysfunction is an important pathogenic feature in a number of diseases. The underlying mechanism is to be further investigated. The present study aims to investigate the role of tight junction protein claudin-2 (Cldn2 in the compromising epithelial barrier function. In this study, the expression of Cldn2 in the epithelial layer of mice and patients with food allergy was observed by immunohistochemistry. The induction of Cldn2 was carried out with a cell culture model. The Cldn2-facilitated antigen internalization was observed by confocal microscopy. The epithelial barrier function in the gut epithelial monolayer was assessed by recording the transepithelial resistance and assessing the permeability to a macromolecular tracer. The results showed that the positive immune staining of Cldn2 was observed in the epithelial layer of the small intestine that was weakly stained in naïve control mice, and strongly stained in sensitized mice as well as patients with food allergy. Exposure to cholera toxin or Staphylococcal enterotoxin B induced the expression of Cldn2 in HT-29 or T84 cells. Cldn2 could bind protein antigen to form complexes to facilitate the antigen transport across the epithelial barrier. Blocking Cldn2 prevented the allergen-related hypersensitivity the intestine. We conclude that the tight junction protein Cldn2 is involved in the epithelial barrier dysfunction.

  20. The Functional State of Intestinal Microcirculation in Diffuse Peritonitis

    Directory of Open Access Journals (Sweden)

    A. A. Kosovskikh

    2012-01-01

    Full Text Available Objective: to evaluate the functional state of intestinal microcirculation in diffuse peritonitis caused by hollow organ perforation and to determine its possible relationship to skin microcirculation. Subjects and methods. Seventeen patients with diffuse peritonitis resulting from hollow organ perforation were examined. The patients’ mean age was 58.5±2.8 years; a control group consisted of 35 apparently healthy individuals. The functional state of the intestinal microcirculatory bed (the mid-transverse colon, the ileum at a distance of 60 cm from the ileocecal corner, the small bowel at a distance of 50 cm of the ligament of Treitz, and an area next hollow organ perforation and skin was evaluated by laser Doppler flowmetry by means of a ЛАКК-02 laser capillary blood flow analyzer made in the Russian Federation (LAZMA Research-and-Production Association, Russian Federation. Results. Perforation of the affected intestinal portion became worse in patients with diffuse peritonitis. Blood flow stability was ensured by the higher effect of mainly active components of vascular tone regulation on the microvascular bed. Regulatory changes were equally pronounced at both the intraorgan and skin levels. Conclusion. The findings suggest that the patients with diffuse peritonitis have changes in microcirculatory regulation aimed at maintaining tissue perfusion. These changes are universal at both the intraorgan and skin levels. Key words: microcirculation, micro blood flow, intestine, peritonitis, tissue perfusion.

  1. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    Science.gov (United States)

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  2. Portal vein thrombosis in cirrhosis is not associated with intestinal barrier disruption or increased platelet aggregability.

    Science.gov (United States)

    Wosiewicz, Piotr; Żorniak, Michał; Hartleb, Marek; Barański, Kamil; Hartleb, Maciej; Onyszczuk, Magdalena; Pilch-Kowalczyk, Joanna; Kyrcz-Krzemień, Sławomira

    2016-12-01

    Portal vein thrombosis (PVT) is a common complication of cirrhosis, but its pathogenesis is unclear. We tested the hypotheses that PVT is the result of platelet hyperactivity or intestinal barrier disruption. This study included 49 patients with cirrhosis (15 females) of mixed etiology. Based on spiral computed-tomography, the patients were divided into two groups: with PVT (n=16) and without PVT (n=33). Serum biomarkers of intestinal barrier integrity were endotoxins and zonulin, and platelet activity was assessed with multiple electrode aggregometry. The levels of endotoxin (43.5±18.3ng/ml vs. 36.9±7.5ng/ml; P=0.19) and zonulin (56.3±31.1ng/ml vs. 69.3±63.1ng/ml; P=0.69) were not different between the patients with and without PVT. Moreover, endotoxin and zonulin did not correlate with the coagulation and platelet parameters. The platelet aggregability measured with the TRAP and the ADP tests was decreased in PVT patients. In the logistic regression analysis the PVT incidence was related to the levels of D-dimer and bilirubin as well as the TRAP test results. Patients with PVT presented with significantly higher levels of D-dimer (4.45±2.59 vs. 3.03±2.97mg/l; P<0.05) and prothrombin levels (175±98.8μg/ml vs. 115±72.9μg/ml; P<0.05) than patients without thrombosis. PVT could be excluded with a 90% negative predictive value when the D-dimer level was below 1.82mg/l. Endotoxemia and platelet activity are not determinants of PVT in patients with cirrhosis. The D-dimer measurement has diagnostic significance for PVT in patients with liver cirrhosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Randomised controlled trial of colostrum to improve intestinal function in patients with short bowel syndrome

    DEFF Research Database (Denmark)

    Lund, Pernille; Sangild, Per Torp; Aunsholt, L.

    2012-01-01

    Colostrum is rich in immunoregulatory, antimicrobial and trophic components supporting intestinal development and function in newborns. We assessed whether bovine colostrum could enhance intestinal adaptation and function in adult short bowel syndrome (SBS) patients.......Colostrum is rich in immunoregulatory, antimicrobial and trophic components supporting intestinal development and function in newborns. We assessed whether bovine colostrum could enhance intestinal adaptation and function in adult short bowel syndrome (SBS) patients....

  4. Real-time monitoring of trans-epithelial electrical resistance in cultured intestinal epithelial cells: the barrier protection of water-soluble dietary fiber.

    Science.gov (United States)

    Majima, Atsushi; Handa, Osamu; Naito, Yuji; Suyama, Yosuke; Onozawa, Yuriko; Higashimura, Yasuki; Mizushima, Katsura; Morita, Mayuko; Uehara, Yukiko; Horie, Hideki; Iida, Takaya; Fukui, Akifumu; Dohi, Osamu; Okayama, Tetsuya; Yoshida, Naohisa; Kamada, Kazuhiro; Katada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Konishi, Hideyuki; Yasukawa, Zenta; Tokunaga, Makoto; Okubo, Tsutomu; Itoh, Yoshito

    2017-03-01

    In this study we aimed to verify a real-time trans-epithelial electrical resistance (TEER) monitoring system in a Caco-2 monolayer and to investigate the therapeutic effect of partially hydrolyzed guar gum (PHGG), a dietary fiber, against interferon (IFN)-γ-induced intestinal barrier dysfunction using this monitoring system. We measured TEER using a real-time monitoring system and evaluated epithelial paracellular permeability using fluorescein isothiocyanate-conjugated dextran (4 kDa; FD4) in Caco-2 monolayers treated with IFN-γ for 48 h. The expression and distribution of tight junction (TJ)-associated proteins, ZO-1 and occludin, were analyzed by Western blot and immunocytochemistry, respectively. In some experiments PHGG was added prior to IFN-γ treatment in order to investigate its protective effect on barrier function. IFN-γ treatment significantly decreased TEER and increased FD4 flux across Caco-2 monolayers, indicating a great influence of IFN-γ on the intestinal epithelial paracellular permeability. In contrast, the pretreatment of PHGG significantly reduced the IFN-γ-induced increment of FD4 flux without affecting TEER. Neither IFN-γ nor PHGG treatment affected the expressions of TJ-associated proteins, while immunocytochemistry showed that IFN-γ-induced redistribution of occludin was clearly restored by PHGG. Real-time TEER monitoring enabled us to evaluate the dynamic changes of intestinal epithelial barrier function. PHGG may have a protective effect against IFN-γ-induced barrier dysfunction by attenuating the paracellular hyperpermeability; thus, its promotion as a functional food is anticipated. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  5. Si-Jun-Zi Decoction Treatment Promotes the Restoration of Intestinal Function after Obstruction by Regulating Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Xiangyang Yu

    2014-01-01

    Full Text Available Intestinal obstruction is a common disease requiring abdominal surgery with significant morbidity and mortality. Currently, an effective medical treatment for obstruction, other than surgical resection or decompression, does not exist. Si-Jun-Zi Decoction is a famous Chinese medicine used to replenish qi and invigorate the functions of the spleen. Modern pharmacological studies show that this prescription can improve gastrointestinal function and strengthen immune function. In this study, we investigated the effects of a famous Chinese herbal formula, Si-Jun-Zi Decoction, on the restoration of intestinal function after the relief of obstruction in a rabbit model. We found that Si-Jun-Zi Decoction could reduce intestinal mucosal injury while promoting the recovery of the small intestine. Further, Si-Jun-Zi Decoction could regulate the intestinal immune system. Our results suggest that Si-Jun-Zi Decoction promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Our observations indicate that Si-Jun-Zi Decoction is potentially a therapeutic drug for intestinal obstruction.

  6. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    NARCIS (Netherlands)

    Gordon, S.; Daneshian, M.; Bouwstra, J.A.; Caloni, F.; Constant, S.; Davies, D.E.; Dandekar, G.; Guzman, C.A.; Fabian, E.; Haltner, E.; Hartung, T.; Hasiwa, N.; Hayden, P.; Kandarova, H.; Khare, S.; Krug, H.F.; Kneuer, C.; Leist, M.; Lian, G.; Marx, U.; Metzger, M.; Ott, K.; Prieto, P.; Roberts, M.S.; Roggen, E.L.; Tralau, T.; Braak, van den C.; Walles, H.; Lehr, C.M.

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields,

  7. It takes more than a coating to get nanoparticles through the intestinal barrier in vitro.

    Science.gov (United States)

    Lichtenstein, Dajana; Ebmeyer, Johanna; Meyer, Thomas; Behr, Anne-Cathrin; Kästner, Claudia; Böhmert, Linda; Juling, Sabine; Niemann, Birgit; Fahrenson, Christoph; Selve, Sören; Thünemann, Andreas F; Meijer, Jan; Estrela-Lopis, Irina; Braeuning, Albert; Lampen, Alfonso

    2017-09-01

    Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core- and coating-related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly (acrylic acid) were chosen and extensively characterized by small-angle x-ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco-2 model in a Transwell system with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco-2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano-scaled pharmaceuticals. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  9. Prematurity reduces functional adaptation to intestinal resection in piglets

    DEFF Research Database (Denmark)

    Aunsholt, Lise; Thymann, Thomas; Qvist, Niels

    2015-01-01

    Background: Necrotizing enterocolitis and congenital gastrointestinal malformations in infants often require intestinal resection, with a subsequent risk of short bowel syndrome (SBS). We hypothesized that immediate intestinal adaptation following resection of the distal intestine with placement ...

  10. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  11. Interpreting heterogeneity in intestinal tuft cell structure and function.

    Science.gov (United States)

    Banerjee, Amrita; McKinley, Eliot T; von Moltke, Jakob; Coffey, Robert J; Lau, Ken S

    2018-05-01

    Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.

  12. Experimental coccidiosis influences the expression of the ABCB1 gene, a physiological important functional marker of intestinal integrity in chickens.

    Science.gov (United States)

    Haritova, Aneliya; Koinarski, Vencislav; Stanilova, Spaska

    2013-01-01

    Efflux transporters belonging to the family of ABC transporters have an important functional role in the maintenance of the intestinal barrier. As efflux transporters they prevent the absorption of toxic substances from feed, while at the same time facilitating the excretion of metabolic waste products as well as drugs from the circulation into the intestinal lumen. As Eimeria tenella infection significantly affects the integrity of caecum, the effects of experimental E. tenella infection on the levels of expression of ABCB1 mRNAs in the intestines and livers of broilers were evaluated. ABCB1 mRNA expression was quantified by qRT-PCR. Its expression levels were significantly down-regulated in the caecum of infected animals. The levels of ABCB1 mRNA were not changed in the duodenum and the liver. After treatment of the animals with sulfapyrazine for three days, not only a significant improvement of the clinical appearance but also a normalization of the P-gp expression was noticed. Although the current study cannot distinguish between the direct effect of the drug on the host and the drug action on the parasite, these results suggest that the treatment of coccidiosis with sulfachlorpyrazine also restored the expression of the investigated efflux transporter in the caecum. This is of clinical significance as P-glycoproteins contribute to the integrity of intestines and their function as important biological barriers, protecting poultry from pathogens and toxic compounds in animal feeds.

  13. Effect of Psychoneural Factors on Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    M Cecilia Berin

    1997-01-01

    Full Text Available Stress has been associated with abnormal gastrointestinal function, including diarrhea and abdominal pain, and stress-associated gastric ulceration has frequently been documented. Stress can also exacerbate ongoing pathophysiology and often precedes relapses in patients with inflammatory bowel disease or irritable bowel syndrome. The relatively new field of psychoneuroimmunology is involved with the elucidation of mechanisms that explain the link between the central nervous system and immune-mediated pathophysiology. Recent progress examining the interaction among the nervous system, the immune system and the epithelium of the intestine is discussed, and the evidence for central nervous sysytem control of this interaction is examined.

  14. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis.

    Science.gov (United States)

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid. Expression of TNFR1 and TNFR2 was measured by quantitative RT-PCR and western blotting. The effect of PFB on colitis was evaluated by examining the inflammatory response and intestinal epithelial barrier function. Our results showed that both TNFR1 and TNFR2 expression were significantly increased in a colitis model, and the increase was significantly reversed by PFB. Colitis symptoms, including infiltration of inflammatory cells, cytokine profiles, epithelial cell apoptosis, and epithelial tight junction barrier dysfunction were significantly ameliorated by PFB. Compared with fruit bromelain and stem bromelain complex, the inhibition of TNFR2 induced by PFB was stronger than that exhibited on TNFR1. These results indicate that PFB showed a stronger selective inhibitory effect on TNFR2 than TNFR1. In other words, purification of fruit bromelain increases its selectivity on TNFR2 inhibition. High expression of epithelial TNFRs in colitis was significantly counteracted by PFB, and PFB-induced TNFR inhibition ameliorated colitis symptoms. These results supply novel insights into potential IBD treatment by PFB.

  15. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  16. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia.

    Science.gov (United States)

    He, Yan; Yuan, Xiaoming; Zhou, Guangrong; Feng, Aiwen

    2018-01-01

    Insulin-like growth factor I (IGF-I) and binding protein 3 (IGFBP-3) play a role in the maintenance of gut mucosal barrier function. Nevertheless, IGF-I/IGFBP-3 and tight junction protein (TJP) expression in small intestinal mucosa are often impaired during endotoxemia. In this model of acute endotoxemia, the regulatory effect of berberine on IGF-I/IGFBP-3 and TJP expression in ileal mucosa was evaluated. The findings revealed systemic injection of lipopolysaccharide (LPS) suppressed mRNA and protein expression of IGF-I and IGFBP-3, but berberine ameliorated their production. LPS injection inhibited occludin and claudin-1 protein generation, and this inhibitory effect of LPS was abolished by berberine. Inhibition of IGF-I/IGFBP-3 signaling by AG1024 or siRNAs reduced berberine-induced occludin and claudin-1 production. Additionally, GW9662 was found to repress berberine-induced IGF-I/IGFBP-3 expression, indicating of a cross-link between PPARγ and IGF-I/IGFBP-3 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Shao, Yu-Xin; Lei, Zhao; Wolf, Patricia G; Gao, Yan; Guo, Yu-Ming; Zhang, Bing-Kun

    2017-07-01

    Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium ( S. typhimurium ) infection, but the mechanisms involved in this process remain undefined. Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function. Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 μM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 μM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured. Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h ( P 0.1). Silencing GPR39 decreased ( P zinc-activated PKCζ and blocked ( P zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 ( P = 0.138). Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium- infected Caco-2 cells. © 2017 American Society for Nutrition.

  18. Transforming growth factor-beta 3 alters intestinal smooth muscle function: implications for gastroschisis-related intestinal dysfunction.

    Science.gov (United States)

    Moore-Olufemi, S D; Olsen, A B; Hook-Dufresne, D M; Bandla, V; Cox, C S

    2015-05-01

    Gastroschisis (GS) is a congenital abdominal wall defect that results in the development of GS-related intestinal dysfunction (GRID). Transforming growth factor-β, a pro-inflammatory cytokine, has been shown to cause organ dysfunction through alterations in vascular and airway smooth muscle. The purpose of this study was to evaluate the effects of TGF-β3 on intestinal smooth muscle function and contractile gene expression. Archived human intestinal tissue was analyzed using immunohistochemistry and RT-PCR for TGF-β isoforms and markers of smooth muscle gene and micro-RNA contractile phenotype. Intestinal motility was measured in neonatal rats ± TGF-β3 (0.2 and 1 mg/kg). Human intestinal smooth muscle cells (hiSMCs) were incubated with fetal bovine serum ± 100 ng/ml of TGF-β 3 isoforms for 6, 24 and 72 h. The effects of TGF-β3 on motility, hiSMC contractility and hiSMC contractile phenotype gene and micro-RNA expression were measured using transit, collagen gel contraction assay and RT-PCR analysis. Data are expressed as mean ± SEM, ANOVA (n = 6-7/group). GS infants had increased immunostaining of TGF-β3 and elevated levels of micro-RNA 143 & 145 in the intestinal smooth muscle. Rats had significantly decreased intestinal transit when exposed to TGF-β3 in a dose-dependent manner compared with Sham animals. TGF-β3 significantly increased hiSMC gel contraction and contractile protein gene and micro-RNA expression. TGF-β3 contributed to intestinal dysfunction at the organ level, increased contraction at the cellular level and elevated contractile gene expression at the molecular level. A hyper-contractile response may play a role in the persistent intestinal dysfunction seen in GRID.

  19. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  20. Contribution of intestinal barrier damage, microbial translocation and HIV-1 infection status to an inflammaging signature.

    Directory of Open Access Journals (Sweden)

    Amanda K Steele

    Full Text Available Systemic inflammation is a characteristic of both HIV-1 infection and aging ("inflammaging". Intestinal epithelial barrier damage (IEBD and microbial translocation (MT contribute to HIV-associated inflammation, but their impact on inflammaging remains unclear.Plasma biomarkers for IEBD (iFABP, MT (LPS, sCD14, T-cell activation (sCD27, and inflammation (hsCRP, IL-6 were measured in 88 HIV-1 uninfected (HIV(neg and 83 treated, HIV-1-infected (HIV(pos adults from 20-100 years old.Age positively correlated with iFABP (r = 0.284, p = 0.008, sCD14 (r = 0.646, p = <0.0001 and LPS (r = 0.421, p = 0.0002 levels in HIV(neg but not HIV(pos subjects. Age also correlated with sCD27, hsCRP, and IL-6 levels regardless of HIV status. Middle-aged HIV(pos subjects had elevated plasma biomarker levels similar to or greater than those of elderly HIV(neg subjects with the exception of sCD14. Clustering analysis described an inflammaging phenotype (IP based on iFABP, sCD14, sCD27, and hsCRP levels in HIV(neg subjects over 60 years of age. The IP in HIV(neg subjects was used to develop a classification model that was applied to HIV(pos subjects to determine whether HIV(pos subjects under 60 years of age were IP+. HIV(pos IP+ subjects were similar in age to IP- subjects but had a greater risk of cardiovascular disease (CVD based on Framingham risk score (p =  0.01.We describe a novel IP that incorporates biomarkers of IEBD, MT, immune activation as well as inflammation. Application of this novel IP in HIV-infected subjects identified a group at higher risk of CVD.

  1. Contribution of intestinal barrier damage, microbial translocation and HIV-1 infection status to an inflammaging signature.

    Science.gov (United States)

    Steele, Amanda K; Lee, Eric J; Vestal, Brian; Hecht, Daniel; Dong, Zachary; Rapaport, Eric; Koeppe, John; Campbell, Thomas B; Wilson, Cara C

    2014-01-01

    Systemic inflammation is a characteristic of both HIV-1 infection and aging ("inflammaging"). Intestinal epithelial barrier damage (IEBD) and microbial translocation (MT) contribute to HIV-associated inflammation, but their impact on inflammaging remains unclear. Plasma biomarkers for IEBD (iFABP), MT (LPS, sCD14), T-cell activation (sCD27), and inflammation (hsCRP, IL-6) were measured in 88 HIV-1 uninfected (HIV(neg)) and 83 treated, HIV-1-infected (HIV(pos)) adults from 20-100 years old. Age positively correlated with iFABP (r = 0.284, p = 0.008), sCD14 (r = 0.646, p = LPS (r = 0.421, p = 0.0002) levels in HIV(neg) but not HIV(pos) subjects. Age also correlated with sCD27, hsCRP, and IL-6 levels regardless of HIV status. Middle-aged HIV(pos) subjects had elevated plasma biomarker levels similar to or greater than those of elderly HIV(neg) subjects with the exception of sCD14. Clustering analysis described an inflammaging phenotype (IP) based on iFABP, sCD14, sCD27, and hsCRP levels in HIV(neg) subjects over 60 years of age. The IP in HIV(neg) subjects was used to develop a classification model that was applied to HIV(pos) subjects to determine whether HIV(pos) subjects under 60 years of age were IP+. HIV(pos) IP+ subjects were similar in age to IP- subjects but had a greater risk of cardiovascular disease (CVD) based on Framingham risk score (p =  0.01). We describe a novel IP that incorporates biomarkers of IEBD, MT, immune activation as well as inflammation. Application of this novel IP in HIV-infected subjects identified a group at higher risk of CVD.

  2. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D.

    Science.gov (United States)

    Anabazhagan, Arivarasu N; Chatterjee, Ishita; Priyamvada, Shubha; Kumar, Anoop; Tyagi, Sangeeta; Saksena, Seema; Alrefai, Waddah A; Dudeja, Pradeep K; Gill, Ravinder K

    2017-03-16

    The intestinal epithelium has important transport and barrier functions that play key roles in normal physiological functions of the body while providing a barrier to foreign particles. Impaired epithelial transport (ion, nutrient, or drugs) has been associated with many diseases and can have consequences that extend beyond the normal physiological functions of the transporters, such as by influencing epithelial integrity and the gut microbiome. Understanding the function and regulation of transport proteins is critical for the development of improved therapeutic interventions. The biggest challenge in the study of epithelial transport is developing a suitable model system that recapitulates important features of the native intestinal epithelial cells. Several in vitro cell culture models, such as Caco-2, T-84, and HT-29-Cl.19A cells are typically used in epithelial transport research. These cell lines represent a reductionist approach to modeling the epithelium and have been used in many mechanistic studies, including their examination of epithelial-microbial interactions. However, cell monolayers do not accurately reflect cell-cell interactions and the in vivo microenvironment. Cells grown in 3D have shown to be promising models for drug permeability studies. We show that Caco-2 cells in 3D can be used to study epithelial transporters. It is also important that studies in Caco-2 cells are complemented with other models to rule out cell specific effects and to take into account the complexity of the native intestine. Several methods have been previously used to assess the functionality of transporters, such as everted sac and uptake in isolated epithelial cells or in isolated plasma membrane vesicles. Taking into consideration the challenges in the field with respect to models and the measurement of transport function, we demonstrate here a protocol to grow Caco-2 cells in 3D and describe the use of an Ussing chamber as an effective approach to measure serotonin

  3. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; Young, W.; McNabb, W.C.; Baarlen, van P.; Moughan, P.J.; Wells, J.M.; Roy, N.C.

    2015-01-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique

  4. PVA gel as a potential adhesion barrier: a safety study in a large animal model of intestinal surgery.

    Science.gov (United States)

    Renz, Bernhard W; Leitner, Kurt; Odermatt, Erich; Worthley, Daniel L; Angele, Martin K; Jauch, Karl-Walter; Lang, Reinhold A

    2014-03-01

    Intra-abdominal adhesions following surgery are a major source of morbidity and mortality including abdominal pain and small bowel obstruction. This study evaluated the safety of PVA gel (polyvinyl alcohol and carboxymethylated cellulose gel) on intestinal anastomoses and its potential effectiveness in preventing adhesions in a clinically relevant large animal model. Experiments were performed in a pig model with median laparotomy and intestinal anastomosis following small bowel resection. The primary endpoint was the safety of PVA on small intestinal anastomoses. We also measured the incidence of postoperative adhesions in PVA vs. control groups: group A (eight pigs): stapled anastomosis with PVA gel compared to group B (eight pigs), which had no PVA gel; group C (eight pigs): hand-sewn anastomosis with PVA gel compared to group B (eight pigs), which had no anti-adhesive barrier. Animals were sacrificed 14 days after surgery and analyzed. All anastomoses had a patent lumen without any stenosis. No anastomoses leaked at an intraluminal pressure of 40 cmH2O. Thus, anastomoses healed very well in both groups, regardless of whether PVA was administered. PVA-treated animals, however, had significantly fewer adhesions in the area of stapled anastomoses. The hand-sewn PVA group also had weaker adhesions and trended towards fewer adhesions to adjacent organs. These results suggest that PVA gel does not jeopardize the integrity of intestinal anastomoses. However, larger trials are needed to investigate the potential of PVA gel to prevent adhesions in gastrointestinal surgery.

  5. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro

    Science.gov (United States)

    Kasper, Jennifer Y; Hermanns, Maria Iris; Cavelius, Christian; Kraegeloh, Annette; Jung, Thomas; Danzebrink, Rolf; Unger, Ronald E; Kirkpatrick, Charles James

    2016-01-01

    The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells

  6. Radionuclide evaluation of gastric, intestinal and pancreatic function in nonspecific ulcerative colitis

    International Nuclear Information System (INIS)

    Talipov, M.

    1989-01-01

    Stomach and intestine motorevacuator function, small intestine absorptive finction and pancreas functional state in case of nonspecific ulcerous colitis were studied by complex radionuclide examinations. Data, methods and results on treatment depending on clinical severity and dissemination of the pathological process are presented the pathological process are presented

  7. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2.

    Science.gov (United States)

    Zheng, Leon; Kelly, Caleb J; Battista, Kayla D; Schaefer, Rachel; Lanis, Jordi M; Alexeev, Erica E; Wang, Ruth X; Onyiah, Joseph C; Kominsky, Douglas J; Colgan, Sean P

    2017-10-15

    Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation. Based on these findings, we examined if SCFAs promote epithelial barrier through IL-10RA-dependent mechanisms. Using human intestinal epithelial cells (IECs), we discovered that SCFAs, particularly butyrate, enhanced IEC barrier formation, induced IL-10RA mRNA, IL-10RA protein, and transactivation through activated Stat3 and HDAC inhibition. Loss and gain of IL-10RA expression directly correlates with IEC barrier formation and butyrate represses permeability-promoting claudin-2 tight-junction protein expression through an IL-10RA-dependent mechanism. Our findings provide a novel mechanism by which microbial-derived butyrate promotes barrier through IL-10RA-dependent repression of claudin-2. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Circadian regulation of epithelial functions in the intestine

    Czech Academy of Sciences Publication Activity Database

    Pácha, Jiří; Sumová, Alena

    2013-01-01

    Roč. 208, č. 1 (2013), s. 11-24 ISSN 1748-1708 R&D Projects: GA ČR(CZ) GAP303/10/0969; GA ČR(CZ) GAP303/11/0668 Institutional support: RVO:67985823 Keywords : circadian rhythms * intestine * colon * proliferation * digestion * intestinal transport Subject RIV: ED - Physiology Impact factor: 4.251, year: 2013

  10. Intestinal growth and function of broiler chicks fed sorghum based ...

    African Journals Online (AJOL)

    Margret Rukuni

    Weekly measurements of body weight (LW) and feed intake (FI) for each replicate of the treatments were taken. At days 7, 14, 21, 42 and 56 two chicks from each replicate were killed after starving them for 12 hours to limit intestinal throughput. To ensure clean histology samples, the liver and intestinal samples were ...

  11. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis.

    Science.gov (United States)

    Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-06-07

    Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.

  12. Surfactants have multi-fold effects on skin barrier function.

    Science.gov (United States)

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  13. INTESTINAL PERMEABILITY IN PEDIATRIC GASTROENTEROLOGY

    NARCIS (Netherlands)

    VANELBURG, RM; UIL, JJ; DEMONCHY, JGR; HEYMANS, HSA

    1992-01-01

    The role of the physiologic barrier function of the small bowel and its possible role in health and disease has attracted much attention over the past decade. The intestinal mucosal barrier for luminal macromolecules and microorganism is the result of non-immunologic and immunologic defense

  14. A study on the quantitative evaluation of skin barrier function

    Science.gov (United States)

    Maruyama, Tomomi; Kabetani, Yasuhiro; Kido, Michiko; Yamada, Kenji; Oikaze, Hirotoshi; Takechi, Yohei; Furuta, Tomotaka; Ishii, Shoichi; Katayama, Haruna; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    We propose a quantitative evaluation method of skin barrier function using Optical Coherence Microscopy system (OCM system) with coherency of near-infrared light. There are a lot of skin problems such as itching, irritation and so on. It has been recognized skin problems are caused by impairment of skin barrier function, which prevents damage from various external stimuli and loss of water. To evaluate skin barrier function, it is a common strategy that they observe skin surface and ask patients about their skin condition. The methods are subjective judgements and they are influenced by difference of experience of persons. Furthermore, microscopy has been used to observe inner structure of the skin in detail, and in vitro measurements like microscopy requires tissue sampling. On the other hand, it is necessary to assess objectively skin barrier function by quantitative evaluation method. In addition, non-invasive and nondestructive measuring method and examination changes over time are needed. Therefore, in vivo measurements are crucial for evaluating skin barrier function. In this study, we evaluate changes of stratum corneum structure which is important for evaluating skin barrier function by comparing water-penetrated skin with normal skin using a system with coherency of near-infrared light. Proposed method can obtain in vivo 3D images of inner structure of body tissue, which is non-invasive and non-destructive measuring method. We formulate changes of skin ultrastructure after water penetration. Finally, we evaluate the limit of performance of the OCM system in this work in order to discuss how to improve the OCM system.

  15. Intestinal barrier dysfunction and increased COX-2 gene expression in the gut of elderly rats with acute pancreatitis.

    Science.gov (United States)

    Barbeiro, Denise Frediani; Koike, Marcia Kiyomi; Coelho, Ana Maria Mendonça; da Silva, Fabiano Pinheiro; Machado, Marcel Cerqueira César

    2016-01-01

    The clinical course of acute pancreatitis can vary from mild to severe. In its most severe manifestation, acute pancreatitis is associated with an exacerbated systemic inflammatory response and high mortality rates. The severe form of acute pancreatitis is more frequent in elderly patients than in young patients, but the mechanisms underlying this difference are still under investigation. Rats were divided into two groups as follows: Group 1, young rats; and Group 2, old rats. Acute pancreatitis group was induced by a retrograde injection of a sodium taurocholate solution into the biliopancreatic duct. Using this model of acute pancreatic injury, we designed a study to investigate possible differences in microbial translocation and characteristics of the intestinal barrier between elderly and young rats. There was a significantly higher number of bacterial colonies in the pancreas of elderly rats compared with young rats following pancreas injury, which was associated with a more severe local intestinal inflammatory response that included elevated gene expression of COX-2 and a decreased gene expression of tight junction proteins. We conclude that intestinal damage during acute pancreatitis is exacerbated in elderly rats compared with young rats and that COX-2 inhibition could be a potential therapeutic target to offer tailored treatment for acute pancreatitis in the elderly. Copyright © 2015 IAP and EPC. Published by Elsevier India Pvt Ltd. All rights reserved.

  16. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon.

    Directory of Open Access Journals (Sweden)

    Yosuke Shimada

    Full Text Available Microbiota have been shown to have a great influence on functions of intestinal epithelial cells (ECs. The role of indole as a quorum-sensing (QS molecule mediating intercellular signals in bacteria has been well appreciated. However, it remains unknown whether indole has beneficial effects on maintaining intestinal barriers in vivo. In this study, we analyzed the effect of indole on ECs using a germ free (GF mouse model. GF mice showed decreased expression of junctional complex molecules in colonic ECs. The feces of specific pathogen-free (SPF mice contained a high amount of indole; however the amount was significantly decreased in the feces of GF mice by 27-fold. Oral administration of indole-containing capsules resulted in increased expression of both tight junction (TJ- and adherens junction (AJ-associated molecules in colonic ECs in GF mice. In accordance with the increased expression of these junctional complex molecules, GF mice given indole-containing capsules showed higher resistance to dextran sodium sulfate (DSS-induced colitis. A similar protective effect of indole on DSS-induced epithelial damage was also observed in mice bred in SPF conditions. These findings highlight the beneficial role of indole in establishing an epithelial barrier in vivo.

  17. Elevation of HO-1 Expression Mitigates Intestinal Ischemia-Reperfusion Injury and Restores Tight Junction Function in a Rat Liver Transplantation Model

    Directory of Open Access Journals (Sweden)

    Xinjin Chi

    2015-01-01

    Full Text Available Aims. This study was aimed at investigating whether elevation of heme oxygenase-1 (HO-1 expression could lead to restoring intestinal tight junction (TJ function in a rat liver transplantation model. Methods. Intestinal mucosa injury was induced by orthotopic autologous liver transplantation (OALT on male Sprague-Dawley rats. Hemin (a potent HO-1 activator and zinc-protoporphyrin (ZnPP, a HO-1 competitive inhibitor, were separately administered in selected groups before OALT. The serum and intestinal mucosa samples were collected at 8 hours after the operation for analysis. Results. Hemin pretreatment significantly reduced the inflammation and oxidative stress in the mucosal tissue after OALT by elevating HO-1 protein expression, while ZnPP pretreatment aggravated the OALT mucosa injury. Meanwhile, the restriction on the expression of tight junction proteins zonula occludens-1 and occludin was removed after hemin pretreatment. These molecular events led to significant improvement on intestinal barrier function, which was proved to be through increasing nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2 and reducing nuclear translocation of nuclear factor kappa-B (NF-κB in intestinal injured mucosa. Summary. Our study demonstrated that elevation of HO-1 expression reduced the OALT-induced intestinal mucosa injury and TJ dysfunction. The HO-1 protective function was likely mediated through its effects of anti-inflammation and antioxidative stress.

  18. Elevation of HO-1 Expression Mitigates Intestinal Ischemia-Reperfusion Injury and Restores Tight Junction Function in a Rat Liver Transplantation Model

    Science.gov (United States)

    Chi, Xinjin; Yao, Weifeng; Xia, Hua; Jin, Yi; Li, Xi; Cai, Jun; Hei, Ziqing

    2015-01-01

    Aims. This study was aimed at investigating whether elevation of heme oxygenase-1 (HO-1) expression could lead to restoring intestinal tight junction (TJ) function in a rat liver transplantation model. Methods. Intestinal mucosa injury was induced by orthotopic autologous liver transplantation (OALT) on male Sprague-Dawley rats. Hemin (a potent HO-1 activator) and zinc-protoporphyrin (ZnPP, a HO-1 competitive inhibitor), were separately administered in selected groups before OALT. The serum and intestinal mucosa samples were collected at 8 hours after the operation for analysis. Results. Hemin pretreatment significantly reduced the inflammation and oxidative stress in the mucosal tissue after OALT by elevating HO-1 protein expression, while ZnPP pretreatment aggravated the OALT mucosa injury. Meanwhile, the restriction on the expression of tight junction proteins zonula occludens-1 and occludin was removed after hemin pretreatment. These molecular events led to significant improvement on intestinal barrier function, which was proved to be through increasing nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and reducing nuclear translocation of nuclear factor kappa-B (NF-κB) in intestinal injured mucosa. Summary. Our study demonstrated that elevation of HO-1 expression reduced the OALT-induced intestinal mucosa injury and TJ dysfunction. The HO-1 protective function was likely mediated through its effects of anti-inflammation and antioxidative stress. PMID:26064429

  19. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    Existing in vitro models of the human intestine such as the established epithelial cell line, Caco-2, cultured on porous membranes have been extensively used for assessing and predicting permeability and absorption of oral drugs in the pharmaceutical industries. However, such in vitro human intes...

  20. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  1. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers

    Science.gov (United States)

    Váradi, Judit; Harazin, András; Fenyvesi, Ferenc; Réti-Nagy, Katalin; Gogolák, Péter; Vámosi, György; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Vasvári, Gábor; Róka, Eszter; Haines, David; Deli, Mária A.; Vecsernyés, Miklós

    2017-01-01

    Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines. PMID:28103316

  2. Bacillus Coagulans Enhance the Immune Function of the Intestinal Mucosa of Yellow Broilers

    Directory of Open Access Journals (Sweden)

    L Xu

    Full Text Available ABSTRACT This experiment was conducted to investigate the effects of Bacillus coagulans on the growth performance and immune functions of the intestinal mucosa of yellow broilers. Three hundred and sixty one-day-old yellow chicks were randomly allocated to four treatments groups with six replicates of 15 chicks each. The broilers were randomly subjected to one of the following treatments for 28 days: control group (group1, fed a basal diet and three treatments (group 2, 3, 4 fed the basal diet supplemented with 100, 200, or 300 mg/kg Bacillus coagulans , respectively. The results showed that for 28 days, compared with the control diet, the dietary addition of 200 mg/kg Bacillus coagulans significantly decreased the feed/gain ratio (F/G (p<0.05, improved the thymus index, spleen index and bursa index (p<0.05, increased the villus height to crypt depth ratio (V/C in the duodenum (p<0.05, increased the number of secretory immunoglobulin (sIgA positive cells ( p<0.05. The dietary addition of 200 mg/kg Bacillus coagulans promoted a significant increase in Lactobacillus spp. populations and suppressed Escherichia coli replication in cecum, compared with the control (p<0.05. Moreover, the dietary addition of 200 mg/kg Bacillus coagulans also significantly enhanced the levels of interferon alpha (IFNα, toll-like receptor (TLR3, and melanoma differentiation-associated protein 5(MDA5 in the duodenum (p<0.05. In conclusion, the dietary addition of Bacillus coagulans significantly improved broiler performance, and enhanced the intestinal mucosal barrier and immune function. The optimal dosage of Bacillus coagulans for yellow broilers was determined as 2×108 cfu/kg.

  3. Typical diffusion behaviour in packaging polymers - Application to functional barriers

    NARCIS (Netherlands)

    Dole, P.; Feigenbaum, A.E.; Cruz, C. de la; Pastorelli, S.; Paseiro, P.; Hankemeier, T.; Voulzatis, Y.; Aucejo, S.; Saillard, P.; Papaspyrides, C.

    2006-01-01

    When plastics are collected for recycling, possibly contaminated articles might be recycled into food packaging, and thus the contaminants might subsequently migrate into the food. Multilayer functional barriers may be used to delay and to reduce such migration. The contribution of the work reported

  4. Disruption of barrier function in dermatophytosis and pityriasis versicolor.

    Science.gov (United States)

    Lee, Weon Ju; Kim, Jun Young; Song, Chang Hyun; Jung, Hong Dae; Lee, Su Hyun; Lee, Seok-Jong; Kim, Do Won

    2011-11-01

    Dermatophytes have the ability to form molecular attachments to keratin and use it as a source of nutrients, colonizing keratinized tissues, including the stratum corneum of the skin. Malassezia species also affect the stratum corneum of the skin. Therefore, dermatophytosis and pityriasis versicolor of the skin are thought to be important factors of profound changes in skin barrier structure and function. We aimed to describe the changes in transepidermal water loss (TEWL), stratum corneum hydration, and skin pH in the lesions of the dermatophytosis and pityriasis versicolor. Thirty-six patients with dermatophytosis (14 with tinea cruris, 13 with tinea corporis and nine with tinea pedis or tinea manus) and 11 patients with pityriasis versicolor were included in this study. TEWL, stratum corneum conductance and skin pH were determined by biophysical methods to examine whether our patients exhibited changes in barrier function. Dermatophytosis and pityriasis versicolor except tinea pedis and tinea manus showed highly significant increase in TEWL compared with adjacent infection-free skin. Hydration was significantly reduced in lesional skin compared with adjacent infection-free skin. From this study, infections with dermatophytes and Malassezia species on the body can alter biophysical properties of the skin, especially the function of stratum corneum as a barrier to water loss. On the contrary, infections with dermatophytes on the palms and soles little affect the barrier function of the skin. © 2011 Japanese Dermatological Association.

  5. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  6. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  7. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens.

    Science.gov (United States)

    Gadde, Ujvala Deepthi; Oh, Sungtaek; Lee, Youngsub; Davis, Ellen; Zimmerman, Noah; Rehberger, Tom; Lillehoj, Hyun Soon

    2017-10-01

    This study investigated the effects of Bacillus subtilis-based probiotics on the performance, modulation of host inflammatory responses and intestinal barrier gene expression of broilers subjected to LPS challenge. Chickens were randomly allocated to one of the 3 dietary treatment groups - control, antibiotic, or probiotic. At 14days, half of the chickens in each treatment were injected with LPS (1mg/kg body weight), and the other half injected with sterile PBS. Chickens fed probiotics weighed significantly more than controls at 15days of age, irrespective of immune challenge. LPS challenge significantly reduced weight gain at 24h post-injection, and the probiotics did not alleviate the LPS-induced reduction of weight gain. Serum α-1-AGP levels were significantly higher in LPS-injected chickens, and probiotic supplementation significantly reduced their levels. The percentages of CD4+ lymphocytes were significantly increased in probiotic groups in the absence of immunological challenge but were reduced during LPS challenge compared to controls. CD8+ lymphocytes were significantly reduced in probiotic-fed birds. The LPS-induced increase in the expression of cytokines IL8 and TNFSF15 was reduced by probiotic supplementation, and IL17F, iNOS expression was found to be significantly elevated in probiotic-fed birds subjected to LPS challenge. The reduced gene expression of tight junction proteins (JAM2, occludin and ZO1) and MUC2 induced by LPS challenge was reversed by probiotic supplementation. The results indicate that B. subtilis-based probiotics differentially regulate intestinal immune and tight junction protein mRNA expression during states of LPS-mediated immunological challenge. Published by Elsevier Ltd.

  8. Barrier functions for Pucci-Heisenberg operators and applications

    OpenAIRE

    Cutri , Alessandra; Tchou , Nicoletta

    2007-01-01

    International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...

  9. Accurate determination of renal function in patients with intestinal urinary diversions

    International Nuclear Information System (INIS)

    McDougal, W.S.; Koch, M.O.

    1986-01-01

    The regular determination of renal function is a critical part of the management of patients who have had the urinary tract reconstructed with intestinal segments. These intestinal segments reabsorb urinary solutes and, thereby, complicate the determination of renal function by conventional methods. Urinary clearances of urea, creatinine and inulin were performed in patients with intestinal segments in the urinary tract and controls under varying diuretic conditions. Patients with intestinal diversions also underwent radioisotopic determination of renal function. The urinary clearances of urea, creatinine and inulin are highly dependent on the rate of urine flow in patients with intestinal segments in the urinary tract. Diuresis maximizes the urinary clearances of these solutes by minimizing intestinal reabsorption. Creatinine clearance prediction from the serum creatinine underestimates true glomerular filtration rate. Radioisotopic determination of renal function correlates poorly with true glomerular filtration rate. Only creatinine clearance measured under diuretic conditions correlates well with true renal function. Urine concentrating ability cannot be assessed accurately in patients with intestinal segments in the urinary tract, since osmolality rapidly equilibrates across the segments

  10. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  11. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  12. Epithelial structure and function in the hen lower intestine

    DEFF Research Database (Denmark)

    Laverty, G.; Elbrønd, Vibeke Sødring; Árnason, Sigvatur S.

    2006-01-01

    In birds, transport processes in the lower intestine mediate absorption of ions, water and a variety of organic substrates, including significant amounts of glucose, amino acids derived from protein associated with urate spheres, and short-chain fatty acids derived from fermentation processes....... These transport pathways contribute to both osmoregulation and energy homeostasis. Although birds lack a urinary bladder, evidence has shown that ureteral urine, entering the distal lower intestine, is forced into the colon, caecae and even distal portions of the small intestine. Further, substrates also enter......, by resalination of low-salt hens, or by aldosterone administration to high-salt-acclimated birds. In the coprodeum, the changes in transport are paralleled by extensive remodelling of the mucosal surface, with low-salt acclimation increasing cell numbers, microvillus density and length and the proportion...

  13. Prenatal Intestinal Obstruction Affects the Myenteric Plexus and Causes Functional Bowel Impairment in Fetal Rat Experimental Model of Intestinal Atresia

    Science.gov (United States)

    Khen-Dunlop, Naziha; Sarnacki, Sabine; Victor, Anais; Grosos, Celine; Menard, Sandrine; Soret, Rodolphe; Goudin, Nicolas; Pousset, Maud; Sauvat, Frederique; Revillon, Yann; Cerf-Bensussan, Nadine; Neunlist, Michel

    2013-01-01

    Background Intestinal atresia is a rare congenital disorder with an incidence of 3/10 000 birth. About one-third of patients have severe intestinal dysfunction after surgical repair. We examined whether prenatal gastrointestinal obstruction might effect on the myenteric plexus and account for subsequent functional disorders. Methodology/Principal Findings We studied a rat model of surgically induced antenatal atresia, comparing intestinal samples from both sides of the obstruction and with healthy rat pups controls. Whole-mount preparations of the myenteric plexus were stained for choline acetyltransferase (ChAT) and nitric oxide synthase (nNOS). Quantitative reverse transcription PCR was used to analyze mRNAs for inflammatory markers. Functional motility and permeability analyses were performed in vitro. Phenotypic studies were also performed in 8 newborns with intestinal atresia. In the experimental model, the proportion of nNOS-immunoreactive neurons was similar in proximal and distal segments (6.7±4.6% vs 5.6±4.2%, p = 0.25), but proximal segments contained a higher proportion of ChAT-immunoreactive neurons (13.2±6.2% vs 7.5±4.3%, p = 0.005). Phenotypic changes were associated with a 100-fold lower concentration-dependent contractile response to carbachol and a 1.6-fold higher EFS-induced contractile response in proximal compared to distal segments. Transcellular (p = 0.002) but not paracellular permeability was increased. Comparison with controls showed that modifications involved not only proximal but also distal segments. Phenotypic studies in human atresia confirmed the changes in ChAT expression. Conclusion Experimental atresia in fetal rat induces differential myenteric plexus phenotypical as well as functional changes (motility and permeability) between the two sides of the obstruction. Delineating these changes might help to identify markers predictive of motility dysfunction and to define guidelines for post-surgical care. PMID:23667464

  14. [Stomach and intestinal function after Bilroth-II resection with modified transversal anastomosis].

    Science.gov (United States)

    Zaĭtsev, V T; Egorov, I V; Grigorian, G O

    1994-01-01

    The functional peculiarities of transversal gastrointestinal anastomosis performed according to the modified method was investigated with the help of radiological method in 16 mongrel dogs, whom the stomach resection according to Bilroth-II was conducted. The emptying of gastric stump contents occurred in time with small portions. Its reflux into the afferent loop of intestine was not noted. The small intestine filling in was regular all the way. Complete restoration of motor-evacuating function of gastric stump and transit of contents down the small intestine loops was caused by the conduction of the proposed operative procedure.

  15. The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis

    Science.gov (United States)

    Cipriani, Sabrina; Mencarelli, Andrea; Chini, Maria Giovanna; Distrutti, Eleonora; Renga, Barbara; Bifulco, Giuseppe; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano

    2011-01-01

    Background GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. Aims To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. Methods Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. Results GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. Conclusions GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand. PMID:22046243

  16. The bile acid receptor GPBAR-1 (TGR5 modulates integrity of intestinal barrier and immune response to experimental colitis.

    Directory of Open Access Journals (Sweden)

    Sabrina Cipriani

    Full Text Available BACKGROUND: GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. AIMS: To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. METHODS: Colitis was induced in wild type and GP-BAR1(-/- mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. RESULTS: GP-BAR1(-/- mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. CONCLUSIONS: GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand.

  17. Fibroblast growth factor 21 in breast milk controls neonatal intestine function.

    Science.gov (United States)

    Gavaldà-Navarro, Aleix; Hondares, Elayne; Giralt, Marta; Mampel, Teresa; Iglesias, Roser; Villarroya, Francesc

    2015-09-02

    FGF21 is a hormonal factor with important functions in the control of metabolism. FGF21 is found in rodent and human milk. Radiolabeled FGF21 administered to lactating dams accumulates in milk and is transferred to neonatal gut. The small intestine of neonatal (but not adult) mice highly expresses β-Klotho in the luminal area. FGF21-KO pups fed by FGF21-KO dams showed decreased expression and circulating levels of incretins (GIP and GLP-1), reduced gene expression of intestinal lactase and maltase-glucoamylase, and low levels of galactose in plasma, all associated with a mild decrease in body weight. When FGF21-KO pups were nursed by wild-type dams (expressing FGF21 in milk), intestinal peptides and digestive enzymes were up-regulated, lactase enzymatic activity was induced, and galactose levels and body weight were normalized. Neonatal intestine explants were sensitive to FGF21, as evidenced by enhanced ERK1/2 phosphorylation. Oral infusion of FGF21 into neonatal pups induced expression of intestinal hormone factors and digestive enzymes, lactase activity and lactose absorption. These findings reveal a novel role of FGF21 as a hormonal factor contributing to neonatal intestinal function via its presence in maternal milk. Appropriate signaling of FGF21 to neonate is necessary to ensure optimal digestive and endocrine function in developing intestine.

  18. Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model.

    Science.gov (United States)

    Generoso, Simone V; Viana, Mirelle; Santos, Rosana; Martins, Flaviano S; Machado, José A N; Arantes, Rosa M E; Nicoli, Jacques R; Correia, Maria I T D; Cardoso, Valbert N

    2010-06-01

    Probiotic is a preparation containing microorganisms that confers beneficial effect to the host. This work assessed whether oral treatment with viable or heat-killed yeast Saccharomyces cerevisiae strain UFMG 905 prevents bacterial translocation (BT), intestinal barrier integrity, and stimulates the immunity, in a murine intestinal obstruction (IO) model. Four groups of mice were used: mice undergoing only laparotomy (CTL), undergoing intestinal obstruction (IO) and undergoing intestinal obstruction after previous treatment with viable or heat-killed yeast. BT, determined as uptake of (99m)Tc-E. coli in blood, mesenteric lymph nodes, liver, spleen and lungs, was significantly higher in IO group than in CTL group. Treatments with both yeasts reduced BT in blood and all organs investigated. The treatment with both yeasts also reduced intestinal permeability as determined by blood uptake of (99m)Tc-DTPA. Immunological data demonstrated that both treatments were able to significantly increase IL-10 levels, but only viable yeast had the same effect on sIgA levels. Intestinal lesions were more severe in IO group when compared to CTL and yeasts groups. Concluding, both viable and heat-killed cells of yeast prevent BT, probably by immunomodulation and by maintaining gut barrier integrity. Only the stimulation of IgA production seems to depend on the yeast viability.

  19. Epithelial structure and function in the hen lower intestine

    DEFF Research Database (Denmark)

    Laverty, G.; Elbrønd, Vibeke Sødring; Árnason, Sigvatur S.

    2006-01-01

    In birds, transport processes in the lower intestine mediate absorption of ions, water and a variety of organic substrates, including significant amounts of glucose, amino acids derived from protein associated with urate spheres, and short-chain fatty acids derived from fermentation processes. Th...

  20. Safety and Efficacy of Alginate Adhesion Barrier Gel in Compromised Intestinal Anastomosis

    NARCIS (Netherlands)

    Chaturvedi, A.; Yauw, S.T.K.; Lomme, R.M.L.M.; Hendriks, T.; Goor, H. van

    2017-01-01

    BACKGROUND: For any anti-adhesive barrier developed for abdominal surgery, the use under conditions in which anastomotic healing is compromised needs to be investigated. The current study evaluates the effect of a new ultrapure alginate gel on early healing of high-risk anastomoses in the ileum and

  1. Lipids and skin barrier function - a clinical perspective

    DEFF Research Database (Denmark)

    Jungersted, J.M.; Hellgren, Lars; Jemec, G.B.E.

    2008-01-01

    and in particular, the role of barrier function in the pathogenesis of skin disease and its subsequent treatment protocols. The 3 major lipids in the SC of importance are ceramides, free fatty acids, and cholesterol. Human studies comparing levels of the major SC lipids in patients with atopic dermatitis......The stratum corneum (SC) protects us from dehydration and external dangers. Much is known about the morphology of the SC and penetration of drugs through it, but the data are mainly derived from in vitro and animal experiments. In contrast, only a few studies have the human SC lipids as their focus...... and healthy controls have suggested a possible role for ceramide 1 and to some extent ceramide 3 in the pathogenesis of the disease. Therapies used in diseases involving barrier disruption have been sparely investigated from a lipid perspective. It has been suggested that ultraviolet light as a treatment...

  2. A Novel Role for Interleukin-27 (IL-27) as Mediator of Intestinal Epithelial Barrier Protection Mediated via Differential Signal Transducer and Activator of Transcription (STAT) Protein Signaling and Induction of Antibacterial and Anti-inflammatory Proteins*

    Science.gov (United States)

    Diegelmann, Julia; Olszak, Torsten; Göke, Burkhard; Blumberg, Richard S.; Brand, Stephan

    2012-01-01

    The role of the Th17 cell inhibiting cytokine IL-27 in the pathogenesis of inflammatory bowel disease is contradictory. Its effects on the intestinal barrier have so far not been investigated, which was the aim of this study. We show that intestinal epithelial cells (IEC) express both IL-27 receptor subunits IL-27RA and gp130. The IL-27 receptor expression is up-regulated in intestinal inflammation and during bacterial infection. IL-27 activates ERK and p38 MAPKs as well as Akt, STAT1, STAT3, and STAT6 in IEC. IL-27 significantly enhances cell proliferation and IEC restitution. These functions of IL-27 are dependent on the activation of STAT3 and STAT6 signaling pathways. As analyzed by microarray, IL-27 modulates the expression of 428 target genes in IEC (316 up and 112 down; p < 0.05). IL-27 as well as its main target genes are up-regulated in colonic tissue and IEC isolated from mice with dextran sulfate sodium (DSS)-induced colitis. The IL-27-induced expression of the anti-bacterial gene deleted in malignant brain tumor 1 (DMBT1) is mediated by p38 and STAT3 signaling, whereas the activation of the anti-inflammatory and anti-bacterial gene indoleamine 2,3-dioxygenase (IDO1) is dependent on STAT1 signal transduction. IL-27-induced indoleamine 2,3-dioxygenase enzymatic activity leads to growth inhibition of intestinal bacteria by causing local tryptophan depletion. For the first time, we characterize IL-27 as a mediator of intestinal epithelial barrier protection mediated via transcriptional activation of anti-inflammatory and antibacterial target genes. PMID:22069308

  3. Disruption of the F-actin cytoskeleton and monolayer barrier integrity induced by PAF and the protective effect of ITF on intestinal epithelium.

    Science.gov (United States)

    Xu, Ling-fen; Xu, Cheng; Mao, Zhi-Qin; Teng, Xu; Ma, Li; Sun, Mei

    2011-02-01

    To explore whether platelet-activating factor (PAF) can disrupt the intestinal epithelial barrier directly and is associated with structural alterations of the F-actin-based cytoskeleton, and to observe the protective effect of intestinal trefoil factor (ITF), we establish an intestinal epithelia barrier model using Caco-2 cells in vitro. Transepithelial electrical resistance and unidirectional flux of lucifer yellow were measured to evaluate barrier permeability; immunofluorescent staining and flow cytometry were applied to observe morphological alterations and to quantify proteins of the F-actin cytoskeleton: the tight junction marker ZO-1 and Claudin-1 were observed using immunofluorescent staining. PAF significantly increased paracellular permeability, at the same time, F-actin and tight junction proteins were disrupted. It was thought that ITF could reverse the high permeability by restoring normal F-actin, ZO-1 and Claudin-1 structures. These results collectively demonstrated that PAF plays an important role in the regulation of mucosal permeability and the effects of PAF are correlated with structural alterations of the F-actin-based cytoskeleton and of tight junctions. ITF can protect intestinal epithelium against PAF-induced disruption by restricting the rearrangement of the F-actin cytoskeleton and of tight junctions.

  4. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  5. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  6. Crossing the entropy barrier of dynamical zeta functions

    International Nuclear Information System (INIS)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F.

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.)

  7. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  8. Protective effects of ψ taraxasterol 3-O-myristate and arnidiol 3-O-myristate isolated from Calendula officinalis on epithelial intestinal barrier.

    Science.gov (United States)

    Dall'Acqua, Stefano; Catanzaro, Daniela; Cocetta, Veronica; Igl, Nadine; Ragazzi, Eugenio; Giron, Maria Cecilia; Cecconello, Laura; Montopoli, Monica

    2016-03-01

    The triterpene esters ᴪ taraxasterol-3-O-myristate (1) and arnidiol-3-O-myristate (2) were tested for their ability to protect epithelial intestinal barrier in an in vitro model. Their effects on ROS production and on trans-epithelial resistance were investigated on CaCo-2 cell monolayers both in basal and stress-induced conditions. Both compounds were able to modulate the stress damage induced by H2O2 and INFγ+TNFα, showing a potential use as model compounds for the study of new therapeutic agents for intestinal inflammations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Barrier function test: Laboratory evaluation of the protective function of some barrier creams against cashewnut shell oil

    Directory of Open Access Journals (Sweden)

    Pasricha J

    1991-01-01

    Full Text Available A barrier function test has been designed to screen the protective capacity of a cream against the cauterizing effect of cashew nut shell oil (CNSO on the skin. The test consists of applying the barrier cream on a 5 cm circular area of skin on the back of a human volunteer and then at its centre applying a 1 cm sq Whatman no. 3 paper disc soaked in the CNSO for 15 minutes and looking for the evidence of cauterization reaction after 48 hours. Of the various creams containing a variety of paraffins, bees wax, polyethylene glycols, methyl cellulose gel, and petrolatum, only polyethylene glycol (PEG cream was found to afford adequate protection against cashew nut shell oil. Addition of 10% zinc oxide or 10% kaolin to the PEG cream did not seem to afford any additional protection. Castor oil already being used by the workers was found to be inferior to the PEG cream.

  10. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  11. Contrasting Ecological Processes and Functional Compositions Between Intestinal Bacterial Community in Healthy and Diseased Shrimp.

    Science.gov (United States)

    Zhu, Jinyong; Dai, Wenfang; Qiu, Qiongfen; Dong, Chunming; Zhang, Jinjie; Xiong, Jinbo

    2016-11-01

    Intestinal bacterial communities play a pivotal role in promoting host health; therefore, the disruption of intestinal bacterial homeostasis could result in disease. However, the effect of the occurrences of disease on intestinal bacterial community assembly remains unclear. To address this gap, we compared the multifaceted ecological differences in maintaining intestinal bacterial community assembly between healthy and diseased shrimps. The neutral model analysis shows that the relative importance of neutral processes decreases when disease occurs. This pattern is further corroborated by the ecosphere null model, revealing that the bacterial community assembly of diseased samples is dominated by stochastic processes. In addition, the occurrence of shrimp disease reduces the complexity and cooperative activities of species-to-species interactions. The keystone taxa affiliated with Alphaproteobacteria and Actinobacteria in healthy shrimp gut shift to Gammaproteobacteria species in diseased shrimp. Changes in intestinal bacterial communities significantly alter biological functions in shrimp. Within a given metabolic pathway, the pattern of enrichment or decrease between healthy and deceased shrimp is correlated with its functional effects. We propose that stressed shrimp are more prone to invasion by alien strains (evidenced by more stochastic assembly and higher migration rate in diseased shrimp), which, in turn, disrupts the cooperative activity among resident species. These findings greatly aid our understanding of the underlying mechanisms that govern shrimp intestinal community assembly between health statuses.

  12. Examination of digestive enzyme distribution in gut tract and functions of intestinal caecum, in megascolecid earthworms (Oligochaeta: Megascolecidae) in Japan.

    Science.gov (United States)

    Nozaki, Mana; Ito, Katsutoshi; Miura, Chiemi; Miura, Takeshi

    2013-09-01

    Earthworms ingest various materials in addition to food items, such as soil particles. Most earthworms of the family Megascolecidae, a dominant family in Japan, have intestinal caeca connected directly to the intestinal tract. The function of the caeca has not been demonstrated, although it is thought to be associated with digestion. We investigated the activity of the digestive enzymes amylase, phosphatase, cellulase, and protease in different regions of the gut, including the intestinal caeca, in three species of megascolecid earthworms, Pheretima heteropoda, Pheretima hilgendorfi, and Pheretima sieboldi. Activities of several enzymes were high in the intestinal caeca; in particular, protease activity was higher in the caeca than that in the anterior gut, foregut, midgut, and hindgut in all three species. Moreover, the ratio of enzyme activities in the intestinal caeca to whole-gut tended to be higher in manicate intestinal caeca than in simple intestinal caeca. These results suggest that the digestive system of earthworms relies on the intestinal caeca.

  13. The Organoid Reconstitution Assay (ORA) for the Functional Analysis of Intestinal Stem and Niche Cells.

    Science.gov (United States)

    Schewe, Matthias; Sacchetti, Andrea; Schmitt, Mark; Fodde, Riccardo

    2017-11-20

    The intestinal epithelium is characterized by an extremely rapid turnover rate. In mammals, the entire epithelial lining is renewed within 4 - 5 days. Adult intestinal stem cells reside at the bottom of the crypts of Lieberkühn, are earmarked by expression of the Lgr5 gene, and preserve homeostasis through their characteristic high proliferative rate 1 . Throughout the small intestine, Lgr5 + stem cells are intermingled with specialized secretory cells called Paneth cells. Paneth cells secrete antibacterial compounds (i.e., lysozyme and cryptdins/defensins) and exert a controlling role on the intestinal flora. More recently, a novel function has been discovered for Paneth cells, namely their capacity to provide niche support to Lgr5 + stem cells through several key ligands as Wnt3, EGF, and Dll1 2 . When isolated ex vivo and cultured in the presence of specific growth factors and extracellular matrix components, whole intestinal crypts give rise to long-lived and self-renewing 3D structures called organoids that highly resemble the crypt-villus epithelial architecture of the adult small intestine 3 . Organoid cultures, when established from whole crypts, allow the study of self-renewal and differentiation of the intestinal stem cell niche, though without addressing the contribution of its individual components, namely the Lgr5 + and Paneth cells. Here, we describe a novel approach to the organoid assay that takes advantage of the ability of Paneth and Lgr5 + cells to associate and form organoids when co-cultured. This approach, here referred to as "organoid reconstitution assay" (ORA), allows the genetic and biochemical modification of Paneth or Lgr5 + stem cells, followed by reconstitution into organoids. As such, it allows the functional analysis of the two main components of the intestinal stem cell niche.

  14. Distinct expression patterns of ICK/MAK/MOK protein kinases in the intestine implicate functional diversity.

    Directory of Open Access Journals (Sweden)

    Tufeng Chen

    Full Text Available ICK/MRK (intestinal cell kinase/MAK-related kinase, MAK (male germ cell-associated kinase, and MOK (MAPK/MAK/MRK-overlapping kinase are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.

  15. Modulation of cytochrome P450 metabolism and transport across intestinal epithelial barrier by ginger biophenolics.

    Directory of Open Access Journals (Sweden)

    Rao Mukkavilli

    Full Text Available Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural "milieu" confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G, 8-gingerol (8 G, 10-gingerol (10 G and 6-shogaol (6S, through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp. Intriguingly, however, 10 G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens.

  16. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  17. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients

    Science.gov (United States)

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A.; Wertheimer, Joshua; Mullin, James M.

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed. PMID:26226276

  18. New Trends in Quantitative Assessment of the Corneal Barrier Function

    Directory of Open Access Journals (Sweden)

    Anton Guimerà

    2014-05-01

    Full Text Available The cornea is a very particular tissue due to its transparency and its barrier function as it has to resist against the daily insults of the external environment. In addition, maintenance of this barrier function is of crucial importance to ensure a correct corneal homeostasis. Here, the corneal epithelial permeability has been assessed in vivo by means of non-invasive tetrapolar impedance measurements, taking advantage of the huge impact of the ion fluxes in the passive electrical properties of living tissues. This has been possible by using a flexible sensor based in SU-8 photoresist. In this work, a further analysis focused on the validation of the presented sensor is performed by monitoring the healing process of corneas that were previously wounded. The obtained impedance measurements have been compared with the damaged area observed in corneal fluorescein staining images. The successful results confirm the feasibility of this novel method, as it represents a more sensitive in vivo and non-invasive test to assess low alterations of the epithelial permeability. Then, it could be used as an excellent complement to the fluorescein staining image evaluation.

  19. [Effects of secretory and osmotic diarrhea on rats intestinal function and morphology].

    Science.gov (United States)

    de Lima de Mon, Margarita; Cioccia, Anna M; González, Eduardo; Hevia, Patricio

    2002-03-01

    In order to compare intestinal morphology and function, diarrhea was produced in rats using laxatives in the diet. The 14 day study included two groups of rats with diarrhea (osmotic or secretory), two groups without diarrhea but with a degree of malnutrition which was similar to that seen in the rats with diarrhea (malnourished without diarrhea) and a well-nourished group (control). The inclusion of laxatives(lactose or bisoxatin acetate) cause a reduction in food intake, diarrhea an malnutrition. It also caused a reduction in dietary protein and fat digestibility which was proportional to the severity of diarrhea and more pronounced in secretory diarrhea. In the malnourished rats without diarrhea, malnutrition did not affect their absorptive function. Both in the rats with secretory and osmotic diarrhea an intestinal hypertrophy was observed. This hypertrophy was proportional to the severity of diarrhea and independent of its aetiology. In the intestines of the rats with both types of diarrhea there was inflammation, a greater number of mitotic figures but the flattening of the villi seen in the malnourished rats without diarrhea was not seen. In osmotic diarrhea there was, in addition, a patchy damage of the surface of the jejunal mucosa and an increment in the number of goblet cells, indicating a more severe intestinal deterioration. Since despite this greater deterioration, these rats absorbed more protein and fat we concluded that the alterations in intestinal morphology seen in this study was not predictive of intestinal function. The study also showed that diarrhea had a trophic effect on the intestine which did not occur in malnourished rats without diarrhea.

  20. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    Science.gov (United States)

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of Hops Derived Prenylated Phenols on TNF-α Induced Barrier Dysfunction in Intestinal Epithelial Cells.

    Science.gov (United States)

    Luescher, Sandro; Urmann, Corinna; Butterweck, Veronika

    2017-04-28

    For the prenylated hops phenols 6- and 8-prenylnaringenin (1 and 2), xanthohumol (3), and isoxanthohumol (4), a variety of biological activities has been described. In the current study, a transwell based in vitro model using the human intestinal epithelial cell line Caco-2 was developed to assess potential beneficial effects of compounds 1-4 on TNF-α-induced impairment of tight junction (TJ) permeability. Transepithelial electrical resistance (TEER) was measured using the latest cellZScope online monitoring device. TNF-α treatment (25 ng/mL) induced a significant decrease in TEER values (204.71 ± 4.57 at 72 h) compared to that in control values (245.94 ± 1.68 at 72 h). To determine preventive effects on TNF-α-induced impairment of TJ permeability, 1-4 were added to the apical compartment of Caco-2 monolayers 1 h before TNF-α treatment; afterward, TNF-α was added to the basolateral compartment to induce TJ dysfunction and incubated for a further 72 h. Using this setting, only 1 and 2 prevented epithelial disruption induced by TNF-α. To evaluate restorative effects of 1-4, TNF-α was added to the basolateral compartment of Caco-2 cell monolayers. After 48 h of incubation, 1-4 were added to the apical side, and TEER values were monitored online for a further 72 h. Under these experimental conditions, only 2 restored TNF-α induced barrier dysfunction.

  2. Effects of plasma CGRP and NPY level changes on intestinal mucosal barrier injury after scald in rats

    International Nuclear Information System (INIS)

    Shao Lijian; Zhu Qingxian; He Ming; Zhang Hongyan

    2004-01-01

    Objective: To investigate the significance of plasma CGRP and NPY levels changes immediately after scald in rats. Methods: Thirty-two rat models of 30% TBSA III degree scald were prepared. Eight animals each were sacrificed at 3, 6,12 and 24 hrs; taking blood samples for determination of plasma CGRP, NPY levels and 5 cm of ileum for pathologic study. As controls, eight animals without scald were treated in the same way. Results: Plasma CGRP levels were decreased significantly after scald, reaching bottom value at 12 hr and remained lower than those in controls at 24 hr (p 0.05). Plasma levels of CGRP were negatively correlated to plasma NPY levels (p<0.01). Ileum mucosal injuries presented as edema, congestion with necrosis and slough of epithelium were most marked at 12 hr. Conclusion: Plasma CGRP and NPY levels changed significantly after scald and were mutually negatively correlated. Post-scald intestinal mucosa barrier injuries were possibly related to the changes of levels of those vasoactive peptides

  3. Indomethacin co-crystals and their parent mixtures: does the intestinal barrier recognize them differently?

    Science.gov (United States)

    Ferretti, Valeria; Dalpiaz, Alessandro; Bertolasi, Valerio; Ferraro, Luca; Beggiato, Sarah; Spizzo, Federico; Spisni, Enzo; Pavan, Barbara

    2015-05-04

    Co-crystals are crystalline complexes of two or more molecules bound together in crystal lattices through noncovalent interactions. The solubility and dissolution properties of co-crystals can allow to increase the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). It is currently believed that the co-crystallization strategy should not induce changes on the pharmacological profile of the APIs, even if it is not yet clear whether a co-crystal would be defined as a physical mixture or as a new chemical entity. In order to clarify these aspects, we chose indomethacin as guest poorly aqueous soluble molecule and compared its properties with those of its co-crystals obtained with 2-hydroxy-4-methylpyridine (co-crystal 1), 2-methoxy-5-nitroaniline (co-crystal 2), and saccharine (co-crystal 3). In particular, we performed a systematic comparison among indomethacin, its co-crystals, and their parent physical mixtures by evaluating via HPLC analysis the API dissolution profile, its ability to permeate across intestinal cell monolayers (NCM460), and its oral bioavailability in rat. The indomethacin dissolution profile was not altered by the presence of co-crystallizing agents as physical mixtures, whereas significant changes were observed by the dissolution of the co-crystals. Furthermore, there was a qualitative concordance between the API dissolution patterns and the relative oral bioavailabilities in rats. Co-crystal 1 induced a drastic decrease of the transepithelial electrical resistance (TEER) value of NCM460 cell monolayers, whereas its parent mixture did not evidence any effect. The saccharin-indomethacin mixture induced a drastic decrease of the TEER value of monolayers, whereas its parent co-crystal 3 did not induce any effects on their integrity, being anyway able to increase the permeation of indomethacin. Taken together, these results demonstrate for the first time different effects induced by co-crystals and their parent physical

  4. Effect of Functional Oligosaccharides and Ordinary Dietary Fiber on Intestinal Microbiota Diversity.

    Science.gov (United States)

    Cheng, Weiwei; Lu, Jing; Li, Boxing; Lin, Weishi; Zhang, Zheng; Wei, Xiao; Sun, Chengming; Chi, Mingguo; Bi, Wei; Yang, Bingjun; Jiang, Aimin; Yuan, Jing

    2017-01-01

    Functional oligosaccharides, known as prebiotics, and ordinary dietary fiber have important roles in modulating the structure of intestinal microbiota. To investigate their effects on the intestinal microecosystem, three kinds of diets containing different prebiotics were used to feed mice for 3 weeks, as follows: GI (galacto-oligosaccharides and inulin), PF (polydextrose and insoluble dietary fiber from bran), and a GI/PF mixture (GI and PF, 1:1), 16S rRNA gene sequencing and metabolic analysis of mice feces were then conducted. Compared to the control group, the different prebiotics diets had varying effects on the structure and diversity of intestinal microbiota. GI and PF supplementation led to significant changes in intestinal microbiota, including an increase of Bacteroides and a decrease of Alloprevotella in the GI-fed, but those changes were opposite in PF fed group. Intriguing, in the GI/PF mixture-fed group, intestinal microbiota had the similar structure as the control groups, and flora diversity was upregulated. Fecal metabolic profiling showed that the diversity of intestinal microbiota was helpful in maintaining the stability of fecal metabolites. Our results showed that a single type of oligosaccharides or dietary fiber caused the reduction of bacteria species, and selectively promoted the growth of Bacteroides or Alloprevotella bacteria, resulting in an increase in diamine oxidase (DAO) and/or trimethylamine N-oxide (TMAO) values which was detrimental to health. However, the flora diversity was improved and the DAO values was significantly decreased when the addition of nutritionally balanced GI/PF mixture. Thus, we suggested that maintaining microbiota diversity and the abundance of dominant bacteria in the intestine is extremely important for the health, and that the addition of a combination of oligosaccharides and dietary fiber helps maintain the health of the intestinal microecosystem.

  5. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

    Directory of Open Access Journals (Sweden)

    M. Ren

    2015-12-01

    Full Text Available As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON, a protein restricted diet (17% CP, PR and a BCAA diet (BCAA supplementation in the PR diet for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG (p0.05. The PR and BCAA treatments had a higher (p<0.05 plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc. in plasma of the PR group was lower (p<0.05 than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01 and decreased urea concentration (p<0.01 in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs number (p<0.05 and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA (p = 0.04, secreted IgA (sIgA (p = 0.03 and immunoglobulin M (p = 0.08, and ileal IgA (p = 0.01 and immunoglobulin G (p = 0.08. The BCAA supplementation increased villous height in the duodenum (p<0.01, reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal

  6. Finishing pigs that are divergent in feed efficiency show small differences in intestinal functionality and structure.

    Directory of Open Access Journals (Sweden)

    Barbara U Metzler-Zebeli

    Full Text Available Controversial information is available regarding the feed efficiency-related variation in intestinal size, structure and functionality in pigs. The present objective was therefore to investigate the differences in visceral organ size, intestinal morphology, mucosal enzyme activity, intestinal integrity and related gene expression in low and high RFI pigs which were reared at three different geographical locations (Austria, AT; Northern Ireland, NI; Republic of Ireland, ROI using similar protocols. Pigs (n = 369 were ranked for their RFI between days 42 and 91 postweaning and low and high RFI pigs (n = 16 from AT, n = 24 from NI, and n = 60 from ROI were selected. Pigs were sacrificed and sampled on ~day 110 of life. In general, RFI-related variation in intestinal size, structure and function was small. Some energy saving mechanisms and enhanced digestive and absorptive capacity were indicated in low versus high RFI pigs by shorter crypts, higher duodenal lactase and maltase activity and greater mucosal permeability (P < 0.05, but differences were mainly seen in pigs from AT and to a lesser degree in pigs from ROI. Additionally, low RFI pigs from AT had more goblet cells in duodenum but fewer in jejunum compared to high RFI pigs (P < 0.05. Together with the lower expression of TLR4 and TNFA in low versus high RFI pigs from AT and ROI (P < 0.05, these results might indicate differences in the innate immune response between low and high RFI pigs. Results demonstrated that the variation in the size of visceral organs and intestinal structure and functionality was greater between geographic location (local environmental factors than between RFI ranks of pigs. In conclusion, present results support previous findings that the intestinal size, structure and functionality do not significantly contribute to variation in RFI of pigs.

  7. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  8. Blood-aqueous Barrier Function in a Patient With Choroideremia

    Directory of Open Access Journals (Sweden)

    Muh-Shy Chen

    2010-02-01

    Full Text Available The purpose was to determine whether there was a breakdown of the blood-aqueous barrier in a patient with choroideremia. A 27-year-old man with typical choroideremia underwent standardized ophthalmo-logical evaluation, including quantitative measurement of aqueous flare intensity, by a laser flare-cell meter. The results showed areas of atrophy of the choriocapillaries and retinal pigment epithelium in the mid-periphery and posterior pole, although not in the macula. Fluorescein angiography showed areas of loss of the choriocapillaries and retinal pigment epithelium. The fovea was spared with a surrounding zone of hy-perfluorescence. Electroretinography showed a subnormal photopic amplitude and extinguished scotopic response. Electrooculography revealed that the light peak/dark trough ratio was reduced. Goldmann perimetry showed constricted peripheral fields. Laser photometry showed an increase in the aqueous flare intensity in both eyes, as compared with normal subjects. We conclude that the function of the blood-aqueous barrier might be affected in patients with choroideremia.

  9. Fission barriers from multidimensionally-constrained covariant density functional theories

    Directory of Open Access Journals (Sweden)

    Lu Bing-Nan

    2017-01-01

    Full Text Available In recent years, we have developed the multidimensionally-constrained covariant density functional theories (MDC-CDFTs in which both axial and spatial reflection symmetries are broken and all shape degrees of freedom described by βλμ with even μ, such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-CDFTs have been applied to the investigation of potential energy surfaces and fission barriers of actinide nuclei, third minima in potential energy surfaces of light actinides, shapes and potential energy surfaces of superheavy nuclei, octupole correlations between multiple chiral doublet bands in 78Br, octupole correlations in Ba isotopes, the Y32 correlations in N = 150 isotones and Zr isotopes, the spontaneous fission of Fm isotopes, and shapes of hypernuclei. In this contribution we present the formalism of MDC-CDFTs and the application of these theories to the study of fission barriers and potential energy surfaces of actinide nuclei.

  10. Bile acids in regulation of intestinal physiology.

    LENUS (Irish Health Repository)

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  11. Functional Food Market Development in Serbia: Motivations and Barriers

    Directory of Open Access Journals (Sweden)

    Žaklina Stojanović

    2013-11-01

    Full Text Available The aim of this paper is to present main findings obtained from the empirical analysis of the functional food market in Serbia. The analysis is based on the in-depth interviews with relevant processors and retailers present on the market. The following set of topics are considered: (1 motivations (driving forces and barriers to offer products with nutrition and health (N&H claim and (2 perception of consumer demand toward N&H claimed products. Differences between Serbia and other Western Balkan Countries (WBC are explored by using nonparametric techniques based on the independent samples. Results support overall conclusion that this market segment in Serbia is underdeveloped and rather producer than consumer driven compared to more developed WBC markets.

  12. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  13. Probing the role of PPAR alpha in the small intestine : a functional nutrigenomics approach

    NARCIS (Netherlands)

    Bünger, M.

    2008-01-01

    Background The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor known for its control of metabolism in response to diet. Although functionally best characterized in liver, PPARα is also abundantly expressed in small intestine, the organ by which

  14. Fasting and Postprandial Plasma Citrulline and the Correlation to Intestinal Function Evaluated by 72-Hour Metabolic Balance Studies in Short Bowel Jejunostomy Patients With Intestinal Failure

    DEFF Research Database (Denmark)

    Fjermestad, Hilde; Hvistendahl, Mark; Jeppesen, Palle Bekker

    2018-01-01

    absorption parameters in short bowel syndrome patients with intestinal failure (SBS-IF). MATERIALS AND METHODS: Eight patients with SBS-IF and 8 healthy controls (HCs) were given a standardized mixed test meal, and p-citrulline was measured 15 minutes before and 60, 120, and 180 minutes after completion...... of the meal. The patients with SBS-IF had their intestinal absorption of wet weight, energy, macronutrients, and electrolytes measured in relation to 72-hour metabolic balance studies. We investigated the possible correlations between p-citrulline and short bowel length, absorptive parameters......-citrulline and bowel length, bowel absorptive function, or the dependence on PS were found. Even when excluding 2 patients in whom the intestinal absorption was adjacent to the intestinal insufficiency borderlines, these correlations were not significant. CONCLUSION: Based on findings in this small study, the optimal...

  15. Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4

    Directory of Open Access Journals (Sweden)

    Judith Radloff

    2017-08-01

    Full Text Available The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE covering porcine Peyer's patches (PP has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE, employing the Ussing chamber technique. Transepithelial resistance (TER and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ proteins (claudin-1, -2, -3, -4, -5, and -8 were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology.

  16. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.

    Science.gov (United States)

    Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R

    2017-07-01

    Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1  week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.

  17. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  18. Low-methoxyl lemon pectin attenuates inflammatory responses and improves intestinal barrier integrity in caerulein-induced experimental acute pancreatitis

    NARCIS (Netherlands)

    Sun, Yajun; He, Yue; Wang, Fei; Zhang, Hao; de Vos, Paul; Sun, Jia

    Scope: Acute pancreatitis (AP) is a common clinical acute abdominal disease. The intestinal injury associated with AP will aggravate the condition retroactively. This study investigates whether the low-methoxyl pectin (LMP) isolated from lemon could attenuate AP and associated intestinal injury.

  19. Interleukin 7 from maternal milk crosses the intestinal barrier and modulates T-cell development in offspring.

    Directory of Open Access Journals (Sweden)

    Richard Aspinall

    Full Text Available Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring.We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL-7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers.Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue.

  20. Small intestinal MUC2 synthesis in human preterm infants

    NARCIS (Netherlands)

    Schaart, Maaike W.; de Bruijn, Adrianus C. J. M.; Schierbeek, Henk; Tibboel, Dick; Renes, Ingrid B.; van Goudoever, Johannes B.

    2009-01-01

    Mucin 2 (MUC2) is the structural component of the intestinal protective mucus layer, which contains high amounts of threonine in its peptide backbone. MUC2 synthesis rate might be a potential parameter for intestinal barrier function. In this study, we aimed to determine whether systemic threonine

  1. Evaluation of intestinal absorption of amtolmetin guacyl in rats: breast cancer resistant protein as a primary barrier of oral bioavailability.

    Science.gov (United States)

    Rong, Zhihui; Xu, Yanjiao; Zhang, Chengliang; Xiang, Daochun; Li, Xiping; Liu, Dong

    2013-02-27

    The purpose of the present study was to investigate the role of efflux transporters on the intestinal absorption of amtolmetin guacyl (MED-15). The effects of P-glycoprotein (P-gp), multiple resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on intestinal absorption amount of MED-5 (tolmetin-glycine amide derivative), the metabolite formed from MED-15 in the intestinal epithelial cells were studied in the in vitro everted gut sac experiments. Moreover, the in situ single-pass intestine perfusion was adopted to clarify the role of efflux transporters in excreting MED-5 in knockout mice. The plasma concentration of MED-5 and tolmetin, the metabolite formed from MED-5 was determined in Bcrp1 knockout mice and wild-type mice. BCRP inhibitor Ko143 (50 μM and 100 μM) significantly increased the intestinal absorption amount in jejunum, ileum and colon (pintestinal segment. Furthermore, the plasma concentration MED-5 and tolmetin, metabolites of MED-15, increased 2-fold and 4-fold, respectively, in Bcrp1 knockout mice compared with wild-type mice after the single-pass perfusion of small intestine with MED-15. It may be concluded that BCRP plays an important role in the intestinal efflux of MED-5 and limits the bioavailability after oral administration of MED-15. Copyright © 2013. Published by Elsevier Inc.

  2. Effect of type of dietary carbohydrates on digestion, intestinal barrier and growth performance in 25-d weaned rabbits

    OpenAIRE

    Gómez Conde, María Soledad

    2014-01-01

    Los objetivos globales de esta tesis han sido estudiar el efecto que los carbohidratos de la dieta ejercen sobre los rendimientos productivos, la barrera intestinal, y la digestión de animales destetados a 25 días de edad. Además se ha estudiado cuál es el mejor periodo para determinar la digestibilidad fecal tras el destete a esta edad. En el primer experimento se estudió el efecto de la fibra neutro detergente soluble (FNDS) sobre la barrera intestinal, digestión, microbiota intestinal y re...

  3. Phenotypical and Functional Analysis of Intraepithelial Lymphocytes from Small Intestine of Mice in Oral Tolerance

    Directory of Open Access Journals (Sweden)

    Maristela Ruberti

    2012-01-01

    Full Text Available In this work, we evaluated the effects of administration of OVA on phenotype and function of intraepithelial lymphocytes (IELs from small intestine of transgenic (TGN DO11.10 and wild-type BALB/c mice. While the small intestines from BALB/c presented a well preserved structure, those from TGN showed an inflamed aspect. The ingestion of OVA induced a reduction in the number of IELs in small intestines of TGN, but it did not change the frequencies of CD8+ and CD4+ T-cell subsets. Administration of OVA via oral + ip increased the frequency of CD103+ cells in CD4+ T-cell subset in IELs of both BALB/c and TGN mice and elevated its expression in CD8β+ T-cell subset in IELs of TGN. The frequency of Foxp3+ cells increased in all subsets in IELs of BALB/c treated with OVA; in IELs of TGN, it increased only in CD25+ subset. IELs from BALB/c tolerant mice had lower expression of all cytokines studied, whereas those from TGN showed high expression of inflammatory cytokines, especially of IFN-γ, TGF-β, and TNF-α. Overall, our results suggest that the inability of TGN to become tolerant may be related to disorganization and altered proportions of inflammatory/regulatory T cells in its intestinal mucosa.

  4. Phenotypical and Functional Analysis of Intraepithelial Lymphocytes from Small Intestine of Mice in Oral Tolerance

    Science.gov (United States)

    Ruberti, Maristela; Fernandes, Luis Gustavo Romani; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Yamada, Áureo Tatsumi; Tamashiro, Wirla Maria da Silva Cunha

    2012-01-01

    In this work, we evaluated the effects of administration of OVA on phenotype and function of intraepithelial lymphocytes (IELs) from small intestine of transgenic (TGN) DO11.10 and wild-type BALB/c mice. While the small intestines from BALB/c presented a well preserved structure, those from TGN showed an inflamed aspect. The ingestion of OVA induced a reduction in the number of IELs in small intestines of TGN, but it did not change the frequencies of CD8+ and CD4+ T-cell subsets. Administration of OVA via oral + ip increased the frequency of CD103+ cells in CD4+ T-cell subset in IELs of both BALB/c and TGN mice and elevated its expression in CD8β + T-cell subset in IELs of TGN. The frequency of Foxp3+ cells increased in all subsets in IELs of BALB/c treated with OVA; in IELs of TGN, it increased only in CD25+ subset. IELs from BALB/c tolerant mice had lower expression of all cytokines studied, whereas those from TGN showed high expression of inflammatory cytokines, especially of IFN-γ, TGF-β, and TNF-α. Overall, our results suggest that the inability of TGN to become tolerant may be related to disorganization and altered proportions of inflammatory/regulatory T cells in its intestinal mucosa. PMID:22400033

  5. Opportunities and prospects in the diagnosis of functional intestinal pathology

    Directory of Open Access Journals (Sweden)

    A.A. Khanukov

    2017-03-01

    Full Text Available Irritable bowel syndrome (IBS is the most commonly diagnosed gastrointestinal condition in the 21st century and also the most common cause for referral to gastroenterology clinics. Various mechanisms and theories have been proposed about its etiology, but the biopsychosocial model is the most currently accepted for IBS. The complex of symptoms would be the result of the interaction between psychological, behavioral, psychosocial and environmental factors. The diagnosis of IBS is not confirmed by specific tests. It is made using criteria based on clinical symptoms, such as Rome criteria, unless the symptoms are thought to be atypical. Today, the Rome criteria IV are the most optimal standard for the diagnosis of IBS. At the moment, there are no specific laboratory markers for the diagnosis of IBS. However, a number of different symptoms in IBS patients were demonstrated in recent years, some of which can be used in the future as diagnostic criteria. One of them is the method for the assessment of fecal calprotectin, which demonstrated a high diagnostic value, as a marker of inflammation in differential diagnosis between inflammatory bowel diseases and functional gastrointestinal disorders.

  6. Functional Anatomy and Oncologic Barriers of the Larynx.

    Science.gov (United States)

    Mor, Niv; Blitzer, Andrew

    2015-08-01

    Laryngeal barriers to tumor spread are a product of laryngeal development, anatomic barriers, and enzymatic activity. Supraglottic and glottic/subglottic development is distinct and partially explains the metastatic behavior of laryngeal carcinoma. Dense connective tissues and elastic fibers provide anatomic barriers within the larynx. Laryngeal cartilage contains dense cartilage, enzyme inhibitors, and an intact perichondrium making it relatively resistant to tumor invasion; however, focal areas of vulnerability are created by ossified cartilage and natural interruptions in the perichondrium. Local inflammation and the enzymatic interplay between tumor and host are important factors in the spread of laryngeal tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine.

    Science.gov (United States)

    Leatham, Mary P; Banerjee, Swati; Autieri, Steven M; Mercado-Lubo, Regino; Conway, Tyrrell; Cohen, Paul S

    2009-07-01

    Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10(5) CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10(5) CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10(3) to 10(4) CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10(6) to 10(7) CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine.

  8. FOXA2 regulates a network of genes involved in critical functions of human intestinal epithelial cells.

    Science.gov (United States)

    Gosalia, Nehal; Yang, Rui; Kerschner, Jenny L; Harris, Ann

    2015-07-01

    The forkhead box A (FOXA) family of pioneer transcription factors is critical for the development of many endoderm-derived tissues. Their importance in regulating biological processes in the lung and liver is extensively characterized, though much less is known about their role in intestine. Here we investigate the contribution of FOXA2 to coordinating intestinal epithelial cell function using postconfluent Caco2 cells, differentiated into an enterocyte-like model. FOXA2 binding sites genome-wide were determined by ChIP-seq and direct targets of the factor were validated by ChIP-qPCR and siRNA-mediated depletion of FOXA1/2 followed by RT-qPCR. Peaks of FOXA2 occupancy were frequent at loci contributing to gene ontology pathways of regulation of cell migration, cell motion, and plasma membrane function. Depletion of both FOXA1 and FOXA2 led to a significant reduction in the expression of multiple transmembrane proteins including ion channels and transporters, which form a network that is essential for maintaining normal ion and solute transport. One of the targets was the adenosine A2B receptor, and reduced receptor mRNA levels were associated with a functional decrease in intracellular cyclic AMP. We also observed that 30% of FOXA2 binding sites contained a GATA motif and that FOXA1/A2 depletion reduced GATA-4, but not GATA-6 protein levels. These data show that FOXA2 plays a pivotal role in regulating intestinal epithelial cell function. Moreover, that the FOXA and GATA families of transcription factors may work cooperatively to regulate gene expression genome-wide in the intestinal epithelium. Copyright © 2015 the American Physiological Society.

  9. Intestinal functions in animals : An experimental study on horses, pigs, cows and fish

    OpenAIRE

    Collinder, Eje

    2001-01-01

    Animals and humans live in symbiosis with an active gastrointestinal ecosystem. The balance of the system is maintained by the main actors, the macroorganism, the microflora and the environment, in concert. Microflora-associated characteristics (MACs), defined as the recording of any anatomical structure, physiological, biochemical or immunological function in the host (macroorganism) that has been influenced by the intestinal microflora, are parameters reflecting the ecosys...

  10. Barrier busting yeast brew trouble in the gut.

    Science.gov (United States)

    Clark, Rachael A

    2017-04-07

    Saccharomyces cerevisiae , a common yeast in the gut, induces uric acid production by intestinal epithelium, leading to decreased barrier function and increased colitis in mouse models. Copyright © 2017, American Association for the Advancement of Science.

  11. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  12. Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study.

    Science.gov (United States)

    Arboleya, Silvia; Sánchez, Borja; Solís, Gonzalo; Fernández, Nuria; Suárez, Marta; Hernández-Barranco, Ana M; Milani, Christian; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G; Ventura, Marco; Gueimonde, Miguel

    2016-04-29

    The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.

  13. Functional flexibility of intestinal IgA – broadening the fine line

    Directory of Open Access Journals (Sweden)

    Emma eSlack

    2012-05-01

    Full Text Available Intestinal bacteria outnumber our own human cells in conditions of both health and disease. It has long been recognized that secretory antibody, particularly IgA, is produced in response to these microbes and hypothesized that this must play an important role in defining the relationship between a host and its intestinal microbes. However, the exact role of IgA and the mechanisms by which IgA can act are only beginning to be understood. In this review we attempt to unravel the complex interaction between so-called natural, primitive (T-cell-independent and classical IgA responses, the nature of the intestinal microbiota/intestinal pathogens and the highly flexible dynamic homeostasis of the mucosal immune system. Such an analysis reveals that low-affinity IgA is sufficient to protect the host from excess mucosal immune activation induced by harmless commensal microbes. However, affinity-maturation of classical IgA is essential to provide protection from more invasive commensal species such as segmented filamentous bacteria and from true pathogens such as Salmonella typhimurium. Thus a correlation is revealed between sophistication of the IgA response and aggressiveness of the challenge. A second emerging theme is that more invasive species take advantage of host inflammatory mechanisms to more successfully compete with the resident microbiota. In many cases, the function of IgA may be to limit such inflammatory responses, either directly by coagulating or inhibiting virulence of bacteria before they can interact with the host or by modulating immune signaling induced by host recognition. Therefore IgA appears to provide an added layer of robustness in the intestinal ecosystem, promoting commensal-like behavior of its residents.

  14. Functional flexibility of intestinal IgA - broadening the fine line.

    Science.gov (United States)

    Slack, Emma; Balmer, Maria Luisa; Fritz, Jörg H; Hapfelmeier, Siegfried

    2012-01-01

    Intestinal bacteria outnumber our own human cells in conditions of both health and disease. It has long been recognized that secretory antibody, particularly IgA, is produced in response to these microbes and hypothesized that this must play an important role in defining the relationship between a host and its intestinal microbes. However, the exact role of IgA and the mechanisms by which IgA can act are only beginning to be understood. In this review we attempt to unravel the complex interaction between so-called "natural," "primitive" (T-cell-independent), and "classical" IgA responses, the nature of the intestinal microbiota/intestinal pathogens and the highly flexible dynamic homeostasis of the mucosal immune system. Such an analysis reveals that low-affinity IgA is sufficient to protect the host from excess mucosal immune activation induced by harmless commensal microbes. However, affinity-maturation of "classical" IgA is essential to provide protection from more invasive commensal species such as segmented filamentous bacteria and from true pathogens such as Salmonellatyphimurium. Thus a correlation is revealed between "sophistication" of the IgA response and aggressiveness of the challenge. A second emerging theme is that more-invasive species take advantage of host inflammatory mechanisms to more successfully compete with the resident microbiota. In many cases, the function of IgA may be to limit such inflammatory responses, either directly by coagulating or inhibiting virulence of bacteria before they can interact with the host or by modulating immune signaling induced by host recognition. Therefore IgA appears to provide an added layer of robustness in the intestinal ecosystem, promoting "commensal-like" behavior of its residents.

  15. Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition.

    Directory of Open Access Journals (Sweden)

    Ajay S Gulati

    Full Text Available Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv. In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR, acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal

  16. Methamphetamine Effects on Blood-Brain Barrier Structure and Function

    Directory of Open Access Journals (Sweden)

    Nicole Alia Northrop

    2015-03-01

    Full Text Available Methamphetamine (Meth is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed towards the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.

  17. Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings.

    Science.gov (United States)

    Lyons, P P; Turnbull, J F; Dawson, K A; Crumlish, M

    2017-02-01

    This study focused on comparing the phylogenetic composition and functional potential of the intestinal microbiome of rainbow trout sourced from both farm and aquarium settings. Samples of distal intestinal contents were collected from fish and subjected to high throughput 16S rRNA sequencing, to accurately determine the composition of the intestinal microbiome. The predominant phyla identified from both groups were Tenericutes, Firmicutes, Proteobacteria, Spirochaetae and Bacteroidetes. A novel metagenomic tool, PICRUSt, was used to determine the functional potential of the bacterial communities present in the rainbow trout intestine. Pathways concerning membrane transport activity were dominant in the intestinal microbiome of all fish samples. Furthermore, this analysis revealed that gene pathways relating to metabolism, and in particular amino acid and carbohydrate metabolism, were upregulated in the rainbow trout intestinal microbiome. The results suggest that the structure of the intestinal microbiome in farmed rainbow trout may be similar regardless of where the fish are located and hence could be shaped by host factors. Differences were, however, noted in the microbial community membership within the intestine of both fish populations, suggesting that more sporadic taxa could be unique to each environment and may have the ability to colonize the rainbow trout gastrointestinal tract. Finally, the functional analysis provides evidence that the microbiome of rainbow trout contains genes that could contribute to the metabolism of dietary ingredients and therefore may actively influence the digestive process in these fish. To better understand and exploit the intestinal microbiome and its impact on fish health, it is vital to determine its structure, diversity and potential functional capacity. This study improves our knowledge of these areas and suggests that the intestinal microbiome of rainbow trout may play an important role in the digestive physiology of

  18. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  19. ELT-2 Is the Predominant Transcription Factor Controlling Differentiation and Function of the C. elegans Intestine, from Embryo to Adult

    Science.gov (United States)

    McGhee, James D.; Fukushige, Tetsunari; Krause, Michael W.; Minnema, Stephanie E.; Goszczynski, Barbara; Gaudet, Jeb; Kohara, Yuji; Bossinger, Olaf; Zhao, Yongjun; Khattra, Jaswinder; Hirst, Martin; Jones, Steven J.M.; Marra, Marco A.; Ruzanov, Peter; Warner, Adam; Zapf, Richard; Moerman, Donald G.; Kalb, John M.

    2009-01-01

    Starting with SAGE-libraries prepared from C. elegans FAC-sorted embryonic intestine cells (8E-16E cell stage), from total embryos and from purified oocytes, and taking advantage of the NextDB in situ hybridization data base, we define sets of genes highly expressed from the zygotic genome, and expressed either exclusively or preferentially in the embryonic intestine or in the intestine of newly hatched larvae; we had previously defined a similarly expressed set of genes from the adult intestine. We show that an extended TGATAA-like sequence is essentially the only candidate for a cis-acting regulatory motif common to intestine genes expressed at all stages. This sequence is a strong ELT-2 binding site and matches the sequence of GATA-like sites found to be important for the expression of every intestinal gene so far analyzed experimentally. We show that the majority of these three sets of highly expressed intestinal-specific/intestinal-enriched genes respond strongly to ectopic expression of ELT-2 within the embryo. By flow-sorting elt-2(null) larvae from elt-2(+) larvae and then preparing Solexa/Illumina-SAGE libraries, we show that the majority of these genes also respond strongly to loss-of-function of ELT-2. To test the consequences of loss of other transcription factors identified in the embryonic intestine, we develop a strain of worms that is RNAi-sensitive only in the intestine; however, we are unable (with one possible exception) to identify any other transcription factor whose intestinal loss-of-function causes a phenotype of comparable severity to the phenotype caused by loss of ELT-2. Overall, our results support a model in which ELT-2 is the predominant transcription factor in the post-specification C. elegans intestine and participates directly in the transcriptional regulation of the majority (> 80%) of intestinal genes. We present evidence that ELT-2 plays a central role in most aspects of C. elegans intestinal physiology: establishing the

  20. Effect of neuronal PC12 cells on the functional properties of intestinal epithelial Caco-2 cells.

    Science.gov (United States)

    Satsu, Hideo; Yokoyama, Tatsuya; Ogawa, Nobumasa; Fujiwara-Hatano, Yoko; Shimizu, Makoto

    2003-06-01

    The effect of neuronal cells on the functional properties of intestinal epithelial cells was examined by using an in vitro coculture system. Two cell lines, Caco-2 and PC12, were respectively used as intestinal epithelial and enteric neuronal cell models. Coculture of differentiated Caco-2 cells with PC12 caused a significant decrease in the transepithelial electrical resistance (TER) value of the Caco-2 monolayer. The permeability to lucifer yellow (LY) was also significantly increased, suggesting that the tight junction (TJ) of the Caco-2 monolayers was modulated by coculturing with PC12. To identify the TJ-modulating factor presumably secreted from PC12, the effects of the major neurotransmitters on the TER value and LY transport were examined, but no influence was apparent. The TJ-modulating effect of PC12 was prevented by exposing PC12 to cycloheximide, suggesting that new protein synthesis in PC12 was necessary for this regulation.

  1. Intestinal gas content and distribution in health and in patients with functional gut symptoms.

    Science.gov (United States)

    Bendezú, R A; Barba, E; Burri, E; Cisternas, D; Malagelada, C; Segui, S; Accarino, A; Quiroga, S; Monclus, E; Navazo, I; Malagelada, J-R; Azpiroz, F

    2015-09-01

    The precise relation of intestinal gas to symptoms, particularly abdominal bloating and distension remains incompletely elucidated. Our aim was to define the normal values of intestinal gas volume and distribution and to identify abnormalities in relation to functional-type symptoms. Abdominal computed tomography scans were evaluated in healthy subjects (n = 37) and in patients in three conditions: basal (when they were feeling well; n = 88), during an episode of abdominal distension (n = 82) and after a challenge diet (n = 24). Intestinal gas content and distribution were measured by an original analysis program. Identification of patients outside the normal range was performed by machine learning techniques (one-class classifier). Results are expressed as median (IQR) or mean ± SE, as appropriate. In healthy subjects the gut contained 95 (71, 141) mL gas distributed along the entire lumen. No differences were detected between patients studied under asymptomatic basal conditions and healthy subjects. However, either during a spontaneous bloating episode or once challenged with a flatulogenic diet, luminal gas was found to be increased and/or abnormally distributed in about one-fourth of the patients. These patients detected outside the normal range by the classifier exhibited a significantly greater number of abnormal features than those within the normal range (3.7 ± 0.4 vs 0.4 ± 0.1; p distribution of intestinal gas in normal conditions and in relation to functional gastrointestinal symptoms. © 2015 John Wiley & Sons Ltd.

  2. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients

    OpenAIRE

    Loxham, Matthew; Davies, Donna E.

    2017-01-01

    The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis...

  3. Rupture, Invasion and Inflammatory Destruction of the Intestinal Barrier by Shigella: The Yin and Yang of Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philippe J Sansonetti

    2006-01-01

    Full Text Available Shigella is a Gram-negative bacterial species of the family Enterobacteriaceae that causes bacillary dysentery in humans. This acute colitis reflects the capacity of the microorganism to disrupt, invade and cause the inflammatory destruction of the intestinal epithelium. The pathogenesis of the Shigella infection can be seen as a disruption of the homeostatic balance that protects the gut against inflammation in the presence of its commensal flora. This provides the unified view that enteroinvasive pathogens allow for the identification of key signalling molecules and pathways involved in the regulation of intestinal inflammation, and more generally, in the regulation of the innate and adaptive immune response.

  4. Accident Analysis and Barrier Function (AEB) Method. Manual for Incident Analysis

    International Nuclear Information System (INIS)

    Svenson, Ola

    2000-02-01

    The Accident Analysis and Barrier Function (AEB) Method models an accident or incident as a series of interactions between human and technical systems. In the sequence of human and technical errors leading to an accident there is, in principle, a possibility to arrest the development between each two successive errors. This can be done by a barrier function which, for example, can stop an operator from making an error. A barrier function can be performed by one or several barrier function systems. To illustrate, a mechanical system, a computer system or another operator can all perform a given barrier function to stop an operator from making an error. The barrier function analysis consists of analysis of suggested improvements, the effectiveness of the improvements, the costs of implementation, probability of implementation, the cost of maintaining the barrier function, the probability that maintenance will be kept up to standards and the generalizability of the suggested improvement. The AEB method is similar to the US method called HPES, but differs from that method in different ways. To exemplify, the AEB method has more emphasis on technical errors than HPES. In contrast to HPES that describes a series of events, the AEB method models only errors. This gives a more focused analysis making it well suited for checking other HPES-type accident analyses. However, the AEB method is a generic and stand-alone method that has been applied in other fields than nuclear power, such as, in traffic accident analyses

  5. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition

    Science.gov (United States)

    Chang, Pamela V.; Hao, Liming; Offermanns, Stefan; Medzhitov, Ruslan

    2014-01-01

    Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein–coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors. PMID:24390544

  6. Dietary intervention with serum-derived bovine immunoglobulins protects barrier function in a mouse model of colitis.

    Science.gov (United States)

    Pérez-Bosque, Anna; Miró, Lluïsa; Maijó, Mònica; Polo, Javier; Campbell, Joy; Russell, Louis; Crenshaw, Joe; Weaver, Eric; Moretó, Miquel

    2015-06-15

    Dietary supplementation with immunoglobulins from animal plasma has anti-inflammatory effects on intestinal and lung models of acute inflammation. Here, we aimed to establish whether dietary intervention with serum-derived bovine immunoglobulin (SBI) can prevent alterations in intestinal barrier function in a mouse model with a genetic predisposition to inflammatory bowel disease (IBD). Wild-type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% wt/wt) or milk proteins (control diet), from day 21 (weaning) until day 56. The epithelial permeability of distal colon crypts was measured by confocal microscopy using a fluorescent marker. The expression of junctional epithelial E-cadherin and β-catenin proteins were determined by Western blot and zonula occludens-1 (ZO-1) by immunofluorescence. Mucins (MUC1, MUC2, MUC4), TFF3, cytokines (TNF-α, IFN-γ), and inducible nitric oxide synthase RNA expression were quantified by real-time PCR. SBI blocked the increase in colon crypt permeability and partially prevented the reduction in E-cadherin and ZO-1 expression that characterize the KO mouse model (both P genetic model of IBD.

  7. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei at different culture stages

    Directory of Open Access Journals (Sweden)

    Shenzheng Zeng

    2017-11-01

    Full Text Available Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph to adult stage (75 dph to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter, Propionigenium, Synechococcus, Shewanella and Cetobacterium. Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage

  8. Barrier function in reconstructed epidermis and its resemblance to native human skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; Pilgram, G.; Boelsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisites for the use of human skin equivalents for scientific and screening purposes is that their barrier function is similar to that of native skin. Using human epidermis reconstructed on de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier

  9. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified. The aim of this study was to examine the effect of UV...... therapy in dermatological patients on ceramides and skin barrier function. We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy....

  10. The impact of ultraviolet therapy on stratum corneum ceramides and barrier function

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Høgh, Julie Kaae; Hellgren, Lars

    2011-01-01

    The ceramide profile as well as the barrier function is known to be deteriorated in atopic eczema and psoriasis, and ultraviolet (UV) light is known to improve the barrier function. The impact of UV light on ceramides, however, is not clarified.The aim of this study was to examine the effect of UV...... therapy in dermatological patients on ceramides and skin barrier function.We found that UV light treatment does not change the ratio of important stratum corneum lipids, but we confirm earlier findings of decreased susceptibility to irritants after UV- therapy....

  11. Effects of the ionising radiations on the structure and the function of the intestinal epithelial cell

    International Nuclear Information System (INIS)

    Haton, C.

    2005-06-01

    The intestinal mucosa is a particularly radio-sensitive tissue and damage may occur following either accidental or therapeutic exposure. the deleterious actions of ionizing radiation are linked to the formation of sometimes overwhelming quantities of reactive oxygen species (R.O.S.). Production of R.O.S. is both direct and indirect from the secondary effects of irradiation. A better comprehension of the underlying mechanisms of injury will lead to more adapted therapeutic approaches to limit the harmful effects of irradiation. The homeostasis of the intestinal epithelium is regulated by three factors: proliferation, apoptosis and differentiation. these three factors were studied using the cell model, HT29, in order to analyze modulations of this balance after irradiation. our results, in agreement with other data, showed the establishment of mitotic delay. This arrest of proliferation was followed by apoptosis to be the major mechanism leading to cell death in this model. thus, for the first time, we have shown that irradiated intestinal epithelial cells preserve their capacity to differentiate. This indicates, although indirectly, that intestinal cells have and preserve an intrinsic capacity restore a functional epithelium. R.O.S. are considered as intermediates between the physical nature of radiations and biological responses. It seems essential to understand anti-oxidant mechanisms used by the cell for defence against the deleterious effects of R.O.S post exposure. This study of several anti-oxidant defence mechanisms of intestinal mucosa, was carried out in vivo in the mouse at different times following abdominal irradiation. We observed an early mitochondrial response in the hours following irradiation revealing this organelle as a particular target. We demonstrated a strong alteration of anti-oxidant capacity as revealed by a decrease in S.O.D.s, catalase and an increase of the G.P.X.s and M.T.s. A part of these modifications appeared to depend on an

  12. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.

    Science.gov (United States)

    Dang, Chuangyin; Xu, Lei

    2002-02-01

    A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.

  13. One stage functional end-to-end stapled intestinal anastomosis and resection performed by nonexpert surgeons for the treatment of small intestinal obstruction in 30 dogs.

    Science.gov (United States)

    Jardel, Nicolas; Hidalgo, Antoine; Leperlier, Dimitri; Manassero, Mathieu; Gomes, Aymeric; Bedu, Anne Sophie; Moissonnier, Pierre; Fayolle, Pascal; Begon, Dominique; Riquois, Elisabeth; Viateau, Véronique

    2011-02-01

    To describe stapled 1-stage functional end-to-end intestinal anastomosis for treatment of small intestinal obstruction in dogs and evaluate outcome when the technique is performed by nonexpert surgeons after limited training in the technique. Case series. Dogs (n=30) with intestinal lesions requiring an enterectomy. Stapled 1-stage functional end-to-end anastomosis and resection using a GIA-60 and a TA-55 stapling devices were performed under supervision of senior residents and faculty surgeons by junior surgeons previously trained in the technique on pigs. Procedure duration and technical problems were recorded. Short-term results were collected during hospitalization and at suture removal. Long-term outcome was established by clinical and ultrasonographic examinations at least 2 months after surgery and from written questionnaires, completed by owners. Mean±SD procedure duration was 15±12 minutes. Postoperative recovery was uneventful in 25 dogs. One dog had anastomotic leakage, 1 had a localized abscess at the transverse staple line, and 3 dogs developed an incisional abdominal wall abscess. No long-term complications occurred (follow-up, 2-32 months). Stapled 1-stage functional end-to-end anastomosis and resection is a fast and safe procedure in the hand of nonexpert but trained surgeons. © Copyright 2011 by The American College of Veterinary Surgeons.

  14. Effect of tannic acid on skin barrier function.

    Science.gov (United States)

    Nakamura, Tomoya; Yoshida, Naoki; Yasoshima, Mitsue; Kojima, Yoshihiko

    2017-12-06

    In this study, we investigated how tannic acid (TA) protects the skin from inflammation caused by external irritation. The effects of TA were evaluated using a mouse 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced skin inflammation model and a reconstructed human epidermal model. We then used Lucifer Yellow for visual confirmation of TA's suppression effect at the stratum corneum (SC) surface. TA treatment of the skin prevented Lucifer Yellow from permeating the skin. This result suggests that TA acts as a barrier against external stimulants such as TPA and artificial sweat on the SC surface. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. [Function of gastro-intestinal anastomoses after surgery for gastroduodenal ulcers].

    Science.gov (United States)

    Chernyshov, V N; Pavlishin, L B

    1997-01-01

    A comparative analyses of a functional capacity of different variants of gastro-duodenal anastomoses has been done in 108 patients operated for gastro-duodenal ulcers. Functional similarity of the direct anastomosis and the transversal termino-lateral gastro-duodenoanastomosis (TL GDA) was identified. It makes a chance to give prefferance to the direct anastomosis, being more simple in performance. The restoration of continuity of gastro-intestinal tract by TL GDA (after the Bilroth-1 operation) should be performed in case of impossibility of creation of a direct GDA. The mentioned types of anastomoses provide a low rate postgastroresection syndrome. The function of gastro-gastric anastomosis and pyloric sphincter after pyloropreserving gastric resection should be studied profoundly and the expanding of indications for this procedure is premature. The differential approach to draining anastomosis in operation of vagotomy is advocated.

  16. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy

    NARCIS (Netherlands)

    Grabinger, T.; Luks, L.; Kostadinova, F.; Zimberlin, C.; Medema, J. P.; Leist, M.; Brunner, T.

    2014-01-01

    Intestinal epithelial cells (IECs) not only have a critical function in the absorption of nutrients, but also act as a physical barrier between our body and the outside world. Damage and death of the epithelial cells lead to the breakdown of this barrier function and inflammation due to access of

  17. Fractionation of the Gulf toadfish intestinal precipitate organic matrix reveals potential functions of individual proteins.

    Science.gov (United States)

    Schauer, Kevin L; Grosell, Martin

    2017-06-01

    The regulatory mechanisms behind the production of CaCO 3 in the marine teleost intestine are poorly studied despite being essential for osmoregulation and responsible for a conservatively estimated 3-15% of annual oceanic CaCO 3 production. It has recently been reported that the intestinally derived precipitates produced by fish as a byproduct of their osmoregulatory strategy form in conjunction with a proteinaceous matrix containing nearly 150 unique proteins. The individual functions of these proteins have not been the subject of investigation until now. Here, organic matrix was extracted from precipitates produced by Gulf toadfish (Opsanus beta) and the matrix proteins were fractionated by their charge using strong anion exchange chromatography. The precipitation regulatory abilities of the individual fractions were then analyzed using a recently developed in vitro calcification assay, and the protein constituents of each fraction were determined by mass spectrometry. The different fractions were found to have differing effects on both the rate of carbonate mineral production, as well as the morphology of the crystals that form. Using data collected from the calcification assay as well as the mass spectrometry experiments, individual calcification promotional indices were calculated for each protein, giving the first insight into the functions each of these matrix proteins may play in regulating precipitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Non-specific activation of human eosinophil functional responses by vasoactive intestinal peptide

    Directory of Open Access Journals (Sweden)

    Amr El-Shazly

    2000-01-01

    Full Text Available Eosinophils and neuropeptides are thought to play effector roles in allergic diseases, such as rhinitis; however, little is known about the biological effects of neuromediators, especially vasoactive intestinal peptide (VIP, on eosinophil functional responses. In the present study, it is shown that VIP induces eosinophil chemotaxis and eosinophil-derived neurotoxin (EDN release in potency comparable with that induced by platelet activator factor, and in a novel synergistic manner with recombinant human interleukin-5. Contrary to chemotaxis, EDN release was sensitive to staurosporine, the protein kinase C inhibitor, as well as intracellular calcium chelation. However, eosinophil treatment with inhibitors of tyrosine kinases (herbimycin A and phosphatases (pervanadate resulted in a dose-dependent potentiation and blockage of VIP-induced eosinophil chemotaxis, respectively. Treatment of eosinophils with VIP receptor antagonist did not modify VIP-induced chemotaxis or EDN release. Furthermore, exploration of vasoactive intestinal peptide receptor I expression was lacking in human eosinophils, but not lymphocytes. These results demonstrate two different mechanisms in triggering eosinophil activation of functional responses by VIP, a calcium-dependent degranulation and a calcium-independent chemotaxis, and elaborate on a novel cytokine–neuropeptide interaction in eosinophilic inflammation.

  19. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.

    Science.gov (United States)

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A

    2015-05-01

    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.

  20. Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ

    Directory of Open Access Journals (Sweden)

    Victoria Llado

    2015-02-01

    Full Text Available Intestinal epithelial homeostasis requires continuous renewal supported by stem cells located in the base of the crypt. Disruption of this balance results in failure to regenerate and initiates tumorigenesis. The β-catenin and Yap pathways in Lgr5+ stem cells have been shown to be central to this process. However, the precise mechanisms by which these signaling molecules are regulated in the stem cell population are not totally understood. Protein kinase C ζ (PKCζ has been previously demonstrated to be a negative regulator of intestinal tumorigenesis. Here, we show that PKCζ suppresses intestinal stem cell function by promoting the downregulation of β-catenin and Yap through direct phosphorylation. PKCζ deficiency results in increased stem cell activity in organoid cultures and in vivo, accounting for the increased tumorigenic and regenerative activity response of Lgr5+-specific PKCζ-deficient mice. This demonstrates that PKCζ is central to the control of stem cells in intestinal cancer and homeostasis.

  1. Sequence and functional analysis of intestinal alkaline phosphatase from Lateolabrax maculatus.

    Science.gov (United States)

    Wu, Minglin; Wang, Jiaqi; Wang, Zhipeng; Zhao, Jinliang; Hu, Yuting; Chen, Xiaowu

    2017-12-01

    Alkaline phosphatases (Alps) belong to a class of phosphate transferases that dephosphorylate lipopolysaccharide (LPS), adenosine triphosphate, and nucleotides. In this study, a 1874-base pair (bp) intestinal alp cDNA sequence was cloned from Lateolabrax maculatus and designated as Lm-alpi. It contained a 1611 bp open reading frame which encoded a protein with 537 amino acids. Protein sequence alignment showed that Lm-AlpI shared 29.8-79.8% identity with its homologs. Lm-AlpI catalytic sites contained three metal ion sites (two Zn 2+ and one Mg 2+ ), referring to D73, H184, D348, H349, H352, H464, D389, and H390 residues, which are essential for enzymatic activity and conservation in different organisms. Two predicted disulfide bonds in Lm-AlpI were composed of four cysteines (C152-C214 and C499-C506), which were homologous to those of mammals. Immunohistochemical staining revealed that Lm-AlpI was mainly expressed on the mucosal surface of the gastrointestinal tract, including stomach, intestine, and gastric cecum. Lm-AlpI was mainly located on the plasma membrane of transiently transfected HeLa cells. The mRNA of Lm-alpi was mainly expressed in the intestine, and its expression levels gradually increased after LPS treatment and further increased by 1.81-fold after 48 h. After desalting culture, the relative mRNA expression level of Lm-alpi decreased at 30 and 50 days after hatching (DAH) and then returned to normal levels at 70 DAH. Further experiments demonstrated that the enzyme activity of Lm-AlpI exhibited an expression pattern similar to that of the mRNA expression of Lm-alpi after LPS treatment and desalting culture. This study provided valuable information on the Lm-AlpI functions associated with the mucosal immunity and salinity adaptation of L. maculatus.

  2. Dietary Nucleotides Supplementation Improves the Intestinal Development and Immune Function of Neonates with Intra-Uterine Growth Restriction in a Pig Model.

    Directory of Open Access Journals (Sweden)

    Lianqiang Che

    Full Text Available The current study aimed to determine whether dietary nucleotides supplementation could improve growth performance, intestinal development and immune function of intra-uterine growth restricted (IUGR neonate using pig as animal model. A total of 14 pairs of normal birth weight (NBW and IUGR piglets (7 days old were randomly assigned to receive a milk-based control diet (CON diet or diet supplemented with nucleotides (NT diet for a period of 21 days. Blood samples, intestinal tissues and digesta were collected at necropsy and analyzed for morphology, digestive enzyme activities, microbial populations, peripheral immune cells, expression of intestinal innate immunity and barrier-related genes and proteins. Compared with NBW piglets, IUGR piglets had significantly lower average daily dry matter intake and body weight gain (P<0.05. Moreover, IUGR markedly decreased the villous height and villi: crypt ratio in duodenum (P<0.05, as well as the maltase activity in jejunum (P<0.05. In addition, IUGR significantly decreased the serum concentrations of IgA, IL-1βand IL-10 (P<0.05, as well as the percentage of peripheral lymphocytes (P<0.05. Meanwhile, the down-regulation of innate immunity-related genes such as TOLLIP (P<0.05, TLR-9 (P = 0.08 and TLR-2 (P = 0.07 was observed in the ileum of IUGR relative to NBW piglets. Regardless of birth weight, however, feeding NT diet markedly decreased (P<0.05 feed conversion ratio, increased the villous height in duodenum (P<0.05, activities of lactase and maltase in jejunum (P<0.05, count of peripheral leukocytes (P<0.05, serum concentrations of IgA and IL-1β as well as gene expressions of TLR-9, TLR-4 and TOLLIP in ileum (P<0.05. In addition, expressions of tight junction proteins (Claudin-1 and ZO-1 in ileum were markedly increased by feeding NT diet relative to CON diet (P<0.05. These results indicated that IUGR impaired growth performance, intestinal and immune function, but dietary nucleotides supplementation

  3. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: Comparison of active and passive transport with the human colon carcinoma Caco-2 cell line

    NARCIS (Netherlands)

    Versantvoort, C.H.M.; Ondrewater, R.C.A.; Duizer, E.; Sandt, J.J.M. van de; Gilde, A.J.; Groten, J.P.

    2002-01-01

    Purpose: previous studies have shown that the rat small intestinal cell line IEC-18 provides a size-selective barrier for paracellularly transported hydrophilic macromolecules. In order to determine the utility of IEC-18 cells as an in vitro model to screen the passive paracellular and transcellular

  4. Glucose hydrogen breath test for small intestinal bacterial overgrowth in children with abdominal pain-related functional gastrointestinal disorders

    NARCIS (Netherlands)

    Korterink, Judith J.; Benninga, Marc A.; van Wering, Herbert M.; Deckers-Kocken, Judith M.

    2015-01-01

    A potential link between small intestinal bacterial overgrowth (SIBO) and abdominal pain-related functional gastrointestinal disorders (AP-FGID) has been suggested by symptom similarities and by the reported prevalence of SIBO in children with irritable bowel syndrome (IBS) and functional AP. The

  5. Effect of prucalopride on intestinal gas tolerance in patients with functional bowel disorders and constipation.

    Science.gov (United States)

    Malagelada, Carolina; Nieto, Adoración; Mendez, Sara; Accarino, Anna; Santos, Javier; Malagelada, Juan-R; Azpiroz, Fernando

    2017-08-01

    Patients with functional bowel disorders develop gas retention and symptoms in response to intestinal gas loads that are well tolerated by healthy subjects. Stimulation of 5HT-4 receptors in the gut has both prokinetic and antinociceptive effects. The aim of this study is to determine the effect of prucalopride, a highly selective 5HT-4 agonist, on gas transit and tolerance in women with functional bowel disorders complaining of constipation. Twenty-four women with functional bowel disorders complaining of constipation were included in the study. Patients were studied twice on separate days in a cross-over design. On each study day, an intestinal gas challenge test was performed. During the five previous days, prucalopride (2 mg/day) or placebo was administered. Abdominal symptoms, stool frequency, and stool consistency were recorded during the treatment period on daily questionnaires. During the gas challenge test, prucalopride did not decrease the volume of gas retained in the subset of patients who had significant gas retention (≥ 200 mL) while on placebo. However, in those patients who had increased symptoms during the gas test (≥ 3 on a 0 to 6 scale) when on placebo, prucalopride did significantly reduce the perception of symptoms (2.3 ± 0.5 mean score vs 3.5 ± 0.3 on placebo; P = 0.045). During the treatment period with prucalopride, patients exhibited an increase in the total number of bowel movements and decreased stool consistency compared with placebo. Prucalopride reduces abdominal symptoms without modifying gas retention when patients with functional bowel disorders are challenged with the gas transit and tolerance test. European Clinical Trials Database (EudraCT2011-006354-86). © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  6. Effects of zeolite supplementation on parameters of intestinal barrier integrity, inflammation, redoxbiology and performance in aerobically trained subjects.

    Science.gov (United States)

    Lamprecht, Manfred; Bogner, Simon; Steinbauer, Kurt; Schuetz, Burkhard; Greilberger, Joachim F; Leber, Bettina; Wagner, Bernhard; Zinser, Erwin; Petek, Thomas; Wallner-Liebmann, Sandra; Oberwinkler, Tanja; Bachl, Norbert; Schippinger, Gert

    2015-01-01

    Zeolites are crystalline compounds with microporous structures of Si-tetrahedrons. In the gut, these silicates could act as adsorbents, ion-exchangers, catalysts, detergents or anti-diarrheic agents. This study evaluated whether zeolite supplementation affects biomarkers of intestinal wall permeability and parameters of oxidation and inflammation in aerobically trained individuals, and whether it could improve their performance. In a randomized, double-blinded, placebo controlled trial, 52 endurance trained men and women, similar in body fat, non-smokers, 20-50 years, received 1.85 g of zeolite per day for 12 weeks. Stool samples for determination of intestinal wall integrity biomarkers were collected. From blood, markers of redox biology, inflammation, and DNA damage were determined at the beginning and the end of the study. In addition, VO2max and maximum performance were evaluated at baseline and after 12 weeks of treatment. For statistical analyses a 2-factor ANOVA was used. At baseline both groups showed slightly increased stool zonulin concentrations above normal. After 12 weeks with zeolite zonulin was significantly (p zonulin. This was accompanied by mild anti-inflammatory effects in this cohort of aerobically trained subjects. Further research is needed to explore mechanistic explanations for the observations in this study.

  7. Prions efficiently cross the intestinal barrier after oral administration: Study of the bioavailability, and cellular and tissue distribution in vivo

    Science.gov (United States)

    Urayama, Akihiko; Concha-Marambio, Luis; Khan, Uffaf; Bravo-Alegria, Javiera; Kharat, Vineetkumar; Soto, Claudio

    2016-01-01

    Natural forms of prion diseases frequently originate by oral (p.o.) infection. However, quantitative information on the gastro-intestinal (GI) absorption of prions (i.e. the bioavailability and subsequent biodistribution) is mostly unknown. The main goal of this study was to evaluate the fate of prions after oral administration, using highly purified radiolabeled PrPSc. The results showed a bi-phasic reduction of PrPSc with time in the GI, except for the ileum and colon which showed sustained increases peaking at 3–6 hr, respectively. Plasma and whole blood 125I-PrPSc reached maximal levels by 30 min and 3 hr, respectively, and blood levels were constantly higher than plasma. Upon crossing the GI-tract 125I-PrPSc became associated to blood cells, suggesting that binding to cells decreased the biological clearance of the agent. Size-exclusion chromatography revealed that oligomeric 125I-PrPSc were transported from the intestinal tract, and protein misfolding cyclic amplification showed that PrPSc in organs and blood retained the typical prion self-replicating ability. Pharmacokinetic analysis found the oral bioavailability of 125I-PrPSc to be 33.6%. Interestingly, 125I-PrPSc reached the brain in a quantity equivalent to the minimum amount needed to initiate prion disease. Our findings provide a comprehensive and quantitative study of the fate of prions upon oral infection. PMID:27573341

  8. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis

    DEFF Research Database (Denmark)

    Palmer, Colin N A; Irvine, Alan D; Terron-Kwiatkowski, Ana

    2006-01-01

    most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic...... dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease....

  9. The Nucleotide Synthesis Enzyme CAD Inhibits NOD2 Antibacterial Function in Human Intestinal Epithelial Cells

    Science.gov (United States)

    Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2013-01-01

    BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394

  10. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    DEFF Research Database (Denmark)

    López-Posadas, Rocío; Becker, Christoph; Günther, Claudia

    2016-01-01

    Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing t...

  11. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  12. The important role of stratum corneum lipids for the cutaneous barrier function.

    Science.gov (United States)

    van Smeden, J; Janssens, M; Gooris, G S; Bouwstra, J A

    2014-03-01

    The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure.

    Science.gov (United States)

    Fishman, Jordan E; Levy, Gal; Alli, Vamsi; Sheth, Sharvil; Lu, Qu; Deitch, Edwin A

    2013-01-01

    Recent studies demonstrate that mechanisms underlying gut barrier failure include systemic processes and less studied luminal processes. We thus tested the hypothesis that mucus layer oxidation is a component of trauma/hemorrhagic shock-induced gut injury and dysfunction. Male Sprague-Dawley rats underwent trauma/hemorrhagic shock. Controls underwent trauma only. Mucus from the terminal 30 cm of the ileum was collected, processed, and analyzed for reactive nitrogen intermediates (RNI)-mediated damage, reactive oxygen species (ROS)-induced damage, and total antioxidant capacity. The distal ileum was stained to quantify the mucus layer; gut permeability was assessed physiologically. A time course study was conducted to determine the temporal sequence of mucus layer damage. The role of free radical-mediated damage to the gut barrier was investigated by the effect of the free radical scavenger dimethyl sulfoxide on trauma/hemorrhagic shock-induced changes on the mucus and on gut permeability. Trauma/hemorrhagic shock increased intestinal permeability, which was associated with evidence of loss of the unstirred mucus layer. These changes correlated with increased ROS- and RNI-mediated mucus damage and loss of mucus total antioxidant capacity. Based on the time course study, ROS-mediated mucus damage and loss of total antioxidant capacity were present immediately following shock, whereas RNI-mediated damage was delayed for 3 h. Dimethyl sulfoxide ameliorated gut barrier loss, ROS-mediated changes to the mucus layer, and loss of total antioxidant capacity. There was no change in RNI-induced changes to the mucus layer. These results support the hypothesis that trauma/hemorrhagic shock leads to mucus damage and gut dysfunction through the generation of free radical species.

  14. Octreotide in Intestinal Lymphangiectasia: Lack of a Clinical Response and Failure to Alter Lymphatic Function in a Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    S Makhija

    2004-01-01

    Full Text Available Intestinal lymphangiectasia, which can be classified as primary or secondary, is an unusual cause of protein-losing enteropathy. The main clinical features include edema, fat malabsorption, lymphopenia and hypoalbuminemia. Clinical management generally includes a low-fat diet and supplementation with medium chain triglycerides. A small number of recent reports advocate the use of octreotide in intestinal lymphangiectasia. It is unclear why octreotide was used in these studies; although octreotide can alter splanchnic blood flow and intestinal motility, its actions on lymphatic function has never been investigated. A case of a patient with intestinal lymphangiectasia who required a shunt procedure after failing medium chain triglycerides and octreotide therapy is presented. During the management of this case, all existing literature on intestinal lymphangiectasia and all the known actions of octreotide were reviewed. Because some of the case reports suggested that octreotide may improve the clinical course of intestinal lymphangiectasia by altering lymphatic function, a series of experiments were undertaken to assess this. In an established guinea pig model, the role of octreotide in lymphatic function was examined. In this model system, the mesenteric lymphatic vessels responded to 5-hydroxytryptamine with a decrease in constriction frequency, while histamine administration markedly increased lymphatic constriction frequency. Octreotide failed to produce any change in lymphatic function when a wide range of concentrations were applied to the mesenteric lymphatic vessel preparation. In conclusion, in this case, octreotide failed to induce a clinical response and laboratory studies showed that octreotide did not alter lymphatic function. Thus, the mechanisms by which octreotide induced clinical responses in the cases reported elsewhere in the literature remain unclear, but the present study suggests that it does not appear to act via increasing

  15. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus.

    Science.gov (United States)

    Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S

    2012-12-13

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (Pbrain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Effects of zinc-methionine on growth performance, intestinal flora and immune function in pigeon squabs.

    Science.gov (United States)

    Wang, Y; Yi, L; Zhao, M L; Wu, J Q; Wang, M Y; Cheng, X C

    2014-01-01

    1. Different concentrations of zinc-methionine (Zn-Met) were given to pigeon squabs, and the resulting effects on growth, immune functions and intestinal microflora were investigated from hatching to 28 d of age. A total of 180 artificially hatched pigeon squabs were randomly allotted to each of three treatments with three replicates of 20 squabs. The three treatments given were either one ml (2 mg/ml) Zn-Met, one ml (10 mg/ml) Zn-Met or one ml 0.9% NaCl solution. 2. The results showed that Zn-Met improved the growth performance of squabs. The average daily and average weekly weight gain was significantly greater in squabs treated with Zn-Met than in the control group. 3. The group given 2 and 10 mg supplemental Zn-Met had heavier thymus, spleen and bursa of Fabricius than the control group at d 28. 4. Maternal antibody titres against Newcastle disease haemagglutination inhibition and alpha-naphthyl acetate esterase were significantly higher in squabs treated with supplemental 2 and 10 mg Zn-Met compared to the control group at d 14 and d 28. 5. Additionally, the squabs given supplemental 2 mg Zn-Met exhibited significantly higher Bacillaceae, Lactobacillus, Enterococcus and Bifidobacterium populations at d 14 and d 28, but lower Escherichia coli populations at d 28 compared to the control group. On the contrary, Lactobacillus, Enterococcus and Bifidobacterium populations were significantly decreased with 10 mg Zn-Met at d 28. 6. This study indicates that supplementation with Zn-Met has a positive effect on growth performance, immune function and regulation of intestinal flora in pigeons. An inclusion level of 2 mg seems to be better than 10 mg Zn-Met per day per bird.

  17. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  18. Risk Factors for Dehiscence of Stapled Functional End-to-End Intestinal Anastomoses in Dogs: 53 Cases (2001-2012).

    Science.gov (United States)

    Snowdon, Kyle A; Smeak, Daniel D; Chiang, Sharon

    2016-01-01

    To identify risk factors for dehiscence in stapled functional end-to-end anastomoses (SFEEA) in dogs. Retrospective case series. Dogs (n = 53) requiring an enterectomy. Medical records from a single institution for all dogs undergoing an enterectomy (2001-2012) were reviewed. Surgeries were included when gastrointestinal (GIA) and thoracoabdominal (TA) stapling equipment was used to create a functional end-to-end anastomosis between segments of small intestine or small and large intestine in dogs. Information regarding preoperative, surgical, and postoperative factors was recorded. Anastomotic dehiscence was noted in 6 of 53 cases (11%), with a mortality rate of 83%. The only preoperative factor significantly associated with dehiscence was the presence of inflammatory bowel disease (IBD). Surgical factors significantly associated with dehiscence included the presence, duration, and number of intraoperative hypotensive periods, and location of anastomosis, with greater odds of dehiscence in anastomoses involving the large intestine. IBD, location of anastomosis, and intraoperative hypotension are risk factors for intestinal anastomotic dehiscence after SFEEA in dogs. Previously suggested risk factors (low serum albumin concentration, preoperative septic peritonitis, and intestinal foreign body) were not confirmed in this study. © Copyright 2015 by The American College of Veterinary Surgeons.

  19. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease.

    Science.gov (United States)

    Li, Jennifer; Butcher, James; Mack, David; Stintzi, Alain

    2015-01-01

    : The human intestinal microbiome plays a critical role in human health and disease, including the pathogenesis of inflammatory bowel disease (IBD). Numerous studies have identified altered bacterial diversity and abundance at varying taxonomic levels through biopsies and fecal samples of patients with IBD and diseased model animals. However, inconsistent observations regarding the microbial compositions of such patients have hindered the efforts in assessing the etiological role of specific bacterial species in the pathophysiology of IBD. These observations highlight the importance of minimizing the confounding factors associated with IBD and the need for a standardized methodology to analyze well-defined microbial sampling sources in early IBD diagnosis. Furthermore, establishing the linkage between microbiota compositions with their function within the host system can provide new insights on the pathogenesis of IBD. Such research has been greatly facilitated by technological advances that include functional metagenomics coupled with proteomic and metabolomic profiling. This review provides updates on the composition of the microbiome in IBD and emphasizes microbiota dysbiosis-involved mechanisms. We highlight functional roles of specific bacterial groups in the development and management of IBD. Functional analyses of the microbiome may be the key to understanding the role of microbiota in the development and chronicity of IBD and reveal new strategies for therapeutic intervention.

  20. A search for parameters of universal sub-barrier fusion excitation function

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-11-15

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections. (orig.)

  1. A search for parameters of universal sub-barrier fusion excitation function

    Science.gov (United States)

    Qu, W. W.; Zhang, G. L.; Wolski, R.

    2016-11-01

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections.

  2. Clinical characteristics and epidermal barrier function of papulopustular rosacea: A comparison study with acne vulgaris.

    Science.gov (United States)

    Zhou, Maosong; Xie, Hongfu; Cheng, Lin; Li, Ji

    2016-01-01

    To evaluate the clinical characteristics and epidermal barrier function of papulopustular rosacea by comparing with acne vulgaris. Four hundred and sixty-three papulopustular rosacea patients and four hundred and twelve acne vulgaris patients were selected for the study in Xiangya Hospital of Central South University from March 2015 to May 2016. They were analyzed for major facial lesions, self-conscious symptoms and epidermal barrier function. Erythema, burning, dryness and itching presented in papulopustular rosacea patients were significantly higher than that in acne vulgaris patients ( P acne vulgaris patients ( P acne vulgaris patients ( P acne vulgaris patients in comparison with that of healthy subjects ( P >0.05, P acne vulgaris patients and healthy subjects ( P acne vulgaris patients than that of healthy subjects ( P acne vulgaris. The epidermal barrier function was damaged in papulopustular rosacea patients while not impaired in that of acne vulgaris patients.

  3. Histamine exerts multiple effects on expression of genes associated with epidermal barrier function.

    Science.gov (United States)

    Gutowska-Owsiak, D; Salimi, M; Selvakumar, T A; Wang, X; Taylor, S; Ogg, G S

    2014-01-01

    The role of epidermal barrier genes in the pathogenesis of atopic skin inflammation has recently been highlighted. Cytokines that are abundant in the skin during inflammation have been shown to exert various effects on the expression of barrier genes, although the role of histamine in this area of skin biology is not yet fully understood. To assess the effect of stimulation with histamine on keratinocytes by analysis of the pathways involved in epidermal barrier integrity. We performed a gene expression analysis of histamine-stimulated keratinocytes. Functional changes were tested using the dye penetration assay. Differential changes in filaggrin and the filaggrin-processing enzyme bleomycin hydrolase (BLMH) were validated at the protein level, and expression was also assessed in filaggrin knock-down keratinocytes. Histamine altered expression of multiple barrier genes. Expression of filaggrin was downregulated, as was that of other markers, thus suggesting the presence of delayed/aberrant keratinocyte differentiation. Expression of genes involved in cellular adhesiveness and genes of protease expression was dysregulated, but expression of protease inhibitors was increased. BLMH was upregulated in keratinocytes subjected to histamine and filaggrin knockdown. Histamine exerts a dual effect on epidermal barrier genes; it suppresses keratinocyte differentiation and dysregulates genes of cellular adhesiveness, although it induces genes contributing to stratum corneum function. Upregulation of BLMH and protease inhibitors could support maintenance of the permeability barrier by enhanced generation of moisturizing compounds and suppressed desquamation. In contrast, in the case of stratum corneum damage, histamine could enhance transcutaneous sensitization.

  4. Stress-induced changes in skin barrier function in healthy women.

    Science.gov (United States)

    Altemus, M; Rao, B; Dhabhar, F S; Ding, W; Granstein, R D

    2001-08-01

    Despite clear exacerbation of several skin disorders by stress, the effect of psychologic or exertional stress on human skin has not been well studied. We investigated the effect of three different stressors, psychologic interview stress, sleep deprivation, and exercise, on several dermatologic measures: transepidermal water loss, recovery of skin barrier function after tape stripping, and stratum corneum water content (skin conductance). We simultaneously measured the effects of stress on plasma levels of several stress-response hormones and cytokines, natural killer cell activity, and absolute numbers of peripheral blood leukocytes. Twenty-five women participated in a laboratory psychologic interview stress, 11 women participated in one night of sleep deprivation, and 10 women participated in a 3 d exercise protocol. The interview stress caused a delay in the recovery of skin barrier function, as well as increases in plasma cortisol, norepinephrine, interleukin-1beta and interleukin-10, tumor necrosis factor-alpha, and an increase in circulating natural killer cell activity and natural killer cell number. Sleep deprivation also decreased skin barrier function recovery and increased plasma interleukin-1beta, tumor necrosis factor-alpha, and natural killer cell activity. The exercise stress did not affect skin barrier function recovery, but caused an increase in natural killer cell activity and circulating numbers of both cytolytic T lymphocytes and helper T cells. In addition, cytokine responses to the interview stress were inversely correlated with changes in barrier function recovery. These results suggest that acute psychosocial and sleep deprivation stress disrupts skin barrier function homeostasis in women, and that this disruption may be related to stress-induced changes in cytokine secretion.

  5. Evidence for a dual function of monocyte-derived mononuclear phagocytes during chronic intestinal inflammation

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Pool, Lieneke; Frising, Ulrika

    Mononuclear phagocytes derived from tissue-infiltrating monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. We and others showed that, upon recruitment to the intestinal mucosa, the differentiation of Ly6Chi monocytes into phagocytes with anti- versus pro...... cells pool in the inflamed intestinal mucosa. However, surprisingly, mice deficient for the chemokine receptor CCR2, which exhibit highly decreased amounts of intestinal MDP, develop an intestinal pathology similar to their wild type littermates. Preliminary experiments using the anti-CD40 colitis model...

  6. Effect of ecoimmunonutrition supports on maintenance of integrity of intestinal mucosal barrier in severe acute pancreatitis in dogs.

    Science.gov (United States)

    Xu, Gui-fang; Lu, Zheng; Gao, Jun; Li, Zhao-shen; Gong, Yan-fang

    2006-04-20

    One of the major causes of death in severe acute pancreatitis (SAP) is severe infection owing to bacterial translocation. Some clinical studies suggested that ecoimmunonutrition (EIN) as a new strategy had better treatment effect on SAP patients. But the experiment studies on the precise mechanism of the effect of EIN were less reported. In this study, we mainly investigated the effects of EIN on bacterial translocation in SAP model of dogs. SAP was induced by retrograde infusion of 5% sodium taurocholate into the pancreatic duct in healthy hybrid dogs. The SAP dogs were supported with either parenteral nutrition (PN) or elemental enteral nutrition (EEN) or EIN. The levels of serum amylase, serum aminotransferase and plasma endotoxin were detected before and after pancreatitis induction. On the 7th day after nutrition supports, peritoneal fluid, mesenteric lymph nodes (MLN), liver, and pancreas were collected for bacterial culture with standard techniques to observe the incidence of bacterial translocation. Pathology changes of pancreas were analyzed by histopathologic grading and scoring of the severity of pancreas, and the degree of intestinal mucosal damage was assessed by measuring mucosal thickness, villus height, and crypt depth of ileum. Compared with PN and EEN, EIN significantly decreased the levels of serum amylase, serum aminotransferase, plasma endotoxin, and the incidence of bacterial translocation. Furthermore, compared with the others, the histology scores of inflammation in pancreas and the ileum injury (ileum mocosa thickness, villus height, and crypt depth) were significantly alleviated by EIN (P dogs. Early EIN was safe and more effective treatment for SAP dogs.

  7. Functional barrier in two-layer recycled PP films for food packaging applications

    Science.gov (United States)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  8. The genus Romboutsia : genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    NARCIS (Netherlands)

    Gerritsen, J.

    2015-01-01

    The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    PhD thesis Jacoline Gerritsen, 2015

    Abstract

    Humans, like other mammals, are not single-species organisms, but they

  9. The genus Romboutsia : genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    NARCIS (Netherlands)

    Gerritsen, J.

    2015-01-01

    The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    PhD thesis Jacoline Gerritsen, 2015 Abstract Humans, like other mammals, are not single-species organisms, but they constitute in fact

  10. Intestinal microbiome landscaping

    NARCIS (Netherlands)

    Shetty, Sudarshan A.; Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; Vos, de Willem M.

    2017-01-01

    High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss

  11. A functional study on small intestinal smooth muscles in jejunal atresia

    Directory of Open Access Journals (Sweden)

    Preeti Tyagi

    2016-01-01

    Full Text Available Aim: The present study was aimed to assess the contractile status of neonatal small intestinal smooth muscle of dilated pre-atretic part of intestinal atresia to resolve debatable issues related to mechanisms of persistent dysmotility after surgical repair. Materials and Methods: A total of 34 longitudinally sectioned strips were prepared from pre-atretic dilated part of freshly excised 8 jejunal atresia type III a cases. Spontaneous as well as acetylcholine- and histamine-induced contractions were recorded in vitro by using organ bath preparations. Chemically evoked contractions were further evaluated after application of atropine (muscarinic blocker, pheniramine (H1 blocker, and lignocaine (neuronal blocker to ascertain receptors and neuronal involvement. Histological examinations of strips were made by using Masson trichrome stain to assess the fibrotic changes. Results: All 34 strips, except four showed spontaneous contractions with mean frequency and amplitude of 5.49 ± 0.26/min and 24.41 ± 5.26 g/g wet tissue respectively. The response to ACh was nearly twice as compared to histamine for equimolar concentrations (100 μM. ACh (100 μM induced contractions were attenuated (by 60% by atropine. Histamine (100 μM-induced contractions was blocked by pheniramine (0.32 μM and lignocaine (4 μM by 74% and 78%, respectively. Histopathological examination showed varying degree of fibrotic changes in muscle layers. Conclusions: Pre-atretic dilated part of jejunal atresia retains functional activity but with definitive histopathologic abnormalities. It is suggested that excision of a length of pre-atretic part and early stimulation of peristalsis by locally acting cholinomimetic or H1 agonist may help in reducing postoperative motility problems in atresia patients.

  12. A functional study on small intestinal smooth muscles in jejunal atresia.

    Science.gov (United States)

    Tyagi, Preeti; Mandal, Maloy B; Gangopadhyay, Ajay N; Patne, Shashikant C U

    2016-01-01

    The present study was aimed to assess the contractile status of neonatal small intestinal smooth muscle of dilated pre-atretic part of intestinal atresia to resolve debatable issues related to mechanisms of persistent dysmotility after surgical repair. A total of 34 longitudinally sectioned strips were prepared from pre-atretic dilated part of freshly excised 8 jejunal atresia type III a cases. Spontaneous as well as acetylcholine- and histamine-induced contractions were recorded in vitro by using organ bath preparations. Chemically evoked contractions were further evaluated after application of atropine (muscarinic blocker), pheniramine (H1 blocker), and lignocaine (neuronal blocker) to ascertain receptors and neuronal involvement. Histological examinations of strips were made by using Masson trichrome stain to assess the fibrotic changes. All 34 strips, except four showed spontaneous contractions with mean frequency and amplitude of 5.49 ± 0.26/min and 24.41 ± 5.26 g/g wet tissue respectively. The response to ACh was nearly twice as compared to histamine for equimolar concentrations (100 μM). ACh (100 μM) induced contractions were attenuated (by 60%) by atropine. Histamine (100 μM)-induced contractions was blocked by pheniramine (0.32 μM) and lignocaine (4 μM) by 74% and 78%, respectively. Histopathological examination showed varying degree of fibrotic changes in muscle layers. Pre-atretic dilated part of jejunal atresia retains functional activity but with definitive histopathologic abnormalities. It is suggested that excision of a length of pre-atretic part and early stimulation of peristalsis by locally acting cholinomimetic or H1 agonist may help in reducing postoperative motility problems in atresia patients.

  13. Inflammasome in Intestinal Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Tiago Nunes

    2013-01-01

    Full Text Available The activation of specific cytosolic pathogen recognition receptors, the nucleotide-binding-oligomerization-domain- (NOD- like receptors (NLRs, leads to the assembly of the inflammasome, a multimeric complex platform that activates caspase-1. The caspase-1 pathway leads to the upregulation of important cytokines from the interleukin (IL-1 family, IL-1β, and IL-18, with subsequent activation of the innate immune response. In this review, we discuss the molecular structure, the mechanisms behind the inflammasome activation, and its possible role in the pathogenesis of inflammatory bowel diseases and intestinal cancer. Here, we show that the available data points towards the importance of the inflammasome in the innate intestinal immune response, being the complex involved in the maintenance of intestinal homeostasis, correct intestinal barrier function and efficient elimination of invading pathogens.

  14. Effect of intravenous infusion of glyceryl trinitrate on gastric and small intestinal motor function in healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Fuglsang, Stefan; Graff, J

    2006-01-01

    : To examine the effect of intravenous infusion of glyceryl trinitrate on gastric and small intestinal motor function after a meal in healthy humans. METHODS: Nine healthy volunteers participated in a placebo-controlled, double-blind, crossover study. Each volunteer was examined during intravenous infusion...... of glyceryl trinitrate 1 microg/kg x min or saline. A gamma camera technique was used to measure gastric emptying and small intestinal transit after a 1600-kJ mixed liquid and solid meal. Furthermore, duodenal motility was assessed by manometry. RESULTS: Glyceryl trinitrate did not change gastric mean...... emptying time, gastric half emptying time, gastric retention at 15 min or small intestinal mean transit time. Glyceryl trinitrate did not influence the frequency of duodenal contractions, the amplitude of duodenal contractions or the duodenal motility index. CONCLUSIONS: Intravenous infusion of glyceryl...

  15. [Effects of continuous early enteral nutrition on the gut barrier function in dogs with acute necrotizing pancreatitis].

    Science.gov (United States)

    Chen, Jie; Wang, Xing-Peng; Liu, Pi; Wu, Ka; Xu, Min; Yu, Xiao-Feng; Wang, Gen-Sheng

    2004-10-17

    To evaluate the effects of continuous early enteral nutrition on the gut barrier function in acute necrotizing pancreatitis (ANP). Thirty mongrel dogs underwent laparotomy and 5% mixed solution of sodium taurocholate with trypsin was infused into the pancreatic ducts so as to induce model of ANP. Permanent duodenal and jejunal fistulas were retained. Then the 30 dogs were randomly divided into 6 groups of 5 dogs: total parenteral nutrition (TPN) group, normal saline (NS) group, duodenal nutrison multifibre (DN) group, duodenal PEPTI-2000Varient (DP) group, jejunal nutrison multifibre (JN) group, and jejunal PEPTI-2000Varient (JP) group, the last 4 groups being called enteral nutrition (EN) group together. Infusion of nutritional solutions was performed via the duodenal or jejunal fistulas, beginning 24 hours after the operation and lasting for 5 days. The levels of endotoxin and D-(-)-lactate in the peripheral plasma were measured every day. On the days 2 and 5 after the operation test solution to measure the enteral permeability, containing lactulose and mannitol, was infused via the fistulas and then urine within 6 hours thereafter was collected to detect the concentrations of lactulose and mannitol and calculate the lactulose/mannitol ratio. Seven days after the operation the dogs were killed to take the pancreas and intestines to be examined by microscopy. Feces was collected. ERIC-PCR fingerprint method was used to examine the structure and distribution of ERIC series of the microbial communities in the gut. The plasma D-(-)-lactate of the NS group gradually increased and peaked on the 5th day after the operation, and that of the TPN group gradually increased too, however, lower than that of the NS group at any time points and was significantly lower on the 5th day (P dogs. However, the makeup and distribution of intestinal microbial in the TPN groups were quite different from those of the normal dogs. EN helps maintain gut mucosal barrier, decreases endotoxin

  16. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function After Hemorrhagic Shock.

    Science.gov (United States)

    Deng, Xiyun; Cao, Yanna; Huby, Maria P; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A; Doursout, Marie-Francoise; Holcomb, John B; Wade, Charles E; Ko, Tien C

    2016-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared with normal individuals, plasma adiponectin levels decreased to 49% in HS patients before resuscitation (P < 0.05) and increased to 64% post-resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared with baseline (P < 0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS.

  17. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction

    Science.gov (United States)

    Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark

    2016-01-01

    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853

  18. Evaluation of small intestine bacterial overgrowth in patients with functional dyspepsia through H2 breath test

    Directory of Open Access Journals (Sweden)

    Michelle Bafutto Gomes Costa

    2012-12-01

    Full Text Available CONTEXT: Functional dyspepsia is a condition in which symptoms are not related to organic underlying disease; its pathogenesis is not well known. The small intestinal bacterial overgrowth (SIBO is characterized by the increase in the number and/or type of colonic bacteria in the upper gastrointestinal tract. The hypothesis of SIBO being associated to functional dyspepsia must be considered, since the impaired motility of the gastrointestinal tract is one of the main etiologic factors involved on both pathologies. OBJECTIVE: To determine if there is SIBO in patients with functional dyspepsia. METHODS: Case-control study, evaluating 34 patients: 23 functional dyspeptic and 11 non-dyspeptic (control group. Questionnaire applied based on Rome III criteria. The patients underwent H2-lactulose breath test, considered positive when: H2 peak exceeding 20 ppm, in relation to fasting, or two peaks exceeding 10 ppm sustained until 60 minutes. RESULTS: Of the 23 dyspeptic patients, 13 (56.5% obtained positive results for SIBO trough the H2-lactulose breath test. On control group, SIBO was not observed. The association between the dyspeptic group and the control group regarding SIBO was statistically significant, with P = 0.0052. In the group of dyspeptic patients, 12 (52.2% were using proton pump inhibitor; of these 9 (75% were positive for SIBO. In the control group, none of the 11 patients used proton pump inhibitors and SIBO was not observed. The association of the dyspeptic group using proton pump inhibitor that were positive for SIBO and the control group was statistically significant, with P = 0.0011. CONCLUSION: It was found that, patients with functional dyspepsia presented SIBO, when they underwent to H2-lactulose breath test, compared to the non-dyspeptic. In addition, it was observed a higher prevalence of SIBO in dyspeptic patients that were using proton pump inhibitors, compared to control group.

  19. TNO I-Screen: Intestinal Microbiotica Screening Platform for Functional Ingredients

    NARCIS (Netherlands)

    Abeln, E.; Posno, M.

    2016-01-01

    TNO’s intestinal screening model (TNO i-screen) helps to quickly identify food ingredients that modulate the intestinal microbiota composition. For manufacturers, searching for health-promoting ingredients is a complex and time-consuming process. Large numbers of substances have to be screened,

  20. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

    Science.gov (United States)

    Costantini, Todd W; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G; Peterson, Carrie Y; Loomis, William H; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2010-12-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  1. Effect of Gum Chewing on Intestinal Functions after Gynecological Operations: A Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Taylan Şenol

    2016-12-01

    RESULTS: There was no difference between groups in terms of age, duration of operation, intraoperative blood loss, pre and postoperative serum hemoglobin levels, duration to first bowel sound, flatulence and defecation (p>0.05. Age (r=0.234, p=0.032, type of incision (r=0.228, p=0.037 were significantly correlated with the time to first bowel sound. Type of incision (r=0.295, p=0.006, duration of operation (r=0.277, p=0.01 and intraoperative blood loss (r=0.298, p=0.006 were significantly correlated with the time to first flatulence. In multivariate regression analyses, none of the variables were found to be significant parameter for time to first bowel sound (p>0.05. CONCLUSION: Gum chewing does not affect some of the gastrointestinal functions after gynecological operations and there is no single parameter for time to first bowel sound, first flatulence and first defecation, individual surgical and medical condition differences should be kept in mind while evaluating intestinal functions.

  2. Effect of saline iontophoresis on skin barrier function and cutaneous irritation in four ethnic groups.

    Science.gov (United States)

    Singh, J; Gross, M; Sage, B; Davis, H T; Maibach, H I

    2000-08-01

    The effect of saline iontophoresis on skin barrier function and irritation was investigated in four ethnic groups (Caucasians, Hispanics, Blacks and Asians). Forty healthy human volunteers were recruited according to specific entry criteria. Ten subjects, five males and five females, were assigned to each ethnic group. Skin barrier function was examined after 4 hours of saline iontophoresis at a current density of 0.2 mA/cm(2) on a 6.5 cm(2) area in terms of the measured responses: transepidermal water loss (TEWL), skin capacitance, skin temperature and visual scores. There were significant differences in TEWL among the ethnic groups prior to patch application. TEWL at baseline in ethnic groups was in the rank order: Caucasian>Asian>Hispanic>Black. Iontophoresis was generally well tolerated, and skin barrier function was not irreversibly affected by iontophoresis in any group. There was no significant skin temperature change, compared to baseline, in any ethnic groups at any observation point. Edema was not observed. At patch removal, the erythema score was elevated in comparison to baseline in all ethnic groups; erythema resolved within 24 hours. Thus, saline iontophoresis produced reversible changes in skin barrier function and irritation in healthy human subjects.

  3. Guidance document on fat reduction factor, functional barrier concept, phthalates and primary aromatic amines

    DEFF Research Database (Denmark)

    Hoekstra, Eddo J.; Petersen, Jens Højslev; Bustos, Juana

    and the functional barrier, and the restrictions for certain phthalates and primary aromatic amines. The Regulation applies from 1 May 2011. The network of the European Union Reference Laboratory and the National Reference Laboratories for food contact materials created a Task Force in order to give guidance...

  4. Blood-Brain Barrier P-Glycoprotein Function in Neurodegenerative Disease

    NARCIS (Netherlands)

    Bartels, A. L.

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and

  5. Modelling of migration from multi-layers and functional barriers: Estimation of parameters

    NARCIS (Netherlands)

    Dole, P.; Voulzatis, Y.; Vitrac, O.; Reynier, A.; Hankemeier, T.; Aucejo, S.; Feigenbaum, A.

    2006-01-01

    Functional barriers form parts of multi-layer packaging materials, which are deemed to protect the food from migration of a broad range of contaminants, e.g. those associated with reused packaging. Often, neither the presence nor the identity of the contaminants is known, so that safety assessment

  6. Evaluation of anionic surfactants effects on the skin barrier function based on skin permeability.

    Science.gov (United States)

    Okasaka, Mana; Kubota, Koji; Yamasaki, Emi; Yang, Jianzhong; Takata, Sadaki

    2018-01-23

    Anionic surfactants are often used for cleaning and pharmaceutical purposes because of their strong surfactancy and foaming property. However, they are rarely ingested orally, the skin is a part of the human body most affected by surfactants. Barrier function of the skin is very strong, but the anionic surfactants can cause serious damages to it. Recently, amino acid-based surfactants have attracted attention as a safer option owing to their biocompatibility. Cytotoxicity examinations revealed that the amino acid-based surfactants are superior to sulfate-based surfactants. However, a systematical and comprehensive study related to the effect of these surfactants on skin barrier function has not yet been reported. In this work, skin permeation test using the skin of hairless mice and HPLC method is carried out. The material transmission speed through skin in a steady state was different between each surfactant treatment. We performed a comprehensive analysis of the effect of surfactants on skin barrier function and defined Transmission Index as an index for the degree of effect of surfactants. Glutamate series amino acid-based surfactant were effective to Transmission Index and we guessed the cause was due to adsorption. Based on the finding this study, we suggest using adsorptive property as a measure to the effect on the skin barrier function.

  7. Additive impairment of the barrier function by mechanical irritation, occlusion and sodium lauryl sulphate in vivo.

    Science.gov (United States)

    Fluhr, J W; Akengin, A; Bornkessel, A; Fuchs, S; Praessler, J; Norgauer, J; Grieshaber, R; Kleesz, P; Elsner, P

    2005-07-01

    The interaction between potential irritants in the workplace might be important because workers are not usually exposed to a single irritant, but to multiple potentially harmful substances. Physical irritant contact dermatitis caused by friction or mechanical abrasion is a common occupational dermatosis. Prolonged water exposure by occlusion is also common in the workplace. Several studies have revealed the negative effect of the common anionic detergent sodium lauryl sulphate (SLS) on permeability barrier function. To study the additive impairment of permeability barrier function by mechanical irritation combined with 0.5% SLS or prolonged water exposure by occlusion, as models of mild irritation. The volar forearms of 20 healthy volunteers were exposed to mechanical irritation and occlusion with water or 0.5% SLS for four consecutive days in a combined tandem repeated irritation test (TRIT). Permeability barrier function was measured with a Tewameter TM 210. Irritation was assessed with a Chromameter CR 300 and a visual score. Barrier disruption in our model was rated as follows: occlusion with SLS and mechanical irritation > occlusion with SLS > occlusion with water and mechanical irritation > mechanical irritation and occlusion with water > occlusion with a glove and mechanical irritation > mechanical irritation > occlusion with water. Barrier disruption caused by occlusion or mechanical irritation was enhanced by the tandem application. The choice of irritant under occlusion, time of occlusion and order of tandem application all affected the degree of barrier disruption. Evaporimetry was able to detect early stages in the development of an irritant reaction before it became visible. Chromametry was not able to detect this early response. Physical irritants (friction, abrasive grains, occlusion) and detergents such as SLS represent a significant irritation risk and should be minimized, especially when acting together, as shown in our TRIT model.

  8. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function.

    Science.gov (United States)

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis; Park, Kyungho; Roelandt, Truus; Oda, Yuko; Hupe, Melanie; Crumrine, Debra; Lee, Hae-Jin; Gschwandtner, Maria; Thyssen, Jacob P; Trullas, Carles; Tschachler, Erwin; Feingold, Kenneth R; Elias, Peter M

    2013-02-01

    Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by the following mechanisms: (i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamines. In four immunologically diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis) or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly systemic to a topical approach.

  9. Neonatal functional intestinal obstruction and the presence of severely immature ganglion cells on rectal biopsy: 6 year experience.

    Science.gov (United States)

    Burki, Tariq; Kiho, Liina; Scheimberg, Irene; Phelps, Simon; Misra, Devesh; Ward, Harry; Colmenero, Isabel

    2011-05-01

    We report our experience of managing eight babies who presented with neonatal intestinal obstruction and whose rectal biopsies showed severely immature ganglion cells. Neonatal unit records were reviewed to detect patients with suspected Hirschsprung's disease or functional intestinal obstruction. Those with intestinal atresia, anorectal malformation, malrotation, cystic fibrosis and prematurity were excluded. We identified 73 patients born at term. Twenty-seven did not need a rectal biopsy. Twenty-one had biopsy proven Hirschsprung's disease, while 17 had a normal rectal biopsy. Eight patients, all of whom presented with severe abdominal distension, showed immature ganglion cells. Seven had failed to pass meconium after birth. X-rays in all patients showed distended loops of bowel. Two neonates underwent an emergency laparotomy and a stoma. A repeat biopsy at 3 months showed maturation of ganglion cells and the stoma was reversed. Rectal biopsy was repeated in two other patients 2-9 months after the first biopsy and showed mature ganglion cells. At follow-up, one patient still suffers from severe constipation. Seven are asymptomatic now, including the two patients who needed a stoma. Immature ganglion cells on rectal biopsy may be an indicator of transient functional immaturity of the intestine.

  10. The effect of environmental humidity and temperature on skin barrier function and dermatitis

    DEFF Research Database (Denmark)

    Engebretsen, K A; Johansen, J D; Kezic, S

    2016-01-01

    existing dermatoses. We searched the literature for studies that evaluated the mechanisms behind this phenomenon. Commonly used meteorological terms such as absolute humidity, relative humidity and dew point are explained. Furthermore, we review the negative effect of low humidity, low temperatures...... and different seasons on the skin barrier and on the risk of dermatitis. We conclude that low humidity and low temperatures lead to a general decrease in skin barrier function and increased susceptible towards mechanical stress. Since pro-inflammatory cytokines and cortisol are released by keratinocytes...

  11. Effect of polydextrose on intestinal microbes and immune functions in pigs.

    Science.gov (United States)

    Fava, Francesca; Mäkivuokko, Harri; Siljander-Rasi, Hilkka; Putaala, Heli; Tiihonen, Kirsti; Stowell, Julian; Tuohy, Kieran; Gibson, Glenn; Rautonen, Nina

    2007-07-01

    Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacterial composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.

  12. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function

    DEFF Research Database (Denmark)

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis

    2013-01-01

    antagonists likely oppose mast cell-derived histamines. In four immunologically diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis) or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic...... of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r...... dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased...

  13. Human organoids: a model system for intestinal diseases

    OpenAIRE

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the diseased intestine to take up certain food. A cell layer, the epithelium, covers the intestine, and harbors the main functions of the intestine: uptake, digestion of food, and a barrier against unwanted...

  14. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions.

    Science.gov (United States)

    Oh, Myoung Jin; Nam, Jin Ju; Lee, Eun Ok; Kim, Jin Wook; Park, Chang Seo

    2016-10-01

    Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.

  15. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    Science.gov (United States)

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate. © 2013 The Authors. obesity reviews © 2013 International Association for the Study of Obesity.

  16. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease.

    Science.gov (United States)

    Schwiertz, Andreas; Spiegel, Jörg; Dillmann, Ulrich; Grundmann, David; Bürmann, Jan; Faßbender, Klaus; Schäfer, Karl-Herbert; Unger, Marcus M

    2018-02-12

    Intestinal inflammation and increased intestinal permeability (both possibly fueled by dysbiosis) have been suggested to be implicated in the multifactorial pathogenesis of Parkinson's disease (PD). The objective of the current study was to investigate whether fecal markers of inflammation and impaired intestinal barrier function corroborate this pathogenic aspect of PD. In a case-control study, we quantitatively analyzed established fecal markers of intestinal inflammation (calprotectin and lactoferrin) and fecal markers of intestinal permeability (alpha-1-antitrypsin and zonulin) in PD patients (n = 34) and controls (n = 28, group-matched for age) by enzyme-linked immunosorbent assay. The study design controlled for potential confounding factors. Calprotectin, a fecal marker of intestinal inflammation, and two fecal markers of increased intestinal permeability (alpha-1-antitrypsin and zonulin) were significantly elevated in PD patients compared to age-matched controls. Lactoferrin, as a second fecal marker of intestinal inflammation, showed a non-significant trend towards elevated concentrations in PD patients. None of the four fecal markers correlated with disease severity, PD subtype, dopaminergic therapy, or presence of constipation. Fecal markers reflecting intestinal inflammation and increased intestinal permeability have been primarily investigated in inflammatory bowel disease so far. Our data indicate that calprotectin, alpha-1-antitrypsin and zonulin could be useful non-invasive markers in PD as well. Even though these markers are not disease-specific, they corroborate the hypothesis of an intestinal inflammation as contributing factor in the pathogenesis of PD. Further investigations are needed to determine whether calprotectin, alpha-1-antitrypsin and zonulin can be used to define PD subgroups and to monitor the effect of interventions in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    Science.gov (United States)

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs

    DEFF Research Database (Denmark)

    Rasmussen, Stine O.; Martin, Lena; Østergaard, Mette V.

    2017-01-01

    Human milk oligosaccharides (HMOs) may mediate prebiotic and anti-inflammatory effects in newborns. This is particularly important for preterm infants who are highly susceptible to intestinal dysfunction and necrotizing enterocolitis (NEC). We hypothesized that HMO supplementation of infant formu...

  19. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.

    Science.gov (United States)

    Lopez-Ramirez, Miguel Alejandro; Reijerkerk, Arie; de Vries, Helga E; Romero, Ignacio Andres

    2016-08-01

    Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. © The Author(s).

  20. Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis

    OpenAIRE

    McElroy, Steven J.; Prince, Lawrence S.; Weitkamp, Jörn-Hendrik; Reese, Jeff; Slaughter, James C.; Polk, D. Brent

    2011-01-01

    Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. NEC is believed to occur when intestinal bacteria invade the intestinal epithelial layer, causing subsequent inflammation and tissue necrosis. Mucins are produced and secreted by epithelial goblet cells as a key component of the innate immune system and barrier function of the intestinal tract that help protect against bacterial invasion. To better understand the role of mucins in NEC, we quant...

  1. Bridging the gap: functional healing of embryonic small intestine ex vivo.

    Science.gov (United States)

    Coletta, Riccardo; Roberts, Neil A; Oltrabella, Francesca; Khalil, Basem A; Morabito, Antonino; Woolf, Adrian S

    2016-02-01

    The ability to grow embryonic organs ex vivo provides an opportunity to follow their differentiation in a controlled environment, with resulting insights into normal development. Additionally, similar strategies can be used to assess effects on organogenesis of physical and chemical manipulations. This study aimed to create an organ culture model with which to test physical manipulations to enhance healing of gut segments, thus generating a single functional organ. Embryonic mouse jejunum was isolated and cut into 2-3 mm tubes, which were placed in pairs, separated by a small gap, on semi-permeable supports. Each pair was linked by a nylon suture threaded through their lumens. After 3 days in organ culture fed by defined serum-free media, the rudiments differentiated to form tubes of smooth muscle surrounding a core of rudimentary villi. Of 34 such pairs, 74% had touching and well aligned proximate ends. Of these joined structures, 80% (59% of the total pairs) had a continuous lumen, as assessed by observing the trajectories of fluorescent dextrans injected into their distal ends. Fused organ pairs formed a single functional unit, as assessed by spontaneous contraction waves propagated along their lengths. In these healed intestines, peripherin(+) neurons formed a nexus in the zone of fusion, linking the rudiment pairs. In future, this system could be used to test whether growth factors enhance fusion. Such results should in turn inform the design of novel treatments for short bowel syndrome, a potentially fatal condition with a currently limited and imperfect range of therapies. ©2015. The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd.

  2. THE RATIONALE FOR ALPHA-INTERFERON IMMUNOTHERAPY IN INFANTS WITH FUNCTIONAL GASTROINTESTINAL DISORDERS AND ACUTE INVASIVE INTESTINAL INFECTION

    Directory of Open Access Journals (Sweden)

    E. R. Meskina

    2015-01-01

    Full Text Available Background: Acute intestinal  infections  in children are a considerable  medical and social problem  worldwide. Immune therapy  could  help  to reduce the frequency of post-infectious functional intestinal dysfunction  in patients  with comorbidities. Aim: To evaluate  the  efficacy of human  recombinant interferon  alpha-2b, administered at acute  phase  of an acute  invasive intestinal  infection to infants in the first months  of age, suffering from functional  bowel  disorders. Materials and methods: This  was  an  open-label,  randomized (envelope method, prospective  study in two parallel groups. The study included  59 infants of the  first months  of life, who were breastfed, had a history of intestinal  dysfunction  and were hospitalized  to  an  infectious  department. We studied  efficacy of recombinant interferon  alpha-2b administered in rectal suppositories  at a dose  of   chromatography with measurement of short-chain fatty acids. Results: Standard treatment was ineffective in 63.3% (95% CI 43.9–80.0% of patients. Administration   of  interferon   alpha-2b   reduced the rate of treatment failure by day 14 to 32% (95% CI 9–56% and  the  risk of persistent  diarrhea  for more than  one month  to 29% (95% CI 5–53%. In those patients  who were administered interferon, inflammation at days 25 to 55 was less severe and the levels of i-forms of short-chain fatty acids were lower. Conclusion: Immunotherapy with recombinant interferon alpha-2b seems to be a promising way to improve  combination treatment of acute invasive intestinal infections in infants with a history of intestinal dysfunction, as it reduces the risk of post-infectious intestinal disorders.

  3. Effect of maternal diabetes on postnatal development of brush border enzymes and transport functions in rat intestine.

    Science.gov (United States)

    Sharma, Ruchi; Kaur, Jyotdeep; Mahmood, Akhtar

    2009-07-01

    The effect of alloxan-induced maternal diabetes has been studied on the postnatal development of brush border enzymes in rat intestine. Diabetes was induced by injecting alloxan in rat mothers on day 3 of gestation. There was no change in gestational period (22 days) in control and diabetic groups; however, the litter size was reduced (P border enzymes revealed elevated levels of lactase (76%), sucrase (46%), maltase (25%), trehalase (38%), alkaline phosphatase (57%), and leucine aminopeptidase (56%) up to 21 days of postnatal age in diabetic group compared with controls. However, in 30- to 45-day-old animals, the enzyme levels were either reduced in diabetic group or there was no change compared with controls. Western blot analysis corroborated the enzyme analysis data in purified brush borders. Also, 45 days after birth, the intestinal uptake of D-glucose and glycine was significantly high (30%-61%) in pups from diabetic dams compared with controls. These findings indicate that alloxan-induced maternal diabetes influences the postnatal development of intestine and the expression of various brush border enzymes and transport functions in rat intestine. This could affect the growth and development of the offspring during the postnatal period.

  4. Building barriers.

    Science.gov (United States)

    Turksen, Kursad

    2017-10-02

    Formation of tissue barriers starts in early development where it is critical for normal cell fate selection, differentiation and organogenesis. Barrier maintenance is critical to the ongoing function of organs during adulthood and aging. Dysfunctional tissue barrier formation and function at any stage of the organismal life cycle underlies many disease states.

  5. Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis.

    Science.gov (United States)

    Yoshida, Kazue; Yokouchi, Mariko; Nagao, Keisuke; Ishii, Ken; Amagai, Masayuki; Kubo, Akiharu

    2013-08-01

    Mammalian epidermis has two diffusion barriers, the stratum corneum (SC) and tight junctions (TJs). We reported previously that a single living cell layer exists between the SC and TJ-forming keratinocytes in mice; however, the exact location of the TJ barrier in human epidermis has not been defined. To investigate the precise distribution of epidermal TJs in relation to various cell-cell junction proteins and the SC and to clarify the barrier function of TJs against macromolecules in human skin. The localization of various junctional proteins was investigated in human skin sections and in the roofs of bullae formed by ex vivo exfoliative toxin (ET) treatment in three dimensions. ET and single-chain variable fragments (scFv) against desmoglein 1 were used as large diffusion probes. Human stratum granulosum (SG) cells have a distinct distribution of TJ, adherens junction, and desmosome proteins in the uppermost three layers (SG1-SG3 from the surface inward). Ex vivo injection of ET or scFv demonstrated that only SG2-SG2 junctions function as a TJ barrier, limiting the inside-out diffusion of these proteins. The roofs of bullae formed by ex vivo ET treatment consisted of SC, SG1 cells, and TJ-forming SG2 cells, probably mimicking bulla formation in bullous impetigo. Human epidermis has three SG cell layers with distinct properties just beneath the SC, of which only SG2 cells have functional TJs. Our results suggest that human epidermal TJs between SG2 cells form a paracellular diffusion barrier against soluble proteins, including immunoglobulins and bacterial toxins. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... was to investigate the functional and molecular expression of BK in the eel intestine, which is a useful experimental model for cell volume regulation research. In the present paper using rat BK channel-specific primer, a RT-PCR signal of 696 pb cDNA was detected in eel intestine, whole nucleotide sequence showed...... high similarity (83%) to the alpha subunit of BK channel family. BK channel protein expression was verified by immunoblotting and confocal microscopy, while the functional role of BK channels in epithelial ion transport mechanisms and cell volume regulation was examined by electrophysiological...

  7. Diet-Dependent Effects of Minimal Enteral Nutrition on Intestinal Function and Necrotizing Enterocolitis in Preterm Pigs

    DEFF Research Database (Denmark)

    Cilieborg, Malene Skovsted; Boye, Mette; Thymann, Thomas

    2011-01-01

    Background: A rapid advance in enteral feeding is associated with necrotizing enterocolitis (NEC) in preterm infants. Therefore, minimal enteral nutrition (MEN) combined with parenteral nutrition (PN) is common clinical practice, but the effects on NEC and intestinal function remain poorly...... characterized. It was hypothesized that a commonly used MEN feeding volume (16-24 mL/kg/d) prevents NEC and improves intestinal structure, function, and microbiology in preterm pigs. Methods: After preterm birth pigs were stratified into 4 nutrition intervention groups that received the following treatments: (1......) PN followed by full enteral formula feeding (OF group, n = 12); (2) PN supplemented with formula MEN and followed by full formula feeding (FF, n = 12); (3) PN plus colostrum MEN followed by formula feeding (CF, n = 12); (4) PN plus colostrum MEN followed by colostrum feeding (CC, n = 10). Results...

  8. Epidermal permeability barrier function and sphingolipid content in the skin of sphingomyelin synthase 2 deficient mice.

    Science.gov (United States)

    Nomoto, Koji; Itaya, Yurina; Watanabe, Ken; Yamashita, Tadashi; Okazaki, Toshiro; Tokudome, Yoshihiro

    2018-01-17

    Sphingomyelin synthase (SMS) is an enzyme that generates sphingomyelin (SM) from ceramide (CER) and phosphatidylcholine. SM in the epidermis is a precursor of CER, an important lipid for epidermal permeability barrier function. However, the physiological role of SMS in skin is unclear. To uncover the function of SMS in skin, we investigated sphingolipid metabolism enzyme activity in skin, SM content in the epidermis, CER content in the stratum corneum (SC) and transepidermal water loss (TEWL) as an indicator of barrier function in SMS2-knockout (KO) mice. The activities of sphingolipid metabolism enzymes in skin homogenates were measured using a fluorescently labelled substrate. Enzymatic reaction products were detected by high-performance liquid chromatography (HPLC). Lipids in the epidermis or SC were extracted and quantified by high-performance thin layer chromatography (HPTLC). TEWL was measured using a Tewameter TM300. In SMS2-KO mice, SMS activity in skin homogenates, epidermal SM content and SC CER content were significantly decreased relative to wild-type (WT) mice. The TEWL of SMS2-KO mice was significantly increased compared to WT mice. Our data indicate that SMS2 generates SM in the epidermis and contributes to epidermal permeability barrier function and will support understanding of SM-related metabolic disorders. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon

    Science.gov (United States)

    Buettner, Manuela; Lochner, Matthias

    2016-01-01

    The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation. PMID

  10. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon.

    Science.gov (United States)

    Buettner, Manuela; Lochner, Matthias

    2016-01-01

    The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer's patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.

  11. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon

    Directory of Open Access Journals (Sweden)

    Manuela Buettner

    2016-09-01

    Full Text Available The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP in the small intestine and their colonic counterparts that develop in a programmed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT. In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP to large, mature isolated lymphoid follicles (ILF. Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi cells and the requirement for lymphotoxin beta (LTβ receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO. While so far it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.

  12. Internal resistor of multi-functional tunnel barrier for selectivity and switching uniformity in resistive random access memory.

    Science.gov (United States)

    Lee, Sangheon; Woo, Jiyong; Lee, Daeseok; Cha, Euijun; Hwang, Hyunsang

    2014-01-01

    In this research, we analyzed the multi-functional role of a tunnel barrier that can be integrated in devices. This tunnel barrier, acting as an internal resistor, changes its resistance with applied bias. Therefore, the current flow in the devices can be controlled by a tunneling mechanism that modifies the tunnel barrier thickness for non-linearity and switching uniformity of devices. When a device is in a low-resistance state, the tunnel barrier controls the current behavior of the device because most of the bias is applied to the tunnel barrier owing to its higher resistance. Furthermore, the tunnel barrier induces uniform filament formation during set operation with the tunnel barrier controlling the current flow.

  13. Symptoms of Functional Intestinal Disorders Are Common in Patients with Celiac Disease Following Transition to a Gluten-Free Diet.

    Science.gov (United States)

    Silvester, Jocelyn A; Graff, Lesley A; Rigaux, Lisa; Bernstein, Charles N; Leffler, Daniel A; Kelly, Ciarán P; Walker, John R; Duerksen, Donald R

    2017-09-01

    Celiac disease and functional intestinal disorders may overlap, yet the natural history of functional symptoms in patients with celiac disease is unknown. To investigate the prevalence of irritable bowel syndrome (IBS), functional dyspepsia (FD), and functional bloating (FB) symptoms among patients with celiac disease at diagnosis and during the first year of a gluten-free diet. Adults with a new diagnosis of celiac disease were surveyed at baseline, 6 months and 1 year using standardized measures for intestinal symptoms [Rome III diagnostic questionnaire and celiac symptom index (CSI)] and gluten-free diet adherence [gluten-free eating assessment tool (GF-EAT) and celiac diet adherence test]. At diagnosis, two-thirds fulfilled Rome III diagnostic questionnaire symptom criteria for IBS (52%), functional dyspepsia (27%), and/or functional bloating (9%). One year post-diagnosis, there was high adherence to a gluten-free diet as 93% reported gluten exposure less than once per month on the GF-EAT and only 8% had ongoing celiac disease symptoms (CSI score >45). The rates of those meeting IBS (22%) and functional dyspepsia (8%) symptom criteria both decreased significantly on a gluten-free diet. The prevalence of functional symptoms (any of IBS, FD or FB) at 1 year was 47%. Long-term follow-up of patients with celiac disease is necessary because many patients with celiac disease who are adherent to a gluten-free diet have persistent gastrointestinal symptoms.

  14. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function.

    Science.gov (United States)

    Nasser, Yasmin; Fernandez, Ester; Keenan, Catherine M; Ho, Winnie; Oland, Lorraine D; Tibbles, Lee Anne; Schemann, Michael; MacNaughton, Wallace K; Rühl, Anne; Sharkey, Keith A

    2006-11-01

    The role of enteric glia in gastrointestinal physiology remains largely unexplored. We examined the actions of the gliotoxin fluorocitrate (FC) on intestinal motility, secretion, and inflammation after assessing its efficacy and specificity in vitro. FC (100 microM) caused a significant decrease in the phosphorylation of the glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diaz-4-yl)amino]-2-deoxyglucose in enteric glial cultures and a reduction in glial uptake of the fluorescent dipeptide Ala-Lys-7-amino-4-methylcoumarin-3-acetic acid in both the ileum and colon. Dipeptide uptake by resident murine macrophages or guinea pig myenteric neurons was unaffected by FC. Incubation of isolated guinea pig ileal segments with FC caused a specific and significant increase in glial expression of the phosphorylated form of ERK-1/2. Disruption of enteric glial function with FC in mice reduced small intestinal motility in vitro, including a significant decrease in basal tone and the amplitude of contractility in response to electrical field stimulation. Mice treated with 10 or 20 micromol/kg FC twice daily for 7 days demonstrated a concentration-dependent decrease in small intestinal transit. In contrast, no changes in colonic transit or ion transport in vitro were observed. There were no changes in glial or neuronal morphology, any signs of inflammation in the FC-treated mice, or any change in the number of myenteric nitric oxide synthase-expressing neurons. We conclude that FC treatment causes enteric glial dysfunction, without causing intestinal inflammation. Our data suggest that enteric glia are involved in the modulation of enteric neural circuits underlying the regulation of intestinal motility.

  15. Simulations of Skin Barrier Function: Free Energies of Hydrophobic and Hydrophilic Transmembrane Pores in Ceramide Bilayers

    OpenAIRE

    Notman, Rebecca; Anwar, Jamshed; Briels, W. J.; Noro, Massimo G.; den Otter, Wouter K.

    2008-01-01

    Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel pha...

  16. The effect of probiotic fermented milk and inulin on the functions and microecology of the intestine.

    Science.gov (United States)

    Sairanen, Ulla; Piirainen, Laura; Gråsten, Soile; Tompuri, Tuomo; Mättö, Jaana; Saarela, Maria; Korpela, Riitta

    2007-08-01

    We investigated the effects of a probiotic fermented milk and inulin on gastrointestinal function and microecology. The study was double-blinded and comprised 66 healthy adults (22 male, 44 female), mean age 40 years (range, 22-60 years). After a 12-d baseline period the subjects were randomized to consume, for 3 weeks, 3x200 ml daily of either (1) a fermented milk with probiotics (Bifidobacterium longum BB536, Bifidobacterium spp. 420 and Lactobacillus acidophilus 145), (2) a fermented milk with the same probiotics plus 4 g inulin, or (3) a control fermented milk. During the last 7 d of the baseline and the intervention periods, the subjects kept a record of their defaecation frequency and gastrointestinal symptoms, and collected all their faeces. Intestinal transit time, stool weight and faecal enzyme activities were measured. Thirty-nine subjects were randomized to give faecal samples for analysis of pH and microbes, including lactobacilli, bifidobacteria, coliforms, Escherichia coli, Bacteroides and Clostridium perfringens. Consumption of fermented milk with probiotics or with probiotics and inulin increased the faecal number of lactobacilli (P=0.009, P=0.003) and bifidobacteria (P=0.046, P=0.038) compared with the baseline. Compared with the control fermented milk, both active products increased lactobacilli (P=0.005, ANCOVA). Subjects consuming fermented milk with probiotics and inulin suffered from gastrointestinal symptoms, especially flatulence, more than the others (Pprobiotic fermented milk product had a positive effect by increasing the number of lactobacilli and bifidobacteria in the colon. Inulin did not alter this effect but it increased gastrointestinal symptoms.

  17. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function.

    Science.gov (United States)

    Xiao, H; Tan, B E; Wu, M M; Yin, Y L; Li, T J; Yuan, D X; Li, L

    2013-10-01

    Deoxynivalenol (DON) affects animal and human health and targets the gastrointestinal tract. The objective of this study was to evaluate the ability of composite antimicrobial peptides (CAP) to repair intestinal injury in piglets challenged with DON. A total of 28 piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% composite antimicrobial peptide (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 mg/kg DON + 0.4% CAP (DON + CAP). After an adaptation period of 7 d, blood samples were collected on d 15 and 30 after the initiation of treatment for determinations of the concentrations of D-lactate and diamine oxidase. At the end of the study, all piglets were slaughtered to obtain small intestines for the determination of intestinal morphology, epithelial cell proliferation, and protein expression in the mammalian target of rapamycin (mTOR) signaling pathway. The results showed that DON increased serum concentrations of D-lactate and diamine oxidase, and these values in the CAP and DON + CAP treatments were less than those in the NC and DON treatments, respectively (P morphology and promoted intestinal epithelial cell proliferation and protein synthesis, indicating that CAP may repair the intestinal injury induced by DON.

  18. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze

    2011-01-01

    Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an in......Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along...... with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41......%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally...

  19. Intestinal Development and Function of Broiler Chickens on Diets Supplemented with Clinoptilolite

    Directory of Open Access Journals (Sweden)

    Q. J. Wu

    2013-07-01

    Full Text Available The purpose of this study was to evaluate the effect of natural clinoptilolite (NCLI and modified clinoptilolite (MCLI on broiler performance, gut morphology, intestinal length and weight, and gut digestive enzyme activity. A total of 240 d-old male chicks were randomly assigned to 3 treatments, each of which comprised 8 pens of 10 chicks per pen. Birds in the control group were fed the basal diet, while those in the experimental groups were fed diets supplemented with NCLI at 2% (NCLI group, or MCLI at 2% (MCLI group, respectively, for 42 d. Compared with the control, supplementation with NCLI or MCLI had no significant (p>0.05 effects on productive parameters from d 1 to 42. Supplementation with NCLI or MCLI had no influence on the relative length and weight of small intestine at d 1 to 21. But supplementation with NCLI or MCLI significantly reduced the relative weight of duodenum. Supplementation with MCLI and NCLI was associated with greater (p0.05 influence on the crypt depth in the jejunal and ileal mucosa compared with those in the controls. The addition of either NCLI or MCLI to the diet improved the activities of total protease, and amylase in the small intestinal contents. In conclusion, supplementation with NCLI or MCLI in diets improved intestinal morphology, increased the intestinal length and weigh and gut digestive enzyme activity.

  20. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1993-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers

  1. Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers.

    Science.gov (United States)

    Notman, Rebecca; Anwar, Jamshed; Briels, W J; Noro, Massimo G; den Otter, Wouter K

    2008-11-15

    Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.

  2. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to polydextrose and changes in bowel function (ID 784), changes in short chain fatty acid (SCFA) production and/or pH in the gastro-intestinal tract (ID 784), decreasing, potentially pathogenic gastro-intestinal microorganisms (ID 785) and reduction of gastro-intestinal discomfort (ID 784) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to polydextrose and changes in bowel function, changes in short chain fatty acid (SCFA) production and/or pH in the gastro-intestinal tract, decreasing potentially pathogenic gastro-intestinal microorganisms and reduction of gastro-intestinal discomfort. The scientific substantiation...

  3. Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction.

    Directory of Open Access Journals (Sweden)

    Johan Dicksved

    Full Text Available Treatment with the probiotic bacterium Lactobacillus reuteri has been shown to prevent dextran sodium sulfate (DSS-induced colitis in rats. This is partly due to reduced P-selectin-dependent leukocyte- and platelet-endothelial cell interactions, however, the mechanism behind this protective effect is still unknown. In the present study a combination of culture dependent and molecular based T-RFLP profiling was used to investigate the influence of L. reuteri on the colonic mucosal barrier of DSS treated rats. It was first demonstrated that the two colonic mucus layers of control animals had different bacterial community composition and that fewer bacteria resided in the firmly adherent layer. During DSS induced colitis, the number of bacteria in the inner firmly adherent mucus layer increased and bacterial composition of the two layers no longer differed. In addition, induction of colitis dramatically altered the microbial composition in both firmly and loosely adherent mucus layers. Despite protecting against colitis, treatment with L. reuteri did not improve the integrity of the mucus layer or prevent distortion of the mucus microbiota caused by DSS. However, L. reuteri decreased the bacterial translocation from the intestine to mesenteric lymph nodes during DSS treatment, which might be an important part of the mechanisms by which L. reuteri ameliorates DSS induced colitis.

  4. Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function

    DEFF Research Database (Denmark)

    Galluser, M; Belkhou, R; Freund, J N

    1991-01-01

    this process. These results indicate that intestinal hydrolases respond non-coordinately to long-term food deprivation. In addition, the thyroid status of the animals has a direct influence on the adaptation of several brush border hydrolases to starvation. This suggests that the drop in plasma thyroid...... hormones during fasting allows a better maintenance of protein content and of hydrolase activities in the brush border membranes of the small intestine. These adaptive processes seemed to be partly controlled at a post-transcriptional level....

  5. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration.

    Science.gov (United States)

    Ude, Victor C; Brown, David M; Viale, Luca; Kanase, Nilesh; Stone, Vicki; Johnston, Helinor J

    2017-08-23

    Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact. Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 μg/cm 2 Cu (equivalent to 1.95 to 250 μg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 μg/cm 2 for CuO NMs, and 4.25 μg/cm 2 for copper sulphate (CuSO 4 ), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO 4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO 4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO 4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (P app ); a measure of barrier permeability to CuO NMs. For all experiments, CuSO 4 was used as an ionic control. CuO NMs and CuSO 4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO 4

  6. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    Science.gov (United States)

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.

  7. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    Directory of Open Access Journals (Sweden)

    Shimon Bershtein

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR, with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90% in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM, correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the

  8. Abdominal γ-Radiation Induces an Accumulation of Function-Impaired Regulatory T Cells in the Small Intestine

    International Nuclear Information System (INIS)

    Billiard, Fabienne; Buard, Valerie; Benderitter, Marc; Linard, Christine

    2011-01-01

    Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4 + FoxP3 + regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of γ-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4 + effector cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-β, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-β), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3 + CD4 + Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.

  9. Improvement in Human Immune Function with Changes in Intestinal Microbiota by Salacia reticulata Extract Ingestion: A Randomized Placebo-Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Yuriko Oda

    Full Text Available Plants belonging to the genus Salacia in the Hippocrateaceae family are known to inhibit sugar absorption. In a previous study, administration of Salacia reticulata extract in rats altered the intestinal microbiota and increased expression of immune-relevant genes in small intestinal epithelial cells. This study aimed to investigate the effect of S. reticulata extract in human subjects by examining the gene expression profiles of blood cells, immunological indices, and intestinal microbiota. The results revealed an improvement in T-cell proliferation activity and some other immunological indices. In addition, the intestinal microbiota changed, with an increase in Bifidobacterium and a decrease in Clostridium bacteria. The expression levels of many immune-relevant genes were altered in blood cells. We concluded that S. reticulata extract ingestion in humans improved immune functions and changed the intestinal microbiota.UMIN Clinical Trials Registry UMIN000011732.

  10. Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers.

    Science.gov (United States)

    Pederzolli, Rae-Leigh A; Van Kessel, Andrew G; Campbell, John; Hendrick, Steve; Wood, Katie M; Penner, Gregory B

    2018-02-15

    -cell junction protein 1 were greater in the jejunum than CON. An acute RA challenge decreased pH in the rumen and large intestine but did not increase tissue permeability due to increases in the expression of genes related to barrier function within 1 d of the challenge. Steers exposed to LFI for 5 d had reduced ruminal SCFA concentrations, smaller ruminal papillae dimensions, and increased tissue permeability in the proximal and distal colon despite increases for genes related to barrier function and immune function.

  11. Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Selina Beasley

    2014-01-01

    Full Text Available We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR. Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose on caspase-14 expression in human RPE (ARPE-19 cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose. We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER. These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema.

  12. Generation of EST and Microarray Resources for Functional Genomic Studies on Chicken Intestinal Health

    NARCIS (Netherlands)

    Hemert, van S.; Ebbelaar, B.H.; Smits, M.A.; Rebel, J.M.J.

    2003-01-01

    Expressed sequenced tags (ESTs) and microarray resources have a great impact on the ability to study host response in mice and humans. Unfortunately, these resources are not yet available for domestic farm animals. The aim of this study was to provide genomic resources to study chicken intestinal

  13. Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants

    NARCIS (Netherlands)

    Zwittink, Romy D.; van Zoeren-Grobben, Diny; Martin, Rocio; van Lingen, Richard A.; Groot Jebbink, Liesbeth J.; Boeren, Sjef; Renes, Ingrid B.; van Elburg, Ruurd M.; Belzer, Clara; Knol, Jan

    2017-01-01

    Development of the gastrointestinal tract and immune system can be modulated by the gut microbiota. Establishment of the intestinal microbiota, in its turn, is affected by host and environmental factors. As such, development of the gut microbiota is greatly impacted in preterm infants, who have an

  14. Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants

    NARCIS (Netherlands)

    Zwittink, Romy D.; Zoeren-Grobben, Van Diny; Martin, Rocio; Lingen, Van Richard A.; Groot Jebbink, Liesbeth J.; Boeren, Sjef; Renes, Ingrid B.; Elburg, Van Ruurd M.; Belzer, Clara; Knol, Jan

    2017-01-01

    Objective: Development of the gastrointestinal tract and immune system can be modulated by the gut microbiota. Establishment of the intestinal microbiota, in its turn, is affected by host and environmental factors. As such, development of the gut microbiota is greatly impacted in preterm infants,

  15. Probiotic yogurt in the elderly with intestinal bacterial overgrowth: endotoxaemia and innate immune functions

    DEFF Research Database (Denmark)

    Schiffrin, E.J.; Parlesak, Alexandr; Bode, C.

    2009-01-01

    A study was conducted in healthy elderly living independently in senior housing to assess the impact of a probiotic yoghurt supplement on small intestinal bacterial overgrowth. Twenty-three participants with positive and thirteen participants with negative hydrogen breath test were studied before...

  16. Functional Impairments at School Age of Children With Necrotizing Enterocolitis or Spontaneous Intestinal Perforation

    NARCIS (Netherlands)

    Roze, Elise; Ta, B.D.; van der Ree, Meike H.; Tanis, Jozien C.; van Braeckel, Koenraad N. J. A.; Hulscher, Jan B. F.; Bos, Arend F.

    2011-01-01

    We aimed to determine motor, cognitive, and behavioral outcome at school age of children who had either necrotizing enterocolitis (NEC) or spontaneous intestinal perforation (SIP). This case-control study included infants with NEC Bell's stage IIA onward, infants with SIP, and matched controls

  17. Methods to assess Myc function in intestinal homeostasis, regeneration, and tumorigenesis

    NARCIS (Netherlands)

    Huels, David J.; Cammareri, Patrizia; Ridgway, Rachel A.; Medema, Jan P.; Sansom, Owen J.

    2013-01-01

    Within the intestinal epithelium, c-Myc has been characterized as a target of β-catenin-TCF signalling (He et al., Science 281:1509-1512, 1998). Given the most commonly mutated tumor suppressor gene within colorectal cancer (CRC) is the APC (Adenomatous Polyposis Coli) gene, a negative regulator of

  18. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Heegaard, Peter M. H.; Thymann, Thomas

    2014-01-01

    , abundance and location of bacteria, and inflammation markers were investigated. Results NEC severity and interleukins (IL)-1β and -8 protein concentrations were lower, while villus height, galactose absorption, and brush-border enzyme activities were increased in the distal small intestine in COLOS...

  19. Expression of CD45RB functionally distinguishes intestinal T lymphocytes in inflammatory bowel disease.

    NARCIS (Netherlands)

    Hove, T. ten; The Olle, F.; Berkhout, M.; Bruggeman, J.P.; Vyth-Dreese, F.A.; Slors, J.F.M.; Deventer, S.J.H. van; Velde, A.A. te

    2004-01-01

    The importance of CD45RB expression on T cells was already shown in mice where CD45RB(high) expression determines pathogenic potential. In this study, we analyzed the expression of CD45RA, CD45RB, and CD45RO on CD4(+) T lymphocytes in the intestinal mucosa and in the circulation of patients with

  20. Expression of CD45RB functionally distinguishes intestinal T lymphocytes in inflammatory bowel disease

    NARCIS (Netherlands)

    ten Hove, Tessa; The Olle, F.; Berkhout, Marloes; Bruggeman, Joost P.; Vyth-Dreese, Florry A.; Slors, J. Frederik M.; van Deventer, Sander J. H.; te Velde, Anje A.

    2004-01-01

    The importance of CD45RB expression on T cells was already shown in mice where CD45RB(high) expression determines pathogenic potential. In this study, we analyzed the expression of CD45RA, CD45RB, and CD45RO on CD4(+) T lymphocytes in the intestinal mucosa and in the circulation of patients with

  1. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4......-5 weeks post conception, are between brain and embryonic cerebrospinal fluid (eCSF) and between outer surface of brain anlage and primary meninx. They already exclude α-fetoprotein and are immunopositive for both claudins, ABCC1 and ABCG2. ABCB1 is detectable within a week of blood vessels first...

  2. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update

    Directory of Open Access Journals (Sweden)

    Venkata Subba Rao Atluri

    2015-06-01

    Full Text Available The blood-brain barrier (BBB is a diffusion barrier and has an important role in maintaining a precisely regulated microenvironment and protects the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV infection in the Central Nervous System (CNS is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART, resulting in neurological complications in many of the infected patients. Macrophages/microglia and astrocytes (in low levels are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins released on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders.

  3. Study of high temperature oxidation of duplex and functionally graded materials of thermal barrier coating (FGM TBC)

    International Nuclear Information System (INIS)

    Saeedi, B.; Sabour, A. R.; Khodami, A. M.

    2008-01-01

    Although the number and the severity of thermal barrier coatings applications on hot section components have dramatically increased in the past decade, premature spallation failure of thermal barrier coatings , due to mismatch of thermal expansion at the metal/ceramic interface of the two coating layers, during service is still an overriding concern. Therefore, functionally graded materials with a gradual compositional variation have been introduced. In this study, comparison of properties of two different types of thermal barrier coatings was made to improve the surface characteristics on high temperature components. These thermal barrier coatings consisted of a duplex thermal barrier coatings and a five layered functionally graded thermal barrier coatings . In both coatings, Yttria partially stabilized Zirconia topcoat was deposited by air plasma spraying and Ni Cr Al Y bond coat was deposited by high velocity oxy fuel spraying. In functionally graded materials coating, functionally graded layer was sprayed by air plasma process by varying the feeding ratio of YSZ/Ni Cr Al Y powders using two separate powder feeders. Then, isothermal oxidation was carried out at 950 d eg C in atmosphere to obtain the plot of mass change vs. time to study oxidation kinetic. Microstructural and compositional changes of coating, oxides formed during service were examined by optical microscope and scanning electron microscopy with EDS. functionally graded materials coating failed after 2100 h and duplex coating failed after 1700 h. Finally, it was found that functionally graded materials coating is more qualified than duplex thermal barrier coatings and stands for a longer time

  4. Short bowel patients treated for two years with glucagon-like Peptide 2: effects on intestinal morphology and absorption, renal function, bone and body composition, and muscle function

    DEFF Research Database (Denmark)

    Jeppesen, P B; Lund, P; Gottschalck, I B

    2009-01-01

    demonstrated in energy intake or absorption, and GLP-2 did not significantly affect mucosal morphology, body composition, bone mineral density or muscle function. CONCLUSIONS: GLP-2 treatment reduces fecal weight by approximately 1000 g/d and enables SBS patients to maintain their intestinal fluid......BACKGROUND AND AIMS: In a short-term study, Glucagon-like peptide 2 (GLP-2) has been shown to improve intestinal absorption in short bowel syndrome (SBS) patients. This study describes longitudinal changes in relation to GLP-2 treatment for two years. METHODS: GLP-2, 400 micrograms, s.c.,TID, were...... and bone mineral density (by DEXA), biochemical markers of bone turnover (by s-CTX and osteocalcin, PTH and vitamin D), and muscle function (NMR, lungfunction, exercise test) were measured. RESULTS: GLP-2 compliance was >93%. Three of eleven patients did not complete the study. In the remaining 8 patients...

  5. Pathophysiology of increased intestinal permeability in obstructive jaundice

    Science.gov (United States)

    Assimakopoulos, Stelios F; Scopa, Chrisoula D; Vagianos, Constantine E

    2007-01-01

    Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome. PMID:18161914

  6. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products

    Directory of Open Access Journals (Sweden)

    Dan T. Kho

    2017-09-01

    Full Text Available Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies. Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  7. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  8. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    in the control of erection. Vasoactive intestinal polypeptide has been suggested as a causative factor in some diseases of the genital organs (e.g., it may play a pathophysiologic role in male impotence and the peptide is currently used in the treatment of this condition). Vasoactive intestinal polypeptide may...... be important for control of the low resistance in the fetomaternal vascular bed and is therefore a putative factor involved in the development of preeclampsia. The therapeutic potential of vasoactive intestinal polypeptide and future agonists and antagonists will be revealed by ongoing and forthcoming studies....

  9. Effect of cheese on intestinal transit time and other indicators of bowel function in residents of a retirement home.

    Science.gov (United States)

    Mykkänen, H M; Karhunen, L J; Korpela, R; Salminen, S

    1994-01-01

    Effects of increased intake of cheese on intestinal transit time and other indicators of bowel function were studied in 21 retirement home residents (18 women and 3 men; age, 68-87 years). The study was divided into four succeeding periods: 1) 1-week basal period (usual diet); 2)3-week cheese period (extra cheese was offered as such on bread or used in cooking); 3) 3-week no-cheese period (all cheese on bread was replaced with cured meats and cold cuts, and no cheese was used in cooking); 4) 3-week follow-up period (usual diet). During the last week of each period a questionnaire was filled out on fecal frequencies, consistency of feces (soft, normal, hard), and occurrence of abdominal pain and flatulence. Use of laxative medications and therapeutic foods (prunes) was registered. Eleven of the 21 subjects collected fecal samples for the determination of fecal wet weight and intestinal transit time by means of radiopaque Sitzmark capsules. Intakes of cheese, fiber-containing foods, and fluids by these 11 subjects during meals offered in the cafeteria were recorded on a prefilled questionnaire. In spite of a 10-fold increase in the intake of cheese no change in intestinal transit time, fecal frequency, fecal wet weight, consistency of feces, and occurrence of gastrointestinal symptoms was observed. The use of laxative medication was higher during the cheese period, but no change in the combined use of laxative medication and therapeutic foods (prunes) was observed.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Lamprecht Manfred

    2012-09-01

    Full Text Available Abstract Background Probiotics are an upcoming group of nutraceuticals claiming positive effects on athlete’s gut health, redox biology and immunity but there is lack of evidence to support these statements. Methods We conducted a randomized, double-blinded, placebo controlled trial to observe effects of probiotic supplementation on markers of intestinal barrier, oxidation and inflammation, at rest and after intense exercise. 23 trained men received multi-species probiotics (1010 CFU/day, Ecologic®Performance or OMNi-BiOTiC®POWER, n = 11 or placebo (n = 12 for 14 weeks and performed an intense cycle ergometry over 90 minutes at baseline and after 14 weeks. Zonulin and α1-antitrypsin were measured from feces to estimate gut leakage at baseline and at the end of treatment. Venous blood was collected at baseline and after 14 weeks, before and immediately post exercise, to determine carbonyl proteins (CP, malondialdehyde (MDA, total oxidation status of lipids (TOS, tumor necrosis factor-alpha (TNF-α, and interleukin-6 (IL-6. Statistical analysis used multifactorial analysis of variance (ANOVA. Level of significance was set at p  Results Zonulin decreased with supplementation from values slightly above normal into normal ranges ( 0.1. CP increased significantly from pre to post exercise in both groups at baseline and in the placebo group after 14 weeks of treatment (p = 0.006. After 14 weeks, CP concentrations were tendentially lower with probiotics (p = 0.061. TOS was slightly increased above normal in both groups, at baseline and after 14 weeks of treatment. There was no effect of supplementation or exercise on TOS. At baseline, both groups showed considerably higher TNF-α concentrations than normal. After 14 weeks TNF-α was tendentially lower in the supplemented group (p = 0.054. IL-6 increased significantly from pre to post exercise in both groups (p = 0.001, but supplementation had no effect. MDA

  11. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders.

    Science.gov (United States)

    Elias, Peter M; Williams, Mary L; Feingold, Kenneth R

    2012-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a "best attempt" by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  12. Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders☆

    Science.gov (United States)

    Elias, Peter M.; Williams, Mary L.; Feingold, Kenneth R.

    2013-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a “best attempt” by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  13. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    Science.gov (United States)

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  14. Effect of White Kidney Beans (Phaseolus vulgaris L. var. Beldia) on Small Intestine Morphology and Function in Wistar Rats.

    Science.gov (United States)

    Nciri, Nader; Cho, Namjun; Bergaoui, Nacef; El Mhamdi, Faiçal; Ben Ammar, Aouatef; Trabelsi, Najoua; Zekri, Sami; Guémira, Fathi; Ben Mansour, Abderraouf; Sassi, Fayçal Haj; Ben Aissa-Fennira, Fatma

    2015-12-01

    The chronic ingestion of raw or undercooked kidney beans (Phaseolus vulgaris L.) causes functional and morphological derangement in various tissues. The major objectives of this study were to investigate the gavage effects of a raw Beldia bean variety that is widely consumed in Tunisia, on the small intestine morphology and jejunal absorption of water, electrolytes, and glucose in Wistar rats. Twenty young male rats were randomly divided into two groups of 10 rats. The first group served as the control and was gavaged with 300 mg of a rodent pellet flour suspension (RPFS), whereas the second experimental group was challenged with 300 mg of a Beldia bean flour suspension (BBFS) for 10 days. Histological studies were performed using light and electron microcopy. The intestinal transport of water, sodium, potassium, and glucose was studied by perfusing the jejunal loops of the small bowels in vivo. The feeding experiments indicated that BBFS did not affect weight gain. Histomorphometric analyses showed that the villus heights, crypt depths, and crypt/villus ratios in the jejunum and ileum were greater in the BBFS-fed rats than controls. Electron microscopy studies demonstrated that the rats exposed to RPFS exhibited intact intestinal tracts; however, the BBFS-treated rats demonstrated intestinal alterations characterized by abnormal microvillus architectures, with short and dense or long and slender features, in addition to the sparse presence of vesicles near the brush border membrane. BBFS administration did not significantly affect glucose absorption. However, significant decreases were observed in water and electrolyte absorption compared with the uptake of the controls. In conclusion, raw Beldia beans distorted jejunum morphology and disturbed hydroelectrolytic flux.

  15. Plasma ghrelin level and plasma ghrelin/obestatin ratio are related to intestinal metaplasia in elderly patients with functional dyspepsia.

    Directory of Open Access Journals (Sweden)

    Su Hwan Kim

    Full Text Available Whether plasma ghrelin/obestatin levels are associated with Helicobacter pylori (H. pylori infection, subtypes of functional dyspepsia (FD, and gastric mucosal histology has not yet been established in elderly patients.The aim of this study was to determine whether plasma ghrelin and obestatin levels are related to gastric mucosal histology, H. pylori infection, and FD subtypes in elderly patients with FD.Ninety-two patients diagnosed with FD and older than 60 years (median age 69.4; range 60-88 were included. Clinical symptoms investigated included postprandial fullness, epigastric pain, epigastric soreness, nausea, and vomiting. According to the Rome III criteria, patients diagnosed with FD were divided into two subtypes: epigastric pain syndrome (EPS and postprandial distress syndrome (PDS. Plasma ghrelin and obestatin levels were measured using enzyme immunoassay, and histological examination of gastric mucosa was performed. H. pylori infection was determined by histopathological examination of gastric mucosal biopsy and/or Campylobacter-like organism test.In our study, plasma ghrelin levels and plasma ghrelin/obestatin (G/O ratio were significantly lower in subjects with intestinal metaplasia compared with those without intestinal metaplasia (ghrelin, p = 0.010; G/O ratio, p = 0.012. On the other hand, there were no significant differences in plasma ghrelin and obestatin levels between H. pylori-positive and H. pylori-negative groups. (ghrelin, p = 0.130; obestatin, p = 0.888. Similarly, no significant differences were detected between the EPS and PDS groups (ghrelin, p = 0.238; obestatin, p = 0.710.Patients with intestinal metaplasia, a known precursor of gastric cancer, had significantly less plasma ghrelin levels and G/O ratio than those without intestinal metaplasia.

  16. Combined Blockade of the Histamine H1 and H4 Receptor Suppresses Peanut-Induced Intestinal Anaphylaxis by Regulating Dendritic Cell Function

    Science.gov (United States)

    Wang, Meiqin; Han, Junyan; Domenico, Joanne; Shin, Yoo Seob; Jia, Yi; Gelfand, Erwin W.

    2016-01-01

    Background Signaling through histamine receptors on dendritic cells (DCs) may be involved in the effector phase of peanut-induced intestinal anaphylaxis. Objectives To determine the role of histamine H1 (H1R) and H4 receptors (H4R) in intestinal allergic responses in a model of peanut allergy. Methods Balb/c mice were sensitized and challenged to peanut. During the challenge phase, mice were treated orally with the H1R antagonist, loratadine, and/or the H4R antagonist, JNJ7777120. Bone marrow-derived DCs (BMDCs) were adoptively transferred to non-sensitized WT mice. Symptoms, intestinal inflammation, mesenteric lymph node and intestine mucosal DCs were assessed. Effects of the drugs on DC chemotaxis, calcium mobilization, and antigen-presenting cell function were measured. Results Treatment with loratadine or JNJ7777120 individually partially suppressed development of diarrhea and intestinal inflammation and decreased the numbers of DCs in the mesenteric lymph nodes and lamina propria. Combined treatment with both drugs prevented development of diarrhea and intestinal inflammation. In vitro, the combination suppressed DC antigen presenting cell function to T helper cells and DC calcium mobilization and chemotaxis to histamine. Conclusion Blockade of both H1R and H4R in the challenge phase had additive effects in preventing the intestinal consequences of peanut sensitization and challenge. These effects were mediated through limitation of mesenteric lymph node and intestinal DC accumulation and function. Identification of this histamine-H1R/H4R-DC-CD4+ T cell axis provides new insights into the development of peanut-induced intestinal allergic responses and for prevention and treatment of peanut allergy. PMID:27059534

  17. The role of barrier function of mucous membranes in allergic diseases and sublingual allergen-specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Oksana M. Kurbacheva

    2017-01-01

    Full Text Available Currently one of the factors of allergy predisposition is the increase in barrier permeability of the mucous membranes of the respiratory system and the gastrointestinal tract (GIT. It defines the probability of an emergence of an allergic response. To understand the mechanisms of the interaction of the mucous membranes of different systems that explain their common function is undoubtedly necessary for discussion of this problem. The features of microbiome influence and the changes of the microbiome state during the formation of the immune response to the contact with allergens are of particular interest. The structure of the epithelial barrier of the airwaysand GIT, and mechanisms of allergen transport through barrier systems with the subsequent interaction with the cells (? associated with barrier fabrics have been considered. The possible role of the barrier function of mucous membranes in conducting sublingual allergen-specific immunotherapy (SLIT is discussed. 

  18. Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.

    Science.gov (United States)

    Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee

    2017-08-01

    Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

    DEFF Research Database (Denmark)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte

    2016-01-01

    BC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain...... of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (mi...... and molecular studies. The resource is available at www.dsmz.de/miBC....

  20. JUSTIFICATION OF THE CHOICE OF OPTIMAL PROBIOTIC THERAPY OF ACUTE INTESTINAL INFECTIONS IN CHILDREN WITH FUNCTIONAL AND CHRONIC DISORDERS OF GASTROINTESTINAL TRACT

    Directory of Open Access Journals (Sweden)

    E. R. Meskina

    2014-01-01

    Full Text Available Studied the comparative efficacy of probiotics with different composition of strains in the complex treatment of acute intestinal infection in 89 children with functional disorders and chronic gastrointestinal tract. Conducted a dynamic study of the intestinal microflora bacteriological method and gas-liquid chromatography with the definition of short-chain fatty acid content of the level of carbohydrates in the feces and stool data. Set different dates for stopping diarrhea and features state of the intestinal ecosystem indicators after treatment in patients receiving comprehensive probiotic containing bifidobacteria and enterococcus, or probiotic containing lactobacillus. 

  1. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  2. Regulation of intestinal permeability: The role of proteases.

    Science.gov (United States)

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-03-28

    The gastrointestinal barrier is - with approximately 400 m 2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.

  3. IL-33 Signaling Protects from Murine Oxazolone Colitis by Supporting Intestinal Epithelial Function.

    Science.gov (United States)

    Waddell, Amanda; Vallance, Jefferson E; Moore, Preston D; Hummel, Amy T; Wu, David; Shanmukhappa, Shiva K; Fei, Lin; Washington, M Kay; Minar, Phillip; Coburn, Lori A; Nakae, Susumu; Wilson, Keith T; Denson, Lee A; Hogan, Simon P; Rosen, Michael J

    2015-12-01

    IL-33, a member of the IL-1 cytokine family that signals through ST2, is upregulated in ulcerative colitis (UC); however, the role of IL-33 in colitis remains unclear. IL-33 augments type 2 immune responses, which have been implicated in UC pathogenesis. We sought to determine the role of IL-33 signaling in oxazolone (OXA) colitis, a type 2 cytokine-mediated murine model of UC. Colon mucosal IL-33 expression was compared between pediatric and adult UC and non-IBD patients using immunohistochemistry and real-time PCR. OXA colitis was induced in WT, IL-33, and ST2 mice, and histopathology, cytokine levels, and goblet cells were assessed. Transepithelial resistance was measured across IL-33-treated T84 cell monolayers. Colon mucosal IL-33 was increased in pediatric patients with active UC and in OXA colitis. IL-33 and ST2 OXA mice exhibited increased disease severity compared with WT OXA mice. OXA induced a mixed mucosal cytokine response, but few differences were observed between OXA WT and IL-33 or ST2 mice. Goblet cells were significantly decreased in IL-33 and ST2 OXA compared with WT OXA mice. IL-33 augmented transepithelial resistance in T84 cells, and this effect was blocked by the ERK1/2 inhibitor PD98,059. OXA colitis is exacerbated in IL-33 and ST2 mice. Increased mucosal IL-33 in human UC and murine colitis may be a homeostatic response to limit inflammation, potentially through effects on epithelial barrier function. Further investigation of IL-33 protective mechanisms would inform the development of novel therapeutic approaches.

  4. Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function

    DEFF Research Database (Denmark)

    Galluser, M; Belkhou, R; Freund, J N

    1991-01-01

    The effects of long-term starvation on the activities of sucrase, lactase, and aminopeptidase, and on their respective mRNA were determined in the small intestine of thyroidectomized and sham-operated adult rats. Thyroidectomy reduced the protein loss at the level of the intestinal brush border...... membranes during starvation. Prolonged fasting caused a significant decrease in sucrase activity, but thyroidectomy partly prevented this effect. However, the amount of the corresponding mRNA dropped during long term starvation without incidence of thyroidectomy. Lactase activity in the brush border...... membranes was increased by starvation, and thyroidectomy caused a further elevation of the enzyme activity. Simultaneously, lactase mRNA content rose only slightly compared to the enzyme activity. Aminopeptidase activity and mRNA content decreased during starvation and thyroidectomy did not prevent...

  5. Intestinal first-pass metabolism by cytochrome p450 and not p-glycoprotein is the major barrier to amprenavir absorption.

    Science.gov (United States)

    Dufek, Matthew B; Bridges, Arlene S; Thakker, Dhiren R

    2013-09-01

    Recent studies showed that P-glycoprotein (P-gp) increases the portal bioavailability (FG) of loperamide by sparing its intestinal first-pass metabolism. Loperamide is a drug whose oral absorption is strongly attenuated by intestinal P-gp-mediated efflux and first-pass metabolism by cytochrome P450 3A (CYP3A). Here the effect of the interplay of P-gp and Cyp3a in modulating intestinal first-pass metabolism and absorption was investigated for another Cyp3a/P-gp dual substrate amprenavir, which is less efficiently effluxed by P-gp than loperamide. After oral administration of amprenavir, the portal concentrations and FG of amprenavir were approximately equal in P-gp competent and P-gp deficient mice. Mechanistic studies on the effect of P-gp on Cyp3a-mediated metabolism of amprenavir using intestinal tissue from P-gp competent and P-gp deficient mice (Ussing-type diffusion chamber) revealed that P-gp-mediated efflux caused only a slight reduction of oxidative metabolism of amprenavir. Studies in which portal concentrations and FG were measured in P-gp competent and P-gp deficient mice whose cytochrome P450 (P450) enzymes were either intact or inactivated showed that intestinal first-pass metabolism attenuates the oral absorption of amprenavir by approximately 10-fold, whereas P-gp efflux has a relatively small effect (approximately 2-fold) in attenuating the intestinal absorption. Cumulatively, these studies demonstrate that P-gp has little influence on the intestinal first-pass metabolism and FG of amprenavir and that intestinal P450-mediated metabolism plays the dominant role in attenuating the oral absorption of this drug.

  6. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model

    Science.gov (United States)

    Gschwandtner, M; Mildner, M; Mlitz, V; Gruber, F; Eckhart, L; Werfel, T; Gutzmer, R; Elias, P M; Tschachler, E

    2013-01-01

    Background Defects in keratinocyte differentiation and skin barrier are important features of inflammatory skin diseases like atopic dermatitis. Mast cells and their main mediator histamine are abundant in inflamed skin and thus may contribute to disease pathogenesis. Methods Human primary keratinocytes were cultured under differentiation-promoting conditions in the presence and absence of histamine, histamine receptor agonists and antagonists. The expression of differentiation-associated genes and epidermal junction proteins was quantified by real-time PCR, Western blot, and immunofluorescence labeling. The barrier function of human skin models was tested by the application of biotin as tracer molecule. Results The addition of histamine to human keratinocyte cultures and organotypic skin models reduced the expression of the differentiation-associated proteins keratin 1/10, filaggrin, and loricrin by 80–95%. Moreover, the addition of histamine to skin models resulted in the loss of the granular layer and thinning of the epidermis and stratum corneum by 50%. The histamine receptor H1R agonist, 2-pyridylethylamine, suppressed keratinocyte differentiation to the same extent as did histamine. Correspondingly, cetirizine, an antagonist of H1R, virtually abrogated the effect of histamine. The expression of tight junction proteins zona occludens-1, occludin, claudin-1, and claudin-4, as well as that of desmosomal junction proteins corneodesmosin and desmoglein-1, was down-regulated by histamine. The tracer molecule biotin readily penetrated the tight junction barrier of skin cultures grown in the presence of histamine, while their diffusion was completely blocked in nontreated controls. Conclusions Our findings suggest a new mechanism by which mast cell activation and histamine release contribute to skin barrier defects in inflammatory skin diseases. PMID:23157658

  7. Elucidation of the Synthetic Mechanism of Acylceramide, an Essential Lipid for Skin Barrier Function.

    Science.gov (United States)

    Ohno, Yusuke

    2017-01-01

    The primary function of the skin is to act as a permeability barrier that prevents water loss from inside the body and external invasion such as by pathogens, harmful substances, and allergens. Lipids play a critical role in skin barrier formation by forming multi-lamellar structures in the stratum corneum, the outermost cell layer of the epidermis. Ceramide, the backbone of sphingolipids, accounts for more than 50% of the stratum corneum lipids. Acylceramides are epidermis-specific ceramide species essential for skin barrier formation. Decreases in acylceramide levels and changes in ceramide composition and chain-length are associated with such cutaneous disorders as ichthyosis, atopic dermatitis, and psoriasis. Acylceramide consists of a long-chain base and an amide-linked ultra-long-chain fatty acid (ULCFA, 28-36 carbon chain), which is ω-hydroxylated and esterified with linoleic acid. Although the molecular mechanism by which acylceramide is generated has not been fully understood for decades, we recently identified two genes, CYP4F22 and PNPLA1, involved in acylceramide synthesis and elucidated the entire biosynthetic pathway of acylceramide: the synthesis of ULCFA by ELOVL1 and ELOVL4, ω-hydroxylation of the ULCFA by CYP4F22, amide-bond formation with a long-chain base by CERS3, and transacylation of linoleic acid from triacylglycerol to ω-hydroxyceramide by PNPLA1 to generate acylceramide. CYP4F22 and PNPLA1 are the causative genes of ichthyosis. We demonstrated that mutations of CYP4F22 or PNPLA1 markedly reduced acylceramide production. Our recent findings provide important insights into the molecular mechanisms of skin barrier formation and of ichthyosis pathogenesis.

  8. [Interaction of effective ingredients from traditional Chinese medicines with intestinal microbiota].

    Science.gov (United States)

    Zu, Xian-Peng; Lin, Zhang; Xie, Hai-Sheng; Yang, Niao; Liu, Xin-Ru; Zhang, Wei-Dong

    2016-05-01

    A large number and wide varieties of microorganisms colonize in the human gastrointestinal tract. They construct an intestinal microecological system in the intestinal environment. The intestinal symbiotic flora regulates a series of life actions, including digestion and absorption of nutrient, immune response, biological antagonism, and is closely associated with the occurrence and development of many diseases. Therefore, it is greatly essential for the host's health status to maintain the equilibrium of intestinal microecological environment. After effective compositions of traditional Chinese medicines are metabolized or biotransformed by human intestinal bacteria, their metabolites can be absorbed more easily, and can even decrease or increase toxicity and then exhibit significant different biological effects. Meanwhile, traditional Chinese medicines can also regulate the composition of the intestinal flora and protect the function of intestinal mucosal barrier to restore the homeostasis of intestinal microecology. The relevant literatures in recent 15 years about the interactive relationship between traditional Chinese medicines and gut microbiota have been collected in this review, in order to study the classification of gut microflora, the relationship between intestinal dysbacteriosis and diseases, the important roles of gut microflora in intestinal bacterial metabolism in effective ingredients of traditional Chinese medicines and bioactivities, as well as the modulation effects of Chinese medicine on intestinal dysbacteriosis. In addition, it also makes a future prospect for the research strategies to study the mechanism of action of traditional Chinese medicines based on multi-omics techniques. Copyright© by the Chinese Pharmaceutical Association.

  9. Stereodynamic tetrahydrobiisoindole “NU-BIPHEP(O”s: functionalization, rotational barriers and non-covalent interactions

    Directory of Open Access Journals (Sweden)

    Golo Storch

    2016-07-01

    Full Text Available Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC allowed for the determination of rotational barriers of ΔG‡298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(Os”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.

  10. Mixed-species Biofilm Compromises Wound Healing by Disrupting Epidermal Barrier Function

    Science.gov (United States)

    Sinha, Mithun; Ganesh, Kasturi; Chaney, Sarah; Mann, Ethan; Miller, Christina; Khanna, Savita; Bergdall, Valerie K.; Powell, Heather M.; Cook, Charles H.; Gordillo, Gayle M.; Wozniak, Daniel J.; Sen, Chandan K.

    2015-01-01

    In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic pre-clinical model of wound biofilm infection aimed at addressing long-term host response. Although biofilm infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant because it leads to the notion that even if a biofilm infected wound is closed as observed visually, it may be complicated by the presence of failed skin which is likely to be infected and or further complicated post-closure. Study of underlying mechanisms recognized for the first time biofilm-inducible miR-146a and miR-106b in the host skin wound-edge tissue. These miRs silenced ZO-1 and ZO-2 to compromise tight junction function resulting in leaky skin as measured by transepidermal water loss. Intervention strategies aimed at inhibiting biofilm-inducible miRNAs may be productive in restoring barrier function of host skin. PMID:24771509

  11. Differential effect of ethanol and hydrogen peroxide on barrier function and prostaglandin E2 release in differentiated Caco-2 cells: selective prevention by growth factors.

    Science.gov (United States)

    Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro

    2009-02-01

    The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.

  12. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  13. Serum cystatin C can be used as a marker of renal function even in patients with intestinal urinary diversion

    OpenAIRE

    Matsuki, Masahiro; Tanaka, Toshiaki; Maehana, Takeshi; Ichihara, Koji; Yanase, Masahiro; Matsukawa, Masanori; Adachi, Hideki; Takahashi, Satoshi; Masumori, Naoya

    2015-01-01

    Objective: Recently, serum cystatin C (CysC) has been used as a novel marker of renal function. However, there is a lack of data on CysC levels in patients with intestinal urinary diversion (UD). Here we report CysC levels in such patients. Methods: We prospectively observed 38 patients who were diagnosed with bladder cancer and subsequently treated with radical cystectomy and UD at our institution in 2012 and 2013. Serum creatinine (sCr) and CysC were obtained optionally at the same time ...

  14. War experiences, general functioning and barriers to care among former child soldiers in Northern Uganda: the WAYS study.

    Science.gov (United States)

    Amone-P'Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio

    2014-12-01

    Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Multifunctions of dietary polyphenols in the regulation of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Makoto Shimizu

    2017-01-01

    Full Text Available Food for specified health use is a type of functional food approved by the Japanese government, with more than 1250 products in 10 health-claim categories being approved