WorldWideScience

Sample records for interstrand crosslink repair

  1. Mismatch repair and nucleotide excision repair proteins cooperate in the recognition of DNA interstrand crosslinks

    Science.gov (United States)

    Zhao, Junhua; Jain, Aklank; Iyer, Ravi R.; Modrich, Paul L.; Vasquez, Karen M.

    2009-01-01

    DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, thus ICL-inducing agents such as psoralen, are clinically useful chemotherapeutics. Psoralen-modified triplex-forming oligonucleotides (TFOs) have been used to target ICLs to specific genomic sites to increase the selectivity of these agents. However, how TFO-directed psoralen ICLs (Tdp-ICLs) are recognized and processed in human cells is unclear. Previously, we reported that two essential nucleotide excision repair (NER) protein complexes, XPA–RPA and XPC–RAD23B, recognized ICLs in vitro, and that cells deficient in the DNA mismatch repair (MMR) complex MutSβ were sensitive to psoralen ICLs. To further investigate the role of MutSβ in ICL repair and the potential interaction between proteins from the MMR and NER pathways on these lesions, we performed electrophoretic mobility-shift assays and chromatin immunoprecipitation analysis of MutSβ and NER proteins with Tdp-ICLs. We found that MutSβ bound to Tdp-ICLs with high affinity and specificity in vitro and in vivo, and that MutSβ interacted with XPA–RPA or XPC–RAD23B in recognizing Tdp-ICLs. These data suggest that proteins from the MMR and NER pathways interact in the recognition of ICLs, and provide a mechanistic link by which proteins from multiple repair pathways contribute to ICL repair. PMID:19468048

  2. A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination.

    Science.gov (United States)

    Wang, Anderson T; Kim, Taeho; Wagner, John E; Conti, Brooke A; Lach, Francis P; Huang, Athena L; Molina, Henrik; Sanborn, Erica M; Zierhut, Heather; Cornes, Belinda K; Abhyankar, Avinash; Sougnez, Carrie; Gabriel, Stacey B; Auerbach, Arleen D; Kowalczykowski, Stephen C; Smogorzewska, Agata

    2015-08-06

    Repair of DNA interstrand crosslinks requires action of multiple DNA repair pathways, including homologous recombination. Here, we report a de novo heterozygous T131P mutation in RAD51/FANCR, the key recombinase essential for homologous recombination, in a patient with Fanconi anemia-like phenotype. In vitro, RAD51-T131P displays DNA-independent ATPase activity, no DNA pairing capacity, and a co-dominant-negative effect on RAD51 recombinase function. However, the patient cells are homologous recombination proficient due to the low ratio of mutant to wild-type RAD51 in cells. Instead, patient cells are sensitive to crosslinking agents and display hyperphosphorylation of Replication Protein A due to increased activity of DNA2 and WRN at the DNA interstrand crosslinks. Thus, proper RAD51 function is important during DNA interstrand crosslink repair outside of homologous recombination. Our study provides a molecular basis for how RAD51 and its associated factors may operate in a homologous recombination-independent manner to maintain genomic integrity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    The distribution and repair of 8-methoxypsoralen-DNA interstrand cross-links in the ribosomal RNA genes (rDNA) in Tetrahymena thermophila have been studied in vivo by Southern blot analysis. It is found that the cross-links at a density of

  4. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    The distribution and repair of 8-methoxypsoralen-DNA interstrand cross-links in the ribosomal RNA genes (rDNA) in Tetrahymena thermophila have been studied in vivo by Southern blot analysis. It is found that the cross-links at a density of ... between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally...

  5. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    The distribution and repair of 8-methoxypsoralen-DNA interstrand cross-links in the ribosomal RNA genes (rDNA) in Tetrahymena thermophila have been studied in vivo by Southern blot analysis. It is found that the cross-links at a density of ... between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  6. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair

    Directory of Open Access Journals (Sweden)

    Krisnamurthy Mahalakshmi

    2006-06-01

    Full Text Available Abstract Background Several distinct pathways for the repair of damaged DNA exist in all cells. DNA modifications are repaired by base excision or nucleotide excision repair, while DNA double strand breaks (DSBs can be repaired through direct joining of broken ends (non homologous end joining, NHEJ or through recombination with the non broken sister chromosome (homologous recombination, HR. Rad50 protein plays an important role in repair of DNA damage in eukaryotic cells, and forms a complex with the Mre11 nuclease. The prokaryotic ortholog of Rad50, SbcC, also forms a complex with a nuclease, SbcD, in Escherichia coli, and has been implicated in the removal of hairpin structures that can arise during DNA replication. Ku protein is a component of the NHEJ pathway in pro- and eukaryotic cells. Results A deletion of the sbcC gene rendered Bacillus subtilis cells sensitive to DNA damage caused by Mitomycin C (MMC or by gamma irradiation. The deletion of the sbcC gene in a recN mutant background increased the sensitivity of the single recN mutant strain. SbcC was also non-epistatic with AddAB (analog of Escherichia coli RecBCD, but epistatic with RecA. A deletion of the ykoV gene encoding the B. subtilis Ku protein in a sbcC mutant strain did not resulted in an increase in sensitivity towards MMC and gamma irradiation, but exacerbated the phenotype of a recN or a recA mutant strain. In exponentially growing cells, SbcC-GFP was present throughout the cells, or as a central focus in rare cases. Upon induction of DNA damage, SbcC formed 1, rarely 2, foci on the nucleoids. Different to RecN protein, which forms repair centers at any location on the nucleoids, SbcC foci mostly co-localized with the DNA polymerase complex. In contrast to this, AddA-GFP or AddB-GFP did not form detectable foci upon addition of MMC. Conclusion Our experiments show that SbcC plays an important role in the repair of DNA inter-strand cross-links (induced by MMC, most likely

  7. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  8. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi; Watson, Adam T.; Jo, Aera; Etheridge, Thomas J.; Yuan, Fenghua; Zhang, Yanbin; Kim, YoungChang; Carr, Anthony M.; Cho, Yunje

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.

  9. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair.

    Science.gov (United States)

    Beagan, Kelly; Armstrong, Robin L; Witsell, Alice; Roy, Upasana; Renedo, Nikolai; Baker, Amy E; Schärer, Orlando D; McVey, Mitch

    2017-05-01

    Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance.

  10. The Fanconi anemia/BRCA pathway is involved in DNA interstrand cross-link repair of adriamycin-resistant leukemia cells.

    Science.gov (United States)

    Yao, Chenjiao; Du, Wei; Chen, Haibing; Xiao, Sheng; Huang, Lihua; Chen, Fangping

    2015-03-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway plays a vital role in DNA damage repair induced by DNA cross-linking agents and is closely related to drug response in cancer treatment. Here we demonstrate that the FA/BRCA pathway contributes to acquired drug resistance in adriamycin (ADR)-resistant leukemia cell lines, and disruption of this pathway partially reverses the drug resistance. We observed that ADR-resistant cells have reduced DNA interstrand cross-links (ICL) compared with ADR-sensitive cells. Western blot studies demonstrated enhanced FA protein expression in ADR-resistant cells. Using siRNA to knock down FANCF in K562/R drug-resistant cells showed increases in sensitivity to ADR and ADR-induced DNA damage, and demonstrated a direct relationship between the FA/BRCA pathway and drug sensitivity. Overexpression of FANCF in K562 drug-sensitive cells partially reproduced the drug-resistant phenotype. These results show that the FA/BRCA pathway is involved in acquired ADR resistance of leukemia cells. The FA/BRCA pathway may be a new target to reverse ADR resistance in leukemia treatment.

  11. Human MLH1 protein participates in genomic damage checkpoint signaling in response to DNA interstrand crosslinks, while MSH2 functions in DNA repair.

    Directory of Open Access Journals (Sweden)

    Qi Wu

    2008-09-01

    Full Text Available DNA interstrand crosslinks (ICLs are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSalpha and MutSbeta mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents.

  12. Interstrand DNA crosslinks due to AP (apurinic/apyrimidinic) sites

    International Nuclear Information System (INIS)

    Goffin, C.; Verly, W.G.

    1983-01-01

    Storage of a solution of DNA containing apurinic sites, even at 4 0 C leads to the appearance of interstrand crosslinks. Possible consequences of these crosslinks, when they appear in cell DNA, are briefly discussed. Formation of interstrand crosslinks in DNA containing tritium-labelled thymine and kept in an aqueous solution might be due, at least partly, to the loss of bases by the autoirradiated DNA. (Auth.)

  13. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Bianca M Sirbu

    Full Text Available Homologous recombination (HR is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB. However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.

  14. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  15. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1

    Directory of Open Access Journals (Sweden)

    Jianqiu Zou

    2013-08-01

    DNA damage response (DDR and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC. We further show that, in addition to its role in interstrand crosslinking (ICL repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1. We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response.

  16. Ultraviolet irradiation produces cytotoxic synergy and increased DNA interstrand crosslinking with cis- and trans-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Swinnen, L.J.; Erickson, L.C.

    1989-01-01

    The excision-repair mechanism responsible for the removal of UV-induced thymine dimers may also play a role in the repair of cis-diamminedichloroplatinum(II) (cis-DDP)-induced DNA adducts in both bacteria and mammalian cells. It was hypothesized that UV dimers and cis-DDP adducts, when present simultaneously, might compete for a common repair system. Colony survival assays were performed in HT-29 human colon carcinoma cells exposed either to cis-DDP alone or to cis-DDP immediately followed by UV exposure. Progressively greater cytotoxic synergy with both increasing UV dose and cis-DDP dose was observed, to a point of saturation beyond which further toxicity was purely additive. An approximate doubling in DNA crosslink frequency, relative to cis-DDP alone, was found in cells exposed to cis-DDP plus UV. Since cis-DDP produces both inter- and intrastrand DNA crosslinks similar studies were performed with trans-DDP, which is incapable of producing intrastrand crosslinks, but does produce interstrand crosslinks. Cytotoxic synergy and increased interstrand crosslinking again resulted from the addition of UV exposure, but not to the same extent as seen with cis-DDP. (author)

  17. Structure of a DNA glycosylase that unhooks interstrand cross-links

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.; Eichman, Brandt F. (Vanderbilt)

    2017-04-10

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.

  18. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    International Nuclear Information System (INIS)

    Clingen, Peter H.; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-01-01

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity

  19. Site specificity of psoralen-DNA interstrand cross-linking determined by nuclease Bal31 digestion

    DEFF Research Database (Denmark)

    Zhen, W P; Buchardt, O; Nielsen, Henrik

    1986-01-01

    A novel method for determination of psoralen photo-cross-linking sites in double-stranded DNA is described, which is based on a pronounced inhibition of Bal31 exonuclease activity by psoralen-DNA interstrand cross-links. The results using a 51 base pair fragment of plasmid pUC19 and a 346 base pair...

  20. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    Science.gov (United States)

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  1. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  2. Thermal stability and energetics of 15-mer DNA duplex interstrand crosslinked by trans-diamminedichloroplatinum(II)

    Czech Academy of Sciences Publication Activity Database

    Hofr, Ctirad; Brabec, Viktor

    2005-01-01

    Roč. 77, č. 4 (2005), s. 222-229 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GP202/01/D110; GA ČR(CZ) GA305/02/1552; GA AV ČR(CZ) LZ1K03010 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA * interstrand cross-link * transplatin Subject RIV: BO - Biophysics Impact factor: 2.545, year: 2005

  3. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks

    DEFF Research Database (Denmark)

    Thoma, Brian S; Wakasugi, Mitsuo; Christensen, Jesper

    2005-01-01

    DNA interstrand crosslinks (ICLs) represent a severe form of damage that blocks DNA metabolic processes and can lead to cell death or carcinogenesis. The repair of DNA ICLs in mammals is not well characterized. We have reported previously that a key protein complex of nucleotide excision repair...... (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B...... recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs...

  4. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  5. DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Wai Shan Yuen

    Full Text Available There is some interest in how mammalian oocytes respond to different types of DNA damage because of the increasing expectation of fertility preservation in women undergoing chemotherapy. Double strand breaks (DSBs induced by ionizing radiation and agents such as neocarzinostatin (NCS, and interstrand crosslinks (ICLs induced by alkylating agents such as mitomycin C (MMC, are toxic DNA lesions that need to be repaired for cell survival. Here we examined the effects of NCS and MMC treatment on oocytes collected from antral follicles in mice, because potentially such oocytes are readily collected from ovaries and do not need to be in vitro grown to achieve meiotic competency. We found that oocytes were sensitive to NCS, such that this ionizing radiation mimetic blocked meiosis I and caused fragmented DNA. In contrast, MMC had no impact on the completion of either meiosis I or II, even at extremely high doses. However, oocytes treated with MMC did show γ-H2AX foci and following their in vitro maturation and parthenogenetic activation the development of the subsequent embryos was severely compromised. Addition of MMC to 1-cell embryos caused a similarly poor level of development, demonstrating oocytes have eventual sensitivity to this ICL-inducing agent but this does not occur during their meiotic division. In oocytes, the association of Fanconi Anemia protein, FANCD2, with sites of ICL lesions was not apparent until entry into the embryonic cell cycle. In conclusion, meiotic maturation of oocytes is sensitive to DSBs but not ICLs. The ability of oocytes to tolerate severe ICL damage and yet complete meiosis, means that this type of DNA lesion goes unrepaired in oocytes but impacts on subsequent embryo quality.

  6. Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases.

    Science.gov (United States)

    Xu, Wenyan; Ouellette, Adam; Ghosh, Souradyuti; O'Neill, Tylor C; Greenberg, Marc M; Zhao, Linlin

    2015-12-22

    5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is an oxidized abasic site that is produced by several antitumor agents and γ-radiolysis. DOB reacts reversibly with a dA opposite the 3'-adjacent nucleotide to form DNA interstrand cross-links (ICLs), genotoxic DNA lesions that can block DNA replication and transcription. Translesion synthesis (TLS) is an important step in several ICL repair pathways to bypass unhooked intermediates generated by endonucleolytic incision. The instability of DOB-ICLs has made it difficult to learn about their TLS-mediated repair capability and mutagenic potential. We recently developed a method for chemically synthesizing oligonucleotides containing a modified DOB-ICL analogue. Herein, we examined the capabilities of several highly relevant eukaryotic TLS DNA polymerases (pols), including human pol η, pol κ, pol ι, pol ν, REV1, and yeast pol ζ, to bypass this DOB-ICL analogue. The prelesion, translesion, and postlesion replication efficiency and fidelity were examined. Pol η showed moderate bypass activity when encountering the DOB-ICL, giving major products one or two nucleotides beyond the cross-linked template nucleotide. In contrast, DNA synthesis by the other pols was stalled at the position before the cross-linked nucleotide. Steady-state kinetic data and liquid chromatography-mass spectrometry sequencing of primer extension products by pol η unambiguously revealed that pol η-mediated bypass is highly error-prone. Together, our study provides the first set of in vitro evidence that the DOB-ICL is a replication-blocking and highly miscoding lesion. Compared to several other TLS pols examined, pol η is likely to contribute to the TLS-mediated repair of the DOB-ICL in vivo.

  7. O6-2'-Deoxyguanosine-butylene-O6-2'-deoxyguanosine DNA Interstrand Cross-Links Are Replication-Blocking and Mutagenic DNA Lesions.

    Science.gov (United States)

    Xu, Wenyan; Kool, Daniel; O'Flaherty, Derek K; Keating, Ashley M; Sacre, Lauralicia; Egli, Martin; Noronha, Anne; Wilds, Christopher J; Zhao, Linlin

    2016-11-21

    DNA interstrand cross-links (ICLs) are cytotoxic DNA lesions derived from reactions of DNA with a number of anti-cancer reagents as well as endogenous bifunctional electrophiles. Deciphering the DNA repair mechanisms of ICLs is important for understanding the toxicity of DNA cross-linking agents and for developing effective chemotherapies. Previous research has focused on ICLs cross-linked with the N7 and N2 atoms of guanine as well as those formed at the N6 atom of adenine; however, little is known about the mutagenicity of O 6 -dG-derived ICLs. Although less abundant, O 6 -alkylated guanine DNA lesions are chemically stable and highly mutagenic. Here, O 6 -2'-deoxyguanosine-butylene-O 6 -2'-deoxyguanosine (O 6 -dG-C4-O 6 -dG) is designed as a chemically stable ICL, which can be induced by the action of bifunctional alkylating agents. We investigate the DNA replication-blocking and mutagenic properties of O 6 -dG-C4-O 6 -dG ICLs during an important step in ICL repair, translesion DNA synthesis (TLS). The model replicative DNA polymerase (pol) Sulfolobus solfataricus P2 DNA polymerase B1 (Dpo1) is able to incorporate a correct nucleotide opposite the cross-linked template guanine of ICLs with low efficiency and fidelity but cannot extend beyond the ICLs. Translesion synthesis by human pol κ is completely inhibited by O 6 -dG-C4-O 6 -dG ICLs. Moderate bypass activities are observed for human pol η and S. solfataricus P2 DNA polymerase IV (Dpo4). Among the pols tested, pol η exhibits the highest bypass activity; however, 70% of the bypass products are mutagenic containing substitutions or deletions. The increase in the size of unhooked repair intermediates elevates the frequency of deletion mutation. Lastly, the importance of pol η in O 6 -dG-derived ICL bypass is demonstrated using whole cell extracts of Xeroderma pigmentosum variant patient cells and those complemented with pol η. Together, this study provides the first set of biochemical evidence for the

  8. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    International Nuclear Information System (INIS)

    Spanswick, Victoria J; Hartley, John A; Lowe, Helen L; Newton, Claire; Bingham, John P; Bagnobianchi, Alessia; Kiakos, Konstantinos; Craddock, Charles; Ledermann, Jonathan A; Hochhauser, Daniel

    2012-01-01

    DNA interstrand cross-links (ICLs) are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma) and solid tumours (ovarian cancer) that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Using a modification of the single cell gel electrophoresis (Comet) assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The RAD51 foci response was both drug and cell line

  9. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  10. Induction and removal of DNA interstrand cross-links in V-79 Chinese hamster cells measured by hydroxylapatite chromatography after treatments with bifunctional furocoumarins

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.

    1988-01-01

    DNA interstrand crosslinks (CL) photoinduced by bifunctional furocoumarins in V-79 Chinese hamster cells were measured by alkaline denaturation and hydroxylapatite chromatography. Treatments with 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) and 365 nm irradiation (UVA) confer a dose-dependent linear increase in the amount of double-stranded DNA indicating the induction of CL. Determination in alkaline sucrose gradients of the molecular weight of the DNA and estimation of drug-induced strand breakage allowed quantification of the CL induced. 5-MOP was found to be slightly more effective than 8-MOP whereas 4,5',8-TMP was 9 times more effective for the induction of CL. The fate of CL during post-treatment incubation was also followed. Cells in exponential growth phase were found to be efficient in the removal of CL. (Author)

  11. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair

    Science.gov (United States)

    Vuono, Elizabeth A.; Mukherjee, Ananda; Vierra, David A.; Adroved, Morganne M.; Hodson, Charlotte; Deans, Andrew J.; Howlett, Niall G.

    2016-01-01

    Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and increased cancer risk. The FA proteins function primarily in DNA interstrand crosslink (ICL) repair. Here, we have examined the role of the PTEN phosphatase in this process. We have established that PTEN-deficient cells, like FA cells, exhibit increased cytotoxicity, chromosome structural aberrations, and error-prone mutagenic DNA repair following exposure to ICL-inducing agents. The increased ICL sensitivity of PTEN-deficient cells is caused, in part, by elevated PLK1 kinase-mediated phosphorylation of FANCM, constitutive FANCM polyubiquitination and degradation, and the consequent inefficient assembly of the FA core complex, FANCD2, and FANCI into DNA repair foci. We also establish that PTEN function in ICL repair is dependent on its protein phosphatase activity and ability to be SUMOylated, yet is independent of its lipid phosphatase activity. Finally, via epistasis analysis, we demonstrate that PTEN and FANCD2 function cooperatively in ICL repair. PMID:27819275

  12. Systematic analysis of DNA crosslink repair pathways during development and aging in Caenorhabditis elegans.

    Science.gov (United States)

    Wilson, David M; Rieckher, Matthias; Williams, Ashley B; Schumacher, Björn

    2017-09-19

    DNA interstrand crosslinks (ICLs) are generated by endogenous sources and chemotherapeutics, and pose a threat to genome stability and cell survival. Using Caenorhabditis elegans mutants, we identify DNA repair factors that protect against the genotoxicity of ICLs generated by trioxsalen/ultraviolet A (TMP/UVA) during development and aging. Mutations in nucleotide excision repair (NER) components (e.g. XPA-1 and XPF-1) imparted extreme sensitivity to TMP/UVA relative to wild-type animals, manifested as developmental arrest, defects in adult tissue morphology and functionality, and shortened lifespan. Compensatory roles for global-genome (XPC-1) and transcription-coupled (CSB-1) NER in ICL sensing were exposed. The analysis also revealed contributions of homologous recombination (BRC-1/BRCA1), the MUS-81, EXO-1, SLX-1 and FAN-1 nucleases, and the DOG-1 (FANCJ) helicase in ICL resolution, influenced by the replicative-status of the cell/tissue. No obvious or critical role in ICL repair was seen for non-homologous end-joining (cku-80) or base excision repair (nth-1, exo-3), the Fanconi-related proteins BRC-2 (BRCA2/FANCD1) and FCD-2 (FANCD2), the WRN-1 or HIM-6 (BLM) helicases, or the GEN-1 or MRT-1 (SNM1) nucleases. Our efforts uncover replication-dependent and -independent ICL repair networks, and establish nematodes as a model for investigating the repair and consequences of DNA crosslinks in metazoan development and in adult post-mitotic and proliferative germ cells. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  13. Unique structural properties of DNA interstrand cross-links formed by a new antitumor dinuclear Pt(II) complex

    Czech Academy of Sciences Publication Activity Database

    Hrabina, O.; Kašpárková, J.; Suchánková, Tereza; Novohradský, Vojtěch; Guo, Z.; Brabec, Viktor

    2017-01-01

    Roč. 9, č. 5 (2017), s. 494-500 ISSN 1756-5901 Institutional support: RVO:68081707 Keywords : cisplatin-modified dna * nucleotide excision-repair * hmg domain proteins Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.975, year: 2016

  14. Genetic inactivation of the Fanconi anemia gene FANCC identified in the hepatocellular carcinoma cell line HuH-7 confers sensitivity towards DNA-interstrand crosslinking agents

    Directory of Open Access Journals (Sweden)

    Bassermann Florian

    2010-05-01

    Full Text Available Abstract Background Inactivation of the Fanconi anemia (FA pathway through defects in one of 13 FA genes occurs at low frequency in various solid cancer entities among the general population. As FA pathway inactivation confers a distinct hypersensitivity towards DNA interstrand-crosslinking (ICL-agents, FA defects represent rational targets for individualized therapeutic strategies. Except for pancreatic cancer, however, the prevalence of FA defects in gastrointestinal (GI tumors has not yet been systematically explored. Results A panel of GI cancer cell lines was screened for FA pathway inactivation applying FANCD2 monoubiquitination and FANCD2/RAD51 nuclear focus formation and a newly identified FA pathway-deficient cell line was functionally characterized. The hepatocellular carcinoma (HCC line HuH-7 was defective in FANCD2 monoubiquitination and FANCD2 nuclear focus formation but proficient in RAD51 focus formation. Gene complementation studies revealed that this proximal FA pathway inactivation was attributable to defective FANCC function in HuH-7 cells. Accordingly, a homozygous inactivating FANCC nonsense mutation (c.553C > T, p.R185X was identified in HuH-7, resulting in partial transcriptional skipping of exon 6 and leading to the classic cellular FA hypersensitivity phenotype; HuH-7 cells exhibited a strongly reduced proliferation rate and a pronounced G2 cell cycle arrest at distinctly lower concentrations of ICL-agents than a panel of non-isogenic, FA pathway-proficient HCC cell lines. Upon retroviral transduction of HuH-7 cells with FANCC cDNA, FA pathway functions were restored and ICL-hypersensitivity abrogated. Analyses of 18 surgical HCC specimens yielded no further examples for genetic or epigenetic inactivation of FANCC, FANCF, or FANCG in HCC, suggesting a low prevalence of proximal FA pathway inactivation in this tumor type. Conclusions As the majority of HCC are chemoresistant, assessment of FA pathway function in HCC could

  15. ACCIDENTAL DUPLICATION: Beyond interstrand crosslinks repair: Contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA.

    Science.gov (United States)

    Federico, Maria B; Campodónico, Paola; Paviolo, Natalia S; Gottifredi, Vanesa

    2017-09-25

    The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/ 10.1016/j.mrfmmm.2017.09.006. This duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments

    DEFF Research Database (Denmark)

    Hansen, Anders Johannes; Mitchell, D.L.; Wiuf, C.

    2006-01-01

    Diagenesis was studied in DNA obtained from Siberian permafrost (permanently frozen soil) ranging from 10 to 400 thousand years in age. Despite optimal preservation conditions, we found the sedimentary DNA to be severely modified by interstrand crosslinks, single and double stranded breaks......, and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate about hundred times faster than single stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen...... conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost...

  17. Preparation and characterization of platinum(II) and (IV) complexes of 1,3-diaminepropane and 1,4-diaminebutane: circumvention of cisplatin resistance and DNA interstrand cross-link formation in CH1cisR ovarian tumor cells.

    Science.gov (United States)

    Alvarez-Valdés, Amparo; Pérez, José Manuel; López-Solera, Isabel; Lannegrand, Raúl; Continente, José Manuel; Amo-Ochoa, Pilar; Camazón, María José; Solans, Xavier; Font-Bardía, Mercè; Navarro-Ranninger, Carmen

    2002-04-25

    The reaction of Pt(dimethyl sulfoxide)(2)CBDCA (CBDCA = 1,1-cyclobutanedicarboxylate) with 1,4-diaminebutane and 1,3-diaminepropane ligands yields, under certain conditions, new [Pt(diamine)(2)]CBDCA complexes (1a,b), where the CBDCA ligand has been removed from the coordination sphere of the platinum atom by the diamine ligand, instead of forming the expected [Pt(diamine)CBDCA] complexes (1'a,b). The structure of complexes 1a and 1'b was solved by X-ray diffraction. Complex 1a crystallizes in the orthorhombic system, in the noncentrosymmetric C222 space group, with unit cell parameters: a = 20.053(2) A; b = 8.655(2) A, c = 5.711(3) A; V = 991.2(6) A(3); delta (calcd) = 1.627 mg/m(3); and R = 0.050. The Pt atom displays an unexpected distorted tetrahedral coordination with a N-Pt-N inner bond angle equal to 81(2) degrees for N atoms of the same 1,3-propanediamine ligand and a N-Pt-N bond angle for different ligands equal to 135.4(9) degrees. Complex 1'b crystallizes in the monoclinic system, in the centrosymmetric P2(1)/c space group, with unit cell parameters: a = 6.007(2) A; b = 15.336(4) A, c = 13.232(5) A; beta = 101.90(3) degrees; V = 1192.8(7) A(3); delta (calcd) = 2.369 mg/m(3); and R = 0.067. Cytotoxicity data show that of all the synthesized compounds, only complexes 1'a and 1'b exhibit remarkable cytotoxic properties. Thus, in contrast with carboplatin (cis-diammine-1,1-cyclobutane dicarboxilatoplatinum(II)), compounds 1'a and 1'b, which also contain the CBDCA ligand, are able to circumvent cisplatin (cis-diamminedichloroplatinum(II)) resistance in several tumor cells. Moreover, after 24 h of incubation of CH1cisR ovarian tumor cells with 10 microM of compounds 1'a and 1'b, the level of DNA interstrand cross-links (ICLs) induced by compounds 1'a and 1'b is 3.3 and 3.8 times higher, respectively, than that of carboplatin and 3.5 and 4.0 times higher, respectively, than that of cisplatin. Interestingly, under the same conditions, the intracellular

  18. Interstrand resistance of SSC magnets

    International Nuclear Information System (INIS)

    Kovachev, V.T.; Neal, M.J.; Capone, D.W. II; Carr, W.J. Jr.; Swenson, C.

    1994-01-01

    In situ interstrand resistance measurements were conducted on selected section of the inner coil of a full size (15 m) and a short (1 m) model SSC magnets. A model for evaluating single contacts resistance between two strands was developed. Using this model analyses of adjacent and non-adjacent strand contacts were performed. The interstrand resistance distribution throughout the coil was found to correlate with the quench location data as well as with the multipoles decay characteristics of the magnet. An anisotropic continuum based model for evaluation of cable eddy current losses was developed and results were compared with the experimental data

  19. Interstrand resistance of SSC magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kovachev, V.T.; Neal, M.J.; Capone, D.W. II [Superconducting Super Collider Lab., Dallas, TX (United States); Carr, W.J. Jr.; Swenson, C. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1994-01-01

    In situ interstrand resistance measurements were conducted on selected section of the inner coil of a full size (15 m) and a short (1 m) model SSC magnets. A model for evaluating single contacts resistance between two strands was developed. Using this model analyses of adjacent and non-adjacent strand contacts were performed. The interstrand resistance distribution throughout the coil was found to correlate with the quench location data as well as with the multipoles decay characteristics of the magnet. An anisotropic continuum based model for evaluation of cable eddy current losses was developed and results were compared with the experimental data.

  20. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    International Nuclear Information System (INIS)

    Fujiwara, Yoshisada; Kano, Yoshio; Paul, P.; Goto, Kaoru; Yamamoto, Kazuo

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD + , suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation. (J.P.N.)

  1. Postreplicative Mismatch Repair

    Science.gov (United States)

    Jiricny, Josef

    2013-01-01

    The mismatch repair (MMR) system detects non-Watson–Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade. PMID:23545421

  2. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking

    Science.gov (United States)

    Yanagisawa, Yu; Nan, Yiling; Okuro, Kou; Aida, Takuzo

    2018-01-01

    Expanding the range of healable materials is an important challenge for sustainable societies. Noncrystalline, high-molecular-weight polymers generally form mechanically robust materials, which, however, are difficult to repair once they are fractured. This is because their polymer chains are heavily entangled and diffuse too sluggishly to unite fractured surfaces within reasonable time scales. Here we report that low-molecular-weight polymers, when cross-linked by dense hydrogen bonds, yield mechanically robust yet readily repairable materials, despite their extremely slow diffusion dynamics. A key was to use thiourea, which anomalously forms a zigzag hydrogen-bonded array that does not induce unfavorable crystallization. Another key was to incorporate a structural element for activating the exchange of hydrogen-bonded pairs, which enables the fractured portions to rejoin readily upon compression.

  3. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    Science.gov (United States)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  4. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model

    Science.gov (United States)

    Mayer, Steffi; Decaluwe, Herbert; Ruol, Michele; Manodoro, Stefano; Kramer, Manuel; Till, Holger; Deprest, Jan

    2015-01-01

    Background Neonates with congenital diaphragmatic hernia and large defects often require patch closure. Acellular collagen matrices (ACM) have been suggested as an alternative to synthetic durable patches as they are remodeled by the host or could also be used for tissue engineering purposes. Materials and Methods 2.0x1.0 cm diaphragmatic defects were created in 6-weeks old New-Zealand white rabbits. We compared reconstruction with a purpose-designed cross-linked ACM (Matricel) to 4-layer non-cross-linked small intestinal submucosa (SIS) and a 1-layer synthetic Dual Mesh (Gore-Tex). Unoperated animals or animals undergoing primary closure (4/0 polyglecaprone) served as age-matched controls. 60 (n = 25) resp. 90 (n = 17) days later, animals underwent chest x-ray and obduction for gross examination of explants, scoring of adhesion and inflammatory response. Also, uniaxial tensiometry was done, comparing explants to contralateral native diaphragmatic tissue. Results Overall weight nearly doubled from 1,554±242 g at surgery to 2,837±265 g at obduction (+84%). X-rays did show rare elevation of the left diaphragm (SIS = 1, Gore-Tex = 1, unoperated control = 1), but no herniation of abdominal organs. 56% of SIS and 10% of Matricel patches degraded with visceral bulging in four (SIS = 3, Matricel = 1). Adhesion scores were limited: 0.5 (Matricel) to 1 (SIS, Gore-Tex) to the left lung (p = 0.008) and 2.5 (Gore-Tex), 3 (SIS) and 4 (Matricel) to the liver (pGore-Tex (pGore-Tex implants (p<0.05). Conclusions Matricel induced a macrophage-dominated inflammatory response, more adhesions, had appropriate strength but a lesser compliance compared to native tissue. The herein investigated ACM is not a viable option for CDH repair. PMID:26147985

  5. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model.

    Science.gov (United States)

    Mayer, Steffi; Decaluwe, Herbert; Ruol, Michele; Manodoro, Stefano; Kramer, Manuel; Till, Holger; Deprest, Jan

    2015-01-01

    Neonates with congenital diaphragmatic hernia and large defects often require patch closure. Acellular collagen matrices (ACM) have been suggested as an alternative to synthetic durable patches as they are remodeled by the host or could also be used for tissue engineering purposes. 2.0x1.0 cm diaphragmatic defects were created in 6-weeks old New-Zealand white rabbits. We compared reconstruction with a purpose-designed cross-linked ACM (Matricel) to 4-layer non-cross-linked small intestinal submucosa (SIS) and a 1-layer synthetic Dual Mesh (Gore-Tex). Unoperated animals or animals undergoing primary closure (4/0 polyglecaprone) served as age-matched controls. 60 (n = 25) resp. 90 (n = 17) days later, animals underwent chest x-ray and obduction for gross examination of explants, scoring of adhesion and inflammatory response. Also, uniaxial tensiometry was done, comparing explants to contralateral native diaphragmatic tissue. Overall weight nearly doubled from 1,554±242 g at surgery to 2,837±265 g at obduction (+84%). X-rays did show rare elevation of the left diaphragm (SIS = 1, Gore-Tex = 1, unoperated control = 1), but no herniation of abdominal organs. 56% of SIS and 10% of Matricel patches degraded with visceral bulging in four (SIS = 3, Matricel = 1). Adhesion scores were limited: 0.5 (Matricel) to 1 (SIS, Gore-Tex) to the left lung (p = 0.008) and 2.5 (Gore-Tex), 3 (SIS) and 4 (Matricel) to the liver (pGore-Tex (pGore-Tex implants (p<0.05). Matricel induced a macrophage-dominated inflammatory response, more adhesions, had appropriate strength but a lesser compliance compared to native tissue. The herein investigated ACM is not a viable option for CDH repair.

  6. Repair of damaged DNA in-vivo. Comprehensive progress report, August 1980-August 1983

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1983-07-01

    We have extended our characterization of long patch excision repair (LPER) and have demonstrated that LPER is not mutagenic (or error-prone); that the recA function is required for LPER, at least for its regulation; that the substrate for LPER is produced as a linear (not an exponential) function of uv (254 nm) dose; and that LPER can occur in uvr - cells treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG). We have developed 3 methods for measuring the frequency of interstrand crosslinks in DNA and are now applying these methods to the study of the formation and repair of DNA crosslinks in E.Coli. We have developed a monoclonal antibody specific for thymine glycol in DNA, and are using it to study the repair of thymine glycol in E. coli

  7. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Steffi Mayer

    Full Text Available Neonates with congenital diaphragmatic hernia and large defects often require patch closure. Acellular collagen matrices (ACM have been suggested as an alternative to synthetic durable patches as they are remodeled by the host or could also be used for tissue engineering purposes.2.0x1.0 cm diaphragmatic defects were created in 6-weeks old New-Zealand white rabbits. We compared reconstruction with a purpose-designed cross-linked ACM (Matricel to 4-layer non-cross-linked small intestinal submucosa (SIS and a 1-layer synthetic Dual Mesh (Gore-Tex. Unoperated animals or animals undergoing primary closure (4/0 polyglecaprone served as age-matched controls. 60 (n = 25 resp. 90 (n = 17 days later, animals underwent chest x-ray and obduction for gross examination of explants, scoring of adhesion and inflammatory response. Also, uniaxial tensiometry was done, comparing explants to contralateral native diaphragmatic tissue.Overall weight nearly doubled from 1,554±242 g at surgery to 2,837±265 g at obduction (+84%. X-rays did show rare elevation of the left diaphragm (SIS = 1, Gore-Tex = 1, unoperated control = 1, but no herniation of abdominal organs. 56% of SIS and 10% of Matricel patches degraded with visceral bulging in four (SIS = 3, Matricel = 1. Adhesion scores were limited: 0.5 (Matricel to 1 (SIS, Gore-Tex to the left lung (p = 0.008 and 2.5 (Gore-Tex, 3 (SIS and 4 (Matricel to the liver (p<0.0001. Tensiometry revealed a reduced bursting strength but normal compliance for SIS. Compliance was reduced in Matricel and Gore-Tex (p<0.01. Inflammatory response was characterized by a more polymorphonuclear cell (SIS resp. macrophage (Matricel type of infiltrate (p<0.05. Fibrosis was similar for all groups, except there was less mature collagen deposited to Gore-Tex implants (p<0.05.Matricel induced a macrophage-dominated inflammatory response, more adhesions, had appropriate strength but a lesser compliance compared to native tissue. The herein

  8. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  9. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links

    DEFF Research Database (Denmark)

    Räschle, Markus; Smeenk, Godelieve; Hansen, Rebecca K

    2015-01-01

    a technique called chromatin mass spectrometry (CHROMASS) to study protein recruitment dynamics during perturbed DNA replication in Xenopus egg extracts. Using CHROMASS, we systematically monitored protein assembly and disassembly on ICL-containing chromatin. Among numerous prospective DNA repair factors, we...... to damaged DNA in vertebrate cells....

  10. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    Science.gov (United States)

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Homologous and non-homologous recombination differentially affect DNA damage repair in mice.

    NARCIS (Netherlands)

    J. Essers (Jeroen); H. van Steeg (Harry); J. de Wit (Jan); M. Vermeij (Marcel); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland); S.M.A. Swagemakers (Sigrid)

    2000-01-01

    textabstractIonizing radiation and interstrand DNA crosslinking compounds provide important treatments against cancer due to their extreme genotoxicity for proliferating cells. Both the efficacies of such treatments and the mutagenic potential of these agents are modulated by

  12. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China)

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair.

  13. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    2012-06-25

    N7]G (scheme 6g) and G[N7-N3]A. (scheme 6h) intra-strand crosslinks (Liu et al. 2002b;. Hegmans et al. 2004; Harrington et al. 2010). Scheme 6. Structures of different inter-strand (a,b) and intra-strand (c–h) crosslink products ...

  14. Hoechst 33258 dye generates DNA-protein cross-links during ultraviolet light-induced photolysis of bromodeoxyuridine in replicated and repaired DNA

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xicang; Morgan, W.F.; Cleaver, J.E.

    1986-08-01

    Substitution of bromodeoxyuridine for thymidine in the DNA of mammalian cells sensitizes them to a range of wavelengths of ultraviolet light. Cells are also sensitized to photochemical reactions involving dyes such as Hoechst 33258, which is used to produce differential staining of chromatids according to their bromodeoxyuridine content. Irradiation with 313 nm light of human and hamster cells containing bromodeoxyuridine in their DNA produced single-strand breaks but no DNA-protein cross-links. Irradiation with 360 nm light in the presence of Hoechst 33258 produced extensive DNA-protein cross-linkage as well as single-strand breaks. These cross-links were observed in DNA containing bromodeoxyuridine incorporated by either semiconservative or repair replication. When the protein was removed with proteinase K, bromodeoxyuridine in repair patches after irradiation by doses of ultraviolet (254 nm) light as low as 0.26 J/m/sup 2/ could readily be detected. Hoechst 33258-mediated photolysis, therefore, provides a sensitive new technique for measuring repair replication after ultraviolet light irradiation.

  15. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines

    International Nuclear Information System (INIS)

    Bedford, P.; Fichtinger-Schepman, A.M.; Shellard, S.A.; Walker, M.C.; Masters, J.R.; Hill, B.T.

    1988-01-01

    The formation and removal of four platinum-DNA adducts were immunochemically quantitated in cultured cells derived from a human bladder carcinoma cell line (RT112) and from two lines derived from germ cell tumors of the testis (833K and SUSA), following exposure in vitro to 16.7 microM (5 micrograms/ml) cisplatin. RT112 cells were least sensitive to the drug and were proficient in the repair of all four adducts, whereas SUSA cells, which were 5-fold more sensitive, were deficient in the repair of DNA-DNA intrastrand cross-links in the sequences pApG and pGpG. Despite expressing a similar sensitivity to SUSA cells, 833K cells were proficient in the repair of all four adducts, although less so than the RT112 bladder tumor cells. In addition, SUSA cells were unable to repair DNA-DNA interstrand cross-links whereas 50-85% of these lesions were removed in RT112 and 833K cells 24 h following drug exposure. It is possible that the inability of SuSa cells to repair platinated DNA may account for their hypersensitivity to cisplatin

  16. P-glycoprotein attenuates DNA repair activity in multidrug-resistant cells by acting through the Cbp-Csk-Src cascade.

    Science.gov (United States)

    Lin, Li-Fang; Wu, Ming-Hsi; Pidugu, Vijaya Kumar; Ho, I-Ching; Su, Tsann-Long; Lee, Te-Chang

    2017-07-11

    Recent studies have demonstrated that P-glycoprotein (P-gp) expression impairs DNA interstrand cross-linking agent-induced DNA repair efficiency in multidrug-resistant (MDR) cells. To date, the detailed molecular mechanisms underlying how P-gp interferes with Src activation and subsequent DNA repair activity remain unclear. In this study, we determined that the C-terminal Src kinase-binding protein (Cbp) signaling pathway involved in the negative control of Src activation is enhanced in MDR cells. We also demonstrated that cells that ectopically express P-gp exhibit reduced activation of DNA damage response regulators, such as ATM, Chk2, Braca1 and Nbs1 and hence attenuated DNA double-strand break repair capacity and become more susceptible than vector control cells to DNA interstrand cross-linking (ICL) agents. Moreover, we demonstrated that P-gp can not only interact with Cbp and Src but also enhance the formation of inhibitory C-terminal Src kinase (Csk)-Cbp complexes that reduce phosphorylation of the Src activation residue Y416 and increase phosphorylation of the Src negative regulatory residue Y527. Notably, suppression of Cbp expression in MDR cells restores cisplatin-induced Src activation, improves DNA repair capacity, and increases resistance to ICL agents. Ectopic expression of Cbp attenuates cisplatin-induced Src activation and increases the susceptibility of cells to ICL agents. Together, the current results indicate that P-gp inhibits DNA repair activity by modulating Src activation via Cbp-Csk-Src cascade. These results suggest that DNA ICL agents are likely to have therapeutic potential against MDR cells with P-gp-overexpression.

  17. Interstrand resistance of selected sections of DCA312

    Energy Technology Data Exchange (ETDEWEB)

    Kovachev, V.; Neal, M.; Seuntjens, J.; Qin, J.; Cline, P.; Capone, D. II [Superconducting Super Collider Lab., Dallas, TX (United States); Swenson, C. [Westinghouse Electric Corp., Round Rock, TX (United States)

    1993-11-01

    The quench current ramp rate sensitivity of the full length SSC dipole DCA312 was strongly A-type and the eddy current losses for this magnet were the largest of all ASST magnets. The quench current remained constant with ramp rate up to approximately 20 A/s. At higher ramp rates the quench current decreased dramatically. At a current ramp rate of 200 A/s the quench current was only 2000 A. The eddy current losses of DCA312 at 60 A/s for a monopolar cycle of 500A-5000A-500A were approximately 3600 J/Cycle, a factor of 5--7 larger than for magnets DCA311, DCA319, and DCA318. In order to find the cause of the anomalous behavior of DCA312, it was decided that the magnet would be cut into sections and examined at WMSD and SSCL. The general goals of the DCA312 autopsy included verification of theoretical models for A-type behavior in SSC magnets as well as correlation of fabrication and assembly procedures to the quench behavior of A-type magnets. One of the important aspects of the magnet autopsy plan was the in-situ measurement of interstrand resistance in collared magnet sections. Four sections of DCA312 were designated for interstrand resistance measurements. Two of those sections (C and M) contained quench sites (100 A/s and 200 A/s respectively) and two of them (E and J) were sections representative of the magnet where quenches did not occur. The aim of the present work was to measure and analyze the interstrand resistance in each quadrant of these four sections of DCA312 and to find a correlation between the measured interstrand resistance, the actual resistance of individual interstrand contacts, and the quench performance of the magnet.

  18. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  19. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.; Smogorzewska, Agata; Rudge, Derek G.; Buzovetsky, Olga; Elledge, Stephen J.; Pavletich, Nikola P. (Harvard-Med); (Cornell); (MSKCC)

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  20. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    Energy Technology Data Exchange (ETDEWEB)

    W Joo; G Xu; n Persky; A Smogorzewska; D Rudge; O Buzovetsky; S Elledge; N Pavletich

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  1. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity

    Science.gov (United States)

    Kothandapani, Anbarasi; Sawant, Akshada; Dangeti, Venkata Srinivas Mohan Nimai; Sobol, Robert W.; Patrick, Steve M.

    2013-01-01

    Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin. PMID:23761438

  2. Can the response to a platinum-based therapy be predicted by the DNA repair status in non-small cell lung cancer?

    Science.gov (United States)

    Macerelli, Marianna; Ganzinelli, Monica; Gouedard, Cedric; Broggini, Massimo; Garassino, Marina Chiara; Linardou, Helena; Damia, Giovanna; Wiesmüller, Lisa

    2016-07-01

    Preclinical evidence has been accumulating on the impact of the DNA repair status on the sensitivity/resistance to anticancer agents in different tumor types, including lung cancer. The possibility to predict the response to therapy, and specifically to platinum agents, based on tumor specific DNA repair functionality would enable to tailor its use only in those patients with maximum chances to respond, avoiding the burden of toxicity in those ones with lesser chances. We here reviewed the clinical evidence on the prognostic role of DNA repair markers and/or functional assays in predicting the response to a platinum-based chemotherapy in lung cancer patients. Consequently, we focused on those proteins involved in pathways repairing platinum induced DNA inter-strand and intra-strand crosslinks. Most promising clinical trials targeting the nucleotide repair protein ERCC1 in non-small cell lung cancer later on suffered from serious drawbacks. Nevertheless, these results spurred a variety of preclinical studies on a multitude of alternative DNA repair markers. However so far, no one of the analyzed DNA repair markers can be considered a reliable and mature biomarker for selecting patients. We discuss the reasons for such failure which discloses novel strategies for the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Implication of the E. coli K12 uvrA and recA genes in the repair of 8-methoxypsoralen-induced mono adducts and crosslinks on plasmid DNA

    International Nuclear Information System (INIS)

    Paramio, J.M.; Bauluz, C.; Vidania, R. de

    1986-01-01

    Genotoxicity of psoralen damages on plasmid DNA has been studied. pBR322 DNA was randomly modified with several concentrations of 8-methoxypsoralen plus 365 nm-UV light. After transformation into E. coli strains (wild-type, uvrA and recA) plasmid survival and mutagenesis were analyzed. To study the influence of the SOS response on plasmid recovery, preirradiation of the cells was performed. In absence of cell preirradiation, crosslinks were not repaired in any strain. Mono adducts were also lethal but in part removed by the excision-repair pathway. Preirradiation of the cells significantly. increased plasmid recovery in recA+ celia. In uvrA- only the mutagenic pathway seemed to be involved in the repair of the damaged DNA. Wild type strain showed the highest increase in plasmid survival, involving the repair of mono adducts and some fraction of crosslinks mainly through an error-free repair pathway. This suggests an enhancement of the excision repair promoted by the induction of SOS functions. (Author) 32 refs

  4. One year experience of swine dermal non-crosslinked collagen prostheses for abdominal wall repairs in elective and emergency surgery.

    Science.gov (United States)

    Montori, Giulia; Coccolini, Federico; Manfredi, Roberto; Ceresoli, Marco; Campanati, Luca; Magnone, Stefano; Pisano, Michele; Poiasina, Elia; Nita, Gabriela; Catena, Fausto; Ansaloni, Luca

    2015-01-01

    The approach to the abdominal wall surgical repair is dramatically changed in the last years. This study evaluates our institutional outcomes about the usage of biological meshes for abdominal wall repair in different setting: in elective surgery, in emergency surgery and in abdominal wall repair following open abdomen (OA) procedure. A database was prospectively conducted (January-December 2014) and data were reviewed for patients who underwent to an abdominal wall reconstruction with swine dermal non-cross linked collagens prostheses either in elective or emergency setting, and following OA/laparostomy procedure. Demographic data, co-morbidities, indications for surgery, intra-operative details, post-operative complications and outcome (peri-operative, 3, 6, 9-months) were analyzed. A total of 30 cases were reported: 9 in elective surgery (Group 1), 4 in emergency surgery (Group 2) and 17 with abdominal wall closure following OA management (Group 3). Two meshes were removed: 1 in the Group 1 and 1 in the Group 3. During follow-up only one patient in the Group 3 had a recurrence of the incisional hernia. Mortality rate was 11.1 % at 3 months in Group 1, 0 % in the Group 2, and 29.4 % in peri-operative period in the Group 3. The use of non-cross linked biological meshes can be safe and versatile in different situations from elective to emergency surgery, and also for the reconstruction of the abdominal wall after OA procedure, with an acceptable recurrence and mortality rate.

  5. Interstrand cross-linking implies contrasting structural consequences for DNA: insights from molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Bignon, E.; Dršata, Tomáš; Morell, C.; Lankaš, Filip; Dumont, E.

    2017-01-01

    Roč. 45, č. 4 (2017), s. 2188-2195 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : abasic sites * duplex DNA * mechanical properties Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 10.162, year: 2016 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1253

  6. The involvement of DNA repair genes in the hypoxia-dependent NLCQ-1 (NSC 709257) toxicity and its synergistic interaction with cisplatin or melphalan

    International Nuclear Information System (INIS)

    Papadopoulou, M.V.; Xue, C.-J.; Bloomer, W.D.

    2003-01-01

    4-[3-(2-Nitro-1-imidazolyl)-propylamino]-7-chloro-quinoline hydrochloride (NLCQ-1) is a weakly DNA-intercalating hypoxia selective cytotoxin, which synergistically enhances the antitumor effect of several chemotherapeutic agents or radiation against mouse tumors or human xenografts. Synergy with melphalan (L-PAM) or cisplatin (cisPt) requires hypoxic pre-exposure of cells to NLCQ-1 or, in mice, administration of NLCQ-1 about 1 h before L-PAM or cisPt. This suggests that NLCQ-1 may cause DNA lesions upon reductive metabolism. To indirectly identify such lesions, rodent cell lines defective in specific DNA repair genes (EM9 and UV41) and their repair-proficient parental AA8, were exposed to NLCQ-1 alone and in combination with L-PAM or cisPt under hypoxic/aerobic conditions and appropriate routes, and assessed for clonogenicity. Selected comparisons with tirapazamine (TPZ) were also performed. DNA ssbs were identified by using the alkaline comet assay. Synergism was assessed by isobologramic analysis. EM9, which lack the functional XRCC1 gene and are unable to efficiently repair DNA ssbs, were 3.7x and 4.5x more sensitive to NLCQ-1 and TPZ, respectively, than the parental AA8 cells. Similarly, UV41, which are defective in the ERCC4/XPF gene and thus, hypersensitive to DNA cross-linking agents, were 4.1x more sensitive than AA8 cells to NLCQ-1. Equitoxic concentrations of NLCQ-1 and TPZ gave similar numbers of ssbs in AA8 and EM9 cells exposed to each compound for 1 h under hypoxic conditions. In combination with L-PAM or cisPt, synergy was observed in AA8 but not in EM9 or UV41 cells, with either NLCQ-1 or TPZ. These results suggest that NLCQ-1 is involved in the formation of DNA ssbs and interstrand crosslinks, with the latter being most likely responsible for NLCQ-1 hypoxic toxicity. The synergistic interaction of NLCQ-1 with L-PAM or cisPt is probably due to an enhancement in the L-PAM/cisPt-induced DNA interstrand crosslinks, possibly as a result of an inhibited

  7. Inter-strand resistance measurements in the termination of the ITER SULTAN samples

    International Nuclear Information System (INIS)

    Cau, F; Bruzzone, P

    2009-01-01

    In cabled conductors a perfect uniformity of the current among the strands is hardly reached, due to the non-homogeneity of the contact resistance distribution between the strands and the copper of the electrical terminations. In the case of large current unbalance, the overloaded strands hit the critical surface at high field early, developing a current sharing voltage, which drives the redistribution of the current, mainly in the electrical terminations where the inter-strand resistance is lower than in the high field conductor. If the inter-strand resistance in the termination is low, the voltage levels are sufficiently low to allow an effective redistribution of the current to the less loaded strands. The inter-strand resistance of three different termination layouts of ITER short length samples is measured to make a database available which can be used to qualify the layout of the joints and their capability of redistributing the current among the strands.

  8. Study on interstrand coupling losses in Rutherford-type superconducting cables

    International Nuclear Information System (INIS)

    Lei, Y.Z.; Shintomi, T.; Terashima, A.; Hirabayashi, H.

    1993-02-01

    Two sets of experimental apparatus for measuring the AC losses in superconducting strands and Rutherford-type cable conductors have been constructed. A few strand samples and a number of compacted cable samples with and without a CuMn matrix have been measured. The hysteresis loss, loss from coupling within strands and loss from coupling between strands in cables have been distinguished from each other. The results show that, even for Rutherford cables without any soldering and coating, their AC losses may be quite different from each other due to the variation of the interstrand coupling loss. For cables without a CuMn matrix, interstrand coupling loss increases nearly according to a geometrical series with an increase of curing temperature simulating coil fabrication. However, cables with the CuMn matrix show a relatively small curing temperature dependence. For most of the samples, losses do not show any evident dependence on the mechanical pressure. Interstrand resistances in one of these cables have also been measured; the results indicate that the tendency for a decrease in the interstrand resistances is consistent with the results of AC loss measurements. (author)

  9. Implication of the E. coli K12 uvrA and recA genes in the repair of 8-methoxypsoralen-induced mono adducts and crosslinks on plasmid DNA; Implicacion de los genes uvrA de E. coli K12 en la reparacion de monoaductos y entrecruzamien tos inducidos en DNA plasmidico por 8-metoxipso raleno mas luz ultravioleta A

    Energy Technology Data Exchange (ETDEWEB)

    Paramio, J.M.; Bauluz, C.; Vidania, R. de

    1986-07-01

    Genotoxicity of psoralen damages on plasmid DNA has been studied. pBR322 DNA was randomly modified with several concentrations of 8-methoxypsoralen plus 365 nm-UV light. After transformation into E. coli strains (wild-type, uvrA and recA) plasmid survival and mutagenesis were analyzed. To study the influence of the SOS response on plasmid recovery, preirradiation of the cells was performed. In absence of cell preirradiation, crosslinks were not repaired in any strain. Mono adducts were also lethal but in part removed by the excision-repair pathway. Preirradiation of the cells significantly. increased plasmid recovery in recA+ celia. In uvrA- only the mutagenic pathway seemed to be involved in the repair of the damaged DNA. Wild type strain showed the highest increase in plasmid survival, involving the repair of mono adducts and some fraction of crosslinks mainly through an error-free repair pathway. This suggests an enhancement of the excision repair promoted by the induction of SOS functions. (Author) 32 refs.

  10. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  11. An electron microscopic study of the photochemical cross-linking of DNA in guinea pig epidermis by psoralen derivatives

    International Nuclear Information System (INIS)

    Cech, T.; Pathak, M.A.; Biswas, R.K.

    1979-01-01

    Albino guinea pigs were treated with psoralen derivatives plus 320-400 nm ultraviolet radiation, and DNA was extracted from their epidermis. The DNA was assayed for the presence of interstrand cross-links by standard denaturation-renaturation assays and by a new technique, electron microscopy of the DNA under totally denaturing conditions. The latter method allows individual cross-links to be directly observed and counted. When either 4,5',8-trimethylpsoralen or 8-methoxypsoralen was applied topically to the skin (8-20 μg/cm 2 ) or administered orally (10-12 mg/kg body weight), followed by exposure to 320-400 nm ultraviolet radiation, most of the epidermal DNA was found to contain a high frequency of cross-links. For example, oral or topical trimethylpsoralen treatment gave an average of one cross-link per 250 nucleotide pairs or about 3 . 10 5 cross-links per guinea pig chromosome. When the dose of either drug was decreased 20-fold to the level used in the clinical treatment of psoriasis, however, no cross-links could be detected in the epidermal DNA. The electron microscopic assay is sensitive enough that one can put an upper limit of 1 cross-link per 10 6 nucleotide pairs (80 cross-links per chromosome) for the low dose studies. The significance of these findings to the understanding of the effectiveness of psoralens in psoriasis therapy is discussed. (Auth.)

  12. Interstrand and AC-loss measurements on Rutherford-type cables for accelerator magnet applications

    CERN Document Server

    Otmani, R; Tixador, P

    2001-01-01

    One of the main issues for particle accelerator magnets is the control of interstrand resistances. Too low resistances result in large coupling currents during ramping, which distort field quality, while too large resistances may prevent current redistribution among cable strands, resulting in degraded quench performance. In this paper, we review a series of interstrand resistance and AC-loss measurements performed on four Rutherford-type cables. The four cables have the same number of strands and similar outer dimensions, corresponding to LHC quadrupole cable specifications. The first cable is made from NbTi strands, coated with silver-tin alloy, the second one is made from bare Nb/sub 3/Sn strands, the third one is made also from bare Nb/sub 3/Sn strands but includes a 25- mu m-thick stainless steel core between the strand layers, and the last one is made from Nb/sub 3/Sn strands plated with chromium. To cross-check the two measurement types and assess their consistency, we compare the coupling-current time...

  13. Interstrand Coupling Properties of LARP High Gradient Quadrupole Cables in Response to Variations in Cable Design and Heat Treatment Condition

    NARCIS (Netherlands)

    Collings, E.W.; Sumption, M.D.; Majoros, M.; Wang, Xiaorong; Dietderich, D.R.; Yagotyntsev, Kostyantyn; Nijhuis, Arend

    Calorimetric measurement of coupling loss versus frequency has been measured on two sets of cored and uncored large Hadron Collider Accelerator Research Program high gradient quadrupole Nb3Sn Rutherford cables. Studied are the responses of the resulting interstrand contact resistances (ICR) to

  14. Alkali reversal of psoralen cross-link for the targeted delivery of psoralen monoadduct lesion

    International Nuclear Information System (INIS)

    Yeung, A.T.; Dinehart, W.J.; Jones, B.K.

    1988-01-01

    Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. The authors used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90 0 C (BCR). The BCR reaction is more efficient than the photoreversal reaction. They show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine based freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, they have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site

  15. Mechanism of melphalan crosslink enhancement by misonidazole pretreatment

    International Nuclear Information System (INIS)

    Taylor, Y.C.; Sawyer, J.M.; Hsu, B.; Brown, J.M.

    1984-01-01

    Sensitization of Chinese hamster ovary cells to melphalan (L-PAM) toxicity by prior treatment with misonidazole is associated with increased levels of DNA crosslinks believed to be the critical lesion for bifunctional alkylating agent toxicity. Enhanced L-PAM crosslinking of DNA could occur by a variety of mechanisms in MISO-pretreated cells including: (1) increased transport or binding of L-PAM, (2) decreased repair of L-PAM monoadducts which would allow more time for their conversion to crosslinks, (3) decreased crosslink repair (unhooking of one arm), or (4) chemical modification of the DNA structure, presumably by bound MISO derivatives, such that crosslink formation is facilitated. Previous studies have eliminated mechanisms (1) and (3). Mechanism (4) was investigated by following MISO-pretreatments of whole cells with L-PAM treatments of the isolated DNA from these cells. Treatment of bare DNA with L-PAM modeled very well the crosslinking behavior in whole cells although it was somewhat more efficient. In the presence of double stranded DNA and absence of repair systems during and after the L-PAM exposure, it was determined that MISO-pretreatments did not increase the crosslinking efficiency of L-PAM

  16. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  17. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  18. Coupling loss, interstrand contact resistance, and magnetization of Nb3Sn rutherford cables with cores of MgO tape and s-glass ribbon

    NARCIS (Netherlands)

    Collings, E.W.; Sumption, M.D.; Susner, M.A.; Dietderich, D.R.; Nijhuis, Arend

    2011-01-01

    Multistrand cables may exhibit two classes of parasitic magnetization both of which can distort the bore-field of an accelerator magnet: (1) a static magnetization (“hysteretic”) resulting from intrastrand persistent currents, and (2) a dynamic magnetization produced by interstrand coupling currents

  19. Interstrand contact resistance and AC loss of a 48-strands Nb3Sn CIC conductor with a Cr/Cr-oxide coating

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.; Pantsyrny, Victor; Shikov, Alexander K.

    2000-01-01

    The interstrand contact resistance (Rc) between crossing strands in Cable-In-Conduit Conductors (CICC's) determines the coupling loss and the stability against local disturbances. The surface oxidation, surface roughness and micro-scale sliding of the contact surfaces are key parameters in the Rc.

  20. Structures of DNA containing psoralen crosslink and thymine dimer

    International Nuclear Information System (INIS)

    Kim, S.H.; Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.

    1985-01-01

    UV irradiation by itself or in conjunction with other chemicals can cause covalent damages to DNA in living cells. To overcome the detrimental effect of DNA damage, cells developed a repair mechanism by which damaged DNA is repaired. In the absence of such repair, cell malfunction or cell death can occur. Two most studied radiation-induced DNA damage are thymine dimer formation by UV irradiation and psoralen crosslink by combination of psoralens and UV: In the former, two adjacent thymine bases on a strand of DNA are fused by forming cyclobutane ring, and in the latter, one pyrimidine on one DNA strand is crosslinked to another pyrimidine on the other strand via a psoralen. The authors' objective is to deduce the structure of DNA segment which contains a psoralen crosslink or a thymine dimer using the combination of results of X-ray crystallographic studies, molecular model building, and energy minimization. These structural features may be important for understanding the biological effects of such damages and for the recognition by the repair enzymes

  1. Influence of strand surface condition on interstrand contact resistance and coupling loss in NbTi-wound Rutherford cables

    CERN Document Server

    Sumption, M D; Scanlan, R M; Nijhuis, A; ten Kate, H H J; Kim, S W; Wake, M; Shintomi, T

    1999-01-01

    Presented in this work are the results of directly measured and AC- loss-derived interstrand contact resistance (ICR) measurements performed magnetically or resistively on bare-Cu and coated-strand pairs, calorimetrically on $9 11-strand Rutherford cables wound with strands that had been coated with various metallic and insulating layers, and calorimetrically and magnetically on 28-strand Rutherford cables (LHC-type) wound with bare-Cu-, Ni-, and $9 stabrite-plated strands. Comparisons are made of the effects of various conditions of heat treatment, HT (time and temperature), and pressure (applied during HT and then either maintained or re-applied during measurement). The $9 resulting ICRs are compared and interpreted in terms of the oxide layer on the strand coating and its response to curing conditions. (66 refs).

  2. Cross-linking and relaxation of supercoiled DNA by psoralen and light

    International Nuclear Information System (INIS)

    Yoakum, G.H.; Cole, R.S.

    1978-01-01

    Photoreaction of 4,5',8-trimethylpsoralen with superhelical ColE1 and ColE1amp DNA was studied. Changes in mobilities in agarose gels, formation of interstrand cross-links, and DNA strand breaks were determined. Psoralen and light treatment removed negative superhelical turns, and extensive treatments failed to produce positive superhelical turns in covalently closed plasmid DNA. The rate of relaxation of superhelical turns by psoralen photobinding appeared to be directly proportional to the number of superhelical turns remaining. A unique reaction mechanism is presented to explain these results. By this interpretation the initial rate of psoralen photobinding to superhelical DNA was estimated to be 3 times that for linear DNA, and the ratio of cross-linking to monofunctional adducts appears to be dependent on the superhelical conformation of the DNA. The estimated ratio of psoralen molecules bound to DNA strand breaks was 1.7 . 10 4 :1, and 70% of this breakage is caused by the light alone. (Auth.)

  3. Crystal structure of a nucleoside model for the interstrand cross-link formed by the reaction of 2′-deoxyguanosine and an abasic site in duplex DNA

    Directory of Open Access Journals (Sweden)

    Michael J. Catalano

    2016-05-01

    Full Text Available The title compound, 9-[(2R,4S,5R-4-hydroxy-5-(hydroxymethyltetrahydrofuran-2-yl]-2-{[(2R,4S,5R-4-methoxy-5-(methoxymethyltetrahydrofuran-2-yl]amino}-1H-purin-6(9H-one, C17H25N5O7, crystallizes with two independent molecules (A and B in the asymmetric unit. In the crystal, the guanosine moieties of molecules A and B are linked by N—H...N and O—H...N hydrogen-bonding interactions, forming ribbons which are stacked to form columns along [100]. These columns are then linked by O—H...O hydrogen bonds between the ribose moieties and numerous C—H...O interactions to complete the three-dimensional structure.

  4. Sequence Specificity, Corformation, and Recognition by HMG1 Protein of Major DNA Interstrand Cross-links of Antitumor Dinuclear Platinum Complexes

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, Jana; Farrell, N.; Brabec, Viktor

    2000-01-01

    Roč. 275, - (2000), s. 15789-15798 ISSN 0021-9258 R&D Projects: GA ČR GA305/99/0695; GA ČR GA307/97/P029; GA AV ČR IAA5004702; GA MŠk ME 152 Institutional research plan: CEZ:A17/98:Z5-004-9-ii Subject RIV: BO - Biophysics Impact factor: 7.368, year: 2000

  5. HPLC-UV, MALDI-TOF-MS and ESI-MS/MS analysis of the mechlorethamine DNA crosslink at a cytosine-cytosine mismatch pair.

    Directory of Open Access Journals (Sweden)

    Pornchai Rojsitthisak

    Full Text Available Mechlorethamine [ClCH(2CH(2N(CH(3CH(2CH(2Cl], a nitrogen mustard alkylating agent, has been proven to form a DNA interstrand crosslink at a cytosine-cytosine (C-C mismatch pair using gel electrophoresis. However, the atomic connectivity of this unusual crosslink is unknown.HPLC-UV, MALDI-TOF-MS, and ESI-MS/MS were used to determine the atomic connectivity of the DNA C-C crosslink formed by mechlorethamine, MALDI-TOF-MS of the HPLC-purified reaction product of mechlorethamine with the DNA duplex d[CTCACACCGTGGTTC]•d[GAACCACCGTGTGAG] (underlined bases are a C-C mismatch pair indicated formation of an interstrand crosslink at m/z 9222.088 [M-2H+Na](+. Following enzymatic digestion of the crosslinked duplex by snake venom phosphodiesterase and calf intestinal phosphatase, ESI-MS/MS indicated the presence of dC-mech-dC [mech = CH(2CH(2N(CH(3CH(2CH(2] at m/z 269.2 [M](2+ (expected m/z 269.6, exact mass 539.27 and its hydrolytic product dC-mech-OH at m/z 329.6 [M](+ (expected m/z 329.2. Fragmentation of dC-mech-dC gave product ions at m/z 294.3 and 236.9 [M](+, which are both due to loss of the 4-amino group of cytosine (as ammonia, in addition to dC and dC+HN(CH(3CH = CH(2, respectively. The presence of m/z 269.2 [M](2+ and loss of ammonia exclude crosslink formation at cytosine N(4 or O(2 and indicate crosslinking through cytosine N(3 with formation of two quaternary ammonium ions.Our results provide an important addition to the literature, as the first example of the use of HPLC and MS for analysis of a DNA adduct at the N(3 position of cytosine.

  6. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  7. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  8. DNA Photolithography with Cinnamate Crosslinkers

    Science.gov (United States)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  9. Radiation crosslinking of polymer materials

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2004-01-01

    It was found that some polyfunctional monomers (PFM) like triallyl isocyanurate (TAIC) and trimethallyl isocyanurate (TMAIC) when incorporated at low concentrations, are effective for promotion of crosslinking of biodegradable polymers such as polycaprolactone (PCL), poly(butylene succinate-co-adipate) (PBS) and poly(lactic acid) (PLA). PFM are kneaded with biodegradable polymers at molten condition before irradiation. Radiation crosslinking of PBS and PCL with 1% TAIC gave gel fractions of 80% at 20 kGy. This crosslinking is effective to improve deformation of biodegradable polymers at high temperature. The irradiated materials retained their biodegradability even after crosslinking when subjected to soil burial test. Irradiation at molten state (melting temperature, 340degC) led to crosslinking structures for polytetrafluoroethylene (PTFE). Crosslinked PTFE forms transparent films with high abrasion property and high radiation resistance. High-density polyethylene (HDPE) has a higher gel fraction in irradiation at molten state than irradiation at ordinary temperature. Crosslinked HDPE has been applied as knee joints in order to have high abrasion. Radiation crosslinked polycarbosilane (PCS) fiber gives high heat resistant silicon carbide (SiC) after firing. EB irradiation of PCS is effective to improve strength of product and to inhibit flow during carbonization. SiC, being resistant to high temperature will be applied in turbine and body of rockets. (author)

  10. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  11. Hypospadias repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003000.htm Hypospadias repair To use the sharing features on this page, please enable JavaScript. Hypospadias repair is surgery to correct a defect in ...

  12. Generation of Guanine – Thymidine Cross-links in DNA by Peroxynitrite/Carbon Dioxide

    Science.gov (United States)

    Yun, Byeong Hwa; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2011-01-01

    interstrand and intrastrand cross-linked products. PMID:21513308

  13. Radiation induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  14. Synthesis of Hydrophobic, Crosslinkable Resins.

    Science.gov (United States)

    1984-12-01

    Bismaleimides have also been crosslinked with radical initiators to produce brittle networks [4].If a damine is added, chain extension and radical crosslinkinq...are produced during cure.The company also produced a similar phenylene based resin, with pendant nitrile groups which could be crosslinked without the...benzenes and tetra substituted cyclopentadienones [881. g. Preparation of poly 1,4 phenylene by nickel (0> catalysed electropolymerisation 1891. Cont’d

  15. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and more recently engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating......'-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  16. Meningocele repair

    Science.gov (United States)

    ... is surgery to repair birth defects of the spine and spinal membranes. Meningocele and myelomeningocele are types of spina bifida . Description For both meningoceles and myelomeningoceles, the surgeon ...

  17. Crosslinking of agarose bioplastic using citric acid.

    Science.gov (United States)

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2'-alkylated RNA monomers.

    Science.gov (United States)

    Karmakar, Saswata; Madsen, Andreas S; Guenther, Dale C; Gibbons, Bradley C; Hrdlicka, Patrick J

    2014-10-21

    Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and--more recently--engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating and modifying genes. Invaders, i.e., energetically activated DNA duplexes with interstrand zipper arrangements of intercalator-functionalized nucleotides, are emerging as an attractive approach toward this goal. Here, we characterize and compare Invaders based on 1-, 2- and 4-pyrenyl-functionalized O2'-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA hairpins with single nucleotide fidelity. Intercalator-mediated unwinding and activation of the double-stranded probe, coupled with extraordinary stabilization of probe-target duplexes (ΔT(m)/modification up to +14.0 °C), provides the driving force for dsDNA recognition. In contrast, Z-modified Invaders show much lower dsDNA recognition efficiency. Thus, even very conservative changes in the chemical makeup of the intercalator-functionalized nucleotides used to activate Invader duplexes, affects dsDNA-recognition efficiency of the probes, which highlights the importance of systematic structure-property studies. The insight from this study will guide future design of Invaders for applications in molecular biology and nucleic acid diagnostics.

  19. Microencapsulation within crosslinked polyethyleneimine membranes.

    Science.gov (United States)

    Poncelet, D; Alexakis, T; Poncelet de Smet, B; Neufeld, R J

    1994-01-01

    A microencapsulation technique is proposed involving the formation of a polyethyleneimine (PEI) membrane crosslinked by an acid dichloride. The membranes were formed at pH 8 in a non-polar solvent, conditions which are better suited for the encapsulation of biocatalysts or fragile biochemicals than those using polyamide membranes. The mean diameter and size distribution of the PEI microcapsules were similar to that observed with nylon membranes. The resultant microcapsules were spherical, free-flowing with a strong membrane. The mass of membrane was seen to be independent of the reaction time (1-4 min), insensitive to the PEI concentration and proportional to the concentration of crosslinking agent.

  20. A yeast mutant specifically sensitive to bifunctional alkylation

    International Nuclear Information System (INIS)

    Ruhland, A.; Kircher, M.; Wilborn, F.; Brendel, M.

    1981-01-01

    A mutation that specifically confers sensitivity to bi- and tri-functional alkylating agents is presented. No or little cross-sensitivity to radiation or monofunctional agents could be detected. Sensitivity does not seem to be due to preferential alkylation of mutant DNA as parent and mutant strain exhibit the same amount of DNA alkylation and the same pattern of DNA lesions including interstrand crosslinks. The mutation is due to a defect in a nuclear gene which has been designated SNM1 (sensitive to nitrogen mustard); it may control an important step in the repair of DNA interstrand crosslinks (orig.(AJ)

  1. Hydrocele repair

    Science.gov (United States)

    ... about 4 to 7 days. Outlook (Prognosis) The success rate for hydrocele repair is very high. The ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  2. Craniosynostosis repair

    Science.gov (United States)

    ... children having an open repair may need a transfusion) Reaction to medicines Risks for this surgery are: Infection in the brain Bones connect together again, and more surgery is needed Brain swelling Damage to brain tissue

  3. Ptosis repair.

    Science.gov (United States)

    Ng, John; Hauck, Matthew J

    2013-02-01

    Acquired blepharoptosis presents as both a functional and cosmetic problem commonly encountered by facial plastic surgeons. Ptosis repair can be both challenging and frustrating, especially given ever-increasing demands for an optimal cosmetic surgical result. The authors present a brief overview of key points to consider when attempting to achieve excellent blepharoptosis repair outcomes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Living related liver transplantation in an adult patient with hepatocellular adenoma and carcinoma 13 years after bone marrow transplantation for Fanconi anemia : A case report

    NARCIS (Netherlands)

    Colle, Isabelle; Laureys, Geneviève; Raevens, Sarah; Libbrecht, Louis; Leroy, Juliaan G; Reyntjens, Koen; Geerts, Anja; Rogiers, Xavier; Troisi, Roberto I; Hoehn, Holger; Schindler, Detlev; Hanenberg, Helmut; De Wilde, Vincent; Van Vlierberghe, Hans

    Fanconi anemia (FA) is an inherited bone marrow failure syndrome due to defective DNA inter-strand cross-link repair. Hematopoietic stem cell transplantation (HSCT) is curative for pancytopenia, but may not prevent the development of non-hematological malignancies. We describe a 26-year-old male

  5. Cytotoxic platinum coordination compounds. DNA binding agents

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor; Hrabina, O.; Kašpárková, Jana

    2017-01-01

    Roč. 351, č. 2017 (2017), s. 2-31 ISSN 0010-8545 R&D Projects: GA ČR GA17-09436S Institutional support: RVO:68081707 Keywords : interstrand cross-links * nucleotide excision-repair * pt-ii complex Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 13.324, year: 2016

  6. "Head-to-head" double-hamburger-like structure of di-ruthenated d(GpG) adducts of monofunctional Ru-arene anticancer complexes

    Czech Academy of Sciences Publication Activity Database

    Liu, H.; Kostrhunová, Hana; Habtemariam, A.; Kong, Y.Q.; Deeth, R.J.; Brabec, Viktor; Sadler, Peter J.

    2016-01-01

    Roč. 45, č. 46 (2016), s. 18676-18688 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA14-21053S Institutional support: RVO:68081707 Keywords : interstrand cross-links * nucleotide excision-repair * cis-diamminedichloroplatinum(ii) induced distortion Subject RIV: BO - Biophysics Impact factor: 4.029, year: 2016

  7. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  8. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  9. Electrospinning formaldehyde cross-linked zein solutions

    Science.gov (United States)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  10. Microfabrication of crosslinked PTFE by synchrotron radiation

    International Nuclear Information System (INIS)

    Sato, Yasunori; Yamaguchi, Daichi; Oshima, Akihiro; Washio, Masakazu; Katoh, Takanori; Aoki, Yasushi; Ikeda, Shigetoshi; Tanaka, Shigeru

    2003-01-01

    Microfabrication of crosslinked polytetrafluoroethylene (PTFE) using synchrotron radiation (SR) has been demonstrated for production of micro-components applicable to radiation fields. The method of microfabrication was readily capable of obtaining a microstructure with aspect-ratio of 25 made of crosslinked PTFE. The etching rate of crosslinked PTFE was higher than that of non-crosslinked PTFE. The results show that the etching rate of crosslinked PTFE depends only on the degree of crosslinking. The effect of molecular motion on etching process was discussed from temperature dependence on etching rate. Moreover, in order to examine whether any change of chemical structures and crystallinity would be induced by SR-irradiation on PTFE, SR-irradiated PTFE was measured by NMR spectroscopy and DSC analysis. The results showed that the crosslinking reaction of PTFE would be induced by SR-irradiation in the solid state. (author)

  11. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2′-alkylated RNA monomers†

    Science.gov (United States)

    Karmakar, Saswata; Madsen, Andreas S.; Guenther, Dale C.; Gibbons, Bradley C.; Hrdlicka, Patrick J.

    2014-01-01

    Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and - more recently - engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating and modifying genes. Invaders, i.e., energetically activated DNA duplexes with interstrand zipper arrangements of intercalator-functionalized nucleotides, are emerging as an attractive approach toward this goal. Here, we characterize and compare Invaders based on 1-, 2- and 4-pyrenyl-functionalized O2′-alkylated uridine monomers X–Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA hairpins with single nucleotide fidelity. Intercalator-mediated unwinding and activation of the double-stranded probe, coupled with extraordinary stabilization of probe-target duplexes (ΔTm/modification up to +14.0 °C), provides the driving force for dsDNA recognition. In contrast, Z-modified Invaders show much lower dsDNA recognition efficiency. Thus, even very conservative changes in the chemical makeup of the intercalator-functionalized nucleotides used to activate Invader duplexes, affects dsDNA-recognition efficiency of the probes, which highlights the importance of systematic structure-property studies. The insight from this study will guide future design of Invaders for applications in molecular biology and nucleic acid diagnostics. PMID:25144705

  12. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  13. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  14. Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites

    NARCIS (Netherlands)

    Turkenburg, D.H.; Fischer, H.R.

    2015-01-01

    Epoxy resins are functionalized with Diels-Alder based thermo-reversible crosslinks to enable the fabrication of composites that are capable of multiple self-healing-repair processes. The key challenge in realizing a structural combination of conventional epoxy amine systems with furfuryl and

  15. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  16. Structure and properties of crosslinked PTFE irradiated

    International Nuclear Information System (INIS)

    Kusano, Hiroo; Ikeda, Shigetoshi; Kasai, Noboru; Oshima, Akihiro; Seguchi, Tadao.

    1996-01-01

    Polytetrafluoroethylene (PTFE) was crosslinked by EB irradiation at the molten state in oxygen free atmosphere. The properties of crosslinked PTFE was investigated on the radiation resistance, the creep resistance and change of electric properties. The radiation resistance was much improved by the crosslinking, and the electric properties were not so much changed. The creep resistance at room temperature and at 200degC were also improved. (author)

  17. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  18. Crosslinked Radiation-Grafted Films

    Energy Technology Data Exchange (ETDEWEB)

    Slaski, M.; Brack, H.P.; Fischer, D. [Zuercher Hochschule Winterthur (Switzerland); Peter, G. [Zuercher Hochschule Winterthur (Switzerland); Wokaun, A.; Scherer, G.G.

    2004-03-01

    Radiation-grafted membranes prepared by using styrene (S) and divinyl benzene (DVB) as graft components and subsequent sulfonation can be applied as solid polymer electrolytes in fuel cells and other electrochemical devices. The use of DVB as crosslinker has an important influence on the ex-situ properties like swelling, ionic resistivity, mechanical properties, surface energy, and oxidative stability. DVB also influences gas crossover, polarization performance, and lifetime in the fuel cell application. In spite of this importance, the actual DVB content and its extent of reaction has not been well investigated. (author)

  19. Molecular modeling of amorphous and crosslinked cellulose

    Science.gov (United States)

    Chen, Wei

    2001-07-01

    Structure-property relationships in cellulose crosslinked with both conventional and elastomeric crosslinking agents were successfully calculated using molecular modeling. The observed yielding for these amorphous cellulose models, which occurred at approximately 8% strain according to the calculated stress-strain relationship, is due to the disruption of hydrogen bonds, the secondary crosslinks, between cellulose chain segments. Crosslinks hold cellulose chain segments together and block chain slippage to give cellulose fibers a higher initial modulus and better elastic response. However, these crosslinks restrict chain movement so that stress is concentrated in regions of the structure and cavities are formed and developed in these regions of the models, which correlate to final fiber failure. The flexibility and response to applied external force for some potential crosslink structures were examined by molecular modeling. These molecules, which have small energy differences between conformational states, are highly coiled and have small mean end-to-end distances (accounting for 40% to 50% of the length of their fully extended chains). The presence of oxygen atoms in the backbone along with asymmetric non-polar side groups, such as methyl groups, can greatly reduce the energy difference and the energy barrier between conformational states and can thus make chains highly coiled and easy to be extended. Decane crosslinks introduced more freedom to cellulose chain segments but didn't improve the deformation recovery in cellulose models. Conformational transitions were observed in decane crosslinks during deformation. Cellulose models crosslinked with poly(propylene oxide) pentamers or with the N-methyl substituted peptide pentamers show good deformation recovery without affecting the breaking strain. Both crosslinks didn't significantly change the initial modulus and the yielding behavior of cellulose. No conformation transitions were observed in these crosslinks

  20. Chemical cross-linking of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...

  1. Characterization of Cross-Linked Lipase Aggregates

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2009-01-01

    Commercially available microbial lipases from different sources were immobilized as cross-linked enzyme aggregates (CLEAs) using different precipitants and glutaraldehyde as cross-linkers. These CLEAs were assayed based on esterification between lauric acid and n-propanol in solvent-free systems...

  2. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  3. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  4. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  5. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells

    International Nuclear Information System (INIS)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-01-01

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O 6 -methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p

  6. Mismatch Repair*

    Science.gov (United States)

    Fishel, Richard

    2015-01-01

    Highly conserved MutS homologs (MSH) and MutL homologs (MLH/PMS) are the fundamental components of mismatch repair (MMR). After decades of debate, it appears clear that the MSH proteins initiate MMR by recognizing a mismatch and forming multiple extremely stable ATP-bound sliding clamps that diffuse without hydrolysis along the adjacent DNA. The function(s) of MLH/PMS proteins is less clear, although they too bind ATP and are targeted to MMR by MSH sliding clamps. Structural analysis combined with recent real-time single molecule and cellular imaging technologies are providing new and detailed insight into the thermal-driven motions that animate the complete MMR mechanism. PMID:26354434

  7. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  8. DNA repair in B. subtilis: an inducible dimer-specific W-reactivation system

    International Nuclear Information System (INIS)

    Fields, P.I.; Yasbin, R.E.

    1982-01-01

    The W-reactivation system of Bacillus subtilis can repair pyrimidine dimers in bacteriophage DNA. This inducible repair system can be activated by treatment of the bacteria with uv, alkylating agents, cross-linking agents and gamma irradiation. However, bacteriophage treated with agents other than those that cause pyrimidine dimers to be produced was not repaired by this unique form of W-reactivation. In contrast, the W-reactivation system of Escherichia coli can repair a variety of damages placed in the bacteriophage DNA

  9. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of

  10. Synthesis and Characterization of Ionically Crosslinked Elastomers

    Science.gov (United States)

    2016-01-01

    ionomer with a anionic  monomer , and crosslinking by  copolymerization  with a hydrophobic  monomer .  While these materials displayed signatures of...agents capable of acting as crosslinkers (i.e. RAFT agent  crosslinker) in  free   radical  polymerization. RAFT agents with two styrenic functionalities...prepared: sample A  was prepared with a 30% n‐butyl  acrylate  solution in  chlorobenzene with 6 mol% crosslinker (based on the n‐butyl  acrylate   monomer

  11. Disorder by random crosslinking in smectic elastomers

    International Nuclear Information System (INIS)

    Lambreva, Denitza M.; Jeu, Wim H. de; Ostrovskii, Boris I.; Finkelmann, Heino

    2004-01-01

    We present a high-resolution x-ray study of the effects of disorder due to random crosslinking on the one-dimensional translational ordering in smectic elastomers. At a small crosslink density of about 5%, the elastomer network stabilizes the smectic structure against layer-displacement fluctuations, and the algebraically decaying layer ordering extends up to several micrometers. With increasing concentration of crosslinks, the finite size of these domains is strongly reduced, indicating that disordering takes over. Finally, at a crosslink concentration of 20%, the structure factor can be described by a Lorentzian, which signals extended short-range correlations. The findings are discussed in terms of recent theories of randomly quenched disorder

  12. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  13. Electrical and mechanical properties of crosslinked polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Oka, O. (Technical Research Lab., Tomoegawa Paper Co., Ltd., Shizuoka (Japan)); Kiyohara, O. (Technical Research Lab., Tomoegawa Paper Co., Ltd., Shizuoka (Japan)); Morita, S. (Dept. of Electronic Engineering, Osaka Univ., Suita (Japan)); Yoshino, K. (Dept. of Electronic Engineering, Osaka Univ., Suita (Japan))

    1993-03-22

    Crosslinked polyanilines were prepared by three different methods, and their electrical and mechanical properties were evaluated. The first method is to crosslink between the main chains of polyaniline by heating. The second is to crosslink by forming hydrogen bond between polyanilines (being a gel state) and crystallization. The last is tc crosslink at the N-position of polyanilines using isocyanate terminated 1,2-polybutadiene as a crosslinking agent. Every crosslinked polyaniline obtained form a self-standing film, and the films show increase of about ten orders of magnitude in the electric conductivity by doping and decrease in the activation energy. Especially, these tendencies are remarkable in the film prepared from the gel state (the second method). The conductivity of the film prepared from the third method is in the same level with the other films in spite of containing polybutadiene 33wt% in the film. In all films, the temperature dependence of dynamic modulus is very small. Particularly, the modulus of the film firmed from the second method is less dependent on temperature in the range of -150 C to 350 C. (orig.)

  14. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications.

    Science.gov (United States)

    Capanema, Nádia S V; Mansur, Alexandra A P; de Jesus, Anderson C; Carvalho, Sandhra M; de Oliveira, Luiz C; Mansur, Herman S

    2018-01-01

    This study focused on the synthesis and comprehensive characterization of environmentally friendly hydrogel membranes based on carboxymethyl cellulose (CMC) for wound dressing and skin repair substitutes. These new CMC hydrogels were prepared with two degrees of functionalization (DS=0.77 and 1.22) and chemically crosslinked with citric acid (CA) for tuning their properties. Additionally, CMC-based hybrids were prepared by blending with polyethylene glycol (PEG, 10wt.%). The results demonstrated that superabsorbent hydrogels (SAP) were produced with swelling degree typically ranging from 100% to 5000%, which was significantly dependent on the concentration of CA crosslinker and the addition of PEG as network modifier. The spectroscopical characterizations indicated that the mechanism of CA crosslinking was mostly associated with the chemical reaction with CMC hydroxyl groups and that PEG played an important role on the formation of a hybrid polymeric network. These hydrogels presented very distinct morphological features depended on the degree of crosslinking and the surface nanomechanical properties (e.g., elastic moduli) were drastically affected (from approximately 0.08GPa to 2.0GPa) due to the formation of CMC-PEG hybrid nanostructures. These CMC-based hydrogels were cytocompatible considering the in vitro cell viability responses of over 95% towards human embryonic kidney cells (HEK293T) used as model cell line. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Combined theoretical and computational study of interstrand DNA guanine-guanine cross-linking by trans-[Pt(pyridine)2] derived from the photoactivated prodrug trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2

    Czech Academy of Sciences Publication Activity Database

    Tai, H.-Ch.; Brodbeck, R.; Kašpárková, Jana; Farrer, N.J.; Brabec, Viktor; Sadler, P.J.; Deeth, R.J.

    2012-01-01

    Roč. 51, č. 12 (2012), s. 6830-6841 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GAP301/10/0598 Institutional research plan: CEZ:AV0Z50040702 Keywords : platinum * photoactivation * DNA Subject RIV: BO - Biophysics Impact factor: 4.593, year: 2012

  16. Relationship of DNA lesions and their repair to chromosomal aberration production

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers.

  17. Cross-linking reconsidered : binding and cross-linking fields and the cellular response

    NARCIS (Netherlands)

    Sulzer, B.; Boer, R.J. de; Perelson, A.S.

    1996-01-01

    We analyze a model for the reversible cross-linking of cell surface receptors by a collection of bivalent ligands with different affinities for the receptor as would be found in a polyclonal anti-receptor serum. We assume that the amount of cross-linking determines, via a monotonic function, the

  18. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  19. Control of PDMS crosslinking by encapsulating a hydride crosslinker in a PMMA microcapsule

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2014-01-01

    crosslinker in a PMMA shell. Microcapsules are mixed with vinyl-terminated PDMS to create a gelation system, which allows for storage at 50 °C, without premature gelation, and in addition allows for extensive crosslinking reaction at 120 °C. Both visual observations and rheological studies show that a robust...... PDMS elastomer is obtained upon heating the gelation system. Furthermore, the influence of stoichiometric imbalance on the equilibrium storage modulus of the PDMS network is investigated, by employing different amounts of microcapsules in vinyl-terminated PDMS. It has been found that adding...... microcapsules increases the equilibrium storage modulus of the PDMS elastomer until the diffusion of the hydride crosslinker is constricted. An optimum amount of crosslinker used in the control crosslinking reaction has also been found. However, compared to the pure PDMS elastomer, the modulus of the PDMS...

  20. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  1. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features

    Directory of Open Access Journals (Sweden)

    Simona Dimida

    2017-01-01

    Full Text Available Genipin (GN is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the cross-linking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma and the hMSCs (human mesenchymal stem cells, as suitable cell models for bone tissue engineering applications of biomaterials.

  2. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan

    2016-12-30

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  3. Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear Pt(II) complexes.

    Science.gov (United States)

    Florian, Jakub; Kasparkova, Jana; Farrell, Nicholas P; Brabec, Viktor

    2012-02-01

    The effects of major DNA intrastrand cross-links of antitumor dinuclear Pt(II) complexes [{trans-PtCl(NH(3))(2)}(2)-μ-{trans-(H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (1) and [{PtCl(DACH)}(2)-μ-{H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry. The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG(298)(0)) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex. Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize DNA.

  4. DNA Mismatch Repair

    Science.gov (United States)

    MARINUS, M. G.

    2014-01-01

    DNA mismatch repair functions to correct replication errors in newly synthesized DNA and to prevent recombination between related, but not identical (homeologous), DNA sequences. The mechanism of mismatch repair is best understood in Escherichia coli and is the main focus of this review. The early genetic studies of mismatch repair are described as a basis for the subsequent biochemical characterization of the system. The effects of mismatch repair on homologous and homeologous recombination are described. The relationship of mismatch repair to cell toxicity induced by various drugs is included. The VSP (Very Short Patch) repair system is described in detail. PMID:26442827

  5. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  6. [Morphologic Corneal Changes after Crosslinking for Keratoconus].

    Science.gov (United States)

    Müller, P L; Löffler, K U; Kohlhaas, M; Holz, F G; Herwig-Carl, M C

    2017-05-03

    Keratoconus is a relatively common (1 : 2000) bilateral disease leading to a change in biochemical and biomechanical corneal structure as well as thinning and ectasia. For more than 10 years, crosslinking has been a therapeutic option in cases of progression. Using riboflavin and UVA-radiation, the anterior corneal stroma (300 µm) gets stiffened by crosslinking of collagen fibers. When protocols and limitations are adhered, the procedure is described to be effective and of low-risk. This review gives an overview about physiologic and pathologic changes in keratoconic corneas before and after crosslinking. Based on histopathologic examination, the current knowledge in published literature is reviewed and is complemented by our own investigations. Georg Thieme Verlag KG Stuttgart · New York.

  7. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs.

    Science.gov (United States)

    Elsabahy, Mahmoud; Samarajeewa, Sandani; Raymond, Jeffery E; Clark, Corrie; Wooley, Karen L

    2013-10-21

    The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)- block -poly(DL-lactide) (PAEA 90 - b -PDLLA 40 ) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) ( i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine.

  8. Cross-linking for microbial keratitis

    Directory of Open Access Journals (Sweden)

    Jayesh Vazirani

    2013-01-01

    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  9. Cross-Linking Studies of Lysozyme Nucleation

    Science.gov (United States)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  10. Hypospadias repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000158.htm Hypospadias repair - discharge To use the sharing features on this page, please enable JavaScript. Your child had hypospadias repair to fix a birth defect in which ...

  11. Anterior vaginal wall repair

    Science.gov (United States)

    ... may have you: Learn pelvic floor muscle exercises ( Kegel exercises ) Use estrogen cream in your vagina Try ... repair; Urinary incontinence - vaginal wall repair Patient Instructions Kegel exercises - self-care Self catheterization - female Suprapubic catheter ...

  12. Retinal detachment repair

    Science.gov (United States)

    ... area (the macula). This can help prevent further detachment of the retina. It also will increase the chance of preserving ... buckling; Vitrectomy; Pneumatic retinopexy; Laser retinopexy; Rhegmatogenous retinal detachment repair Images ... detachment repair - series References Connolly BP, Regillo ...

  13. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  14. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  15. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  16. Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours.

    Science.gov (United States)

    Mellinas-Gomez, Maria; Spanswick, Victoria J; Paredes-Moscosso, Solange R; Robson, Matthew; Pedley, R Barbara; Thurston, David E; Baines, Stephen J; Stell, Anneliese; Hartley, John A

    2015-08-19

    Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by

  17. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    stability, and outstanding dielectric properties. The excellent performances of PDMS elastomers enable the realization of pneumatic, electromagnetic, and thermal actuators. In this work, two-layered PDMS films were adhered together by different mixtures of crosslinkers. The double-layered films were...

  18. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  19. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  20. Electrospinning covalently cross-linking biocompatible hydrogelators

    Science.gov (United States)

    Schultz, Kelly M.; Campo-Deaño, Laura; Baldwin, Aaron D.; Kiick, Kristi L.; Clasen, Christian; Furst, Eric M.

    2012-01-01

    Many hydrogel materials of interest are homogeneous on the micrometer scale. Electrospinning, the formation of sub-micrometer to micrometer diameter fibers by a jet of fluid formed under an electric field, is one process being explored to create rich microstructures. However, electrospinning a hydrogel system as it reacts requires an understanding of the gelation kinetics and corresponding rheology near the liquid-solid transition. In this study, we correlate the structure of electrospun fibers of a covalently cross-linked hydrogelator with the corresponding gelation transition and kinetics. Polyethylene oxide (PEO) is used as a carrier polymer in a chemically cross-linking poly(ethylene glycol)-high molecular weight heparin (PEG-HMWH) hydrogel. Using measurements of gelation kinetics from multiple particle tracking microrheology (MPT), we correlate the material rheology with the the formation of stable fibers. An equilibrated, cross-linked hydrogel is then spun and the PEO is dissolved. In both cases, microstructural features of the electrospun fibers are retained, confirming the covalent nature of the network. The ability to spin fibers of a cross-linking hydrogel system ultimately enables the engineering of materials and microstructural length scales suitable for biological applications. PMID:23459473

  1. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao

    1997-01-01

    Free radicals in crosslinked PTFE which formed by 60 Co γ-rays irradiation at 77 K and at room temperature were studied by electron spin resonance (ESR) spectroscopy. The crosslinked PTFE specimens with different crosslinking density were prepared by electron beam irradiation in the molten state. The ESR spectra observed in the irradiated crosslinked PTFE are much different from those in non-crosslinked PTFE (virgin); a broad singlet component increases with increasing the crosslinking density, G-value of radicals is much higher in crosslinked PTFE than in non-crosslinked one. Free radicals related to the broad component are trapped in the non-crystalline region of crosslinked PTFE and rather stable at room temperature, whereas radicals trapped in amorphous non-crosslinked PTFE are unstable at room temperature. It is thought that most of free radicals trapped in the crosslinked PTFE are formed in the crosslinked amorphous region. The trapped radicals decays around 383 K (110 o C) due to the molecular motion of α-relaxation. (Author)

  3. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  4. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    Science.gov (United States)

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Controlled Light Cross-Linking Technique to Prepare Healable Materials

    Directory of Open Access Journals (Sweden)

    Soliman Abdalla

    2017-06-01

    Full Text Available Detection of defects, damages and cracks in structural polymers is very difficult, and even if they are detected, they will be very hard to be repaired. This is because different kinds of stress can reduce the mechanical efficiency of structural and functional thermosetting composite materials and they can damage the polymer matrix, thus reducing the purposed properties. General healing processes use thermal energy “alone” to heal these materials, thus impairing the intended properties of the materials. Therefore, we present a thermal healing ability that can be switched-on and/or -off at desire using illumination by photon energy (visible and ultra violet. By this technique, one can control local heal while keeping the efficiency of the material nearly unchanged. Furan-based cross-linker chemically reacts (forward- and reverse-reaction with short-chains of maleimide-substituted poly(lauryl methacrylate to form robust chemical bonds. This permits us to perform local control over thermally induced de- and/or re-cross-linking techniques. One can extend and apply this technique to cover micro-devices, coating-techniques, fine lithography, micro- and nano-fabrication processes, etc. Therefore, the present work developed a suitable technology with structural polymeric material, which has the ability to self-heal cracks (and damages and recover structural function.

  6. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels.

    Science.gov (United States)

    Noshadi, Iman; Hong, Seonki; Sullivan, Kelly E; Shirzaei Sani, Ehsan; Portillo-Lara, Roberto; Tamayol, Ali; Shin, Su Ryon; Gao, Albert E; Stoppel, Whitney L; Black, Lauren D; Khademhosseini, Ali; Annabi, Nasim

    2017-09-26

    Photocrosslinkable materials have been frequently used for constructing soft and biomimetic hydrogels for tissue engineering. Although ultraviolet (UV) light is commonly used for photocrosslinking such materials, its use has been associated with several biosafety concerns such as DNA damage, accelerated aging of tissues, and cancer. Here we report an injectable visible light crosslinked gelatin-based hydrogel for myocardium regeneration. Mechanical characterization revealed that the compressive moduli of the engineered hydrogels could be tuned in the range of 5-56 kPa by changing the concentrations of the initiator, co-initiator and co-monomer in the precursor formulation. In addition, the average pore sizes (26-103 μm) and swelling ratios (7-13%) were also shown to be tunable by varying the hydrogel formulation. In vitro studies showed that visible light crosslinked GelMA hydrogels supported the growth and function of primary cardiomyocytes (CMs). In addition, the engineered materials were shown to be biocompatible in vivo, and could be successfully delivered to the heart after myocardial infarction in an animal model to promote tissue healing. The developed visible light crosslinked hydrogel could be used for the repair of various soft tissues such as the myocardium and for the treatment of cardiovascular diseases with enhanced therapeutic functionality.

  7. Radiation cross-linking of fluoropolymers: Pt.2

    International Nuclear Information System (INIS)

    Sun Jiazhen; Zhu Xianglin; Zhang Yuefang

    1987-01-01

    On the basis of the results of IR analysis, ESR, ESCA and chemical anlaysis, the mechanism of radiation crosslinking of fluoropolymer Fs-46 was suggested. The crosslinking point of Fs-46 is not on the side chain-CF 3 -group, as Bowers suggest with their theoretical analysis, it may carried out with recombination of two side chain radicals directly, crosslinking with H type, or recombination of side chain radicals and chain end radicals through branching and then crosslinking. It is crosslinking with T type or Y type. The later one is the probable mechanism

  8. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    Science.gov (United States)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  9. Crosslinked polyurethanes based on hyperbranched polymers

    Directory of Open Access Journals (Sweden)

    Vuković Jasna

    2008-01-01

    Full Text Available In this paper, two samples of polyurethane (PU crosslinked with hydroxy -functonal hyperbranched aliphatic polyester of the second pseudo generation were investigated. For the synthesis of these crosslinked PUs two different macrodiols were used: poly(tetramethyleneoxide (PTMO for PUPTMO and ethylene oxide-poly(dimethylsiloxane-ethylene oxide (PDMS-EO for PUPDMS-EO sample. Synthesized samples behave as elastomers and have yellow color. Obtained results show that swelling degree of the sample PUPDMS-EO in N-methyl-2-pyrrolidinon (NMP determined at room temperature is higher than for the sample PUPTMO. It has been also observed that thermal properties of these polyurethane networks can be changed by incorporation of siloxane sequences in their structure.

  10. [Riboflavin UVA crosslinking in progressive keratoconus].

    Science.gov (United States)

    Maier, P; Reinhard, T

    2017-06-01

    In patients with keratoconus, a progressive, ectatic disease of the cornea, the shape of the cornea is continuously changing leading to a reduction in visual acuity by progressive myopia and more and more (irregular) astigmatism. The symptomatic treatment consists of the prescription of glasses or special gas-permeable rigid contact lenses. Corneal tomography is generally used for diagnosis. After initial diagnosis of keratoconus, regular tomographic follow-ups should be performed. If clinically significant progression is found and confirmed by repeated measurements, riboflavin UVA collagen crosslinking should be offered to the patients. The aim of riboflavin UVA collagen crosslinking is to halt the progression of the disease to avoid further complications. The therapeutic principle is a combined effect of the photosensitizer riboflavin and UVA light. This stiffening effect of the corneal tissue halts the progression of keratoconus. The efficacy of this treatment has been demonstrated in various randomized, controlled trials.

  11. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  12. Effect of Pyrodextrinization, Crosslinking and Heat- Moisture ...

    African Journals Online (AJOL)

    Results: Pyrodextrinization (PD), cross-linking (CL), and heat-moisture treatment (HMT) reduced the swelling power to 6.73, 4.17 and 5.57 g/g, respectively but increased solubility by 59.0, 41, 41.5 and 39.5 %, respectively, and tended to decrease gelatinization enthalpy (ÄH). Starch yield was 25.7 % on a whole seed basis.

  13. Intrastromal crosslinking in post-LASIK ectasia

    Directory of Open Access Journals (Sweden)

    Bernardo Kaplan Moscovici

    2014-06-01

    Full Text Available Descrevemos um caso de ectasia de córnea precoce após cirurgia de LASIK, detectado no primeiro semestre pós-operatório. Nós optamos tratar este paciente com "crosslinking" embaixo do "flap" , sem desepitelização com bons resultados. A paciente permaneceu sem progressão da ectasia até o momento atual, dois anos após o procedimento.

  14. Thermal Analyse sof Cross-Linked Polyethylene

    Directory of Open Access Journals (Sweden)

    Radek Polansky

    2007-01-01

    Full Text Available The paper summarizes results obtained during the structural analyses measurements (Differential Scanning Calorimetry DSC, Thermogravimetry TG, Thermomechanical analysis TMA and Fourier transform infrared spectroscopy FT-IR. The samples of cross-linked polyethylene cable insulation were tested via these analyses. The DSC and TG were carried out using simultaneous thermal analyzer TA Instruments SDT Q600 with connection of Fourier transform infrared spectrometer Nicolet 380. Thermomechanical analysis was carried out by TMA Q400EM TA Instruments apparatus.

  15. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  16. Radiation crosslinked polymers in the building industry

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Smit, J.H.

    1987-01-01

    The South African building industry today is presented with a unique challenge to provide alternative low-cost housing at a rate that conventional construction methods and materials cannot meet. It is generally acknowledged that the locally produced polymers such as polyethylene and polyvinylchloride can alleviate some of the problems encountered with conventional construction techniques. The radiation-modification of these polymers plays an ever increasing role in modifying the physical properties and extending the applications of these materials. Whereas in the past the technical and economic aspects inherent in this technology restricted the more general use of radiation crosslinking, large-scale irradiation facilities are now available on a service basis for the radiation-modification of polymers and can thus overcome these earlier limitations - especially so in the case of the smaller convertor. In agreement with the crosslinking of thermoplastics in general, radiation crosslinking can lead to important changes in the polymer properties such as, an improvement in the thermal stability thereof and the suppression of its flammability, an improvement in its dimensional stability and many other mechanical properties including abrasion resistance. This process also improves the resistance to common solvents for these polymers. Recent developments in South Africa to enhance the properties of common thermoplastics for the building industry through radiation processing is discussed

  17. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    Science.gov (United States)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  18. Ultrafast crosslinking of styrene-butadiene rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Decker, C.; Trieu, N.T.V. [CNRS, Mulhouse (France). Dept. de Photochimie

    2000-07-01

    Thermoplastic elastomers, like styrene-butadiene rubbers (SBS), are usually made of triblock copolymers which form segregated glassy and elastomeric domains. These polymeric materials exhibit a high elasticity and resiliency, but a poor resistance to organic solvents. Moreover, they start to flow upon heating above 80 C, the polystyrene glass transition temperature, when the physical network loses its cohesion. An effective way to make these polymers more resistant to solvents and elevated temperatures, as required for hot-melt adhesive applications, is to create covalent bonds between the elastomeric chains. Such a chemical network can be readily formed by photoinitiated crosslinking through the vinyl and butene double bonds located on the polybutadiene chain. Upon UV-curing, the shear adhesion failure temperature (SAFT) was found to rise from 80 C to over 160 C, while the polymer remained tacky and became completely insoluble. The main advantage of photoinitiation is that crosslinking is achieved within seconds at ambient temperature, selectively in the illuminated areas, by a solvent-free process. This technology is therefore of great interest for adhesives and sealants applications, as well as for the manufacture of flexographic printing plates. We report here how the curing performance of photosensitive SBS-based resins can be substantially improved by using a trifunctional thiol as crosslinking agent. (orig.)

  19. Relation between four types of radiation damage and induced repair

    International Nuclear Information System (INIS)

    Radar, M.L.

    1977-08-01

    Four strains of Escherichia coli were exposed to uv and gamma radiation. Procedures are described for mutational studies, classification of revertants, inhibition of postirradiation DNA degradation and radioresistance. Comparisons were made of induction of the error-prone repair (epr) system with four mutagens; uv radiation, near uv radiation, gamma radiation, and DNA-protein crosslinks. An increase in the number of mutations was shown in every case. The observation that induction of mutagenesis, induction of inhibition of post-irradiation DNA degradation, and induction of radioresistance are closely parallel phenomena led to the investigation of the possibility that DNA-protein crosslinks which were known mutagens were also inducers of the epr system. The significance of the results is discussed

  20. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  1. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  2. TISSUE REGENERATING CAPACITY OF CARBODIIMIDE-CROSS-LINKED DERMAL SHEEP COLLAGEN DURING REPAIR OF THE ABDOMINAL-WALL

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    In future, the function of collagen-based biomaterials as temporary scaffolds for the generation of new tissue may be emphasized. In this study the function of dermal sheep collagen (DSC) crosslinked with carbodiimide (ENDSC) as repair material for abdominal wall defects in rats was compared with

  3. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy.

    Science.gov (United States)

    Dzagnidze, Anna; Katsarava, Zaza; Makhalova, Julia; Liedert, Bernd; Yoon, Min-Suk; Kaube, Holger; Limmroth, Volker; Thomale, Juergen

    2007-08-29

    The pronounced neurotoxicity of the potent antitumor drug cisplatin frequently results in the onset of peripheral polyneuropathy (PNP), which is assumed to be initially triggered by platination products in the nuclear DNA of affected tissues. To further elucidate the molecular mechanisms, we analyzed in a mouse model the formation and processing of the main cisplatin-induced DNA adduct (guanine-guanine intrastrand cross-link) in distinct neuronal cell types by adduct-specific monoclonal antibodies. Comparison of the adduct kinetics in cisplatin-injected mice either proficient or deficient for nucleotide excision repair (NER) functions revealed the essential role of this DNA repair pathway in protecting differentiated cells of the nervous system from excessive formation of such lesions. Hence, chronic exposure to cisplatin resulted in an accelerated accumulation of unrepaired intrastrand cross-links in neuronal cells of mice with dysfunctional NER. The augmented adduct levels in dorsal root ganglion (DRG) cells of those animals coincided with an earlier onset of PNP-like functional disturbance of their sensory nervous system. Independently from the respective repair phenotype, the amount of persisting DNA cross-links in DRG neurons at a given cumulative dose was significantly correlated to the degree of sensory impairment as measured by electroneurography. Collectively, these findings suggest a new model for the processing of cisplatin adducts in primary neuronal cells and accentuate the crucial role of effectual DNA repair capacity in the target cells for the individual risk of therapy-induced PNP.

  4. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Cruickshank, A.

    1985-01-01

    The tools and techniques developed in the United States and FR Germany to repair damaged fuels assemblies are examined. Two methods of repair are considered:- removal of damaged fuel rods and replacement with sound rods (reconstitution); and removal of sound rods from one assembly structure and placing them into a fresh assembly structure (reassembly). (UK)

  5. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  6. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  7. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  8. Crosslinkers of Different Types in Precipitation Polymerization of Acrylic Acid

    Directory of Open Access Journals (Sweden)

    H. Eshaghi

    2013-01-01

    Full Text Available Crosslinked poly(acrylic acids were prepared using two types of crosslinker by precipitation polymerization method in a binary organic solvent. N,N’-methylenebisacrylamide (MBA and polyethylene glycol dimethacrylate (PEGDMA-330 were used as low-molecular weight and long-chain crosslinkers, respectively. The effect of various types of crosslinkers on polymer characteristics (i.e., gel content, equilibrium swelling, glass transition temperature, and rheological properties was investigated. Maximum amount of viscosity was obtained by using long-chain crosslinker. The Flory-Rehner equation and rubber elasticity theory were used to discuss the network structure of polymer. It was observed that, the glass transition temperature (Tg of the synthesized polymer containing PEGDMA-330 is higher than that of polymer containing MBA. Apparent and rotational viscosity were used to determine the optimal crosslinker type. In addition, the consistencycoefficient (m and flow behavior index (n parameter of Ostwald equation were investigated as well.

  9. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  10. Cross-Linking Aromatic Polymers With Ionizing Radiation

    Science.gov (United States)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Resistance to heat and solvents increased. Certain aromatic polymers containing radiation-sensitive methylene groups cross-linked through methylene groups upon exposure to ionizing radiation. Cross-linked polymers resistant to most organic solvents and generally more resistant to high temperatures, with less tendency to creep under load. No significant embrittlement of parts fabricated from these polymers when degree of cross-linking, as controlled by irradiation dose, kept at moderate level.

  11. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks

  12. Corneal collagen cross-linking: ectasia and beyond.

    Science.gov (United States)

    Suri, Kunal; Hammersmith, Kristin M; Nagra, Parveen K

    2012-07-01

    Corneal collagen cross-linking has recently emerged as a novel approach for management of ectasia. This article reviews the literature published in the past 3 years about the expanding spectrum of cross-linking as a therapeutic modality and its complications. Recent studies have confirmed the beneficial effects of cross-linking in stabilization and to a lesser extent, regression of keratoconus and postrefractive surgery ectasia. Other applications include cross-linking as a combined procedure with intracorneal ring segments, and photorefractive keratectomy for ectasia, corneal edema, and infectious keratitis. Animal studies of chemical cross-linking of sclera as a potential treatment for progressive myopia have also been performed. Various modifications of the technique to increase the safety profile of cross-linking have been reported, including the use of hypoosmolar riboflavin, transepithelial cross-linking, customized epithelial debridement, and higher fluence shorter duration ultraviolet A light exposure. Reported complications include keratitis, corneal haze, endothelial cell loss and failure of treatment. Cross-linking has been shown to be an effective modality for corneal ectasia, the regression being less in patients with postrefractive ectasia than keratoconus. In a few studies, it has been found to be effective in symptomatic improvement of bullous keratopathy, and infectious keratitis but further studies are required. Cross-linking with epithelial debridement is found to be most effective but various modifications are being investigated for an improved, and better safety outcome.

  13. Contraction of cross-linked actomyosin bundles

    Science.gov (United States)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  14. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  15. Enzymatic crosslinking and degradation of gelatin as a switch for bone morphogenetic protein-2 activity.

    Science.gov (United States)

    Kuwahara, Kenrick; Fang, Josephine Y; Yang, Zhi; Han, Bo

    2011-12-01

    Current therapies for tissue regeneration rely on the presence or direct delivery of growth factors to sites of repair. Bone morphogenetic protein-2 (BMP-2), combined with a carrier (usually collagen), is clinically proven to induce new bone formation during spinal fusion and nonunion repair. However, due to BMP-2's short half-life and its diffusive properties, orders of magnitude above physiological levels are required to ensure effectiveness. In addition, a high dose of this multifunctional growth factor is known to induce adverse effects in patients. To circumvent these challenges, we proposed and tested a new approach for BMP-2 delivery, by controlling BMP activity via carrier binding and localized proteolysis. BMP-2 was covalently bound to gelatin through site-specific enzymatic crosslinking using a microbial transglutaminase. Binding of BMP-2 to gelatin can completely switch off BMP-2 activity, as evidenced by loss of its transdifferentiating ability toward C2C12 promyoblasts. When gelatin sequestered BMP-2 is incubated with either microbial collagenase or tissue-derived matrix metalloproteinases, BMP-2 activity is fully restored. The activity of released BMP-2 correlates with the protease activity in a dose- and time-dependent manner. This observation suggests a novel way of delivering BMP-2 and controlling its activity. This improved delivery method, which relies on a physiological feedback, should enhance the known potential of this and other growth factors for tissue repair and regeneration.

  16. Salvage hypospadias repairs

    Directory of Open Access Journals (Sweden)

    Sripathi V

    2008-01-01

    Full Text Available Aim: Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. Methods: This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children - buccal mucosal grafts (BMGs in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. Results: The age of children ranged from 1.5-15 years (mean 4.5. Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50% with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely - a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. Conclusions: In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4-6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised.

  17. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  18. Properties of sericin films crosslinking with dimethylolurea

    Energy Technology Data Exchange (ETDEWEB)

    Turbiani, Franciele R.B.; Stroher, Gylles Ricardo [Federal Technology University - UTFPR, Campus Apucarana, PR (Brazil); Tomadon Junior, Jose; Seixas, Fernanda L.; Stroher, Gylles Ricardo; Gimenes, Marcelino L., E-mail: francieler@utfpr.edu.br [State University of Maringa. UEM, Campus Maringa, PR (Brazil)

    2011-07-01

    Sericin is a natural silk protein which is removed from silk in a process called degumming. Thus, finding a use for the extracted sericin as a bio polymer film will create added value product which will benefit both the economy and society. The films were manufactured with silk sericin, using different dimethylolurea (DMU) concentrations as cross-linking agent and glycerol as plasticizer. Sericin films produced by crosslinking method were light yellow, homogeneous, transparent and visually attractive. The average film thickness was 0.10 {+-} 0.02 mm. The bio films show low water solubility (up to 30% of total dry mass), good tension strength and high elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Structural transformations in silk sericin films were analyzed using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and X-ray diffraction. This resulted in aggregated {beta}-sheet structure (peak at 1616 cm-1 in the amide I absorption) by FTIR studies and increasing the DMU concentration in film decreased the peak intensity at 2{theta} = 20 degree. Sericin-based film properties are dependent on components used to form film, which can used to tailor the desired film flexibility and minimize permeability of films. (author)

  19. POSS-ProDOT Crosslinking of PEDOT.

    Science.gov (United States)

    Wei, Bin; Liu, Jinglin; Ouyang, Liangqi; Martin, David C

    2017-07-07

    Alkoxy-functionalized polythiophenes such as poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT) have become promising materials for a variety of applications including bioelectronic devices due to their high conductivity, relatively soft mechanical response, good chemical stability and excellent biocompatibility. However the long-term applications of PEDOT and PProDOT coatings are still limited by their relatively poor electrochemical stability on various inorganic substrates. Here, we report the synthesis of an octa-ProDOT-functionalized polyhedral oligomeric silsesquioxane (POSS) derivative (POSS-ProDOT) and its copolymerization with EDOT to improve the stability of PEDOT coatings. The POSS-ProDOT crosslinker was synthesized via thiol-ene "click" chemistry, and its structure was confirmed by both Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopies. PEDOT copolymer films were then electrochemically deposited with various concentrations of the crosslinker. The resulting PEDOT-co-POSS-ProDOT copolymer films were characterized by Cyclic Voltammetry, Electrochemical Impedance Spectroscopy, Ultraviolet-Visible spectroscopy and Scanning Electron Microscopy. The optical, morphological and electrochemical properties of the copolymer films could be systematically tuned with the incorporation of POSS-ProDOT. Significantly enhanced electrochemical stability of the copolymers was observed at intermediate levels of POSS-ProDOT content (3.1 wt%). It is expected that these highly stable PEDOT-co-POSS-ProDOT materials will be excellent candidates for use in bioelectronics devices such as neural electrodes.

  20. Valve Repair or Replacement

    Science.gov (United States)

    ... Replacement Menu Topics Topics FAQs Valve Repair or Replacement Heart valves play a key role in this ... leaflets with a tissue patch. What is valve replacement? Severe valve damage means the valve must be ...

  1. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created

  2. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard.

    Science.gov (United States)

    Panahi, Yunes; Fattahi, Amir; Nejabati, Hamid Reza; Abroon, Sina; Latifi, Zeinab; Akbarzadeh, Abolfazl; Ghasemnejad, Tohid

    2018-03-01

    Sulfur mustard (SM) is an alkylating agent that causes severe damages to the skin, eyes, and the respiratory system. DNA alkylation is one of the most critical lesions that could lead to monoadducts and cross-links, as well as DNA strand breaks. In response to these adducts, cells initiate a series of reactions to recruit specific DNA repair pathways. The main DNA repair pathways in human cells, which could be involved in the DNA SM-induced DNA damages, are base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end joining (NHEJ). There is, thus, a need for a short review to clarify which damage caused by SM is repaired by which repair pathway. Increasing our knowledge about different DNA repair mechanisms following SM exposure would lay the first step for developing new therapeutic agents to treat people exposed to SM. In this review, we describe the major DNA repair pathways, according to the DNA adducts that can be caused by SM. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  5. Cross-linking of Poly(sodium acrylate-Based Hydrogels by a Non-vinyl Cross-linker

    Directory of Open Access Journals (Sweden)

    Solmaz Mojarad Jabali

    2016-05-01

    Full Text Available Polyvinyl-based cross-linkers are most frequently used for internal cross-linking of hydrogels, while non-vinyl cross-linkers are used for surface cross-linking of hydrogels by reactions between the pendant groups of hydrogel and functional groups of cross-linkers. The type of internal or external cross-linking of hydrogels strongly affects their final properties. The type of internal or external cross-linking of hydrogels strongly affects the final properties of the products. In this research, the superabsorbent polymers (SAPs based on partially neutralized acrylic acid (AA-NaAA were synthesized by solution polymerization, using a series of new multifunctional cross-linkers such as polyethylene glycol diglycidyl ether (PEGDGE-300, ethylene glycol diglycidyl ether (EGDGE, 1,4-butane diol (BDO and [3-(2,3-epoxypropoxy-propyl]-trimethoxysilane (GPS in the presence of ammonium persulfate-tetramethyl ethylene diamine (APS/TMEDA as initiator. The molecular structures of PEGDGE and GPS hydrogels were detected by FTIR and EDX analyses. The type and concentration of cross-linkers were studied in relation to hydrogels’ free swelling capacity in distilled water and 0.9 wt% NaCl solution and their absorbency under load (AUL and resulting rheological behavior. The result showed that the order of free swelling capacity in the hydrogels synthesized by these four cross-linkers was GPS PEGDGE EGDGE BDO. In a constant free absorbency capacity (about 200 g/g, the cross-linked PEGDGE showed the highest amount of AUL. Furthermore, the rheological results showed the higher swollen gel strength in this hydrogel and confirmed the AUL result. The swelling properties of non-vinyl cross-linkers strongly depended on drying temperature, and hydrogels cured at different temperatures exhibited different rheological properties achieved by a constant amount of cross-linker. The use of non-vinyl cross-linker is a new approach to synthesize hydrogels without any polyvinyl

  6. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Keeping in mind the significance of hydrogels as an external stimuli sensitive super absorbing mate- rial, some transparent covalent hydrogels of chitosan were prepared by crosslinking with varying amounts of formaldehyde solution used as crosslinking agent. The characteristics of hydrogels were investigated by ...

  7. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available The proton exchange membrane was prepared by covalent cross-linking sulfonated-sulfinated polyetheretherketone. The cross-linked membrane showed high proton conductivity (0.04 S/cm) with suitable water uptake, low methanol permeability (2.21 × 10...

  8. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  9. Recent advances in corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Gitansha Shreyas Sachdev

    2017-01-01

    Full Text Available Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications.

  10. Carboxymethylcellulose hydrogel crosslinked with citric acid for biomedical application

    International Nuclear Information System (INIS)

    Capanema, Nadia S.V.; Mansur, Alexandra A.P.; Mansur, Herman S.; Universidade Federal de Minas Gerais

    2016-01-01

    The carboxymethylcellulose (CMCel) has been extensively used in order application as flexible polymer membrane. Biopolymers crosslinked have been studied to optimize their performance in biomedical applications. In this work, CMCel films with a degree of substitution (DS = 0.77) were prepared by evaporation of solvent and crosslinked with different concentrations of citric acid (CA). The synthesized CMCel was characterized by Infrared Spectroscopy by Fourier Transform X-ray spectroscopy (FTIR), and morphology assessed by scanning electron microscopy (SEM). Morphological analysis performed using the SEM indicated the crosslinked CMCel and not crosslinked with a very smooth and uniform appearance. The FTIR results indicated the modification of existing bands and appearance of a new band 1715 cm -1 suggesting that there has been change in the structure of the crosslinked CMCel. (author)

  11. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon x irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 0 C/15 min) given prior to radiation dose not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 0 C. The DNA-protein crosslinks produced y 50-Gy x ray alone are removed after 2 hr at 37 0 C. However, if hyperthermia (43 0 C/15 min) is given prior to 100-Gy x ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding

  12. Measurement of DNA-protein crosslinks in mammalian cells without X-irradiation

    International Nuclear Information System (INIS)

    Gantt, R.; Stephens, E.V.; Davis, S.R.

    1985-01-01

    To study the mechanisms of formation and repair of DNA-protein crosslinks in mammalian cells, the best general method to assay these lesions is the Kohn membrane alkaline elution procedure. Use of this sensitive technique requires the introduction of random strand breaks in the DNA by X-irradiation to reduce the very high molecular weight so that it elutes off the filter at an appropriate rate. This report describes an alternative method for fragmenting the DNA in the absence of X-irradiation equipment. Convenient reproducible elution rates of DNA from various mouse and human cells in culture without X-irradiation result from elution through polyvinyl chloride filters with 75 mM sodium hydroxide (0.33 ml/min) instead of the standard 20 mM EDTA-tetrapropylammonium hydroxide, pH 12.2 (0.03 to 0.04 ml/min). Dose-dependent retardation of the DNA elution was observed over the range 0 to 30 microM trans-platinum(II)diamminedichloride, and proteinase K treatment during cell lysis restored the elution rate to that of the untreated control cell DNA. In the absence of X-irradiation, this elution method measures DNA-protein crosslinks with higher sensitivity and equivalent reproducibility as the air-burst procedure

  13. Gamma irradiation Effect on the Non-Crosslinked and Crosslinked Poly(vinyl alcohol) Films

    International Nuclear Information System (INIS)

    El-Sawy, N.M.; El-Arnaouty, M.B.; Abdel Ghaffar, A.M.

    2008-01-01

    The non-crosslinked and crosslinked poly(vinyl alcohol) (PVA) films were prepared by the cast method then irradiated with gamma rays for various doses up to 300 kGy. The structure and characterization of PVA were determined by using Infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV). Swelling behaviour was also investigated. Mechanical properties have been examined with respect to the absorbed dose. The color of the films changed to yellowish-white after irradiation. Additional changes were observed using FTIR analysis on the degradation products demonstrated that the radiolysis of PVA was initiated by liberation of H and OH groups leading to scission of the main chains and formation of carbonyl and double bond groups. Thermogravimetric analysis (TGA) was performed

  14. Corneal cross-linking treatment of keratoconus

    Directory of Open Access Journals (Sweden)

    Mahgol Farjadnia

    2015-01-01

    Full Text Available Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method.

  15. Tumor bioengineering using a transglutaminase crosslinked hydrogel.

    Directory of Open Access Journals (Sweden)

    Josephine Y Fang

    Full Text Available Development of a physiologically relevant 3D model system for cancer research and drug development is a current challenge. We have adopted a 3D culture system based on a transglutaminase-crosslinked gelatin gel (Col-Tgel to mimic the tumor 3D microenvironment. The system has several unique advantages over other alternatives including presenting cell-matrix interaction sites from collagen-derived peptides, geometry-initiated multicellular tumor spheroids, and metabolic gradients in the tumor microenvironment. Also it provides a controllable wide spectrum of gel stiffness for mechanical signals, and technical compatibility with imaging based screening due to its transparent properties. In addition, the Col-Tgel provides a cure-in-situ delivery vehicle for tumor xenograft formation in animals enhancing tumor cell uptake rate. Overall, this distinctive 3D system could offer a platform to more accurately mimic in vivo situations to study tumor formation and progression both in vitro and in vivo.

  16. The Modification of PVDF Membrane via Crosslinking with Chitosan and Glutaraldehyde as the Crosslinking Agent

    OpenAIRE

    Silitonga, Romaya Sitha; Widiastuti, Nurul; Jaafar, Juhana; Ismail, Ahmad Fauzi; Abidin, Muhammad Nidzhom Zainol; Azelee, Ihsan Wan; Naidu, Mahesan

    2018-01-01

    Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed...

  17. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Directory of Open Access Journals (Sweden)

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  18. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD) toxin.

    Science.gov (United States)

    Kudryashova, Elena; Kalda, Caitlin; Kudryashov, Dmitri S

    2012-01-01

    Actin Crosslinking Domain (ACD) is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5) = 30 µM) reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+)-GTP to support crosslinking, but the kinetic parameters (K(M) = 8 µM and 50 µM for ATP and GTP, respectively) suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  19. Moisture curable toughened poly(lactide utilizing vinyltrimethoxysilane based crosslinks

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-10-01

    Full Text Available Vinyltrimethoxysilane (VTMOS was grafted on to the backbone of poly(lactide (PLA through a free radical grafting reaction using reactive extrusion (REX processing. The methoxy groups of the silane provide the modified PLA sites for crosslinking through a moisture induced pathway. VTMOS grafting efficiencies of up to 90% were obtained. The newly created methoxy functionality of the modified PLA readily undergoes hydrolysis and condensation forming siloxane crosslinks in the material. Crosslinking with VTMOS exhibited improved modulus, strength, and impact toughness while showing a decrease in ductility. Incorporating silanol-terminated poly(dimethylsiloxane (OH-PDMS resulted in the formation of longer siloxane crosslinks. These samples showed an increase in modulus and impact toughness due to the crosslinking, while the longer siloxane linkages resulted in improved ductility and tensile toughness. This is unusual for polymers toughened through crosslinking reactions. Scanning Electron Microscopy (SEM of the fractured surfaces showed the presence of these elongated siloxane crosslinks. This enhanced ability for the modified PLA to deform and absorb energy results in the increase in both impact and tensile toughness.

  20. Development of new materials by utilizing radiation crosslinking

    International Nuclear Information System (INIS)

    Ueno, Keiji; Uda, Yujiro; Suzuki, Shizuo

    1989-01-01

    About 30 years have elapsed since the cables by electron beam crosslinking were developed as the first industrial utilization of radiation in Japan. At present about 200 electron beam accelerators are used industrially in Japan, and cable industry ranks at the top, followed by foaming polyethylene and curing, and the preliminary vulcanization of tires. The effect of these irradiations is the reforming of polymers by radiation crosslinking. In cables, the heat resistance and chemical resistance of insulators are improved by radiation crosslinking. By applying radiation crosslinking to polyurethane elastomer, its weakest point, waterproof property, was improved. Moreover, by using this crosslinked polyurethane elastomer for cable coating, the reliability of the sensor cables for brake system was able to be remarkably improved. As another new application of radiation crosslinking process, the improvement of the heat resistance of engineering plasties was examined. The structure of radiation crosslinked urethane elastomer cables, their endurance in hot water and oil, and the life, and the characteristics of sensor cables are reported. Multi-functional monomers, the molecular structure, and the various characteristics of engineering plastics are described. (K.I.)

  1. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  2. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  3. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical healing results.

  4. Nuclear fuel assembly repair

    International Nuclear Information System (INIS)

    Bassler, E.A.; Stavsky, R.

    1986-01-01

    In response to utility needs to recover investment in nuclear fuel assemblies, Westinghouse Electric Corporation has developed tools and equipment to repair damaged fuel assemblies in an economical and safe manner, to enable utilities to reinsert these assemblies in the core. There are two possible repair techniques - bottom nozzle reconstitution and top nozzle reconstitution. Both techniques have been approved through formal design review; prototype tools have been built and successfully tested. The tools are modular in nature, easily transportable, and designed to fit the spent fuel pool at a reactor site. (author)

  5. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  6. Chemical Crosslinking: Role in Protein and Peptide Science.

    Science.gov (United States)

    Arora, Bharti; Tandon, Rashmi; Attri, Pankaj; Bhatia, Rohit

    2017-01-01

    Chemical crosslinking refers to intermolecular or intramolecular joining of two or more molecules by a covalent bond. The reagents that are used for the purpose are referred to as 'crosslinking reagents' or 'crosslinkers'. Based on factors like reactivity and spacer length these are classified into different types, each having its own specific function and application. In recent times, chemical crosslinking has emerged as an efficient tool for the study of biomolecules like proteins. It finds its application in various studies including the attachment of proteins to a solid support for the study of membrane receptors, protein-protein complexes, protein-DNA complexes, and others. When coupled with techniques like mass spectroscopy, it has been used not only for the determination of three dimensional structures of proteins but also for the study of protein-protein interactions and determination of interesting sites. This combination of mass spectrometry techniques and bioinformatics, added yet another dimension to our present day understanding of protein chemistry. Thus, chemical crosslinking has multitude uses that it can be put to. We undertook a systematic search of bibliographic databases and search engine such as Google Scholar, Scifinder, Scopus, Mendeley etc for review of research literature. We excluded research paper which only reported synthesis of crosslinker molecules and did not involve any mass spectrometry studies. Sixty-four papers were included in the review. The majority of references were taken from last ten years as there has been an immense progress in this area in the recent years. Eleven classical papers in this field were included which talk about basic of this methodology. Thirty-two papers discussed about various types of organic groups used for designing chemical cross-linkers and various methodologies which were used to enhance the crosslinking efficiency. These papers also highlight various strategies used to enhance detection of cross-linked

  7. Production of radiation crosslinked polymeric compositions using diacetylenes

    International Nuclear Information System (INIS)

    Patel, G.N.

    1979-01-01

    Crosslinked polymeric compositions, useful as electrical insulators, heat shrinkable packaging, and lightweight foam plastics, are described. The crosslinked polymeric compositions are produced by admixing a diacetylene monomer, oligomer, polymer or mixture thereof, wherein the monomer has the formula, RNHCO-O-CH 2 -C==C-C==C-CH- 2 -O-OCNHR' in which R and R' are the same or different and are alkyl containing 1 to 20 carbon atoms, with a thermoplastic crosslinkable polymer and then subjecting the resulting mixture to actinic radiation

  8. Crosslinking of commercial polyethylenes by 10 MeV electrons

    International Nuclear Information System (INIS)

    Singh, A.; Lopata, V.J.; Kremers, W.; Sze, Yu-keung

    1995-08-01

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  9. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  10. Radiation degradation and crosslinking of polytetrafluoroethylene and its application

    International Nuclear Information System (INIS)

    Wu Guozhong; Wang Mouhua; Tang Zhongfeng

    2009-01-01

    Polytetrafluoroethylene (PTFE) is a high-performance engineering plastic and known as a typical material of radiation degradation. PTFE can be degraded by radiation under various conditions and PTFE micro-powder is usually fabricated by a combination of radiation and milling. PTFE can also be crosslinked by irradiation in the melt state (330∼340 degree C). The materials can be applied as a special additive due to its excellent wear resistance. Crosslinked PTFE may also be applied in lithography and fuel cell membrane in the future. In this paper, history and application of PTFE degradation and crosslinking products are reviewed. (authors)

  11. A Molecular Dynamics Study of Crosslinked Phthalonitrile Polymers: The Effect of Crosslink Density on Thermomechanical and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Janel Chua

    2018-01-01

    Full Text Available In this work, molecular dynamics (MD and molecular mechanics (MM simulations are used to study well-equilibrated models of 4,4′-bis(3,4-dicyanophenoxybiphenyl (BPh–1,3-bis(3-aminophenoxybenzene (m-APB phthalonitrile (PN system with a range of crosslink densities. A cross-linking technique is introduced to build a series of systems with different crosslink densities; several key properties of this material, including thermal expansion, mechanical properties and dielectric properties are studied and compared with experimental results. It is found that the coefficient of linear thermal expansion predicted by the model is in good agreement with experimental results and indicative of the good thermal stability of the PN polymeric system. The simulation also shows that this polymer has excellent mechanical property, whose strength increases with increasing crosslink density. Lastly and most importantly, the calculated dielectric constant—which shows that this polymer is an excellent insulating material—indicates that there is an inverse relation between cross-linking density and dielectric constant. The trend gave rise to an empirical quadratic function which can be used to predict the limits of attainable dielectric constant for highly crosslinked polymer systems. The current computational work provides strong evidence that this polymer is a promising material for aerospace applications and offers guidance for experimental studies of the effect of cross-linking density on the thermal, mechanical and dielectric properties of the material.

  12. Groin hernia repair in young males: mesh or sutured repair?

    DEFF Research Database (Denmark)

    Bisgaard, T; Bay-Nielsen, M; Kehlet, H

    2010-01-01

    Large-scale data for the optimal inguinal hernia repair in younger men with an indirect hernia is not available. We analysed nationwide data for risk of reoperation in younger men after a primary repair using a Lichtenstein operation or a conventional non-mesh hernia repair....

  13. Electro active repair of concrete: innovation for increased repair durability

    NARCIS (Netherlands)

    Polder, R.B.; Geiker, M.R.

    2017-01-01

    Many repairs of chloride induced corrosion in practice fail within 10 years due to chloride remaining after cleaning the steel, causing corrosion re-activation. An improvement of conventional repair was invented, Electro Active Repair, that electrochemically removes chlorides. After concrete

  14. Ship Repair Workflow Cost Model

    National Research Council Canada - National Science Library

    McDevitt, Mike

    2003-01-01

    The effects of intermittent work patterns and funding on the costs of ship repair and maintenance were modeled for the San Diego region in 2002 for Supervisor of Shipbuilding and Repair (SUPSHIP) San Diego...

  15. Composite Repair System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the...

  16. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  17. Fanconi anemia proteins and endogenous stresses

    International Nuclear Information System (INIS)

    Pang Qishen; Andreassen, Paul R.

    2009-01-01

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  18. Fanconi anemia proteins and endogenous stresses

    Energy Technology Data Exchange (ETDEWEB)

    Pang Qishen [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States); Andreassen, Paul R., E-mail: Paul.Andreassen@cchmc.org [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2009-07-31

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  19. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering

    Science.gov (United States)

    Mazaki, Tetsuro; Shiozaki, Yasuyuki; Yamane, Kentaro; Yoshida, Aki; Nakamura, Mariko; Yoshida, Yasuhiro; Zhou, Di; Kitajima, Takashi; Tanaka, Masato; Ito, Yoshihiro; Ozaki, Toshifumi; Matsukawa, Akihiro

    2014-01-01

    Osteochondral injuries remain difficult to repair. We developed a novel photo-cross-linkable furfurylamine-conjugated gelatin (gelatin-FA). Gelatin-FA was rapidly cross-linked by visible light with Rose Bengal, a light sensitizer, and was kept gelled for 3 weeks submerged in saline at 37°C. When bone marrow-derived stromal cells (BMSCs) were suspended in gelatin-FA with 0.05% Rose Bengal, approximately 87% of the cells were viable in the hydrogel at 24 h after photo-cross-linking, and the chondrogenic differentiation of BMSCs was maintained for up to 3 weeks. BMP4 fusion protein with a collagen binding domain (CBD) was retained in the hydrogels at higher levels than unmodified BMP4. Gelatin-FA was subsequently employed as a scaffold for BMSCs and CBD-BMP4 in a rabbit osteochondral defect model. In both cases, the defect was repaired with articular cartilage-like tissue and regenerated subchondral bone. This novel, photo-cross-linkable gelatin appears to be a promising scaffold for the treatment of osteochondral injury. PMID:24662725

  20. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  1. DNA Repair Systems

    Indian Academy of Sciences (India)

    D N Rao is a professor at the. Department of Biochemistry,. Indian Institute of Science,. Bengaluru. His research work primarily focuses on. DNA interacting proteins in prokaryotes. This includes restriction-modification systems, DNA repair proteins from pathogenic bacteria and and proteins involved in horizontal gene ...

  2. Comprehensive Small Engine Repair.

    Science.gov (United States)

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  3. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  4. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  5. Reactions of Glyceraldehyde 3-Phosphate Dehydrogenase Sulfhydryl Groups with bis-Electrophiles Produce DNA-Protein Crosslinks but Not Mutations

    Science.gov (United States)

    Loecken, Elisabeth M.; Guengerich, F. Peter

    2014-01-01

    The environmental contaminant 1,2-dibromoethane and diepoxybutane, an oxidation product of the important industrial chemical butadiene, are bis-functional electrophiles and known to be mutagenic and carcinogenic. One mechanism by which bis-electrophiles can exert their toxic effects is through the induction of genotoxic and mutagenic DNA–peptide crosslinks. This mechanism has been shown in systems overexpressing the DNA repair protein O6-alkylguanine DNA-alkyltransferase (AGT) or glutathione S-transferase and involves reactions with nucleophilic cysteine residues. The hypothesis that DNA-protein crosslink formation is a more general mechanism for genotoxicity by bis-electrophiles was investigated by screening nuclear proteins for reactivity with model monofunctional electrophiles. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was identified as a candidate due to the nucleophilicity of two cysteine residues (Cys152 and Cys246) in reaction screens with model electrophiles (Dennehy, M. K. et al. (2006) Chem. Res. Toxicol. 19, 20–29). Incubation of GAPDH with bis-electrophiles resulted in inhibition of its catalytic activity, but only at high concentrations of diepoxybutane. In vitro assays indicated DNA-GAPDH crosslink formation in the presence of diepoxybutane, and bis-electrophile reactivity at Cys246 was confirmed using mass spectral analysis. In contrast to AGT, overexpression of human GAPDH in Escherichia coli did not enhance mutagenesis by diepoxybutane. We propose that the lack of mutational enhancement is in part due to the inherently lower reactivity of GAPDH toward bis-electrophiles as well as the reduced DNA binding ability relative to AGT, preventing the in vivo formation of DNA-protein crosslinks and enhanced mutagenesis. PMID:18163542

  6. In vivo behavior of epoxy-crosslinked porcine heart valve cusps and walls

    NARCIS (Netherlands)

    van Wachem, Pauline B.; Brouwer, Linda A.; Zeeman, R.; Dijkstra, Pieter J.; Feijen, Jan; Hendriks, Marc; Cahalan, Patrick T.; van Luyn, Marja J.A.

    2000-01-01

    Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or

  7. In vivo behavior of epoxy-crosslinked porcine heart valve cusps and walls

    NARCIS (Netherlands)

    van Wachem, PB; Brouwer, LA; Zeeman, R; Dijkstra, PJ; Feijen, J; Hendriks, M; Cahalan, PT; van Luyn, MJA

    Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats, Non-crosslinked valves and valves crosslinked with glutaraldehyde or

  8. Photoreactivities and thermal properties of psoralen cross-links

    International Nuclear Information System (INIS)

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-01-01

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link

  9. Post-electrospinning crosslinking of guar/polyvinyl alcohol membrane

    Directory of Open Access Journals (Sweden)

    Shi Jingjing

    2016-01-01

    Full Text Available College of Material and Textile Engineering, Jiaxing University, Jiaxing, China The present study reports post-electrospinning crosslinking of guar/polyvinyl alcohol (PVA/citric acid nanofiber membranes by heat treatment. Porous, interconnected nonwoven nanofiber membranes (average diameter 194±23 nm were electrospun from a homogeneous blend of 1wt% guar gum and 8wt% polyvinyl alcohol solution (3:7 weight ratio containing 5 wt% (by the total weight of the solution citric acid. The electrospun nanofiber membranes were then cured at 140 oC for 2 h. The crosslinked nanofiber membranes were insoluble in water, while the non-crosslinked membranes dissolved instantaneously. FT-IR spectrum investigates that crosslinking of guar/PVA occurred through esterfication reaction during heat treatment.

  10. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Olde Damink, L.H.H.; Olde damink, L.H.H.; Dijkstra, Pieter J.; Feijen, Jan; Nieuwenhuis, P.

    1994-01-01

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanatecrcrosslinked DSC (HDSC)

  11. Crosslinked collagen/chitosan matrix for artificial livers

    NARCIS (Netherlands)

    Wang, X.H.; Li, D.P.; Wang, W.J.; Feng, Q.L.; Cui, F.Z.; Xu, Y.X.; Song, X.H.; van der Werf, Mark

    2003-01-01

    Matrices composed of collagen and chitosan may create an appropriate environment for the regeneration of livers. In this study, we have prepared, characterized and evaluated a new collagen/chitosan matrix (CCM). The CCM was made by using crosslinking agent

  12. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Science.gov (United States)

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effect of crosslinker on the swelling and adsorption properties of ...

    Indian Academy of Sciences (India)

    016-1220-0. Effect of crosslinker on the swelling and adsorption properties of cationic superabsorbent. TARUN SHARMA and GIRIDHAR MADRAS. ∗. Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India.

  14. Effect of crosslinker on the swelling and adsorption properties of ...

    Indian Academy of Sciences (India)

    methacryloyloxy) ethyl] trimethylammonium chloride have been prepared by free radical solution polymerization with different crosslinkers. They were subjected to repeated cycles of swelling and de-swelling in deionized water and NaCl solution.

  15. AUTOCLAVABLE HIGHLY CROSS-LINKED POLYURETHANE NETWORKS IN OPHTHALMOLOGY

    NARCIS (Netherlands)

    BRUIN, P; MEEUWSEN, EAJ; VANANDEL, MV; WORST, JGF; PENNINGS, AJ

    1993-01-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for

  16. Formulation and Characterization of Glutaraldehyde Cross-Linked ...

    African Journals Online (AJOL)

    Purpose: To formulate biodegradable chitosan microspheres loaded with famotidine to overcome the poor bioavailability and frequent dose administration of the drug. Methods: Chitosan microspheres were prepared by simple emulsification technique based on glutaraldehyde crosslinking. Various process and formulation ...

  17. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate... shall be determined using size exclusion chromatography or an equivalent method. When conducting the...

  18. Effect of crosslinker on the swelling and adsorption properties of ...

    Indian Academy of Sciences (India)

    methacryloyloxy) ethyl] trimethy- lammonium chloride have been prepared by free radical solution polymerization with different crosslinkers. They were subjected to repeated ... Poly(acrylic acid-co-N-isopropylacrylamide) has been syn- thesized with two ...

  19. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Dizdaroglu, M.; Gajewski, E.; Simic, M.G.

    1984-01-01

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  20. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery

    NARCIS (Netherlands)

    Ekkelenkamp, Antonie E.; Elzes, Marie-Louise Rachel; Engbersen, Johan F.J.; Paulusse, Jos M.J.

    2018-01-01

    Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics

  1. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  2. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  3. Cleft lip and palate repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002979.htm Cleft lip and palate repair To use the sharing features on this ... Cheiloplasty; Cleft rhinoplasty; Palatoplasty; Tip rhinoplasty Patient Instructions Cleft lip and palate repair - discharge Images Cleft lip repair - series References ...

  4. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2016-12-01

    rodents as a function of time after surgery. As predicted, those animals in the negative control group (no repair following nerve deficit injury ...80% of penetrating injuries being associated with peripheral nerve damage, typically involve large segmental nerve deficits. Standard repair uses...technology for repair of peripheral nerve injuries involving significant neural deficit with improved functional outcomes for the wounded warrior. The

  5. Riboflavin for corneal cross-linking.

    Science.gov (United States)

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  6. Radiation induced crosslinking of cellulose ethers

    International Nuclear Information System (INIS)

    Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T.

    2002-01-01

    The effects of high-energy radiation on four ethers of cellulose: carboxymethyl (CMC); hydroxypropyl (HPC), hydroxyethyl (HEC) and methylcellulose (MC) were investigated. Polymers are irradiated in solid state and in aqueous solutions at various concentrations. Degree of substitution (DS) of the derivatives, the concentration of their aqueous solutions and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid state and in diluted aqueous solutions resulted in their degradation. However, it was found that for concentrated solutions gel formation occurred. Paste-like form of the initial material, when water plasticizes the bulk of polymer as well as the high dose rate, what prevents oxygen penetration of the polymer during irradiation, have been found favourable for hydrogel formation. Up to 95% of gel fraction was obtained from solutions of CMC with concentration over 50% irradiated by γ-rays or electron beam. It was pointed out that the ability to the formation of the three-dimensional network is related to the DS of anhydroglucose units and a type of chemical group introduced to main chain of cellulose. Produced hydrogels swelled markedly in water. Despite of the crosslinked structure they underwent degradation by the action of cellulase enzyme or microorganisms from compost, and can be included into the group of biodegradable materials. (author)

  7. Cross-linking for microbial keratitis.

    Science.gov (United States)

    Chan, Tommy C Y; Agarwal, Tushar; Vajpayee, Rasik B; Jhanji, Vishal

    2016-07-01

    Microbial keratitis is one of the leading causes of ocular morbidity. The standard treatment consists of antibiotics, which is intensive and is fraught with risks of antibiotic resistance. Corneal collagen cross-linking (CXL) has recently been advocated as an adjunctive therapy for management of microbial keratitis. The addition of CXL to ongoing antimicrobial treatment can have a potential effect on overall duration of the disease, need for corneal transplantation, final visual outcome, and long-term impact on drug resistance pattern. CXL has been used in cases with bacterial, fungal as well as amoebic keratitis. However, so far the reported results have been variable and the evidence is largely anecdotal. The debate over the safety and efficacy of this modality continues especially with regards to its utilization in early phases of the disease when the corneal involvement is limited to the anterior stroma. CXL appears to be a promising adjunctive treatment in selective cases of mild to moderate bacterial keratitis. Its efficacy in fungal and amoebic keratitis is questionable. Treatment protocols in microbial keratitis need to be individualized. Long-term, prospective, randomized trials are needed to determine its usefulness in microbial keratitis.

  8. Covalently crosslinked diels-alder polymer networks.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  9. Highly efficient perovskite solar cells with crosslinked PCBM interlayers

    KAUST Repository

    Qiu, W.

    2017-01-09

    Commercially available phenyl-C-butyric acid methyl ester (PCBM) is crosslinked with 1,6-diazidohexane (DAZH), resulting in films resistant to common solvents used in perovskite solar cell processing. By using crosslinked PCBM as an interlayer and (HC(NH))(CHNH)PbIBr as the active layer, we achieve small area devices and modules with a maximum steady-state power conversion efficiency of 18.1% and 14.9%, respectively.

  10. EFFECT OF CROSSLINKING ON MITOCHONDRIAL CYTOCHROME c OXIDASE

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Maurice; Packer, Lester

    1979-12-01

    Purified and reconstituted cytochrome {und c} oxidase and mitochondria were crosslinked with biimidates in the presence and absence of cytochrome {und c}. These experiments indicate that oxidase subunit interactions are required for activity and that cytochrome {und c} mobility may be required for electron transport activity. Biimidate treatment of purified and reconstituted oxidase crosslinks all of the oxidase protomers except subunit I when {ge} 20% of the free amines are modified and inhibits steady state oxidase activity. Transient kinetics of ferrocytochrome {und c} oxidation and ferricytochrome {und a} reduction indicates inhibition of electron transfer from heme {und a} to heme {und a}{sub 3}. Crosslinking oxidase molecules to form large aggregates displaying rotational correlation times {ge} 1 ms does not affect oxidase activity. Crosslinking of mitochondria covalently binds the bc{sub 1} and {und aa}{sub 3} complexes to cytochrome {und c}, and inhibits steady-state oxidase activity considerably more than in the case of the purified oxidase. Addition of cytochrome {und c} to the purified oxidase or to {und c}-depleted mitoplasts increases inhibition slightly. Cytochrome {und c} oligomers act as competitive inhibitors of native {und c}, however, crosslinking of cytochrome {und c} to {und c}-depleted mitoplasts or purified oxidase (with dimethyl suberimidate or hetrobifunctional crosslinking reagents) results in a catalytically inactive complex.

  11. Identifying proteins that can form tyrosine-cysteine crosslinks.

    Science.gov (United States)

    Martinie, Ryan J; Godakumbura, Pahan I; Porter, Elizabeth G; Divakaran, Anand; Burkhart, Brandon J; Wertz, John T; Benson, David E

    2012-10-01

    Protein cofactors represent a unique class of redox active posttranslational protein modifications formed in or by metalloproteins. Once formed, protein cofactors provide a one-electron oxidant, which is tethered to the protein backbone. Twenty-five proteins are known to contain protein cofactors, but this number is likely limited by the use of crystallography as the identification technique. In order to address this limitation, a search of all reported protein structures for chemical environments conducive to forming a protein cofactor through tyrosine and cysteine side chain crosslinking yielded three hundred candidate proteins. Using hydrogen bonding and metal center proximity, the three hundred proteins were narrowed to four highly viable candidates. An orphan metalloprotein (BF4112) was examined to validate this methodology, which identifies proteins capable of crosslinking tyrosine and cysteine sidechains. A tyrosine-cysteine crosslink was formed in BF4112 using copper-dioxygen chemistry, as in galactose oxidase. Liquid chromatography-MALDI mass spectrometry and optical spectroscopy confirmed tyrosine-cysteine crosslink formation in BF4112. This finding demonstrates the efficacy of these predictive methods and the minimal constraints, provided by the BF4112 protein structure, in tyrosine-cysteine crosslink formation. This search method, when coupled with physiological evidence for crosslink formation and function as a cofactor, could identify additional protein-derived cofactors.

  12. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries.

    Science.gov (United States)

    Munger, Karen A; Downey, Therese M; Haberer, Barb; Pohlson, Katie; Marshall, Lindsey L; Utecht, Ronald E

    2016-02-01

    Development of substituted 1,8-naphthalimides for photochemical cross-linking of biomolecules is the focus of this research. This study describes limited cross-linking of collagen in the artery wall to control recoil and buckling in arteries following balloon angioplasty. Isolated porcine arteries were overstretched (25%) with balloon angioplasty (BA) +/- light-activated naphthalimide treatment (NVS). Lumen size and recoil were measured as retention of stretch after angioplasty. Cross-sectional compliance and distensibility coefficients were measured as slope of cross-sectional area versus increasing hydrostatic pressure. Buckling was measured, with 30% axial pre-stretch and 200 mmHg, as deviation from the center line. Electron microscopy evaluation of collagen fibers was conducted. Uninjured arteries have low compliance and low levels of buckling, whereas the BA-injured arteries demonstrated much greater compliance and buckling behavior. Treatment of the injured artery with NVS reduced buckling and demonstrated compliance midway between the two groups while retaining the increased luminal diameter imparted by angioplasty compared to untreated vessels. In summary, limited collagen cross-linking with NVS treatment resulted in lumen retention, as well as improved compliance without the accompanying rigidity and stiffness of conventional stent therapy or current cross-linking materials. This treatment shows great promise for dilation, repair and strengthening of arteries damaged by injury or vascular disease. © 2015 Wiley Periodicals, Inc.

  13. The spectra character of photodegraded the pyridinoline cross-links by Hypocrellin B

    International Nuclear Information System (INIS)

    Zhang Jucheng; Chen Rui; Liu Wei; Chen Zhuo; Shu Lidan; Liu Yingji

    2011-01-01

    Pyridinoline cross-links is one of the cross-link formation in collagen which in cell matrix, many research shown that this cross-link cause the fibrosis. Hypocrellin B (HB) is one of the nature photosensitizers, this work investigated the pyridinoline cross-link in collagen was photodegraded by HB. The result shown HB can degrade the pyridinoline cross-link with photo. This is to say, HB may be use as the photodynamic reagent to study the fibrosis.

  14. Suturing property of tough double network hydrogels for bio-repair materials

    Science.gov (United States)

    Na, Yang Ho; Oh, Hwa Yeon; Ahn, Young Ju; Han, Youngbae

    2015-02-01

    Cartilage and meniscal lesions have limited potential for spontaneous repair. Consequently, much effort has been made to develop methods for repairing such lesions. Double-network (DN) gels are new candidate-materials for repairing such lesions. They exhibit exceptional mechanical strength and toughness in spite of their high water content. In this study, we prepared highly tough DN hydrogels and investigated the mechanical properties related to clinical implant use. The mechanical properties such as Young's modulus and suture tear-out strength were measured for the artificial replacement. The results suggest that the suture property of DN hydrogels can be adjusted by controlling the crosslinking density and monomer concentration. Finite element method was also applied to these DN hydrogels in order to check whether the fracture strength of the material is enough to meet a medical purpose.

  15. Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite.

    Science.gov (United States)

    Huang, Ruihua; Zhang, Lujie; Hu, Pan; Wang, Jing

    2016-05-01

    Batch experiments were executed to investigate the removal of Congo red (CR) from aqueous solutions using the crosslinked chitosan (CCS) and crosslinked chitosan immobilized bentonite (CCS/BT composite). The CCS and CCS/BT composite were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The removal of CR was examined as a function of pH value of CR solution, contact time, and inorganic sodium salt and ionic strength. The equilibrium data of CCS and CCS/BT composite agreed well with the Langmuir model. The adsorption capacities of CCS and CCS/BT composite at 298K and natural pH value were 405 and 500 mg/g, respectively. The kinetic data correlated well with the pseudo-second-order model. The adsorption of CR onto the CCS was mainly controlled by chemisorption while the adsorption of CR onto the CCS/BT composite was controlled by chemisorption and the electrostatic attraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Gene Therapy for Cartilage Repair

    Science.gov (United States)

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  17. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  18. Collagen Cross-linking for Microbial Keratitis

    Science.gov (United States)

    Garg, Prashant; Das, Sujata; Roy, Aravind

    2017-01-01

    Collagen cross-linking is gaining popularity not only for arresting the progression of keratoconus but also other indications including management of corneal infections. In this review article, we analyzed the published literature to understand the level of evidence for its use in corneal ulcer. Photoactivated riboflavin and ultraviolet A light are known to possess antimicrobial properties. The treatment also induces formation of inter- and intra-fibrillar bonds, thereby making the corneal collagen resistant to the action of proteases arresting stromal melt. Both properties are well documented in in vitro experiments. The antimicrobial action is seen against bacteria, fungi, and parasites. The animal experiments have documented its efficacy against bacterial and fungal keratitis models. The literature on its application in human corneal infection is highly variable and comprises case reports, case series, and comparative nonrandomized and randomized trials. The treatment has been used as primary treatment, adjunctive treatment along with antibiotics, as the first line of treatment as well as for failed medical treatment cases. Even the cases included are of variable severity caused by a variety of microorganisms including culture-negative cases. Furthermore, the treatment protocols are also variable. While most reports show beneficial effects for bacterial corneal ulcer cases, especially those with superficial infiltrate, the effect has been mixed for fungal and parasitic keratitis. In view of these characteristics, we infer that the level of evidence for its use in corneal ulcer is at most weak. We need well-characterized, high-quality, clinical trials of sufficient power to assess its true value. PMID:28546688

  19. Meniscal repair: Technique.

    Science.gov (United States)

    Beaufils, P; Pujol, N

    2018-02-01

    Meniscal repair aims to achieve meniscal healing, avoiding the adverse effects of meniscectomy. Longitudinal vertical tears in a vascularized area are the reference indication. The technique generally uses hybrid all-inside implants. The outside-in technique has other indications in more anterior tears. Healing has been demonstrated on CT-arthrography and arthroscopy. Specific techniques have been developed for other pathological situations. Posterior meniscosynovial lesions in a context of chronic anterior laxity are identified by exploration of the posterior compartment, and fixed by all-inside hook suture. Horizontal lesions in young athletes can be treated by open meniscal suture. Radial tears, when deep, can be repaired. Root tears, when traumatic, can be treated by transosseous pullout reinsertion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Electrically Mediated Trauma Repair.

    Science.gov (United States)

    1986-03-01

    Freindenberg and Brighton (5) found such "bioelectric potentials" to be negative in articular and epiphyseal regions and in the fracture site. Conversely...LB., and H.G. Smith. 1969. "Electric potentials in intact and fractured tibia . " Clin-. Orton. 63:222-225. 7. Borgens, .B. 1982. "What is the role of...development) or regeneration (such as fracture repair and axonal elongation) In some cases we can modify the battery driving these currents by

  1. Engineering Skeletal Muscle Repair

    OpenAIRE

    Juhas, Mark; Bursac, Nenad

    2013-01-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaire...

  2. Intersatellite optical crosslink testbed for 300/650 Mbps

    Science.gov (United States)

    Carlson, R. T.

    This paper described the design, fabrication, and preliminary testing of a high datarate intersatellite laser crosslink testbed being built at The MITRE Corporation in 1993 on IR&D funding. Wideband laser drivers and optical receivers for signals at datarates of 300 Mbps and 650 Mbps have been designed and built, and are being integrated into a laboratory testbed for system level testing. This testbed includes laser wavelength division multiplexing of three colors, representative of that required for a flight implementation. The optical crosslink testbed has input/output interfaces with RF signals from uplink/downlink hardware simulators, described in a companion paper. The design of this optical crosslink is unique, in that it is based on direct analog modulation of the crosslink lasers with the wideband signal waveform from an incoming RF link (i.e., an uplink or space crosslink). Nearly all of the optical crosslink designs proposed to date have been for digitally modulated laser links, typically for applications where a wideband digital data stream originates at a sensing or imaging satellite and needs to be crosslinked to a destination satellite. The motivation for the analog modulation scheme in this paper is driven by end-to-end applications that include satellite uplinks, crosslinks, and downlinks, to avoid the requirement for processing satellites to detect, demodulate, regenerate, and remodulate multiple FDM channels of data at each of the two (or more) satellite crosslink nodes. This is particularly important for wideband channels that represent a composite of many different signals and modulation formats. The datarates, frequencies, interfaces, and requirements chosen for this testbed were based on the NASA TDRSS satellite and an upgrade being considered for a TDRSS-to-TDRSS crosslink capability. More generally, these datarates and the resulting testbed implementation are representative of an arbitrary RF-modulated wideband optical crosslink. The optical

  3. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana.

    Science.gov (United States)

    Klemm, Tobias; Mannuß, Anja; Kobbe, Daniela; Knoll, Alexander; Trapp, Oliver; Dorn, Annika; Puchta, Holger

    2017-08-01

    Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Improving Aviation Depot Level Repairable (AVDLR) Inventory and Repair Management

    National Research Council Canada - National Science Library

    Baird, Dennis

    1997-01-01

    .... Additionally, research was conducted to document the management process for determining repair requirements at the Naval Inventory Control Point Philadelphia and how those requirements are accepted...

  5. Liquid droplets of cross-linked actin filaments

    Science.gov (United States)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  6. Complications Following Corneal Cross-Linking Treatment in Keratectasia

    Directory of Open Access Journals (Sweden)

    Faik Oruçoğlu

    2013-01-01

    Full Text Available Pur po se: To report complications of corneal cross-linking treatment in keratoconus and secondary ectatic eyes. Ma te ri al and Met hod: Cases that were treated between February 2007 and February 2011, had a minimum follow-up of one month, and developed complications following corneal cross-linking were retrospectively evaluated. Re sults: Complication data were present in eight cases. Scar formation developed in three cases. Scar density has decreased in one patient during long-term follow-up. Keratometric flattening was observed associated with scar development. Cross-linking was performed on the second eye of the affected patient, and no scar development was observed. Corneal clouding was observed in one patient three days after treatment. Corneal clouding has decreased in the following days. Local corneal edema has developed in one patient, and improvement was achieved in the following days. Uveitis has developed in one case with total improvement after adding topical steroids. Post-LASIK ectasia eye showed deep lamellar keratitis after cross-linking. In one patient, epithelization was completed in 14 days. Dis cus si on: Corneal scars, corneal clouding and edema, uveitis, and late epithelization are possible complications after corneal cross-linking. Scar density was decreased, while other complications showed total improvement. (Turk J Ophthalmol 2013; 43: 1-6

  7. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.

    Directory of Open Access Journals (Sweden)

    Pantelis Georgiades

    Full Text Available Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.

  8. Sorption characteristics of technetium on crosslinked chitosan from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    Sorption of technetium on crosslinked chitosan was studied using batch techniques in static arrangement of experiment under aerobic conditions at laboratory temperature. The adsorption of technetium was rapid and the percentage of the technetium sorption was > 98 %. In the pH range of 3-11 adsorption of technetium on crosslinked chitosan was > 98 %. The competition effect of Fe 3+ towards TcO 4 - sorption on crosslinked chitosan was stronger than the competition effect of other observed cations. The selectivity of crosslinked chitosan for these cations in solution with the concentration above 1·10 -3 mol·dm -3 was in the order Fe 3+ > Ca 2+ > Na + > Fe 2+ . The competition effect of (ClO 4 ) - towards TcO 4 - sorption was stronger than the competition effect of (SO 4 ) 2 - ions. From these results it can be expected that crosslinked chitosan could be a suitable sorbent for the immobilization of technetium in the liquid radioactive waste. (authors)

  9. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study.

    Directory of Open Access Journals (Sweden)

    Firouzeh Sabri

    Full Text Available BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA coated with: poly-L-lysine, basement membrane extract (BME, and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1 untreated PCSA surfaces do not support attachment and growth of nerve cells, 2 a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3 three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4 laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration.

  10. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-01-01

    Full Text Available Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL and continuous light accelerated corneal collagen crosslinking (cl-ACXL with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA with 8 minutes (1 sec. on/1 sec. off of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA, corneal topography and aberrometry (CSO EyeTop, Florence, Italy, corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany, endothelial cells count (I-Conan Non Co Robot, and in vivo scanning laser confocal microscopy (Heidelberg, Germany at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment.

  11. Preparation and properties of silk sericin/cellulose cross-linking films

    Directory of Open Access Journals (Sweden)

    Wang Kunyan

    2017-01-01

    Full Text Available Silk sericin/cellulose cross-linked films were successfully prepared using glutaraldehyde as cross-linkinger. FTIR was applied to characterize the chemical structure of films. Cross-linked silk sericin film was found the peak intensity of FTIR for cross-linked film decreased markedly compared to pure silk sericin, which indicating cross-linking reaction has been occurred. The increasing value of swelling ratio also indicated the cross-linking has been happened. The cross-linking reaction increased the thermal decomposition temperature.

  12. Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering

    Science.gov (United States)

    Frohbergh, Michael E.; Katsman, Anna; Botta, Gregory P.; Lazarovici, Phillip; Schauer, Caroline L.; Wegst, Ulrike G. K.; Lelkes, Peter I.

    2012-01-01

    -containing scaffolds had the highest rate of osteonectin mRNA expression over 2 weeks, indicating enhanced osteoinductivity of the composite scaffolds. Our results suggest that crosslinking electrospun hydroxyapatite-containing chitosan with genipin yields bio-composite scaffolds, which combine non-weight-bearing bone mechanical properties with a periosteum-like environment and facilitate the proliferation, differentiation and maturation of osteoblast-like cells. We propose that these scaffolds might be useful for the repair and regeneration of maxillofacial defects and injuries. PMID:23022346

  13. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering.

    Science.gov (United States)

    Frohbergh, Michael E; Katsman, Anna; Botta, Gregory P; Lazarovici, Phillip; Schauer, Caroline L; Wegst, Ulrike G K; Lelkes, Peter I

    2012-12-01

     hydroxyapatite-containing scaffolds had the highest rate of osteonectin mRNA expression over 2 weeks, indicating enhanced osteoinductivity of the composite scaffolds. Our results suggest that crosslinking electrospun hydroxyapatite-containing chitosan with genipin yields bio-composite scaffolds, which combine non-weight-bearing bone mechanical properties with a periosteum-like environment. Such scaffolds will facilitate the proliferation, differentiation and maturation of osteoblast-like cells. We propose that these scaffolds might be useful for the repair and regeneration of maxillofacial defects and injuries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Repair strength of dental amalgams.

    Science.gov (United States)

    Shen, Chiayi; Speigel, Jason; Mjör, Ivar A

    2006-01-01

    This study tested the hypothesis that newly triturated amalgam condensed vertically on old amalgam was essential for establishing a bond between the new and old amalgams. Twelve rectangular bars were prepared with Dispersalloy and Tytin to establish their baseline flexure strength values. An additional 12 specimens were made and separated into 24 equal halves. All fracture surfaces were abraded with a flat end fissure bur. Twelve surfaces were paired with the original amalgam, and the remaining 12 surfaces were repaired with a different amalgam. At first, freshly triturated amalgam was condensed vertically on the floor of the specimen mold (Group A). The majority of specimens repaired with Group A failed to establish bond at the repair interface. All repair surfaces were abraded again and prepared by a second method. A metal spacer was used to create a four-wall cavity to facilitate vertical condensation directly on the repair surface (Group B). The specimens were stored in ambient air for seven days prior to flexure testing. The strength of specimens repaired with Group B ranged from 26% to 54% of the baseline specimens. ANOVA showed that amalgams repaired with a different amalgam yielded higher strength values than those repaired with the original amalgam, and the baseline specimens exhibited significantly higher strength values than all the repaired specimens.

  15. Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases

    International Nuclear Information System (INIS)

    Carre, D.S.; Thomas, G.; Favre, A.

    1974-01-01

    The behavior of mixed E. coli tRNAs ''cross-linked'' by irradiation with near ultraviolet light (310-400 nm) has been compared to that of the intact molecules in two enzymatic processes. No change in the rate and extent of the repair of the pCpCpA 3' terminus of tRNA by purified E. coli tRNA nucleotidyltransferase can be detected. In contrast, complex data were obtained in the acylation reaction. They can be understood using other tRNA specific modifications as well as our present knowledge of E. coli tRNA sequences and rare base content [fr

  16. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    International Nuclear Information System (INIS)

    Jurkin, Tanja; Pucic, Irina

    2006-01-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction

  17. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine.

    Science.gov (United States)

    Banda, Douglas M; Nuñez, Nicole N; Burnside, Michael A; Bradshaw, Katie M; David, Sheila S

    2017-06-01

    Reactive oxygen and nitrogen species (RONS) may infringe on the passing of pristine genetic information by inducing DNA inter- and intra-strand crosslinks, protein-DNA crosslinks, and chemical alterations to the sugar or base moieties of DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most prevalent DNA lesions formed by RONS and is repaired through the base excision repair (BER) pathway involving the DNA repair glycosylases OGG1 and MUTYH in eukaryotes. MUTYH removes adenine (A) from 8-oxoG:A mispairs, thus mitigating the potential of G:C to T:A transversion mutations from occurring in the genome. The paramount role of MUTYH in guarding the genome is well established in the etiology of a colorectal cancer predisposition syndrome involving variants of MUTYH, referred to as MUTYH-associated polyposis (MAP). In this review, we highlight recent advances in understanding how MUTYH structure and related function participate in the manifestation of human disease such as MAP. Here we focus on the importance of MUTYH's metal cofactor sites, including a recently discovered "Zinc linchpin" motif, as well as updates to the catalytic mechanism. Finally, we touch on the insight gleaned from studies with MAP-associated MUTYH variants and recent advances in understanding the multifaceted roles of MUTYH in the cell, both in the prevention of mutagenesis and tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A review of crosslinked fracturing fluids prepared with produced water

    Directory of Open Access Journals (Sweden)

    Leiming Li

    2016-12-01

    Full Text Available The rapidly increasing implementations of oilfield technologies such as horizontal wells and multistage hydraulic fracturing, particularly in unconventional formations, have expanded the need for fresh water in many oilfield locations. In the meantime, it is costly for services companies and operators to properly dispose large volumes of produced water, generated annually at about 21 billion barrels in the United States alone. The high operating costs in obtaining fresh water and dealing with produced water have motivated scientists and engineers, especially in recent years, to use produced water in place of fresh water to formulate well treatment fluids. The objective of this brief review is to provide a summary of the up-to-date technologies of reusing oilfield produced water in preparations of a series of crosslinked fluids implemented mainly in hydraulic fracturing operations. The crosslinked fluids formulated with produced water include borate- and metal-crosslinked guar and derivatized guar fluids, as well as other types of crosslinked fluid systems such as crosslinked synthetic polymer fluids and crosslinked derivatized cellulose fluids. The borate-crosslinked guar fluids have been successfully formulated with produced water and used in oilfield operations with bottomhole temperatures up to about 250 °F. The produced water sources involved showed total dissolved solids (TDS up to about 115,000 mg/L and hardness up to about 11,000 mg/L. The metal-crosslinked guar fluids prepared with produced water were successfully used in wells at bottomhole temperatures up to about 250 °F, with produced water TDS up to about 300,000 mg/L and hardness up to about 44,000 mg/L. The Zr-crosslinked carboxymethyl hydroxypropyl guar (CMHPG fluids have been successfully made with produced water and implemented in operations with bottomhole temperatures at about 250+ °F, with produced water TDS up to about 280,000 mg/L and hardness up to about 91,000

  19. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  20. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  1. Double cross-linked polyetheretherketone proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-04-01

    Full Text Available The proton exchange membrane based on polyetheretherketone was prepared via two steps of cross-linking. The properties of the double cross-linked membrane (water uptake, proton conductivity, methanol permeability and thermal stability) have been...

  2. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  3. Major Appliance Repair. Teacher Edition.

    Science.gov (United States)

    Smreker, Eugene; Calvert, King

    This module is a comprehensive text on basic appliance repair, designed to prepare students for entry-level jobs in this growing field. Ensuring a firm grounding in electrical knowledge, the module contains 13 instructional units that cover the following topics: (1) major appliance repair orientation; (2) safety and first aid; (3) fundamentals of…

  4. Clamp wins pipe repair prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-04-01

    This paper describes the permanent pipeline repair system, developed by Tekmar, which is powered by seawater hydraulics and is easily installed and tested by any workclass remotely operated vehicle (rov). Details are given of the two main components of the system, namely, the diverless high pressure split repair clamp and the rov-operated tool to install it.

  5. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  6. Procedures for maintenance and repairs

    International Nuclear Information System (INIS)

    Pickel, E.

    1981-01-01

    After a general review of the operation experience in the history of more than 12 operating years, the organization in the plant will be shown with special aspect to quality assurance, capacity of the workshops and connected groups as radiation protection, chemical laboratories etc. The number, time intervals and manpower effort for the repeating tests will be discussed. Reasons and examples for back-fitting activities in the plant are given. Besides special repair and maintenance procedures as repair of the steam generators, in-service inspection of the reactor pressure vessel, repair of a feed-water pipe and repair of the core structure in the pressure vessel, the general system to handle maintenance and repair-work in the KWO-plant will be shown. This includes also the detailed planning of the annual refueling and revision of the plant. (orig./RW)

  7. Synthesis of CID-cleavable protein crosslinking agents containing quaternary amines for structural mass spectrometry.

    Science.gov (United States)

    Hagen, Susan E; Liu, Kun; Jin, Yafei; Piersimoni, Lolita; Andrews, Philip C; Showalter, Hollis D

    2018-03-14

    Two novel cyclic quaternary amine crosslinking probes are synthesized for structural mass spectrometry of protein complexes in solution and for analysis of protein interactions in organellar and whole cell extracts. Each exhibits high aqueous solubility, excellent protein crosslinking efficiencies, low collision induced dissociation (CID) energy fragmentation efficiencies, high stoichiometries of reaction, increased charges of crosslinked peptide ions, and maintenance of overall surface charge balance of crosslinked proteins.

  8. The effects of the nature of the antioxidant on the radiation crosslinking of polyethylene

    International Nuclear Information System (INIS)

    Gal, O.S.; Markovic, V.M.; Novakovic, L.R.; Stannett, V.T.

    1985-01-01

    The effects of three antioxidants, a hindered phenolic, a secondary amine and a thioester on the radiation crosslinking efficiency of low-density polyethylene were studied. Both gel content and thermomechanical analysis were used to follow the crosslinking. All three antioxidants decreased the amount of crosslinking at a given dose, the thioester being the most effective. The ratios of G (scission) to G (X linking) increased with all three antioxidants. This is attributed to the antioxidants only interfering with the crosslinking reaction. (author)

  9. Current strategies for articular cartilage repair

    OpenAIRE

    Redman S. N.; Oldfield S. F.; Archer C. W.

    2005-01-01

    Defects of articular cartilage that do not penetrate to the subchondral bone fail to heal spontaneously. Defects that penetrate to the subchondral bone elicit an intrinsic repair response that yields a fibrocartilaginous repair tissue which is a poor substitute for hyaline articular cartilage. Many arthroscopic repair strategies employed utilise this intrinsic repair response to induce the formation of a repair tissue within the defect. The goal, however, is to produce a repair tissue that ha...

  10. Mitosis, diffusible crosslinkers, and the ideal gas law.

    Science.gov (United States)

    Odde, David J

    2015-03-12

    During mitosis, molecular motors hydrolyze ATP to generate sliding forces between adjacent microtubules and form the bipolar mitotic spindle. Lansky et al. now show that the diffusible microtubule crosslinker Ase1p can generate sliding forces between adjacent microtubules, and it does so without ATP hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  12. Jack of all trades: Versatile catechol crosslinking mechanisms

    NARCIS (Netherlands)

    Yang, J.; Cohen Stuart, M.A.; Kamperman, M.M.G.

    2014-01-01

    Catechols play an important role in many natural systems. They are known to readily interact with both organic (e.g., amino acids) and inorganic (e.g., metal ions, metal oxides) compounds, thereby providing a powerful system for protein curing. Catechol crosslinked protein networks, such as

  13. Effects of genipin corneal crosslinking in rabbit corneas.

    Science.gov (United States)

    Avila, Marcel Y; Narvaez, Mauricio; Castañeda, Juan P

    2016-07-01

    To evaluate the effect of genipin, a natural crosslinking agent, in rabbit eyes. Department of Ophthalmology, Universidad Nacional de Colombia Centro de Tecnologia Oftalmica, Bogotá, Colombia. Experimental study. Ex vivo rabbit eyes (16; 8 rabbits) were treated with genipin 1.00%, 0.50%, and 0.25% for 5 minutes with a vacuum device to increase corneal permeability. Penetration was evaluated using Scheimpflug pachymetry (Pentacam). In the in vivo model (20 rabbits; 1 eye treated, 1 eye with vehicle), corneas were crosslinked with genipin as described. Corneal curvature, corneal pachymetry, and intraocular pressure (IOP) assessments as well as slitlamp examinations were performed 0, 7, 30, and 60 days after treatment. In the ex vivo model, Scheimpflug pachymetry showed deep penetration in the rabbit corneas with an increase in corneal density and a dose-dependent relationship. Corneal flattening was observed in treated eyes (mean 4.4 diopters ± 0.5 [SD]) compared with the control eyes. Pachymetry and IOP were stable in all evaluations. No eye showed toxicity in the anterior chamber or in the lens. Corneal crosslinking induced by genipin produced significant flattening of the cornea with no toxicity in rabbit eyes. This crosslinking could be useful in the treatment of corneal ectasia and in the modification of corneal curvature. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Multiple molecular forms of pyridinoline crosslinks generated by the ...

    African Journals Online (AJOL)

    We investigated in vitro the ability of cathepsin B, a lysosomal cysteine proteinases, to generate multiple molecular forms of pyridinoline crosslinks from insoluble bone type I collagen, and we studied the effects of various concentrations of divalent ions such as calcium (Ca2+) and magnesium (Mg2+) on this process.

  15. Scleral lens tolerance after corneal cross-linking for keratoconus

    NARCIS (Netherlands)

    Visser, Esther Simone; Soeters, Nienke; Tahzib, Nayyirih G.

    2015-01-01

    Purpose. Subjective and objective evaluation of scleral lens tolerance and fitting before and after corneal cross-linking (CXL) for progressive keratoconus. Methods. In this prospective cohort, evaluations were made of 18 unilateral eyes in patients who underwent CXL and had been wearing scleral

  16. A bisazobenzene crosslinker that isomerizes with visible light

    Directory of Open Access Journals (Sweden)

    Subhas Samanta

    2012-12-01

    Full Text Available Background: Large conformational and functional changes of azobenzene-modified biomolecules require longer azobenzene derivatives that undergo large end-to-end distance changes upon photoisomerization. In addition, isomerization that occurs with visible rather than UV irradiation is preferred for biological applications.Results: We report the synthesis and characterization of a new crosslinker in which a central piperazine unit links two azobenzene chromophores. Molecular modeling indicates that this crosslinker can undergo a large change in end-to-end distance upon trans,trans to cis,cis isomerization. Photochemical characterization indicates that it does isomerize with visible light (violet to blue wavelengths. However, the thermal relaxation rate of this crosslinker is rather high (τ½ ~ 1 s in aqueous buffer at neutral pH so that it is difficult to produce large fractions of the cis,cis-species without very bright light sources.Conclusion: While cis-lifetimes may be longer when the crosslinker is attached to a biomolecule, it appears the para-piperazine unit may be best suited for applications where rapid thermal relaxation is required.

  17. Cross-linked enzyme aggregates (CLEAs) : Stable and recyclable biocatalysts

    NARCIS (Netherlands)

    Sheldon, R.A.

    2007-01-01

    The key to obtaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. In the present review, we describe a novel, versatile and effective methodology for enzyme immobilization as CLEAs (cross-linked enzyme aggregates). The method is

  18. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  19. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik

    2004-01-01

    or tetrabutylammonium- fluoride, in this way obtaining a nanoporous material. The fraction of the surviving double bonds was estimated by solid state NMR, while thermal analysis was used to characterize the glass transition temperature of PI as a function of crosslinking degree. Small angle x-ray scattering confirmed...

  20. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  1. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  2. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles

    NARCIS (Netherlands)

    Shi, Yang; Cardoso, Renata M.; Van Nostrum, Cornelus F.; Hennink, Wim E.

    2015-01-01

    An anthracene-functionalized thermosensitive block copolymer was synthesized, which formed micelles by heating its aqueous solution above the lower critical solution temperature (LCST). The micelles were subsequently crosslinked by UV illumination at 365 nm with a normal handheld UV lamp. The

  3. SAXS Study of Reversibly Crosslinked Isotactic Polypropylene/clay Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, S.; Cagiao, M; Benachour, D; Djellouli, B; Rong, L; Hsiao, B; Baltá-Calleja, F

    2010-01-01

    A new route based on reversibly crosslinking reactive extrusion is applied for the development of iPP/clay nanocomposites. Analysis of small-angle X-ray scattering (SAXS) reflections of isotactic polypropylene (iPP)/clay nanocomposites, prepared by two different mixing and chemical crosslinking methods (i.e., conventional and in situ), is presented and results are compared with preceding wide-angle X-ray diffraction (WAXD) results. It is shown that the presence of clay significantly affects the value of long spacing in iPP, as well as the coherence length of lamellar stacks. Results show that the size of the coherently diffracting nanodomains decreases in two stages, first rapidly and then slowly as a function of increasing clay content. This can be attributed to the influence of confined iPP lamellae under the effect of rising number of clay particles. The appearance of the {gamma}-crystalline form in the crosslinked iPP/clay nanocomposites is related with the difficulty in chain folding of iPP chains introduced by the chemical crosslinking process, as well as by the presence of clay particles.

  4. Cholesterol Removal from Whole Egg by Crosslinked β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    H. J. Jeong

    2014-04-01

    Full Text Available This study was carried out to optimize cholesterol removal in whole egg using crosslinked β-cyclodextrin (β-CD and to recycle the β-CD. Various factors for optimizing conditions were concentration of the β-CD, mixing temperature, mixing time, mixing speed and centrifugal speed. In the result of this study, the optimum conditions of cholesterol removal were 25% crosslinked β-CD, 40°C mixing temperature, 30 min mixing time, 1,200 rpm mixing speed and 2,810×g centrifugal speed. The recycling was repeated five times. The cholesterol removal was 92.76% when treated with the optimum conditions. After determining the optimum conditions, the recyclable yields of the crosslinked β-CD ranged from 86.66% to 87.60% in the recycling and the percentage of cholesterol removal was over 80% until third recycling. However, the cholesterol removal efficiency was decreased when the number of repeated recycling was increased. Based on the result of this study, it was concluded that the crosslinked β-CD was efficient for cholesterol removal in whole egg, and recycling is possible for only limited repeating times due to the interaction of the β-CD and egg protein.

  5. Synthesis of crosslinked poly (styrene-co-divinylbenzene-co ...

    Indian Academy of Sciences (India)

    Synthesis of crosslinked poly(styrene--divinylbenzene--sulfopropyl methacrylate) nanoparticles by emulsion polymerization: Tuning the particle size and surface charge density. Dhamodaran Arunbabu Mousumi Hazarika Somsankar Naik Tushar Jana. Polymers Volume 32 Issue 6 December 2009 pp 633-641 ...

  6. Functionalisation of cross-linked polyethylenimine for the removal of ...

    African Journals Online (AJOL)

    Cross-linked polyethylenimine (CPEI) was phosphonated by reaction with phosphorous acid and formaldehyde. The functionalised polymer was used as an adsorbent for the removal of arsenic as an oxo-anion. The binding affinity of the synthesised polymer to abstract As from synthetic solutions and wastewater samples ...

  7. Crosslinked xylan as an affinity adsorbent for endo-xylanases.

    NARCIS (Netherlands)

    Rozie, H.; Somers, W.; Bonte, A.; Rombouts, F.M.; Visser, J.

    1992-01-01

    In order to facilitate the purification of xylanases from Aspergillus niger, an affinity adsorbent has been developed from oat spelts xylan. A suitable adsorbent was only obtained by crosslinking oat spelts xylan with epichlorohydrin in water but not in ethanol or ethanol-water mixtures. After some

  8. Cholesterol Removal from Whole Egg by Crosslinked β-Cyclodextrin.

    Science.gov (United States)

    Jeong, H J; Sun, H; Chogsom, C; Kwak, H S

    2014-04-01

    This study was carried out to optimize cholesterol removal in whole egg using crosslinked β-cyclodextrin (β-CD) and to recycle the β-CD. Various factors for optimizing conditions were concentration of the β-CD, mixing temperature, mixing time, mixing speed and centrifugal speed. In the result of this study, the optimum conditions of cholesterol removal were 25% crosslinked β-CD, 40°C mixing temperature, 30 min mixing time, 1,200 rpm mixing speed and 2,810×g centrifugal speed. The recycling was repeated five times. The cholesterol removal was 92.76% when treated with the optimum conditions. After determining the optimum conditions, the recyclable yields of the crosslinked β-CD ranged from 86.66% to 87.60% in the recycling and the percentage of cholesterol removal was over 80% until third recycling. However, the cholesterol removal efficiency was decreased when the number of repeated recycling was increased. Based on the result of this study, it was concluded that the crosslinked β-CD was efficient for cholesterol removal in whole egg, and recycling is possible for only limited repeating times due to the interaction of the β-CD and egg protein.

  9. Thermoreversibly Cross-Linked EPM Rubber Nanocomposites with Carbon Nanotubes

    NARCIS (Netherlands)

    Polgar, Lorenzo Massimo; Criscitiello, Francesco; van Essen, Machiel; Araya-Hermosilla, Rodrigo; Migliore, Nicola; Lenti, Mattia; Raffa, Patrizio; Picchioni, Francesco; Pucci, Andrea

    2018-01-01

    Conductive rubber nanocomposites were prepared by dispersing conductive nanotubes (CNT) in thermoreversibly cross-linked ethylene propylene rubbers grafted with furan groups (EPM-g-furan) rubbers. Their features were studied with a strong focus on conductive and mechanical properties relevant for

  10. Wound repair in Pocillopora

    Science.gov (United States)

    Rodríguez-Villalobos, Jenny Carolina; Work, Thierry M.; Calderon-Aguileraa, Luis Eduardo

    2016-01-01

    Corals routinely lose tissue due to causes ranging from predation to disease. Tissue healing and regeneration are fundamental to the normal functioning of corals, yet we know little about this process. We described the microscopic morphology of wound repair in Pocillopora damicornis. Tissue was removed by airbrushing fragments from three healthy colonies, and these were monitored daily at the gross and microscopic level for 40 days. Grossly, corals healed by Day 30, but repigmentation was not evident at the end of the study (40 d). On histology, from Day 8 onwards, tissues at the lesion site were microscopically indistinguishable from adjacent normal tissues with evidence of zooxanthellae in gastrodermis. Inflammation was not evident. P. damicornis manifested a unique mode of regeneration involving projections of cell-covered mesoglea from the surface body wall that anastomosed to form gastrovascular canals.

  11. Reward optimization of a repairable system

    International Nuclear Information System (INIS)

    Castro, I.T.; Perez-Ocon, R.

    2006-01-01

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures

  12. Reward optimization of a repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, I.T. [Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad, s/n. 10071 Caceres (Spain)]. E-mail: inmatorres@unex.es; Perez-Ocon, R. [Departamento de Estadistica e Investigacion Operativa, Facultad de Ciencias, Universidad de Granada, Avenida de Severo Ochoa, s/n. 18071 Granada (Spain)]. E-mail: rperezo@ugr.es

    2006-03-15

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures.

  13. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  14. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  15. Crosslinking of oriented polyethylene by electron beam radiation. Influence of morphology induced by drawing

    International Nuclear Information System (INIS)

    Aerle, N.A.J.M. van; Crevecoeur, G.; Lemstra, P.J.

    1988-01-01

    The influence of drawing on the crosslinking efficiency for electron beam radiation is reported for solution-crystallized ultra-high molecular weight polyethylene. A maximum in crosslinking efficiency is found at a draw ratio of approximately five, indicating an optimum morphology for inducing crosslinks during the hot-drawing process. (author)

  16. Oxidative cross-linking of casein by horseradish peroxidase and its ...

    African Journals Online (AJOL)

    The central composite design using response surface methodology was used to optimize cross-linking conditions of casein. The optimal cross-linking conditions of casein ... Cross-linking of food proteins induced by horseradish peroxidase might serve as an alternative approach to modify functional property of the proteins.

  17. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne

    2006-01-01

    The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set is fo...

  18. Effect of crosslink density on the water-binding capacity of whey protein microparticles

    NARCIS (Netherlands)

    Peters, J.P.C.M.; Luyten, H.; Alting, A.C.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    The ability of whey protein microparticles (MPs) to bind water and consequently to swell is, amongst others, determined by the crosslink density of the MPs. The Flory-Rehner model states that a decrease in crosslink density should lead to an increased swelling of the MPs. Decreasing the crosslink

  19. Reoperations after tricuspid valve repair: re-repair versus replacement.

    Science.gov (United States)

    Hwang, Ho Young; Kim, Kyung-Hwan; Kim, Ki-Bong; Ahn, Hyuk

    2016-01-01

    Data demonstrating results of reoperation after initial tricuspid valve repair are scarce. We evaluated outcomes of tricuspid reoperations after tricuspid valve repair and compared the results of tricuspid re-repair with those of tricuspid valve replacement (TVR). From 1994 to 2012, 53 patients (56±15 years, male:female =14:39) underwent tricuspid reoperations due to recurrent tricuspid regurgitation (TR) after initial repair. Twenty-two patients underwent tricuspid re-repair (TAP group) and 31 patients underwent TVR (TVR group). Early mortality occurred in 6 patients (11%). Early mortality and incidence of postoperative complications were similar between the 2 groups. There were 14 cases of late mortality including 9 cardiac deaths. Five- and 10-year free from cardiac death rates were 82% and 67%, respectively, without any intergroup difference. Recurrent TR (> moderate) developed in 6 TAP group patients and structural valve deterioration occurred in 1 TVR group patient (P=0.002). Isolated tricuspid valve surgery (P=0.044) and presence of atrial fibrillation during the follow-up (P=0.051) were associated with recurrent TR after re-repair. However, the overall tricuspid valve-related event rates were similar between the 2 groups with 5- and 10-year rates of 61% and 41%, respectively. Tricuspid valve reoperation after initial repair resulted in high rates of operative mortality and complications. Long-term event-free rate was similar regardless of the type of surgery. However, great care might be needed when performing re-repair in patients with atrial fibrillation and those who had isolated tricuspid valve disease due to high recurrence of TR after re-repair.

  20. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  1. Proton conducting sulphonated fluorinated poly(styrene) crosslinked electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soules, A.; Ameduri, B.; Boutevin, B.; David, G. [Institut Charles Gerhardt UMR CNRS 5253 Equipe, Ingenierie et Architectures Macromoleculaires,' ' Ecole Nationale Superieure de Chimie de Montpellier, 8 rue de l' Ecole Normale, 34296 Montpellier, Cedex 05 (France); Perrin, R. [CEA Le Ripault Departement des Materiaux, DMAT/SCMF/LSTP, BP16 - 37260 Monts (France); Gebel, G. [Structure et Proprietes des Architectures Moleculaires UMR 5819 (CEA-CNRS-UJF), INAC, SPrAM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2011-10-15

    Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide-telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6-diiodoperfluorohexane followed by azido chain-end functionalisation. Then azide-telechelic polystyrene was efficiently crosslinked with 1,10-diazido-1H,1H,2H,2H,9H,9H,10H,10H-perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g{sup -1}. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small-angle X-ray scattering, was found to be a lamellar-type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq.g{sup -1}, proton conductivity was in the same range as that of Nafion {sup registered} (120-135 mS.cm{sup -1}), whereas the membrane IEC value of 3.2 meq.g{sup -1} showed a proton conductivity higher than that of Nafion {sup registered} in liquid water from 25 to 80 C, though a high water uptake. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links.

    Science.gov (United States)

    Schellenberg, Matthew J; Lieberman, Jenna Ariel; Herrero-Ruiz, Andrés; Butler, Logan R; Williams, Jason G; Muñoz-Cabello, Ana M; Mueller, Geoffrey A; London, Robert E; Cortés-Ledesma, Felipe; Williams, R Scott

    2017-09-29

    Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Study of the direct detection of crosslinking in hydrocarbons by 13C-NMR. II. Identification of crosslink in model compound and application to irradiate paraffins

    International Nuclear Information System (INIS)

    Bennett, R.L.; Keller, A.; Stejny, H.H.; Murray, M.

    1976-01-01

    A 13 C-NMR investigation was carried out in aid of direct detection of crosslinks in hydrocarbons with the future objective of studying radiation-induced crosslinking in polyethylene by a direct method. The resonance signal due to a tertiary carbon atom appropriate to a crosslink far remote from molecular ends has been identified in a definitive manner with the aid of the H-shaped model compound 1,1,2,2-tetra(tridecyl)ethane synthetized in Part I of this study. This identification was then put to use in the examination of the irradiated linear paraffins n-hexadecane and n-eicosane, where it enabled the detection of radiation-induced crosslinks. This crosslinking could then be associated with corresponding changes in molecular weight (dimer, trimer formation) as revealed by discrete peaks in the gel-permeation chromatograms of the same samples and randomness of the crosslinking process in the liquid state of these compounds being inferred

  4. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  5. 1,6-Bis(4-vinylphenyl)hexane as a crosslinking agent for the preparation of crosslinked sulfonated poly(ether ether ketone) membranes by EB irradiation

    Science.gov (United States)

    Han, Sanghee; Zhang, Mei-Shan; Shin, Junhwa; Lee, Youn-Sik

    2014-04-01

    In order to mitigate problems associated with highly sulfonated aromatic hydrocarbon membranes, such as dimensional stability, mechanical strength, and methanol crossover, sulfonated poly(ether ether ketone) (SPEEK) membranes containing 1,6-bis(4-vinylphenyl)hexane (BVPH) were crosslinked by EB irradiation. Compared to the pristine SPEEK membrane, the crosslinked membranes exhibited significantly improved dimensional stability, chemical stability, and mechanical strength. The crosslinking procedure slightly reduced the proton conductivity of the membranes. The crosslinking of SPEEK with BVPH was also found to slightly reduce the proton conductivity of the membranes, but significantly reduced the methanol permeability.

  6. Facile Preparation of Crosslinked Polymeric Nanocapsules via Combination of Surface-Initiated Atom Transfer Radical Polymerization and Ultraviolet Irradiated Crosslinking Techniques

    Directory of Open Access Journals (Sweden)

    Mu Bin

    2009-01-01

    Full Text Available Abstract A facile approach for the preparation of crosslinked polymeric nanocapsules was developed by the combination of the surface-initiated atom transfer radical polymerization and ultraviolet irradiation crosslinking techniques. The well-defined polystyrene grafted silica nanoparticles were prepared via the SI-ATRP of styrene from functionalized silica nanoparticles. Then the grafted polystyrene chains were crosslinked with ultraviolet irradiation. The cross-linked polystyrene nanocapsules with diameter of 20–50 nm were achieved after the etching of the silica nanoparticle templates with hydrofluoric acid. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis, and transmission electron microscopy.

  7. Effect of Different Surface Treatments on the Bond Strength of Repaired Resin Restorations

    International Nuclear Information System (INIS)

    Engy Fahmy Ismaiel Fekry Abaza

    2010-01-01

    In the last decade, growing demands by patients for mercury-free esthetic restorations had markedly increased the use of resin composites in restorative dentistry. However, despite the continuing development of resin composites with improved properties, several factors, such as discoloration, color mismatch, wear; chipping or bulk fracture might present clinical problems (Mjor and Gordan. 2002, Vichi et al. 2004 and Kolbeck et al. 2006). As a result, the clinician should decide whether to replace or simply repair these restorations. Total replacement of the restoration might be regarded as over-treatment since in most cases, large portions of the restorations might be clinically and radio graphically considered free of failure. Moreover, complete removal of the restoration inevitably resulted in weakening of the tooth, unnecessary removal of intact dental tissues, more money and time consuming. For these reasons, the repair of the restoration instead of its removal would be a favorable procedure (Lucena-Martin et al. 2001, Frankenberger et al. 2003 a and Oztas et al. 2003). The key element in the determination of successful repair procedures was the adequate bond strength between the existing resin composite and the new one. Various methods have been suggested to improve the bond strength of the repaired resin restorations (Tezvergil et al. 2003 and Bonstein et al. 2005). Mechanical and/or chemical treatments had been investigated for preparation of the aged resin restorations to be repaired (Tezvergil et al. 2003, Ozcan et al. 2005 and Hannig et al. 2006). These treatments were introduced to counteract the problems of aged resin restorations which were limited amount of residual free radicals available for reaction with the repair material, contaminated surface, and highly cross-linked resin matrix ( Dall Oca et al. 2006 and Papacchini et al. 2007 a) Previous studies emphasized that mechanical treatments are the most important factor in obtaining optimal repair

  8. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  9. Large myelomeningocele repair

    Directory of Open Access Journals (Sweden)

    Farideh Nejat

    2011-01-01

    Full Text Available Background: Wound closure is accomplished in most cases of myelomeningocele (MMC by undermining of the skin edges surrounding the defect. However, large defects cannot be closed reliably by this simple technique. Due to the technical challenge associated with large MMC, surgeons have devised different methods for repairing large defects. In this paper, we report our experience of managing large defects, which we believe bears a direct relationship to decrease the incidence of wound complications. Materials and Methods: Forty children with large MMCs underwent surgical repair and represent our experience. We recommend using all hairy skin around the defect as a way to decrease the tension on the edges of the wound and the possible subsequent necrosis. It is our experience that vertical incision on one or two flanks parallel to the midline can decrease the tension of the wound. Moreover, ventriculo-peritoneal shunting for children who developed hydrocephalus was performed simultaneously, which constitutes another recommendation for preventing fluid collection and build up of pressure on the wound. Results: Patients in this study were in the age range of 2 days to 8 years. The most common location of MMC was in the thoracolumbar area. All but four patients had severe weakness in lower extremities. We used as much hairy skin around the MMC sac as possible in all cases. Vertical incisions on one or both flanks and simultaneous shunt procedure were performed in 36 patients. We treated children with large MMC defects with acceptable tension-free closure. Nonetheless, three patients developed superficial skin infection and partial wound dehiscence, and they were managed conservatively. Conclusions: We recommend using all hairy skin around the MMC defect for closure of large defects. In cases that were expected to be at a higher risk to develop dehiscence release incisions on one or two flanks towards the fascia were found to be useful. Simultaneous

  10. Psoralen plus near-ultraviolet light: a possible new method for measuring DNA repair synthesis

    International Nuclear Information System (INIS)

    Heimer, Y.M.; Kol, R.; Shiloh, Y.; Riklis, E.

    1983-01-01

    A new method is proposed to inhibit semiconservative DNA synthesis in cultured cells while DNA repair synthesis is being measured. The cells are treated with the DNA-crosslinking agent Trioxalen (4,5,8-trimethylpsoralen) plus near-ultraviolet light, and consequently 99.5% inhibition of replicative DNA synthesis is achieved. Additional DNA-damaging agents induce thymidine incorporation into the double-stranded regions of the DNA. The new method gave results very similar to those obtained with the benzoylated naphthoylated DEAE (BND) cellulose method using three human fibroblast strains, of which one had deficient capacity for DNA repair synthesis following treatment with gamma rays and methyl methanesulfonate. The advantages of the new method are simplicity and rapidity, as well as the high extent to which replicative DNA synthesis is inhibited

  11. Psoralen plus near-ultraviolet light: a possible new method for measuring DNA repair synthesis

    International Nuclear Information System (INIS)

    Heimer, Y.M.; Kol, R.; Shiloh, Y.; Riklis, E.

    1983-01-01

    A new method is proposed to inhibit semiconservative DNA synthesis in cultured cells while DNA repair synthesis is being measured. The cells are treated with the DNA-crosslinking agent Trioxalen (4,5,8-trimethylpsoralen) plus near-ultraviolet light, and consequently 99.5% inhibition of replicative DNA synthesis is achieved. Additional DNA-damaging agents induce thymidine incorporation into the double-stranded regions of the DNA. The new method gave results very similar to those obtained with the benzoylated naphthoylated DEAE (BND) cellulose method using three human fibroblast strains, of which one had deficient capacity for DNA repair synthesis following treatment with γ rays and methyl methanesulfonate. The advantages of the new method are simplicity and rapidity, as well as the high extent to which replicative DNA synthesis is inhibited

  12. Psoralen plus near-ultraviolet light: a possible new method for measuring DNA repair synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Y.M. (Nuclear Research Center, Negev, Israel); Kol, R.; Shiloh, Y.; Riklis, E.

    1983-09-01

    A new method is proposed to inhibit semiconservative DNA synthesis in cultured cells while DNA repair synthesis is being measured. The cells are treated with the DNA-crosslinking agent Trioxalen (4,5,8-trimethylpsoralen) plus near-ultraviolet light, and consequently 99.5% inhibition of replicative DNA synthesis is achieved. Additional DNA-damaging agents induce thymidine incorporation into the double-stranded regions of the DNA. The new method gave results very similar to those obtained with the benzoylated naphthoylated DEAE (BND) cellulose method using three human fibroblast strains, of which one had deficient capacity for DNA repair synthesis following treatment with ..gamma.. rays and methyl methanesulfonate. The advantages of the new method are simplicity and rapidity, as well as the high extent to which replicative DNA synthesis is inhibited.

  13. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin.

    Science.gov (United States)

    Hoac, Betty; Nelea, Valentin; Jiang, Wenge; Kaartinen, Mari T; McKee, Marc D

    2017-08-01

    Osteopontin (OPN) belongs to the SIBLING family (Small, Integrin-Binding LIgand N-linked Glycoproteins) of mineral-binding matrix proteins found in bones and teeth. OPN is a well-known inhibitor of matrix mineralization, and enzymatic modification of OPN can affect this inhibitory function. In bone, OPN exists both as a monomer and as a high-molecular-weight polymer - the latter is formed by transglutaminase-mediated crosslinking of glutamine and lysine residues in OPN to create homotypic protein assemblies. OPN can be covalently crosslinked by transglutaminase 2 (TG2) and Factor XIII-A. Polymeric OPN has increased binding to collagen and promotes osteoblast adhesion, but despite these initial observations, its role in mineralization is not clear. In this study, we investigated the effect of polymerized OPN on mineralization using a hydroxyapatite crystal growth assay and mineralizing MC3T3-E1 osteoblast cultures. In the cultures, endogenous polymeric OPN was detected after mineralization occurred. In cell-free conditions, TG2 was used to crosslink bovine OPN into its polymeric form, and atomic force microscopy and dynamic light scattering revealed variably-sized, large branched aggregates ranging across hundreds of nanometers. These OPN polymers inhibited the growth of hydroxyapatite crystals in solution at concentrations similar to monomeric OPN, although the crosslinking slightly reduced its inhibitory potency. When added to MC3T3-E1 osteoblast cultures, this exogenous polymeric OPN essentially did not inhibit mineralization when given during the later mineralization stages of culture; however, cultures treated early and then continuously with polymeric OPN throughout both the matrix assembly and mineral deposition stages showed reduced mineralization. Immunoblotting of protein extracts from these continuously treated cultures revealed exogenous OPN polymers incorporated into mature matrix that had not yet mineralized. These results suggest that in bone, the

  14. Hydrazone self-crosslinking of multiphase elastin-like block copolymer networks.

    Science.gov (United States)

    Krishna, Urlam Murali; Martinez, Adam W; Caves, Jeffrey M; Chaikof, Elliot L

    2012-03-01

    Biosynthetic strategies for the production of recombinant elastin-like protein (ELP) triblock copolymers have resulted in elastomeric protein hydrogels, formed through rapid physical crosslinking upon warming of concentrated solutions. However, the strength of physically crosslinked networks can be limited, and options for non-toxic chemical crosslinking of these networks are not optimal. In this report, we modify two recombinant elastin-like proteins with aldehyde and hydrazide functionalities. When combined, these modified recombinant proteins self-crosslink through hydrazone bonding without requiring initiators or producing by-products. Crosslinked materials are evaluated for water content and swelling upon hydration, and subject to tensile and compressive mechanical tests. Hydrazone crosslinking is a viable method for increasing the mechanical strength of elastin-like protein polymers, in a manner that is likely to lend itself to the biocompatible in situ formation of chemically and physically crosslinked ELP hydrogels. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Hydrazone Self-Crosslinking of Multiphase Elastin-Like Block Copolymer Networks

    Science.gov (United States)

    Krishna, Urlam Murali; Martinez, Adam W.; Caves, Jeffrey M.; Chaikof, Elliot L.

    2011-01-01

    Biosynthetic strategies for the production of recombinant elastin-like protein (ELP) triblock copolymers have resulted in elastomeric protein hydrogels, formed through rapid physical crosslinking upon warming of concentrated solutions. However, the strength of physically crosslinked networks can be limited, and options for non-toxic chemical crosslinking of these networks are not optimal. In this report, we modify two recombinant elastin-like proteins with aldehyde and hydrazide functionalities. When combined, these modified recombinant proteins self-crosslink through hydrazone bonding without requiring initiators or producing by-products. Crosslinked materials are evaluated for water content and swelling upon hydration, and subject to tensile and compressive mechanical tests. Hydrazone crosslinking is a viable method for increasing the mechanical strength of elastin-like protein polymers, in a manner that is likely to lend itself to the biocompatible in situ formation of chemically and physically crosslinked ELP hydrogels. PMID:22154858

  16. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    International Nuclear Information System (INIS)

    Thompson, J.F.; Hearst, J.E.

    1983-01-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T 1 RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes

  17. CrossWork: Software-assisted identification of cross-linked peptides

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Refsgaard, Jan; Peng, Li

    2011-01-01

    The increased interest in chemical cross-linking for probing protein structure and interaction has led to a large increase in literature describing new cross-linkers and search programs. However, this has not led to a corresponding increase in the analysis of large and complex proteins. A major...... obstacle is that the new cross-linkers are either not readily available and/or have a low reactivity. In combination with aging search programs that are slow and have low sensitivity, or new search programs that are described but not released, these efforts do little to advance the field of cross......-linking. Here we present a method pipeline for chemical cross-linking, using two standard cross-linkers, BS3 and BS2G, combined with our freely available CrossWork search program. By this approach we generate cross-link data sufficient to derive structural information for large and complex proteins. Cross...

  18. Shape memory behaviour of radiation-crosslinked PCL/PMVS blends

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu Shuogui; Wang Jinhua; Zhang Longbin

    2006-01-01

    The performance and radiation crosslinking of polycaprolactone (PCL) and polymethylvinylsiloxane (PMVS) blends has been investigated. Radiation crosslinking of PCL/PMVS blends followed the Charlesby-Pinner equation, and PMVS promoted the radiation crosslinking of the blends. As the concentration of PMVS increased, the gelation dose and the ratio of degradation to crosslinking (p 0 /q 0 ) decreased and the efficiency of radiation crosslinking increased. The elastic modulus below the melting point of PCL of radiation-crosslinked PCL/PMVS blends decreased with the increase of PMVS, and increased above the melting point. The crosslinked PCL/PMVS blends exhibited excellent shape memory effects, and the ratios of deformation to recovery were more than 95%

  19. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  20. Anterior cruciate ligament repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100230.htm Anterior cruciate ligament repair - Series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The anterior cruciate ligament (ACL) is a ligament in the center of ...

  1. Selection of pipe repair methods.

    Science.gov (United States)

    2013-06-01

    The objective of this research is to provide pipeline operators with testing procedures and : results of the performance of composite pipe repair methods and ultimately, improve their : selection and installation, and reduce the risks associated with...

  2. 49 CFR 195.422 - Pipeline repairs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline repairs. 195.422 Section 195.422... PIPELINE Operation and Maintenance § 195.422 Pipeline repairs. (a) Each operator shall, in repairing its pipeline systems, insure that the repairs are made in a safe manner and are made so as to prevent damage to...

  3. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  4. Meniscallesions: Meniscectomy, repair, or abstention

    OpenAIRE

    Beaufils, P.

    2004-01-01

    There are three different options in case of meniscal lesion. These are abstention, thatis to leave the torn meniscus alone, meniscectomy and meniscal repair. However, meniscallesions should be separated according to the etiology. Indications are different for meniscallesion associated with ACL tears and isolated meniscal lesions. Our experience and literature have led to the conclusion that meniscal preservation is the key word. In case of ACL rupture, meniscal repair or abstention are the b...

  5. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    International Nuclear Information System (INIS)

    Gao, Shuang; Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun; Xi, Tingfei; Guo, Quanyi

    2017-01-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  6. Laparoscopic repair of postoperative perineal hernia.

    LENUS (Irish Health Repository)

    Ryan, Stephen

    2010-01-01

    Perineal hernias are infrequent complications following abdominoperineal operations. Various approaches have been described for repair of perineal hernias including open transabdominal, transperineal or combined abdominoperineal repairs. The use of laparoscopic transabdominal repair of perineal hernias is not well-described. We present a case report demonstrating the benefits of laparoscopic repair of perineal hernia following previous laparoscopic abdominoperineal resection (APR) using a nonabsorbable mesh to repair the defect. We have demonstrated that the use of laparoscopy with repair of the pelvic floor defect using a non absorbable synthetic mesh offers an excellent alternative with many potential advantages over open transabdominal and transperineal repairs.

  7. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  8. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  9. Base excision repair in sugarcane

    Directory of Open Access Journals (Sweden)

    Agnez-Lima Lucymara F.

    2001-01-01

    Full Text Available DNA damage can be induced by a large number of physical and chemical agents from the environment as well as compounds produced by cellular metabolism. This type of damage can interfere with cellular processes such as replication and transcription, resulting in cell death and/or mutations. The low frequency of mutagenesis in cells is due to the presence of enzymatic pathways which repair damaged DNA. Several DNA repair genes (mainly from bacteria, yeasts and mammals have been cloned and their products characterized. The high conservation, especially in eukaryotes, of the majority of genes related to DNA repair argues for their importance in the maintenance of life on earth. In plants, our understanding of DNA repair pathways is still very poor, the first plant repair genes having only been cloned in 1997 and the mechanisms of their products have not yet been characterized. The objective of our data mining work was to identify genes related to the base excision repair (BER pathway, which are present in the database of the Sugarcane Expressed Sequence Tag (SUCEST Project. This search was performed by tblastn program. We identified sugarcane clusters homologous to the majority of BER proteins used in the analysis and a high degree of conservation was observed. The best results were obtained with BER proteins from Arabidopsis thaliana. For some sugarcane BER genes, the presence of more than one form of mRNA is possible, as shown by the occurrence of more than one homologous EST cluster.

  10. Preparation of micro-pored silicone elastomer through radiation crosslinking

    International Nuclear Information System (INIS)

    Gao Xiaoling; Gu Mei; Xie Xubing; Huang Wei

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer, which was performed by vulcanization and foaming respectively. Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology. Silicon dioxide was used as filler, and silicone elastomer was vulcanized by electron beams, then the micro-pored material was made by heating method at a high temperature. The effects of absorbed dose and filler content on the performance and morphology were investigated. The structure and distribution of pores were observed by SEM. The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content. It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm. And the good mechanical performance can be suitable for further uses. (authors)

  11. Crosslinking in the diglycidyl ether oligoepichlorhydrin-piperazine

    Directory of Open Access Journals (Sweden)

    Konstantyn E. Varlan

    2014-03-01

    Full Text Available The possibility of acquiring film material from a mixture of oligoepichlorhydrin diglycidylether and piperazyne discussed. The process involves elongation of the chain by means of reaction of the oligomer terminal oxyran cycles with piperazine aminogrups, and the subsequent formation of crosslinked by tertiary amine alongthe chainsalkylation whis chlorometyl dand groups of macromolecules. With this purpose, the model system investigated: epichlorohydrin−piperidine, epichlorohydrin−piperazine, oligoetylenglikol glicidyl ether−piperazine. The possibility of regulating the contributions of reactions of epoxy group and alkylation on crosslinking primary stage is disclosed, as well as material properties. Taking into account the found regularities receive elastic film structured materials with quaternary nitrogen atoms in the nodes. The ratio of tertiary and quaternary structure of nitrogen depends on the process conditions. Films swell in polar solvents and has ion-exchange properties.

  12. Transient Anisocoria after Corneal Collagen Cross-Linking

    Directory of Open Access Journals (Sweden)

    George D. Kymionis

    2014-01-01

    Full Text Available Purpose. To report a case with transient anisocoria after corneal collagen cross-linking (CXL. Methods. Case report. Results. A 24-year-old male underwent corneal collagen cross-linking (CXL in his right eye for keratoconus. At the end of the procedure, the pupil of the treated eye was irregular and dilated, while the pupil of the fellow eye was round, regular, and reactive (anisocoria. The following day, pupils were round, regular, and reactive in both eyes. Conclusion. Anisocoria may be a transient and innocuous complication after CXL. A possible cause for this complication might be the anesthetic drops used before and during the surgical procedure or/and the ultraviolet A irradiation during the treatment.

  13. [Collagen crosslinking with riboflavin and UVA-light in keratoconus].

    Science.gov (United States)

    Kohlhaas, M

    2008-08-01

    Reduced corneal mechanical stability in keratoconus and similar corneal diseases can be treated by photooxidative crosslinking of the corneal collagen. This method is currently undergoing clinical evaluation worldwide. To achieve high absorption of the irradiation energy in the cornea, riboflavin at a concentration of 0.1% and UVA light at a wavelength of 370 nm corresponding to the relative maximum of absorption of riboflavin (vitamin B2) is used. These therapeutic parameters were experimentally tested and have been proven clinically. Current data demonstrate that the therapeutic crosslinking procedure is safe when the important theoretical and clinical parameters are observed, and that progression of keratoconus can be prevented. In all, 80% of the published cases show a decrease in corneal curvature of about 2 D, which leads not only to stabilisation but also to an increase in visual acuity.

  14. Concentration of biological molecules with radiation crosslinked hydrogels

    International Nuclear Information System (INIS)

    Acharya, Anjali; Sabharwal, S.

    2001-01-01

    Radiation crosslinked temperature sensitive Poly(N-isopropylacrylamide) hydrogels have been synthesised and utilised to concentrate biological molecules from dilute aqueous solutions. Both gamma radiation and electron beam radiation technique have been used to form crosslinked hydrogels. The solutes used for this study include biological macromolecules of varying molecular weights such as bovine serum albumin, chicken egg albumin, lysozyme and a-amylase. The effect of synthesis conditions of hydrogel namely radiation dose, solute concentration and pH of solution on the exclusion efficiencies of hydrogels have been investigated for these macromolecules. The reversible volume phase transition of the gels at 34 degC has been exploited for regeneration of the gels. The results show that biological macromolecules with M w > 40000 call be suitably concentrated using such hydrogels

  15. Cross-linking reveals laminin coiled-coil architecture

    Science.gov (United States)

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  16. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    Science.gov (United States)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  17. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  18. The Evaluation of Corneal Fragility After UVA/Riboflavin Crosslinking.

    Science.gov (United States)

    Li, Zhiwei; Wang, Yumeng; Xu, Yanyun; Jhanji, Vishal; Zhang, Chunxiao; Mu, Guoying

    2017-03-01

    To evaluate the fragility of cornea after UVA/riboflavin crosslinking (CXL). Sixty New Zealand rabbits received UVA/riboflavin crosslinking treatment (wavelength 365 nm, irradiance 3.0 mW/cm, and total dose 5.4 J/cm) on right eyes. Animals were sacrificed before and immediately after treatment (day 0), day 1, 3, 7, and 28 after treatment. A 4×10 mm corneal strip for biomechanical evaluation was harvested after sacrifice. The corneal fragility was evaluated by measurement of elongation rate, whereby the elongation rate equals elongation length/baseline length. The Youngs modulus and maximal stress were 1.41±0.51 MPa and 5.56±1.84 MPa before CXL, and increased to 2.31±0.68 MPa (P=0.008) and 9.25±2.74 MPa (P=0.04), respectively, on day 0, then maintained a stable level within a 28 days follow-up. The elongation rate was 62.04±9.34% before CXL and decreased to 48.95%±8.24% (P=0.02) on day 0, then maintained a stable level within a 28 days follow-up. This study showed an increase in the corneal fragility after UVA/riboflavin crosslinking along with an increase in the corneal stiffness. A long-term follow-up should be taken to evaluate the potential deleterious effect of the increasing corneal fragility after UVA/riboflavin crosslinking.

  19. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    International Nuclear Information System (INIS)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH 2 -PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH 2 -PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His 6 -tagged protein molecules to AFM tips via noncovalent NTA-Ni 2+ -His 6 bridges. The new crosslinker was applied to link a recombinant His 6 -tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin β1 was studied in detail by SMRFM, using the new crosslinker to link His 6 -tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557

  20. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  1. [The use of iontophoresis in corneal crosslinking technique].

    Science.gov (United States)

    Stanca, Horia T; Tabacaru, Bogdana

    2013-01-01

    Iontophoresis is a method of facilitating the penetration of a drug through an intact tissue in the presence of an low intensity electrical current. In corneal crosslinking technique, iontophoresis is used for transepitelial impregnation of cornea with riboflavin. Compared to passive technique of corneal impregnation, iontophoresis shortens the time needed for impregnation, the time of exposure to UVA radiation and does not require de-epithelialisation.

  2. Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles

    OpenAIRE

    Ilg Patrick

    2013-01-01

    Embedding magnetic nanoparticles into soft host media offers the opportunity to externally control material properties via a magnetic field. Choosing a hydrogel as host medium allows to modify not only the elastic properties but also the degree of swelling of the gel and the shape changes of the sample. Hydrogels where magnetic nanoparticles serve as the only crosslinking reagent of the network are a promising new class of such stimuli responsive gels. The well defined magneto mechanical coup...

  3. [Complications and postoperative therapeutic strategies in cross-linking].

    Science.gov (United States)

    Kohlhaas, M

    2017-08-01

    The reduced corneal mechanical stability in keratoconus and similar collagen diseases can lead to a progressive and irregular corneal shape and decrease of visual acuity. A progression of keratectatic diseases can be shown with corneal topography. Keratoconus can be treated by photo-oxidative cross-linking of the corneal collagen. In order to achieve a high absorption of irradiation energy in the cornea, riboflavin at a concentration of 0.1% and UVA light at a wavelength of 370 nm corresponding to the relative maximum absorption of riboflavin (vitamin B2) are used. Evidence for corneal cross-linking are the increase of biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibers. The currently available data demonstrate that the therapeutic cross-linking procedure is safe when respecting the important theoretical and clinical parameters and that a progression of the keratoconus can be avoided. In 80% of cases an average levelling of the curvature of approximately 2 dpt can be achieved, which leads not only to stabilization but also to an increase in visual acuity of approximately 1.2 lines. In a Cochrane review from 2015 publications about complications and results were reviewed. Complication rates ranged from 1-10% depending on the initial situation, comorbidities and stage of the keratoconus. The most important complications are early epithelial wound healing problems as well as extremely rare perforations. Corneal cross-linking is a well-established and safe procedure but is not free of complications.

  4. Cytokines and growth factors cross-link heparan sulfate

    Science.gov (United States)

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  5. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  6. Crosslinking and corneal cryotherapy in acanthamoeba keratitis -- a histological study.

    Science.gov (United States)

    Hager, Tobias; Hasenfus, A; Stachon, T; Seitz, B; Szentmáry, N

    2016-01-01

    Acanthamoeba keratitis is rare, but difficult to treat. Penetrating keratoplasty is performed in therapy-resistant cases. Nevertheless, subsequent recurrences occur in 40 % of the cases. In addition to triple-topical therapy (polyhexamid, propamidinisoethionat, neomycin), treatment alternatives are corneal cryotherapy and/or crosslinking (CXL). The aim of our present histological study was to analyze the persistence of acanthamoebatrophozoites and cysts, the persistence of bacteria, and activation of keratocytes in corneas of acanthamoeba keratitis patients following corneal cryotherapy and/or CXL. We analyzed histologically corneal buttons (from penetrating keratoplasties) of nine patients with acanthamoeba keratitis, following corneal cryotherapy (two patients) or a combination of crosslinking and corneal cryotherapy (seven patients), using haematoxilin–eosin, periodic acid Schiff (PAS), Gram and alpha-smooth muscle actin (alpha-SMA) stainings. Acanthamoeba trophozoites persisted in three corneas after cryotherapy and CXL. Cysts persisted in one of two corneas following corneal cryotherapy and in six of seven corneas after a combination of CXL and cryotherapy. One cornea showed positive Gram staining, but there were no alpha-SMA positive keratocytes in any of the corneas. Crosslinking and corneal cryotherapy have only limited impact on killing of acanthamoeba trophozoites, cysts, or bacteria. Corneal cryotherapy and CXL did not stimulate myofibroblastic transformation of keratocytes.

  7. Cross-linked polymeric membranes for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  8. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Ultra-sonication assisted cross-linking of cellulose polymers.

    Science.gov (United States)

    Udoetok, Inimfon A; Wilson, Lee D; Headley, John V

    2018-04-01

    Cross-linked cellulose-epichlorohydrin polymers were synthesized by a conventional heating with stirring (C-EP heating) and a parallel process using ultra-sonication (C-EP sonication) in the presence of aqueous ammonia. Structural characterization of modified cellulose was carried out using FTIR/ 13 C solid state NMR spectroscopy and thermal methods (DSC and TGA). Evidence of products with variable textural properties and morphology was supported by nitrogen gas adsorption, solvent swelling, and microscopy (SEM, TEM) results. C-EP sonication possess greater cross-linker content judging by the loss of the cellulose fibril structure which was facilitated by acoustic cavitation effects due to ultra-sonication. Equilibrium sorption studies in aqueous solution with 2-naphthoxy acetic acid (NAA) revealed that C-EP heating had slightly greater sorption capacity than C-EP sonication at alkaline pH. By contrast, C-EP sonication had greater uptake of NAA at acidic pH. Kinetic uptake studies at pH 3 is described by the pseudo-second order model, where the surface sites of C-EP heating became saturated within ca. 75 min; whereas, ca. 350 min occurred for C-EP sonication. This study demonstrates that the yield of sonication assisted cross-linking of cellulose is greater with improved adsorption properties. The study also reveals the utility of sonication assisted synthesis for the valorization and utilization of cellulose modified materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Radiation-induced crosslinking of syndiotactic 1,2-polybutadiene

    International Nuclear Information System (INIS)

    Iwai, Tadashi; Hoshino, Sadao; Yamamoto, Rokuro; Okamoto, Hidemasa; Obana, Kazuyoshi.

    1978-01-01

    Crystalline syndiotactic 1, 2-polybutadiene (hereafter abbreviated as 1, 2-PB) developed in Ube Industries, Ltd. by its own technology is a new thermoplastic resin belonging to the intermediate region between rubber and plastics in its flexibility. By selecting appropriate catalyst composition, 1, 2-PB having the melting point of 90 to 200 deg. C and crystallization of 10 to 65% can be obtained. These 1, 2-PBs can be worked to formed products by general thermoplastic forming methods such as injection molding, extrusion forming and blow forming. Radiation-crosslinked 1, 2-PB changed to very hard polymers through heat treatment. This change has been found to be radical chain reaction of cyclic polymerization. The relation of radiation-induced crosslinking and thermal expansion behavior, and the changes of appearance and structural and physical properties with heat treatment of these polymers are described. That is, specific gravity has increased, tensile strength has been enhanced, and elongation has decreased. While dielectric strength and arc resistivity have been upgraded. Therefore, these polymers can be used for the following applications: food wrapping film, molded notions, molded low foaming material for the soles of footwears, highly foaming moldings such as sponges, electric insulation material such as cable coating and adhesives for many materials. It is considered that crosslinking contributes to the application to electric insulation materials and heat curing to heat-resistant materials and parts. (Wakatsuki, Y.)

  11. Optical and structural behaviors of crosslinked polyvinyl alcohol thin films

    Science.gov (United States)

    Pandit, Subhankar; Kundu, Sarathi

    2018-04-01

    Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.

  12. Homogeneous UVA system for corneal cross-linking treatment

    Science.gov (United States)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  13. Superficial corneal crosslinking during laser in situ keratomileusis.

    Science.gov (United States)

    Seiler, Theo G; Fischinger, Isaak; Koller, Tobias; Derhartunian, Viktor; Seiler, Theo

    2015-10-01

    To determine the safety of superficial corneal crosslinking after laser in situ keratomileusis (LASIK). Institut für Refraktive und Ophthalmo-Chirurgie, Zurich, Switzerland. Prospective study. Eyes with an ectasia risk score of 2 or higher were treated with standard LASIK (90 μm flap) for myopia correction, after which a rapid corneal crosslinking was performed in the interface (riboflavin 0.5% for 2 minutes, 9 mW/cm(2) for 5 minutes) (Group 1). The follow-up was up to 1 year. The prevalence of complications was statistically compared with that in a group of eyes matched regarding age, sex, and attempted refractive correction that were treated with standard LASIK only (Group 2). One month postoperatively, 5 eyes in Group 1 lost 1 line of corrected distance visual acuity (CDVA) compared with 1 eye in Group 2 (P rate of less than 5%. The refractive success was identical in both groups. Early postoperative complications such as erosions (16%), diffuse lamellar keratitis (DLK) stage 1 (38%), and DLK stage 2 (5%) were statistically significantly more frequent after superficial corneal crosslinking, leading to a statistically significantly reduced uncorrected distance visual acuity at 1 month (P interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. From intraperitoneal onlay mesh repair to preperitoneal onlay mesh repair.

    Science.gov (United States)

    Yang, George Pei Cheung

    2017-05-01

    Laparoscopic repair for ventral and incisional hernias was first reported in the early 1990s. It uses intraperitoneal only mesh placement to achieve a tension-free repair of the hernia. However, in recent years, there has been greater concern about long-term complication involving intraperitoneal mesh placement. Many case reports and case series have found evidence of mesh adhesion, mesh fistulation, and mesh migration into hollow organs including the esophagus, small bowel, and large bowel, resulting in various major acute abdominal events. Subsequent management of these complications may require major surgery that is technically demanding and difficult; in such cases, laparotomy and bowel resection have often been performed. Because of these significant, but not common, adverse events, many surgeons favor open sublay repair for ventral and incisional hernias. Investigators are therefore searching for a laparoscopic approach for ventral and incisional hernias that might overcome the mesh-induced visceral complications seen after intraperitoneal only mesh placement repair. Laparoscopic preperitoneal onlay mesh is one such approach. This article will explore the fundamental of intraperitoneal only mesh placement and its problems, the currently available peritoneal visceral-compatible meshes, and upcoming developments in laparoscopic ventral and incisional hernia repair. The technical details of preperitoneal onlay mesh, as well as its potential advantages and disadvantages, will also be discussed. © 2017 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  15. Tethering a laminin peptide to a crosslinked collagen scaffold for biofunctionality.

    Science.gov (United States)

    Damodaran, Gopinath; Collighan, Russell; Griffin, Martin; Pandit, Abhay

    2009-06-15

    Cell adhesion peptide regulates various cellular functions like proliferation, attachment, and spreading. The cellular response to laminin peptide (PPFLMLLKGSTR), a motif of laminin-5 alpha3 chain, tethered to type I collagen, crosslinked using microbial transglutaminase (mTGase) was investigated. mTGase is an enzyme that initiates crosslinking by reacting with the glutamine and lysine residues on the collagen fibers stabilizing the molecular structure. In this study that tethering of the laminin peptide in a mTGase crosslinked collagen scaffold enhanced cell proliferation and attachment. Laminin peptide tethered crosslinked scaffold showed unaltered cell morphology of 3T3 fibroblasts when compared with collagen and crosslinked scaffold. The triple helical structure of collagen remained unaltered by the addition of laminin peptide. In addition a dose-dependent affinity of the laminin peptide towards collagen was seen. The degree of crosslinking was measured by amino acid analysis, differential scanning calorimeter and fourier transform infrared spectroscopy. Increased crosslinking was observed in mTGase crosslinked group. mTGase crosslinking showed higher shrinkage temperature. There was alteration in the fibrillar architecture due to the crosslinking activity of mTGase. Hence, the use of enzyme-mediated linking shows promise in tethering cell adhesive peptides through biodegradable scaffolds. Copyright 2008 Wiley Periodicals, Inc.

  16. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    International Nuclear Information System (INIS)

    Doan Binh; Nguyen Thanh Duoc; Pham Thi Thu Hong

    2013-01-01

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  17. Impact of proline and aspartic acid residues on the dissociation of intermolecularly crosslinked peptides.

    Science.gov (United States)

    Gardner, Myles W; Brodbelt, Jennifer S

    2008-03-01

    The dissociation of intermolecularly crosslinked peptides was evaluated for a series of peptides with proline or aspartic acid residues positioned adjacent to the crosslinking sites (lysine residues). The peptides were crosslinked with either disuccinimidyl suberate (DSS) or disuccinimidyl L-tartrate (DST), and the influence of proline and aspartic acid residues on the fragmentation patterns were investigated for precursor ions with and without a mobile proton. Collisionally activated dissociation (CAD) spectra of aspartic acid-containing crosslinked peptide ions, doubly-charged with both protons sequestered, were dominated by cleavage C-terminal to the Asp residue, similar to that of unmodified peptides. The proline-containing crosslinked peptides exhibited a high degree of internal ion formation, with the resulting product ions having an N-terminal proline residue. Upon dissociation of the doubly-charged crosslinked peptides, twenty to fifty percent of the fragment ion abundance was accounted for by multiple cleavage products. Crosslinked peptides possessing a mobile proton yielded almost a full series of b- and y-type fragment ions, with only proline-directed fragments still observed at high abundances. Interestingly, the crosslinked peptides exhibited a tendency to dissociate at the amide bond C-terminal to the crosslinked lysine residue, relative to the N-terminal side. One could envision updating computer algorithms to include these crosslinker specific product ions--particularly for precursor ions with localized protons--that provide complementary and confirmatory information, to offer more confident identification of both the crosslinked peptides and the location of the crosslink, as well as affording predictive guidelines for interpretation of the product-ion spectra of crosslinked peptides.

  18. Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair

    International Nuclear Information System (INIS)

    Jiang Liuyun; Li Yubao; Zhang Li; Wang Xuejiang

    2009-01-01

    The composite biomaterial made from nano-hydroxyapatite(n-HA) and chitosan(CS) cross-linked with carboxymethyl cellulose(CMC) by a co-solution method has been studied. Fourier transform infrared absorption spectra (IR), X-ray diffraction (XRD), burn-out test, chemical analysis, transmission electron microscope(TEM) and universal material testing machine were used to test the properties of the composite. The experiment of SBF soaking for 8 weeks was used to investigate their degradation and bioactivity in vitro. The results show that the formation of composite is mainly contributed to the ionic cross-linking of CMC with CS, and n-HA particles in the form of nanometer grade short crystals are uniformly distributed in the organic network structure of polyelectrolyte complexes, which endows the composite with high compressive strength and good bioactivity. The compressive strength and degradation rate are concerned with the content of n-HA. It can be stated that the n-HA/CS/CMC composite whose weight ratio is 40/30/30 may be a potential candidate as one of novel bone repair materials because of its high compressive strength and acceptable degradation rate as well as good bioactivity, displaying a promising prospect of the clinical application of CMC-contained composite in the field of bone repair

  19. The Importance of Non-accessible Crosslinks and Solvent Accessible Surface Distance in Modeling Proteins with Restraints From Crosslinking Mass Spectrometry*

    Science.gov (United States)

    Bullock, Joshua Matthew Allen; Schwab, Jannik; Thalassinos, Konstantinos; Topf, Maya

    2016-01-01

    Crosslinking mass spectrometry (XL-MS) is becoming an increasingly popular technique for modeling protein monomers and complexes. The distance restraints garnered from these experiments can be used alone or as part of an integrative modeling approach, incorporating data from many sources. However, modeling practices are varied and the difference in their usefulness is not clear. Here, we develop a new scoring procedure for models based on crosslink data—Matched and Nonaccessible Crosslink score (MNXL). We compare its performance with that of other commonly-used scoring functions (Number of Violations and Sum of Violation Distances) on a benchmark of 14 protein domains, each with 300 corresponding models (at various levels of quality) and associated, previously published, experimental crosslinks (XLdb). The distances between crosslinked lysines are calculated either as Euclidean distances or Solvent Accessible Surface Distances (SASD) using a newly-developed method (Jwalk). MNXL takes into account whether a crosslink is nonaccessible, i.e. an experimentally observed crosslink has no corresponding SASD in a model due to buried lysines. This metric alone is shown to have a significant impact on modeling performance and is a concept that is not considered at present if only Euclidean distances are used. Additionally, a comparison between modeling with SASD or Euclidean distance shows that SASD is superior, even when factoring out the effect of the nonaccessible crosslinks. Our benchmarking also shows that MNXL outperforms the other tested scoring functions in terms of precision and correlation to Cα-RMSD from the crystal structure. We finally test the MNXL at different levels of crosslink recovery (i.e. the percentage of crosslinks experimentally observed out of all theoretical ones) and set a target recovery of ∼20% after which the performance plateaus. PMID:27150526

  20. Repair of Lateral Wall Insufficiency.

    Science.gov (United States)

    Vaezeafshar, Reza; Moubayed, Sami P; Most, Sam P

    2018-03-01

    Lateral wall insufficiency (LWI) is classified by the zone in which it occurs. Multiple techniques for treating LWI are described in the literature and are used, but no treatment approach has been widely adopted. To establish an algorithm for treatment of LWI by evaluating subjective and objective outcomes of patients who underwent LWI repair and comparing these results with those of a control group who received no specific LWI repair. This case-control study was conducted in a tertiary referral center. In group 1, there were 44 patients who underwent septorhinoplasty to repair LWI between February 1, 2014, and May 31, 2016. In group 2, there were 44 age- and sex-matched patients who underwent cosmetic septorhinoplasty without LWI repair. Data analysis was conducted from February 1, 2014, to May 31, 2016. Open septorhinoplasty. Nasal Obstruction Symptom Evaluation (NOSE) scores and LWI grades. Forty-four patients (8 men and 36 women, with a mean [SD] age of 46 [16] years) who underwent open septorhinoplasty to repair LWI and 44 age- and sex-matched patients (composed of 8 men and 36 women, with a mean [SD] age of 41 [12] years) were included in the study. The mean (SD) preoperative NOSE scores were 69.4 (22) in group 1 and 20.5 (20.8) in group 2 (P system enables surgeons to localize LWI, tailor the surgical treatment to the patient, and monitor improvements in the postoperative period. 3.

  1. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  2. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  3. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  4. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  5. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  6. The effect of chain flexibility and chain mobility on radiation crosslinking reactions of polymers

    International Nuclear Information System (INIS)

    Sun Jiazhen

    2003-01-01

    Flexibility of polymer chains is an important factor to effects of radiation crosslinking of the polymer. Polymers with flexible chains are easier to be crosslinked, with lower dose of gelation, than polymers with more rigid chains. And it is known that most polymers with abnormal rigidity can be radiation-crosslinked only at high temperatures when the molecular chains get enough mobility. The flexibility of polymer chains also influences the relationship between degree of degradation and radiation dose. A chain flexibility factor β has been introduced to modify the Charlesby-Pinner equation of sol-fraction and radiation dose. The new relationship equation applies to a wider range of polymers in radiation crosslinking. Studies also show that for flexible polymers with lower T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in H type, whereas for rigid polymers with higher T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in T type

  7. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate

    International Nuclear Information System (INIS)

    Carbinatto, F.M.; Cury, B.S.F.; Evangelista, R.C.

    2010-01-01

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  8. DNA repair systems in rhabdomyosarcoma.

    Science.gov (United States)

    Tsioli, Panagiota G; Patsouris, Efstratios S; Giaginis, Constantinos; Theocharis, Stamatios E

    2013-08-01

    Rhabdomyosarcoma (RMS) represents the most common soft tissue sarcoma in children and adolescent population. There are two major histological subtypes, embryonal (ERMS) and alveolar (ARMS), differing in cytogenetic and morphological features. RMS pathogenesis remains controversial and several cellular mechanisms and pathways have been implicated. Application of intense chemo- and radio-therapy improves survival rates for RMS patients, but significant efficacy has not been proved as DNA damage induced-resistance frequently occurs. The present review is aimed at summarizing the current evidence on DNA repair systems, implications in RMS development, focusing on gene expression alterations and point mutations of genes encoding for DNA repair enzymes. Understanding of DNA repair systems involvement in RMS pathogenesis could diversify RMS patients and provide novel individualized therapeutic targets.

  9. Radiation Crosslinking of Polyurethanes: Characterization by FTIR, TGA, SEM, XRD, and Raman Spectroscopy

    OpenAIRE

    Ghobashy, Mohamed Mohamady; Abdeen, Zizi I.

    2016-01-01

    Gamma radiation can be used for enhancing the physical properties of polyurethane (PU). Radiation was used to crosslink a polyurethane at room temperature; four samples of the PU solid film are irradiated at variable four radiation doses 0, 50, 100, and 150 kGy under vacuum conditions. Crosslinking radiation is more common than oxidative degradation and crosslinking is believed to be more efficient in the soft segment of PU. The structure of the PUs is performed by Fourier transform infrared ...

  10. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    Science.gov (United States)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  11. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    OpenAIRE

    Gonçalves,Vanessa L.; Laranjeira,Mauro C. M.; Fávere,Valfredo T.; Pedrosa,Rozângela C.

    2005-01-01

    In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS), and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree ...

  12. The Effect of Double Crosslinker on Precipitation Polymerization of Poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    Hajar Es-haghi

    2014-06-01

    Full Text Available Cross-linked poly(acrylic acids were prepared by dual cross-linkers via precipitation polymerization method in a binary organic solvent. Polyethylene glycol diacrylate (PEGDA-400 as a long-chain cross-linker and di(trimethylol propane tetraacrylate (DTMPTA as multifunctional cross-linker were used. PEGDA-400 was utilized to increase thickening properties and DTMPTA was used to improve the gel strength. The dual cross-linkers effect on the sample features (i.e., equilibrium swelling, thickening properties and rheological properties was investigated. Maximum amount of swelling was obtained by a high percentage of long-chain cross-linker. The apparent viscosity of the microgels was measured to determine their thickening properties for aqueous media. Maximum viscosity occurred at DT25-PE75 which was dependent on the type of cross-linkers in the polymer structure. The Flory-Rehner equation (from swelling ratio data and rubber elasticity theory (from rheometry data were used to discuss the network structure of the polymer. Increasing density of the network was shown by a sample containing high percentage of a four-functional cross-linker. The rheological properties of the cross-linked polymers were measured to determine storage modulus (strength network. The rheological behaviors demonstrated that the synthesized polymer containing a high amount of four-functional cross-linker had higher storage modulus (G′ than other samples. In addition the consistency coefficient (m and flow behavior index (n parameters of Ostwald equation were investigated as well. As a result, n values in each sample were found to be smaller than 1 and these results were fitted clearly with the pseudoplastic model. Apparent and rotational viscosities were used to determine the optimal cross-linker type (synthesized sample contained a high percentage of long-chain cross-linker.

  13. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  14. Crosslinked and Dyed Chitosan Fiber Presenting Enhanced Acid Resistance and Bioactivities

    OpenAIRE

    Xiao-Qiong Li; Ren-Cheng Tang

    2016-01-01

    The application of biodegradable chitosan fiber for healthy and hygienic textiles is limited due to its poor acid resistance in wet processing and poor antioxidant activity. In order to prepare chitosan fiber with good acid resistance and high antioxidant activity, chitosan fiber was first crosslinked by a water-soluble aziridine crosslinker, and then dyed with natural lac dye consisting of polyphenolic anthraquinone compounds. The main application conditions and crosslinking mechanism of the...

  15. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.

    Science.gov (United States)

    McGill, Meghan; Coburn, Jeannine M; Partlow, Benjamin P; Mu, Xuan; Kaplan, David L

    2017-11-01

    Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods

  16. Radiation polymerization and crosslinking of N-isopropylacrylamide in aqueous solution and in solid state

    International Nuclear Information System (INIS)

    Safranj, A.; Yoshida, Masaru; Omichi, Hideki; Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi.

    1995-01-01

    Poly(N-isopropylacrylamide) hydrogels were synthesized by radiation induced simultaneous polymerization and cross-linking. Aqueous monomer solutions and pure monomer, without crosslinker, were irradiated in nitrogen atmosphere at a 60 Co gamma source. The conversion from monomer to polymer and cross-linked gel was investigated as a function of temperature and monomer concentration. The swelling behavior of the gels showed clear dependence on the synthesis conditions. (author)

  17. Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels

    OpenAIRE

    Penphitcha Amonpattaratkit; Sureerat Khunmanee; Dong Hyun Kim; Hansoo Park

    2017-01-01

    In this work, crosslinkers were prepared by conjugating high- and low-molecular-weight gelatin with different mole ratios of itaconic acid (IA) with double bonds. Then, the gelatin-itaconic acid (gelatin-IA) crosslinkers were compared with the gelatin-methacrylate (gelatin-MA) crosslinkers. The molecular weights and structures of gelatin-MA and gelatin-IA were confirmed using gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). Additionally, the swelling ratio and biodegr...

  18. History of flexor tendon repair.

    Science.gov (United States)

    Manske, Paul R

    2005-05-01

    The first issue of Hand Clinics published 20 years ago was devoted to flexor tendon injuries. This was most appropriate, because no subject in hand surgery has sparked more interest or discussion. That inaugural issue included excellent presentations on the basic science of tendon injuries (anatomy, biomechanics, nutrition, healing, adhesions) and the clinical practice of tendon repair. Of interest, there was no presentation on the fascinating history of flexor tendon surgery. It is most appropriate, therefore, that this current update of the flexor tendon begins with a historical review of the evolution of flexor tendon repair.

  19. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...

  20. Mitigating crosslinking reactions through preconversion strategies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1994-07-01

    The primary objective of this project was to determine the effect of reductive pretreatments of low-rank coals through the use of electron-transfer agents. This potential was explored in laboratory studies through determination of the impact on the evolution of oxygen functions, crosslinking, and conversion. The pretreatments explored include treatment with CO/water/base and hydroquinones or other electron-transfer agents in various combinations. The effects of these pretreatments on functional group distribution, macromolecular structure, and liquefaction were compared with those of pretreatments that have in the past shown promise for improved conversions, such as simple hydrothermal pretreatment, mild hydrogenation with dispersed catalysts, and demineralization. Additional objectives were to improve test procedures for assessing the effect of the pretreatment on subsequent liquefaction and to achieve some understanding of the chemical origins of the effects observed. These tests are: (1) proton magnetic resonance thermal analysis, (PMRTA) for determining the effect of pretreatment on fluidity as liquefaction conditions (temperature, pressure) are approached and (2) a thermogravimetric assay (TGA)-based simulated distillation for convenient measurement of product volatility following small-scale batch-liquefaction experiments. The purpose of the PMRTA test is to gain additional insight into whether beneficial pretreatments primarily affect pre-existing crosslinks in the coals or primarily limit additional crosslinking during liquefaction. The TGA-based simulated distillation test is being developed so that the authors can obtain conversion data and also assess the nature of the product (distillation profile) instead of only a single-point measure of conversion such as wt% conversion to THF-solubles or the yield of 975 F-distillates.

  1. In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants.

    Directory of Open Access Journals (Sweden)

    Firouzeh Sabri

    Full Text Available BACKGROUND: Polyurea crosslinked silica aerogels are highly porous, lightweight, and mechanically strong materials with great potential for in vivo applications. Recent in vivo and in vitro studies have demonstrated the biocompatibility of this type of aerogel. The highly porous nature of aerogels allows for exceptional thermal, electric, and acoustic insulating capabilities that can be taken advantage of for non-invasive external imaging techniques. Sound-based detection of implants is a low cost, non-invasive, portable, and rapid technique that is routinely used and readily available in major clinics and hospitals. METHODOLOGY: In this study the first in vivo ultrasound response of polyurea crosslinked silica aerogel implants was investigated by means of a GE Medical Systems LogiQe diagnostic ultrasound machine with a linear array probe. Aerogel samples were inserted subcutaneously and sub-muscularly in a fresh animal model and b cadaveric human model for analysis. For comparison, samples of polydimethylsiloxane (PDMS were also imaged under similar conditions as the aerogel samples. CONCLUSION/SIGNIFICANCE: Polyurea crosslinked silica aerogel (X-Si aerogel implants were easily identified when inserted in either of the regions in both fresh animal model and cadaveric model. The implant dimensions inferred from the images matched the actual size of the implants and no apparent damage was sustained by the X-Si aerogel implants as a result of the ultrasonic imaging process. The aerogel implants demonstrated hyperechoic behavior and significant posterior shadowing. Results obtained were compared with images acquired from the PDMS implants inserted at the same location.

  2. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues...... and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein...

  3. Crosslinked and Dyed Chitosan Fiber Presenting Enhanced Acid Resistance and Bioactivities

    Directory of Open Access Journals (Sweden)

    Xiao-Qiong Li

    2016-04-01

    Full Text Available The application of biodegradable chitosan fiber for healthy and hygienic textiles is limited due to its poor acid resistance in wet processing and poor antioxidant activity. In order to prepare chitosan fiber with good acid resistance and high antioxidant activity, chitosan fiber was first crosslinked by a water-soluble aziridine crosslinker, and then dyed with natural lac dye consisting of polyphenolic anthraquinone compounds. The main application conditions and crosslinking mechanism of the aziridine crosslinker, the adsorption mechanism and building-up property of lac dye on the crosslinked fiber, and the effects of crosslinking and dyeing on the antioxidant and antibacterial activities of chitosan fiber were studied. The crosslinked fiber exhibited greatly reduced weight loss in acidic solution, and possessed excellent acid resistance. Lac dye displayed a very high adsorption capability on the crosslinked fiber and a high utilization rate under weakly acidic medium. The Langmuir–Nernst isotherm was the best model to describe the adsorption behavior of lac dye, and Langmuir adsorption had great contribution to total adsorption. Lac dyeing imparted good antioxidant activity to chitosan fiber. Crosslinking and dyeing had no impact on the good inherent antibacterial activity of chitosan fiber.

  4. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  5. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits

    Science.gov (United States)

    Hao, Zhao-Qin; Song, Jin-Xin; Pan, Shi-Yin; Zhang, Lin; Cheng, Yan; Liu, Xian-Ning; Wu, Jie; Xiao, Xiang-Hua; Gao, Wei; Zhu, Hai-Feng

    2016-01-01

    AIM To observe the therapeutic effect of corneal collagen cross-linking (CXL) in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each). The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM) at 4wk. RESULTS A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (Pcorneal epithelium defect areas of the combined group was smaller than that of the CXL group (Pcorneal epithelium defects of the two treatment groups have been healed by day 21. The corneal epithelium defects of the control group were healed on 28d. The diameters of the corneal collagen fiber bundles (42.960±7.383 nm in the CXL group and 37.040±4.160 nm in the combined group) were thicker than that of the control group (24.900±1.868 nm), but there was no difference between the two treatment groups. Some corneal collagen fiber bundles were distorted and with irregular arrangement, a large number of fibroblasts could be seen among them but no inflammatory cells in both treatment groups. CONCLUSION CXL combined with liposomal amphotericin B have beneficial effects on fungal corneal ulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease. PMID:27990355

  6. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits

    Directory of Open Access Journals (Sweden)

    Zhao-Qin Hao

    2016-11-01

    Full Text Available AIM: To observe the therapeutic effect of corneal collagen cross-linking (CXL in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS: New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each. The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM at 4wk. RESULTS: A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (P<0.05. The corneal epithelium defect areas of the combined group was smaller than that of the CXL group (P<0.05 on 7 and 14d, but there were no statistical differences on 3, 21 and 28d. The corneal epithelium defects of the two treatment groups have been healed by day 21. The corneal epithelium defects of the control group were healed on 28d. The diameters of the corneal collagen fiber bundles (42.960±7.383 nm in the CXL group and 37.040±4.160 nm in the combined group were thicker than that of the control group (24.900±1.868 nm, but there was no difference between the two treatment groups. Some corneal collagen fiber bundles were distorted and with irregular arrangement, a large number of fibroblasts could be seen among them but no inflammatory cells in both treatment groups. CONCLUSION: CXL combined with liposomal amphotericin B have beneficial effects on fungal corneal ulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease.

  7. Probing actin polymerization by intermolecular cross-linking

    OpenAIRE

    1988-01-01

    We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an app...

  8. Radiation-induced crosslinking of aromatic polymers with cardo group

    International Nuclear Information System (INIS)

    Xu Jun; Zhang Wanxi

    1991-01-01

    The effects of irradiation on the aromatic polymers with cardo group, such as polyetherketone with cardo group (PEK-C) and polyethersulfone with cardo group (PES-C) were studied. It was found that PEK-C and PES-C can be crosslinked by irradiation under vacuum. Moreover, it was also found that the intensity of the shake-up peak of X-ray photoelectron spectroscopy (XPS) for PEK-C and PES-C varies as irradiation dose. Gelation doses (Rg) of PEK-C and PES-C were estimated by shake-up peaks of XPS. (author) 6 refs.; 8 figs.; 3 tabs

  9. Newer protocols and future in collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Arthur B Cummings

    2013-01-01

    Full Text Available Corneal Cross-Linking (CXL is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored

  10. Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes*

    Science.gov (United States)

    Hoffman, Elizabeth A.; Frey, Brian L.; Smith, Lloyd M.; Auble, David T.

    2015-01-01

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function. PMID:26354429

  11. Formaldehyde crosslinking: a tool for the study of chromatin complexes.

    Science.gov (United States)

    Hoffman, Elizabeth A; Frey, Brian L; Smith, Lloyd M; Auble, David T

    2015-10-30

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mapping protein structural changes by quantitative cross-linking

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Zdeněk; Strohalm, Martin; Kavan, Daniel; Novák, Petr

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 112-120 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Chemical cross-linking * Proteolysis * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.503, year: 2015

  13. LET dependence of DNA-protein cross-links

    International Nuclear Information System (INIS)

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC's) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/μm is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/μm there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure

  14. Peripheral hepatic arterial embolization with cross-linked collagen fibers

    International Nuclear Information System (INIS)

    Daniels, J.R.; Kerlan, R.K. Jr.; Dodds, L.; McLaughlin, P.; La Berge, J.M.; Harrington, D.; Daniels, A.M.; Ring, E.J.

    1986-01-01

    Hepatic artery embolization with a nonimmunogenic, cross-linked collagen preparation (Angiostat, collagen for embolization, Target Therapeutics) was studied in mongrel dogs. Flow-directed technique was used to achieve complete distal arterial occlusion. Serial liver function evaluation demonstrated marked alterations at 48 to 72 hours, partial correction at 1 week, and resolution of abnormalities by 1 month. Restoration of large-vessel blood flow was angiographically demonstrable at 1 week. Recanalization, achieved by migration of endothelial cells around the collagen, resulted in complete restoration of normal hepatic vascular and tissue anatomy at 1 month. Repeated embolization at biweekly intervals was well tolerated

  15. Production of crosslinked protein particles through membrane emulsification

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2010-09-01

    Full Text Available technology. It has been developed to produce crosslinked, spherical protein particles (Figure 1) through an emulsion process that is more easily recoverable than free enzymes and show enhanced activity. the enzymes can be recycled at least nine times..., therefore allowing uniform droplet size distribution. the method can be applied to both oil-in-water and water-in-oil emulsions7,8 and is a suitable method for creating a protein emulsion due to the low shear of the process. ExPErIMEntAL dESIgn And SEtu...

  16. OPERATE BY EXPLOITATION AND TECHNOLOGY REPAIR

    Directory of Open Access Journals (Sweden)

    A. V. Radkevich

    2011-01-01

    Full Text Available The ways of establishing traffic control in the management of maintenance and repair of equipment, which will greatly facilitate the management of mobile repair facilities and improve the efficiency of their use, are considered.

  17. Outreach Materials for the Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  18. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  19. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics , Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  20. Microwave Oven Repair. Teacher Edition.

    Science.gov (United States)

    Smreker, Eugene

    This competency-based curriculum guide for teachers addresses the skills a technician will need to service microwave ovens and to provide customer relations to help retain the customer's confidence in the product and trust in the service company that performs the repair. The guide begins with a task analysis, listing 20 cognitive tasks and 5…

  1. Pure robotic retrocaval ureter repair

    Directory of Open Access Journals (Sweden)

    Ashok k. Hemal

    2008-12-01

    Full Text Available PURPOSE: To demonstrate the feasibility of pure robotic retrocaval ureter repair. MATERIALS AND METHODS: A 33 year old female presented with right loin pain and obstruction on intravenous urography with the classical "fish-hook" appearance. She was counseled on the various methods of repair and elected to have a robot assisted repair. The following steps are performed during a pure robotic retrocaval ureter repair. The patient is placed in a modified flank position, pneumoperitoneum created and ports inserted. The colon is mobilized to expose the retroperitoneal structures: inferior vena cava, right gonadal vein, right ureter, and duodenum. The renal pelvis and ureter are mobilized and the renal pelvis transected. The ureter is transposed anterior to the inferior vena cava and a pyelopyelostomy is performed over a JJ stent. RESULTS: This patient was discharged on postoperative day 3. The catheter and drain tube were removed on day 1. Her JJ stent was removed at 6 weeks postoperatively. The postoperative intravenous urography at 3 months confirmed normal drainage of contrast medium. CONCLUSION: Pure robotic retrocaval ureter is a feasible procedure; however, there does not appear to be any great advantage over pure laparoscopy, apart from the ergonomic ease for the surgeon as well the simpler intracorporeal suturing.

  2. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  3. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  4. Discrete time analysis of a repairable machine

    OpenAIRE

    Alfa, Attahiru Sule; Castro, I. T.

    2002-01-01

    We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...

  5. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  6. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  7. Rapid Set Materials for Advanced Spall Repair

    Science.gov (United States)

    2010-08-01

    compressive strength, tensile strength, modulus of rupture, and the coefficient of thermal expansion . pavement, spall repair, airfield damage repair...ABBREVIATIONS, AND ACRONYMS ACI American Concrete Institute AFRL Air Force Research Laboratory ASR alkali-silica reaction ASTM American...3 3.2. Concrete Repair Materials

  8. 30 CFR 56.6801 - Vehicle repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...

  9. Nationwide prevalence of groin hernia repair

    DEFF Research Database (Denmark)

    Burcharth, Jakob; Pedersen, Michael; Bisgaard, Thue

    2013-01-01

    Groin hernia repair is a commonly performed surgical procedure in the western world but large-scaled epidemiologic data are sparse. Large-scale data on the occurrence of groin hernia repair may provide further understanding to the pathophysiology of groin hernia development. This study was undert...... was undertaken to investigate the age and gender dependent prevalence of groin hernia repair....

  10. ONSTEP versus laparoscopy for inguinal hernia repair

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Burcharth, Jakob; Rosenberg, Jacob

    2015-01-01

    INTRODUCTION: The optimal repair of inguinal hernias remains controversial. It is recommended that an inguinal hernia be repaired using a mesh, either with a laparoscopic or an open approach. In Denmark, the laparoscopic approach is used in an increasing number of cases. The laparoscopic repair h...

  11. Reliable concrete repair : A critical review

    NARCIS (Netherlands)

    Lukovic, M.; Ye, G.; Van Breugel, K.

    2012-01-01

    This paper highlights the importance of achieving durable and long-term predictable repair of reinforced concrete structures. The performance of concrete repair in past and current engineering practice, including all types of repair and application of different materials, is often unsatisfactory.

  12. 33 CFR 115.40 - Bridge repairs.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridge repairs. 115.40 Section 115.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.40 Bridge repairs. Repairs to a bridge which do...

  13. Albumin-crosslinked alginate hydrogels as sustained drug release carrier

    International Nuclear Information System (INIS)

    Tada, Daisuke; Tanabe, Toshizumi; Tachibana, Akira; Yamauchi, Kiyoshi

    2007-01-01

    To take advantage of the drug-binding ability of albumin as a component of drug delivery system, we have prepared hydrogels consisting of alginic acid (AL) and recombinant human serum albumin (rHSA) by dehydrating condensation using N-hydroxysuccininimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. As rHSA content increased, the swelling ratio of the hydrogel decreased, indicating rHSA functioned as a crosslinker. In fact, trypsin treatment solubilized the hydrogel. Salicylic acid, which has high affinity for rHSA, was loaded most on the hydrogel of the highest rHSA content despite the lowest swelling ratio. Meanwhile, drugs with less affinity for HSA such as o-anisic acid and benzoic acid were preferably loaded on the hydrogel having the highest swelling ratio but the lowest HSA content. The release of salicylic acid from the hydrogel sustained longer than o-anisic acid and benzoic acid, reflecting the affinity of the drug for HSA. Furthermore, the hydrogel could carry much of positively charged dibucaine by the interaction with anionic alginic acid and showed highly sustained release. Since the safety of AL and rHSA in medical use is guaranteed, rHSA-crosslinked AL hydrogel is expected to use as a sustained drug release carrier for drugs having affinity for HSA and those with cationic charge

  14. Collagen Cross-Linking: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Marine Hovakimyan

    2012-01-01

    Full Text Available Collagen cross-linking (CXL using UVA light and riboflavin (vitamin B2 was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL.

  15. Radiation induced crosslinking of polyacrylonitrile fiber and an ESR study

    International Nuclear Information System (INIS)

    Liu, W.; Xing, Z.; Wang, M.; Wu, G.

    2011-01-01

    Complete text of publication follows. Polyacrylonitrile (PAN) fiber was irradiated both in vacuum and air atmospheres at room temperature by gamma rays. Gel fraction determination indicated that gamma irradiation led to the crosslinking of PAN fiber in both cases. However, oxidative degradation resulted in a reduction in gel content at higher dose for the irradiation in air. Electron spin resonance (ESR) was used to trace the evolution of free radicals produced by irradiation in order to study the crosslinking mechanism. The G-value of radical formation was 2.1 (per 100 ev) at room temperature after correction using 1,1 - Diphenyl-2-picrylhydrazyl (DPPH). The radicals were found to be rather stable in vacuum, but decayed in air (half life: one week) at room temperature. The most of radicals might be trapped in the crystal part of PAN fibers. By thermal treatment of irradiated PAN fibers in air and vacuum, the trapped radicals decayed with increasing temperature and the radical concentration decreased sharply around the glass transition temperature (100 deg C).

  16. Damage and fatigue in cross-linked rubbers

    Science.gov (United States)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  17. Memory Dynamics in Cross-linked Actin Networks

    Science.gov (United States)

    Scheff, Danielle; Majumdar, Sayantan; Gardel, Margaret

    Cells demonstrate the remarkable ability to adapt to mechanical stimuli through rearrangement of the actin cytoskeleton, a cross-linked network of actin filaments. In addition to its importance in cell biology, understanding this mechanical response provides strategies for creation of novel materials. A recent study has demonstrated that applied stress can encode mechanical memory in these networks through changes in network geometry, which gives rise to anisotropic shear response. Under later shear, the network is stiffer in the direction of the previously applied stress. However, the dynamics behind the encoding of this memory are unknown. To address this question, we explore the effect of varying either the rigidity of the cross-linkers or the length of actin filament on the time scales required for both memory encoding and over which it later decays. While previous experiments saw only a long-lived memory, initial results suggest another mechanism where memories relax relatively quickly. Overall, our study is crucial for understanding the process by which an external stress can impact network arrangement and thus the dynamics of memory formation.

  18. Collagen cross-linking: Strengthening the unstable cornea

    Directory of Open Access Journals (Sweden)

    Oren Tomkins

    2008-05-01

    Full Text Available Oren Tomkins, Hanna J GarzoziDepartment of Ophthalmology, Bnai Zion Medical Center, Haifa, IsraelAbstract: Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen crosslinking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls.Keywords: corneal cross-linking, corneal ectasia, keratoconus, stroma, cornea

  19. Elastic moduli and crosslinking of some tellurite glass systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Mallawany, R., E-mail: raoufelmallawany@Yahoo.com [Physics Dept., Science College, Northern Boarders University (Saudi Arabia); Afifi, H. [National Institute for Standards, Giza (Egypt)

    2013-12-16

    Tellurite glass systems in the form 80(TeO{sub 2})–5(TiO{sub 2})–(15 − x)(WO{sub 3})–(x)A{sub n}O{sub m} have been prepared by the melt quenching technique. The A{sub n}O{sub m} oxide was Nb{sub 2}O{sub 5} or Nd{sub 2}O{sub 3} or Er{sub 2}O{sub 3} and x ≤ 5 mol%. Density and Molar volume have been determined for the prepared glasses. Both longitudinal and shear ultrasonic velocities were measured in different compositions of the glass system by using the pulse-echo method at 5 MHz frequency and at room temperature. Ultrasonic velocity and density data have been used to calculate elastic moduli (longitudinal modulus L, shear modulus G, Young's modulus E, Bulk modulus K), Poisson's ratio σ, and Debye temperature θ{sub D}. Quantitative analysis of elastic moduli based on the number of bonds per unit volume, average crosslinks and number of vibrating atoms per unit volume has been achieved. - Highlights: • Tellurite glasses. • Elastic moduli, Poisson's ratio, Debye temperature, microhardness. • Number of bonds per unit volume, average crosslinks, number of vibrating atoms per unit volume.

  20. Synthesis of silver nanoparticles in hydrogels crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Maria Tania S.; Oliani, Washington L.; Brant, Antonio J.C.; Oliveira, Maria Jose A. de; Riella, Humberto Gracher; Lugao, Ademar B.

    2013-01-01

    Hydrogel is defined as a polymeric material which exhibits the ability to swell and retain a significant fraction of water within its structure without dissolving the polymeric network. Silver nanoparticles (AgNPs) are used in a range of medicinal products based on hydrogels and diverse other products due to their antibacterial properties at low concentrations. The use of ionizing radiation in the production process of hydrogels of poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) in aqueous solutions enables the crosslinking of their polymer chains. If polymer solutions contain Ag + ions, these can be reduced radiolytically to nanocrystalline silver. The objective of this study was to investigate the reduction of Ag + ions by gamma-irradiation for the synthesis of AgNPs in hydrogels of PVA and PVP as main polymers and to make a comparison of the performance of the two polymeric matrices, chiefly focusing on the effect of the AgNPs' synthesis on the crosslinking of both polymers. The properties of the hydrogel matrices obtained were evaluated from tests of gel fraction, swelling in water, and stress-strain. The results of mechanical properties of PVA matrix were higher than those of PVP one whereas the latter exhibited a higher swelling degree. The reduction of silver ions was confirmed by UV-visible absorption spectrum, whose characteristics also indicated the formation of silver nanoparticles in both arrays. (author)

  1. Photo-crosslinked hyaluronic acid coated upconverting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mrazek, Jiri, E-mail: jiri.mrazek@contipro.com; Kettou, Sofiane; Matuska, Vit; Svozil, Vit; Huerta-Angeles, Gloria; Pospisilova, Martina; Nesporova, Kristina; Velebny, Vladimir [Contipro a. s. (Czech Republic)

    2017-02-15

    Hyaluronic acid (HA)-coated inorganic nanoparticles display enhanced interaction with the CD44 receptors which are overexpressed in many types of cancer cells. Here, we describe a modification of core-shell β-NaY{sub 0.80}Yb{sub 0.18}Er{sub 0.02}F{sub 4}@NaYF{sub 4} nanoparticles (UCNP) by HA derivative bearing photo-reactive groups. UCNP capped with oleic acid were firstly transferred to aqueous phase by an improved protocol using hydrochloric acid or lactic acid treatment. Subsequently, HA bearing furanacryloyl moieties (HA-FU) was adsorbed on the nanoparticle surface and crosslinked by UV irradiation. The crosslinking resulted in stable HA coating, and no polymer desorption was observed. As-prepared UCNP@HA-FU show a hydrodynamic diameter of about 180 nm and are colloidally stable in water and cell culture media. The cellular uptake by normal human fibroblasts and MDA MB-231 cancer cell line was investigated by upconversion luminescence imaging.

  2. Glucantime drug delivery comparison between crosslinked membranes irradiation versus esterification

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: mariajhho@yahoo.com.b, E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Amato, Valdir S. [Hospital das Clinicas (HC/USP), Sao Paulo, SP (Brazil). Div. de Clinica de Molestias Infecciosas e Parasitarias

    2009-07-01

    Pentavalent Antimony (Glucantime) is the drug of choice for the treatment of Leishmaniasis. The disease is transmitted by the female bite of Phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. The protozoan parasite causes a spectrum of clinical diseases afflicting 12 million people worldwide. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-viny-2- pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel content determinations. The membranes have no toxicity and gel content has revealed the crosslink degree. The chemical crosslinking depends on the acid concentration. Increase of the acid concentration increases the gel content, the thermal stability of the PVAl component and decreases the swelling capacity. The thermal stability of irradiated membranes is decreased in the presence of plasticizer. In contrast to ionizing radiation membranes described in the literature and formulated with PVAl/PEG, our new membranes composed by PVAl/PVP/PEG are more flexible and presents higher swelling capacity. The drug was immobilized in the hydrogels structures and the glucantime drug delivery was determined. (author)

  3. Glucantime drug delivery comparison between crosslinked membranes irradiation versus esterification

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Parra, Duclerc F.; Lugao, Ademar B.; Amato, Valdir S.

    2009-01-01

    Pentavalent Antimony (Glucantime) is the drug of choice for the treatment of Leishmaniasis. The disease is transmitted by the female bite of Phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. The protozoan parasite causes a spectrum of clinical diseases afflicting 12 million people worldwide. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-viny-2- pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel content determinations. The membranes have no toxicity and gel content has revealed the crosslink degree. The chemical crosslinking depends on the acid concentration. Increase of the acid concentration increases the gel content, the thermal stability of the PVAl component and decreases the swelling capacity. The thermal stability of irradiated membranes is decreased in the presence of plasticizer. In contrast to ionizing radiation membranes described in the literature and formulated with PVAl/PEG, our new membranes composed by PVAl/PVP/PEG are more flexible and presents higher swelling capacity. The drug was immobilized in the hydrogels structures and the glucantime drug delivery was determined. (author)

  4. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA, it ...... co-import appears to be a mechanism employed by the composite repair systems NER and MMR to enhance and regulate nuclear accumulation of repair proteins thereby ensuring faithful DNA repair....

  5. Order-Disorder Transitions in Cross-Linked Block Copolymer Solids

    Energy Technology Data Exchange (ETDEWEB)

    Das, J.

    2005-01-12

    With a view toward creating solid block copolymers wherein the order-disorder transition can be accessed many times they investigated the nature of order-disorder transitions in cross-linked diblock copolymer melts using synergistic theory and experiment. A mean-field theory based on a coarse grained free-energy and the Random Phase Approximation (RPA) is developed for the system of interest. The quenched distribution of cross-links is averaged using the replica method. The phase behavior of a particular A-B block copolymer melt with a randomly cross-linked B-Block is determined as a function of the Florry-Huggins interaction parameter ({chi}) and the average number of cross-links per chain N{sub c}. They find for a cross-link density greater than N*{sub c} the B monomers are localized within a region of size {zeta} {approx} (N{sub c} - N*{sub c}){sup -1/2}. The cross-links strongly oppose ordering in the system as {zeta} becomes comparable to the radius of gyration of the block copolymer chain. As such the order-disorder transition temperature T{sub ODT} decreases precipitously when N{sub c} > N*{sub c}. When N{sub c} < N*{sub c}, T{sub ODT} increases weakly with N{sub c}. Experiments were conducted on cross-linked polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively cross-linked at a temperature well above the order-disorder transition temperature of the pure block copolymer. Small angle X-ray scattering (SAXS) and birefringence measurements on the cross-linked samples are consistent with the theoretical prediction. T{sub ODT} decreases rapidly when the cross-linking density exceeds the critical cross-linking density.

  6. REPAIR TECHNOLOGY IMPROVEMENT OF SPECIALIZED FREIGHT CARS

    Directory of Open Access Journals (Sweden)

    V. M. Bubnov

    2016-02-01

    Full Text Available Purpose. The volume of cargo transportation demands the introduction of a new generation of cars that would be able to provide all the needs of carriers. But this is impossible without the implementation of renovation repair facilities with the introduction of new technologies and modernization of the repair process. Repair of rolling stock is a key factor that must proceed with the establishment of new cars, as not all of the inventions may be repaired in car-repair depots, most of which are obsolete. The purpose is to analyze the possibility of increasing the efficiency of the repair process by introducing new repair technologies or improving the existing ones. It will improve not only the quality of the repair, but also its rate. Methodology. Works on improving the designs of freight cars are held by many design organizations in almost all industrialized countries. It makes repair organizations (depots and car-repair plants to upgrade the repair process. Achievements of-this goal is possible by improving the technology renovation and reorganization through the use of flexible flow technologies, which to date are the most effective in the repair of rolling stock. Findings. When performing the analysis it was determined that there are different designs of cars. More of cars are all-purpose and their repair does not cause difficulties for car-repair business. However, the number of specialized cars is also significant, and the technology of their repair should be improved. One of the reasons is that many models, such as tank wagons for the carriage of sulfur, are intended for the carriage of dangerous goods and their failure at the time of motion is not permitted. Originality. Firstly the authors have defined direction at improving technologies of repair specialized cars. Practical value. Actual improvement in the construction of cars is to improve the existing repair facilities. In addition, the repair technology using nowadays when repairing

  7. Function of Rad51 paralogs in eukaryotic homologous recombinational repair

    International Nuclear Information System (INIS)

    Liu, N.; Skowronek, K.

    2003-01-01

    Full text: Homologous recombinational repair (HRR) is an important mechanism for maintaining genetic integrity and cancer prevention by accurately repair of DNA double strand breaks induced by environmental insults or occurred in DNA replication. A critical step in HRR is the polymerization of Rad51 on single stranded DNA to form nuclear protein filaments, the later conduct DNA strand paring and exchange between homologous strands. A number of proteins, including replication protein A (RPA), Rad52 and Rad51 paralogs, are suggested to modulate or facilitate the process of Rad51 filament formation. Five Rad51 paralogs, namely XRCC2, XRCC3, Rad51B, Rad51C and Rad51D have been identified in eucaryotic cells. These proteins show distant protein sequence identity to Rad51, to yeast Rad51 paralogs (Rad55 and Rad57) and to each other. Hamster or chicken mutants of Rad51 paralogs exhibit hypersensitivity to a variety of DNA damaging agents, especially cross-linking agents, and are defective in assembly of Rad51 onto HRR site after DNA damage. Recent data from our and other labs showed that Rad51 paralogs constitute two distinct complexes in cell extracts, one contains XRCC2, Rad51B, Rad51C and Rad51D, and the other contains Rad51C and XRCC3. Rad51C is involved in both complexes. Our results also showed that XRCC3-Rad51C complex interacts with Rad51 in vivo. Furthermore, overexpression of Rad52 can partially suppress the hypersensitivity of XRCC2 mutant irs1 to ionizing radiation and corrected the defects in Rad51 focus formation. These results suggest that XRCC2 and other Rad51 paralogs play a mediator function to Rad51 in the early stage of HRR

  8. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    Science.gov (United States)

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. Methodology/Principal Findings The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. Conclusions/Significance A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks. PMID:24722772

  9. Reduced cross-linking demarcation line depth at the peripheral cornea after corneal collagen cross-linking.

    Science.gov (United States)

    Yam, Jason C S; Cheng, Arthur C K

    2013-01-01

    To compare the corneal collagen cross-linking (CXL) demarcation line depth between the central and peripheral cornea after cross-linking using anterior segment optical coherence tomography. Retrospective interventional case series of 38 eyes with keratoconus or postoperative LASIK ectasia treated with riboflavin ultraviolet A CXL (UV-X, IROC). CXL demarcation line depth, corneal thickness, and the ratio of the CXL demarcation line depth to the corneal thickness were measured using anterior segment optical coherence tomography at the central cornea and at 2 and 4 mm from the corneal center in four regions: temporal, nasal, superior, and inferior. The CXL demarcation line depths at the center and periphery were compared using the Friedman test. The CXL demarcation line was deepest in the central cornea (302 μm; range: 180 to 397 μm) and was reduced progressively toward the peripheral cornea, at nasal 2 mm (289.5 μm; range: 125 to 370 μm), at nasal 4 mm (206.5 μm; range: 100 to 307 μm), at temporal 2 mm (278.5 μm; range: 128 to 375 μm), and at temporal 4 mm (194 μm; range: 80 to 325 μm) (Pcorneal thickness were greater at the central cornea than the peripheral cornea. Copyright 2013, SLACK Incorporated.

  10. Ubiquitination-Linked Phosphorylation of the FANCI S/TQ Cluster Contributes to Activation of the Fanconi Anemia I/D2 Complex

    Directory of Open Access Journals (Sweden)

    Ronald S. Cheung

    2017-06-01

    Full Text Available Repair of interstrand crosslinks by the Fanconi anemia (FA pathway requires both monoubiquitination and de-ubiquitination of the FANCI/FANCD2 (FANCI/D2 complex. In the standing model, the phosphorylation of six sites in the FANCI S/TQ cluster domain occurs upstream of, and promotes, FANCI/D2 monoubiquitination. We generated phospho-specific antibodies against three different S/TQ cluster sites (serines 556, 559, and 565 on human FANCI and found that, in contrast to the standing model, distinct FANCI sites were phosphorylated either predominantly upstream (ubiquitination independent; serine 556 or downstream (ubiquitination-linked; serines 559 and 565 of FANCI/D2 monoubiquitination. Ubiquitination-linked FANCI phosphorylation inhibited FANCD2 de-ubiquitination and bypassed the need to de-ubiquitinate FANCD2 to achieve effective interstrand crosslink repair. USP1 depletion suppressed ubiquitination-linked FANCI phosphorylation despite increasing FANCI/D2 monoubiquitination, providing an explanation of why FANCD2 de-ubiquitination is important for function of the FA pathway. Our work results in a refined model of how FANCI phosphorylation activates the FANCI/D2 complex.

  11. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells

    NARCIS (Netherlands)

    Merle, Geraldine; Hosseiny, Seyed Schwan; Wessling, Matthias; Nijmeijer, Dorothea C.

    2012-01-01

    In this paper, we report a cheap and easy method for the preparation of anion exchange membranes based on a KOH doped and crosslinked poly(vinyl alcohol) (PVA) for alkaline fuel cells. Ionic conductivity and thermal and chemical stability are investigated as a function of the crosslinking density.

  12. Oxidative cross-linking of casein by horseradish peroxidase and its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... lyzed by HRP was studied. The cross-linking of casein treated with HRP was demonstrated by the analysis of the casein samples with capillary zone electrophoresis (CZE). The degree of cross-linking of casein in the casein sam- ples was also measured by CZE with peak area normali- zation methodology.

  13. BIOCOMPATIBILITY AND TISSUE REGENERATING CAPACITY OF CROSS-LINKED DERMAL SHEEP COLLAGEN

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanate-crosslinked DSC (HDSC)

  14. Secondary cytotoxicity of (crosslinked) dermal sheep collagen during repeated exposure to human fibroblasts

    NARCIS (Netherlands)

    van Luyn, M.J.A.; van Wachem, P.B.; Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; Feijen, Jan; Nieuwenhuis, P.

    1992-01-01

    We investigated commercially available dermal sheep collagen either cross-linked with hexamethylenediisocyanate, or cross-linked with glutaraldehyde. In previous in vitro studies we could discriminate primary, i.e. extractable, and secondary cytotoxicity, due to cell-biomaterial interactions, i.e.

  15. SECONDARY CYTOTOXICITY OF CROSS-LINKED DERMAL SHEEP COLLAGENS DURING REPEATED EXPOSURE TO HUMAN FIBROBLASTS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    1992-01-01

    We investigated commercially available dermal sheep collagen either cross-linked with hexamethylenedlisocyanate, or cross-linked with glutaraldehyde. In previous in vitro studies we could discriminate primary, i.e. extractable, and secondary cytotoxicity, due to cell-biomaterial interactions, i.e.

  16. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition

    International Nuclear Information System (INIS)

    Shaikh, Rubina P; Kumar, Pradeep; Choonara, Yahya E; Du Toit, Lisa C; Pillay, Viness

    2012-01-01

    The effects of modifying electrospun poly(vinyl alcohol) (PVA) nanofibers through crosslinking using glutaraldehyde (GA) are explored in this paper. Various concentrations of PVA solutions containing model drugs rifampicin (RIF) and isoniazid (INH) were electrospun and thereafter crosslinked using GA vapors. PVA nanofibers demonstrated high drug entrapment efficiency of 98.77% ± 1.384% and 95.07% ± 1.988% for the INH- and RIF-loaded PVA nanofibers, respectively. The surface morphology, molecular vibrational transitions, tensile attributes and in vitro drug release were characterized and supported by in silico molecular mechanics simulations. Results indicated that crosslinking caused a significant reduction in the rate of drug release where 81.11% ± 2.35% of INH and 59.31% ± 2.57% of RIF were released after 12 h. Tensile properties such as the ultimate strength and Young's modulus increased after crosslinking, caused by crosslinks forming between PVA nanofibers as was revealed through scanning electron microscopy analysis. Fourier Transform infrared analysis was conducted to further support the mode of crosslinking. Additionally, image processing analysis was carried out to quantify the effect of formulation variables on the morphology of nanofibers. Furthermore, the effect of GA-induced crosslinking and addition of drugs on the performance of electrospun fibers was further elucidated and conceptualized using a molecular mechanics assisted model building and energy refinement approach via molecular mechanics energy relationships by exploring the spatial disposition of energy-minimized molecular structures of the polymer, crosslinker and the drugs. (paper)

  17. In vitro degradation behaviour of biodegradable soy plastics : effects of crosslinking with glyoxal and thermal treatment

    NARCIS (Netherlands)

    Vaz, C.M.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    In-vitro degradation of soy-derived protein materials, non-crosslinked (SItp), crosslinked with glyoxal (X-SItp) or submitted to heat treatment (24TT-SItp), was studied with either an isotonic saline solution without enzymatic activity or containing bacterial collagenase. The changes in weight of

  18. Peroxidase-mediated cross-linking of bovine a-lactalbumin

    NARCIS (Netherlands)

    Heijnis, W.H.

    2010-01-01

    The research presented in this thesis aimed at controlling the horseradish peroxidase-catalyzed cross-linking of bovine α lactalbumin and the implications of this cross-linking for the foam stabilizing properties. Attention is also given to microreactors and their potential to control the enzymatic

  19. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification

    NARCIS (Netherlands)

    Liu, Fan; Lössl, Philip; Scheltema, Richard; Viner, Rosa; Heck, Albert J R

    2017-01-01

    We describe optimized fragmentation schemes and data analysis strategies substantially enhancing the depth and accuracy in identifying protein cross-links using non-restricted whole proteome databases. These include a novel hybrid data acquisition strategy to sequence cross-links at both MS2 and MS3

  20. Pathways and Mechanisms Underlying the Photophysics and Photochemistry of Riboflavin induced cornea crosslinking

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen

    In this talk, we will describe general pathways involved in the photophysics of a photosensitized process, which can lead to crosslinking due to light excitation of Riboflavin in the cornea. Furthermore, we will elucidate different aspects of reactions that can produce crosslinks, with respect...

  1. Preparation of a crosslinked bioimprinted lipase for enrichment of polyunsaturated fatty acids from fish processing waste.

    Science.gov (United States)

    Yan, Jinyong; Li, Lifan; Tang, Qianli; Jiang, Manzhou; Jiang, Shenzhou

    2010-10-01

    Geotrichum sp. lipase modified with a combined method composed of crosslinking and bioimprinting was employed to selectively hydrolyze waste fish oil for enrichment of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in glycerides. Crosslinked polymerization by monomer (polyethylene glycol 400 dimethyl acrylate), crosslinker (trimethylolpropane trimethylacrylate), and photoinitiator (benzoin methyl ether) coupled to bioimprinting using palmitic acid as imprint molecule, resulted in much more effective enzyme preparation used in aqueous hydrolysis reaction. Since the crosslinked polymerization modification maintained bioimprinted property and gave good dispersion of enzyme in reaction mixture, the crosslinked bioimprinted enzyme exhibited higher hydrolysis temperature, enhanced specific activity, shorter hydrolysis time, and better operational stability compared to free lipase. Crude fish oil was treated at 45 degrees C with this crosslinked bioimprinted lipase for 8 h, and 46% hydrolysis degree resulted in the production of glycerides containing 41% of EPA and DHA (EPA+DHA), achieving 85.7% recovery of initial EPA and DHA. The results suggested that bioimprinted enzymes did not lose their induced property in aqueous environment when prepared according to the described crosslinking-bioimprinting method. It could also be seen that the crosslinked bioimprinted lipase was effective in producing glycerides that contained a higher concentration of polyunsaturated fatty acid with better yield.

  2. Design of polymer networks by variation of precursor structure and crosslinking regime

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková, Miroslava; Huybrecht, J.

    2003-01-01

    Roč. 44, č. 1 (2003), s. 62-63 ISSN 0032-3934. [ACS National Meeting "Crosslinking Materials and Processes"/254./. New Orleans, 23.03.2003-27.03.2003] R&D Projects: GA AV ČR KSK4050111 Keywords : polymer networks * designed precursor * crosslinking Subject RIV: CD - Macromolecular Chemistry

  3. Models for stiffening in cross-linked biopolymer networks : A comparative study

    NARCIS (Netherlands)

    van Dillen, T.; Onck, P. R.; Van der Giessen, E.

    In a recent publication, we studied the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear [Onck, P.R., Koeman, T., Van Dillen, T., Van der Giessen, E., 2005. Alternative explanation of stiffening in cross-linked

  4. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  5. Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid

    NARCIS (Netherlands)

    Oudgenoeg, G.; Hilhorst, H.; Piersma, S.R.; Boeriu, C.G.; Gruppen, H.; Voragen, A.G.J.; Laane, C.

    2001-01-01

    The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase

  6. Radiation-induced crosslinking of polyethylene in the presence of bifunctional vinyl monomers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.S.

    1976-10-06

    The apparent crosslinking produced by the radiation grafting of two monomers to polyethylene, acrylic acid and acrylonitrile, was investigated. Evidence is presented to show that covalent crosslinks are not produced during the radiation grafting step; covalent crosslinks are produced by the post-irradiation heat treatment associated with measurements of gel; the enhancement in gel fraction and physical properties arises from true crosslinks rather than chain entanglements; and there may be practical value associated with the sensitization of crosslinking produced by the methods employed in this work. The effect of monomer-solvent composition on the graft and gel yield was studied. Viscoelastic properties of grafted films were determined above the melting point of pure polyethylene. The kinetic data, infrared spectra, and viscoelastic properties are the bases for the following mechanism: (1) Acrylic acid-g-PE: Acrylic acid enters the film in the form of a hydrogen bonded dimer and undergoes a grafting reaction that produces hydrogen-bond crosslinks. The heat treatment during the conventional methods for determining of crosslinks convert them into intermolecular anhydride bonds. (2) Acrylonitrile-g-PE: In this, the post-grafting crosslinking is the result of a thermally induced chain reaction leading to an uninterrupted conjugated sequence. The length of the ring structure increases with time and temperature, and the intensity of color increases with the length of the ring structure.

  7. The effects of different silane crosslinking approaches on composites of polyethylene blends and wood flour

    Science.gov (United States)

    Craig M. Clemons; Ronald C. Sabo; Kolby C. Hirth

    2011-01-01

    Though silane chemistry has been used to crosslink unfilled polyethylene for many years, such crosslinking has only been recently applied to wood plastic composites to improve properties such as creep resistance. However, the presence of wood significantly changes the silane chemistry and a greater understanding is necessary for optimal processing and performance. We...

  8. Cross-linked PEEK-WC proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Lou, H

    2009-10-01

    Full Text Available The low cost proton exchange membrane was prepared by cross-linking water soluble sulfonated-sulfinated poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxa-p-phenylene-oxyphenylene) (SsPEEK-WC). The prepared cross-linked membrane became insoluble...

  9. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials

    DEFF Research Database (Denmark)

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther

    2013-01-01

    BACKGROUND: Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. METHODS: Small peptides containin...

  10. Profile extrusion and mechanical properties of crosslinked wood–thermoplastic composites

    Science.gov (United States)

    Magnus Bengtsson; Kristiina Oksman; Stark Nicole M.

    2006-01-01

    Challenges for wood-thermoplastic composites to be utilized in structural applications are to lower product weight and to improve the long-term load performance. Silane crosslinking of the composites is one way to reduce the creep during long-term loading and to improve the mechanical properties. In this study, silane crosslinked wood-polyethylene composites were...

  11. DNA damage and repair mechanism. [DNA damage and repair mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, L.

    1976-01-01

    The ability of cells to survive in an environment specifically damaging to its DNA can be attributed to a variety of inherent repair mechanisms. This is a form of repair in which alterations are directly reversed to their original form. This reversibility is exemplified by the photoreactivation of ultraviolet-induced pyrimidine dimers. This phenomenon is attributable to the action of an enzyme, photolyase (photoreactivating enzyme), which is able to monomerize the uv-induced pyrimidine dimers in the presence of 320 to 370 nm light. Dilution of damage can be effected through a series of sister chromatid exchanges, controlled by recombinational mechanisms as a postreplication event. In this form of repair, replication proceeds to the point of damage, stops and resumes at the point of the next initiation site resulting in a gap in the newly synthesized daughter strand. It is presumed that those strands containing damaged regions exchange with undamaged regions of other DNA, strands, resulting in the eventual dilution of such damage.

  12. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  13. Fibroblasts in myocardial infarction: a role in inflammation and repair

    Science.gov (United States)

    Shinde, Arti V.; Frangogiannis, Nikolaos G.

    2014-01-01

    Fibroblasts do not only serve as matrix-producing reparative cells, but exhibit a wide range of functions in inflammatory and immune responses, angiogenesis and neoplasia. The adult mammalian myocardium contains abundant fibroblasts enmeshed within the interstitial and perivascular extracellular matrix. The current review manuscript discusses the dynamic phenotypic and functional alterations of cardiac fibroblasts following myocardial infarction. Extensive necrosis of cardiomyocytes in the infarcted heart triggers an intense inflammatory reaction. In the early stages of infarct healing, fibroblasts become pro-inflammatory cells, activating the inflammasome and producing cytokines, chemokines and proteases. Pro-inflammatory cytokines (such as Interleukin-1) delay myofibroblast transformation, until the wound is cleared from dead cells and matrix debris. Resolution of the inflammatory infiltrate is associated with fibroblast migration, proliferation, matrix protein synthesis and myofibroblast conversion. Growth factors and matricellular proteins play an important role in myofibroblast activation during the proliferative phase of healing. Formation of a mature cross-linked scar is associated with clearance of fibroblasts, as poorly-understood inhibitory signals restrain the fibrotic response. However, in the non-infarcted remodeling myocardium, local fibroblasts may remain activated in response to volume and pressure overload and may promote interstitial fibrosis. Considering their abundance, their crucial role in cardiac inflammation and repair, and their involvement in myocardial dysfunction and arrhythmogenesis, cardiac fibroblasts may be key therapeutic targets in cardiac remodeling. PMID:24321195

  14. The Influence of Crosslink Density on the Failure Behavior in Amorphous Polymers by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Junhua Zhao

    2016-03-01

    Full Text Available The crosslink density plays a key role in the mechanical response of the amorphous polymers in previous experiments. However, the mechanism of the influence is still not clear. In this paper, the influence of crosslink density on the failure behavior under tension and shear in amorphous polymers is systematically studied using molecular dynamics simulations. The present results indicate that the ultimate stresses and the broken ratios (the broken bond number to all polymer chain number ratios increase, as well as the ultimate strains decrease with increasing crosslink density. The strain concentration is clearer with the increase of crosslink density. In other words, a higher crosslink density leads to a higher strain concentration. Hence, the higher strain concentration further reduces the fracture strain. This study implies that the mechanical properties of amorphous polymers can be dominated for different applications by altering the molecular architecture.

  15. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...... radical attack to the otherwise flexible SO(2) PBI membranes. Steady phosphoric acid doping of the cross-linked membranes was achieved at elevated temperatures with little swelling. The acid-doped membranes exhibited increased mechanical strength compared to both pristine SO(2) PBI and poly[2,2'-(m......-phenylene)-5,5'-bibenzimidazole] (mPBI). The superior characteristics of the cross-linked SO(2) PBI membranes allowed higher acid doping levels and, therefore, higher proton conductivity. Fuel-cell tests with the cross-linked membranes demonstrated a high open circuit voltage and improved power performance...

  16. Interrelation of electret properties of polyethylene foam from the method of cross-linking

    Science.gov (United States)

    Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.

    2017-09-01

    The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.

  17. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  18. Influence of crosslinking process on the mechanical behavior of Poly(Dimethylsiloxane) (PDMS)

    International Nuclear Information System (INIS)

    Fernandes, Barbara Monteiro Pessoa; Weber, Ricardo Ponde; Elzubair, Amal; Suarez, Joao Carlos Miguez

    2010-01-01

    In the present work was studied the influence of the crosslinking process on the mechanical behavior of a composite with a poly(dimethylsiloxane) (PDMS) matrix filled with inorganic particles, used as dental impression material. The material was crosslinked chemically and by exposition to 400kGy gamma radiation dose. The material properties, before and after crosslinking, were analyzed through physical chemical and mechanical tests and microscopic exam. The results showed that the gamma irradiation, as compared to chemical cure process, produced higher degree of crosslinking, better wettability, adjusted hardness and low fragility. However, the microscopic exam showed that the gamma irradiated PDMS presents, as compared with the chemical cure, a greater number of defaults which resulted from the large concentration of released gases. The results allowed us to conclude that gamma irradiation is an adequate process to crosslink the studied PDMS composite, since we can reduce the quantity of gases formed in this process. (author)

  19. [Results of corneal crosslinking for pellucid marginal corneal degeneration].

    Science.gov (United States)

    Bikbov, M M; Surkova, V K; Khalimov, A R; Usubov, E L

    to evaluate the clinical effectiveness of crosslinking in patients with progressive pellucid marginal corneal degeneration (PMCD). A total of 9 patients (16 eyes) with progressive PMCD were treated by standard crosslinking. The cornea was saturated with Dextralink solution and UV-A irradiated at 3 mW/cm2 for 30 minutes. The follow-up period was 12 months. One month after treatment, there was a slight decrease in uncorrected and best corrected visual acuity (UCVA and BCVA) - from 0.08±0.03 and 0.4±0.15 preoperatively down to 0.06±0.02 and 0.3±0.07, respectively, caused by pseudohaze of the cornea. Keratometric parameters (the average refractive power of the cornea, corneal astigmatism, and corneal thickness) did not change significantly. The demarcation line was identified in 56% of cases. By the 3-month follow-up, UCVA and BCVA improved up to 0.1±0.07 and 0.52±0.1, respectively. The refractive power of the cornea decreased by 2.0 diopters and corneal astigmatism - by 0.7 diopters reaching 46.8±2.7 and 5.1±1.3 diopters, respectively (p≤0.04). Central corneal thickness decreased by an average of 29 microns. The demarcation line remained visible in 25% of cases. At 6 months, BCVA averaged 0.58±0.13, at that, 56% of eyes gained 1 line and 31% - 2 lines. The refractive power of the cornea decreased down to 45.7±1.6 diopters, corneal astigmatism - down to 4.8±1.5 diopters. The demarcation line was not detected. At 1 year, there were no significant changes in the average values of optometric indices as compared to the 6-month period. Сonclusion. Pellucid marginal corneal degeneration should be regarded as a kind of primary ectasia, often bilateral and notable for its characteristic clinical picture and late onset. In progressive disease, photochemical crosslinking of the cornea contributes to the improvement of optometric parameters and stabilization of the process.

  20. The expression of the rice (Oryza sativa L.) homologue of Snm1 is induced by DNA damages

    International Nuclear Information System (INIS)

    Kimura, Seisuke; Saotome, Ai; Uchiyama, Yukinobu; Mori, Yoko; Tahira, Yasue; Sakaguchi, Kengo

    2005-01-01

    We isolated and characterized the rice homologue of the DNA repair gene Snm1 (OsSnm1). The length of the cDNA was 1862 bp; the open reading frame encoded a predicted product of 485 amino acid residues with a molecular mass of 53.2 kDa. The OsSnm1 protein contained the conserved β-lactamase domain in its internal region. OsSnm1 was expressed in all rice organs. The expression was induced by MMS, H 2 O 2 , and mitomycin C, but not by UV. Transient expression of an OsSnm1/GFP fusion protein in onion epidermal cells revealed the localization of OsSnm1 to the nucleus. These results suggest that OsSnm1 is involved not only in the repair of DNA interstrand crosslinks, but also in various other DNA repair pathways