WorldWideScience

Sample records for intertran-ii radiation exposure

  1. Radiation Exposure

    Science.gov (United States)

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a long ...

  2. Radiation exposure

    International Nuclear Information System (INIS)

    Dalton, L.K.

    1991-01-01

    The book gives accounts of some social and environmental impacts of the developing radiation industries, including the experiences of affected communities and individuals. Its structure is based on a division which has been made between nuclear and non-nuclear radiation sources, because they create distinctly different problems for environmental protection and so for public health policy. The emissions from electronic and electrical installations - the non-nuclear radiations - are dealt with in Part I. Emissions from radioactive substances - the nuclear radiations - are dealt with in Part II. Part III is for readers who want more detailed information about scientific basis of radiation-related biological changes and their associated health effects. 75 refs., 9 tabs., 7 figs., ills

  3. Monitoring of radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service.

  4. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  5. Pregnancy and Radiation Exposure

    Science.gov (United States)

    ... pregnant women. Ionizing radiation is the kind of electromagnetic radiation produced by x-ray machines, radioactive isotopes (radionuclides), ... and conceive is quite low. Studies of the atomic bomb survivors indicate even in the high-exposure ...

  6. Exposure to natural radiation

    International Nuclear Information System (INIS)

    Green, B.M.R.

    1985-01-01

    A brief report is given of a seminar on the exposure to enhanced natural radiation and its regulatory implications held in 1985 at Maastricht, the Netherlands. The themes of the working sessions included sources of enhanced natural radiation, parameters influencing human exposure, measurement and survey programmes, technical countermeasures, risk and assessment studies, philosophies of dose limitations and national and international policies. (U.K.)

  7. Americans' Average Radiation Exposure

    International Nuclear Information System (INIS)

    2000-01-01

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body

  8. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  9. Antarctic radiation exposure doubles

    Science.gov (United States)

    Blue, Charles

    New data reveal that the Antarctic Peninsula received twice its normal maximum dose of hazardous solar ultraviolet radiation in December 1990. The prolonged persistence of the ozone hole over Antarctica caused an increased exposure of radiation, according to a paper published in the October issue of Geophysical Research Letters.John Frederick and Amy D. Alberts of the University of Chicago calculated the amount of ultraviolet solar spectral radiation from data collected at Palmer Station, Antarctica. During the spring of 1990 the largest observed values for ultraviolet radiation were approximately double the values expected, based on previous years. “The measurements from Palmer Station are consistent with similar data from McMurdo Sound, where a factor of three [ultraviolet radiation] enhancement was recorded, according to work by Knut Stamnes and colleagues at the University of Alaska,” Frederick said. “The radiation levels observed over Palmer Station in December 1990 may be the largest experienced in this region of the world since the development of the Earth's ozone layer,” he added.

  10. Biomarkers for human radiation exposure.

    Science.gov (United States)

    Chaudhry, M Ahmad

    2008-09-01

    There is a concern over the potential use of radioactive isotopes as a weapon of terror. The detonation of a radiation dispersal device, the so-called "dirty bomb" can lead to public panic. In order to estimate risks associated with radiation exposure, it is important to understand the biological effects of radiation exposure. Based on this knowledge, biomarkers to monitor potentially exposed populations after a radiological accident can be developed and would be extremely valuable for emergency response. While the traditional radiation exposure biomarkers based on cytogenetic assays serve as standard, the development of rapid and noninvasive tests for radiation exposure is needed. The genomics based knowledge is providing new avenues for investigation. The examination of gene expression after ionizing radiation exposure could serve as a potential molecular marker for biodosimetry. Microarray based studies are identifying new radiation responsive genes that could potentially be used as biomarkers of human exposure to radiation after an accident.

  11. Staff radiation exposure in radiation diagnostics

    International Nuclear Information System (INIS)

    Khakimova, N.U.; Malisheva, E.Yu.; Shosafarova, Sh.G.

    2010-01-01

    Present article is devoted to staff radiation exposure in radiation diagnostics. Data on staff radiation exposure obtained during 2005-2008 years was analyzed. It was found that average individual doses of staff of various occupations in Dushanbe city for 2008 year are at 0.29-2.16 mSv range. They are higher than the average health indicators but lower than maximum permissible dose. It was defined that paramedical personnel receives the highest doses among the various categories of staff.

  12. Environmental radiation and exposure to radiation

    International Nuclear Information System (INIS)

    1981-02-01

    Compared to 1977 the exposure to radiation of the population of the Federal Republic of Germany from both natural and artificial radiation sources has not greatly charged. The amin part of exposure to natural radiation is caused by environmental radiation and by the absorption of naturally radioactive substances into the body. Artificial exposure to radiation of the population is essentially caused by the use of ionizing rays and radioactive substances in medicine. When radioactive materials are released from nuclear facilities the exposure to radiation of the population is only very slightly increased. The real exposure to radiation of individual people can even in the worst affected places, have been at most fractions of a millirem. The exposure to radiation in the worst afected places in the area of a hard-coal power station is higher than that coming from a nuclear power station of the same capacity. The summation of all contributions to the exposure of radiation by nuclear facilities to the population led in 1978 in the Federal Republic of Germany to a genetically significant dose of clearly less than 1 millerem per year. The medium-ranged exposure to radiation by external radiation effects through professional work was in 1978 at 80 millirems. No difference to 1977. The contribution of radionuclide from the fallout coming from nuclear-weapon tests and which has been deposited in the soil, to the whole-body dose for 1978 applies the same as the genetically significant dose of the population with less than 1 millirem. (orig./HP) [de

  13. Pregnancy and radiation exposure

    International Nuclear Information System (INIS)

    Trott, K.H.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg

    1978-01-01

    In confirmed or presumptive pregnancy it is especially critical to determine the indications for X-ray examination. This assumes that every young woman, before an examination in the pelvic region, be asked explicity when her last normal period was. Examinations of the pelvis which are not acutely necessary should be postponed until the first 10 days after menstruation. If radiologic examination of the true pelvis must be carried out despite pregnancy or is inadvertently done because pregnancy was not recognized, the radiation exposure of the embryo is so small in most cases because of modern dose-sparing equipment, that an interruption of pregnancy is not justified. A dose of less than 1 rad is, as a rule, justifiable, but it is less justifiable that alarmed, uninformed physicians instill a deep-seated fear of giving brith to a freak in a woman through false information. (orig.) [de

  14. DOE 2012 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  15. DOE 2011 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  16. DOE 2009 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-09-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2009 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  17. DOE 2010 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  18. DOE 2008 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. The DOE 2008 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  19. The sources of radiation exposure

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1992-01-01

    Radiation protection of workers and of members of the public requires an assessment of the various sources of exposure, their variations in time or under specific conditions or circumstances, and the possibilities for control or limitation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has evaluated the various components of natural and man-made sources in some detail. Natural exposures form the largest component of radiation exposure of man. Variability in exposures depends on elevation, the concentrations of radionuclides in soil, food and water, the composition of building materials and the susceptibility of indoor spaces to radon build-up. Man-made sources have included exposures to fallout from atmospheric nuclear testing and discharged from nuclear fuel cycle installations in routine operations or in accidents. The other main source of radiation exposures of individuals is in medical diagnostic examinations and therapeutic treatments. (author)

  20. Occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    An overview of occupational exposure is presented. Concepts and quantities used for radiation protection are explained as well as the ICRP system of dose limitation. The risks correlated to the limits are discussed. However, the actual exposure are often much lower than the limits and the average risk in radiation work is comparable with the average risk in other safe occupations. Actual exposures in various occupations are presented and discussed. (author)

  1. Radiation exposure in the FRG

    International Nuclear Information System (INIS)

    Bonka, H.

    1975-01-01

    The article gives a survey on the natural radiation exposure of the population of the FRG with special consideration of local variations in the radiation components. Cosmic radiation is essentially a function of the height above sea level, whereas the terrestric component shows regional variations which are due to the varying isotope content in different kinds of rock. The values in granite regions, e.g. the Black Forest, the Odenwald and the Bayrischer Wald are up to 100 mrem higher than elsewhere. The same applies to the Kaiserstuhl which consists of basalt. Mean values and ranges of variation of the natural radiation exposure of the population of the FRG are given with regard to the radiation exposure in houses - which is, on an average, higher due to radionuclides in the walls - and to inner radiation due to radionuclides incorporated in the body. (ORU/AK) [de

  2. Radiation exposure and infant cancer

    International Nuclear Information System (INIS)

    Watari, Tsutomu

    1974-01-01

    Medical exposures accompanied by an increase in radiation use in the field of pediatrics were described. Basic ideas and countermeasures to radiation injuries were outlined. In order to decrease the medical exposure, it is necessary for the doctor, x-ray technician and manufacturer to work together. The mechanism and characteristics of radio carcinogenesis were also mentioned. Particularly, the following two points were described: 1) How many years does it take before carcinogenesis appears as a result of radiation exposure in infancy 2) How and when does the effect of fetus exposure appear. Radiosensitivity in infants and fetuses is greater than that of an adult. The occurrence of leukemia caused by prenatal exposure was reviewed. The relation between irradiation for therapy and morbidity of thyroid cancer was mentioned. Finally, precautions necessary for infants, pregnant women and nursing mothers when using radioisotopes were mentioned. (K. Serizawa)

  3. Malignant mesothelioma following radiation exposure

    International Nuclear Information System (INIS)

    Antman, K.H.; Corson, J.M.; Li, F.P.; Greenberger, J.; Sytkowski, A.; Henson, D.E.; Weinstein, L.

    1983-01-01

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommon cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered

  4. Radiation Exposure and Pregnancy

    Science.gov (United States)

    ... and are told you need a diagnostic or therapeutic professional advises you to procedure involving radia- undergo ... or whether another medical procedure, such as an ultrasound about radiation and pregnancy can be found on ...

  5. Sarcoma risk after radiation exposure

    Directory of Open Access Journals (Sweden)

    Berrington de Gonzalez Amy

    2012-10-01

    Full Text Available Abstract Sarcomas were one of the first solid cancers to be linked to ionizing radiation exposure. We reviewed the current evidence on this relationship, focusing particularly on the studies that had individual estimates of radiation doses. There is clear evidence of an increased risk of both bone and soft tissue sarcomas after high-dose fractionated radiation exposure (10 + Gy in childhood, and the risk increases approximately linearly in dose, at least up to 40 Gy. There are few studies available of sarcoma after radiotherapy in adulthood for cancer, but data from cancer registries and studies of treatment for benign conditions confirm that the risk of sarcoma is also increased in this age-group after fractionated high-dose exposure. New findings from the long-term follow-up of the Japanese atomic bomb survivors suggest, for the first time, that sarcomas can be induced by acute lower-doses of radiation (

  6. Radiation Exposure of Passengers to Cosmic Radiation

    International Nuclear Information System (INIS)

    Salah El-Din, T.; Gomaa, M.A.; Sallah, N.

    2010-01-01

    The main aim of the present study is to review exposure of Egyptian passengers and occupational workers to cosmic radiation during their work. Computed effective dose of passengers by computer code CARI-6 using during either short route, medium route or long route as well as recommended allowed number of flights per year

  7. DOE 2013 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  8. Occupational radiation exposure

    International Nuclear Information System (INIS)

    Kossel, F.

    1981-01-01

    According to the opinion of ICRP, the mortality risk factor for radiation-induced cancer averaged for all age groups and both sexes, which is to be used for purposes of radiation protection is 1 x 10 -2 Sv -1 . Assuming a linear dose-risk relationship and constant irradiation we find an increased mortality with increasing effective (whole body) dose equivalent. The relative frequency of cancer occurring spontaneously as death cause among all deaths is appr. 20% and is notably constant. (orig./HP) [de

  9. Psychiatric disorders after radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kokai, Masahiro [Hyogo Coll. of Medicine, Nishinomiya (Japan); Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-04-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  10. Psychiatric disorders after radiation exposure

    International Nuclear Information System (INIS)

    Kokai, Masahiro; Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-01-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  11. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  12. Radiation exposure from nuclear energy

    International Nuclear Information System (INIS)

    The information booklet contains the following papers which were already reported: 1) Scientific advisory committee of the German Bundesaerztekammer (medical board): Statement on the subject hazard by nuclear power plants (Deutsches Aerzteblatt - Aerztliche Mitteilung 1975, p. 2821 et sequ.). 2) Recommendation of the German Commission on Radiological Protection dated from Feb. 19, 1976: On the toxicity of inhaled hot particles, especially plutonium. 3) Statement of the German Commission on Radiological Protection dated from Dec. 16, 1976: Comparability of natural radiation exposure with the exposure from nuclear facilities. 4) Report of the German Federal Goverment on Environmental radioactivity and radiation exposure in the year of 1975 (Bundestagsdrucksache 8/311 dated from Apr 22, 1977). (orig./HP) [de

  13. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1983-09-01

    The contribution of exposures from natural radiation sources to the genetically significant dose (GSD) is approximately 1,1 Millisievert (110 Millirem). The contribution of medical radiation exposure to the GSD amounts to about 0.5 Millisievert (50 Millirem). According to a preliminary estimate the mean relative error of this value is about 50%. A summation of all contributions from the operation of nuclear installations to the population exposure in the Federal Republic of Germany shows a genetically significant dose (GSD) of less than 0,01 Millisievert (1 Millirem) also for 1980. Handling of radioactive substances in research, technology and the household contributes to the genetically significant dose (GSD) with less then 0,02 Millisievert (2 Millirem). The contribution of occupational radiation exposure to the genetically significant dose (GSD) was below 0,01 Millisievert (1 Millirem). The contribution to the total body dose from radionuclides deposited in the soil by fallout from nuclear weapons tests, as well as the GSD to population, may be assessed for 1980 as amounting to less than 0,01 Millisievert (1 Millirem). (orig./HP) [de

  14. Radiation exposure information record system

    International Nuclear Information System (INIS)

    Murphy, D.W.; Fix, J.J.; Murphy, B.L.

    1983-01-01

    The proposed alternative information system to provide DOE with a radiation exposure data base that could be used to assess the impacts of proposed changes in radiation protection practices and regulations. Although the data base would contain dose information on all DOE employees who are monitored for compliance, no personal identifiers would be maintained with this information. The proposed system includes a DOE employee locator file and a badged visitor file. The primary purpose of the locator file is to provide an up-to-date list of all current employees at DOE and DOE contractor sites

  15. Estimation of health risks from radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks.

  16. Radiation exposure analysis of female nuclear medicine radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Young [Dept. of Biomedical Engineering Graduate School, Chungbuk National University, Cheongju (Korea, Republic of); Park, Hoon Hee [Dept. of Radiological Technologist, Shingu College, Sungnam (Korea, Republic of)

    2016-06-15

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  17. Radiation exposure and radiation hazards of human population. Pt. 1

    International Nuclear Information System (INIS)

    Jacobi, W.

    1982-01-01

    The present Part I provides a survey on the various sources of natural and artificial radiation exposure of human population. Furthermore, biological radiation effects and radiation damages are surveyed. In an appendix, radiation types, radiation doses, and radiation dose units are explained. (orig./GSCH) [de

  18. Radiation exposure in diagnostic medicine

    International Nuclear Information System (INIS)

    Haehnel, S.; Michalczak, H.; Reinoehl-Kompa, S.

    1995-01-01

    This volume includes the manuscripts of the papers read at the conference as well as a summary and assessment of its results. The scientific discussions were centred upon the following issues: - International surveys and comparisons of rdiation exposures in diagnostic radiology and nuclear medicine, frequency of the individual diagnostic procedures and age distribution of patients examined; - policies and regulations for the radiation protection of patients, charcteristic dosimetric values and practical usefulness of the effective dose concept during medical examinations; - assessments of the relative benefits and risks and measures to reduce the radiation exposure in the light of quality assurance aspects. The main objective of this conference not only was to evaluate the risks from diagnostic radiology and nuclear medicine but also to encourgage a critical analysis and adjustment of examination routines followed in everyday practice. Among the measures recommended were quality assurance, maintenace of international standards, development of guidelines, introduction of standard doses, improved training and professional education of personnel as well as surveys and analyses of certain examination procedures associated with substantial radiation exposure. (orig./MG) [de

  19. Occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-10-01

    There are at present about 220.000 persons in the Federal Republic of Germany who are regularly monitored for radiation safety at the place of work in accordance with the Radiation Protection Ordinance. The great majority (more than 70%) are working in the medical field. Other occupations include the craft business, physical technical laboratory personnel, and physicists and chemists. Therefore, strategies and methods of radiation protection form an important part of the measures to provide on-the-job safety. The activities in this field range from the definition of suitable monitoring schemes in general to sepcific means and methods of measuring whole-body dose, local dose, personal dose, internal exposure due to incorporation. Another important aspect is quality assurance of the measures taken. (orig./HP) [de

  20. Inherited susceptibility and radiation exposure

    International Nuclear Information System (INIS)

    Little, J.B.

    1997-01-01

    There is continuing concern that some people in the general population may have genetic makeups that place them at particularly high risk for radiation-induced cancer. The existence of such a susceptible subpopulation would have obvious implications for the estimation of risks of radiation exposure. Although it has been long known that familial aggregations of cancer do sometimes occur, recent evidence suggests that a general genetic predisposition to cancer does not exist; most cancers occur sporadically. On the other hand, nearly 10% of the known Mendelian genetic disorders are associated with cancer. A number of these involve a familial predisposition to cancer, and some are characterized by an enhanced susceptibility to the induction of cancer by various physical and chemical carcinogens, including ionizing radiation. Such increased susceptibility will depend on several factors including the frequency of the susceptibility gene in the population and its penetrance, the strength of the predisposition, and the degree to which the cancer incidence in susceptible individuals may be increased by the carcinogen. It is now known that these cancer-predisposing genes may be responsible not only for rare familial cancer syndromes, but also for a proportion of the common cancers. Although the currently known disorders can account for only a small fraction of all cancers, they serve as models for genetic predisposition to carcinogen-induced cancer in the general population. In the present report, the author describes current knowledge of those specific disorders that are associated with an enhanced predisposition to radiation-induced cancer, and discusses how this knowledge may bear on the susceptibility to radiation-induced cancer in the general population and estimates of the risk of radiation exposure

  1. Techniques for controlling radiation exposure

    International Nuclear Information System (INIS)

    Ocken, H.; Wood, C.J.

    1993-01-01

    The US nuclear power industry has been remarkably successful in reducing worker radiation exposure over the past 10 years. There has been more than a fourfold reduction in person-rem per MW-year of electric power generated: from 1.8 person-rems in 1980 to only 0.4 person-rems in 1991. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in the 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, and there will be more requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the 1995 industry goals for unit median collective exposure. No one method will suffice, but implementing suitable combinations from this compendium will help utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: Outages are shorter, staffing requirements are reduced, and work quality is improved. Despite up-front costs, the benefits over the following one to three years typically outweigh the expenses

  2. Exposure to non ionizing radiations

    International Nuclear Information System (INIS)

    Campanella, L.; Dragone, R.; Pastorelli, A.

    2001-01-01

    In the last years the exposure levels to electric, magnetic and electromagnetic fields of workers and citizens have dramatically increased due to the technological development as in the exemplar case of cellular phones. The object of this research concerns the biological evaluation of the risk from exposure to non ionizing radiations (NIR) by an opportunely designed biosensor based on immobilized Saccharomyces cerevisiae cells and by an amperometric transducer (Clark oxygen electrode). The results have been obtained by comparing the respiratory activities of exposed and not exposed yeast cells to NIR (at 900 MHz, frequency of the first generation cellular phones). The measurements have been performed by irradiation of the cells in a G-TEM chamber. The obtained results clearly show a decrease of the respiration activity of the irradiation cells in comparison with blank. This variation results to be proportional to the exposure time. Concerning reversibility of the damage it seems that the recovery of the initial conditions begins after 4 hours since the end of exposition and is complete within the following 48 hrs [it

  3. Radiation exposure of airplane crews. Exposure levels

    International Nuclear Information System (INIS)

    Bergau, L.

    1995-01-01

    Even at normal height levels of modern jet airplanes, the flying crew is exposed to a radiation level which is higher by several factors than the terrestrial radiation. There are several ways in which this can be hazardous; the most important of these is the induction of malignant growths, i.e. tumours. (orig./MG) [de

  4. PET radiation exposure control for nurses

    International Nuclear Information System (INIS)

    Kawabata, Yumiko; Kikuta, Daisuke; Anzai, Taku

    2005-01-01

    Recently, the number of clinical PET centers is increasing all over Japan. For this reason, the monitoring and control of radiation exposure of employees, especially nurses, in PET-dedicated clinics and institutions are becoming very important issues for their health. We measured the radiation exposure doses of the nurses working at Nishidai Diagnostic Imaging Center, and analyzed the exposure data obtained from them. The exposure doses of the nurses were found to be 4.8 to 7.1 mSv between April 2003 and March 2004. We found that the nurses were mostly exposed to radiation when they had to have contact with patients received an FDG injection or they had trouble with the FDG automatic injection system. To keep radiation exposure of nurses to a minimum we reconfirmed that a proper application of the three principles of protection against radiation exposure was vital. (author)

  5. Physician knowledge of nuclear medicine radiation exposure.

    Science.gov (United States)

    Riley, Paul; Liu, Hongjie; Wilson, John D

    2013-01-01

    Because physician knowledge of patient exposure to ionizing radiation from computed tomography (CT) procedures previously has been recognized as poor, the purpose of this systematic review is to determine whether physician or physician trainee knowledge of patient exposure to radiation from nuclear medicine procedures is similarly insufficient. Online databases and printed literature were systematically searched to acquire peer-reviewed published research studies involving assessment of physician or physician trainee knowledge of patient radiation exposure levels incurred during nuclear medicine and CT procedures. An a priori inclusion/exclusion criteria for study selection was used as a review protocol aimed at extracting information pertaining to participants, collection methods, comparisons within studies, outcomes, and study design. Fourteen studies from 8 countries were accepted into the review and revealed similar insufficiencies in physician knowledge of nuclear medicine and CT patient radiation exposures. Radiation exposure estimates for both modalities similarly featured a strong tendency toward physician underestimation. Discussion Comparisons were made and ratios established between physican estimates of patient radiation exposure from nuclear medicine procedures and estimates of CT procedures. A theoretical median of correct physician exposure estimates was used to examine factors affecting lower and higher estimates. The tendency for ordering physicians to underestimate patient radiation exposures from nuclear medicine and CT procedures could lead to their overuse and contribute to increasing the public's exposure to ionizing radiation.

  6. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  7. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Directory of Open Access Journals (Sweden)

    Dörr Harald

    2011-11-01

    Full Text Available Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  8. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1996-01-01

    The guide presents the principles to be applied in calculating the equivalent dose and the effective dose, instructions on application of the maximum values for radiation exposure, and instruction on monitoring of radiation exposure. In addition, the measurable quantities to be used in monitoring the radiation exposure are presented. (2 refs.)

  9. DOE Occupational Radiation Exposure, 2001 report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  10. DOE occupational radiation exposure 2007 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The annual DOEOccupational Radiation Exposure 2007 Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and ALARA process requirements. In addition the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  11. Sources of radiation exposure - an overview

    International Nuclear Information System (INIS)

    Mason, G.C.

    1990-01-01

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  12. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 32 of the Radiation Act (592/91) the Finnish Centre for Radiation and Nuclear Safety gives instructions concerning the monitoring of the radiation exposure and the application of the dose limits in Finland. The principles to be applied to calculating the equivalent and the effective doses are presented in the guide. Also the detailed instructions on the application of the maximum exposure values for the radiation work and for the natural radiation as well as the instructions on the monitoring of the exposures are given. Quantities and units for assessing radiation exposure are presented in the appendix of the guide

  13. Minimizing radiation exposure during percutaneous nephrolithotomy.

    Science.gov (United States)

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  14. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  15. Exposure to background radiation in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Lab., Melbourne, VIC (Australia)

    1997-12-31

    The average effective dose received by the Australian population is estimated to be {approx}1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m{sup -3} in Queensland to 16 Bq m{sup -3} in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year. 9 refs., 2 tabs., 4 figs.

  16. Exposure to background radiation in Australia

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1997-01-01

    The average effective dose received by the Australian population is estimated to be ∼1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m -3 in Queensland to 16 Bq m -3 in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year

  17. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  18. Exposures to natural radiation in Switzerland

    International Nuclear Information System (INIS)

    Murith, Ch.; Gurtner, A.

    1999-01-01

    The exposure of human beings to ionising radiation from natural sources is a continuing and inescapable feature of life on earth. There are two main sources that contribute to this exposure: high-energy cosmic-ray particles incident to the earth's atmosphere and radioactive nuclides that originated in the earth's crust and are present everywhere in the environment, including human body itself. Both external and internal exposures to humans arise from these sources. Exposures to natural radiation sources in Switzerland and some of their variations are here summarised and the resulting effective doses are compared to those from man-made sources exposures. It results that the natural background exposures are more significant for the population than most exposures to man-made sources. (authors)

  19. Control of radiation exposure (principles and methods)

    International Nuclear Information System (INIS)

    Agwimah, R. I.

    1999-01-01

    Biological risks are directly related to the tissue radiation dose, so it is very important to maintain personnel doses as low as realistically possible. This goal can be achieved by minimizing internal contamination and external exposure to radioactive sources

  20. Occupational radiation exposures in Canada-1984

    International Nuclear Information System (INIS)

    Fujimoto, K.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1985-08-01

    This is the seventh in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Department of National Health and Welfare. As in the past this report presents by occupation: average yearly whole body doses by region, dose distributions, and variations of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  1. Radiation Exposure from CT Examinations in Japan

    OpenAIRE

    Tsushima, Yoshito; Taketomi-Takahashi, Ayako; Takei, Hiroyuki; Otake, Hidenori; Endo, Keigo

    2010-01-01

    Abstract Background Computed tomography (CT) is the largest source of medical radiation exposure to the general population, and is considered a potential source of increased cancer risk. The aim of this study was to assess the current situation of CT use in Japan, and to investigate variations in radiation exposure in CT studies among institutions and scanners. Methods Data-sheets were sent to all 126 hospitals and randomly selected 14 (15%) of 94 clinics in Gunma prefecture which had CT scan...

  2. Cancer risks after radiation exposures

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1980-01-01

    A general overview of the effects of ionizing radiation on cancer induction is presented. The relationship between the degree of risk and absorbed dose is examined. Mortality from radiation-induced cancer in the US is estimated and percentages attributable to various sources are given

  3. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  4. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  5. Records of radiation exposure control, 4

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Kawabata, Hisao.

    1976-04-01

    The Radiation Control Center controls the radiation levels in and around the Institute to protect mankind and instrument from the radiation hazard. The center is also performing health physics and shielding research cooperating with other health physics and shielding groups. In this report, the records of environmental and personal monitoring of radiation exposure at the Institute for Nuclear Study are accumulated for the period during March 1975 - March 1976. This report includes the technical details of monitoring program and several research activities, skyshine, residual radioactivity, thick target neutron and photon spectra etc., in the Radiation Control Center. (auth.)

  6. [Radiation effects of exposure during prenatal development].

    Science.gov (United States)

    Streffer, C

    1995-03-01

    The embryo and fetus are very radiosensitive during the total prenatal development period. The quality and extent of radiation effects depend strongly on the developmental stage at which the exposure occurs. During the preimplantation period radiation exposure can cause death of the embryo after radiation doses of 0.2 Gy and higher. Malformations are only observed in very rare cases when genetic predispositions exist. Macroscopic-anatomical malformations are induced only after irradiation during the major organogenesis. On the basis of experimental data with mammals it is assumed that a radiation dose of about 0.2 Gy doubles the malformation risk. Studies in humans give rise to the assumption that the human embryo is more radioresistant than the embryos of mice and rats. Radiation exposure during the major organogenesis and the early fetal period lead to disturbances in the growth and developmental processes. During early fetogenesis (week 8-15 post corruption) high radiosensitivity exists for the development of the central nervous system. Radiation doses of 1 Gy cause severe mental retardation in about 50% of exposed fetuses. Analysis of the dose-effect curves shows that there is probably a dose-effect curve with a threshold for this effect. It must be taken into account that radiation exposure during the fetal period also induces cancer. The studies, however, do not allow quantitative estimate of this radiation risk at present. It is therefore generally assumed that the risk is about the same level as for children.

  7. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  8. Occupational radiation exposures in Canada - 1980

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    1981-08-01

    This report is the third in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to be changing. In some occupational categories a consistent upward trend is observed

  9. Occupational radiation exposures in Canada - 1982

    International Nuclear Information System (INIS)

    Fujimoto, K.R.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1983-12-01

    This report is the fifth in a series of annual reports in Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which contains dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included, and individual cases are briefly summarized where the maximum permissible dose is exceeded

  10. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    Jaquish, W.R.; Enderlin, V.R.

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  11. Overview of Radiation Environments and Human Exposures

    Science.gov (United States)

    Wilson, John W.

    2004-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.

  12. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  13. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  14. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimized. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. The ''weighting'' factors appropriate to irradiation of particular tissues from internal emitters can thus be defined in terms of their likely individual contributions to the harm of whole-body irradiation. In this way the limits for different modes of exposure by external or internal radiation can be related so as to ensure that protection should be equally effective for different distributions of absorbed dose in the body. In particular, the over-simplified concept of a single critical organ determining the

  15. Prenatal radiation exposure policy: A labor arbitration

    International Nuclear Information System (INIS)

    Kelly, J.J.

    1990-01-01

    A policy on prenatal radiation exposure at two nuclear power plants was revised to give better assurance of compliance with NCRP recommendations on fetal radiation exposure. This action was taken after publication of NCRP 91 in June 1987 to provide better assurance that a total dose equivalent limit to an embryo-fetus be no greater than 0.5 mSv (0.05 rem) in any month and no more than 5 mSv (500 mrem) for a gestation period. For any female worker to receive radiation exposure greater than 1.5 mSv (0.15 rem) in a month at these nuclear power plants, she was asked to initiate an administrative request for radiation exposure in excess of this limit. In this request, she was asked to acknowledge that she was aware of the guidance in U.S. NRC Regulatory Guide 8.13. A worker who had the potential for radiation exposure in excess of 1.5 mSv (0.15 rem) refused to process this request and was consequently denied overtime work. She filed a grievance for denial of overtime, and this grievance was submitted for labor arbitration in June 1988. The arbitration decision and its basis and related NRC actions are discussed

  16. Radiation risk due to occupational exposure

    International Nuclear Information System (INIS)

    Kargbo, A.A

    2012-04-01

    Exposure to ionizing radiation occurs in many occupations. Workers can be exposed to both natural and artificial sources of radiation. Any exposure to ionizing radiation incurs some risk, either to the individual or to the individual's progeny. This dissertation investigated the radiation risk due to occupational exposure in industrial radiography. Analysis of the reported risk estimates to occupational exposure contained in the UNSCEAR report of 2008 in industrial radiography practice was done. The causes of accidents in industrial radiography include: Lack of or inadequate regulatory control, inadequate training, failure to follow operational procedures, human error, equipment malfunction or defect, inadequate maintenance and wilful violation have been identified as primary causes of accidents. To minimise radiation risks in industrial radiography exposure devices and facilities should be designed such that there is intrinsic safety and operational safety ensured by establishing a quality assurance programme, safety culture fostered and maintained among all workers, industrial radiography is performed in compliance with approved local rules, workers engaged have appropriate qualifications and training, available safe operational procedures are followed, a means is provided for detecting incidents and accidents and an analysis of the causes and lessons learned. (author)

  17. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  18. Tissues may adapt to radiation exposure

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    French scientists discovered radioactivity and developed vaccination, so it is perhaps appropriate that a prominent French cancer specialist should be promoting the idea of a radiation vaccination effect - or radiation adaptation, as he prefers to call it. Raymond Latarjet, of the Institut Curie in Paris, maintains that recent studies at the gene level are showing evidence that with low doses of radiation, there is time for a cell repair mechanism to take effect, and that this seems to provide some protection against subsequent exposure to high doses. He cited experiments in his laboratory in which exposure to a dose of 4 Gy (400 rad) had, predictably, produced a large number of gene mutations in a specimen, but the number of mutations was less than half that number in a specimen that had been exposed to a dose of 0.02 Gy some six hours before exposure to the 4 Gy

  19. Tissues may adapt to radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    French scientists discovered radioactivity and developed vaccination, so it is perhaps appropriate that a prominent French cancer specialist should be promoting the idea of a radiation vaccination effect - or radiation adaptation, as he prefers to call it. Raymond Latarjet, of the Institut Curie in Paris, maintains that recent studies at the gene level are showing evidence that with low doses of radiation, there is time for a cell repair mechanism to take effect, and that this seems to provide some protection against subsequent exposure to high doses. He cited experiments in his laboratory in which exposure to a dose of 4 Gy (400 rad) had, predictably, produced a large number of gene mutations in a specimen, but the number of mutations was less than half that number in a specimen that had been exposed to a dose of 0.02 Gy some six hours before exposure to the 4 Gy.

  20. Radiation exposure from radium-226 ingestion

    International Nuclear Information System (INIS)

    Keefer, D.H.; Fenyves, E.J.

    1980-01-01

    The contribution of radium to total radiation exposure resulting from the consumption of natural levels of 226 Ra in several public water supplies in an Oklahoma county was determined. A pilot-level study of total dietary intake indicated that the culinary use of water anomalously high in radium and the consumption of water-based beverages contributed significantly to radiation exposure. The mean dietary intake of 226 Ra was 20.6 pCi/day in one community and resulted in an estimated bone dose of 310 mrem/year

  1. Haematological and immunological indicators for radiation exposure

    International Nuclear Information System (INIS)

    Dehos, A.

    1990-01-01

    It is examined if haematological and immunological parameters can be used as biological indicators for radiation exposure. Additional criteria for biological indicators, apart from the dose dependence of the effect, are listed here. The state of the art concerning the development of haematological and immunological indicators is discussed. Several haematological indicators are currently used in diagnosis when excess radiation exposure has occurred (e.g., after the Chernobyl accident). However, further research work has to be done in the field of immunological indicators. (orig.) [de

  2. Occupational radiation exposures in canada-1983

    International Nuclear Information System (INIS)

    Fujimoto, K.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1984-08-01

    This is the sixth in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Department of National Health and Welfare. As in the past this report presents by occupation: average yearly whole body doses by region, dose distributions, and variations of the average doses with time. The format has been changed to provide more detailed information regarding the various occupations. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  3. Natural radiation exposure modified by human activities

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1995-01-01

    We are now living in the radiation environment modified by our technology. It is usually called 'Technologically Enhanced Natural Radiation' and have been discussed in the UNSCEAR Reports as an important source of exposure. The terrestrial radionuclide concentrations as well as the intensity of cosmic rays are considered to have been constant after our ancestors came down from trees and started walking on their two feet. However, we have been changing our environment to be more comfortable for our life and consequently ambient radiation levels are nomore what used to be. In this paper exposures due to natural radiation modified by our following activities are discussed: housing, balneology, cave excursion, mountain climbing, skiing, swimming, smoking and usage of mineral water, well water, coal, natural gas, phosphate rocks and minerals. In the ICRP Publication No. 39, it is clearly mentioned that even natural radiation should be controlled as far as it is controllable. We have to pay more attention to our activities not to enhance the exposure due to unnecessary, avoidable radiation. (author)

  4. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

  5. DOE occupational radiation exposure 1996 report

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ''As Low As Reasonably Achievable'' (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources

  6. Realtime radiation exposure monitor and control apparatus

    International Nuclear Information System (INIS)

    Cowart, R.W.

    1981-01-01

    This patent application relates to an apparatus and methods used to obtain image information from modulation of a uniform flux. An exposure measuring apparatus is disclosed which comprises a multilayered detector structure having an external circuit connected to a transparent insulating layer and to a conductive plate a radiation source adapted to irradiate the detector structure with radiation capable of producing electron-hole pairs in a photoconductive layer of the detector wherein the flow of current within the external circuit is measured when the detector is irradiated by the radiation source. (author)

  7. Risk of cardiovascular disease following radiation exposure

    International Nuclear Information System (INIS)

    Trivedi, A.; Vlahovich, S.; Cornett, R.J.

    2001-01-01

    Excess radiation-induced cardiac mortalities have been reported among radiotherapy patients. Many case reports describe the occurrence of atherosclerosis following radiotherapy for Hodgkin's disease and breast cancer. Some case reports describe the cerebral infarction following radiotherapy to neck region, and of peripheral vascular disease of the lower extremities following radiotherapy to the pelvic region. The association of atomic bomb radiation and cardiovascular disease has been examined recently by incidence studies and prevalence studies of various endpoints of atherosclerosis; all endpoints indicated an increase of cardiovascular disease in the exposed group. It is almost certain that the cardiovascular disease is higher among atomic bomb survivors. However, since a heavy exposure of 10-40 Gy is delivered in radiotherapy and the bomb survivors were exposed to radiation at high dose and dose-rate, the question is whether the results can be extrapolated to individuals exposed to lower levels of radiation. Some recent epidemiological studies on occupationally exposed workers and population living near Chernobyl have provided the evidence for cardiovascular disease being a significant late effect at relatively low doses of radiation. However, the issue of non-cancer mortality from radiation is complicated by lack of adequate information on doses, and many other confounding factors (e.g., smoking habits or socio-economic status). This presentation will evaluate possible radiobiological mechanisms for radiation-induced cardiovascular disease, and will address its relevance to radiation protection management at low doses and what the impact might be on future radiation risk assessments. (authors)

  8. Evaluation of Radiation Exposure Pattern and Radiation Absorbed Dose Resulting from Occupational Exposure of Anesthesiologists to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Maghsoudi B.

    2017-09-01

    Full Text Available Introduction: Little information is available concerning the radiation exposure of anesthesiologists, and no such data have previously been collected in Iran. This prospective study was performed to determine the amount of radiation exposure of anesthesiologists for the purpose of assessing whether or not dangerous levels of radiation exposures were being reached, and to identify factors that correlate with excessive risk. Participants and Methods: The radiation exposure of all anesthesiology residents and the attending of Shiraz University of Medical Sciences during a 3-month period (from June to August 2016 was measured using a film badge with monthly readings. Physicians were divided into two groups: group 1 (the ones assigned to ORs with radiation exposure, and group 2 (the ones assigned to ORs with no or minimal radiation exposure. Results: A total number of 10744 procedures were performed in 3 major university hospitals including 353 cases of pediatric angiography, 251 cases of percutaneous nephrolithotomy, 43 cases of chronic pain palliation and 672 cases of orthopedic surgeries with C-arm application. In all 3 months, there were statistically significant differences in the amount of radiation exposure between the two groups. Conclusion: Anesthesiologists working in the cardiac catheterization laboratory, pain treatment service, orthopedic and urologic ORs are exposed to statistically significantly higher radiation levels compared to their colleagues in other ORs. The radiation exposure to anesthesiologists can rise to high levels; therefore, they should get proper teaching, shielding and periodic evaluations.

  9. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  10. Biomarkers of Alpha Particle Radiation Exposure

    Science.gov (United States)

    2014-04-01

    work towards the identification of gene-based biomarkers of alpha-particle radiation exposure. Peripheral blood mononuclear cells (PBMN) isolated from...manipulation et l’exposition au rayonnement ionisant chez les humains . CSSP-2012-CD-1117 and CSSP-2012-CD-1114 iii Table of contents...19 Acknowledgements This work was supported by the Centre for

  11. Radiation exposure mitigation through food

    International Nuclear Information System (INIS)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo; Watabe, Teruhisa; Miyazaki, Taeko

    2001-01-01

    137 CsCl 2 was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of 137 Cs incorporated into the plants were not significantly different from that of the 137 CsCl 2 solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of 232 Th and 238 U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  12. The occupational exposure of radiation workers, 1

    International Nuclear Information System (INIS)

    Kawasaki, Shoji; Yamada, Norimasa; Sakurai, Koh

    1975-01-01

    Because the medical use of x-rays and radioisotopes is gradually increasing for diagnosis and therapy, radiation workers, special doctors, nurses and radiological technicians have occupational exposure. Procedures for monitoring external exposure of personnel include the wearing of a filmbadge or a pocket chamber. The results of filmbadge monitoring in Yamaguchi University Hospital for the last 10 years were described. In 1964, the total number of filmbadges that radiation workers used during a 2 week period of radiological examination and therapy was 610. This has been increasing yearly, and in 1972 it was 1999. Radiological technicians generally had low occupational exposure, and about 90 per cent of their filmbadges were exposed to less than 10 mR. Approximately 65 per cent of the filmbadges that nurses used were less than 10 mR, but some nurses who worked in radium therapy at the isotope ward suffered large doses. Some nurses had occasionally exposure higher than 100 mR in radiological examination. Some doctors sustained an occupational exposure of more than 150 mR. From these data, some problems on radiation monitoring using a filmbadge were discussed. (author)

  13. Occupational radiation exposures in Canada, 1981

    International Nuclear Information System (INIS)

    Fujimoto, K.R.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1983-12-01

    This report is the fourth in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes those records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to have resumed after an interruption during 1979 to 1980. A brief summary of extremity dose data is also included

  14. Occupational radiation exposures in Canada - 1979

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    1980-12-01

    This report is the second in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1979 data indicate that the gradually decreasing trend of the last two decades may be changing. In a number of areas the overall average doses and the averages for some job categories have increased over the corresponding values for 1977 and 1978

  15. DOE occupational radiation exposure 1999 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  16. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in their management of radiological safety programs and to assist them in the prioritization of resources. We appreciate the efforts and contributions from the various stakeholders within and outside the DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of collective data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  17. DOE occupational radiation exposure 2002 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  18. DOE occupational radiation exposure 2004 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, and subcontractors, as well as members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  19. DOE occupational radiation exposure 2003 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  20. DOE occupational radiation exposure 1998 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1998-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health with support from Environment Safety and Health Technical Information Services publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  1. DOE occupational radiation exposure 2000 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE in making this report most useful to them. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  2. DOE occupational radiation exposure 1997 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  3. Radiation exposure from CT examinations in Japan.

    Science.gov (United States)

    Tsushima, Yoshito; Taketomi-Takahashi, Ayako; Takei, Hiroyuki; Otake, Hidenori; Endo, Keigo

    2010-11-02

    Computed tomography (CT) is the largest source of medical radiation exposure to the general population, and is considered a potential source of increased cancer risk. The aim of this study was to assess the current situation of CT use in Japan, and to investigate variations in radiation exposure in CT studies among institutions and scanners. Data-sheets were sent to all 126 hospitals and randomly selected 14 (15%) of 94 clinics in Gunma prefecture which had CT scanner(s). Data for patients undergoing CT during a single month (June 2008) were obtained, along with CT scan protocols for each institution surveyed. Age and sex specific patterns of CT examination, the variation in radiation exposure from CT examinations, and factors which were responsible for the variation in radiation exposure were determined. An estimated 235.4 patients per 1,000 population undergo CT examinations each year, and 50% of the patients were scanned in two or more anatomical locations in one CT session. There was a large variation in effective dose among hospitals surveyed, particularly in lower abdominal CT (range, 2.6-19.0 mSv). CT examinations of the chest and upper abdomen contributed to approximately 73.2% of the collective dose from all CT examinations. It was estimated that in Japan, approximately 29.9 million patients undergo CT annually, and the estimated annual collective effective dose in Japan was 277.4 *103 Sv person. The annual effective dose per capita for Japan was estimated to be 2.20 mSv. There was a very large variation in radiation exposure from CT among institutions surveyed. CT examinations of the chest and upper abdomen were the predominant contributors to the collective dose.

  4. Radiation exposure mitigation through food

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo [National Inst. of Radiological Sciences, Chiba (Japan); Watabe, Teruhisa; Miyazaki, Taeko [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    {sup 137}CsCl{sub 2} was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of {sup 137}Cs incorporated into the plants were not significantly different from that of the {sup 137}CsCl{sub 2} solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of {sup 232}Th and {sup 238}U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  5. Effects of prenatal exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Miller, R.W.

    1990-01-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities

  6. Effects of prenatal exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.W. (National Cancer Institute, Bethesda, MD (USA))

    1990-07-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

  7. Radiation exposure of the UK population

    International Nuclear Information System (INIS)

    Taylor, F.E.; Webb, G.A.M.

    1978-11-01

    Man is continuously exposed to radiation from many sources, both natural and man-made. The man-made sources include medical irradiation, exposure from radioactive waste disposal, fallout from nuclear weapons tests and various 'miscellaneous sources' which include consumer products. The National Radiological Protection Board (NRPB) keeps these contributions to the radiation exposure of the population under continuous review and publishes reports on the subject periodically. This is the second such report and contains considerably more information than the first published in 1974. The balance of the report reflects the availability of data and the advice given in the sixth report of the Royal Commission on Environmental Pollution. The conclusions are: (a) that the major contribution to the dose to the population is from natural background radiation; (b) that the largest man-made contribution is from medical uses of radiation; (c) that the largest contribution from environmental contamination is still from the residual effects of fallout from nuclear weapons testing; (d) that occupational exposure and irradiation from miscellaneous sources, considered as contributions to the per caput dose to the population, are the next largest components; (e) that radioactive waste disposal is the smallest contributor to the per caput dose to the population. It was also felt useful to review the past trends in the doses resulting from the various sources and the authors have attempted to make some tentative predictions of doses up to the year 2000. (author)

  8. Distribution of Radiation Exposure from Natural Radiation in Big Cities

    International Nuclear Information System (INIS)

    Udiyani, P.M.; Ahmad, Yus R.

    2000-01-01

    The measurement of radiation exposure from the natural radiation in the big city in Java such as Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya have be done. Based on radiation dose and population at the sample location, the dose collective and risk probability will be know. The maximal exposure at Yogyakarta is 0.291 mSv/year and the minimal exposure at Surabaya is 0.216 mSv/year. Collective dose at Jakarta is 1.649.526 men mSv/year; Bandung 124.844 men mSv/year; Semarang : 64.558 men mSv/year; Yogyakarta 136.188 men mSv/year; and Surabaya 145.152 men mSv/year. The person probability of radiation disease at jakarta is 16.49 person/year, Bandung is 1.24 person/year, Semarang 1.64 person/year, Yogyakarta is 1.36 person/year, and Surabaya is 1.45 person/year

  9. Exposure assessment of aluminum arc welding radiation.

    Science.gov (United States)

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  10. Justification of novel practices involving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G. [Radiation Protection Consul tant, Brighton (United Kingdom); Boal, T.; Mason, C.; Wrixon, T. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    The concept of 'justification' of practices has been one of the three basic principles of radiation protection for many decades. The principle is simple in essence - that any practice involving radiation exposure should do more good than harm. There is no doubt that the many uses of radiation in the medical field and in industry generally satisfy this principle, yielding benefits that could not be achieved using other techniques; examples include CT scanning and industrial radiography. However, even in the early period after the introduction of the justification principle, there were practices for which the decision on justification was not clear and for which different decisions were made by the authorities in different countries. Many of these involved consumer products such as luminous clocks and watches, telephone dials, smoke detectors, lightning preventers and gas mantles. In most cases, these practices were relatively small scale and did not involve large exposures of either individual workers or members of the public. Decisions on justification were therefore often made by the regulator without extensive national debate. Over recent years, several practices have been proposed and undertaken that involve exposure to radiation for purposes that were generally not envisaged when the current system of radiation protection was created. Some of these practices were reviewed during a recent symposium held in Dublin, Ireland and involve, for example, the x-raying of people for theft detection purposes, for detection of weapons or contraband, for the prediction of physical development of young athletes or dancers, for age determination, for insurance purposes and in cases of suspected child abuse. It is particularly in the context of such novel practices that the need has emerged for clearer international guidance on the application of the justification principle. This paper reviews recent activities of the IAEA with respect to these issues, including the

  11. Justification of novel practices involving radiation exposure

    International Nuclear Information System (INIS)

    Webb, G.; Boal, T.; Mason, C.; Wrixon, T.

    2006-01-01

    The concept of 'justification' of practices has been one of the three basic principles of radiation protection for many decades. The principle is simple in essence - that any practice involving radiation exposure should do more good than harm. There is no doubt that the many uses of radiation in the medical field and in industry generally satisfy this principle, yielding benefits that could not be achieved using other techniques; examples include CT scanning and industrial radiography. However, even in the early period after the introduction of the justification principle, there were practices for which the decision on justification was not clear and for which different decisions were made by the authorities in different countries. Many of these involved consumer products such as luminous clocks and watches, telephone dials, smoke detectors, lightning preventers and gas mantles. In most cases, these practices were relatively small scale and did not involve large exposures of either individual workers or members of the public. Decisions on justification were therefore often made by the regulator without extensive national debate. Over recent years, several practices have been proposed and undertaken that involve exposure to radiation for purposes that were generally not envisaged when the current system of radiation protection was created. Some of these practices were reviewed during a recent symposium held in Dublin, Ireland and involve, for example, the x-raying of people for theft detection purposes, for detection of weapons or contraband, for the prediction of physical development of young athletes or dancers, for age determination, for insurance purposes and in cases of suspected child abuse. It is particularly in the context of such novel practices that the need has emerged for clearer international guidance on the application of the justification principle. This paper reviews recent activities of the IAEA with respect to these issues, including the

  12. Dosimetry concepts and their use in radiation exposure in humans

    International Nuclear Information System (INIS)

    Loester, W.

    1986-01-01

    An overview of dose concepts (ion doses, energy doses, equivalent doses, GSD, effective equivalent doses) and of radiation exposure of humans with an appendix dealing with the additional radiation exposure brought about by the Chernobyl accident. (HP) [de

  13. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  14. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Su, S.; Engholm, B.A.

    1981-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  15. Radiation exposure during air and ground transportation

    International Nuclear Information System (INIS)

    Hsu, P.C.; Weng, P.S.

    1976-01-01

    The results of a one year study program of radiation exposure experienced on both domestic and international flights of the China Airline and the Far East Airline in the Pacific, Southeast Asia and Taiwan areas and on trains and buses on Taiwan island are reported. CaSO 4 :Dy thermoluminescent dosimeters were used. It has been shown that transit exposures may amount to 10 times that on the ground with an altitude varying from 3,050 to 12,200 m. (U.K.)

  16. Population exposure to ionising radiation in India

    International Nuclear Information System (INIS)

    Narayanan, K.K.; Krishnan, D.; Subba Ramu, M.C.

    1991-01-01

    Estimates of exposure from various radiation sources to Indian population are given. The per caput dose from all the identifiable sources, both natural and man-made is estimated to be 2490 μSv per year to the present population of India. 97.9% of this dose is contributed by natural sources which include cosmic and terrestrial radiations, 1.93% by medical sources used for diagnostic and treatment purpose, 0.3% by exposures due to activities related nuclear fuel cycle, nuclear tests and nuclear accidents, and 0.07% by miscellaneous sources such as industrial applications, consumer products, research activities, air travel etc. The monograph is written for the use of the common man. (M.G.B.). 25 refs., 7 tabs., 7 figs

  17. Wireless Phones Electromagnetic Field Radiation Exposure Assessment

    OpenAIRE

    A. D. Usman; W. F.W. Ahmad; M. Z.A.A. Kadir; M. Mokhtar

    2009-01-01

    Problem statement: Inadequate knowledge of electromagnetic field emitted by mobile phones and increased usage at close proximity, created a lot of skepticism and speculations among end users on its safety or otherwise. Approach: In this study, near field electromagnetic field radiation measurements were conducted on different brand of mobile phones in active mode using a tri-axis isotropic probe and electric field meter. Results: The highest electromagnetic field exposure was recorded when th...

  18. Controlling occupational radiation exposure. Alternatives to regulation

    International Nuclear Information System (INIS)

    Sagan, L.A.; Squitieri, R.; Wildman, S.S.

    1980-01-01

    The principal strategy adopted for the control of occupational radiation exposure has been the establishment of standards expressed as maximum permissible exposures. The use of such standards is subject to a number of defects, among which is the neglect of the economic impact of imposing such standards. Furthermore, such standards carry the implication of a threshold for radiation effects, a concept now widely challenged. Lastly, the use of standards makes it impossible to evaluate the efficiency of the regulatory agency or to compare its performance with other similar agencies. An alternative to the use of standards, i.e. cost-benefit analysis, is discussed. The advantages of this technique meet many of the objections to the use of standards alone and allow health and safety resources to be allocated in a manner most likely to save the most lives. The greatest disadvantage of cost-benefit analysis has been the difficulty in evaluating the benefit side of the equation. Although the risks of radiation exposure are not known with precision, they are nevertheless well understood. Therefore, the application of cost-benefit analysis to occupational radiation exposure is rational. There are a number of barriers to reform in the use of standards and the adoption of cost-benefit analysis. These attitudinal and institutional constraints are discussed. The nature of private or market systems of control are discussed, i.e. the use of liability and insurance mechanisms. These also have shortcomings that require further development but are seen as potentially more efficient for both employer and employee than is the use of regulatory standards. (author)

  19. The global assessment of medical radiation exposures

    International Nuclear Information System (INIS)

    Shannoun, F.

    2010-01-01

    World Health Organization (WHO) is the United Nations specialized agency which acts as a coordinating authority on international public health. It was established in 1948. It has 147 Country Offices, 6 Regional Offices and 193 Member States Ministries of Health Its headquarters is in Geneva. The World Health Assembly (WHA) requested WHO to s tudy the optimum use of ionizing radiation in medicine and the risks to health of excessive or improper use . (WHA, 1971) International Basic Safety Standards BSS) The (BSS) mark the culmination of efforts towards global harmonization of radiation safety requirements. However, the involvement of the health sector in the BSS implementation is still weak and scant. There is a need to mobilize the health sector towards safer and effective use of radiation in medicine. Radiation in Health Care The use of radiation in health care is by far the largest contributor to the exposure of the general population from artificial sources. Annually worldwide there are 3,600 million X-ray exams (> 300 million in children), 37 million nuclear medicine procedures and 7.5 million radiation oncology treatments [UNSCEAR Report 2008]. WHO Global Initiative on Radiation Safety in Health Care Settings Was launched in December 2008 It involved the following:- There was involvement of international organizations and professionals bodies, national health and radiation protection authorities, etc. Its aim is to improve the protection of patients and health care workers through better implementation of the BSS. It complements the International Action Plan for Radiological Protection of Patients established by the IAEA 7 UNSCEAR's medical exposure survey Objectives of UNSCEAR's survey were to facilitate evaluation of: - Global estimates of frequency and levels of exposures, with break-downs by medical procedure, age, sex, health care level, and country; - Trends in practice (including those relatively fast-changing); with supporting contextual

  20. Occupational radiation exposures in Canada - 1978

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    This 1978 report is the first in a series of annual reports on occupational radiation exposures in Canada. The data are derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of overexposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1978 data indicate that the gradually decreasing trend of the last two decades may have changed. In a number of areas the overall average doses and the averages for some job categories have increasd over the corresponding values for 1977

  1. Unjustified prenatal radiation exposure in medical applications

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lamadrid, A.I.; Garcia Lima, O.; Diaz Bernal, E.; Freixas, V.; Lopez Bejerano, G.; Sanchez, R.

    2001-01-01

    The exposure to the radiation ionising of pregnant women, frequently constitutes motive of preoccupation for the expectant mother and the medical professionals taken the responsibility with its attention. The protection of the embryo-fetus against the ionising radiation is of singular importance due to its special vulnerability to this agent. On the other hand the diagnosis or treatment with radiations ionising beneficial for the expectant mother, are only indirectly for the embryo-fetus that is exposed to a hazard without perceiving anything. The present paper presents the experience obtained in the clinical and dosimetric evaluation from twenty-one pregnant patients subjected to diverse radiodiagnostic procedures or nuclear medicine during the years 1999-2000. The obtained results evidence that 24% of the patients was subjected to procedures of nuclear medicine with diagnostic purposes. While the period of pregnancy of the patients ranged between 4 and 12 weeks, it could be concluded that in all the cases the doses received by the patients in the whole body did not exceed 2 mSv. When conjugating the period of pregnancy of the patients with the doses received, there is no evidence of significant risk for the embryo-fetus. Paradoxically the physicians of assistance suggested to their patients in all the cases to carry out the interruption of the pregnancy, demonstrating with this decision ignorance on the biological effects of the ionizing radiations during the prenatal exposures. (author)

  2. Lung cancer following exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Blot, W.J.

    1985-01-01

    A case-control study of lung cancer was conducted in Hiroshima and Nagasaki, Japan, to evaluate risk factors for this common neoplasm, with special attention given to assessing the potentially interactive roles of cigarette smoking and atomic radiation. The investigation involved interviews with 428 patients with primary lung cancer and 957 matched controls, or with their next of kin in the event of death or disability. The interview information was supplemented by data on atomic bomb radiation exposure for each individual and on smoking and other factors from prior surveys of subsets of the population studied. Separate effects of smoking and high dose (greater than 100 rad) radiation were found, with the two exposures combining to affect lung cancer risk in an approximate additive fashion. The additive rather than multiplicative model was favored whether the smoking variable was dichotomized (ever vs. never smoked), categorized into one of several groups based on amount smoked, or treated as a discrete variable. The findings are contrasted with those for Colorado uranium miners and other cohorts occupationally exposed to radon and its daughter products, where smoking and radiation have been reported to combine multiplicatively to enhance lung cancer risk

  3. Ionizing Radiation Environments and Exposure Risks

    Science.gov (United States)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  4. Occupational radiation exposure. Twelfth annual report, 1979

    International Nuclear Information System (INIS)

    Brooks, B.; McDonald, S.; Richardson, E.

    1982-08-01

    This report summarizes the occupational exposure data that is maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reports System (REIRS). This report is usually published on an annual basis and is available at all NRC public document rooms. The bulk of the information contained in the report was extracted from annual statistical reports submitted by all NRC licensees subject to the reporting requirements of 10 CFR 20.407. Four categories of licensees - operating nuclear power reactors, fuel fabricators and reprocessors, industrial radiographers, and manufacturers and distributors of specified quantities of byproduct materials - also submit personal identification and exposure information for terminating employees pursuant to 10 CFR 20.408, and some analysis of this data is also presented in this report

  5. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  6. Monitoring and control of occupational radiation exposure in Switzerland

    International Nuclear Information System (INIS)

    Moser, M.

    1997-01-01

    Occupational exposure is the most prominent example for the prolonged exposure to low level ionizing radiation characterized by low doses and dose rates. In this paper the occupational exposure in Switzerland is presented and the regulatory control of this exposure in the framework of the new radiation protection regulations is discussed. (author)

  7. DOE 2012 Occupational Radiation Exposure October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Podonsky, Glenn S. [US Dept. of Energy, Washington, DC (United States). Office of Health, Safety and Security

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The

  8. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  9. Radiation Exposure to Concrete in Israel

    International Nuclear Information System (INIS)

    Haquin, G.; Kovler, K.; Yungrais, G. Z.; Lavi, N.

    2014-01-01

    Most building materials of terrestrial origin contain small amounts of radionuclides of natural origin, mainly from the Uranium (238U) and Thorium (232Th) decay chains and the radioactive isotope of potassium, 40K. The external radiation exposure is caused by gamma emitting radionuclides, which in the uranium series mainly belong to the decay chain segment starting with Radium (226Ra). The internal (by inhalation) radiation exposure is due to Radon (222Rn), and its short lived decay products, exhaled from building materials into the room air. Due to economical and environmental reasons there is an increased tendency to use industrial by-products containing relatively high concentrations of radionuclides of natural origin in the building material industry. Fly ash (FA), produced as by-product in the combustion of coal, is extensively used in Israel since mid eighties of the last century in concrete and as an additive to cement . The increase of 226Ra activity concentration, the mineralogical characteristics of the FA and of the concrete may influence on the radon exhalation rate and consequently on the radon exposure of the public. The recently published Israeli Standard 5098 (IS 5098) 'Content of natural radioactive elements in building products' limits the content of natural radionuclides as well as the radon emanation from concrete. This paper presents a compilation of three studies conducted at Soreq Nuclear Research Centre (SNRC), Technion, NRG and Environmental Lab BGU (ELBGU) to investigate and quantify the influence of FA addition in concrete

  10. Radiation exposure to skin following radioactive contamination

    International Nuclear Information System (INIS)

    Baumann, H.; Beyermann, M.; Kraus, W.

    1989-01-01

    In the case of skin contamination intensive decontamination measures should not be carried out until the potential radiation exposure to the basal cell layer of the epidermis was assessed. Dose equivalent rates from alpha-, beta- or photon-emitting contaminants were calculated with reference to the surface activity for different skin regions as a function of radiation energy on the condition that the skin was healthy and uninjured and the penetration of contaminants through the epidermis negligible. The results have been presented in the form of figures and tables. In the assessment of potential skin doses, both radioactive decay and practical experience as to the decrease in the level of surface contamination by natural desquamation of the stratum corneum were taken into account. 9 figs., 5 tabs., 46 refs. (author)

  11. Cosmic radiation exposure at aircraft crew workplaces

    International Nuclear Information System (INIS)

    Latocha, M.; Beck, P.; Rollet, S.; Latocha, M.

    2006-01-01

    E.U.R.A.D.O.S. working group W.G.5. on air crew dosimetry coordinated research of some 24 international institutes to exchange experimental data and results of calculations of the radiation exposure in aircraft altitudes due to cosmic radiation. The purpose was to provide a data-set for all European Union Member States for the assessment of individual doses, the validity of different approaches, and to provide an input to technical recommendations by the Article 31 group of experts and the European Commission. The results of this work have been recently published and are available for the international community. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H * (10). This paper gives an overview of the E.U.R.A.D.O.S. Aircraft Crew In-Flight Database which was implemented under the responsibility of A.R.C. Seibersdorf research. It discusses calculation models for air crew dose assessment comparing them with measurements contained in this database. Further it presents current developments using updated information of galactic cosmic radiation proton spectra and new results of the recently finalized European research project D.O.S.M.A.X. on dosimetry of aircraft crew at solar maximum. (authors)

  12. A radiopharmacological study without human radiation exposure

    International Nuclear Information System (INIS)

    Loew, D.; Graul, E.H.; Kunkel, R.

    1984-01-01

    The development, study and control of new drugs today is hardly conceivable without nuclear medicine studies. Nuclear physicians on ethical commissions bear great responsibility in the planning and execution of such studies. In order to protect subjects and patients those nuclear techniques are therefore to be welcome which do not include exposure to radiation. Nuclear techniques used in in-vitro diagnostics (RIA) and the determination of naturally occurring nuclides incorporated in the human body belong to this category. With the aid of a clinico-pharmacological study of a new combination of diuretics it is shown that both methods supply valuable pharmacodynamic evidence. (orig.) [de

  13. Ultraviolet Radiation Exposure Criteria (invited paper)

    International Nuclear Information System (INIS)

    Sliney, D.H.

    2000-01-01

    During the past 25 years occupational health and safety guidelines, regulations and standards have evolved to protect workers and the general public from potentially hazardous exposure to ultraviolet radiation. A further goal has been to promote the safe design and use of suntanning devices, optical instruments, lamps, and laser products. From the gradually expanding knowledge of the biological effects of UVR exposure of the eye and skin, exposure limits have been slightly revised over the past two decades - by both national and international organisations. The general trend has been a convergence of differing limits. The greatest divergence in guidelines and standards has occurred where the biological effects are least understood or are simply controversial. Philosophical differences in the level of protection have played a role, since there are those who argue that UVR exposure offers more benefit than is accepted by all. The earliest guidelines were limited to UVR from low-pressure mercury lamps used in germicidal applications in the 1940s. By 1972 a North-American guideline based upon an envelope action spectrum had appeared. The International Non-Ionizing Radiation Committee (INIRC) of the International Radiation Protection Association (IRPA) proposed similar guidelines in 1985 and these were revised based upon newer data a few years later. After an extensive review of the IRPA/INIRC guidelines, the International Commission on Non-Ionizing Radiation Protection revalidated and endorsed those limits. Although these guidelines were based firstly on preventing any acute effects, they have also been analysed to show that the risk is extremely small, or undetectable, for delayed effects for persons exposed below these recommended limits. The limits are approximately one-third of an MED (for fair skin) in any eight-hour period. At this level, detectable molecular damage appears to be fully repaired. Further refinement is still called for. For example, the maximal

  14. DOE 2008 Occupational Radiation Exposure October 2009

    International Nuclear Information System (INIS)

    2009-01-01

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  15. DOE 2008 Occupational Radiation Exposure October 2009

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security

    2009-10-01

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  16. Intrauterine radiation exposures and mental retardation

    International Nuclear Information System (INIS)

    Miller, R.W.

    1988-01-01

    Small head size and mental retardation have been known as effects of intrauterine exposure to ionizing radiation since the 1920s. In the 1950s, studies of Japanese atomic-bomb survivors revealed that at 4-17 wk of gestation, the greater the dose, the smaller the brain (and head size), and that beginning at 0.5 Gy (50 rad) in Hiroshima, mental retardation increased in frequency with increasing dose. No other excess of birth defects was observed. Otake and Schull (1984) pointed out that the period of susceptibility to mental retardation coincided with that for proliferation and migration of neuronal elements from near the cerebral ventricles to the cortex. Mental retardation could be the result of interference with this process. Their analysis indicated that exposures at 8-15 wk to 0.01-0.02 Gy (1-2 rad) doubled the frequency of severe mental retardation. This estimate was based on small numbers of mentally retarded atomic-bomb survivors. Although nuclear accidents have occurred recently, new cases will hopefully be too rare to provide further information about the risk of mental retardation. It may be possible, however, to learn about lesser impairment. New psychometric tests may be helpful in detecting subtle deficits in intelligence or neurodevelopmental function. One such test is PEERAMID, which is being used in schools to identify learning disabilities due, for example, to deficits in attention, short- or long-term memory, or in sequencing information. This and other tests could be applied in evaluating survivors of intrauterine exposure to various doses of ionizing radiation. The results could change our understanding of the safety of low-dose exposures

  17. Intrauterine radiation exposures and mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.W.

    1988-08-01

    Small head size and mental retardation have been known as effects of intrauterine exposure to ionizing radiation since the 1920s. In the 1950s, studies of Japanese atomic-bomb survivors revealed that at 4-17 wk of gestation, the greater the dose, the smaller the brain (and head size), and that beginning at 0.5 Gy (50 rad) in Hiroshima, mental retardation increased in frequency with increasing dose. No other excess of birth defects was observed. Otake and Schull (1984) pointed out that the period of susceptibility to mental retardation coincided with that for proliferation and migration of neuronal elements from near the cerebral ventricles to the cortex. Mental retardation could be the result of interference with this process. Their analysis indicated that exposures at 8-15 wk to 0.01-0.02 Gy (1-2 rad) doubled the frequency of severe mental retardation. This estimate was based on small numbers of mentally retarded atomic-bomb survivors. Although nuclear accidents have occurred recently, new cases will hopefully be too rare to provide further information about the risk of mental retardation. It may be possible, however, to learn about lesser impairment. New psychometric tests may be helpful in detecting subtle deficits in intelligence or neurodevelopmental function. One such test is PEERAMID, which is being used in schools to identify learning disabilities due, for example, to deficits in attention, short- or long-term memory, or in sequencing information. This and other tests could be applied in evaluating survivors of intrauterine exposure to various doses of ionizing radiation. The results could change our understanding of the safety of low-dose exposures.

  18. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radiofrequency radiation exposure limits. 1... Procedures Implementing the National Environmental Policy Act of 1969 § 1.1310 Radiofrequency radiation... exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable...

  19. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    Directory of Open Access Journals (Sweden)

    David L Wenzler

    2017-01-01

    Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury.

  20. Radiation exposure of nursing personnel to brachytherapy patients

    International Nuclear Information System (INIS)

    Cobb, P.D.; Kase, K.R.; Bjaerngard, B.E.

    1978-01-01

    The radiation exposure of nursing personnel to brachytherapy patients has been analyzed from data collected during the years 1973-1976, at four different hospitals. The average annual dose per exposed nurse ranged between 25 and 150 mrem. The radiation exposure per nurse was found to be proportional to the total potential exposure and was uncorrelated with the size of the nursing staff. (author)

  1. Ocular ultraviolet radiation exposure of welders.

    Science.gov (United States)

    Tenkate, Thomas D

    2017-05-01

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm 2 (3×MPE) on the inside of the helmets to around 15 mJ/cm 2 (5×MPE) on the headband (a

  2. Occupational exposure to natural radiation in Brazil

    International Nuclear Information System (INIS)

    Melo, D.R.

    2002-01-01

    The mining, milling and processing of uranium and thorium bearing minerals may result in radiation doses to workers. A preliminary survey pilot program, that included six mines in Brazil (two coal mines, one niobium mine, one nickel mine, one gold mine and one phosphate mine), was launched in order to determine the need to control the radioactive exposure of the mine-workers. Our survey consisted of the collection and analysis of urine samples, complemented by feces and air samples. The concentrations of uranium, thorium and polonium were measured in these samples and compared to background data from family members of the workers living in the same dwelling and from residents from the general population of Rio de Janeiro. The results from the coal mines indicated that the inhalation of radon progeny may be a source of occupational exposure. The workers from the nickel, gold and phosphate mines that were visited do not require a program to control internal radiological doses. The niobium mine results showed that in some areas of the industry exposure to thorium and uranium might occur. (author)

  3. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Exposure of humans to natural sources of radiation has been a continuous and inevitable feature of life on earth. This exposure exceeds all due to artificial sources combined for most people. Many exposures to natural radiation sources are modified by human action. In particular, natural radionuclides are released into the environment in mineral processing and in activities such as the production of phosphate fertilizers and the use of fossil fuels. An increase of exposures to this natural radiation is caused. The relevance of exposure to natural radiation is confirmed by the fact that, for most people, the exposures to natural background radiation have been much more significant than exposures to artificial sources, with exceptions. Among these exceptions have been noted: medical exposures, accidents with release of radionuclides and some specific workplaces. In all cases, however, the natural background radiation has formed the basis on which all the others exposures are added and is a common level serving as compared to other exposures. Regulations and instructions have begun to establish in some countries to regulate natural radiation, countries like Spain, have already incorporated into its regulations on health protection against ionizing radiation the subject of natural radiation. (author) [es

  4. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  5. Cell/Tissue Culture Radiation Exposure Facility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  6. The report of medical exposures in diagnostic radiology. Pt. 1. The questionnaire of medical exposure and standard radiation exposure

    International Nuclear Information System (INIS)

    Sasakawa, Yasuhiro; Matsumura, Yoshitaka; Iwasaki, Takanobu; Segawa, Hiroo; Yasuda, Sadatoshi; Kusuhara, Toshiaki

    1997-01-01

    We had made reports of patient radiation exposure for doctors to judge adaptation of medical radiation rightly. By these reports the doctors can be offered data of exposure dose and somatic effect. First, we sent out questionnaires so that we grasped the doctor's understanding about radiation exposure. Consequently we understood that the doctors had demanded data of exposure dose and somatic effect. Secondly, by the result of questionnaires we made the tables of exposure dose about radiological examination. As a result we have be able to presume exposure dose about high radiation sensitive organization as concrete figures. (author)

  7. Technologically modified exposures to natural radiation. Annex C

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex deals with some examples of technologically modified exposures to natural radiation. Radiation exposures due to coal-fired power plants, geothermal energy production, exploitation of phosphate rock, aircraft travel, and consumer products are discussed. The present state of knowledge does not allow an accurate estimate of the collective effective dose equivalent from technologically modified exposures to natural radiation to be made. This annex has an extensive bibliography with at least 200 references.

  8. Patient radiation exposure during different kyphoplasty techniques.

    Science.gov (United States)

    Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.

  9. Patient radiation exposure during different kyphoplasty techniques

    International Nuclear Information System (INIS)

    Panizza, D.; Barbieri, M.; Parisoli, F.; Moro, L.

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient bio-metric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure -1 for study A and 3.6±0.9 mSv procedure -1 for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient. (authors)

  10. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  11. Radiation exposure in the wismut mines

    International Nuclear Information System (INIS)

    Seitz, G.; Ludwig, T.; Bauer, H.D.; Lehmann, F.

    1996-01-01

    Uranium mining grew fast in Saxonia after Second World War. No radiation protection was performed in the first 'wild' years (1946-1954). Winning with air hammer and drilling had been done without dust reduction and led to an enormous airborne dust concentration. These bad working conditions were unique world-wide. Measurements of dustborne activity concentrations had not been taken. To reconstruct the exposure conditions of miners in these years, four series of experiments under original working conditions were carried out. Stress must be laid on the fact that these measurements should result in the received doses according to uranium and it's long living daughters. Personal and stationary air samplers were used to collect the dust. Activity concentration measurements were done by gamma spectrometry. (author)

  12. French population's exposure to ionizing radiations

    International Nuclear Information System (INIS)

    2016-01-01

    This report deals with the exposure of the French population to ionizing radiation. The exposures taken into account are related to cosmic and telluric radiations, to radon, to ingestion of natural radionuclides, to medical imaging and to industrial and military sources. Additionally to the mean effective dose, considered as the macroscopic indicator of the population exposure, the variations of the effective dose for each source of exposure are also presented. Then, the variation of the total effective dose is presented. (authors)

  13. Medical radiation exposure and genetic risks

    International Nuclear Information System (INIS)

    Baker, D.G.

    1980-01-01

    Everyone is exposed to background radiation throughout life (100 mrem/year to the gonads or 4 to 5 rem during the reproductive years). A lumbosacral series might deliver 2500 mrem to the male or 400 mrem to the female gonads. A radiologic procedure is a cost/benefit decision, and genetic risk is a part of the cost. Although cost is usually very low compared to benefit, if the procedure is unnecessary then the cost may be unacceptable. On the basis of current estimates, the doubling dose is assumed to be 40 rem (range 20 to 200) for an acute dose, and 100 rem for protracted exposure. Although there is no satisfactory way to predict the size of the risk for an individual exposed, any risk should be incentive to avoid unnecessary radiation to the gonads. Conception should be delayed for at least ten months for women and three or four months for men after irradiation of the gonads. The current incidence of genetically related diseases in the United States population is 60,000 per million live births. Based on the most conservative set of assumptions, an average gonadal dose of 1000 mrem to the whole population would increase the incidence of genetically related diseases by 0.2%

  14. Operation control device under radiation exposure

    International Nuclear Information System (INIS)

    Kimura, Kiichi; Murakami, Toichi.

    1994-01-01

    The device of the present invention performs smooth progress of operation by remote control for a plurality of operations in periodical inspections in controlled areas of a nuclear power plant, thereby reducing the operator's exposure dose. Namely, the device monitors the progressing state of the operation by displaying the progress of operation on a CRT of a centralized control device present in a low dose area remote from an operation field through an ITV camera disposed in the vicinity of the operation field. Further, operation sequence and operation instruction procedures previously inputted in the device are indicated to the operation field through an operation instruction outputting device (field CRT) in accordance with the progress of the operation steps. On the other hand, the operation progress can be aided by inputting information from the operation field such as start or completion of the operation steps. Further, the device of the present invention can monitor the change of operation circumstances and exposure dose of operators based on the information from a radiation dose measuring device disposed in the operation circumstance and to individual operators. (I.S.)

  15. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  16. Exposing exposure: automated anatomy-specific CT radiation exposure extraction for quality assurance and radiation monitoring.

    Science.gov (United States)

    Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin

    2012-08-01

    To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. This institutional review board-approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative

  17. Physician and nurse knowledge about patient radiation exposure in ...

    African Journals Online (AJOL)

    2015-11-23

    Nov 23, 2015 ... A recent disaster occurred at the Fukushima nuclear power plant in 2011. As a result, concerns about radiation exposure and radiation‑induced ionization have increased in ..... ED physicians and nurses may benefit from standardized continuing education programs about radiation exposure due to ...

  18. Epistemological limitation for attributing health effects to natural radiation exposure

    International Nuclear Information System (INIS)

    González, Abel J.

    2010-01-01

    The attribution of health effects to prolonged radiation exposure situations, such as those experienced in nature, is a challenging problem. The paper describes the epistemological limitations for such attribution it demonstrate that in most natural exposure situations, the theory of radiation-related sciences is not capable to provide the scientific evidence that health effects actually occur (or do not occur) and, therefore, that radiation effects are attributable to natural exposure situations and imputable to nature. Radiation exposure at high levels is known to provoke health effects as tissue reactions. If individuals experience these effects they can be attributed to the specific exposure with a high degree of confidence under the following conditions: the dose incurred have been higher that the relevant dose-threshold for the specific effect; and an unequivocal pathological diagnosis is attainable ensuring that possible competing causes have been eliminated. Only under these conditions, the occurrence of the effect may be properly attested and attributed to the exposure. However, even high levels of natural radiation exposure are lower than relevant dose-thresholds for tissue reactions and, therefore, natural radiation exposure is generally unable to cause these type of effects. One exception to this general rule could be situations of high levels of natural radiation exposure that might be sufficient to induce opacities in the lens of the eyes (which could be considered a tissue-reaction type of effect)

  19. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  20. Maintenance hemodialysis patients have high cumulative radiation exposure.

    LENUS (Irish Health Repository)

    Kinsella, Sinead M

    2010-10-01

    Hemodialysis is associated with an increased risk of neoplasms which may result, at least in part, from exposure to ionizing radiation associated with frequent radiographic procedures. In order to estimate the average radiation exposure of those on hemodialysis, we conducted a retrospective study of 100 patients in a university-based dialysis unit followed for a median of 3.4 years. The number and type of radiological procedures were obtained from a central radiology database, and the cumulative effective radiation dose was calculated using standardized, procedure-specific radiation levels. The median annual radiation dose was 6.9 millisieverts (mSv) per patient-year. However, 14 patients had an annual cumulative effective radiation dose over 20 mSv, the upper averaged annual limit for occupational exposure. The median total cumulative effective radiation dose per patient over the study period was 21.7 mSv, in which 13 patients had a total cumulative effective radiation dose over 75 mSv, a value reported to be associated with a 7% increased risk of cancer-related mortality. Two-thirds of the total cumulative effective radiation dose was due to CT scanning. The average radiation exposure was significantly associated with the cause of end-stage renal disease, history of ischemic heart disease, transplant waitlist status, number of in-patient hospital days over follow-up, and death during the study period. These results highlight the substantial exposure to ionizing radiation in hemodialysis patients.

  1. Radiation Exposure and Health Risks for Orthopaedic Surgeons.

    Science.gov (United States)

    Hayda, Roman A; Hsu, Raymond Y; DePasse, J Mason; Gil, Joseph A

    2018-03-22

    Orthopaedic surgeons are routinely exposed to intraoperative radiation and, therefore, follow the principle of "as low as reasonably achievable" with regard to occupational safety. However, standardized education on the long-term health effects of radiation and the basis for current radiation exposure limits is limited in the field of orthopaedics. Much of orthopaedic surgeons' understanding of radiation exposure limits is extrapolated from studies of survivors of the atomic bombings in Hiroshima and Nagasaki, Japan. Epidemiologic studies on cancer risk in surgeons and interventional proceduralists and dosimetry studies on true radiation exposure during trauma and spine surgery recently have been conducted. Orthopaedic surgeons should understand the basics and basis of radiation exposure limits, be familiar with the current literature on the incidence of solid tumors and cataracts in orthopaedic surgeons, and understand the evidence behind current intraoperative fluoroscopy safety recommendations.

  2. DOE occupational radiation exposure. Report 1992--1994

    International Nuclear Information System (INIS)

    1997-01-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE's performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace

  3. DOE occupational radiation exposure. Report 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  4. Optimizing radiation exposure for CT localizer radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Bohrer, Evelyn; Maeder, Ulf; Fiebich, Martin [Univ. of Applied Sciences, Giessen (Germany). Inst. of Medical Physics and Radiation Protection-IMPS; Schaefer, Stefan; Krombach, Gabriele A. [Univ. Hospital Giessen (Germany). Dept. of Radiology; Noel, Peter B. [Technische Univ. Muenchen (Germany). Dept. of Diagnostic and Interventional Radiology

    2017-08-01

    The trend towards submillisievert CT scans leads to a higher dose fraction of localizer radiographs in CT examinations. The already existing technical capabilities make dose optimization of localizer radiographs worthwhile. Modern CT scanners apply automatic exposure control (AEC) based on attenuation data in such a localizer. Therefore not only this aspect but also the detectability of anatomical landmarks in the localizer for the desired CT scan range adjustment needs to be considered. The effective dose of a head, chest, and abdomen-pelvis localizer radiograph with standard factory settings and user-optimized settings was determined using Monte Carlo simulations. CT examinations of an anthropomorphic phantom were performed using multiple sets of acquisition parameters for the localizer radiograph and the AEC for the subsequent helical CT scan. Anatomical landmarks were defined to assess the image quality of the localizer. CTDI{sub vol} and effective mAs per slice of the helical CT scan were recorded to examine the impact of localizer settings on a helical CT scan. The dose of the localizer radiograph could be decreased by more than 90% while the image quality remained sufficient when selecting the lowest available settings (80 kVp, 20 mA, pa tube position). The tube position during localizer acquisition had a greater impact on the AEC than the reduction of tube voltage and tube current. Except for the use of a pa tube position, all changes of acquisition parameters for the localizer resulted in a decreased total radiation exposure. A dose reduction of CT localizer radiograph is necessary and possible. In the examined CT system there was no negative impact on the modulated helical CT scan when the lowest tube voltage and tube current were used for the localizer.

  5. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Ionizing radiation includes natural radiation which has been part cosmic radiation. Radon in homes, irradiation, gamma, among others, they have also been part of ionizing radiation. The activities that have lead to natural radiation materials are: mining and processing of uranium, radio application and thorium, phosphate industry, mining and smelting of metals, oil and gas extraction, coal mining and power generation, rare earth industry and titanium, zirconium and ceramics, building materials, waste water purification. Therefore, different criteria for radiation protection have had to create against exposure to natural radiation. Distinct rules and regulations to control were created in that sense [es

  6. Observations of nesting avifauna under gamma-radiation exposure

    International Nuclear Information System (INIS)

    Buech, R.R.

    1977-01-01

    An opportunity arose to observe the nesting success of birds (up to the time of fledging) when the Enterprise Forest Radiation Facility was established for a study of the effects of gamma radiation on the flora and fauna of northern forest communities. The results of these observations on the fate of the nest occupants in relation to radiation exposure are presented

  7. Radiation exposure in gastroenterology: improving patient and staff protection.

    LENUS (Irish Health Repository)

    Ho, Immanuel K H

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  8. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  9. Radiation exposure from medical field in France

    International Nuclear Information System (INIS)

    Scanff, P.; Aubert, B.; Donadieu, J.; Pirard, P.

    2006-01-01

    Full text of publication follows: The only nationwide survey on medical X-ray practices in France was carried out more than fifteen years ago and recent updated information about the nature and frequency of X-ray diagnostic procedures and associated doses is lacking. However, with the implementation of the European Directive 97/43, the knowledge of medical practices is necessary and the question of the population dose resulting from medical X-ray examinations is raised again. In order to provide French data concerning the medical exposure to ionizing radiation, the Institute for Radiation Protection and Nuclear Safety (I.R.S.N.) and the National Institute for Public Health Surveillance (I.n.V.S.) have created an observatory of medical exposure to ionizing radiation. A first study was carried out in order to evaluate the nature and frequency of X-ray diagnostic procedures in conventional radiology and computed tomography. Information about annual frequencies was collected from two main sources: the main health insurance company (C.N.A.M.-T.S. - private radiologists) and the national statistics of the health establishments (S.A.E. examinations realized in public and private hospitals) from the ministry of health. Relevant data concerning examinations in conventional radiology (C.R.) with dental radiology and computed tomography (CT) were collected for the year 2002. As these two main sources of data may overlap, two hypotheses were retained, named low hypothesis (l.h.) and high hypothesis (h.h.). Dose contribution of these exams per inhabitant was calculated from French values of dose from the diagnostic reference level (D.R.L.) campaign completed with data from the European Commission publication 118 and from the health protection agency (H.P.A.). In this study, 82 different examination types were identified for C.R., according to the new French nomenclature for medical examinations (C.C.A.M.). The first five examinations (in number) are respectively chest

  10. Radiation exposure from medical field in France

    Energy Technology Data Exchange (ETDEWEB)

    Scanff, P.; Aubert, B. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay-aux-Roses (France); Donadieu, J.; Pirard, P. [Institut de Veille Sanitaire, St Maurice (France)

    2006-07-01

    Full text of publication follows: The only nationwide survey on medical X-ray practices in France was carried out more than fifteen years ago and recent updated information about the nature and frequency of X-ray diagnostic procedures and associated doses is lacking. However, with the implementation of the European Directive 97/43, the knowledge of medical practices is necessary and the question of the population dose resulting from medical X-ray examinations is raised again. In order to provide French data concerning the medical exposure to ionizing radiation, the Institute for Radiation Protection and Nuclear Safety (I.R.S.N.) and the National Institute for Public Health Surveillance (I.n.V.S.) have created an observatory of medical exposure to ionizing radiation. A first study was carried out in order to evaluate the nature and frequency of X-ray diagnostic procedures in conventional radiology and computed tomography. Information about annual frequencies was collected from two main sources: the main health insurance company (C.N.A.M.-T.S. - private radiologists) and the national statistics of the health establishments (S.A.E. examinations realized in public and private hospitals) from the ministry of health. Relevant data concerning examinations in conventional radiology (C.R.) with dental radiology and computed tomography (CT) were collected for the year 2002. As these two main sources of data may overlap, two hypotheses were retained, named low hypothesis (l.h.) and high hypothesis (h.h.). Dose contribution of these exams per inhabitant was calculated from French values of dose from the diagnostic reference level (D.R.L.) campaign completed with data from the European Commission publication 118 and from the health protection agency (H.P.A.). In this study, 82 different examination types were identified for C.R., according to the new French nomenclature for medical examinations (C.C.A.M.). The first five examinations (in number) are respectively chest

  11. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP) [de

  12. DOE 2010 Occupational Radiation Exposure November 2011

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  13. Radiation exposure to sonographers from nuclear medicine patients: A review.

    Science.gov (United States)

    Earl, Victoria Jean; Badawy, Mohamed Khaldoun

    2018-02-25

    Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.

  14. Physician Knowledge of Radiation Exposure and Risk in Medical Imaging.

    Science.gov (United States)

    Hobbs, Jason B; Goldstein, Noah; Lind, Kimberly E; Elder, Deirdre; Dodd, Gerald D; Borgstede, James P

    2018-01-01

    Medical imaging is an increasingly important source of radiation exposure for the general population, and there are risks associated with such exposure; however, recent studies have demonstrated poor understanding of medical radiation among various groups of health care providers. This study had two aims: (1) analyze physicians' knowledge of radiation exposure and risk in diagnostic imaging across multiple specialties and levels of training, and (2) assess the effectiveness of a brief educational presentation on improving physicians' knowledge. From 2014 to 2016, 232 health care providers from multiple departments participated in an educational presentation and pre- and postpresentation tests evaluating knowledge of radiation exposure and risk at a large academic institution. Knowledge of radiation exposure and risk was relatively low on the prepresentation test, including particularly poor understanding of different imaging modalities, with 26% of participants unable to correctly identify which modalities expose patients to ionizing radiation. Test scores significantly increased after the educational presentation. Radiologists had higher prepresentation test scores than other specialties, and therefore less opportunity for improvement, but also demonstrated improvement in radiation safety knowledge after education. Aside from radiology, there was no significant difference in initial knowledge of radiation exposure and risk among the other specialties. Providers' knowledge of radiation exposure and risk was low at baseline but significantly increased after a brief educational presentation. Efforts to educate ordering providers about radiation exposure and risk are needed to ensure that providers are appropriately weighing the risks and benefits of medical imaging and to ensure high-quality, patient-centered care. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status

    Directory of Open Access Journals (Sweden)

    Ola Engelsen

    2010-05-01

    Full Text Available This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  16. Environmental radiation exposure in case of power plant accidents

    International Nuclear Information System (INIS)

    Eder, K.

    1977-01-01

    The paper tries to overcome prejudices concerning radiation effects due to power plant accidents as well as to show the radiation exposure that may be expected near the the patient and to indicate ways and means to avoid or reduce this radiation exposure and to avoid contamination. It is a contribution to better information on radiation accidents and radiolesions in nuclear power plants with the aim of close cooperation between power plants, physicians, and hospitals and of helping to overcome erroneous popular assumptions. (orig./HP) [de

  17. ACREM: A new air crew radiation exposure measuring system

    International Nuclear Information System (INIS)

    Beck, P.; Duftschmid, K.; Kerschbaumer, S.; Schmitzer, C.; Strachotinsky, C.; Grosskopf, A.; Winkler, N.

    1996-01-01

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  18. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  19. Immediate Transcriptional Changes in Response to High Dose Radiation Exposure

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the most likely risks astronauts on long duration space missions face is exposure to ionizing radiation associated with highly energetic and charged heavy...

  20. Mouse fecal microbiome after exposure to high LET radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — Space travel is associated with continuous low-dose-rate exposure to high Linear Energy Transfer (LET) radiation. Pathophysiological manifestations after low-dose...

  1. Cari Kitahara Explores Medical Radiation Exposures and Thyroid Cancer Etiology

    Science.gov (United States)

    Dr. Cari Kitahara has built a multidisciplinary research program to explore cancer risks from occupational and medical radiation exposures, and to investigate the etiology of radiosensitive tumors, including thyroid cancer.

  2. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  3. Control of excessive lead exposure in radiator repair workers.

    Science.gov (United States)

    1991-03-01

    In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.

  4. Evaluation of natural radiation exposure of the French population

    International Nuclear Information System (INIS)

    Billon, S.; Morin, A.; Baysson, H.; Gambard, J.P.; Rannou, A.; Tirmarche, M.; Laurier, D.; Caer, S.

    2004-01-01

    Exposure of the French population to ionising radiation is mainly due to natural radiation (i.e. exposure through: inhalation of radon decay products, external radiation of terrestrial and cosmic origin and water and food ingestion). In an epidemiological context, it is necessary to estimate as precisely as possible the population exposure, in order to study its influence on health indicators. In this aim, indicators of population exposure should be created taking into account results of environmental measurements by controlling the different factors that may influence these measurements (dwelling characteristics, seasonal variations, population density). The distribution of these exposures should also be studied at different geographical levels (department, job area). This work updates the estimation of the French population exposure to natural radiation. Radon exposure indicators have been based on concentrations measured in dwellings, corrected on season and dwelling characteristics (departmental range: 19-297 Bq/m 3 ). Indicators of terrestrial gamma ray exposure have been based on measured indoor and outdoor dose rates adjusted on dwelling characteristics (22-95 nSv/h). Cosmic ray exposure has been evaluated from altitude and weighted by population density (0.27-0.38 mSv/yr). Due to these three components, the effective annual dose was estimated to be at 2.2 mSv. (author)

  5. Monitoring of radiation exposure and registration of doses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.).

  6. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1996-01-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  7. Radiation exposure rate of aircraft passengers and crew members

    International Nuclear Information System (INIS)

    Elam, J.A.

    1982-01-01

    The amount of radiation exposure to passengers and crew members of aircraft was determined. Data were gathered from 15 pilots. They were issued film dosimeters sensitive to different ranges of energies. Research is discussed on the various results from altitude and latitude changes, solar cycle fluctuation, and nuclear testing. The exposures received are related to other fields that have radiation problems and then compared with previous research on high altitude aircraft

  8. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Van Swearingen, F.L.; McCullough, D.L.; Dyer, R.; Appel, B.

    1987-01-01

    Extracorporeal shock wave lithotripsy is rapidly becoming an accepted treatment of renal calculi. Since fluoroscopy is involved to image the stones it is important to know how much radiation the patient receives during this procedure. Surface radiation exposure to the patient was measured in more than 300 fluoroscopic and radiographic procedures using thermoluminescent dosimeters. Initial results showed an average skin exposure of 10.1 rad per procedure for each x-ray unit, comparing favorably with exposure rates for percutaneous nephrostolithotomy and other routine radiological procedures. Factors influencing exposure levels include stone characteristics (location, size and opacity), physician experience and number of shocks required. Suggestions are given that may result in a 50 per cent reduction of radiation exposure

  9. Biodosimetry for the assessment of radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yoshiro [Tokyo Univ. (Japan). Faculty of Medicine

    1994-08-01

    Biodosimetry, in which exposure doses are estimated using biological samples such as blood, urine and teeth, is important not only in determining the optimum treatment strategy but also in screening patients requiring emergency care in the setting of radiological accident. This article discusses biodosimetry at the time of whole-body exposure and local exposure, together with its usage in actual radiological accidents. Dosimetry at the whole-body exposure is described in terms of the following approaches: (1) changes in blood samples, (2) chromosomal aberration, (3) the frequency of somatic mutation, chromosomal aberration of human spermatozoon, biochemical analysis, electroencephalographic abnormalities, and spin echo resonance. Biodosimetry at the time of local exposure is mentioned in relation to skin exposure. Finally, biodosimetry used in actual radiological accidents of Chernobyl, Goiania, and San Salvador is referred to. (N.K.).

  10. Radiation exposure during the lateral lumbar interbody fusion procedure and techniques to reduce radiation dosage.

    Science.gov (United States)

    Tatsumi, Robert L

    2012-01-01

    Fluoroscopy is widely used in spine surgery to assist with graft and hardware placement. Previous studies have not measured radiation exposure to a surgeon during minimally invasive lateral lumbar spine surgery for single-level discectomy and interbody cage insertion. This study was performed to model and measure radiation exposure to a surgeon during spine surgery using the direct lateral lumbar procedure. The study was performed using a mannequin substituting for the surgeon and a cadaver substituting for the patient. Radiation was measured with dosimeters attached to 6 locations on the mannequin using a OEC Medical Systems 9800 C-arm fluoroscope (OEC Medical Systems, Salt Lake City, Utah). Three different fluoroscopy setups were tested: a standard imaging setup, a standard setup using pulsed-mode fluoroscopy, and a reversed setup. The experiment was tested 5 times per setup, and the dosimeters' values were recorded. The highest amount of radiation exposure occurred when obtaining an anteroposterior view of the spine in the standard setup. Compared with the standard setup, the pulsed-mode setting decreased the radiation exposure to the mannequin by a factor of 6 times (P exposure to the mannequin by a factor of 6 times (P exposure to the eye level (P exposure. Radiation exposure to the surgeon can be greatly minimized by using either a pulsed imaging mode or the reversed setup. The reversed setup has the lowest amount of radiation exposure to the eye level.

  11. Effects of radiation exposure from radiopharmaceuticals used in diagnostic studies

    International Nuclear Information System (INIS)

    Witcofski, R.L.

    1981-01-01

    In the United States about 90 percent of man-made radiation exposure to the general population is from the use of radiation in diagnostic medicine. Although the doses of radiation from these procedures to individuals are generally quite small, large numbers of people are exposed. Estimates of the radiation doses associated with such use in the healing arts are approximately 15 million person-rem to the general population from diagnostic x ray and 3.3 million person-rem from the diagnostic use of radiopharmaceuticals. The purpose of this paper is to present what is known about the possible effects of radiation from diagnostic radiopharmaceuticals

  12. Childhood cancer and occupational radiation exposure in parents

    International Nuclear Information System (INIS)

    Hicks, N.; Zack, M.; Caldwell, G.G.; Fernbach, D.J.; Falletta, J.M.

    1984-01-01

    To test the hypothesis that a parent's job exposure to radiation affeOR). its his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR)) . infinity, one-sided 95% lower limit . 1.5; P . 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR . 2.73; P . 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations

  13. Cancer risks following diagnostic and therapeutic radiation exposure in children

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A. [National Institutes of Health, Division of Cancer Epidemiology and Genetics, National Cancer Institute, EPS 7044, Rockville, MD (United States)

    2006-09-15

    The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life. (orig.)

  14. Occupational radiation exposure monitoring among radiation workers in Nepal

    International Nuclear Information System (INIS)

    Bhatt, Chhavi Raj; Shrestha, Shanta Lall; Khanal, Tara; Ween, Borgny

    2008-01-01

    Nepal was accepted as a member of the IAEA in 2007. Nepal is one of the world's least developed countries and is defined in Health Level IV. The population counted 26.4 millions in 2007. The health care sector increases with new hospitals and clinics, however, Nepal has no radiation protection authority or radiation protection regulation in the country until now. The radiation producing equipment in the health sector includes conventional X-ray and dental X-ray equipment, fluoroscopes, mammography, CT, catheterization laboratory equipment, nuclear medicine facilities, a few linear accelerators, Co 60 teletherapy and High Dose Rate brachytherapy sources. The situation regarding dosimetry service for radiation workers is unclear. A survey has been carried out to give an overview of the situation. The data collection of the survey was performed by phone call interviews with responsible staff at the different hospitals and clinics. Data about different occupationally exposed staff, use of personal radiation monitoring and type of dosimetry system were collected. In addition, it was asked if dosimetry reports were compiled in files or databases for further follow-up of staff, if needed. The survey shows that less of 25% of the procedures performed on the surveyed hospitals and clinics are performed by staff with personnel radiation monitoring. Radiation monitoring service for exposed staff is not compulsory or standardized, since there is no radiation protection authority. Nepal has taken a step forward regarding radiation protection, with the IAEA membership, although there are still major problems that have to be solved. An evaluation of the existing practice of staff dosimetry can be the first helpful step for further work in building a national radiation protection authority. (author)

  15. Radiation exposure of radiographers who handle 18 F ...

    African Journals Online (AJOL)

    18F-fluorodeoxyglucose (18F-FDG) is used in most diagnostic applications of Positron Emission Tomography (PET). It has high annihilation energy of 511 keV, which results in potentially high radiation doses for staff. This study investigated radiographer radiation exposure during receipt, administration and scanning of ...

  16. Radiation exposure from diagnostic imaging among patients with gastrointestinal disorders.

    LENUS (Irish Health Repository)

    Desmond, Alan N

    2012-03-01

    There are concerns about levels of radiation exposure among patients who undergo diagnostic imaging for inflammatory bowel disease (IBD), compared with other gastrointestinal (GI) disorders. We quantified imaging studies and estimated the cumulative effective dose (CED) of radiation received by patients with organic and functional GI disorders. We also identified factors and diagnoses associated with high CEDs.

  17. electromagnetic radiation exposure from cellular base station

    African Journals Online (AJOL)

    eobe

    to human health from exposure to radio frequency. (RF) electromagnetic fields ... adverse health effects such as blood brain barrier, cancer and sleep ... restrictions set by ICNIRP as shown in Table 1 [20]. Table 1: Basic restrictions between 10 and 300 GHz. Exposure characteristics. Power density (. 2. /. mW ). Occupational ...

  18. Cost benefit analysis for occupational radiation exposure

    International Nuclear Information System (INIS)

    Caruthers, G.F.; Rodgers, R.C.; Donohue, J.P.; Swartz, H.M.

    1978-01-01

    In the course of system design, many decisions must be made concerning different aspects of that particular system. The design of systems and components in a nuclear power plant has the added faction of occupational exposure experienced as a result of that design. This paper will deal with the different methods available to factor occupational exposure into design decisions. The ultimate goal is to have exposures related to the design 'As Low As Reasonably Achievable' or ALARA. To do this an analysis should be performed to show that the cost of reducing exposures any further cannot be justified in a cost-benefit analysis. In this paper examples will be given that will show that it is possible to change to a design which would increase occupational exposure somewhat but would increase the benefit over the cost of the extra exposure received. It will also be shown that some changes in design or additional equipment could be justified due to a reduction in exposure while some changes could not be justified on a reduction in exposure aspect alone but are justified on a time saving aspect such as during a refueling outage. (author)

  19. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  20. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G. E-mail: gianni.deangelis@iol.it; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A

    2001-06-01

    A study of radiation exposures in the ionizing radiation environment of the atmosphere is currently in progress for the Italian civil aviation flight personnel. After a description of the considered data sources/ the philosophy of the study is presented/ and an overview is given of the data processing with regard to flight routes/ the computational techniques for radiation dose evaluation along the flight paths and for the exposure matrix building/ along with an indication of the results that the study should provide.

  1. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  2. Cytogenetics observation and radiation influence evaluation of exposed persons in a discontinuous radiation exposure event

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Yang Guoshan; Ge Shili; Jin Cuizhen; Yao Bo

    2003-01-01

    The cytogenetics results and dose estimation of exposed and related persons in an discontinuous radiation exposure event were reported in this paper. According to dicentrics + ring and micronucleus results combined with clinical data, slight (middle) degree of subacute radiation symptom of the victim was diagnosed. A part of 52 examined persons were exposed to radiation in a certain degree

  3. Management of radio frequency radiation exposures in telecom Australia

    International Nuclear Information System (INIS)

    Joyner, K.H.; Hocking, B.

    1992-01-01

    Telecom Australia is the largest non-military user of radio frequency radiation (RFR) in Australia and the management of risks to health from RFR exposure are discussed. The Australian RFR Exposure Standard forms that basis of risk assessment. Risk assessment and control procedures including the health surveillance of workers, other special occupational groups and members of the general public are outlined. (author)

  4. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    Antic, D.; Markovic, P.; Petrovic, Z.

    1993-01-01

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  5. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  6. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  7. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  8. Occupational radiation exposure and mortality study

    International Nuclear Information System (INIS)

    Coppock, E.; Dobson, D.; Fair, M.

    1992-06-01

    An epidemiological cohort study of some 300,000 Canadians enrolled in the National Dose Registry (NDR) is being undertaken to determine if there is excess cancer or other causes of mortality among those workers who are occupationally exposed to low levels of ionizing radiation. The results of this study may provide better understanding of the dose-response relationship for low doses of ionizing radiation and aid in the verification of risk estimates for radiation-induced cancer mortality. The Department of National Health and Welfare (DNHW) is responsible for the Registry; this study is being carried out by the Bureau of Radiation and Medical Devices (BRMD) with financial assistance and co-operation of various agencies including Statistics Canada and the Atomic Energy Control Board

  9. Solar ultraviolet radiation : personal exposure and protection

    International Nuclear Information System (INIS)

    Roy, C.; Gies, H.P.; Elliott, G.

    1988-01-01

    Overexposure to solar ultraviolet radiation ( [1TUVR) can result in serious health effects including skin cancer. Good skin and eye protection against solar UVR is available and the outdoor worker should be educated to use such protection at all times

  10. Radiation Exposure from Medical Exams and Procedures

    Science.gov (United States)

    ... replacement, less time- consuming and invasive. Physicians and technologists performing these procedures are trained to use the ... dose from Do magnetic resonance imaging (MRI) and ultrasound medical exams? use radiation? Ask your doctor to ...

  11. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1993-01-01

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  12. Radiation exposure of the population due to medical procedures

    International Nuclear Information System (INIS)

    Frischauf, H.

    1976-01-01

    The question of individual benefit-risk ratio in X-ray exposures is considered. The growth rate of the number of radiological examinations in New Zealand, Sweden, UK and USA is stated to be between 2 and 6 per cent per annum. The risks of internal radioisotope tests are emphasised and reductions of exposure are reported when 99Tc isotopes are used, counterbalanced by the increasing number of exposures made; the question of radiation-induced leukemia is raised in this respect. The problems of analysing delayed radiation effects are discussed, and the possibility of animal tests is suggested. (G.M.E.)

  13. Fitness of equipment used for medical exposures to ionising radiation

    International Nuclear Information System (INIS)

    1998-01-01

    The advice in this guidance note is aimed at employers in control of equipment used for medical exposures to ionising radiation and ancillary equipment. This includes NHS trusts, health authorities or boards, private hospitals, clinics, surgeries, medical X-ray facilities in industry, dentists and chiropractors. The guidance should also be useful to radiation protection advisers appointed by such employers. The guidance provides advice on the requirements of regulation 33 of the Ionising Radiations Regulations 1985 (IRR85). In particular, it covers: (a) the selection, installation, maintenance, calibration and replacement of equipment to ensure that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended diagnostic or therapeutic purpose; (b) recommended procedures for the definitive calibration of radiotherapy treatment; and (c) the need to investigate incidents involving a malfunction or defect in any 'radiation equipment' which result in medical exposures much greater than intended and to notify the Health and Safety Executive (HSE). 'Medical exposure' is defined in IRR85 as exposure of a person to ionising radiation for the purpose of his or her medical or dental examination or treatment which is conducted under the direction of a suitably qualified person and includes any such examination or treatment conducted for the purposes of research. For convenience, people undergoing medical exposure will be referred to as 'patients' in this guidance. Nothing in this publication is intended to indicate whether or not patients should be informed of any incident resulting from malfunction or defect in equipment used for medical exposure and the possible consequences of that exposure. As stated above, this guidance concerns medical exposures much greater than intended and although exposures much lower than intended can also have serious consequences, the incident would not

  14. Radiation exposure and lung disease in today's nuclear world.

    Science.gov (United States)

    Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew

    2017-03-01

    Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.

  15. Environmental radioactivity and radiation exposure in 2015; Umweltradioaktivitaet und Strahlenbelastung im Jahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-20

    The information of the German Federal Government on the environmental radioactivity and radiation exposure in 2015 covers the following issues: selected topics of radiation protection, natural radiation exposure; civilizing (artificial) radiation exposure: nuclear power plants and other nuclear facilities, uranium mine recultivation, radioactive materials in industry and households, fallout from nuclear weapon testing and reactor accidents; occupational radiation exposure: exposed personnel in nuclear facilities, aviation personnel, radiation accidents; medical radiation exposure: nuclear medical diagnostics and therapy; non-ionizing radiation: electromagnetic fields, UV radiation, optical radiation.

  16. Occupational radiation exposure in the GDR in 1977

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1980-01-01

    In 1977, radiation workers were monitored for external and internal radiation exposure on the basis of film badges (37,348 persons), measurements with a whole-body counter (198 persons) and analyses of biosamples (174 persons). According to the film badge data, the monthly over-exposures (more than 4 mGy) totalled 253. In 6 cases the monthly exposure exceeded 30 mGy and the 9 highest annual exposure values were in the range of 50 to 120 mGy. Also, annual collective and annual per caput doses have been given for the exposed population as a whole and some subgroups. Based on model considerations, the internal radiation exposure situation resulting from unintentional intakes of radionuclides has been assessed in terms of committed dose equivalents to members of two selected groups of radiation workers: (a) persons with more-than-average internal contamination levels; (b) persons subjected to frequent individual monitoring. Except for some organ doses, the individual radiation exposure was below one-tenth the maximum permissible dose. (author)

  17. A computer system for occupational radiation exposure information

    International Nuclear Information System (INIS)

    Hunt, H.W.

    1984-01-01

    A computerized occupational radiation exposure information system has been developed to maintain records for contractors at the U.S. Department of Energy's (DOE) Hanford Site. The system also allows indexing and retrieval of three million documents from microfilm, thus significantly reducing storage needs and costs. The users are linked by display terminals to the data base permitting them instant access to dosemetry and other radiation exposure information. Personnel dosemeter and bioassay results, radiation training, respirator fittings, skin contaminations and other radiation occurrence records are included in the data base. The system yields immediate analysis of radiological exposures for operating management and health physics personnel, thereby releasing personnel to use their time more effectively

  18. Natural and anthropogenic radiation exposure of humans in Germany; Natuerliche und zivilisatorische Strahlenexposition des Menschen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Koelzer, Winfried

    2016-12-15

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  19. Tissue response after radiation exposure. Intestine

    International Nuclear Information System (INIS)

    Otsuka, Kensuke; Tomita, Masanori; Yamauchi, Motohiro; Iwasaki, Toshiyasu

    2014-01-01

    Gastrointestinal syndrome followed by 'gut death' is due to intestinal disorders. This syndrome is induced by high-dose (>10 Gy) of ionizing radiation. Recovery from the gastrointestinal syndrome would depend on the number of survived clonogens and regeneration capability of crypts. These tissue alterations can be observed by high-dose radiation, however, cellular dynamics in crypts can be affected by low-dose radiation. For example, Potten et al. found that low-dose radiation induce apoptosis of intestinal stem cells, which produce all differentiated function cells. Recently, intestinal stem cells are characterized by molecular markers such as Lgr5. Since intestinal adenomas can be induced by deletion of Apc gene in Lgr5 + stem cells, it is widely recognized that Lgr5 + stem cells are the cell-of-origin of cancer. Duodenal Lgr5 + stem cells are known as radioresistant cells, however, we found that ionizing radiation significantly induces the turnover of colonic Lgr5 + stem cells. Combined with the knowledge of other radioresistant markers, stem-cell dynamics in tissue after irradiation are becoming clear. The present review introduces the history of gastrointestinal syndrome and intestinal stem cells, and discusses those future perspectives. (author)

  20. Occupational exposure to natural sources of radiation

    International Nuclear Information System (INIS)

    Ortiz, T.; Sciocchetti, G.; Rannou, A.

    1993-01-01

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  1. Cancer as a risk of exposure to medicinal radiation

    International Nuclear Information System (INIS)

    Oeser, H.

    1975-01-01

    'Radiocancer' arises in a tissue or organ damaged by radiation; the ionising rays have caused somatic radiation damage but have not produced cancer. A higher risk of cancer as a sequel to constantly increasing exposure to medicinal radiation has not been demonstrated so far. The statements quoted in the paper are due in particular to faulty comparative evaluations in retrospective surveys and to inadmissible extrapolations of findings after the action of high radiation doses to expected effects with low doses. In addition to radiobiology and radiophysics, knowledge of oncology and clinical radiology must also be taken into account in future. (orig.) [de

  2. Occupational standard for exposure to ultraviolet radiation (1989)

    International Nuclear Information System (INIS)

    1989-12-01

    The exposure limit (EL) values in this standard refer to ultraviolet radiation (UVR) in the spectral region between 180 and 400 nm and represents conditions under which it is believed that nearly all workers may be repeatedly exposed without adverse effect. The EL values for exposure of the eye or the skin may be used to evaluate potentially hazardous exposure from UVR. The limits do not apply to ultraviolet lasers. The values should be used as guides in the control of exposure to both pulsed and continuous sources of UVR where the exposure duration is not less than 0.1 μsec. The ELs are below levels used for UV exposures of patients as a part of medical treatment or for elective cosmetic purposes. They are intended as upper limits for non therapeutic and non cosmetic exposure. 2 refs., 2 tabs

  3. Measurement of Radiofrequency Radiation Exposure in Epidemiological Studies (invited paper)

    International Nuclear Information System (INIS)

    Swerdlow, A.J.

    1999-01-01

    The measurement of radiofrequency (RF) exposure is important to the quality of epidemiological studies of the possible association of RF exposure with disease. The extent and type of exposure measurement in past epidemiological studies of RF, and the features of measurement that would be desirable for better studies in the future are summarised. Measurement characteristics that are discussed include quantification of radiation frequency and of intensity and timing of exposures, measurement (or good estimation) of exposures for individuals rather than only for groups, quality of measurement, and measurement of RF exposures experienced outside the study setting. Integration of exposure measurement into the design of epidemiological studies is needed for better assessments of possible RF effects. (author)

  4. Electromagnetic radiation-2450 MHz exposure causes cognition ...

    Indian Academy of Sciences (India)

    83

    Electromagnetic radiation (EMR) can induce or modulate several neurobehavioral disorders. .... Oxidative stress and accumulation of Aβ1–40 are implicated in the pathogenesis of AD (Chen et al.2010; Fu et. 1 ...... MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status. 9.

  5. Assigning a value to transboundary radiation exposure

    International Nuclear Information System (INIS)

    1985-01-01

    The document offers guidance on the application of the Basic Safety Standards with regard to the particular problem of using differential cost-benefit analysis in the optimization of radiation protection in the case of transboundary radioactive pollution. Examples of optimization of 14 C retention at a nuclear power plant and of 85 Kr retention at a reprocessing plant are presented

  6. Predicted Radiation Exposure from Mining at Kvanefjeld

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul; Roos, Per; Andersson, Kasper Grann

    from uranium mines in other developed countries such as Australia and Canada. From a radiation dose perspective Kvanefjeld operations are not expected to be any worse than current uranium mining operations elsewhere as the uranium content is significantly lower. DTU was engaged by GMEL...

  7. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  8. Controlling criteria for radiation exposure of astronauts and space workers

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1989-01-01

    Space workers likely to suffer from radiation exposure in the outer space are currently limited to the U.S. and Soviet Union, and only a small amount of data and information is available concerning the techniques and criteria for control of radiation exposure in this field. Criteria used in the Soviet Union are described first. The criteria (TRS-75), called the Radiation Safety Criteria for Space Navigation, are tentative ones set up in 1975. They are based on risk assessment. The standard radiation levels are established based on unit flight time: 50rem for 1 month, 80rem for 3 months, 110rem for 6 months and 150rem for 12 months. These are largely different from the emergency exposure limit of 100mSv (10rem) specified in a Japanese law, and the standard annual exposure value of 50mSv (5rem) for workers in nuclear power plants at normal times. For the U.S., J.A. Angelo, Jr., presented a paper titled 'Radiation Protection Issues and Techniques concerning Extended Manned Space Missions' at an IAEA meeting held in 1988. Though the criteria shown in the paper are not formal ones at the national level, similar criteria are expected to be adopted by the nation in the near future. The exposure limits recommended in the paper include a depth dose of 1-4Sv for the whole life span of a worker. (Nogami, K.)

  9. Occupational radiation exposure in the GDR in 1978

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1980-01-01

    In 1978, radiation workers were monitored for external and internal radiation exposure on the basis of film badges (37,980 persons), measurements with a whole-body counter (186 persons) and analyses of biosamples (144 persons). According to the film badge data, the monthly over-exposures (more than 4 mGy) totalled 427. In 13 cases the monthly exposure exceeded 30 mGy, 8 persons received annual doses in the range of 50 to 120 mGy, and the highest annual dose was above 250 mGy. Also, annual collective and annual per caput doses have been given for the exposed population as a whole and some subgroups. Based on model considerations, the internal radiation exposure situation resulting from unintentional intakes of radionuclides has been assessed in terms of committed dose equivalents to members of two selected groups of radiation workers: (a) persons with more-than-average internal contamination levels; (b) persons subjected to frequent individual monitoring. Except for some organ doses, the individual internal radiation exposure was well below one-tenth the maximum permissible dose. (author)

  10. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  11. Health effects of low level radiation exposure among radiation workers

    International Nuclear Information System (INIS)

    Murata, Motoi

    2003-01-01

    In Japan, a cohort study of radiation workers has been conducted since 1990. The cohort population consisted of about 176,000 workers (mostly males) who had been registered in the centralized radiation dose registry system and engaged in various radiation works at nuclear facilities. Statistical analyses were performed mainly on the 2,934 deaths, of which 1,191 were cancer cases, detected among 119,000 male subjects during the prospective follow-up. The standardized mortality ratio showed that for any cancers mortality was not different between this population and Japanese general population. By the trend test, though significantly increasing trend in accord with increasing doses was not observed for both cancer in all sites and leukemia, it was highly significant for esophagus cancer and external causes of deaths. Results of the questionnaire survey study of lifestyle of radiation workers suggested that increasing trend of these diseases was at least partly due to the influence of some confounding factors. As a result of reviewing published studies, including the present work, trend of mortality from cancer in all sites with increasing doses seems still unclear, whereas for leukemia it appears to stay flat under 100 mSv but rapidly rise up in the doses higher than this as if fitting to either a linear-quadratic or threshold models. (author)

  12. Health Impacts from Acute Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  13. Radiation exposure of nuclear medicine procedures in Germany

    International Nuclear Information System (INIS)

    Hacker, M.

    2005-01-01

    Nuclear Medicine procedures offer the possibility to detect abnormalities on the basis of physiological and metabolic changes and to treat a growing number of diseases in human beings. However, the use of radiopharmaceuticals for nuclear medicine examinations causes a significant component of the total radiation exposure of populations. In Germany it is an essential task of the Federal Office for Radiation Protection to determinate and assess radiation exposure of the population due to nuclear medicine diagnostics and therapy. An important input for this task is the frequency of nuclear-medical examinations with application of ionising radiation and the radiation exposure of patients related to the various procedures. Additional implementation of age- and gender-specific data today allows more exact risk stratification in focusing on different subgroups of patients. Moreover, the collective effective dose as well as the per caput effective dose of the German population may be estimated and compared with earlier collected data or foreign countries. These data reveal where the indication should be questioned particularly critically and if the dose for the various examinations can be reduced and, thus, contribute to the definition of diagnostic reference levels for nuclear medicine procedures in Germany with the aim of both a sufficient image quality and a minimum of radiation exposure. Exceeding the high- as well as the low-values requires documentation and explanation. (orig.)

  14. Occupational external radiation exposure in the GDR in 1976

    International Nuclear Information System (INIS)

    Rothe, W.

    1980-01-01

    In 1976 a total of 36,794 occupationally exposed persons were monitored by the National Board of Nuclear Safety and Radiation Protection, using film badges. The monthly over-exposures (more than 4 mGy) totalled 415. In 11 cases the monthly exposure exceeded 30 mGy and 6 annual exposure values were in the range of 50 to 120 mGy. An attempt has been made to assess the annual collective and annual per caput doses for the exposed population as a whole and some subgroups without completely summing up the individual exposure data. (author)

  15. Calculation of radiation exposure in diagnostic radiology. Method and surveys

    International Nuclear Information System (INIS)

    Duvauferrier, R.; Ramee, A.; Ezzeldin, K.; Guibert, J.L.

    1984-01-01

    A computerized method for evaluating the radiation exposure of the main target organs during various diagnostic radiologic procedures is described. This technique was used for educational purposes: study of exposure variations according to the technical modalities of a given procedure, and study of exposure variations according to various technical protocols (IVU, EGD barium study, etc.). This method was also used for studying exposure of patients during hospitalization in the Rennes Regional Hospital Center (France) in 1982, according to departments (urology, neurology, etc.). This method and results of these three studies are discussed [fr

  16. Risk assessment and management of radiofrequency radiation exposure

    International Nuclear Information System (INIS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-01-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management

  17. Delayed development of radiation sickness in animals following partial exposure

    International Nuclear Information System (INIS)

    Vershinina, S.F.; Markochev, A.V.

    1995-01-01

    Causes of reduction of the life span of animals after partial exposure of the head, thorax, and abdomen are analyzed. Pulmonosclerosis and cardiosclerosis were mainly responsible for animal death following partial radiation exposure of the thorax; these conditions appreciably shortened the life span of the animals. After exposure of the head deaths were due to pneumonias which negligibly reduced the duration of life. Exposure of the abdomen led to the development of diabetes mellitus which shortened the life span by half. 18 refs., 1 tab

  18. electromagnetic radiation exposure from cellular base station

    African Journals Online (AJOL)

    eobe

    [15] Schmid T., Egger O. and Kuster N., “Automated E-. Field Scanning System for Dosimetric Assessments”,. IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, pp. 105-113, 1996. [16] Mann S. M, “Exposure to radio waves near mobile phone base stations”, NRPB-R321, National. Radiological Protection Board, Chilton, ...

  19. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  20. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  1. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  2. Occuptional radiation exposures and thyroid cancer risk among radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Mina [Dankook University Seoul (Korea, Republic of); Kim, Jae Young [Keimyung University, Daegu (Korea, Republic of); Jun, Jae Kwan [National Cancer Center, Seoul (Korea, Republic of); Jin, Young Won [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-04-15

    Medical radiation workers were among the earliest occupational groups exposed to external ionizing radiation due to their administration of a range of medical diagnostic procedures and accounted for 7.4 million worldwide in 2008. Ionizing radiation is the confirmed human carcinogen for most organ sites. The aims of the study is to evaluate the association between occupational practices including radiation exposure and thyroid cancer risk among radiologic technologists. We found no significant association between the risk of thyroid cancer and the majority of work practices among diagnostic radiation technologists in general. However workers performing fluoroscopy and interventional procedures showed increased risks although the lack of a clear exposure– response gradient makes it difficult to draw clear conclusions. Future studies with larger sample size and detailed work practices implementation are needed to clarify the role of occupational radiation work in thyroid cancer carcinogenesis.

  3. Cumulative radiation exposure in children with cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Reilly, R

    2010-02-01

    This retrospective study calculated the cumulative radiation dose for children with cystic fibrosis (CF) attending a tertiary CF centre. Information on 77 children with a mean age of 9.5 years, a follow up time of 658 person years and 1757 studies including 1485 chest radiographs, 215 abdominal radiographs and 57 computed tomography (CT) scans, of which 51 were thoracic CT scans, were analysed. The average cumulative radiation dose was 6.2 (0.04-25) mSv per CF patient. Cumulative radiation dose increased with increasing age and number of CT scans and was greater in children who presented with meconium ileus. No correlation was identified between cumulative radiation dose and either lung function or patient microbiology cultures. Radiation carries a risk of malignancy and children are particularly susceptible. Every effort must be made to avoid unnecessary radiation exposure in these patients whose life expectancy is increasing.

  4. Basis for limiting exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Bush, W.R.

    1979-07-01

    In view of the uncertainty about the size of the risk from radiation, it is assumed that all doses are potentially harmful with the probability of harm proportional to the dose, without threshold. Canada participates in the work of UNSCEAR, and the Canadian Atomic Energy Control Board follows the recommendations of the International Commission on Radiological Protection in setting its dose limits, encouraging the application of the ALARA (as low as reasonably achievable) concept through its licensing and compliance activities

  5. Health Benefits of Exposure to Low-dose Radiation.

    Science.gov (United States)

    Rithidech, Kanokporn Noy

    2016-03-01

    Although there is no doubt that exposure to high doses of radiation (delivered at a high dose-rate) induces harmful effects, the health risks and benefits of exposure to low levels (delivered at a low dose-rate) of toxic agents is still a challenging public health issue. There has been a considerable amount of published data against the linear no-threshold (LNT) model for assessing risk of cancers induced by radiation. The LNT model for risk assessment creates "radiophobia," which is a serious public health issue. It is now time to move forward to a paradigm shift in health risk assessment of low-dose exposure by taking the differences between responses to low and high doses into consideration. Moreover, future research directed toward the identification of mechanisms associated with responses to low-dose radiation is critically needed to fully understand their beneficial effects.

  6. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  7. The accidental exposure to ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    This article is divided in three parts, the first one gives the radioactivity sources, the doses and the effects, the second part is devoted to the medical exposures, the third part concerns the accidents and the biological effects of an irradiation the different syndromes ( the acute whole-body irradiation syndrome, the localized irradiation syndrome, the inflammatory syndrome, hematopoietic syndrome,neuro-vascular syndrome) are detailed. (N.C.)

  8. A relational database for personnel radiation exposure management

    International Nuclear Information System (INIS)

    David, W.; Miller, P.D.

    1993-01-01

    In-house utility personnel developed a relational data base for personnel radiation exposure management computer system during a 2 1/2 year period. The (PREM) Personnel Radiation Exposure Management System was designed to meet current Nuclear Regulatory Commission (NRC) requirements related to radiological access control, Radiation Work Permits (RWP) management, automated personnel dosimetry reporting, ALARA planning and repetitive job history dose archiving. The system has been operational for the past 18 months which includes a full refueling outage at Clinton Power Station. The Radiation Protection Department designed PREM to establish a software platform for implementing future revisions to 10CFR20 in 1993. Workers acceptance of the system has been excellent. Regulatory officials have given the system high marks as a radiological tool because of the system's ability to track the entire job from start to finish

  9. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  10. Occupational radiation exposure in work with radioactive materials

    International Nuclear Information System (INIS)

    Georgiev, G.V.

    1975-01-01

    Radiation exposure to personnel dealing with radioactive materials is studied on a national scale. The survey covers any type of radiation work except for mining and milling of radioactive ore, fuel production, and nuclear reactor operation. Assessments are based on a decade's collection of personnel monitoring data obtained by film dosimetry techniques, as well as on data from systematic operational site monitoring. Statistical analysis indicated exposures based on personal records to follow a normal distribution pattern and, hence, arithmetic averages to be representative. Airborne concontrations of radioactive materials and aerosols in working areas are shown to follow a logarithmic normal distribution pattern, so that geometric means are representative. Radiation exposures are generally found to be well below annual maximum permissible doses for radiation workers. However, their distribution among employee groups is nonuniform. Group A, comprising about 700 subjects, received mean annual gonad doses of more than 1000 mrem; group B, about 670 subjects, had doses ranging from 100 to 500 mrem per year; and group C, 1610 subjects, received less than 100 mrem per year. Most of the radiation dose is accounted for by external radiation, which contributed 0.327 mrem to the genetically significant population dose (0.227 from exposure to males, and 0.025 mrem from exposure to females). Analysis of accidental exposures occurring over the period 1963-1973 indicated that the contribution of this source is substantial as compared to routine work (1.0:0.3). Based on the results obtained, a number of preventive measures are developed and introduced into practice to improve radiological safety in work with radioactive materials. (A.B.)

  11. Low Magnitude Occupational Radiation Exposures Are They Safe or Unsafe

    International Nuclear Information System (INIS)

    Ravichandran, R.

    2013-01-01

    Man has always been exposed to ionizing radiation from natural sources and background exposure varies with the locations. No deleterious effects have been uniquely correlated, either they are not produced at low levels of exposure or their frequency is too low to be statistically observable. Direct source of information on radiation hazards in man is obviously based on follow up of population groups exposed to certain levels of radiation. Harmful effects of ionizing radiations are traced to documented exposures; for radiologists during 1920 s and 30 s, miners exposed to airborne radioactivity, workers in the radium industry, follow-up data of Japanese nuclear bomb survivors of Hiroshima and Nagasaki, the Marshallese accident in 1954, and the victims of the limited number of accidents at nuclear installations including Chernobyl. Mostly these information are from situations involving higher doses and dose rates. Ionizing radiations have been used extensively on the peaceful applications of atomic energy in general and medical applications in particular have shown to outweigh benefits over the risks. Personnel, low magnitude of exposures are encountered during routine work in handling radiation sources. In the light of present knowledge there is need to reassess the quantum of actual risk instead of projected risk based on long time models. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) described models for dose-response relationships and micro-dosimetric arguments for defining low doses. The definition of low doses could also be based on direct observations in experimental or epidemiological studies. Through measurement of cell damage or death using human lymphocytes, linear and quadratic terms have been fitted the response and low doses have been judged to be 20-40 mSv. Data derived from epidemiological studies, mainly the atomic bomb survivors, suggests that for solid tumours and leukaemia, 200 mSv could be considered the

  12. State Register of Sources of Ionizing Radiation and Occupational exposure

    CERN Document Server

    2002-01-01

    One of main tasks of Radiation Protection Centre is to collect, process, systematize, store and provide the data on sources of ionizing radiation and occupational exposures. The number of sources in 2002 is provided and compared with previous year. Distribution of workers according to the type of practice is compared with previous year. Distribution of sealed sources and x-ray machines according their use is presented.

  13. Radiofrequency radiation exposure from RF-generating plant

    International Nuclear Information System (INIS)

    Wright, J.M.; Bell, K.M.

    2000-01-01

    As part of an intervention to assist industry improve the control of risks associated with the use of RF-generating plant, exposure to radiofrequency radiation (RFR) was assessed in 30 workplaces. Information about the workplace, work practices and knowledge about RFR and its control was also collected. The study found that: 1. For 72% of operators and 35% of bystanders, the spatially averaged exposure exceeded the exposure limits. These figures approximately halved when the duty cycle was applied; 2. Assessment of RFR levels was not common; 3. Task rotation was used to limit exposure of operators; 4. Access was not controlled to areas where RFR sources were used; 5. There was lack of knowledge about RF shielding practices in industry; 6. Nearly 50% of workplaces did not maintain the plant regularly; and 7. There had been no health surveillance on any plant operators in any of the workplaces in the study. Copyright (2000) Australasian Radiation Protection Society Inc

  14. Radiographer Delivered Fluoroscopy Reduces Radiation Exposure During Endoscopic Urological Procedures.

    Science.gov (United States)

    Martin, J; Hennessey, D B; Young, M; Pahuja, A

    2016-01-01

    The 1999 Ionising Radiation Regulations recommend that medical professionals using ionising radiation should aim to keep exposure as 'low as reasonably practicable'. Urologists regularly use fluoroscopy during endoscopic surgical procedures. In some institutions, this is delivered by a radiographer whereas in others, it is delivered by the urological surgeon. To determine if radiographer-delivered fluoroscopy can reduce the exposure to ionising radiation during urological procedures. An analysis of 395 consecutive patients, who underwent endoscopic urological procedures requiring fluoroscopy, was performed simultaneously across two institutions, over a 4 month period. 321 patients were matched and included in the analysis. Radiographer delivered fluoroscopy was associated with reduced ionising radiation exposure for retrograde pyelography procedures ED 0.09626 vs. 1.323 mSev, p= 0.0003, and endoscopic stone surgeries ED 0.3066 Vs. 0.5416 mSev, p=0.0039, but not for ureterorenoscopic stone surgeries 0.4880 vs. 0.2213 mSev, p=0.8292. Radiographer delivered fluoroscopy could reduce the patient's exposure to ionising radiation for some urological procedures.

  15. Are smokers at greater risk from radiation exposure than nonsmokers

    International Nuclear Information System (INIS)

    Bair, W.J.

    1984-01-01

    Current information suggests that, if cigarette smoking interacts with radiation in the induction of lung cancer, it is probably as a promoting agent. There is some evidence of such an interaction in miners who were exposed to relatively high levels of radon and its decay products over extended periods, and there is evidence from experimental rats that were exposed to cigarette smoke after exposures to radon had been completed. Other data from both humans and experimental animals suggest that concomitant exposures may actually diminish the interaction of cigarette smoke with alpha radiation from radon decay products; however, the possibility of a multiplicative effect for other exposure regimes has not been dismissed. In recent experimental animal studies cigarette smoking depressed clearance of insoluble particles, e.g., 239 PuO 2 , from the pulmonary regions of the lungs. However, this effect depended upon exposure to cigarette smoke both before and after inhalation of insoluble plutonium. Whether the effect on clearance actually increased the lung cancer risk is unknown. It is still unclear whether cigarette smokers are at greater risk than nonsmokers to radiation-induced lung cancer at relatively high radiation doses and even more uncertain at low radiation doses. (orig./HP)

  16. Occupational radiation exposure in nuclear medicine department in Kuwait

    Science.gov (United States)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  17. Measurement of radiation exposures to the radiotherapists in the brachytherapy

    International Nuclear Information System (INIS)

    Matsuoka, Yoshisuke; Tsujii, Hirohiko; Mizoe, Junetsu

    1986-01-01

    Radiation exposures to the radiotherapists during brachytherapy with Iridium and Cesium were measured. For which TLD and pocket chamber were used. The materials were 30 patients, 14 of whom were treated by Iridium, and other 16 patients were treated by Cesium, from November 1983 to June 1984. The procedures of brachytherapy were divided into three parts: preparation, insertion, and withdrawal. In the Iridium therapy, 7 patients were treated for lesions in bile duct and in the Cesium therapy 13 patients were treated for lesions in head and neck. In the Iridium therapy the mean radiation exposures to the chest were 12.3 mrem, 177 mrem to the fingers, 9.6 mrem to the abdomen, 13.6 mrem to the head. In the Cesium therapy the mean radiation exposures to the chest were 49.4 mrem. 292 mrem to the fingers, 18.3 mrem to the abdomen, 49.4 mrem to the head. Thus, radiation exposures in the Iridium therapy were lower than those in the Cesium therapy in each sites of measurement. This could be because, in the Iridium therapy, afterloading procedure were used and the energy of Iridium gammar-ray is lower then that of Cesium gammar-ray and protection boards could be more effective in the Iridium therapy, than in the Cesium therapy. We analized radiation exposures according to the amount of sources, which are divided into two groups, 10 - 39 Cs. Eq. mCi (3.7 x 10 - 1.4 x 10 Cs. Eq. Bq) and 40 - 80 Cs. Eq. mCi (1.5 x 10 - 3.0 x 10 Cs. Eq. Bq). In the source runging 40 - 80 Cs. Eq. mCi, radiation exposures to the fingers in the Iridium therapy were almost the same as those in the Cesium therapy. When head and neck were treated radiation exposures to the fingers in the Iridium therapy were higher than those in the Cesium therapy. Therefore more effort should be pain to reduce radiation exposures to the fingers in the iridium therapy, especialy in assembling procedure. (author)

  18. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    Sheyn, David D.; Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D.; Ying, Jun

    2008-01-01

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  19. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    Energy Technology Data Exchange (ETDEWEB)

    Sheyn, David D. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Ying, Jun [University of Cincinnati Medical Center, Department of Public Health Sciences, Institute for the Study of Health, Cincinnati, OH (United States)

    2008-06-15

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  20. Radiation exposure in German nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, W.

    1981-01-01

    The individual and collective doses in German nuclear power stations have decreased remarkably since the beginning of the commercial nuclear power production. The paper discusses the influencing factors, that have caused this development and points out areas where improvements are possible in the future. Moreover the interaction between radiation protection practice and the relevant legal regulations is considered. Usually the recording of job related doses is regarded as the most direct access to possible improvements. Concluding, it is therefore demonstrated by some examples how the evaluation of such information has taken effect in practice. (orig.) [de

  1. Limitation of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    1983-01-01

    The Atomic Energy Control Board (AECB) proposes to amend the Atomic Energy Control Regulations in the light of the latest recommendations of the International Commission on Radiological Protection (ICRP). Guidance on how the AECB would apply its proposed amended regulations is provided in this document, which also explains the more important changes from the present regulations. The most basic change is the introduction of the concept of effective dose equivalent. Another is a requirement to keep doses of radiation as low as reasonably achievable. (L.L.)

  2. Present situation of occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Imabori, Akira

    1979-01-01

    The present situation of the radiation exposure of workers, including both employes and subcontractors, in the nuclear power plants in Japan, is presented. Twenty seven nuclear power reactors in operation and under construction are tabulated with the name, the owner, the electric output and the commissioning year of each plant. The results of exposure of the workers in these plants are shown, classifying the dose rate into less than 0.5 rem, 0.5 - 1.5 rem, 1.5 - 2.5 rem, 2.5 - 5 rem and more than 5 rem, and the workers into employes and subcontractors. It is noted that the exposure dose of the subcontractors occupies about 88% of all exposure dose, and the exposure is concentrated during regular inspection period. The exposure dose of about 80% of the workers is less than 0.5 rem, and no one was irradiated more than 5 rem in a year. The total exposure dose, which has especially the tendency of increasing with extended maintenance period and decreasing during plant operation period, shows also the trend of increasing with the lapse of operation years. As for the point of view of whole exposure dose, the value is 0.06 -- 0.43 man-rem/10 6 kWh in 1976 FY. It is considered to be necessary to grasp the total exposure dose of each worker wandering from one plant to another, and the central registration center for the workers in radioactive environment was established in 1978. The whole exposure dose data of each worker are stored in the central computer in this center. This system is highly appreciated in radiation exposure management. The total exposure dose is related to the rate of utilization of nuclear plants, and it is expected to decrease with the decrease of plant outage. (Nakai, Y.)

  3. Factors impacting public acceptance of medical radiation exposure

    International Nuclear Information System (INIS)

    Tsuji, Satsuki; Kanda, Reiko

    2009-01-01

    We undertook a survey to determine the public acceptance of medical radiation exposure throughout Japan, and 1,357 responses (67.9% response rate) were obtained using a two-stage systematic stratified random sampling method. The acceptance of exposure of children was generally similar to that of adults. For each of the attributes, 45-60% of the participants were accepting of exposure for cancer treatment and diagnosis, but only 30% were accepting of exposure for X-ray diagnoses of bone fractures and dental caries. In general, the presence of a child did not markedly affect women's acceptance of exposure. Factor analyses identified 3 factors influencing the acceptance of child exposure: symptomatic diseases to determine treatment, the possibility of high-risk diseases (or major organ diseases), and the association with cancer. Cluster analysis showed 4 clusters: a positive group regarding children's exposure for the diagnosis of bone fractures and dental caries (12.9% of all participants), a positive group for major organ disease and cancer (15.5%), a negative group excluding cancer (55.2%), and a positive group for all cases (16.4%). The cluster distributions revealed that mothers with 10- to 18-year-old firstborn children showed a tendency to accept the medical radiation exposure of their children in all cases. (author)

  4. Understanding of radiation protection in medicine. Pt. 1. Knowledge about radiation exposure and anxiety about radiation injury

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation exposure in correctly understood by medical doctors (n=140), nurses (n=496) and the general public (n=236). Thirty-three percent of medical doctors, 53% of nurses and the general public did not know who is legally allowed to irradiate the human body. Forty-five percent of doctors, 63% of nurses and 48% of the general public complained of anxiety about radiation injury. Fifty-six percent of patients did not ask medical doctors or nurses for an explanation of the risk of exposure. Moreover, 64% of doctors did not explain the risk to patients. In addition, 21% of doctors, 46% of nurses and the general public incorrectly understood that x-rays remain in the examination room. Twenty-seven percent of doctors, 49% of nurses and 80% of the general public did not know the t en-day rule . In conclusion, the results of this questionnaire indicated that basic knowledge about radiation exposure was not adequate. To protect against medical radiation exposure, personnel who are licensed to irradiate to the human body should be well recognized by medical staff and the general public. It is also important that informed consent for radiological examinations be based on fundamental knowledge about radiation exposure. Therefore, to reach a general consensus on radiological examinations and to reduce individual exposure, general public education regarding radiation protection is required. Postgraduate education on radiation protection for medical doctors and nurses is also strongly recommended. (author)

  5. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The information by the German Federal Government on the environmental radioactivity and radiation exposure in 2010 includes five chapters. (I) Natural radiation exposure: radiation sources, contributions from cosmic radiation, contaminated construction materials, food and drinking water, and radon, evaluation of the different components of natural radiation exposure. (II) Civilization caused radiation exposure: nuclear power plants, research centers, nuclear fuel processing plants, other nuclear facilities (interim storage facilities, repositories); summarizing evaluation for nuclear facilities; environmental radioactivity due to mining; radioactive materials in research, technology and households; industrial and mining residues; fall-out as a consequence of the Chernobyl reactor accident and nuclear weapon testing. (III) Occupational radiation exposure: civil radiation sources, natural radiation sources, special events. (IV) Medical radiation exposure; X-ray diagnostics; nuclear medicine; radiotherapy using ionizing radiation; radiotherapy using open radioactive materials; evaluation of radiotherapy. (V) Non-ionizing radiation: electromagnetic fields; optical radiation; certification of solaria.

  6. Evaluation of medical radiation exposure in pediatric interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Valeria Coelho Costa; Navarro, Marcus Vinicius Teixeira; Oliveira, Aline da Silva Pacheco, E-mail: vccnavarro@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador, BA (Brazil); Maia, Ana Figueiredo [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Oliveira, Adriano Dias Dourado [Sociedade Brasileira de Hemodinamica e Cardiologia Intervencionista, Salvador, BA (Brazil)

    2012-07-15

    Objective: To evaluate pediatric radiation exposure in procedures of interventional radiology in two hospitals in the Bahia state, aiming at contributing to delineate the scenario at the state and national levels. The knowledge of exposure levels will allow an evaluation of the necessity of doses optimization, considering that peculiarities of radiology and pediatrics become even more significant in interventional radiology procedures which involve exposure to higher radiation doses. Materials and Methods: A total of 32 procedures were evaluated in four rooms of the two main hospitals performing pediatric interventional radiology procedures in the Bahia state. Air kerma rate and kerma-area product were evaluated in 27 interventional cardiac and 5 interventional brain procedures. Results: Maximum values for air kerma rate and kerma-area product and air kerma obtained in cardiac procedures were, respectively, 129.9 Gy.cm{sup 2} and 947.0 mGy; and, for brain procedures were 83.3 Gy.cm{sup 2} and 961.0 mGy. Conclusion: The present study results showed exposure values up to 14 times higher than those found in other foreign studies, and approximating those found for procedures in adults. Such results demonstrate excessive exposure to radiation, indicating the need for constant procedures optimization and evaluation of exposure rates. (author)

  7. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  8. Influence of materials choice on occupational radiation exposure in ITER

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Firth, J.D.; Butterworth, G.J.

    1998-01-01

    In fission reactor plant, the radiation doses associated with inspection and maintenance of the primary cooling circuit account for a substantial fraction of the collective occupational radiation exposure (ORE). Similarly, it is anticipated that much of the ORE occurring during normal operation of ITER will arise from active deposits in the cooling loop. Using a number of calculation steps ranging from neutron activation analysis, mobilisation and transport modelling and Monte Carlo simulation, estimates for the gamma photon flux and radiation dose fields around a typical 'hot-leg' cooling pipe have been made taking SS316, OPTSTAB, MANET-II and F-82H steels as alternative candidate loop materials. (orig.)

  9. Baby on Board: Managing Occupational Radiation Exposure During Pregnancy.

    Science.gov (United States)

    Marx, M Victoria

    2018-03-01

    This article reviews the issue of occupational radiation exposure as a deterrent to recruitment of women into the field of interventional radiology and provides the reader with three strategies to optimize radiation protection during fluoroscopically guided procedures. These include personal protective shielding, use of ancillary shielding, and techniques that limit fluoroscopy x-ray tube output. When optimal radiation safety practices are implemented as the norm in the IR suite, very little extra needs to be done to ensure that fetal dose of a pregnant interventionalist is negligible. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The ionising radiation (medical exposure) regulations - IR (ME) R, Malta

    International Nuclear Information System (INIS)

    Desai, R.; Brejza, P.; Cremona, J.

    2004-01-01

    Full text: The regulations in Malta at present are in draft stage. These regulations partially implement European Council Directive 97/43/Euratom. This Directive lays down the basic measurements for the health and protection of individuals against dangers of ionising radiation in relation to medical exposure. The regulations impose duties on persons administering radiations, to protect people from unnecessary exposure whether as part of their own medical diagnosis, treatment or as part of occupational health worker for health screening, medico-legal procedures, voluntary participation in research etc. These regulations also apply to individuals who help other individuals undergoing medical exposure. Main provisions 1. Regulation 2 contains the definitions of 28 terms used in these regulations. 2. Regulation 3.1 and 3.2 sets out the medical exposures to which the regulations apply. 3. Regulation 4 requires approval of medical exposures due to medical research, from radiation protection board of Malta. 4. Regulation 5 prohibits new procedures involving medical exposure unless it has been justified in advance. 5. Regulation 6 provides conditions justifying medical exposures. It prohibits any medical exposure from being carried out which has not been justified and authorized and sets out matters to be taken into account for justification. 6. Regulation 7 requires that practitioner justifies the exposure, shall pay special attention towards (a) exposure from medical research procedures where there is no direct health benefit to the individual undergoing exposure, (b) exposures for medico-legal purposes; (c) exposures to pregnant or possible pregnant women and (d) exposures to breast-feeding women. 7. Regulation 8.1 to 8.3 prohibit any medical exposure from being carried out which has not been justified and sets out matters to be taken for justification 8. Regulation 8.4 prohibits an exposure if it cannot be justified. 9. Regulation 9 requires the employer to provide a

  11. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  12. Protection of DNA damage by radiation exposure

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents

  13. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  14. Explanation of nurse standard of external exposure acute radiation sickness

    International Nuclear Information System (INIS)

    Lu Xiuling; Jiang Enhai; Sun Feifei; Zhang Bin; Wang Xiaoguang; Wang Guilin

    2012-01-01

    National occupational health standard-Nurse Standard of External Exposure Acute Radiation Sickness has been approved and issued by the Ministry of Health. Based on the extensive research of literature, collection of the previous nuclear and radiation accidents excessive exposed personnel data and specific situations in China, this standard was enacted according to the current national laws, regulations, and the opinions of peer experts. It is mainly used for care of patients with acute radiation sickness, and also has directive significance for care of patients with iatrogenic acute radiation sickness which due to the hematopoietic stem cell transplantation pretreatment. To correctly carry out this standard and to reasonably implement nursing measures for patients with acute radiation sickness, the contents of this standard were interpreted in this article. (authors)

  15. Explanation of diagnosis criteria for radiation sickness from internal exposure

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai; Du Jianying; Bai Guang

    2012-01-01

    A revised edition of the Diagnostic Criteria for Radiation Sickness from Internal Exposure has been approved and issued by the Ministry of Health. It is necessary to research the internal radiation sickness to adapt to the current serious anti-terrorism situation. This standard was enacted based on the extensive research of related literature, from which 12 cases with internal radiation sickness and screened out were involving 7 types of radionuclide. The Development of Emergency Response Standard Extension Framework: Midterm Evaluation Report is the main reference which approved by the International Atomic Energy Agency and World Health Organization. This amendment contains many new provisions such as internal radiation sickness effects models and threshold dose, and the appendix added threshold dose of serious deterministic effects induced by radionuclide intake and radiotoxicology parameters of some radionuclides. In order to understand and implement this standard, and to diagnose and treat the internal radiation sickness correctly, the contents of this standard were interpreted in this article. (authors)

  16. Patient radiation exposure during general fluoroscopy examinations

    Science.gov (United States)

    Korir, Geoffrey K.; Tries, Mark A.; Korir, Ian K.; Sakwa, Jedidah M.

    2014-01-01

    The purpose of this study was to assess the level of patient radiation dose received in general fluoroscopy examinations, compare the findings with the international diagnostic reference levels (IDRLs), and establish the initial institutional (local) LDRLs. A comprehensive survey was conducted for general fluoroscopy examinations using the medical records of a Radiology Department of a leading regional hospital over a period close to one year. The cumulative reference point air kerma (Ka,r), kerma area product (KAP) and fluoroscopy time (FT) were recorded for six hundred and fifty (30% pediatric and 70% adult) patients undergoing routine fluoroscopy examinations using X‐ray equipment with built‐in integrated dose measuring system. Results which were obtained for adult general fluoroscopy indicated that 83% and 33% were below the IDRLs for KAP and fluoroscopy time, respectively. In children, 60% were found to be below the only available KAP diagnostic reference levels. Local diagnostic reference levels (LDRLs) have been proposed with respect to the missing DRLs for the Ka r, KAP, and fluoroscopy time. The majority of the examinations in the study were performed with longer fluoroscopy time, patient dose values per examination type were found to be broad and the mean values above the international diagnostic reference levels. This calls for proper and improved training and radiation protection skills for the responsible personnel, especially the equipment operators. PACS numbers: 87.53.Bn, 87.59.C‐, 87.59.cf, 87.53.Bn, 87.50.‐a, 87.53.‐j PMID:24710443

  17. Long-term effects of radiation exposure on health.

    Science.gov (United States)

    Kamiya, Kenji; Ozasa, Kotaro; Akiba, Suminori; Niwa, Ohstura; Kodama, Kazunori; Takamura, Noboru; Zaharieva, Elena K; Kimura, Yuko; Wakeford, Richard

    2015-08-01

    Late-onset effects of exposure to ionising radiation on the human body have been identified by long-term, large-scale epidemiological studies. The cohort study of Japanese survivors of the atomic bombings of Hiroshima and Nagasaki (the Life Span Study) is thought to be the most reliable source of information about these health effects because of the size of the cohort, the exposure of a general population of both sexes and all ages, and the wide range of individually assessed doses. For this reason, the Life Span Study has become fundamental to risk assessment in the radiation protection system of the International Commission on Radiological Protection and other authorities. Radiation exposure increases the risk of cancer throughout life, so continued follow-up of survivors is essential. Overall, survivors have a clear radiation-related excess risk of cancer, and people exposed as children have a higher risk of radiation-induced cancer than those exposed at older ages. At high doses, and possibly at low doses, radiation might increase the risk of cardiovascular disease and some other non-cancer diseases. Hereditary effects in the children of atomic bomb survivors have not been detected. The dose-response relation for cancer at low doses is assumed, for purposes of radiological protection, to be linear without a threshold, but has not been shown definitively. This outstanding issue is not only a problem when dealing appropriately with potential health effects of nuclear accidents, such as at Fukushima and Chernobyl, but is of growing concern in occupational and medical exposure. Therefore, the appropriate dose-response relation for effects of low doses of radiation needs to be established. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Monitoring Of Radiation Exposure Source In PPTA Serpong

    International Nuclear Information System (INIS)

    Th, Rina; M, Subiharto

    2000-01-01

    The radiation exposure in the of P PTA Serpone was measured by means of MCA micro nomad. The computer codes NAGABAT was used for analyzing the contribution of natural gamma rays to the exposure rate in the measuring locations. Measurement was taken for 14 locations, under conditions that the nuclear facilities are not in operation. The result showed that the exposure varieties, dependently on potassium, uranium and thorium contents in the environment matrix. The maximum of thorium, uranium and potassium are in amount of 5,269 ppm; 1,650 ppm; and respectively 0,72 %

  19. Environmental radiation exposure: Regulation, monitoring, and assessment

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yu, C.; Hong, K.J.

    1991-01-01

    Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance

  20. Radiation exposures to technologists from nuclear medicine imaging procedures

    International Nuclear Information System (INIS)

    Sloboda, R.S.; Schmid, M.G.; Willis, C.P.

    1986-05-01

    Radiation exposures incurred by nuclear medicine technologists during diagnostic imaging and gamma camera quality control (QC) were measured on a procedural basis over a three-month period using a portable, low-range, self-reading ion chamber. A total of more than 400 measurements were made for 15 selected procedures. From these, mean procedural exposures and standard deviations were calculated. The results show that daily flood phantom QC, at 0.58 mR, and gated cardiac studies, at 0.45 mR, were the two greatest sources of exposure. Other procedures resulted in exposures varying roughly from 0.10 to 0.20 mR. Difficult patients were responsible for a doubling of technologist exposure for many procedures. Standard deviations were large for all procedures, averaging 65% of the mean values. Comparison of technologist exposure inferred from the procedural measurements with the time coincident collective dose equivalent recorded by the TLD service of the Radiation Protection Bureau indicates that approximately half of the collective technologist exposure arose from patient handling and flood QC

  1. Radiation exposure of fertile women in medical research studies

    International Nuclear Information System (INIS)

    Vetter, R.J.

    1988-01-01

    Fertile women may be exposed to ionizing radiation as human subjects in medical research studies. If the woman is pregnant, such exposures may result in risk to an embryo/fetus. Fertile women may be screened for pregnancy before exposure to ionizing radiation by interview, general examination, or pregnancy test. Use of the sensitive serum pregnancy test has become common because it offers concrete evidence that the woman is not pregnant (more specifically, that an embryo is not implanted). Evidence suggests that risk to the embryo from radiation exposure before organogenesis is extremely low or nonexistent. Further, demonstrated effects on organogenesis are rare or inconclusive at fetal doses below 50 mSv (5 rem). Therefore, there may be some level of radiation exposure below which risk to the fetus may be considered essentially zero, and a serum pregnancy test is unnecessary. This paper reviews the fetal risks and suggests that consideration be given to establishing a limit to the fetus of 0.5 mSv (50 mrem), below which pregnancy screening need not include the use of a serum pregnancy test

  2. Evaluation of illnesses associated with occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Frometa Suarez, I.

    1997-01-01

    A retrospective study by the Institute of Occupational Medicine is presented of all cases of pathological indications of ionizing radiation exposure during the period 1990-1995. It describes the incidence of theses diseases and their relationship with other factors. It has shown the predominance of pathologies of the haemolymphopoietic system in individuals who work in radiological diagnostics

  3. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  4. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  5. Rights versus labour privileges for ionizing radiation exposure activities

    International Nuclear Information System (INIS)

    Borges, Jose Carlos

    1996-01-01

    The present panorama of brazilian legislation concerning activities in which (may) occurs exposure to ionizing radiations, involves several incoherencies and privileges, as a consequence of legal rights generated from labor principles which have no social or scientific embasement. In this study, several legal labor topics are analysed and a new doutrinary context is proposed. (author)

  6. Medical management of three workers following a radiation exposure incident

    International Nuclear Information System (INIS)

    House, R.A.; Sax, S.E.; Rumack, E.R.; Holness, D.L.

    1992-01-01

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms

  7. Medical management of three workers following a radiation exposure incident

    Energy Technology Data Exchange (ETDEWEB)

    House, R.A.; Sax, S.E.; Rumack, E.R.; Holness, D.L. (Department of Occupational and Environmental Health, St. Michael' s Hospital, Toronto, Ontario (Canada))

    1992-01-01

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.

  8. Electromagnetic Radiation Exposure from Cellular Base Station: A ...

    African Journals Online (AJOL)

    For cellular network Base Transceiver Station (BTS) antennas to operate as intended without adverse health effects, they must comply with Electromagnetic Compatibility (EMC) standards as well as safety guidelines relating to exposure of non-ionizing radiation. Global System for Mobile Communication (GSM) operators ...

  9. Measuring and modeling exposure from environmental radiation on tidal flats

    International Nuclear Information System (INIS)

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  10. Initiatives to reduce the occupational radiation exposure of ABWR plants

    International Nuclear Information System (INIS)

    Hirasawa, Hajime; Urata, Hidehiro; Ueda, Taku; Yamamoto, Seiji; Yaita, Yumi

    2014-01-01

    Toshiba has carried out radiation exposure reduction by radiation level reduction, as reduction of reactor water activated corrosion products concentration, reduction of activated corrosion products deposition and radiation shielding, and exposure time reduction, as remote control and improvement of maintenance work procedures. Water chemistry has been mainly carried out reduction of reactor water activated corrosion products concentration and reduction of activated corrosion products deposition in radiation level reduction. The reduction measures of reactor water activated corrosion products concentration are mainly reduction of iron crud concentration and reduction of cobalt ion concentration. The activated corrosion products deposition are reduced by the means of water quality control and the surface treatment. Water quality control for reduction of activated corrosion products deposition moves to ultra low iron high nickel control from Ni/Fe ratio control. The surface treatments are adopted to the stainless steel piping and carbon steel piping. As a measure further to radiation exposure reduction for ABWR (Advanced Boiling Water Reactors), we report on the effect of generation amount reduction by the adoption of alternate material and the effect of deposition reduction by material change of piping and the adoption of advanced water quality control, etc. (author)

  11. Metallic implants and exposure to radiofrequency radiation

    International Nuclear Information System (INIS)

    Joyner, K.H.; Fleming, A.H.F.; MacFarlane, I.P.; Hocking, B.

    1988-01-01

    There is increasing use of radiofrequency radiation (RFR) in industry for communications, welding, security, radio, medicine, navigation etc. It has been recognised for some years that RFR may interact with cardiac pacemakers and steps have been taken to prevent this interference. It is less well recognised that other metallic implants may also act as antennas in an RFR field and possibly cause adverse health effects by heating local tissues. There are a large and increasing number of implants having metal components which may be found in RFR workers. These implants include artificial joints, rods and plates used in orthopaedics, rings in heart valves, wires in sutures, bionic ears, subcutaneous infusion systems and (external) transdermal drug delivery patches 1 . The physician concerned with job placement of such persons requires information on the likelihood of an implant interacting with RFR so as to impair health. The following outlines the approach developed in Telecom Australia, beginning with the general principles and then presenting a specific example discussion of a specific example

  12. Radiation exposure of man in the indoor environment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Pohl, E.

    1982-01-01

    Indoor exposure of man represents the major component of the dose from the natural radiation environment (NRE). The different sources of the NRE and their complex superposition are discussed. Due to the use of radiologically disadvantageous material in or near the building, radon-rich tap water, specific architectural styles and decreased ventilation rates NRE-levels indoors have been found to even exceed the upper limit for professional exposure. The inadequacy of the existing international regulatory framework and specific local problems resulted in the establishment of national exposure limits. In general, no remedial action is recommended at levels below 50 μR/h for external gamma radiation, 10 mWL for internal radon daughter exposure. Several technical countermeasures reducing indoor gamma dose rates and radon levels have been developed for existing buildings. However, the use of some of the techniques is limited due to low cost-effectiveness or lack of long-term stability. Different techniques in order to achieve low indoor exposures for new buildings and financial aspects associated the application of radiation protection concepts are discussed

  13. Occupational exposure to ionising radiation: the risk in perspective

    International Nuclear Information System (INIS)

    Bonnell, J.A.; Harte, G.

    1978-01-01

    Details are given of calculations of the risks of somatic and genetic disease incurred by people exposed to ionizing radiations either through occupational exposure or as members of the general public. I.C.R.P. risk factors were used, together with a simple risk-time relationship. Accurate records of deaths in the United Kingdom from cancer or genetic damage are kept by the Office of Population Censuses and Surveys, and this information has been used to calculate the existing risk of death from these causes for males in England and Wales at various ages. The additional risk posed by radiation exposure to levels of radiation recommended by I.C.R.P is shown to be very small. A simple risk-benefit analysis is presented for the collective dose commitment from nuclear power generation in the U.K. (U.K.)

  14. Reducing waste generation and radiation exposure by analytical method modification

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A.A.

    1996-10-01

    The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications.

  15. Fitness of equipment used for medical exposure to ionising radiation

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this note is to provide guidance to those who have duties under the Health and Safety at Work Act and other relevant legislation. It gives guidance on the practical application of legislation, concerning radiotherapy equipment. Two particular issues arise out of the requirements of Regulation 33 of the Ionising Radiations Regulations 1985 (IRR85) in relation to equipment which is used for medical exposures. These are the requirement to select, install and maintain this type of equipment in such a way that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person where this is compatible with the intended clinical purpose, including the need to ensure that equipment used for radiotherapy is properly calibrated, and the requirement to notify the Health and Safety Executive (HSE) when an incident occurs involving a malfunction or defect in any 'radiation equipment' which gives rise to a medical exposure that is much greater than intended. (author)

  16. Fitness of equipment used for medical exposure to ionising radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides advice on two particular issues arising out of the requirements of Regulation 33 of the Ionising Radiations Regulations 1985 (IRR85) in relation to equipment which is used for medical exposures. These issues are: (a) the requirement to select, install and maintain this type of equipment in such a way that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended clinical purpose, including the need to ensure that equipment used for radiotherapy is properly calibrated; and (b) the requirement to notify the Health and Safety Executive (HSE) when an incident occurs involving a malfunction or defect in any 'radiation equipment' which gives rise to a medical exposure that is much greater then intended. (author)

  17. Apparatus for minimizing radiation exposure and improving resolution in radiation imaging devices

    International Nuclear Information System (INIS)

    Ashe, J.B.; Williams, G.H.; Sypal, K.L.

    1978-01-01

    A collimator is disclosed for minimizing radiation exposure and improving resolution in radiation imaging devices. The collimator provides a penetrating beam of radiation from a source thereof, which beam is substantially non-diverging in at least one direction. In the preferred embodiment, the collimator comprises an elongated sandwich assembly of a plurality of layers of material exhibiting relatively high radiation attenuation characteristics, which attenuating layers are spaced apart and separated from one another by interleaved layers of material exhibiting relatively low radiation attenuation characteristics. The sandwich assembly is adapted for lengthwise disposition and orientation between a radiation source and a target or receiver such that the attenuating layers are parallel to the desired direction of the beam with the interleaved spacing layers providing direct paths for the radiation

  18. Measurement of man's exposure to external radiation

    International Nuclear Information System (INIS)

    Becker, K.

    1975-01-01

    After outlining briefly the rationale for personnel radiation monitoring with integrating detectors, a review is presented of some developments which have taken place in personnel and environmental dosimetry during the past 3.5 years. The results of a pilot field experiment concerning the stability of film and thermoluminescent dosimeters (TLDs) in four Latin-American countries are summarized. It shows that film dosimeters should be used only with caution, and in locations with a moderate climate. A survey is being conducted on the current status and trends in personnel monitoring, involving detailed questioning of over 150 laboratories in about forty countries to obtain information on the type of service and detectors, evaluation and recordkeeping, additional applications, problem and development areas, intercomparisons, practical experiences with different systems, administrative and legal aspects, etc. According to the preliminary results, the trend is away from photographic film and towards mostly automatic TLD systems, not only in the industrialized countries but also in several of the larger and more advanced developing countries. The need for higher quality standards and frequent performance tests under realistic conditions is emphasized. Differences in the requirements for personnel and []stationary environmental dosimeters are outlined. As evidenced by the results of a recent international intercomparison of such dosimeters under laboratory and field conditions, involving 56 dosimeter sets from eleven countries, reasonably accurate results can be obtained with several TLD systems including LiF, CaSO 4 :Dy, and CaF 2 :Mn; however CaF 2 :Dy is less reliable than the others and film is not adequate at all. Transit doses were found to be erratic and frequently high. Limitations in the assessment of population doses from stationary detector readings are discussed. (auth)

  19. The biological effects of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Higson, D.J.

    2016-01-01

    Scenarios for exposure to ionising radiation range from natural background radiation (chronic) to the explosions of atomic bombs (acute), with some medical, industrial and research exposures lying between these extremes. Biological responses to radiation that predominate at high doses incurred at high dose rates are different from those that predominate at low doses and low dose rates. Single doses from bomb explosions ranged up to many thousand mGy. Acute doses greater than about 1000 mGy cause acute radiation syndrome (ARS). Below this threshold, radiation has a variety of potential latent health effects: Change to the incidence of cancer is the most usual subject of attention but change to longevity may be the best overall measure because decreased incidences of non-cancer mortality have been observed to coincide with increased incidence of cancer mortality. Acute doses greater than 500 mGy cause increased risks of cancer and decreased life expectancy. For doses less than 100 mGy, beneficial overall health effects ('radiation hormesis') have been observed. At the other end of the spectrum, chronic exposure to natural radiation has occurred throughout evolution and is necessary for the normal life and health of current species. Dose rates greater than the present global average of about 2 mGy per year have either no discernible health effect or beneficial health effects up to several hundred mGy per year. It is clearly not credible that a single health effects model -- such as the linear no-threshold (LNT) model of risk estimation -- could fit all latent health effects. A more realistic model is suggested.

  20. Exposure of medical personnel to radiation during radionuclide therapy practices.

    Science.gov (United States)

    Lancelot, Sophie; Guillet, Benjamin; Sigrist, Sophie; Bourrelly, Marc; Waultier, Serge; Mundler, Oliver; Pisano, Pascale

    2008-04-01

    Radioisotopes that emit beta radiation are used for the treatment of hepatocellular carcinoma, of arthritic patients (radiosynovectomy) and treatment of bone metastases with, respectively, I-labelled lipiodol, colloidal citrate of Y or and Sm-labelled EDTMP. Radiation energy of these radioisotopes that emit beta or beta and gamma radiation (from 300 to 2000 keV) leads to an increase in radiation dose received by nuclear medicine staff. In this paper we focused on clinical and laboratory staff exposure during these types of metabolic radiation therapies. Cylindrical LiF thermoluminescence dosimeters were used to measure radiation-related whole-body doses (WBDs) and finger doses of the clinical staff. Exposure of the two radiopharmacists and three nurses taking part in I-labelled lipiodol, Y-colloid and Sm-EDTMP therapies, for 12 months in succession, were 146 microSv and 750 microSv, respectively, considering WBD, and 14.6 mSv and 6.5 mSv, respectively, considering finger doses. Extrapolated annual exposures (six radiosynovectomies per year) for the rheumatologists were estimated to be 21 microSv (WBD) and 13.2 mSv (finger dose). Extrapolated annual WBDs and finger doses (25 I-labelled lipiodol treatments per year) for radiologists were estimated to 165 microSv and 3.8 microSv, respectively. Fortunately, these doses were always lower than the limits reported in the European Directive EURATOM 96/29 05/13/1996 (WBD medical staff involved in all these clinical practices justifies dosimetry studies to validate protocols and radiation protection devices for each institution.

  1. Effects upon health of occupational exposure to microwave radiation (radar)

    International Nuclear Information System (INIS)

    Robinette, C.D.; Silverman, C.; Jablon, S.

    1980-01-01

    The effects of occupational experience with microwave radiation (radar) on the health of US enlisted Naval personnel were studied in cohorts of approximately 20,000 men with maximum opportunity for exposure (electronic equipment repair) and 20,000 with minimum potential for exposure (equipment operation) who served during the Korean War period. Potential exposure was assessed in terms of occupational duties, length of time in occupation and power of equipment at the time of exposure. Actual exposure to members of each cohort could not be established. Mortality by cause of death, hospitalization during military service, later hospitalization in Veterans Administration (VA) facilities, and VA disability compensation were the health indexes studied, largely through the use of automated record systems. No adverse effects were detected in these indexes that could be attributed to potential microwave radiation exposures during the period 1950-1954. Functional and behavioral changes and ill-defined conditions, such as have been reported as microwave effects, could not be investigated in this study but subgroups of the living study population can be identified for expanded follow-up

  2. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norhafiz Talib

    2012-01-01

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  3. General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure.

    Science.gov (United States)

    Do, Kyung-Hyun

    2016-02-01

    After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, medical radiation exposure has increased rapidly. For medical radiation exposure control, Korea has two separate control systems. Regulation is essential to control medical radiation exposure. Physicians and radiologists must be aware of the radiation risks and benefits associated with medical exposure, and understand and implement the principles of radiation protection for patients. The education of the referring physicians and radiologists is also important.

  4. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    Angelis, G. De; Ballard, T.; Lagorio, S.; Verdecchia, A.

    2000-01-01

    All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose

  5. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere

    International Nuclear Information System (INIS)

    Atwell, W.; Townsend, L.; Miller, T.; Campbell, C.

    2005-01-01

    Earlier particle experiments in the 1970's on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results. Published by Oxford Univ. Press. All right reserved. (authors)

  6. Radiation protection programme for planned medical exposure situation

    International Nuclear Information System (INIS)

    Hanciles, Milford

    2016-04-01

    Radiation protection programme for planned medical exposure situation which involved diagnostic and interventional radiology was discussed. The radiation protection programme (RPP) should reflect the management’s commitment to radiation protection and safety through the management structure, policies, procedures and organizational arrangement commensurate with the nature and extent of the risk. Registrants and licensees should use the RPP as a tool for the development of a safety culture in diagnostic and interventional radiology departments .Recommendations are provided which when implemented in the education and training of radiographers, referral physician and all those involved in the use of ionizing radiation for diagnosis purposes will improve protection and safety of the occupationally exposed worker, the patient, the public and the environment. (au)

  7. Diagnosis, injury and prevention of internal radiation exposure

    International Nuclear Information System (INIS)

    Tatsuzaki, Hideo

    2012-01-01

    Radiation exposure is classified into three categories: external exposure, surface contamination, and internal exposure (also called internal contamination). Internal exposure is an exposure by the ionizing radiation emitted from radioactive materials taken into a human body. Uptake of radioactive materials can go through inhalation, ingestion, or wound contamination. Not like external exposure, alpha ray or beta ray, which has a limited penetration, is also important in internal exposure. Diagnosis of internal exposure is based on measurement and dose assessment in addition to the history taking. Two methods, direct measurement and/or bioassay (indirect measurement), are used for the measurement. These measurements provide information of radioactive materials in the body at the time of the measurement. The exposure dose to the body needs to be calculated in a process of dose assessment, based on the results of these measurements and history of intake, either acute intake or chronic intake. Another method, measurement of environmental samples or food stuff, is also used for dose assessment. For internal exposure, radiation dose to the body is expressed as committed effective dose or committed equivalent dose, which are accumulation of dose over a defined period. Radioactive materials taken into body are transferred among many body components depending on the type of radionuclide or chemicals etc. Some radioactive materials concentrate in a specific organ. Symptoms and signs depend on the distribution of the radioactive materials in the body. Monitoring the concentration in air or foods is conducted in order to control human activities and foods and consequently reduce the amount of intake to human bodies as a preventive measure. Prevention of internal exposure is also conducted by protective gears such as full face masks. Iodine prophylaxis could be used against radioactive iodine intake. Stable iodine, mostly potassium iodide, could be taken into the thyroid and

  8. Radiation exposure to anesthesiologist and nurse in the orthopedic room

    International Nuclear Information System (INIS)

    Arita, Tetsuhiko; Matsuzaki, Akio

    1996-01-01

    We report the radiation exposure dose received by the anesthesiologist and nurse in the orthopaedic operating room, when a fluoroscopic image intensifier is in use. This study was done in 12 femoral neck fracture operations performed from January to May 1995. Radiation was monitored with the MYDOSE MINIX PDM 107 made by Aloka Co. which were attached in front and behind the nurse's lead apron, in front of the lead apron of the anesthesiologist. The average imaging time was 9.78 min. The average radiation dose in front of the anesthesiologist is lead apron was 2.08μSV, and in front and behind the nurse's lead apron were 5.67μSV, 0.08μSV respectively. This study and review of the literature indicate that the operating room anesthesiologist and nurse receive a lower exposure than the orthopaedist. We can disregard the problem of radiation exposure to the anesthesiologist and nurse during an orthopaedic operation when they wear lead aprons and stand far from the patient. (author)

  9. Internal and external radiation exposures of Fukushima residents

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2014-01-01

    The soil at Fukushima prefecture and its outskirts was heavily contaminated with radioactive materials from the troubled Fukushima Daiichi nuclear power plant, and the residents suffered risk from internal and external radiation exposure. At first, the average dose of internal radiation exposure was estimated to be several mSv based upon the results of Chernobyl nuclear disaster. But the result of massive measurements using whole body counters shows that the average quantity of internal radioactive cesium is less than that at the Cold Water period. In the meantime, someone shows exposure dose much higher than the average. The distribution of these abnormal doses is called 'Long Tail'. One must pay attention to the long tail at the assessment of the internal radiation exposure by Fukushima nuclear disaster. The main origin of the long tail is related to frequency eating of special food. It is thus important to find persons situated in the long tail and give them guidance on the meals. (J.P.N.)

  10. Metaphase chromosome aberrations as markers of radiation exposure and dose

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with [sup 144]Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to [sup 60]Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  11. Metaphase chromosome aberrations as markers of radiation exposure and dose

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ``paints`` to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with {sup 144}Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to {sup 60}Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness.

  12. Occupational exposure to microwave radiation in diathermia units

    International Nuclear Information System (INIS)

    Martinez, M.A.; Ubeda, A.; Tellez, M.; Santa Olalla, I.

    2006-01-01

    The present study summarizes preliminary data addressed to complete the present knowledge on the microwave (M.V.)-exposure doses and conditions in workers exposed chronically to relatively high, though nonthermal, levels of that non ionizing radiations (N.I.R.). The obtained data are of direct application to radiation protection in occupational media provided that: 1) help to detect and eradicate practices and situations that result in overexposure; 2) they constitute a basis for the design and development of strategies for exposure control and minimization, and 3) they represent a dosimetric support necessary to properly interpret past and future epidemiologic and experimental data on potential health effects of chronic exposures to M.W. radiation at work. The described results will be extended through additional dosimetric recordings in other hospitals. The dosimetric data will be compared to the results of questionnaires among the electro-therapists working at the units studied. The objective is to identify potential relationships between exposure doses and specific diseases or level of risk perception among the investigated professional group. (authors)

  13. Occupational exposure to microwave radiation in diathermia units

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A.; Ubeda, A. [Hospital Ramon y Cajal, Servicio de Investigacion-BEM, Madrid (Spain); Tellez, M.; Santa Olalla, I. [Hospital La Paz, Servicio de Radiofisica y Radioproteccion, Madrid (Spain)

    2006-07-01

    The present study summarizes preliminary data addressed to complete the present knowledge on the microwave (M.V.)-exposure doses and conditions in workers exposed chronically to relatively high, though nonthermal, levels of that non ionizing radiations (N.I.R.). The obtained data are of direct application to radiation protection in occupational media provided that: 1) help to detect and eradicate practices and situations that result in overexposure; 2) they constitute a basis for the design and development of strategies for exposure control and minimization, and 3) they represent a dosimetric support necessary to properly interpret past and future epidemiologic and experimental data on potential health effects of chronic exposures to M.W. radiation at work. The described results will be extended through additional dosimetric recordings in other hospitals. The dosimetric data will be compared to the results of questionnaires among the electro-therapists working at the units studied. The objective is to identify potential relationships between exposure doses and specific diseases or level of risk perception among the investigated professional group. (authors)

  14. Metaphase chromosome aberrations as markers of radiation exposure and dose

    International Nuclear Information System (INIS)

    Brooks, A.L.; Khan, M.A.; Jostes, R.F.; Cross, F.T.

    1992-10-01

    Chromosome aberration frequency provides the most reliable biological marker of dose for detecting acute accidental radiation exposure. Significant radiation-induced changes in the frequency of chromosome aberrations can be detected at very low doses. Our paper provides information on using molecular chromosome probes ''paints'' to score chromosome damage and illustrates how technical advances make it possible to understand mechanisms involved during formation of chromosome aberrations. In animal studies chromosome aberrations provide a method to relate cellular damage to cellular dose. Using an In vivo/In vitro approach aberrations provided a biological marker of dose from radon progeny exposure which was used to convert WLM to dose in rat tracheal epithelial cells. Injection of Chinese hamsters with 144 Ce which produced a low dose rate exposure of bone marrow to either low-LET radiation increased the sensitivity of the cells to subsequent external exposure to 60 Co. These studies demonstrated the usefulness of chromosome damage as a biological marker of dose and cellular responsiveness

  15. World high background natural radiation areas: Need to protect public from radiation exposure

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi

    2013-01-01

    Highlights of findings on radiological measurements, radiobiological and epidemiological studies in some main world high background natural radiation (HBNR) areas such as in Brazil, China, India and Iran are presented and discussed with special regard to remediation of radiation exposure of inhabitants in such areas. The current radiation protection philosophy and recommendations applied to workers and public from operation of radiation and nuclear applications are based on the linear non-threshold (LNT) model. The inhabitants of HBNR and radon prone areas receive relatively high radiation doses. Therefore, according to the LNT concept, the inhabitants in HBNR areas and in particular those in Ramsar are considered at risk and their exposure should be regulated. The HBNR areas in the world have different conditions in terms of dose and population. In particular, the inhabitants in HBNR areas of Ramsar receive very high internal and external exposures. This author believes that the public in such areas should be protected and proposes a plan to remedy high exposure of the inhabitants of the HBNR areas of Ramsar, while maintaining these areas as they stand to establish a national environmental radioactivity park which can be provisionally called “Ramsar Research Natural Radioactivity Park” (RRNRP). The major HBNR areas, the public exposure and the need to remedy exposures of inhabitants are reviewed and discussed. - Highlights: ► Highlights of findings on studies in HBNR areas are reviewed and discussed. ► The need to protect HBNR area inhabitants and remedy public exposure is emphasized. ► A collective approach is proposed to remedy exposure of Ramsar HBNR area inhabitants. ► Relocation of HBNR area inhabitants and establishing a park at the location is proposed. ► The advantages and disadvantages of the methods are discussed and recommendations are made

  16. Cell phone radiation exposure on brain and associated biological systems.

    Science.gov (United States)

    Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra

    2013-03-01

    Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.

  17. Diagnostic hepatic haemodynamic techniques: safety and radiation exposure.

    Science.gov (United States)

    Hari, Andrej; Nair, Hari Kumar; De Gottardi, Andrea; Baumgartner, Iris; Dufour, Jean-François; Berzigotti, Annalisa

    2017-01-01

    Hepatic venous pressure gradient (HVPG) and transjugular liver biopsy (TJLB) are increasingly used in the management of patients with liver disease. We aimed to describe the safety profile of these procedures, providing data on the intra- and periprocedure complications, radiation exposure and amount of iodinated contrast material used. In 106 consecutive patients undergoing HVPG and TJLB data on fluoroscopy time (FT), absorbed radiation dose, equivalent effective dose (mSv) and volume of iodinated contrast material (ICM) were prospectively collected and reviewed, together with clinical and laboratory data. Incidence and severity of procedure-related complications were assessed. In 28 hospitalised patients, creatinine values after 72 hours of the procedure were reviewed to identify contrast-induced nephropathy (CIN). Median effective radiation dose was 5.4 mSv (IQR 10 mSv). A total 28.3% of patients exceeded an effective exposure of 10 mSv and 9.4% exceeded 20 mSv. Only age and BMI correlated with radiation dose (R = .327, P=.001 and R = .410, Pexposure over 20 mSv. Procedure-related complications occurred in eight patients (7.5%), and were minor in six cases. Median ICM volume was 12.5 mL. 6/28 patients met the diagnostic criteria for CIN. Hepatic venous pressure gradient and Transjugular liver biopsy show a good safety profile and radiation exposure associated with these procedures is in most of the cases low. In hepatic haemodynamic procedures, efforts should be made to reduce the radiation dose in patients with overweight/obesity and to use the minimal possible ICM volume in patients with acute-on-chronic liver failure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    International Nuclear Information System (INIS)

    Marica, Lucia; Moraru, Luminita

    2011-01-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  19. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  20. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    Science.gov (United States)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  1. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-06-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the US Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  2. Radiation Exposure Monitoring and Information Transmittal (REMIT) system

    International Nuclear Information System (INIS)

    Cale, R.; Clark, T.; Dixson, R.; Hagemeyer, D.

    1993-06-01

    The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist US Nuclear Regulatory Commission (NRC)licensees in meeting the reporting requirements of the revised 10 CFR 20 and in agreement with the guidance contained in R.G. 8.7, Rev. 1, ''Instructions for Recording and Reporting Occupational Exposure Data.'' REMIT is a personal computer (PC) based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of R. G. 8.7, Rev. 1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5, REMIT allows the user to view the individual's exposure in relation to regulatory or administrative limits and alerts the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files

  3. Evaluation of radiation exposure from a consumer product. A pillow

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Aburai, Tamaru

    1999-01-01

    Radiation exposure from a pillow was analyzed. According to an advertisement of the pillow, this radioactive consumer product contains enough amounts of radioactive materials to induce radiation hormesis effects. The pillow consists of the filling chips made from kneading mineral ores and the polynosic linings contains natural radioactive ores. A γ-ray analysis of the pillow using pure Ge-MCA reveals that there exist radioactivities of thorium and uranium series mixtures in it at concentration of 0.58% by the weight. The observations of a chip surface by a scanning electron microscope show that the shapes of two sides are different each other. There are lots of sharp protuberances on the outside of the chip. To determine the direct external exposures from the pillow, film badges were placed on the pillow for 210 h and 2555 h. The dose equivalents of 210 h exposure was under 0.1 mSv which is a detection limit of a γ-ray by the film badges. However, that of 2555 h exposure was over 0.1 mSv less than 0.15 mSv. Quantities of internal exposures from inhalation of the vaporized Rn were measured by a Lucas Cell. It was 79 Bq/m 3 . There is no necessity for anxious about being broken in health inhaling the Rn-gass. (author)

  4. Prenatal radiation exposure. Dose calculation; Praenatale Strahlenexposition. Dosisermittlung

    Energy Technology Data Exchange (ETDEWEB)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Diagnostic and Interventional Radiology; Roeser, A. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Radiotherapy and Radio-Oncology

    2015-05-15

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  5. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  6. Radiation exposure of the Yugoslav Airlines crews according to new radiation limits

    International Nuclear Information System (INIS)

    Antic, D.

    1998-01-01

    Radiation exposure of the Yugoslav Airlines (JAT) crews in commercial air traffic has been studied according to the new radiation limits (ICRP 60). Selected pilots make the groups, for different types in use by JAT, and two groups of the co-pilots ('flight engineers' for B-727 and DC-10 aircraft's). Cabin crew members make three groups of pursers and two groups of STW/STD (they include both male and female workers). Annual doses and added risks have been assessed. (author)

  7. Geothermal energy probes. Increasing the radiation exposures of the population?

    International Nuclear Information System (INIS)

    Melzer, Danica; Wilhelm, Christoph

    2014-01-01

    In Baden-Wuerttemberg 10 private geothermal drilling projects in geologically interesting areas have been accompanied by measurements. During the drillings samples of the excavated earth were taken to determine the concentration of natural nuclides in the bored strata. Before and after finishing the geothermal construction works the airborne radon concentration of surrounding dwellings was measured. On the basis of the obtained measuring data the maximum expected additional effective annual doses received by individuals as a result of geothermal drilling were calculated. The exposure pathways were observed, i.e. air, water, sold - plant - human and terrestrial gamma radiation. In spite of conservative accounts in each case that should be considered as worst case scenario no relevant increase of radiation exposure could be detected. (orig.)

  8. Radiation exposure of infants and children in computed tomography

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1980-01-01

    The radiation exposure of infants and small children with Computed Tomography is different in several aspects from that of adults undergoing an identical examination. The surface dose at radiation entrance is higher in children because of a smaller body diameter for the same dose rate at the tube. The critical organ dose in the directly irradiated area is higher in children than in adults. The exposure of organs outside the examined area is also higher in children -because of short intervals- than in adults. The absorbed energy, i.e. integral dose, however, is lower in children than in adults because of the lesser volume. The differences between conventional procedures and Computed Tomography, are greater in children than in adults. Here, CT shows higher values than conventional explorations. As a result of the low number of examinations with CT, the contribution towards a genetically significant dose is currently, at least, relatively small [fr

  9. Patterns of ionizing radiation exposure among women veterinarians

    International Nuclear Information System (INIS)

    Moritz, S.A.; Hueston, W.D.; Wilkins, J.R. III

    1989-01-01

    Radiation detection devices (film badges) were distributed to a random sample of 118 women in Ohio, Indiana, and Michigan, who had graduated from a US veterinary school between 1970 and 1980, inclusive. Ionizing radiation exposure exceeded 15 mrem/mo in 17% of the women monitored. The maximal recorded whole-body dose was 44.2 mrem/quarter-year, which was well below the maximal permissible doses of 1,250 mrem/quarter-year for nonpregnant women and 500 mrem/quarter-year for pregnant women. Associations between the women's safety beliefs or behaviors and recorded exposure were not observed; however, the school from which the women graduated was an important determinant of safety behavior

  10. Radiation exposure control during EMCCR campaign at MAPS

    International Nuclear Information System (INIS)

    Jawahar, S.; Singha Roy, S.

    2003-01-01

    Enmasse Coolant Channel Replacement (EMCCR) work is second of its kind for Indian PHWR- next to RAPS - 2 campaign- after successful demonstration of ability by NPCIL to carry out such major core component maintenance. The Challenges posed during such campaign are mainly attributed to the radiation field, continuous occupancy, and large quantity of material handling for execution as well as preparing infrastructure, exposure control for large number of workmen. Extensive planning was carried out to address all these issues in order to reduce the downtime of the station keeping the collective dose as low as reasonable achievable (ALARA). This paper highlights the strategy adopted, logistics involved in execution of work and the efforts taken to control radiation exposure during this major campaign. (author)

  11. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    Science.gov (United States)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  12. Atomic veterans and their families: Responses to radiation exposure

    International Nuclear Information System (INIS)

    Murphy, B.C.; Ellis, P.; Greenberg, S.

    1990-01-01

    In-depth interviews with seven atomic veterans and their families indicated powerful psychological effects on all family members from exposure to low-level ionizing radiation. Four themes emerged: the invalidation of their experiences by government and other authority figures; family concerns about genetic effects on future generations; family members' desire to protect each other from fears of physical consequences; and desire to leave a record of their experiences to help prevent future suffering

  13. Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage

    Energy Technology Data Exchange (ETDEWEB)

    Bazan, Jose G. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Chang, Polly; Balog, Robert; D' Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis [SRI International, Menlo Park, California (United States); Shura, Lei; Schoen, Lucy; Knox, Susan J. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Cooper, David E., E-mail: david.cooper@sri.com [SRI International, Menlo Park, California (United States)

    2014-11-01

    Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other

  14. Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage

    International Nuclear Information System (INIS)

    Bazan, Jose G.; Chang, Polly; Balog, Robert; D'Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis; Shura, Lei; Schoen, Lucy; Knox, Susan J.; Cooper, David E.

    2014-01-01

    Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other

  15. Establishment of database for radiation exposure and safety assessment

    International Nuclear Information System (INIS)

    Choi, G. S.; Kim, J. H.

    2005-12-01

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation

  16. Establishment of database for radiation exposure and safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G. S.; Kim, J. H. [Science Culture Research Institute, Seoul (Korea, Republic of)

    2005-12-15

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation.

  17. Radiation dosimetry for crewmember exposure to cosmic radiation during astronaut training operations

    International Nuclear Information System (INIS)

    Shavers, M.R.; Gersey, B.B.; Wilkins, R.T.; Semones, E.J.; Cucinotta, F.A.

    2003-01-01

    'Atmospheric exposures' of astronauts to cosmic ions and secondary particles during air-flight training are being measured and analytically modeled for inclusion in the astronaut medical records database. For many of the ∼170 astronauts currently in the astronaut corps, their occupational radiation exposure history will be dominated by cosmic ion exposures during air-travel rather than short-duration spaceflight. Relatively low (usually <10 μSv hr -1 ) and uniform organ dose rates result from the penetrating mix of cosmic particles during atmospheric exposures at all altitudes, but at rates that vary greatly due to differences in flight profiles and the geomagnetic conditions at the time of flight. The precision and accuracy to which possible deleterious effects of the exposures can be assessed suffers from limitations that similarly impact assessment of human exposures in low-Earth orbit: uncertainties associated with the environmental measurements and their interpretation, uncertainties associated with the analytical tools that transport the cosmic radiation environment, and uncertain biological responses to low-dose-rate exposures to radiation fields of mixed radiation 'quality'. Lineal energy spectra will be measured using a Tissue Equivalent Proportional Counter designed for training and operational sorties frequently flown in T-38, Space Shuttle Trainer, and high altitude WB-57 aircraft. Linear energy spectra will be measured over multiple flights using CR-39 plastic nuclear track detectors, as well. Flight records are available for nearly 200,000 sorties flown in NASA aircraft by astronauts and flight officers in the Johnson Space Center Aircraft Operations Division over the past 25 years, yet this database only partially documents the complete exposure histories. Age-dependent risk analysis indicates significant impact, particularly to young women who anticipate lengthy on-orbit careers

  18. Optimization of radiation protection in the control of occupational exposure

    International Nuclear Information System (INIS)

    2002-01-01

    One of the three main principles on which protection against ionizing radiation is based is the principle of the optimization of radiological protection. The principle of the optimization of protection was first enunciated by the International Commission on Radiological Protection in the 1960s. A principal requirement for the optimization of protection and safety has been incorporated into the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards) from the first edition in 1962 up to the current (1996) edition. The principle of optimization, that all reasonable efforts be made to reduce doses (social and economic factors being taken into account), necessitates considerable effort to apply in practice. The requirement of the Basic Safety Standards to apply the principle of optimization applies to all categories of exposure: occupational, public and medical. The categories of public and medical exposure are rather specific and are covered in other publications; this Safety Report concentrates on the application of the principle to what is probably the largest category, that of occupational exposure. This Safety Report provides practical information on how to apply the optimization of protection in the workplace. The emphasis throughout is on the integration of radiation protection into the more general system of work management, and on the involvement of management and workers in setting up a system of radiation protection and in its implementation. This Safety Report was drafted and finalized in three consultants meetings held in 1999 and 2000. The draft was sent for review and comment to a number of experts, which yielded valuable comments from a number of reviewers whose names are included in the list of contributors to drafting and review

  19. Optimization of radiation protection in the control of occupational exposure

    International Nuclear Information System (INIS)

    2003-01-01

    One of the three main principles on which protection against ionizing radiation is based is the principle of the optimization of radiological protection. The principle of the optimization of protection was first enunciated by the International Commission on Radiological Protection in the 1960s. A principal requirement for the optimization of protection and safety has been incorporated into the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards) from the first edition in 1962 up to the current (1996) edition. The principle of optimization, that all reasonable efforts be made to reduce doses (social and economic factors being taken into account), necessitates considerable effort to apply in practice. The requirement of the Basic Safety Standards to apply the principle of optimization applies to all categories of exposure: occupational, public and medical. The categories of public and medical exposure are rather specific and are covered in other publications. This Safety Report concentrates on the application of the principle to what is probably the largest category, that of occupational exposure. This Safety Report provides practical information on how to apply the optimization of protection in the workplace. The emphasis throughout is on the integration of radiation protection into the more general system of work management, and on the involvement of management and workers in setting up a system of radiation protection and in its implementation. This Safety Report was drafted and finalized in three consultants meetings held in 1999 and 2000. The draft was sent for review and comment to a number of experts, which yielded valuable comments from a number of reviewers whose names are included in the list of contributors to drafting and review

  20. Optimization of radiation protection in the control of occupational exposure

    International Nuclear Information System (INIS)

    2004-01-01

    One of the three main principles on which protection against ionizing radiation is based is the principle of the optimization of radiological protection. The principle of the optimization of protection was first enunciated by the International Commission on Radiological Protection in the 1960s. A principal requirement for the optimization of protection and safety has been incorporated into the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards) from the first edition in 1962 up to the current (1996) edition. The principle of optimization, that all reasonable efforts be made to reduce doses (social and economic factors being taken into account), necessitates considerable effort to apply in practice. The requirement of the Basic Safety Standards to apply the principle of optimization applies to all categories of exposure: occupational, public and medical. The categories of public and medical exposure are rather specific and are covered in other publications. This Safety Report concentrates on the application of the principle to what is probably the largest category, that of occupational exposure. This Safety Report provides practical information on how to apply the optimization of protection in the workplace. The emphasis throughout is on the integration of radiation protection into the more general system of work management, and on the involvement of management and workers in setting up a system of radiation protection and in its implementation. This Safety Report was drafted and finalized in three consultants meetings held in 1999 and 2000. The draft was sent for review and comment to a number of experts, which yielded valuable comments from a number of reviewers whose names are included in the list of contributors to drafting and review

  1. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  2. Eating habits and internal radiation exposures in Japanese

    International Nuclear Information System (INIS)

    Shiraishi, Kunio

    1995-01-01

    Recently, annual dose equivalent for Japanese was estimated to be 3.75 mSv. Medical radiation exposures (2.25 mSv/y) and exposures from natural sources of radiation (1.48 mSv/y) were the major contributors to this dose. Dietary intakes of both natural and man-made radionuclides directly related to internal exposures. In this paper, internal doses received only through ingestion of radionuclides in food are described; internal doses through inhalation have been excluded. First, the representative intakes of radionuclides for Japanese were estimated from the literature. Second, the annual dose equivalents were calculated according to intakes of individual radionuclides and weighted committed dose equivalents (Sv/Bq) of the International Commission on Radiological Protection Pub. 30. Total annual doses through radiation of natural sources and man-made sources, were estimated as 0.35 mSv and 0.001 mSv, respectively. Furthermore, the effects of imported foods on internal dose in Japanese were calculated preliminarily, because the contribution of imported foods to Japanese eating habits is increasing annually and will not be negligible when assessing internal dose in the near future. (author)

  3. Optimization of radiation protection for the control of occupational exposure

    International Nuclear Information System (INIS)

    Esseyin, S.S.

    2012-04-01

    This project work provides practical information on how to apply the optimization of protection in the workplace. The principle of optimization states that, all reasonable efforts be made to reduce doses, social and economic factors being taken into account. The main objectives of this project work is to limit the risk to health arising from exposure to ionizing radiation in the workplace and to optimize radiation protection was achieved by setting common essential requirements for the control of exposure to radiation, including the specification of employer and employee duties. The acronym ALARA has been used in this project work as it brings to mind the twin concepts of dose reduction and reasonableness. The other main component of this project work is a general review of the means that are likely to be available in most workplaces to reduce exposure. These are divided into global means, which can be applied throughout an organization and those that are more jobs specific. Some of these global means are no more than would be expected in any well managed organization, such as an application of effective and efficient procedures for the management of work and provision for the education and training of workers. (author)

  4. RADIOFREQUENCY AND MICROWAVE RADIATION HEALTH EFFECTS AND OCCUPATIONAL EXPOSURE

    Directory of Open Access Journals (Sweden)

    Ivana Damnjanović

    2011-12-01

    Full Text Available In the recent years, there have been considerable discussion and concern about the possible hazards of RF/MW radiation. More recently, the growth and development in personal mobile communications have focused attention on the frequencies associated with this technology. A number of studies have examined the health effects of RF/MW electromagnetic fields (EMFs, originating from occupational exposure, hobbies, or residence near the radio or television transmitters. Particularly controversial are the biophysical mechanisms by which these RF fields may affect biological systems. General health effects reviews explore possible carcinogenic, reproductive and neurological effects. Health effects by exposure source have been observed in radar traffic devices, wireless communications with cellular phones, radio transmission, and magnetic resonance imaging (MRI. Several epidemiological surveys have suggested associations with non-specific complaints such as headache, tiredness, sleep disturbance, loss of memory, and dizziness. These findings, which echo reports of illness associated with other types of radiofrequency (RF radiation, relate not only to the use of mobile phones, but also to residence near the mobile phone base stations and other settings involving occupational exposure. The biological effects suggest that some precautions are necessary, and preventive approaches are highly recommended. Further researches are required to give more information about the effects of microwave radiation on our health, especially in occupational setting and professionally exposed workers.

  5. Radiation protection in occupational exposure to microwave electrotherapy units

    International Nuclear Information System (INIS)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-01-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  6. Some technologically enhanced exposures to natural radiation environment in India

    International Nuclear Information System (INIS)

    Lalit, B.Y.; Shukla, V.K.; Ramachandran, T.V.; Mishra, U.C.

    1982-01-01

    A summary of results of gamma spectrometric measurements of natural radioactivity in a number of coal and flyash samples from thermal power plants and phosphatic fertilizer samples collected from various fertilizer plants in India are presented. These constitute the sources of technologically enhanced exposures to natural radiation. A brief description of sampling and measurement procedures is given. The radiation doses to the population from coal burning for electricity generation have been calculated using the method outlined in UNSCEAR report of 1979 with corrections for local population density. The external radiation dose to the farmers has been calculated on the basis of usage of phosphatic fertilizers for rice, wheat, millets and sugarcane crops for the normal agricultural practices

  7. Assessing risks from occupational exposure to low-level radiation

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1989-06-01

    Currently, several epidemiological studies of workers who have been exposed occupationally to radiation are being conducted. These include workers in the United States, Great Britain, and Canada, involved in the production of both defense materials and nuclear power. A major reason for conducting these studies is to evaluate possible adverse health effects that may have resulted because of the radiation exposure received. The general subject of health effects resulting from low levels of radiation, including these worker studies, has attracted the attention of various news media, and has been the subject of considerable controversy. These studies provide a good illustration of certain other aspects of the statistician's role; namely, communication and adequate subject matter knowledge. A competent technical job is not sufficient if these other aspects are not fulfilled

  8. Nodular goiter after occupational accidental exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, M.A. [Radiobiology, National Atomic Energy Commission, Buenos Aires (Argentina); Human Biochemistry, Uninversity of Buenos Aires, School of Medicine, Buenos Aires (Argentina); Schnitman, M. [Center of Endocrinology and Metabolism, French Hospital C.Milstein, Buenos Aires (Argentina)

    2012-07-01

    In the present paper we present the consequences of an accidental occupational radiation exposure at a local hospital in Buenos Aires. Control at a local radiology service showed the lack of correct shielding in the X-ray equipment. The physicians and technicians (14 persons) exposed to radiation during 12 months were examined. The survey shows that: a) In 11 out of 14 radiation-exposed patients nodular goiter developed and an additional patient had diffuse goiter which means a goiter incidence of 85.7%; b) In 5 of the nodular goiter patients an increase in the size or the appearance of new nodules was observed along the follow-up period. No cancer was detected by FNA; c) Hypothyroidism was observed in 3/14 patients, and an additional patient had an abnormal TRH-TSH test, suggesting subclinical hypothyroidism; and d) Increased circulating antithyroid antibodies were found in one of the hypothyroid patients

  9. Medical effects and risks of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Mettler, Fred A

    2012-01-01

    Effects and risk from exposure to ionising radiation depend upon the absorbed dose, dose rate, quality of radiation, specifics of the tissue irradiated and other factors such as the age of the individual. Effects may be apparent almost immediately or may take decades to be manifest. Cancer is the most important stochastic effect at absorbed doses of less than 1 Gy. The risk of cancer induction varies widely across different tissues; however, the risk of fatal radiation-induced cancer for a general population following chronic exposure is about 5% Sv −1 . Quantification of cancer risk at doses of less than 0.1 Gy remains problematic. Hereditary risks from irradiation that might result in effects to offspring of humans appear to be much lower and any such potential risks can only be estimated from animal models. At high doses (over 1 Gy) cell killing and modification causes deterministic effects such as skin burns, and bone marrow depression, in which case immunosuppression becomes a critical issue. Acute whole body penetrating gamma irradiation at doses in excess of 2 Gy results in varying degrees of acute radiation sickness and doses over 10 Gy are usually lethal as a result of combined organ injury. (note)

  10. Radiation exposure--do urologists take it seriously in Turkey?

    Science.gov (United States)

    Söylemez, Haluk; Altunoluk, Bülent; Bozkurt, Yaşar; Sancaktutar, Ahmet Ali; Penbegül, Necmettin; Atar, Murat

    2012-04-01

    A questionnaire was administered to urologists to evaluate attitudes and behaviors about protection from radiation exposure during fluoroscopy guided endourological procedures. The questionnaire was e-mailed to 1,482 urologists, including urology residents, specialists and urologists holding all levels of academic degrees, between May and June 2011. The questionnaire administered to study participants was composed of demographic questions, and questions on radiation exposure frequency, and the use of dosimeters and flexible protective clothes. If a respondent reported not using dosimeters or protective clothes, additional questions asked for the reason. Of the 1,482 questionnaires 394 (26.58%) were returned, of which 363 had completed answers. A total of 307 physicians (84.58%) were exposed to ionizing radiation, of whom 79.61% stated that they perform percutaneous nephrolithotomy at the clinic. Fluoroscopy guidance was the initial choice of 96.19% of urologists during percutaneous nephrolithotomy. Despite the common use of lead aprons (75.24%) most urologists did not use dosimeters (73.94%), eyeglasses (76.95%) or gloves (66.67%) while 46.44% always used thyroid shields during fluoroscopy. When asked why they did not use protective clothing, the most common answers were that protective clothes are not ergonomic and not practical. Results clearly highlight the lack of use of ionizing radiation protection devices and dosimeters during commonly performed fluoroscopy guided endourological procedures among urologists in Turkey. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Understanding the risk coming from the radiation exposure

    International Nuclear Information System (INIS)

    Pierzo, J.A.

    2007-01-01

    From 1972, the National Academy has published a series of reports on the biological effects of ionizing radiation (BEIR) in relation to the health effects of the low level radiation. The Environmental Protection Agency, the Department of Energy and the Academy of Sciences of US, began in 1996 the first phase of the BEIR VII report about the health risks associated to the exposure to low level ionizing radiation. The purpose of the first phase of the study is to revise the literature and to decide if enough novel information existed to guarantee the complete study. The National Academies concluded that enough information existed with an appropriate time to carry out the reanalysis. Among the conclusions of BEIR VII are that the current scientific evidence is concordant with the hypothesis of the existence of a linear model without threshold (LSU) in the dose-response relationship among the exposure to ionizing radiation and the cancer development in humans. This implies that very low dose even has the potential of causing deleterious effects in the health, although the risk to low dose is very small. (Author)

  12. Occupational radiation exposure in the GDR in 1980

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1982-01-01

    As in the previous year, the centralized monitoring of radiation workers for occupational exposure was carried out on the basis of film badges (38,781 persons), measurements with a whole-body counter and analyses of biosamples (351 persons in all). According to the film data, the monthly exposures exceeding 4 mGy totalled 682 including 48 doses higher than 10 mGy. Four workers received annual doses above 50 mGy, with the highest value being 1410 mGy. For the exposed population as a whole and some sub-groups, annual collective and mean annual doses have been given. In assessing internal exposure situation, use has been made of both data from the centralized monitoring program and those determined by some nuclear facilities themselves under the auspices of the SAAS. The results gave no indication of internal doses exceeding the annual limits of intake. (author)

  13. Occupational radiation exposure in the GDR in 1979

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1982-01-01

    As in the previous year, the centralized monitoring of radiation workers for occupational exposure was carried out on the basis of film badges (38,178 persons), measurements with a whole-body counter (247 persons) and analyses of biosamples (318 persons). According to the film data, the monthly exposures exceeding 4 mGy totalled 610 including 92 doses higher than 10 mGy. Six workers received annual doses above 50 mGy, with the highest value being 123 mGy. For the exposed population as a whole and some sub-groups, annual collective and mean annual doses have been given. In assessing the internal exposure situation, use has been made of both data from the centralized monitoring program and those determined by some nuclear facilities themselves under the auspices of the SAAS. The results gave no indication of internal doses exceeding the annual limits of intake. (author)

  14. Occupational radiation exposure in the GDR in 1981

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1984-01-01

    As in the previous year, the centralized monitoring of radiation workers for occupational exposure was carried out on the basis of film badges (38,415 persons), measurements with a whole-body counter and analyses of biosamples (252 persons in all). According to the film data, the monthly exposures exceeding 4 mGy totalled 645 including 41 doses higher than 10 mGy. Five workers received annual doses above 50 mGy, with the highest values being 840 mGy. For the exposed population as a whole and some sub-groups, annual collective and mean annual doses have been given. In assessing internal exposure situation, use has been made of both data from the centralized monitoring program and those determined by some nuclear facilities themselves under the auspices of the SAAS. The results gave no indication of internal doses exceeding the annual limits of intake. (author)

  15. Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation

    Energy Technology Data Exchange (ETDEWEB)

    Miraglia, Roberto, E-mail: rmiraglia@ismett.edu; Maruzzelli, Luigi, E-mail: lmaruzzelli@ismett.edu; Cortis, Kelvin, E-mail: kelvincortis@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Radiology Service, Department of Diagnostic and Therapeutic Services (Italy); D’Amico, Mario, E-mail: mdamico@ismett.edu [University of Palermo, Department of Radiology (Italy); Floridia, Gaetano, E-mail: gfloridia@ismett.edu; Gallo, Giuseppe, E-mail: ggallo@ismett.edu; Tafaro, Corrado, E-mail: ctafaro@ismett.edu; Luca, Angelo, E-mail: aluca@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Radiology Service, Department of Diagnostic and Therapeutic Services (Italy)

    2016-02-15

    PurposeTransjugular intrahepatic portosystemic shunt (TIPS) creation is considered as being one of the most complex procedures in abdominal interventional radiology. Our aim was twofold: quantification of TIPS-related patient radiation exposure in our center and identification of factors leading to reduced radiation exposure.Materials and methodsThree hundred and forty seven consecutive patients underwent TIPS in our center between 2007 and 2014. Three main procedure categories were identified: Group I (n = 88)—fluoroscopic-guided portal vein targeting, procedure done in an image intensifier-based angiographic system (IIDS); Group II (n = 48)—ultrasound-guided portal vein puncture, procedure done in an IIDS; and Group III (n = 211)—ultrasound-guided portal vein puncture, procedure done in a flat panel detector-based system (FPDS). Radiation exposure (dose-area product [DAP], in Gy cm{sup 2} and fluoroscopy time [FT] in minutes) was retrospectively analyzed.ResultsDAP was significantly higher in Group I (mean ± SD 360 ± 298; median 287; 75th percentile 389 Gy cm{sup 2}) as compared to Group II (217 ± 130; 178; 276 Gy cm{sup 2}; p = 0.002) and Group III (129 ± 117; 70; 150 Gy cm{sup 2}p < 0.001). The difference in DAP between Groups II and III was also significant (p < 0.001). Group I had significantly longer FT (25.78 ± 13.52 min) as compared to Group II (20.45 ± 10.87 min; p = 0.02) and Group III (19.76 ± 13.34; p < 0.001). FT was not significantly different between Groups II and III (p = 0.73).ConclusionsReal-time ultrasound-guided targeting of the portal venous system during TIPS creation results in a significantly lower radiation exposure and reduced FT. Further reduction in radiation exposure can be achieved through the use of modern angiographic units with FPDS.

  16. Biological effects of radiation and health risks from exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Kotian, Rahul P.; Kotian, Sahana Rahul; Sukumar, Suresh

    2013-01-01

    The very fact that ionizing radiation produces biological effects is known from many years. The first case of injury reported by Sir Roentgen was reported just after a few months after discovery of X-rays in 1895. As early as 1902, the first case of X-ray induced cancer was reported in the literature. Early human evidence of harmful effects as a result of exposure to radiation in large amounts existed in the 1920s and 1930s, based upon the experience of early radiologists, miners exposed to airborne radioactivity underground, persons working in the radium industry, and other special occupational groups. The long-term biological significance of smaller, repeated doses of radiation, however, was not widely appreciated until relatively recently, and most of our knowledge of the biological effects of radiation has been accumulated since World War II. The mechanisms that lead to adverse health effects after exposure to ionizing radiation are still not fully understood. Ionizing radiation has sufficient energy to change the structure of molecules, including DNA, within the cells of the body. Some of these molecular changes are so complex that it may be difficult for the body's repair mechanisms to mend them correctly. However, the evidence is that only a small fraction of such changes would be expected to result in cancer or other health effects. The most thoroughly studied individuals for the evaluation of health effects of ionizing radiation are the survivors of the Hiroshima and Nagasaki atomic bombings, a large population that includes all ages and both sexes.The Radiation Effects Research Foundation (RERF) in Japan has conducted followup studies on these survivors for more than 50 years. An important finding from these studies is that the occurrence of solid cancers increases in proportion to radiation dose. More than 60% of exposed survivors received a dose of radiation of less than 100 mSv (the definition of low dose used by the BEIR VII report). (author)

  17. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Clayton B. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Thompson, Holly M. [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Benedict, Stanley H. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Seibert, J. Anthony [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Wong, Kenneth [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States); Vaughan, Andrew T. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Chen, Allen M., E-mail: allenmchen@yahoo.com [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States)

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.

  18. The relationship between occupational radiation exposure and thyroid nodules

    Directory of Open Access Journals (Sweden)

    Atoosa Adibi

    2012-01-01

    Full Text Available Background: Considering that thyroid nodules and thyroid cancer occur more frequently in people chronically exposed to radiation, the aim of this study was to evaluate the prevalence of thyroid nodules in a population occupationally exposed to radiation in hospitals of Isfahan, Iran. Materials and Methods: In this case-control study, the prevalence of thyroid nodules in staff members occupationally exposed to radiation was determined by ultrasonography. The results were compared with the results of another study among the adult population of Isfahan which selected by cluster random sampling method. The 2 studied groups were matched according to sex and age. Results: The case and control groups included 124 and 471 persons, respectively. The prevalence of thyroid nodules in the case and control groups was 22.6% and 24.6%, respectively (p > 0.05. Although thyroid nodules were significantly more prevalent in females in the control group, no such difference was observed between females and males of the case group (p > 0.05. The number of thyroid nodules (single or multiple and calcification were not different between the two groups (p > 0.05. In addition, hypoechogenicity of thyroid nodules was not different between the two groups for (p > 0.05. Conclusion: In our study, there was not any correlation between chronic occupational exposure to low dose of radiation and the risk of developing thyroid nodules. Further studies with larger sample sizes, at different doses of radiation, and considering iodine status and thyroid function are thus required.

  19. The relationship between occupational radiation exposure and thyroid nodules

    Science.gov (United States)

    Adibi, Atoosa; Rezazade, Afshin; Hovsepian, Silva; Koohi, Razie; Hosseini, Mohsen

    2012-01-01

    Background: Considering that thyroid nodules and thyroid cancer occur more frequently in people chronically exposed to radiation, the aim of this study was to evaluate the prevalence of thyroid nodules in a population occupationally exposed to radiation in hospitals of Isfahan, Iran. Materials and Methods: In this case-control study, the prevalence of thyroid nodules in staff members occupationally exposed to radiation was determined by ultrasonography. The results were compared with the results of another study among the adult population of Isfahan which selected by cluster random sampling method. The 2 studied groups were matched according to sex and age. Results: The case and control groups included 124 and 471 persons, respectively. The prevalence of thyroid nodules in the case and control groups was 22.6% and 24.6%, respectively (p > 0.05). Although thyroid nodules were significantly more prevalent in females in the control group, no such difference was observed between females and males of the case group (p > 0.05). The number of thyroid nodules (single or multiple) and calcification were not different between the two groups (p > 0.05). In addition, hypoechogenicity of thyroid nodules was not different between the two groups for (p > 0.05). Conclusion: In our study, there was not any correlation between chronic occupational exposure to low dose of radiation and the risk of developing thyroid nodules. Further studies with larger sample sizes, at different doses of radiation, and considering iodine status and thyroid function are thus required. PMID:23626606

  20. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis

    Science.gov (United States)

    Li, Changzhao; Athar, Mohammad

    2016-01-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  1. NCRP study of radiation exposure from consumer products

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1978-01-01

    The NCRP is stepping up its concern with radiation exposure resulting from consumer products, and at this time the author would not venture to suggest what its ultimate position may be. The NCRP recognizes that, at some stage, the problem has to be treated in some pseudo-quantitative fashion. However, at the present time, the Council is not enthusiastic about the attempts to legislate or regulate levels of safety into many radiation uses when these levels are based on such shaky models and assumptions as to provide readily distortable conclusions. The Council is seriously examining the matters of radiation risk on a quantitative basis, but not with the over-simplified models that have been applied in recent years. It is fairly certain that, over the next few years, the NCRP will include such details as it considers rational in relationship to consumer products, even though the end result for many of the products may result in the expression of the opinion that they are unimportant. It was suggested in the text that some kind of definition might be provided which would give a dividing line between radiation exposures that are psychologically worrisome and others that are not psychologically worrisome. To illustrate this point two tables are presented which list types of exposure, number exposed, average dose equivalent (mrem/year) and the dose index for various consumer products and natural background. The dose index is the product of the average dose equivalent by the estimated number of individuals exposed. It is deliberately an improper term. The main benefit of this study has been in pointing out what may be a way to avoid future problems rather than indicating any serious problems at the present time

  2. Occupational radiation exposure in Germany in 2006. Report of the radiation protection register

    International Nuclear Information System (INIS)

    Frasch, G.; Fritzsche, E.; Kammerer, L.; Karofsky, R.; Spiesl, J.; Stegemann, R.

    2008-06-01

    In Germany, persons occupationally exposed to radiation are monitored by several official dosimetric services who transmit their records about individual radiation doses to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The number of dose recordings reported to the Radiation Protection Register has annually increased to more than three million records per year and thus accumulated to more than 34 million dose records at the end of 2006. The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits by each radiation worker and to monitor the compliance with the radiation protection principle ''optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. Amongst others, the annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2006, about 312,000 workers were monitored with dosimeters for occupational radiation exposure. About 18 % of the monitored persons received a measurable personal dose. The average annual dose of these exposed workers was 0.75 mSv. This value is the lowest average annual dose since dose monitoring for occupational worker was introduced. It remains below the dose limit of 1 mSv for the general public and amounts only 4 % of the annual dose limit of 20 mSv for radiation workers. Since 2003 aircraft crew personnel is subject to dose monitoring if it is employed in accordance with the German employment act and likely to receive an effective dose of at least 1 mSv per year from cosmic radiation during flight operation. This accounts for about 33.000 pilots and flight attendants. 45 airlines report the monthly accumulated dose values of their personnel via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 71 Person-Sv and thus

  3. Harmonization of risk management approaches: radiation and chemical exposures

    International Nuclear Information System (INIS)

    Srinivasan, P.

    2006-01-01

    Assessment of occupational and public risk from the environmental pollutants like chemicals, radiation, etc demands that the effects be considered not only from each individual pollutant, but from the combination of all the pollutants. An integrated risk assessment system needs to be in place to have an overall risk perspective for the benefit of policy makers and decision takers to try to achieve risk reduction in totality. The basis for risk-based radiation dose limits is derived from epidemiological studies, which provide a rich source of data largely unavailable to chemical risk assessors. In addition, use of the principle of optimization as expressed in the ALARA concept has resulted in a safety culture, which is much more than just complying with stipulated limits. The conservative hypothesis of no-threshold dose-effect relation (ICRP) is universally assumed. The end-points and the severity of different classes of pollutants and even different pollutants in a same class vary over a wide range. Hence, it is difficult to arrive at a quantitative value for the net detriment that weighs the various types of end-points and various classes of pollutants. Once the risk due to other pollutants is quantified by some acceptable methodology, it can be expressed in terms of the Risk Equivalent Radiation Dose (R.E.R.D.) for easy comparison with options involving radiation exposure. This paper is an effort to use to quantify and present the risk due to exposure to chemicals and radiation in a common scale for the purpose of easy comparison to facilitate decision taking. (authors)

  4. Harmonization of risk management approaches: radiation and chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P. [Bhabha Atomic Research Centre, Radiation Safety Systems Div., Mumbai (India)

    2006-07-01

    Assessment of occupational and public risk from the environmental pollutants like chemicals, radiation, etc demands that the effects be considered not only from each individual pollutant, but from the combination of all the pollutants. An integrated risk assessment system needs to be in place to have an overall risk perspective for the benefit of policy makers and decision takers to try to achieve risk reduction in totality. The basis for risk-based radiation dose limits is derived from epidemiological studies, which provide a rich source of data largely unavailable to chemical risk assessors. In addition, use of the principle of optimization as expressed in the ALARA concept has resulted in a safety culture, which is much more than just complying with stipulated limits. The conservative hypothesis of no-threshold dose-effect relation (ICRP) is universally assumed. The end-points and the severity of different classes of pollutants and even different pollutants in a same class vary over a wide range. Hence, it is difficult to arrive at a quantitative value for the net detriment that weighs the various types of end-points and various classes of pollutants. Once the risk due to other pollutants is quantified by some acceptable methodology, it can be expressed in terms of the Risk Equivalent Radiation Dose (R.E.R.D.) for easy comparison with options involving radiation exposure. This paper is an effort to use to quantify and present the risk due to exposure to chemicals and radiation in a common scale for the purpose of easy comparison to facilitate decision taking. (authors)

  5. 10 years after Chernobyl, radiation exposure, health effects, safety aspects

    International Nuclear Information System (INIS)

    Mueck, K.

    1996-11-01

    This report sums up the various conferences and symposia which were prompted by the tenth anniversary of the accident in the nuclear power plant of Chernobyl. It was shown that by the accident up to now 31 casualties among the emergency and rescue personal at the site. Offsite no increased number of casualties caused by the accident was observed up to now. In the countries with the highest impact Ukraine, Belarus and Russia, however, an increased number of infant thyroid cancer is observed which is substantially higher than after the nuclear detonations over Japanese cities. Contrary to often published media reports, however, up to now no increases in leukemia or other malignant deceases were observed, neither in the population of the concerned regions nor among the liquidators. The high 137 Cs activity concentration in the environment close to the power plant result in exclusion zone even today. The deposition values in Kiev, however, amount to only 30 kBq/m 2 , in large areas of Ukraine they are below the average values in Austria of 22 kBq/m 2 . For these areas as well as those outside the former Soviet Union the average doses were less than 1 mSv in the first year, a value which is less than one third of natural annual radiation exposure. Since the reactor accident the activity concentration has significally decreased resulting in an exposure as consequence of the reactor accident of less than 0,8 % of the exposure in the first year. In Austria the exposure in 1996 amounts to less than 0,3 % of natural radiation exposure. (author)

  6. Diagnostic medical exposures. Advice on exposure to ionising radiation during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, C.; Shrimpton, J.; Bury, R

    1998-07-01

    The main objective of NRPB advice concerning in utero exposures to ionising radiations is 'to prevent unnecessary exposure of the fetus when medical diagnostic procedures involving ionising radiations are indicated during pregnancy'. In addition, advice is meant to help to avoid unnecessary concern or action if an exposure does occur. NRPB issued ASP8 (Exposure to ionising radiation of pregnant women: advice on the diagnostic exposure of women who are, or who may be, pregnant) in 1985. This advice suggested that there would be no risks to the concepts following irradiation during the first 10 days of the menstrual cycle and that subsequent risks in the remainder of the first 4 week period would be likely to be so small that no special limitation on exposure was required - sometimes known as 'the 28-day rule'. In 1993, NRPB published further advice to replace ASP8 in the Documents of the NRPB series, in Volume 4, No 4 - henceforth referred to as Doc NRPB 4(4){sup 2} - which drew upon data published since 1985. The more recent data suggest that risks in the interval between 10 days and the date at which the next menstrual period is due, although still small for most diagnostic procedures, may be significant for higher dose procedures. Consequently, it is considered there is a need to operate a modified policy for such higher dose procedures. This pocket publication has been produced to present in a concise and user-friendly format the basis of the most recent NRPB advice and to provide a guide for the implementation of that advice in the everyday practice of diagnostic radiology. The opportunity has also been taken to provide the most up to date data on doses in the UK. This publication is split into three parts: an introduction to the terms used in the document, a practical guide to implementation of the advice, and the scientific background to the advice.

  7. Diagnostic medical exposures. Advice on exposure to ionising radiation during pregnancy

    International Nuclear Information System (INIS)

    Sharp, C.; Shrimpton, J.; Bury, R.

    1998-01-01

    The main objective of NRPB advice concerning in utero exposures to ionising radiations is 'to prevent unnecessary exposure of the fetus when medical diagnostic procedures involving ionising radiations are indicated during pregnancy'. In addition, advice is meant to help to avoid unnecessary concern or action if an exposure does occur. NRPB issued ASP8 (Exposure to ionising radiation of pregnant women: advice on the diagnostic exposure of women who are, or who may be, pregnant) in 1985. This advice suggested that there would be no risks to the concepts following irradiation during the first 10 days of the menstrual cycle and that subsequent risks in the remainder of the first 4 week period would be likely to be so small that no special limitation on exposure was required - sometimes known as 'the 28-day rule'. In 1993, NRPB published further advice to replace ASP8 in the Documents of the NRPB series, in Volume 4, No 4 - henceforth referred to as Doc NRPB 4(4) 2 - which drew upon data published since 1985. The more recent data suggest that risks in the interval between 10 days and the date at which the next menstrual period is due, although still small for most diagnostic procedures, may be significant for higher dose procedures. Consequently, it is considered there is a need to operate a modified policy for such higher dose procedures. This pocket publication has been produced to present in a concise and user-friendly format the basis of the most recent NRPB advice and to provide a guide for the implementation of that advice in the everyday practice of diagnostic radiology. The opportunity has also been taken to provide the most up to date data on doses in the UK. This publication is split into three parts: an introduction to the terms used in the document, a practical guide to implementation of the advice, and the scientific background to the advice

  8. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  9. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    Science.gov (United States)

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radiation exposures of medical employes and its management

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Uchiyama, Akira.

    1982-01-01

    For the five years period from April, 1976, to March, 1981, the usage of film badges at the hospital of Chiba University is described as follows: the number of personnel using film badges, the distribution of radiation exposure dose, and the employes exposed beyond 500 mrem yearly in respective years, departments and professional types. The cumulative number of personnel was 2,476 (yearly average was 495). Professional types were physician, nurse, radiation technician, researcher, etc. The number of personnel using film badges has been increasing year after year; of which about 500, 70% are physicians. A cumulative total of the employes exposed exceeding 500 mrem yearly was 11, ten being physicians; the highest dose was 1,840 mrem. The average yearly exposure dose per person was the highest in radiation technicians (100 - 30 mrem/person/year), followed by physicians (50 - 24 mrem) and nurses (9 - 1 mrem). As a whole, the value was 45 - 20 mrem/person/year. (J.P.N.)

  11. Virtual reality application for simulating and minimizing worker radiation exposure

    International Nuclear Information System (INIS)

    Kang, Ki Doo; Hajek, Brian K.; Lee, Yon Sik; Shin, Yoo Jin

    2004-01-01

    To plan work and preclude unexpected radiation exposures in a nuclear power plant, a virtual nuclear plant is a good solution. For this, there are prerequisites such as displaying real time radiation exposure data onto an avatar and preventing speed reduction caused by multiple users on the net-based system. The work space is divided into several sections and radiation information is extracted section by section. Based on the simulation algorithm, real time processing is applied to the events and movements of the avatar. Because there are millions of parts in a nuclear power plant, it is almost impossible to model all of them. Several parts of virtual plant have been modeled using 3D internet virtual reality for the model development. Optimum one-click Active-X is applied for the system, which provides easy access to the virtual plant. Connection time on the net is 20-30 sec for initial loading and 3-4 sec for the 2nd and subsequent times

  12. Survival of human lymphocytes after exposure to densely ionizing radiations

    International Nuclear Information System (INIS)

    Madhvanath, U.; Raju, M.R.; Kelly, L.S.

    1976-01-01

    Interphase death of human blood lymphocytes cultured in vitro was studied after exposure to 60 Co gamma rays and to accelerated ions of 1 H, 4 He, 7 Li, 11 B, 12 C, 20 Ne, 40 Ar, and π - meson beam under aerobic conditions. Exposures were also conducted under hypoxic conditions with 60 Co gamma rays, 4 He, 7 Li, and 12 C ion beams. Time course of interphase death was followed for 6 days after irradiation. Percent survivals were determined by using the trypan blue exclusion method. Survival curves at 5 days postirradiation were exponential for all radiations studied. These observations indicate that the production of interphase death of lymphocytes by densely ionizing radiations follows a pattern similar to that observed with colony-forming mammalian cells. However, the reproductive capacity of the latter cells is impaired with maximum effectiveness at energy densities associated with 220 keV/μm for the beam conditions used in this investigation. The much lower energy densities required to kill a lymphocyte suggest that a sensitive structure other than DNA may be responsible for the production of lymphocyte death, perhaps the membranes. The calculated inactivation cross sections for high-LET radiations above 650 keV/μm yielded values larger than the actual cell dimensions. It appears that contributions from delta rays become appreciable in this system at these LET's

  13. Unusual high exposure to ultraviolet-C radiation.

    Science.gov (United States)

    Trevisan, Andrea; Piovesan, Stefano; Leonardi, Andrea; Bertocco, Matteo; Nicolosi, Piergiorgio; Pelizzo, Maria Guglielmina; Angelini, Annalisa

    2006-01-01

    UV radiation is known to cause acute and chronic eye and skin damage. The present case report describes a 90 min accidental exposure to UV-C radiation of 26 medical school students. Germicidal lamps were lit due to a malfunctioning of the timer system. Several hours after irradiation exposure, all subjects reported the onset of ocular symptoms, subsequently diagnosed as photokeratitis, and skin damage to the face, scalp and neck. While the ocular symptoms lasted 2-4 days, the sunburn-like condition produced significant erythema followed by deep skin exfoliation. The irradiation was calculated to be approximately 700 mJ cm(-2) absorbed energy, whereas the actual radiation emitted by the lamps was 0.14 mW cm(-2) (the radiometric measurements confirmed these calculi, because the effective irradiance measured from the height of the autopsy table to about 1 m under the UV-C lamp varied from 0.05 to 0.25 mW cm(-2)) but, more likely, the effective irradiance, according to skin phototype and symptoms, was between 50 and 100 mJ cm(-2). The ocular and skin effects produced by such a high irradiation (largely higher than that accepted by the American Conference of Governmental Industrial Hygienists [ACGIH] threshold limit values [TLVs]) appeared reversible in a relatively short time.

  14. Cognitive deficits induced by 56Fe radiation exposure

    Science.gov (United States)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  15. Study of radiation exposure profiles in interventional radiology professionals

    International Nuclear Information System (INIS)

    Bacchim Neto, Fernando A.; Alves, Allan F.F.; Alvarez, Matheus; Rosa, Maria E.D.; Miranda, Jose R.A.; Freitas, Carlos C.M. de; Moura, Regina; Pina, Diana R. de

    2014-01-01

    Interventional Radiology is the radiology area that provides the highest dose values to the medical staff. Recent surveys show that personal dosimeters may underestimate the radiation dose values in interventional physicians, especially in the extremities and crystalline. The objective of this work was to study the exposure levels to radiation from medical staff in different interventional radiology procedures. Therefore, thermoluminescent dosimeters type LiF: Mg, Ti (TLD-100) were used positioned in the main interventional physician and an assistant in the following locations: some inches below the crystalline, thyroid, chest, gonads, hand and foot. By comparing the values obtained with the annual reference dose levels in workers, maximum numbers of annual procedures were found. Altogether, there were 23 procedures evaluated: 10 diagnostics, 9 angioplasties and 4 stents. The maximum number of annual procedures were estimated by discounting the percentages of attenuation of radiological protection. For procedures of the type diagnosis, angioplasty and stent for the main interventionist, the maximum number of annual procedures were 641, 445 and 113 respectively, while for the interventionists assistants were 930, 1202 and 215 respectively. As each interventionist body region is subject to different levels of exposure, detailed studies of exposure in each region provide better conclusions about what actions are necessary to ensure radiological protection professionals

  16. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    Science.gov (United States)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  17. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  18. Radiation exposures for DOE and DOE contractor employees, 1989

    International Nuclear Information System (INIS)

    Smith, M.H.; Eschbach, P.A.; Harty, R.; Millet, W.H.; Scholes, V.A.

    1992-12-01

    All US Department of Energy (DOE) and DOE contractors, are required to submit occupational radiation exposure records to a central depository. In 1989, data were required to be submitted for all employees who were required to be monitored in accordance with DOE Order 5480.11 and for all visitors who had a positive exposure. The data required included the external penetrating whole-body dose equivalent, the shallow dose equivalent, and a summary of internal depositions of radioactive material above specified limits. Data regarding the exposed individuals included the individual's age, sex, and occupational category. This report is a summary of the external penetrating whole-body dose equivalents and shallow dose equivalents reported by DOE and DOE contractors for the calendar year 1989. A total of 90,882 DOE and DOE contractor employees were reported to have been monitored for whole-body ionizing radiation exposure during 1989. This represents 53.6% of all DOE and DOE contractor employees and is an increase (4.3 %) from the number of monitored employees for 1988. In addition to the employees, 12,643 visitors were monitored

  19. Radiation exposure assessment for Portsmouth Naval Shipyard health studies

    International Nuclear Information System (INIS)

    Daniels, R. D.; Taulbee, T. D.; Chen, P.

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses 95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard. (authors)

  20. External exposure from gamma radiation in uranium mines

    International Nuclear Information System (INIS)

    Thomson, J.E.

    1982-01-01

    Radiation doses received by workers in a high ore grade uranium mine are compared to those of other radiation workers and the need to be able to calculate the exposure rate from an ore body is indicated. The uranium-238 decay chain is presented and particular reference is made to the main gamma emitters and secular equilibrium of the members of the chain. Difficulties in dealing with a self attenuating volume source, in which scattering is important, are pointed out and traditional methods of solution are mentioned. It is shown that in the special case of an infinite ore body a simple solution may be obtained using the energy conservation principle. A straightforward method for calculating the exposure rate from an arbitrarily shaped ore body is given and corrections due to air attenuation, different soil types and possible lack of secular equilibrium are dealt with. The gamma ray spectrum from the ore is discussed with specific reference to the selection of suitable exposure monitors and the calculation of transmission through shields

  1. Health hazards of radiation exposure in the context of brain imaging research: special consideration for children.

    Science.gov (United States)

    Ernst, M; Freed, M E; Zametkin, A J

    1998-04-01

    This review provides information on health and biological effects of low-dose radiation to help institutional review boards and investigators make educated assessments of the risks of low-level radiation exposure involved in research, particularly in children. Studies of low-level radiation exposure with large sample sizes and long follow-up were reviewed. To help interpret the studies, we clarified the measures and measurement strategies of radiation exposure and of health risks. The few large studies of risks of low-level radiation in children have failed to detect an increased incidence of cancer. Most studies of low-level radiation involve adults. The risk of increased rates of cancer after low-level radiation exposure is not supported by population studies of health hazards from exposure to background radiation, radon in homes, radiation in the workplace or radiotherapy. Compared to the frequency of daily spontaneous genetic mutations, the biological effect of low-level radiation at the cellular level seems extremely low. Furthermore, the potentiation of cellular repair mechanisms by low-level radiation may result in a protective effect from subsequent high-level radiation. Studies approved by institutional review boards in the U.S. that involve the exposure of healthy normal children to ionizing radiation were reviewed. Health risks from low-level radiation could not be detected above the "noise" of adverse events of everyday life. In addition, no data were found that demonstrated higher risks with younger age at low-level radiation exposure.

  2. Dosimetry Methods for Human Exposure to Non-Ionising Radiation

    International Nuclear Information System (INIS)

    Poljak, D.; Sarolic, A.; Doric, V.; Peratta, C.; Peratta, A.

    2011-01-01

    The paper deals with human exposure to electromagnetic fields from extremely low frequencies (ELF) to GSM frequencies. The problem requires (1) the assessment of external field generated by electromagnetic interference (EMI) source at a given frequency (incident field dosimetry) and then (2) the assessment of corresponding fields induced inside the human body (internal field dosimetry). Several methods used in theoretical and experimental dosimetry are discussed within this work. Theoretical dosimetry models at low frequencies are based on quasistatic approaches, while analyses at higher frequencies use the full-wave models. Experimental techniques involve near and far field measurement. Human exposure to power lines, transformer substations, power line communication (PLC) systems, Radio Frequency Identification (RFID) antennas and GSM base station antenna systems is analyzed. The results o are compared to the exposure limits proposed by relevant safety guidelines. Theoretical incident dosimetry used in this paper is based on the set of Pocklington integro-differential equations for the calculation of the current distribution and subsequently radiated field from power lines. Experimental incident dosimetry techniques involve measurement techniques of fields radiated by RFID antennas and GSM base station antennas. First example set of numerical results is related to the internal dosimetry of realistic well-grounded body model exposed to vertical component of the electric field E = 10 kV/m generated by high voltage power line. The results obtained via the HNA model exceed the ICNIRP basic restrictions for public exposure (2 mA/m 2 ) in knee (8.6 mA/m 2 ) and neck (9.8 mA/m 2 ) and for occupational exposure (10 mA/m 2 ) in ankle (32 mA/m 2 ). In the case of a conceptual model of a realistic human body inside a transformer substation room touching a control panel at the potential φ0 = 400 V and with two scenarios for dry-air between worker's hand and panel, the values

  3. Radiation and health: low-level-ionizing radiation exposure and effects

    International Nuclear Information System (INIS)

    Kant, Krishan

    2013-01-01

    In the present paper, brief review of the available literature, data and reports of various radiation exposure and protection studies is presented. An in-depth analysis of reports available suggests that the possible beneficial outcomes of exposure to LLIR are: increased Growth rate, Development, Neurogenesis, Memory, Fecundity (Fertility), Immunity (Resistance to diseases due to large doses of radiation) and Lifespan (Longevity) Decreased Cancer deaths, Cardiovascular deaths, Respiratory deaths, Neonatal deaths, Sterility, Infection, Premature deaths. The findings also suggest that the LNT theory is overly stated for assessing carcinogenic risks at low doses. It is not scientifically justified and should be banned as it creates radio phobia thereby blocking the efforts to supply reliable, environmentally friendly nuclear energy and important medical therapies. There is no need for anyone to live in fear of serious health consequences from the radioactivity that comes out from nuclear installations and exposures in the range of background radiation. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to Indian population

  4. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  5. Radiation exposure inside reinforced concrete buildings at Nagasaki

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.; Ingersoll, D.T.

    1989-05-01

    The biological effects on the residents of Hiroshima and Nagasaki due to initial-irradiation exposure during the nuclear attacks of World War II was recognized immediately as an important source of information. After the war, an extensive effort gathered data concerning the locations of individuals at the time of the attack and their subsequent medical histories. The data from personnel located in reinforced concrete buildings are particularly significant, since large groups of occupants received radiation injury without complications due to blast and thermal effects. In order to correlate the radiation dose with physiological effects, the dose to each individual must be calculated. Enough information about the construction of the buildings was available after the war to allow a radiation transport model to be constructed, but the accurate calculation of penetration into such large, thick-walled three dimensional structures was beyond the scope of computing technology until recently. Now, the availability of Cray vector computers and the development of a specially-constructed discrete ordinates transport code, TORT, have combined to allow the successful completion of such a study. This document describes the radiation transport calculations and tabulates the resulting doses by source component and individual case location. An extensive uncertainty analysis is also included. These data are to be used in another study as input to a formal statistical analysis, resulting in a new value for the LD50 dose, i.e., the dose at which the mortality risk is 50%. 55 refs., 67 figs., 70 tabs

  6. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    International Nuclear Information System (INIS)

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2005-01-01

    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  7. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Biau, A.; Clairand, I.; Saint-Lo, D.; Valero, M.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2003-01-01

    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  8. A different approach to evaluating health effects from radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V.P.; Sondhaus, C.A.; Feinendegen, L.E.

    1988-01-01

    Absorbed dose D is shown to be a composite variable, the product of the fraction of cells hit (I/sub H/) and the mean /open quotes/dose/close quotes/ (hit size) /ovr z/ to those cells. D is suitable for use with high level (HLE) to radiation and its resulting acute organ effects because, since I/sub H/ = 1.0, D approximates closely enough the mean energy density in the cell as well as in the organ. However, with low-level exposure (LLE) to radiation and its consequent probability of cancer induction from a single cell, stochastic delivery of energy to cells results in a wide distribution of hit sizes z, and the expected mean value, /ovr z/, is constant with exposure. Thus, with LLE, only I/sub H/ varies with D so that the apparent proportionality between /open quotes/dose/close quotes/ and the fraction of cells transformed is misleading. This proportionality therefore does not mean that any (cell) dose, no matter how small, can be lethal. Rather, it means that, in the exposure of a population of individual organisms consisting of the constituent relevant cells, there is a small probabililty of particle-cell interactions which transfer energy. The probability of a cell transforming and initiating a cancer can only be greater than zero if the hit size (/open quotes/dose of energy/close quotes/) to the cell is large enough. Otherwise stated, if the /open quotes/dose/close quotes/ is defined at the proper level of biological organization, namely, the cell and not the organ, only a large dose z to that cell is effective. The above precepts are utilized to develop a drastically different approach to evaluation oif risk from LLE, that holds promise of obviating any requirement for the components of the present system: absorbed organ dose, LET, a standard radiation, REB(Q), dose equivalent and rem. 12 refs., 11 figs.

  9. Delayed effects of external radiation exposure: A brief history

    International Nuclear Information System (INIS)

    Miller, R.W.

    1995-01-01

    Within months of Roentgen's discovery of X rays, severe adverse effects were reported, but not well publicized. As a result, over the next two decades, fluoroscope operators suffered lethal skin carcinomas. Later, case reports appeared concerning leukemia in radiation workers, and infants born with severe mental retardation after their mothers had been given pelvic radiotherapy early in pregnancy. Fluoroscopy and radiotherapy for benign disorders continued to be used with abandon until authoritative reports were published on the adverse effects of ionizing radiation by the U.S. NAS-NRC and the UK MRC in 1956. Meanwhile, exposure to the atomic bombs in Japan had occurred and epidemics of delayed effects began to be recognized among the survivors: cataracts, leukemia and severe mental retardation among newborn infants after intra-uterine exposure. No statistically significant excess of germ-cell genetic effects was detected by six clinical measurements, the F 1 mortality, cytogenetic studies or biochemical genetic studies. Somatic cell effects were revealed by long-lasting chromosomal aberrations in peripheral lymphocytes, and somatic cell mutations were found at the glycophorin A locus in erythrocytes. Molecular biology is a likely focus of new studies based on the function of the gene for ataxia telangiectasia, a disorder in which children have severe, even lethal acute radiation reactions when given conventional doses of radiotherapy for lymphoma, to which they are prone. The tumor registries in Hiroshima and Nagasaki now provide incidence data that show the extent of increases in eight common cancers and no increase in eight others. The possibility of very late effects of A-bomb exposure is suggested by recent reports of increased frequencies of hyperparathyroidism, parathyroid cancers and certain causes of death other than cancer. 88 refs., 1 fig

  10. Delayed effects of external radiation exposure: A brief history

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.W. [National Cancer Institute, Bethesda, MD (United States)

    1995-11-01

    Within months of Roentgen`s discovery of X rays, severe adverse effects were reported, but not well publicized. As a result, over the next two decades, fluoroscope operators suffered lethal skin carcinomas. Later, case reports appeared concerning leukemia in radiation workers, and infants born with severe mental retardation after their mothers had been given pelvic radiotherapy early in pregnancy. Fluoroscopy and radiotherapy for benign disorders continued to be used with abandon until authoritative reports were published on the adverse effects of ionizing radiation by the U.S. NAS-NRC and the UK MRC in 1956. Meanwhile, exposure to the atomic bombs in Japan had occurred and epidemics of delayed effects began to be recognized among the survivors: cataracts, leukemia and severe mental retardation among newborn infants after intra-uterine exposure. No statistically significant excess of germ-cell genetic effects was detected by six clinical measurements, the F{sub 1} mortality, cytogenetic studies or biochemical genetic studies. Somatic cell effects were revealed by long-lasting chromosomal aberrations in peripheral lymphocytes, and somatic cell mutations were found at the glycophorin A locus in erythrocytes. Molecular biology is a likely focus of new studies based on the function of the gene for ataxia telangiectasia, a disorder in which children have severe, even lethal acute radiation reactions when given conventional doses of radiotherapy for lymphoma, to which they are prone. The tumor registries in Hiroshima and Nagasaki now provide incidence data that show the extent of increases in eight common cancers and no increase in eight others. The possibility of very late effects of A-bomb exposure is suggested by recent reports of increased frequencies of hyperparathyroidism, parathyroid cancers and certain causes of death other than cancer. 88 refs., 1 fig.

  11. Diagnostic medical exposures: advice on exposure to ionising radiation during pregnancy

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The NRPB offers advice on exposure to ionizing radiation during pregnancy, based on data published since 1985. In providing this advice the Board has considered risks to the developing embryo and fetus of death, malformation, mental impairment, cancer (solid tumours and leukaemias) and genetic damage from irradiation after the first missed menstrual period. The possible risks from irradiation of the early (up to 3-4 weeks) conceptus and from gonodal irradiation of patients is also covered in the present advice. (Author)

  12. 1999 report on occupational radiation exposures in Canada

    International Nuclear Information System (INIS)

    Sont, W.; Ashmore, J.P.

    1999-01-01

    The report provides statistics on occupational radiation exposures for use by regulatory authorities, organizations and private individuals. Out of a total of 125,883 monitored workers, 4 annual doses exceeded the regulatory limit of 50 mSv in 1998. Out of 43 specified job categories, 18 had a smaller annual average in 1998 than in 1997, 17 had a higher average, and 8 had the same average rounded to 0.01 mSv. The uranium mining job categories are not in this list because the conversion factor for radon progeny exposure to effective dose was changed from 10 to 5 mSv/WLM, precluding a valid comparison of the averages. In all categories of workers, from 1996 to 1997, 19 average annual doses went up, 33 went down, and 4 stayed the same. The figures reflect a sustained effort in keeping the occupational doses low. (author)

  13. Occupational radiation exposure in upper Austrian water supplies and Spas

    International Nuclear Information System (INIS)

    Ringer, W.; Simader, M.; Bernreiter, M.; Aspek, W.; Kaineder, H.

    2006-01-01

    The Council Directive 96/29/EURATOM lays down the basic safety standards for the protection of the workers and the general public against the dangers arising from ionising radiation, including natural radiation. Based on the directive and on the corresponding Austrian legislation a comprehensive study was conducted to determine the occupational radiation exposure in Upper Austrian water supplies and spas. The study comprises 45 water supplies and 3 spas, one of them being a radon spa. Most measurements taken were to determine the radon concentration in air at different workplaces (n = 184), but also measurements of the dose rate at dehumidifiers (n = 7) and gamma spectrometric measurements of back washing water (n = 4) were conducted. To determine the maximum occupational radon exposure in a water supply measurements were carried out in all water purification buildings and in at least half o f the drinking water reservoirs of the water supply. The results were combined with the respective working times in these locations (these data having been collected by means of a questionnaire). Where the calculated exposure was greater than 1 MBq h/m then all drinking water reservoirs of the concerned water suppl y were measured for their radon concentration to ensure a reliable assessment of the exposure. The results show that the radon concentrations in the water supplies were lower as expected, being in 55% of all measurement sites below 1000 Bq/m in 91% below 5000 Bq/m and with a maximum value of 38700 Bq/m.This leads to exposures that are below 2 MBq h/m (corresponding to approx. 6 mSv/a) in 42 water supplies. However, for the remaining three water supplies maximal occupational exposures due to radon of 2.8 MBq h/m (∼ 10 mSv/a), 15 MBq h/m (∼ 50 mSv/a), and 17 MBq h/m ( ∼ 56 mSv/a), respectively, were determined. In these water supplies remediation measures were proposed, based mainly on improved ventilation of and/or reduction of working time in the building

  14. Prediction of LDEF exposure to the ionizing radiation environment

    Science.gov (United States)

    Watts, J. W.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Predictions of the LDEF mission's trapped proton and electron and galactic cosmic ray proton exposures have been made using the currently accepted models with improved resolution near mission end and better modeling of solar cycle effects. An extension of previous calculations, to provide a more definitive description of the LDEF exposure to ionizing radiation, is represented by trapped proton and electron flux as a function of mission time, presented considering altitude and solar activity variation during the mission and the change in galactic cosmic ray proton flux over the mission. Modifications of the AP8MAX and AP8MIN fluence led to a reduction of fluence by 20%. A modified interpolation model developed by Daly and Evans resulted in 30% higher dose and activation levels, which better agreed with measured values than results predicted using the Vette model.

  15. Building materials as sources of indoor exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Mustonen, R.

    1992-11-01

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  16. Control of occupational exposure to cosmic radiation outside the atmosphere

    International Nuclear Information System (INIS)

    Katoh, Kazuaki; Kaneko, Masahito

    2000-01-01

    Japan is participating in the project of constructing ISS, International Space Station, and taking part of constructing JEM, Japan Experimental Module. It is expected that people working in this module upon completion should be controlled their exposure to cosmic radiation according to Japanese laws. Hence, the issue has been studied by a committee in NASDA, National Space Development Agency of Japan. In 1999, its interim report was released and public comments had been invited. In this presentation, following the introduction of the gist of the interim report as well as comments by the authors, countermeasures are proposed. (author)

  17. Radiation exposure of patients and operators during interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Krahe, T.; Ewen, K.; Lackner, K.; Koester, O.; Nicolas, V.

    1986-08-01

    Surface doses received by patients and operators were measured during 30 interventional radiological procedures (ten percutaneous transhepatic biliary drainages, ten percutaneous nephrostomies, ten percutaneous transluminal angioplasties). In addition, organ doses to the patient were determined using an Alderson-Rando phantom. These served as a basis for calculating the so-called somatic dose indices. It was found that the somatic radiation risk to the patient is relatively small despite prolonged periods of fluoroscopy. However, exposure of the hands and lenses of the operator could easily reach the limits thought acceptable while carrying out these procedures with additional angiography. (orig).

  18. Numerical investigations of radiation exposure in civil aviation

    International Nuclear Information System (INIS)

    Beck, P.; Felsberger, E.; O'Brien, K.; Kindl, P.

    1998-01-01

    Previous in-flight measurements of radiation exposure to air crews is compared with calculations by cosmic ray transport codes. Primary cosmic ray particle spectra modifications by solar modulation and by the geomagnetic field are discussed. The cosmic ray propagation and behaviour in the atmosphere is described by the Boltzmann equation. Results of calculations are shown in graphical form, including the altitude dependence of the effective dose rate at various geomagnetic latitudes, the effect of the 11-year solar modulation cycle, and 3 world maps of effective dose rates at usual flight altitudes. (A.K.)

  19. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    International Nuclear Information System (INIS)

    Hendry, Jolyon H; Sohrabi, Mehdi; Burkart, Werner; Simon, Steven L; Wojcik, Andrzej; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2009-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222 Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  20. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, Jolyon H; Sohrabi, Mehdi; Burkart, Werner [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria); Simon, Steven L [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Wojcik, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cardis, Elisabeth [Centre for Research in Environmental Epidemiology (CREAL), Municipal Institute of Medical Research (IMIM-Hospital del Mar) and CIBER Epidemiologia y Salud Publica - CIBERESP, Barcelona (Spain); Laurier, Dominique; Tirmarche, Margot [Radiobiology and Epidemiology Department, Radiological and Human Health Division, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Hayata, Isamu [National Institute of Radiological Sciences, Chiba (Japan)], E-mail: jhendry2002uk@yahoo.com

    2009-06-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of {sup 222}Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  1. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Science.gov (United States)

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  2. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  3. Radiation exposure from anthropogenic actinides in the northern Ukraine

    International Nuclear Information System (INIS)

    Hippler, Sven

    2006-01-01

    As a consequence of the Chernobyl accident, a large area of the northern Ukraine has been contaminated with many different radioactive substances to such an extent that the population hat to be evacuated. Officially, this exclusion still persists today. Meanwhile, people started returning to their dwellings without permission, and they continue living today within the contaminated area. This raises the question of how severe the radiation exposure to the illegal resettlers really is and of whether the restrictions are still justified. Currently, the radiation exposure is mainly being caused by 137 Cs and 90 Sr. But in the long-term, the influence of the long-living man-made actinoids will become important. In this study, their portion of the contamination of the evacuated area and the resulting contribution to the radiation exposure were examined in detail by considering the situation of the village Khristinovka as an example. For these purposes, many different environmental samples from Khristinovka (e.g. soil, food) have been analysed. The determination of the activity concentration of the actinoids was carried out by α-spectrometric measurements after radiochemical separations. Among the different man-made actinoids, only the nuclides 238 Pu, 239 Pu, 240 Pu and 241 Am are of immediate relevance. The most important actinoid is plutonium because of its slow migration in soil. Therefore, the long-living plutonium nuclides will contribute to the radiation exposure even when 90 Sr and 137 Cs will have decayed nearly completely. The observed deposition densities of (126 ± 7) Bq m -2 239, 240 Pu and (38.7 ± 3.4) Bq m -2 238 Pu are comparable to the official statements for this area. Thereby it is possible to distinguish between the contributions which originate from Chernobyl and the nuclear weapons fallout by means of the activity ratios between various radionuclides present. The additional annual dose to the general public of Khristinovka caused by man

  4. Nuclear energy - Radioprotection - Procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation

    International Nuclear Information System (INIS)

    2002-01-01

    This International Standard specifies a procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation and describes the procedure in radiation protection monitoring for external exposure to weakly penetrating radiation in nuclear installations. This radiation comprises β - radiation, β + radiation and conversion electron radiation as well as photon radiation with energies below 15 keV. This International Standard describes the procedure in radiation protection planning and monitoring as well as the measurement and analysis to be applied. It applies to regular nuclear power plant operation including maintenance, waste handling and decommissioning. The recommendations of this International Standard may also be transferred to other nuclear fields including reprocessing, if the area-specific issues are considered. This International Standard may also be applied to radiation protection at accelerator facilities and in nuclear medicine, biology and research facilities

  5. The impact of education on occupational radiation exposure reduction in a diagnostic radiology department

    International Nuclear Information System (INIS)

    Vetter, R.J.; Gray, J.E.

    1987-01-01

    Patient load, number of radiographic exams, complexity of some exams, and associated potential occupational radiation exposure of medical personnel have increased significantly in the past decade. Efforts to reduce exposure through employee education and awareness have resulted in significant reduction in occupational exposure for most diagnostic radiographic areas at Mayo Clinic. This paper reviews trends in occupational radiation exposure from diagnostic x- rays at Mayo Clinic over the past ten years. Changes in employee radiation dose equivalents are correlated with patient workload, complexity of exams, increased interventional radiology and cardiology, and efforts to reduce employee radiation exposure

  6. Medical radiation exposure and its impact on occupational practices in Korean radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seul Ki; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    The use of radiology examinations in medicine has been growing worldwide. Annually an estimated 3.1 billion radiologic exams are performed. According to this expansion of medical radiation exposure, it has been hard to pay no attention to the effects of medical radiation exposures in the exposure from different types of radiation source. This study, therefore, was aimed to assess the association of medical and occupational radiation exposure in Korean radiologic technologists and evaluate necessity for its consideration in occupational studies. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure.

  7. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Science.gov (United States)

    2010-07-01

    ... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for... involves exposure to ionizing radiations in excess of 0.5 rem per year. (b) Definitions. As used in this...

  8. 75 FR 8375 - Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting...

    Science.gov (United States)

    2010-02-24

    ...] Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting... Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging.'' The purpose of this meeting is to... radiation from these medical imaging modalities. The deadline for submitting comments related to this public...

  9. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Science.gov (United States)

    2010-07-01

    ... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure...

  10. Radiation exposure due to agricultural uses of phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; AL-Sewaidan, H.A.

    2008-01-01

    Radiological impacts of phosphate rocks mining and manufacture could be significant due to the elevated radioactivity contents of the naturally occurring radioactive materials (NORM), such as 238 U series, 232 Th series and 40 K, in some phosphate deposits. Over the last decades, the land reclamation and agriculture activities in Saudi Arabia and other countries have been widely expanded. Therefore, the usage of chemical fertilizers is increased. Selected phosphate fertilizers samples were collected and the specific activities of NORM were measured using a gamma ray spectrometer based on a hyper pure germanium detector and alpha spectrometer based on surface barrier detector. The obtained results show remarkable wide variations in the radioactivity contents of the different phosphate fertilizer samples. The mean (ranges) of specific activities for 226 Ra, 210 Po, 232 Th and 40 K, and radium equivalent activity are 75 (3-283), 25 (0.5-110), 23 (2-74), 2818 (9-6501) Bq/kg and 283 (7-589) Bq/kg, respectively. Based on dose calculations, the increment of the public radiation exposure due to the regular agricultural usage of phosphate fertilizers is negligible. Its average value 1 m above the ground is about 0.12 nGy/h where the world average value due to the NORM in soil is 51 nGy/h. Direct radiation exposures of the farmers due to phosphate fertilizers application was not considered in our study

  11. Interpolation methods for creating a scatter radiation exposure map

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Gomes, Celio S.; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F. [Universidade do Estado do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Física

    2017-07-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  12. Pediatric radiation exposure from diagnostic nuclear medicine examinations in Tehran

    International Nuclear Information System (INIS)

    Neshandar Asli, I.; Tabeie, F.

    2005-01-01

    As a part of a nationwide survey to estimate population exposure to radiation from diagnostic nuclear medicine in Iran, this paper presents the pediatric population radiation exposure due to nuclear medicine examinations in Tehran. Patients and methods: the effective dose equivalent, H E , was used to calculate the collective effective dose in pediatric patients undergoing nuclear medicine procedures, and the corresponding data were obtained from thirty out of thirty seven active nuclear medicine departments in Tehran. Results: annually about 5.26% of nuclear medicine examinations were performed on patients under 15 years of age in Tehran. The most frequent was renal examinations (38.2%), followed y thyroid (27.4%) and bone (26.7%). The annual collective H E for patients under 15 was 19.03 human-Sv, which contributed 3.96% to the collective H E for all patients. The contribution of renal, bone and thyroid examinations to the pediatric collective H E were 24.6% 48.8% and 13.5% respectively. The mean effective dose equivalent per pediatric patient was 3.75 mSv.Conclusion: Among the three most frequent examinations, the bone with a relative frequency of 27.4% constituted 48.8% of the collective H E , which was the highest absorbed dose per examination. The mean effective dose per examination for patients younger than 15 years was 67.9% of the adults

  13. Interpolation methods for creating a scatter radiation exposure map

    International Nuclear Information System (INIS)

    Gonçalves, Elicardo A. de S.; Gomes, Celio S.; Lopes, Ricardo T.; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F.

    2017-01-01

    A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

  14. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    environment activates genetic mechanisms, changing a population's resistance to exposure. However, there are ecological situations in which enhanced resistance has not evolved or has not persisted. Consequently, there are good theoretical and practical reasons for more attention being paid to the mechanisms by which populations becomes more radioresistant and to those situations where radio-adaptation appears not to be taking place. Since radio-adaptation plays an important role in response of populations on radiation exposure, this process needs to be incorporated into management programmes. To this very day, the effects of chronic exposure on living organisms and populations remain poorly explored, and represent a much needed field of research. In spite of the long history of the research, we are still far from complete understanding underlying processes in exposed populations. Neglecting field-collected data in favour of simplified short-term experiments that tend to overestimate adverse effects will obviously have detrimental effect for understanding, predicting, and mitigating consequences of the radiation impact on the environment. Much more is to be elucidated in our understanding before we will be able to give an objective and comprehensive assessment of the biological consequences of chronic, low-level radiation exposures to natural plant and animal populations. (authors)

  15. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    Our civilization is witnessing about century of nuclear age mixed with enormous promises and cataclysmic threats. Nuclear energy seems to encapsulate both potential for pure good and evil or at least we humans are able to perceive that. These images are continuously with us and they are both helping and distracting from making best of nuclear potentials for civilization. Today with nuclear use significantly present and with huge potential to further improve our life with energy and medical use it is of enormous importance to try to have calmed, rational, and objective view on potential risks and certain benefits. Because all use of nuclear energy proved that their immediate risks are negligible (i.e., Three Mile Island and Fukushima) or much smaller than from the other alternatives (i.e., Chernobyl) it seems that the most important issue is the amount of risk from the long term effects to people from exposure to small doses of radiation. A similar issue is present in the increased use of modern computational tomography and other radiation sources use in medicine for examination and therapy. Finally, extreme natural exposures are third such potential risk sources. Definition of low doses varies depending on the way of delivery (i.e., single, multiple or continuous exposures), and for this paper usual dose of 100 mSv is selected as yearly upper amount. There are three very different scientifically supported views on the potential risks from the low doses exposure. The most conservative theory is that all radiation is harmful, and even small increments from background levels (i.e., 2-3 mSv) present additional risk. This view is called linear no threshold theory (LNT) and it is accepted as a regulatory conservative simple approach which guarantees safety. Risk is derived from the extrapolation of the measured effects of high levels of radiation. Opposite theory to LNT is hormesis which assumes that in fact small doses of radiation are helpful and they are improving our

  16. Radiation Exposures for DOE and DOE Contractor Employees - 1989. Twenty-second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M. H. [Pacific Northwest Lab., Richland, WA (United States); Eschbach, P. A. [Pacific Northwest Lab., Richland, WA (United States); Harty, R. [Pacific Northwest Lab., Richland, WA (United States); Millet, W. H. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Scholes, V. A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1992-12-01

    This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year and identify trends in exposures being experienced over the years.

  17. Radiation exposures for DOE contractor employees-1988. Twenty-first annual report

    Energy Technology Data Exchange (ETDEWEB)

    Merwin, S. E. [Pacific Northwest Lab., Richland, WA (United States); Millet, W. H. [Pacific Northwest Lab., Richland, WA (United States); Idaho National Engineering Lab., Idaho Falls, ID (United States); Traub, R. J. [Pacific Northwest Lab., Richland, WA (United States)

    1990-12-01

    This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year and identify trends in exposures being experienced over the years.

  18. Late health effects of chronic radiation exposure of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, Ilia V.; Malinovsky, Georgy P.; Konshina, Lidia G.; Zhukovsky, Michael V. [Institute of Industrial Ecology UB RAS, 620219, 20, Sophy Kovalevskoy St., Ekaterinburg (Russian Federation); Tuzankina, Irina A. [Institute of Immunology and Physiology UB RAS, 620049, 106, Pervomayskaya St., Ekaterinburg (Russian Federation)

    2014-07-01

    Accidental explosion of waste storage tank at former soviet plutonium production plant 'Mayak' in 1957 resulted in emission of considerable amount of radioactive substances to the atmosphere. Atmospheric transfer and fallout caused contamination of the environment by Sr-90 and short-lived radionuclides (East-Ural Radioactive Trace, EURT). Due to consumption of contaminated food and milk some internal organs were affected to relatively high radiation exposure. Archive data of causes of deaths of rural population of EURT northern part for period 1957-2000 were used to create the Register on causes of deaths. Register records related to the settlements where initial surface contamination by Sr-90 was above and below 3.7 kBq/m2 were included to exposed (4 844 records) and unexposed (6 158 records) group respectively. Basing on the Register the analysis of cancer and non-cancer health effects of radiation exposure was conducted. By estimating proportionate mortality ratios statistically significant excess mortality due to the groups of causes of death as follow was observed in exposed population: stomach, liver and cervix cancers; group consisted only of stomach cancer; non-cancer deceases of infectious etiology. Non-significant but remarkably high risk was observed for the following groups of causes of death: bone cancer; leukemia; liver cancer; cervix cancer. Insignificant, virtually zero risk was found for: non-gastrointestinal solid cancers; colon and lung cancers; non-infectious non-cancer deceases. At the same time, considerable radiation doses were absorbed in bone (mean bone surface dose about 0.1 Gy) and colon (mean dose about 0.07 Gy). Doses absorbed in other organs and tissues were negligible and amounted less than 0.01 Gy for most tissues. It can be seen that some disagreement between observed effects and absorbed doses is revealed. Most remarkable is the high excess risks of stomach, liver and cervix cancers as well as non-cancer deceases of

  19. Response of Caenorhabditis elegans to wireless devices radiation exposure.

    Science.gov (United States)

    Fasseas, Michael K; Fragopoulou, Adamantia F; Manta, Areti K; Skouroliakou, Aikaterini; Vekrellis, Konstantinos; Margaritis, Lukas H; Syntichaki, Popi

    2015-03-01

    To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.

  20. Epidemiological studies of groups with occupational exposure to radiation

    International Nuclear Information System (INIS)

    Davies, J.M.

    1985-01-01

    The exposure of man to radiation and the resulting risk of carcinogenesis continues to be of concern to the public. In this context, there is often a tendency to carry out epidemiological studies concerning the induction of cancer in radiation workers and members of the public which are not supported by a statistically valid data base or whose results are misinterpreted or misused. To assist national authorities in evaluating radiological risks, the Nuclear Energy Agency has sponsored a critical review of the methodologies for, and the limitations of, these epidemiological studies, and of the precautions to be adopted in interpreting their results. Prepared by a consultant, Dr. Joan M. Davies, the review focuses on the problems encountered when carrying out epidemiological studies on groups of workers occupationally exposed to radiations, and using their results for radiological protection purposes. It is published under the responsibility of the Secretary General of the OECD, and does not necessarily reflect the views of Member Governments. The primary objective is to provide background material to be used by national authorities that have responsibilities in the field of radiological protection as well as by other persons interested in this subject

  1. Ecological effects of exposure to enhanced levels of ionizing radiation.

    Science.gov (United States)

    Geras'kin, Stanislav A

    2016-10-01

    Irradiation of plants and animals can result in disruption of ecological relationships between the components of ecosystems. Such effects may act as triggers of perturbation and lead to consequences that may differ essentially from expected ones based on effects observed at the organismal level. Considerable differences in ecology and niches occupied by different species lead to substantial differences in doses of ionizing radiation absorbed by species, even when they all are present in the same environment at the same time. This is especially evident for contamination with α-emitting radionuclides. Radioactive contamination can be considered an ecological factor that is able to modify the resistance in natural populations. However, there are radioecological situations when elevated radioresistance does not evolve or persist. The complexity and non-linearity of the structure and functioning of ecosystems can lead to unexpected consequences of stress effects, which would appear harmless if they were assessed within the narrower context of organism-based traditional radioecology. Therefore, the use of ecological knowledge is essential for understanding responses of populations and ecosystems to radiation exposure. Integration of basic ecological principles in the design and implementation of radioecological research is essential for predicting radiation effects under rapidly changing environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Radiation exposure and breast cancer: lessons from Chernobyl.

    Science.gov (United States)

    Ogrodnik, Aleksandra; Hudon, Tyler W; Nadkarni, Prakash M; Chandawarkar, Rajiv Y

    2013-04-01

    The lessons learned from the Chernobyl disaster have become increasingly important after the second anniversary of the Fukushima, Japan nuclear accident. Historically, data from the Chernobyl reactor accident 27 years ago demonstrated a strong correlation with thyroid cancer, but data on the radiation effects of Chernobyl on breast cancer incidence have remained inconclusive. We reviewed the published literature on the effects of the Chernobyl disaster on breast cancer incidence, using Medline and Scopus from the time of the accident to December of 2010. Our findings indicate limited data and statistical flaws. Other confounding factors, such as discrepancies in data collection, make interpretation of the results from the published literature difficult. Re-analyzing the data reveals that the incidence of breast cancer in Chernobyl-disaster-exposed women could be higher than previously thought. We have learned little of the consequences of radiation exposure at Chernobyl except for its effects on thyroid cancer incidence. Marking the 27th year after the Chernobyl event, this report sheds light on a specific, crucial and understudied aspect of the results of radiation from a gruesome nuclear power plant disaster.

  3. Optimization of costs versus radiation exposures in decommissioning

    International Nuclear Information System (INIS)

    Konzek, G.J.

    1979-01-01

    The estimated worth of decommissioning optimization planning during each phase of the reactor's life cycle is dependent on many variables. The major variables are tabulated and relatively ranked. For each phase, optimization qualitative values (i.e., cost, safety, maintainability, ALARA, and decommissioning considerations) are estimated and ranked according to their short-term and long-term potential benefits. These estimates depend on the quality of the input data, interpretation of that data, and engineering judgment. Once identified and ranked, these considerations form an integral part of the information data base from which estimates, decisions, and alternatives are derived. The optimization of costs and the amount of occupational radiation exposure reductions are strongly interrelated during decommissioning. Realizing that building the necessary infrastructure for decommissioning will take time is an important first step in any decommissioning plan. In addition, the following conclusions are established to achieve optimization of costs and reduced occupational radiation exposures: the assignment of cost versus man-rem is item-specific and sensitive to the expertise of many interrelated disciplines; a commitment to long-term decommissioning planning by management will provide the conditions needed to achieve optimization; and, to be most effective, costs and exposure reduction are sensitive to the nearness of the decommissioning operation. For a new plant, it is best to start at the beginning of the cycle, update continually, consider innovations, and realize full potential and benefits of this concept. For an older plant, the life cycle methodology permits a comprehensive review of the plant history and the formulation of an orderly decommissioning program based on planning, organization, and effort

  4. Blue Light and Ultraviolet Radiation Exposure from Infant Phototherapy Equipment.

    Science.gov (United States)

    Pinto, Iole; Bogi, Andrea; Picciolo, Francesco; Stacchini, Nicola; Buonocore, Giuseppe; Bellieni, Carlo V

    2015-01-01

    Phototherapy is the use of light for reducing the concentration of bilirubin in the body of infants. Although it has become a mainstay since its introduction in 1958, a better understanding of the efficacy and safety of phototherapy applications seems to be necessary for improved clinical practices and outcomes. This study was initiated to evaluate workers' exposure to Optical Radiation from different types of phototherapy devices in clinical use in Italy. During infant phototherapy the staff monitors babies periodically for around 10 min every hour, and fixation of the phototherapy beam light frequently occurs: almost all operators work within 30 cm of the phototherapy source during monitoring procedures, with most of them commonly working at ≤25 cm from the direct or reflected radiation beam. The results of this study suggest that there is a great variability in the spectral emission of equipments investigated, depending on the types of lamps used and some phototherapy equipment exposes operators to blue light photochemical retinal hazard. Some of the equipment investigated presents relevant spectral emission also in the UVA region. Taking into account that the exposure to UV in childhood has been established as an important contributing factor for melanoma risk in adults and considering the high susceptibility to UV-induced skin damage of the newborn, related to his pigmentary traits, the UV exposure of the infant during phototherapy should be "as low as reasonably achievable," considering that it is unnecessary to the therapy. It is recommended that special safety training be provided for the affected employees: in particular, protective eyewear can be necessary during newborn assistance activities carried out in proximity of some sources. The engineering design of phototherapy equipment can be optimized. Specific requirements for photobiological safety of lamps used in the phototherapy equipment should be defined in the safety product standard for such

  5. Health effects of radiation exposure and protection from radiation through an industrial health management angle

    International Nuclear Information System (INIS)

    Kobashi, Gen

    2014-01-01

    This paper outlines fundamental knowledge, health risks, and protection related to radiation in order to carry out appropriate industrial health management to reduce great public anxiety caused by the Fukushima Daiichi Nuclear Power Plant accident developed by the Tohoku earthquake and tsunami of March 11, 2011. Radiation generally causes damage to DNA such as generation of reactive oxygen species in cells, which are also created by exposures of various kinds of physical and chemical factors. This suggests that as well as applying 5 basic measures for industrial health management in the work place, common public health measures and disease prevention, such as keeping good sanitary conditions, healthy lifestyles, home discipline, social supports, efficient health education, etc. are important for us to prevent radiation-related cancer manifestation. Improvement of early detection and treatment for cancer is also important to eliminate the public anxiety. (A.O.)

  6. Assessment of leukemia caused deaths due to internal radiation exposure

    International Nuclear Information System (INIS)

    Raicevic, J.J.

    2002-01-01

    A problem of finding the number of cancers, which are developed due to internal exposure to radioactive material, is not a trivial task. This problem is generally rather complex, because in case of protracted exposures, latency period may exceed the time of an individual's natural death, i.e. the age at death due to 'natural causes'. In this paper the model for calculating risk caused by an internal exposure (inhalation or ingestion of radioactive material) is modeled as a continuous irradiation till the end of an individual's life, taking into account natural deaths in the observed population. The basic tool in constructing the model were risk coefficients per unit dose, developed earlier [1]. Since an important role in radiation exposure of the people in South Serbia may play internal exposure to depleted uranium (DU), which was extensively used during the NATO bombing of Yugoslavia, the leukemia was chosen as a stochastic effect which is to be considered. For this purpose, some different (artificial) amounts of DU intake were assumed. In order to present the continuous exposure of the whole population living on the contaminated area, the model separately considers those born after the environmental contamination. Therefore, the overall population is divided into two parts: the one which was alive at the time of the release, (LG-Living Generation), and the second one, born after that (FG- Following Generations). The paper primarily intends to present the model for risk calculation for the LG part of population. However, just for the purpose of demonstration of the overall risk model, the contribution of the FG is added to get an overall risk assessment for the case of leukaemia's deaths. Besides cumulative number of cases, which are usually calculated by other models, this model is able to assess differential values, what means it is able to predict the number of cases within a certain specified age and/or time intervals. According to results obtained by the

  7. Lifetime attributable risk for cancer from occupational radiation exposure among radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Medical radiation workers were among the earliest occupational groups exposed to external ionizing radiation due to their administration of a range of medical diagnostic procedures. Ionizing radiation is a confirmed human carcinogen for most organ sites. This study, therefore, was aimed to estimate lifetime cancer risk from occupational exposure among radiologic technologists that has been recruited in 2012-2013. Our findings showed a small increased cancer risk in radiologic technologists from their occupational radiation exposure in Korea. However, continuous dose monitoring and strict regulation on occupational safety at the government level should be emphasized to prevent any additional health hazards from occupational radiation exposure. Our findings showed a small increased cancer risk in radiologic technologists from their occupational radiation exposure in Korea. However, continuous dose monitoring and strict regulation on occupational safety at the government level should be emphasized to prevent any additional health hazards from occupational radiation exposure.

  8. Lifetime attributable risk for cancer from occupational radiation exposure among radiologic technologists

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin

    2016-01-01

    Medical radiation workers were among the earliest occupational groups exposed to external ionizing radiation due to their administration of a range of medical diagnostic procedures. Ionizing radiation is a confirmed human carcinogen for most organ sites. This study, therefore, was aimed to estimate lifetime cancer risk from occupational exposure among radiologic technologists that has been recruited in 2012-2013. Our findings showed a small increased cancer risk in radiologic technologists from their occupational radiation exposure in Korea. However, continuous dose monitoring and strict regulation on occupational safety at the government level should be emphasized to prevent any additional health hazards from occupational radiation exposure. Our findings showed a small increased cancer risk in radiologic technologists from their occupational radiation exposure in Korea. However, continuous dose monitoring and strict regulation on occupational safety at the government level should be emphasized to prevent any additional health hazards from occupational radiation exposure.

  9. ADVISORY ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    Science.gov (United States)

    The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factor...

  10. Radiation exposures for DOE and DOE contractor employees - 1991. Twenty-fourth annual report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.; Hui, T.E. [Pacific Northwest Lab., Richland, WA (United States); Millet, W.H.; Scholes, V.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-11-01

    This is the 24th annual radiation exposure report published by US DOE and its predecessor agencies. This report summarizes the radiation exposures received by both employees and visitors at DOE and COE contractor facilities during 1991. Trends in radiations exposures are evaluated. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimates from expert groups.

  11. Risk associated with occupational exposure to ionizing radiation kept in perspective

    International Nuclear Information System (INIS)

    Bonnell, J.A.; Harte, G.

    1978-01-01

    The risks associated with exposure to ionizing radiations are placed in perspective by a study of the natural incidence of those diseases in the United Kingdom that can be induced by radiation exposure. It is apparent that at ICRP recommended annual dose equivalent limits the small risks associated with exposure to ionizing radiations are acceptable, bearing in mind the obvious benefits that accrue from activities such as power production. This applies both to genetic and somatic diseases. (author)

  12. A comparative analysis of exposure doses between the radiation workers in dental and general hospital

    International Nuclear Information System (INIS)

    Yang, Nam Hee; Chung, Woon Kwan; Dong, Kyung Rae; Ju, Yong Jin; Song, Ha Jin; Choi, Eun Jin

    2015-01-01

    Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higher in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workers. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum 50 mSv y -1 ). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the future. Should try to minimize the radiation individual dose of

  13. Personnel radiation exposure in the Asse saltmine repository during 1967 to 2008. Health monitoring Asse

    International Nuclear Information System (INIS)

    2011-02-01

    The health monitoring Asse includes the following chapters: Introduction, background information including handling of radioactive materials and radiation protection issues, data on radiation exposure (personnel dosimetry, incorporation surveillance, local dose rate measurements, exhaust monitoring, radioactivity in the salt mine air and in the brine, contamination), concept of the data base, interrogation of the personnel, quantification of the individual radiation doses, results of the radiation exposure quantification; significance of the results and perspectives.

  14. Decreasing Radiation Exposure in Pediatric Trauma Related to Cervical Spine Clearance: A Quality Improvement Project.

    Science.gov (United States)

    Waddell, Valerie Ann; Connelly, Susan

    Quality improvement project. Reduce the amount of radiation exposure in the pediatric trauma population 5 years of age and older in relation to cervical spine clearance. The evaluation of pediatric cervical spine injuries must be accurate and timely to avoid missed injuries. The difficult clinical examination in pediatric trauma patients necessitates the use of radiologic examinations to avoid missing catastrophic injuries. However, exposure to radiation at an early age increases the pediatric patients' risk of developing cancer (R. A. ). A retrospective chart review was conducted to assess radiation exposure in pediatric patients requiring evaluation for cervical spine clearance. Surgical staff and emergency department physicians received education on the risks related to pediatric radiation exposure and information related to the institution's diagnostic trends for cervical spine clearance. An algorithm was then developed to assist with determining the necessary imaging study for cervical spine clearance. Radiation exposure was monitored following initial education and use of the algorithm to determine its effect on radiation exposure. The retrospective chart review identified cervical spine computed tomography (CT) in 34%, with an average radiation exposure of 3.5 mSv. Following education and introduction of an algorithm, 18% of patients underwent CT for cervical spine clearance with an average radiation exposure of 3.2 mSv, representing a 47% decrease in the use of CT. Staff education and the use of an algorithm show promise in the reduction of radiation exposure and provide safe, effective clearance of the cervical spine in pediatric trauma.

  15. Radioisotope-pharmacodynamic studies without exposure to radiation

    International Nuclear Information System (INIS)

    Graul, H.

    1983-01-01

    On the basis of a clinico-pharmacological study using a new diuretic combination it is shown that not only the RIA determination, but also the measurement of the total amount of potassium in the body with the aid of the 40 K potassium-nuclide confirmed therapeutic efficacy. Furosemide (30 mg) and the combination furosemide-retard (30 mg) and triamterene (50 mg) influence the plasmarenin-aldosterone system (PRA-system) differently. After both furosemide alone and the combination, the plasma-renin activity increased significantly (p 40 /K potassium nuclide - decreased after 8 days of treatment with the combination of furosemide-retard and triamterene. Both methods have proved of value in the clinico-pharmacological examination of diuretics. They are of great importance, easy to apply, involve no exposure to radiation, and are inexpensive. (orig.) [de

  16. Radio frequency radiation (RFR) exposures from mobile phones

    International Nuclear Information System (INIS)

    Joyner, K.H.; Lubinas, V.; Wood, M.P.; Saribalas, J.; Adams, J.A.

    1992-01-01

    Measurements of the free space levels of radio frequency radiation (RFR) around a hand-held mobile phone and the specific absorption rate (SAR) induced in the ocular region of a phantom head exposed to RFR from a mobile phone are presented. The level of RFR measured 5 cm from the antenna of a mobile phone transmitting 600 mW was 0.27 mW/cm 2 . The average SAR level measured in the nearside eye of the phantom head containing tissue equivalent jellies was 0.7 W/kg for a 600 mW transmit power which is very much less than the spatial peak limit of 8 W/kg underlying the Australian and other national and international RFR exposure standards. (author)

  17. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  18. Human performance analysis of industrial radiography radiation exposure events

    International Nuclear Information System (INIS)

    Reece, W.J.; Hill, S.G.

    1995-01-01

    A set of radiation overexposure event reports were reviewed as part of a program to examine human performance in industrial radiography for the US Nuclear Regulatory Commission. Incident records for a seven year period were retrieved from an event database. Ninety-five exposure events were initially categorized and sorted for further analysis. Descriptive models were applied to a subset of severe overexposure events. Modeling included: (1) operational sequence tables to outline the key human actions and interactions with equipment, (2) human reliability event trees, (3) an application of an information processing failures model, and (4) an extrapolated use of the error influences and effects diagram. Results of the modeling analyses provided insights into the industrial radiography task and suggested areas for further action and study to decrease overexposures

  19. Reducing radiation exposure during oral I-131 therapy administration

    International Nuclear Information System (INIS)

    Trujillo, J.; Krinsky, S.; Wilson, B.; Teague, E.

    1982-01-01

    A new, closed-system method to reduce air-, direct-, and incidental-contamination during therapeutic administration of oral I-131 was experimentally evaluated on twelve patients. We studied a standard control population using the routine practice of drinking the solution through a straw and compared results with our new technique. Various measurements were performed throughout all phases of dose administration to assess the relative difference of the two approaches. Using the closed system method before and during iodine administration revealed between 100 and 1000 times less activity per millimeter of air sample; whereas, the direct radiation exposure values were higher for the control population. Both the experimental and control methods had similar levels of incidental contamination

  20. Assessment of health consequences of steel industry welders′ occupational exposure to ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Zahra Zamanian

    2015-01-01

    Conclusions: This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures.

  1. The MONIT project: electromagnetic radiation exposure assessment in mobile communications

    International Nuclear Information System (INIS)

    Carla Oliveira; Daniel Sebastiao; Goncalo Carpinteiro; Luis M Correia; Carlos A Fernandes; Afonso Serralha; Nuno Marques

    2006-01-01

    This paper presents the m.o.n.I.T. Project, a risk communication initiative, providing information to the public on exposure to radiation associated to Electromagnetic Fields (E.M.F.), and performing activities of exposure assessment. M.o.n.I.T. is developed within Instituto de Telecomunicacoes (I.T.) Lisbon site at Instituto Superior Tecnico (I.S.T., Technical University of Lisbon, Portugal), which is a non-profit scientific R and D institute with activities in the Telecommunications area. M.o.n.I.T. started in 2004 in the context of an emergent general public concern about possible health hazards caused by radiation from mobile communication antennas, most of the times rooted in misconceptions about the involved aspects, aggravated by the lack of trusty sources of information capable of presenting it in a simple understandable way. An objective evaluation of the risk requires the quantification of E.M.F. levels to which the population is exposed. Systematic information of this type was not openly available in Portugal, and this was one of the gaps that m.o.n.I.T. filled in, by providing results from extensive measurements campaigns performed in public places over the country for a period that presently mounts to three years. The monitoring system is based on a network of autonomous remote probing stations, and also on an extensive E.M.F. sounding program. Measured results are automatically uploaded to a web site for public dissemination (www.lx.it.pt/monit), which includes also other relevant information about E.M.F. for both the general public and the technical community. This paper describes the project structure and activities in Section 2, the automatic monitoring system in Section 3, and a brief analysis of the measured results in Section 4. Finally, some conclusions are presented in Section 5. (authors)

  2. Assessment of background radiation exposures at Ranger Uranium Mine

    International Nuclear Information System (INIS)

    Kvasnicka, J.; Auty, R.

    1994-01-01

    The geology of a narrow strip (strip) between the Magela and Ranger Faults which includes both Ranger orebodies is more complex when compared with the sub-surface geology east and west of the strip. This fact was a major consideration when planning a retrospective assessment of the pre operation natural radiation background. The program and outcomes of the assessments are summarized in the paper. The experimental results of the program include the average pre-mining background external gamma-ray exposure-rate at 1 m above ground and the average surface radon flux from the ERA-Ranger Mine project area. Five pre-mining average external gamma-ray exposure-rates were estimated: 110μRh -1 (Orebody No. 1), 66.5 (Orebody No. 3), 30.2 (the strip), 9.7 (areas west of the strip) and 7.1 μ h -1 (areas east of the strip). The average radon flux for the five areas listed above was established as; 4.1, 2.5, 1.0, 0.23 and 0.13 Bq m -2 s -1 . The pre-mining radon daughter impact on the Jabiru township area was estimated as 0.12 mWL using an air dispersion model. This would be equal to an effective dose equivalent of 0.05 mSv per year assuming 100% occupancy. The maximum long-term average PAEC of radon daughters was estimated for Orebody No.1 area as above 3.8 mWL. Both PAECs of radon daughters should be understood as increments above the local background of about 2 to 3 mWL. It is proposed to adopt the above retrospectively estimated pre-mining radiological quantities as the pre-mining radiation background to be used when deriving radiological standards of the rehabilitation for the ERA-Ranger Mine project area. 11 refs., 9 tabs., 5 figs

  3. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure.

    Directory of Open Access Journals (Sweden)

    Amrita K Cheema

    Full Text Available Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS two months after 2 Gy γ radiation and results were compared to an equitoxic ⁵⁶Fe (1.6 Gy radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ⁵⁶Fe radiation preferentially altered dipeptide metabolism. Furthermore, ⁵⁶Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but

  4. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    Science.gov (United States)

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  5. Radiation exposure and risk of pediatric thyroid cancer

    International Nuclear Information System (INIS)

    Miyakawa, Megumi

    2012-01-01

    A large amount of radioactive substances were released in air following the Great East Japan Earthquake, tsunami and Fukushima Nuclear Power Plant Accident (Mar. 2011), of which subsequent medical and pediatric events are reported herein. Many residents who had lived close to the Plant had to dwell in the evacuation area. The risk of their pediatric thyroid cancer has become a subject of anxiety since the incidence of the cancer alone is known to have increased post Chernobyl nuclear accident. The cancer is quite rare in the pediatric field, the tissue type is mostly of differentiated papillocarcinoma, and the long prognosis is reportedly as good as that of the cancer not due to radiation exposure if surgically treated appropriately. After the Accident, Radiation Medical Science Center for Fukushima Health Management Survey was founded in Fukushima Medical University, where the whole lifetime health management of Fukushima prefectural residents is to be continued. Among them, the ultrasonic examination of the thyroid started in Oct. 2011 to 360 thousands children of the age 20 mm cyst or >5 mm solid node. It is important to carefully watch the health of children involving their mental side as they suffer from the experience of ''exposed'', rather than the actual physical effect. (T.T.)

  6. Assessment of occupational exposures to external radiation - IAEA recommendation 1995

    International Nuclear Information System (INIS)

    Trousil, J.; Plichta, J.; Nikodemova, D.

    1995-01-01

    The IAEA recommendation contains the guidance on: (1) establishing monitoring programmes; (2) the interpretation of results; (3) records keeping; (4) quality assurance. The objectives for workplace monitoring including the recommended methods are also involved. The choice of personal dosemeter depends not only on the type of radiation but also on the method of interpretation what will be used: (1) photon dosemeters giving information only on the personal dose equivalent Hp(10) - mostly TL or RPL dosemeters are used; (2) photon dosemeter of discriminating type giving, in addition to Hp(10) and Hp(0.07), some indication of radiation type and effective energy and detection of electrons - data which must be known for E calculation -mostly film badge is used; (3) extremity dosemeters giving information on Hp(0.07) - mostly TL dosemeters are used; (4) neutron dosemeters giving information on Hp(10) -track-etch or albedo dosemeters are used. The monitoring service should have quality assurance testing which is an organization's internal system of procedures and practices which assures the quality of its service. This process may be part of the approval performance testing which is a part of approved procedures carried out be the authoritative organization in regular intervals. The approved monitoring service should perform the dose records keeping which serve the protection of the workers and these data are the part of the Register of the Professional Exposures which is mostly organized by the authoritative body. (J.K.)

  7. Aircrew Exposure from Cosmic Radiation on Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; McCall, M.J.; Green, A.R.; Bennett, L.G.I.; Pierre, M.; Schrewe, U.J.; O' Brien, K.; Felsberger, E

    2001-07-01

    As a result of the recent recommendations of the ICRP 60, and in anticipation of possible regulation on occupational exposure of Canadian-based aircrew, an extensive study was carried out by the Royal Military College of Canada over a one-year period to measure the cosmic radiation at commercial jet altitudes. A tissue-equivalent proportional counter was used to measure the ambient total dose equivalent rate on 62 flight routes, resulting in over 20,000 data points at one-minute intervals at various altitudes and geomagnetic latitudes (i.e. which span the full cut-off rigidity of the Earth's magnetic field). These data were then compared to similar experimental work at the Physikalisch Technische Bundesanstalt, using a different suite of equipment, to measure separately the low and high linear energy transfer components of the mixed radiation field, and to predictions with the LUIN transport code. All experimental and theoretical results were in excellent agreement. From these data, a semi-empirical model was developed to allow for the interpolation of the dose rate for any global position, altitude and date (i.e. heliocentric potential). Through integration of the dose rate function over a great circle flight path, a computer code was developed to provide an estimate of the total dose equivalent on any route worldwide at any period in the solar cycle. (author)

  8. The recovery of the human organism after radiation exposure

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1976-01-01

    The repair of radiation damage in the human organism is reviewed. A distinction is made between the single repair steps, first the molecular repair of sublethal damage during the periods of 30 min to 2 h and several days to months, second the substitution of the whole cells during a period of reproduction which is specific for the kind and persistence of the cells. One example is the radiosensitive stem cell with a reproduction rate of 40% and a redoublication time of 10 d at 100 rads and the very low reproduction rate of 1% with redoublication time of 7 d after a dose of 400 rads. 5 rads seems to be acceptable for systems with recovery and repeated exposure, single doses normally should not exceed 25 rads, not 100 rads/d for to save human life, and not a total dose of 500 rads. About 20% of irradiation damage is not repaired and leads to late effects, for example the induction of tumors, the shortening of life span and an increase in embryonic mortality. The author recommends the acceptance of a radiation dose leading to 20 additional cases of leucemia in the whole population of Germany and an increase of tumor frequency of 1%. The shortening of life span should not exceed 0,5%. The equivalent residual dose (ERD) can be calculated by the following equation: ERD = last effective dose minus 5 rads x number of days. (AJ) [de

  9. Radiation-induced breast cancer: Influence of age at exposure, latency period, age, and genetic predisposition

    International Nuclear Information System (INIS)

    Kuni, H.

    2001-01-01

    Radiation induced breast cancer: Influence of age at exposure, time since exposure, attained age and genetic predisposition. The amount of undesirable effects of screening with mammography was estimated from mortality studies after radiation exposure. Newer incidence studies demonstrate, however, an underestimation of the health detriment by mortality studies, in particular with increasing age at exposure, which amounts about five- to sixfold after an exposure in an age of 45-50y. The multidimensional analysis of the discrete values of incidence after radiation exposure respecting age at exposure, time since exposure and attained age instead of calculating a steady function simply depending from age at exposure results in an increasing relative and absolute risk of cancer incidence (and mortality) with growing age after an exposure at an age above 40y. Some genes seems to be correlated with an predisposition of breast cancer. In women carrying BRCA-1 the radiosensitivity for induction of breast cancer may exceed the risk in the normal population by about two orders of magnitude. The resulting doubling dose amounts in the order of the natural and medical radiation exposure. At least in part the genetic predisposition is associated with an early onset of the cancer after an additional radiation exposure. This kind of health detriment was not considered in the former discussion of radiation hazards. (orig.) [de

  10. Detriment due to radiation exposure: concept and assessment

    International Nuclear Information System (INIS)

    Inaba, Jiro

    1999-01-01

    The International Commission on Radiological Protection has used a term risk' to denote the probability of a clinically observable deleterious effect such as fatal cancers and severe hereditary effects. In their 1990 recommendations ICRP developed a new term 'detriment' which contains a complex concept combining the probability, severity and time of expression of deleterious effects. Nominal probability coefficients for fatal cancer, one of the most important components of the detriment, are assessed to be 5% and 4% per Sv for the whole population and workers, respectively, for radiation protection. These values were derived from the data on mortality from the Life-Span Study of the atomic-bomb survivors up to 1985 assuming several components consist of dose-response relationship, life-span risk projection model, dose and dose rate effectiveness factor, national population and transfer model and so on. The risk estimates and each of these components include uncertainties which should be clarified for the better understanding and use of the risk estimates. However, it is not likely that near-future data from Life-Span Study will significantly change these uncertainties, which should in no way be interpreted as a denial of the essential importance of fundamental research into the mechanism of cancer induction. In these situation the National Institute of Radiological Sciences have performed a 5-year research project 'Experimental Studies on Detriments of Radiation Exposure'. The project consists of researches on a) Radiation carcinogenesis, b) Effects on embryo and fetus, c) Biological effect of plutonium. The project was successful to provide useful information on these subjects. (author)

  11. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    International Nuclear Information System (INIS)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R.; Cousins, T.; Hoffarth, B.E.; Jones, T.A.; Brisson, J.R.

    1999-01-01

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y -1 , but will be below the occupational limit of 20 mSv.y -1 . (author)

  12. Effect on intelligence of prenatal exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori.

    1987-01-01

    Analysis of intelligence test scores at 10 - 11 years of age of individuals exposed prenatally to the atomic bombing of Hiroshima and Nagasaki has revealed the following: 1) For those individuals exposed in the first eight weeks after fertilization or after the 25th week, there is no evidence of a radiation-related effect on intelligence; 2) The mean test scores but not the variances are significantly heterogeneous among exposure categories for individuals exposed at 8 - 15 weeks after fertilization, and to a lesser extent those exposed at 16 - 25 weeks; 3) The regression of intelligence score on estimated fetal tissue dose is linear or linear-quadratic for the 8 - 15 week group and possibly linear for the 16 - 25 week group; 4) The cumulative distributions of test scores suggest a progressive shift downwards in the scores with increasing exposure; and 5) Within the group most sensitive to the occurrence of clinically recognizable, severe mental retardation, individuals exposed 8 to 15 weeks after fertilization, the diminution in intelligence score under the linear-quadratic model is 21 - 27 points at 1 gray (Gy = 100 cGy = 100 rad). The effect is somewhat greater when the controls receiving less than 0.01 Gy are excluded, 33 - 41 points at 1 Gy; but the two estimates are not statistically significantly different. (author)

  13. Personalized Cancer Risk Assessments for Space Radiation Exposures

    Directory of Open Access Journals (Sweden)

    Michael M. Weil

    2016-02-01

    Full Text Available Individuals differ in their susceptibility to radiogenic cancers and there is evidence that this inter-individual susceptibility extends to HZE ion-induced carcinogenesis. Three components of individual risk: sex, age at exposure and prior tobacco use, are already incorporated into the NASA cancer risk model used to determine safe days in space for US astronauts. Here we examine other risk factors that could potentially be included in risk calculations. These include personal and family medical history, the presence of pre-malignant cells that could undergo malignant transformation as a consequence of radiation exposure, the results from phenotypic assays of radiosensitivity, heritable genetic polymorphisms associated with radiosensitivity, and post-flight monitoring. Inclusion of these additional risk or risk reduction factors has the potential to personalize risk estimates for individual astronauts and could influence the determination of safe days in space. We consider how this type of assessment could be used and explore how the provisions of the federal Genetic Information Nondiscrimination Act could impact the collection, dissemination and use of this information by NASA.

  14. Radiation exposure from consumer products and miscellaneous sources

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arises from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small

  15. Cosmic radiation exposure on Canadian-based commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R

    1998-07-01

    As a result of the recent recommendations of the ICRP-60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-phase investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. In the first phase of the study, dedicated scientific flights on a Northern round-trip route between Ottawa and Resolute Bay provided the opportunity to characterize the complex mixed-radiation field, and to intercompare various instrumentation using both a conventional suite of powered detectors and passive dosimetry. In the second phase, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flights and computer code (CART-LF) calculations. This study has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP-60 public limit of 1 mSv y{sup -1} but will be well below the occupational limit of 20 mSv y{sup -1}. (author)

  16. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R.; Cousins, T.; Hoffarth, B.E.; Jones, T.A.; Brisson, J.R

    1999-07-01

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y{sup -1}, but will be below the occupational limit of 20 mSv.y{sup -1}. (author)

  17. Case-control study of leukemia and diagnostic radiation exposure

    International Nuclear Information System (INIS)

    Yuasa, Hidemichi; Hamajima, Nobuyuki; Ueda, Ryuzo

    1997-01-01

    A case-control study of leukemia and diagnostic X-ray exposure was conducted by a multi-institution co-operative study group. The subjects were 134 patients with acute myelogenous leukemia, 57 with chronic myelogenous leukemia, 56 with acute lymphocytic leukemia and 50 with myelodysplasia syndrome, who were between 15 and 79 years old, and diagnosed at one of 27 hospitals between September 1993 and August 1995. The controls were 479 first-visit patients seen at eight of these 27 hospitals. History of diagnostic X-ray tests between 1982 and 1991 was determined by an anonymous self-administered questionnaire. The total relative dose of radiation exposure was calculated by summing the products of given weights and frequencies of each test. The relative risk was 0.83 (95% confidence interval (C.I.), 0.58-1.19) for relative dose of 10-30 (equivalent to 4-11 times of UGI series), 0.76 (0.48-1.20) for relative dose of 30 or more (more than 12 times of UGI series), when compared with relative dose of 0-10 (0-3 times of UGI series). Analysis according to type of leukemia revealed that only acute myelogenous leukemia had an estimated relative risk above unity (1.08, 95%, C.I. 0.69-1.69, for relative dose 10-30). This study did not support the hypothesis that diagnostic X-ray tests increases leukemia risk. (author)

  18. Measures to reduce occupational radiation exposure in PET facilities from nurses' point of view

    International Nuclear Information System (INIS)

    Miyazawa, Keiko; Takahashi, Juri; Mochiduki, Yoshikazu

    2006-01-01

    In parallel with the increase in the number of institutions having PET facilities, the number of nurse working in these facilities has also increased, and the issue of occupational radiation exposure has assumed ever greater importance. In our clinic, since nurses have started to administer FDG intravenous injections, their annual radiation exposure has amounted to 4.8 - 7.1 mSv. To reduce their annual radiation exposure to less than 5 mSv, we identified sources of increased exposure and considered countermeasures based on this information. By implementing countermeasures such as improvements in daily working conditions and ways to avoid various troubles, it was possible to reduce the annual radiation exposure of all nurses to less than 5 mSv. Our experience demonstrates that to provide a working environment with a minimum of occupational radiation exposure, educational training and enhancement of knowledge and technical skills are vital. (author)

  19. Monitoring of increased natural occuring radiation exposure; Arbeitsplatzueberwachung bei erhoehter natuerlicher Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Guhr, Andreas [ALTRAC Radon-Messtechnik, Berlin (Germany); Leissring, Nick [Bergtechnisches Ingenieurbuero GEOPRAX, Chemnitz (Germany)

    2015-07-01

    The radiation exposure due to natural occurring sources is a special challenge for the health and safety protection at workplaces. The monitoring of the radon exposure of employees in mines, radon-spa and in water works is regulated by prescription of radiation protection. The relevant compounds of the radiation exposure are the inhalation of radon and radon daughter products; terrestrial irradiation; ingestion of radioactive contaminated materials and the inhalation of contaminated dust. The monitoring of the radiation workers is realized essentially by measurements by radiation safety officer of the performing company, by an external engineering firm as well as by control measurements of experts of local authorities. The experiences in the practice have shown that in the field of operational radiation protection only a combination of personal- and operational dosimetry is suitable to avoid health hazards by work in fields with increased natural occurring radiation exposures.

  20. Radiation exposure in nuclear medicine: real-time measurement

    Directory of Open Access Journals (Sweden)

    Iara Sylvain

    2002-09-01

    Full Text Available French regulations have introduced the use of electronic dosimeters for personal monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 µSv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nurses and stretcher-bearers. The extrapolated annual cumulative doses for all staff remained less than 10 % of the maximum legal limit for exposed workers (2 mSv/yr. Electronic dosimeters are not technically justified for routine survey of staff. The high sensitivity and immediate reading of electronic semiconductor dosimeters may become very useful for exposure control under risky working conditions. It may become an important help for optimising radiation protection.A legislação francesa introduziu o uso de dosímetros eletrônicos para monitoração da exposição do trabalhador. Afim de avaliar a exposição do trabalhador proveniente de exames diagnósticos em medicina nuclear, doses individuais do corpo inteiro foram medidas diariamente com dosímetros eletrônicos (digitais durante 20 semanas consecutivas e correlatas com as atividades de trabalho de cada dia. As doses foram sempre inferiores à 20 µSv por dia em condições normais de trabalho. Os níveis de exposição de radiação mais elevados foram para os enfermeiros, manipuladores e maqueiros. A extrapolação da dose anual para todos os trabalhadores foi menos que 10 % do limite máximo legal para os trabalhadores expostos (2 mSv/ano. Dosímetros eletrônicos não são tecnicamente justificados para a o controle de rotina da exposição dos trabalhadores, mas a alta sensibilidade e a leitura imediata desses dosímetros podem vir a serem muito úteis para o controle da exposição em condi

  1. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  2. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  3. Exposure of ionizing radiation to non-radiation workers from nuclear medicine patients

    International Nuclear Information System (INIS)

    Janssen, J.; Smart, R.C.; McKay, E.

    1999-01-01

    Full text: Occasionally, patients are required to have several tests in one day. They may be injected with radio-isotopes in the morning, have other investigations during the absorption period and then return to nuclear medicine for imaging later in the day. Recently, the NSW Department of Health issued a circular concerning exposure to sonographers from ionizing radiation emitted from nuclear medicine patients. The object of this study is to establish a model of emissions from nuclear medicine patients and to measure the exposure to other health workers who may be in close contact with these patients. Dose rate measurements were acquired for patients injected with 99 Tc m and 67 Ga for the following studies: heart, thyroid, lung, bone, biliary and lymphoma. Measurements were taken at 10 cm increments to 1 m and at time intervals of 0,1,2 and 24 h post-injection. In addition, 5 sonographers were issued with TLDs to be worn on the waist and fingers for a period of 3 months. The dose limit for a non-radiation worker is 1000 μSv (ICRP 60). The external dose rate measurements indicate that, assuming a sonographer is seated approximately 30 cm from a patient injected with 800 MBq 99 Tc m -HDP for a bone scan, 1 h post-injection, the sonographer would receive a dose of 11 μSv for a 30 min ultrasound scan. In practice, only 4 nuclear medicine patients were scanned in the ultrasound department during the 5 week monitoring period and the sonographers' TLDs recorded no radiation dose. In conclusion, the average exposure to sonographers from nuclear medicine patients is well within the limits recommended by the ICRP. However, in accordance with the ALARA principle where practicable, any ultrasound examination should be performed prior to nuclear medicine studies

  4. REMIT, Radiation Exposure Monitoring and Information Transmittal System

    International Nuclear Information System (INIS)

    Cale, R.; Clark, T.; Dixson, P.; Hagemeyer, D.; Hardwick, C.; Pippen, H.

    1997-01-01

    1 - Description of program or function: The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist U.S. Nuclear Regulatory Commission (NRC) licensees in meeting the reporting requirements of the Revised 10 CFR Part 20 and in agreement with the guidance contained in Regulatory Guide 8.7, Rev.1, Instructions for Recording and Reporting Occupational Exposure Data. REMIT is a personal computer (PC) -based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of Regulatory Guide 8.7, Rev.1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Form 5s or Form 4s. REMIT allows the user to view the individual's exposure in relation to regulatory or administrative limits and will alert the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Form 5s and 4s in paper and electronic format and can import/export data from ASCII and data base files. 2 - Method of solution: REMIT makes use of the dose conversion factors from EPA Report 11 Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submission, and Ingestion, to calculate the Committed Dose Equivalent to the maximally exposed organ and the committed Effective Dose Equivalent from intakes measured in micro-curies. REMIT also estimates the amount (in micrograms) of uranium intake from the activity entered in micro-curies. This calculation is based on the specific activities of the uranium isotopes. 3 - Restrictions on the complexity of the problem: REMIT is a single- user system that only runs on IBM compatible PC systems under DOS and supports only Hewlett

  5. Exposures at low doses and biological effects of ionizing radiations

    International Nuclear Information System (INIS)

    Masse, R.

    2000-01-01

    Everyone is exposed to radiation from natural, man-made and medical sources, and world-wide average annual exposure can be set at about 3.5 mSv. Exposure to natural sources is characterised by very large fluctuations, not excluding a range covering two orders of magnitude. Millions of inhabitants are continuously exposed to external doses as high as 10 mSv per year, delivered at low dose rates, very few workers are exposed above the legal limit of 50 mSv/year, and referring to accidental exposures, only 5% of the 116 000 people evacuated following the Chernobyl disaster encountered doses above 100 mSv. Epidemiological survey of accidentally, occupationally or medically exposed groups have revealed radio-induced cancers, mostly following high dose-rate exposure levels, only above 100 mSv. Risk coefficients were derived from these studies and projected into linear models of risk (linear non-threshold hypothesis: LNT), for the purpose of risk management following exposures at low doses and low dose-rates. The legitimacy of this approach has been questioned, by the Academy of sciences and the Academy of medicine in France, arguing: that LNT was not supported by Hiroshima and Nagasaki studies when neutron dose was revisited; that linear modelling failed to explain why so many site-related cancers were obviously nonlinearly related to the dose, and especially when theory predicted they ought to be; that no evidence could be found of radio-induced cancers related to natural exposures or to low exposures at the work place; and that no evidence of genetic disease could be shown from any of the exposed groups. Arguments were provided from cellular and molecular biology helping to solve this issue, all resulting in dismissing the LNT hypothesis. These arguments included: different mechanisms of DNA repair at high and low dose rate; influence of inducible stress responses modifying mutagenesis and lethality; bystander effects allowing it to be considered that individual

  6. Radiation Exposure in X-Ray and CT Examinations

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiation Dose in X-Ray and CT Exams What ... page for more information. top of page Measuring radiation dosage The scientific unit of measurement for radiation ...

  7. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  8. Planning of optimal work path for minimizing exposure dose during radiation work in radwaste storage

    International Nuclear Information System (INIS)

    Kim, Yoon Hyuk; Park, Won Man; Kim, Kyung Soo; Whang, Joo Ho

    2005-01-01

    Since the safety of nuclear power plant has been becoming a big social issue, the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate dose not depend on the location within a work space, thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation during radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, the developed numerical method and simulation program could be useful tools in the planning of radiation work

  9. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    Science.gov (United States)

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  10. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model

    Science.gov (United States)

    Sanzari, Jenine K.; Diffenderfer, Eric S.; Hagan, Sarah; Billings, Paul C.; Gridley, Daila S.; Seykora, John T.; Kennedy, Ann R.; Cengel, Keith A.

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed.

  11. Assessment of personal exposures to optical radiation in large entertainment venues

    International Nuclear Information System (INIS)

    Bonner, R.; O'Hagan, J. B.; Khazova, M.

    2012-01-01

    Workplace exposure to optical radiation from artificial sources is regulated in Europe under the Artificial Optical Radiation Directive 2006/25/EC implemented in the UK as The Control of Artificial Optical Radiation at Work Regulations 2010. The entertainment environment often presents an extremely complex situation for the assessment of occupational exposures. Multiple illumination sources, continuously changing illumination conditions and people moving during performances add further complexity to the assessment. This document proposes a methodology for assessing the risks arising from exposure to optical radiation and presents detailed case studies of practical assessment for two large entertainment venues. (authors)

  12. Effects of occupational exposure to ionizing radiation on reproductive and child health

    International Nuclear Information System (INIS)

    Bienefeld, M.K.; McLaughlin, J.R.

    1998-01-01

    The evidence regarding the effects of occupational exposure to low levels of ionizing radiation on reproductive health is limited. However, exposure to high doses of ionizing radiation is associated with increased risk of adverse reproductive outcomes. The resulting uncertainty about the effects of occupational exposures has caused concern among some workers, therefore, we have designed a study to examine this question among Canadian medical radiation technologists. A short mailed questionnaire will be sent to all CAMRT members to obtain information about reproductive history, and a sample of respondents will receive a second questionnaire requesting information about other important exposures. Occupational dose records will be retrieved from the National Dose Registry. Using this information, relative risks for each outcome will be calculated for different radiation dose levels. This article provides a brief review of the literature on ionizing radiation exposure and reproductive outcomes, and an outline of the proposed study

  13. Estimation of effective dose to public from external exposure to natural background radiation in saudi arabia

    International Nuclear Information System (INIS)

    Khalid, A. A.

    2003-01-01

    The effective dose values in sixteen cities in Saudi Arabia due to external exposure to natural radiation were evaluated. These doses are based on natural background components including external exposure to terrestrial radiation and cosmic rays. The importance of evaluating the effective dose to the public due to external exposure to natural background radiation lies in its epidemiological and dosimetric importance and in forming a basis for the assessment of the level of radioactive contamination or pollution in the environment in the future. The exposure to terrestrial radiation was measured using thermoluminescent dosimeters (TLD). The exposure from cosmic radiation was determined using empirical correlation. The values evaluated for the total annual effective dose in all cities were within the world average values. The highest total annual effective dose measured in Al-Khamis city was 802 μSv/y, as compared to 305 μSv/y in Dammam city, which was considered the lowest value

  14. Polonium in cigarette smoke and radiation exposure of lungs

    International Nuclear Information System (INIS)

    Carvalho, F.P.; Oliveira, J.M.

    2006-01-01

    Polonium ( 210 Po), the most volatile of naturally-occurring radionuclides in plants, was analysed in three common brands of cigarettes produced in Portugal. The analyses were carried out on the unburned tobacco contained in cigarettes, on the ashes and butts of smoked cigarettes and on the mainstream smoke. 210 Po in tobacco displays concentrations ranging from 3 to 37 mBq g -1 , depending upon the cigarette brand. The 210 Po activity remaining in the solid residue of a smoked cigarette varied from 0.3 to 4.9 mBq per cigarette, and the 210 Po in the inhaled smoke varied from 2.6 to 28.9 mBq. In all brands of cigarettes tested, a large fraction of the 210 Po content is not inhaled by the smoker and it is released into the atmosphere. Part of it may be inhaled by passive smokers. Depending upon the commercial brand and upon the presence or absence of a filter in the cigarette, 5 to 37 % of the 210 Po in the cigarette can be inhaled by the smoker. Taking into account the average 210 Po in surface air, the smoker of one pack of twenty cigarettes per day may inhale 50 times more 210 Po than a non smoker. Cigarette smoke contributes with 1.5 % to the daily rate of 210 Po absorption into the blood, 0.39 Bq d -1 , and, after systemic circulation it gives rise to a whole body radiation dose in the same proportion. However, in the smoker the deposition of 210 Po in the lungs is much more elevated than normal and may originate an enhanced radiation exposure. Estimated dose to the lungs is presented and radiobiological effects of cigarette smoke are discussed. (author)

  15. Assessing unregulated ionizing radiation exposures of U.S. populations from conventional industries

    International Nuclear Information System (INIS)

    Pennington, Charles W.

    2006-01-01

    During the latter twentieth century, the public learned to fear perceived threats from emerging technologies. Concern about ionizing radiation became a persistent fear, causing protracted and often pointless debate. The twenty-first century offers new opportunities for this fear to cause public and political upset. Citizens and politicians know little about 'normal' radiation exposures caused by conventional industries. This paper summarizes ionizing radiation exposure assessments of several such industries, showing they deliver multiples of background radiation annually to millions of people, with even higher subpopulation doses due to lognormally distributed exposures. Such information may be useful in educating the public and in supporting comparative assessments or other forms of research on potential sources of public radiation exposure in the twenty-first century. By exposing people to information about normal radiation, we may hope to avoid some unfortunate policies and unnecessary regulatory responses, while abating needless public fear during this technologically challenging century

  16. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R., E-mail: elaine@ird.gov.br [Instituto de Radioprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salles, Krause C.S.; Prado, Nadya M.C., E-mail: krausesalles@yahoo.com.br, E-mail: nadya@ime.ib.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  17. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.; Salles, Krause C.S.; Prado, Nadya M.C.

    2013-01-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  18. Does occupational exposure to ionizing radiation induce adaptation

    International Nuclear Information System (INIS)

    Djurovic, B.; Selakovic, V.; Radjen, S.; Radakovic, S.; Spasic-Jokic, V.

    2008-01-01

    Full text: Even the most of personnel occupationally exposed (OE) to ionizing radiation (IR) is exposed to very low doses (LD), some harmful effects can be noticed. IR can affect the cell structure in two ways: directly and indirectly-inducing radiolysis of water and production of reactive oxygen species (ROS) similar to endogenously induced. In the low- LET exposure almost 70 % of absorbed energy is spent for ROS production. Over-production of ROS can cause oxidative stress. DNA is the main target of induced ROS. It is also experimentally showed that many important cell protective mechanisms, such is adaptation, are dependent of ROS concentration produced by low doses. The aim of this paper is to investigate if occupational exposure to LD induce over-production of ROS, and influence the activity of protective enzymes and radiosensitivity as well as induce adaptation. Our subjects were medical workers occupationally exposed to IR (44) and not-exposed (33), matched in gender, age, habits-dietary, alcohol consumption, smoking. Occupational exposure was calculated on the basis of individual TL-dose records. Besides the standard medical examination, micronucleus test, superoxide production and lipid peroxidation index, expressed as malonaldehyde (MDA) production, were performed by standard procedures as well as measurements of activity of the superoxide dismutase (SOD) and glutathione (GSH). Half of each sample were put in a sterile plastic test-tube placed in a plexiglas container 15 x 15 cm, and irradiated by 60 Co source of γ-ray at room temperature. Employed radiation dose was 2 Gy, dose-rate 0.45 Gy/min and distance from the source 74 cm. All blood samples were frozen at -70 C degrees, and kept till analyses which were performed at the same time. Our results confirm: significantly higher incidence of micronuclei in OE (.31±10 vs 17±8, p=0.00) with significant increase after irradiation in each group and lack of differences in radiosensitivity between groups

  19. Assessment of background radiation exposures at Ranger Uranium Mine

    Energy Technology Data Exchange (ETDEWEB)

    Kvasnicka, J. [Radiation Dosimetry Systems, Darwin, NT (Australia); Auty, R. [Energy Resources of Australia, Ranger Mine, Jabiru, NT (Australia)

    1994-12-31

    The geology of a narrow strip (strip) between the Magela and Ranger Faults which includes both Ranger orebodies is more complex when compared with the sub-surface geology east and west of the strip. This fact was a major consideration when planning a retrospective assessment of the pre operation natural radiation background. The program and outcomes of the assessments are summarized in the paper. The experimental results of the program include the average pre-mining background external gamma-ray exposure-rate at 1 m above ground and the average surface radon flux from the ERA-Ranger Mine project area. Five pre-mining average external gamma-ray exposure-rates were estimated: 110{mu}Rh{sup -1} (Orebody No. 1), 66.5 (Orebody No. 3), 30.2 (the strip), 9.7 (areas west of the strip) and 7.1 {mu} h{sup -1} (areas east of the strip). The average radon flux for the five areas listed above was established as; 4.1, 2.5, 1.0, 0.23 and 0.13 Bq m{sup -2} {sub s}{sup -1}. The pre-mining radon daughter impact on the Jabiru township area was estimated as 0.12 mWL using an air dispersion model. This would be equal to an effective dose equivalent of 0.05 mSv per year assuming 100% occupancy. The maximum long-term average PAEC of radon daughters was estimated for Orebody No.1 area as above 3.8 mWL. Both PAECs of radon daughters should be understood as increments above the local background of about 2 to 3 mWL. It is proposed to adopt the above retrospectively estimated pre-mining radiological quantities as the pre-mining radiation background to be used when deriving radiological standards of the rehabilitation for the ERA-Ranger Mine project area. 11 refs., 9 tabs., 5 figs.

  20. Techniques for Minimizing Radiation Exposure During Evaluation, Surgical Treatment, and Follow-up of Urinary Lithiasis.

    Science.gov (United States)

    Arenas, Javier L; Baldwin, D Duane

    2015-07-01

    Patients receive significant radiation exposure during the diagnosis, treatment, and follow-up of urinary stone disease. This radiation exposure may result in patient harm and is believed to contribute to the risk for malignancy. This review will present current information to allow surgeons to optimize their diagnostic, treatment, and follow-up regimens to allow optimal care of stone disease patients at the lowest radiation dose possible.

  1. Three years after the Chernobyl reactor accident: How high was the radiation exposure really?

    International Nuclear Information System (INIS)

    Kaul, A.

    1989-01-01

    The author is an expert in radiological protection and radiation hygiene and on the basis of the current state of the art briefly answers some of the most frequently raised questions in connection with the reactor accident: (1) Which were the sources of the radiation exposure of the population? (2) How high are the resulting radiation doses? (3) Which radionuclides have entered the food chains, and how high is their contribution to the radiation exposure? (4) What is the long-term dose to children and adults due to the contamination of food? (5) What is the resulting radiation hazard? (MG) [de

  2. 38 CFR 3.311 - Claims based on exposure to ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... to ionizing radiation. 3.311 Section 3.311 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Evaluations; Service Connection § 3.311 Claims based on exposure to ionizing radiation. (a) Determinations of... to ionizing radiation in service, an assessment will be made as to the size and nature of the...

  3. Enforcement of radiation safety standards and experience in the regulatory control of exposures

    International Nuclear Information System (INIS)

    Krishnamurthi, T.N.

    1997-01-01

    Regulatory provisions for radiation protection and their enforcement in India are discussed in this paper. The rules and regulations framed for radiation safety cover all the nuclear fuel cycle activities as well as the application of radiation sources in industrial, medical and research institutions. The enforcement aspects and experience in the control of exposures are presented. (author)

  4. Radiation exposure on flights; Strahlenexposition beim Fliegen. Ein Fall fuer den Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Blettner, Maria [Mainz Univ. (Germany). Inst. fuer Medizinische Biometrie, Epidemiologie und Informatik (IMBEI); Boehm, Theresia; Eberbach, Frieder [Vereinigung Cockpit e.V. Main Airport Center (MAC), Frankfurt (Germany). AG Strahlenschutz; Bottollier-Depois, Jean-Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Clairand, Isabelle; Huet, Christelle [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France). Ionizing Radiation Dosimetry Lab.; Frasch, Gerhard [Bundesamt fuer Strahlenschutz, Oberschleissheim/Neuherberg (Germany). Beruflicher Strahlenschutz und Strahlenschutzregister; Hammer, Ga el P. [Laboratoire National de Sante E.P., Dudelange (Luxembourg). Registre Morphologique des Tumeurs; Mares, Vladimir; Ruehm, Werner [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany); Voelkle, Hansruedi [Fribourg Univ. (Switzerland). Physikdept.

    2014-09-01

    Extend and effects of radiation doses occuring during flights are treated under various aspects. Part of them are, in the first line, radiation exposure of the flying staff and the results of epidemiologic studies regarding the health consequences, as well as aspects of practical radiation protection for the flying staff. Computer programs for dose calculation on flights round off the theme. (orig.)

  5. The philosophy and assumptions underlying exposure limits for ionising radiation, inorganic lead, asbestos and noise

    International Nuclear Information System (INIS)

    Akber, R.

    1996-01-01

    Full text: A review of the literature relating to exposure to, and exposure limits for, ionising radiation, inorganic lead, asbestos and noise was undertaken. The four hazards were chosen because they were insidious and ubiquitous, were potential hazards in both occupational and environmental settings and had early and late effects depending on dose and dose rate. For all four hazards, the effect of the hazard was enhanced by other exposures such as smoking or organic solvents. In the cases of inorganic lead and noise, there were documented health effects which affected a significant percentage of the exposed populations at or below the [effective] exposure limits. This was not the case for ionising radiation and asbestos. None of the exposure limits considered exposure to multiple mutagens/carcinogens in the calculation of risk. Ionising radiation was the only one of the hazards to have a model of all likely exposures, occupational, environmental and medical, as the basis for the exposure limits. The other three considered occupational exposure in isolation from environmental exposure. Inorganic lead and noise had economic considerations underlying the exposure limits and the exposure limits for asbestos were based on the current limit of detection. All four hazards had many variables associated with exposure, including idiosyncratic factors, that made modelling the risk very complex. The scientific idea of a time weighted average based on an eight hour day, and forty hour week on which the exposure limits for lead, asbestos and noise were based was underpinned by neither empirical evidence or scientific hypothesis. The methodology of the ACGIH in the setting of limits later brought into law, may have been unduly influenced by the industries most closely affected by those limits. Measuring exposure over part of an eight hour day and extrapolating to model exposure over the longer term is not the most effective way to model exposure. The statistical techniques used

  6. Ionizing radiation occupational exposure in the hemodynamics services

    International Nuclear Information System (INIS)

    Gronchi, Claudia Carla

    2004-01-01

    The purpose of this research is to study the ionizing radiation occupational exposure in the hemodynamic services of two large scale hospitals (Hospital A and Hospital B) of the Sao Paulo city. The research looked into annual doses that 279 professionals of the hemodynamic services were exposed to between 1991 and 2002. The data analyzed was collected from the database of the Instituto de Pesquisas Energeticas e Nucleares (IPEN) for Hospital A, and from the Radiological Protection Department of Hospital B. Besides this, measures of hands and crystalline lens equivalent doses were performed during hemodynamic procedures of the physicians, assistant physicians and nursing assistants with TL dosimeters (CaSO 4 :Dy + Teflon R) produced at IPEN. The safety procedures adopted by the hospitals were verified with the aid of a specific questionnaire for the hemodynamic services. Finally, a profile of the professionals that work in cardiac catheterism laboratories of the hemodynamic services was delineated, considering the variables of individual monitoring time, age and sex. This study allowed for observation of the behavior of the professionals' annual doses of these hemodynamic services in relation to the Comissao Nacional de Energia Nuclear and the Secretaria de Vigilancia Sanitaria limits. It showed that the annual doses of the same specialized occupations would vary from one hospital to another. It further showed the need of individual monitoring of the physicians' unprotected body parts (hands and crystalline lens) during the hemodynamic procedures. (author)

  7. Medical radiation exposure and usage for diagnostic radiology in Malaysia

    International Nuclear Information System (INIS)

    Ng, Kwan-Hoong; Rassiah, Premavathy; Abdullah, B.J.J.; Wang, Hwee-Beng; Shariff Hambali, Ahmad; Muthuvelu, Pirunthavany; Sivalingam, S.

    2001-01-01

    A national dose survey of routine X-ray examinations in Malaysia (a Level II country) from 1993 to 1995 had established baseline data for seven common types of x-ray examinations. A total of 12 randomly selected public hospitals and 867 patients were included in this survey. Survey results are generally comparable with those reported in the UK, USA and IAEA. The findings support the importance of the ongoing national quality assurance programme to ensure doses are kept to a level consistent with optimum image quality. The data was useful in the formulation of national guidance levels as recommended by the IAEA. The medical radiation exposure and usage for diagnostic radiology (1990-1994) enabled a comparison to be made for the first time with the UNSCEAR 2000 Report. In 1994, the number of physicians, radiologists, x-ray units and x-ray examinations per 1000 population was 0.45, 0.005, 0.065 and 183, respectively; 3.6 million x-ray examinations were performed; the annual effective dose per capita was 0.05 mSv and collective dose was 1000 person-Sv. Chest examinations contributed 63% of the total. Almost all examinations experienced increasing frequency except for barium studies, cholecystography, and intravenous urography (-23%, -36%, -51%). Notable increases were observed in computed tomography (161%), cardiac procedures (190%), and mammography (240%). (author)

  8. Radiation exposure in body computed tomography examinations of trauma patients

    International Nuclear Information System (INIS)

    Kortesniemi, M; Kiljunen, T; Kangasmaeki, A

    2006-01-01

    Multi-slice CT provides an efficient imaging modality for trauma imaging. The purpose of this study was to provide absorbed and effective dose data from CT taking into account the patient size and compare such doses with the standard CT dose quantities based on standard geometry. The CT examination data from abdominal and thoracic scan series were collected from 36 trauma patients. The CTDI vol , DLP w and effective dose were determined, and the influence of patient size was applied as a correction factor to calculated doses. The patient size was estimated from the patient weight as the effective radius based on the analysis from the axial images of abdominal and thoracic regions. The calculated mean CTDI vol , DLP w and effective dose were 15.2 mGy, 431 mGy cm and 6.5 mSv for the thorax scan, and 18.5 mGy, 893 mGy cm and 14.8 mSv for the abdomen scan, respectively. The doses in the thorax and abdomen scans taking the patient size into account were 34% and 9% larger than the standard dose quantities, respectively. The use of patient size in dose estimation is recommended in order to provide realistic data for evaluation of the radiation exposure in CT, especially for paediatric patients and smaller adults

  9. Functional status of liverin conditions of radiation and chemical exposure

    Directory of Open Access Journals (Sweden)

    O. V. Severynovs’ka

    2005-09-01

    Full Text Available Chronic influences of low-intensity X-rays in doses of 0.15 and 0.25 Gr and mix of heavy metals salts in a dose of 2 EPC (extreme permissible concentrations for each metal, as a single factor or as a combination of factors, on the state of pro-/antioxidative system in a rat liver have been studied. Analysis of the data concerning combined influences allows to conclude that effects under these doses have some differences: a splash of processes of lipid peroxidation are observed in both causes, but under the lower dose an additivity takes place, and under the dose of 0.25 Gr a synergism of the agent effects in relation to the development of peroxidative reactions is registered. The results testify that technogenic contamination of water with heavy metals worsens the action of radiation factor, specifically, eliminates a hormetic splash of antioxidative activity at 0.15 Gr. Biochemical indexes of the liver activity, as a central organ of a general metabolism, and a structure of morbidity have been studied in liquidators of the Chernobyl accident from industrial Prydnieprovie region. Disturbances of liver functions have been shown, especially in persons obtained the exposure dose about 0.25 Gr. A comparison of these results and data of tests with laboratory animals reveals their mutual accordance and supports a relevancy of extrapolation of data of model experiments on a person health state, which undergone a similar influence.

  10. Radiation exposure in body computed tomography examinations of trauma patients

    Science.gov (United States)

    Kortesniemi, M.; Kiljunen, T.; Kangasmäki, A.

    2006-06-01

    Multi-slice CT provides an efficient imaging modality for trauma imaging. The purpose of this study was to provide absorbed and effective dose data from CT taking into account the patient size and compare such doses with the standard CT dose quantities based on standard geometry. The CT examination data from abdominal and thoracic scan series were collected from 36 trauma patients. The CTDIvol, DLPw and effective dose were determined, and the influence of patient size was applied as a correction factor to calculated doses. The patient size was estimated from the patient weight as the effective radius based on the analysis from the axial images of abdominal and thoracic regions. The calculated mean CTDIvol, DLPw and effective dose were 15.2 mGy, 431 mGy cm and 6.5 mSv for the thorax scan, and 18.5 mGy, 893 mGy cm and 14.8 mSv for the abdomen scan, respectively. The doses in the thorax and abdomen scans taking the patient size into account were 34% and 9% larger than the standard dose quantities, respectively. The use of patient size in dose estimation is recommended in order to provide realistic data for evaluation of the radiation exposure in CT, especially for paediatric patients and smaller adults.

  11. Miners' radiation exposure in a subsurface bauxite-mine

    International Nuclear Information System (INIS)

    Somlai, J.; Kovacs, T.; Jobbagy, V.; Varhegyi, A.

    2004-01-01

    To examine the natural origin radioactivity of the bauxite samples we can establish that the 226 Ra activity concentration exceeded (155-489 Bq/kg) the average values measured in the rocks (25-40 Bq/kg). 222 Rn produced from the 226 Ra could be concentrated in the mines. In the course of our work we carried out an extensive radiological-dosimetric survey for 1 month. On the grounds of the different kind of working processes we put 11 track detectors in different places and continuous radon detector equipment were placed into 2 sites. Besides these measurements we determined the gamma dose rate, the equilibrium factor, the amount of the flying-dust and the long-lived alpha emitter isotopes 2 times in 7 different places. We gave personal radon dosimeter to 14 miners. It was worn only during the working time and after hours was stored in a well-controlled Rn concentration place. The average radon activity concentration measured in different places in the mine changed between 204-3910 Bq/m 3 . We found very high radon levels some places especially in the drawings. The miners during this 1 month have taken part several mining processes, so lower values were detected. To take into account the results, the miners' estimated annual dose exposure is between the range of 2.5-10.2 mSv/y which is not negligible compared to the natural radiation background (2.5 mSv/y). (author)

  12. Testicular function of rats following exposure to microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lebovitz, R.M.; Johnson, L.

    1983-01-01

    Male Sprague-Dawley rats were exposed for 6 h per day for nine days to pulse-modulated microwave radiation (1.3 GHz, at 1-microseconds pulse width, 600 pulses per second). Exposures were carried out in cylindrical waveguide sections at a mean dose rate of 6.3 mW/g; sham controls were treated similarly and received no irradiation. At time periods corresponding to 0.5, 1.0, 2.0, and 4.0 cycles of the seminiferous epithelium, groups of four sham-irradiated and four irradiated rats were killed and the testes removed for analysis. Net mass of the testes, epididymides, and seminal vesicles; daily sperm production (DSP) per testis and per gram of testis; sperm morphology; and the number of epididymal sperm were determined. There were no statistically significant differences between the sham-irradiated and irradiated groups with respect to any measured variable. In a group of seven surrogate animals of similar body mass, the dose rate of 6.3 mW/g caused a net change in body temperature (via rectal probe) of 1.5 degrees C.

  13. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J. [Mirion Technologies - MGPI SA (France)

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  14. Pre-Exposure Gene Expression in Baboons with and without Pancytopenia after Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Matthias Port

    2017-03-01

    Full Text Available Radiosensitivity differs in humans and likely among primates. The reasons are not well known. We examined pre-exposure gene expression in baboons (n = 17 who developed haematologic acute radiation syndrome (HARS without pancytopenia or a more aggravated HARS with pancytopenia after irradiation. We evaluated gene expression in a two stage study design where stage I comprised a whole genome screen for messenger RNAs (mRNA (microarray and detection of 667 microRNAs (miRNA (real-time quantitative polymerase chain reaction (qRT-PCR platform. Twenty candidate mRNAs and nine miRNAs were selected for validation in stage II (qRT-PCR. None of the mRNA species could be confirmed during the validation step, but six of the nine selected candidate miRNA remained significantly different during validation. In particular, miR-425-5p (receiver operating characteristic = 0.98; p = 0.0003 showed nearly complete discrimination between HARS groups with and without pancytopenia. Target gene searches of miR-425-5p identified new potential mRNAs and associated biological processes linked with radiosensitivity. We found that one miRNA species examined in pre-exposure blood samples was associated with HARS characterized by pancytopenia and identified new target mRNAs that might reflect differences in radiosensitivity of irradiated normal tissue.

  15. Characterization of radiation exposure and effect of a radiation monitoring policy in a large volume pediatric cardiac catheterization lab.

    Science.gov (United States)

    Verghese, George R; McElhinney, Doff B; Strauss, Keith J; Bergersen, Lisa

    2012-02-01

    This study aimed to characterize radiation dose during cardiac catheterization in congenital heart disease and to assess changes in dose after the introduction of a radiation monitoring policy. Minimizing radiation exposure is an important patient safety initiative and relatively few data are available characterizing radiation dose for the broad spectrum of congenital cardiac catheter-based interventions. Radiation dose data were reviewed on all cases since 7/1/05 at a single large center. Procedures were classified according to 20 common case types then subdivided into five age categories. Groups with product, μGym(2)) which were reported as median and interquartile range (IQR). We also examined differences in radiation dose before and after the implementation of a radiation policy. Between 7/1/05 and 12/10/08, 3,365 cases were identified for inclusion. Radiation dose increased with age and procedural complexity. Patients were characterized into low, medium, and high dose categories relative to each other. "Low" dose cases included isolated pulmonary or aortic valvotomy, pre-Fontan assessment, and ASD closure. "High" dose cases involved multiple procedures in pulmonary arteries or veins. After introduction of a radiation policy, there was a significant decrease in radiation dose across a variety of case types, particularly among infants and young children. Radiation dose in congenital cardiac catheterization varies by age and procedure type. A radiation monitoring and notification policy may have contributed to reduced radiation dose. Copyright © 2011 Wiley Periodicals, Inc.

  16. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condit