WorldWideScience

Sample records for interstrand crosslink repair

  1. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.

    Science.gov (United States)

    Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun

    2010-08-06

    Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.

  2. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability

    OpenAIRE

    Lambert, Muriel W

    2016-01-01

    Non-erythroid alpha spectrin (?IISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. ?IISp?s interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear ?IISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in ma...

  3. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications.

    Science.gov (United States)

    Shukla, Pallavi; Solanki, Avani; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2013-11-01

    Interstrand cross-links (ICLs) are extremely toxic DNA lesions that prevent DNA double-helix separation due to the irreversible covalent linkage binding of some agents on DNA strands. Agents that induce these ICLs are thus widely used as chemotherapeutic drugs but may also lead to tumor growth. Fanconi anemia (FA) is a rare genetic disorder that leads to ICL sensitivity. This review provides update on current understanding of the role of FA proteins in repairing ICLs at various stages of cell cycle. We also discuss link between DNA cross-link genotoxicity caused by aldehydes in FA pathway. Besides this, we summarize various ICL agents that act as drugs to treat different types of tumors and highlight strategies for modulating ICL sensitivity for therapeutic interventions that may be helpful in controlling cancer and life-threatening disease, FA. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.

    Science.gov (United States)

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D; Elledge, Stephen J; Walter, Johannes C

    2009-12-18

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.

  5. FANCD2 Binds CtIP and Regulates DNA-End Resection during DNA Interstrand Crosslink Repair

    Directory of Open Access Journals (Sweden)

    Junya Unno

    2014-05-01

    Full Text Available The Fanconi anemia (FA pathway is critically involved in the maintenance of hematopoietic stem cells and the suppression of carcinogenesis. A key FA protein, FANCD2, is monoubiquitinated and accumulates in chromatin in response to DNA interstrand crosslinks (ICLs, where it coordinates DNA repair through mechanisms that are still poorly understood. Here, we report that CtIP protein directly interacts with FANCD2. A region spanning amino acids 166 to 273 of CtIP and monoubiquitination of FANCD2 are both essential for the FANCD2-CtIP interaction and mitomycin C (MMC-induced CtIP foci. Remarkably, both FANCD2 and CtIP are critical for MMC-induced RPA2 hyperphosphorylation, an event that accompanies end resection of double-strand breaks. Collectively, our results reveal a role of monoubiquitinated FANCD2 in end resection that depends on its binding to CtIP during ICL repair.

  6. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair.

    Science.gov (United States)

    Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck

    2017-07-14

    XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    International Nuclear Information System (INIS)

    McMahon, Laura W.; Zhang Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellular hypersensitivity to DNA interstrand cross-linking agents. An increased number of chromosomal aberrations were observed and, following treatment with a DNA interstrand cross-linking agent, mitomycin C, cells showed decreased cell growth and survival and decreased formation of damage-induced αIISp and XPF nuclear foci. Thus depletion of αIISp in normal cells leads to a number of defects observed in FA cells, such as chromosome instability and a deficiency in cross-link repair.

  8. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Fanconi anemia (FA is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6. Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.

  9. RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health.

    Science.gov (United States)

    Feeney, Laura; Muñoz, Ivan M; Lachaud, Christophe; Toth, Rachel; Appleton, Paul L; Schindler, Detlev; Rouse, John

    2017-06-01

    Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subtype abolishes interaction of RFWD3 with RPA, thereby preventing RFWD3 recruitment to sites of ICL-induced replication fork stalling. Moreover, single point mutations in the RPA32 subunit of RPA that abolish interaction with RFWD3 also inhibit ICL repair, demonstrating that RPA-mediated RFWD3 recruitment to stalled replication forks is important for ICL repair. We also report that unloading of RPA from sites of ICL induction is perturbed in RFWD3-deficient cells. These data reveal important roles for RFWD3 localization in protecting genome stability and preserving human health. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    OpenAIRE

    McMahon, Laura W.; Zhang, Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellu...

  11. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  12. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi; Watson, Adam T.; Jo, Aera; Etheridge, Thomas J.; Yuan, Fenghua; Zhang, Yanbin; Kim, YoungChang; Carr, Anthony M.; Cho, Yunje

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.

  13. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair

    Science.gov (United States)

    Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie

    2012-01-01

    The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway. PMID:22396592

  14. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair.

    Science.gov (United States)

    Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie

    2012-03-20

    The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway.

  15. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog.

    Directory of Open Access Journals (Sweden)

    Hyojin Lee

    Full Text Available The Fanconi anemia (FA pathway recognizes interstrand DNA crosslinks (ICLs and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.

  16. Interstrand DNA crosslinks due to AP (apurinic/apyrimidinic) sites

    International Nuclear Information System (INIS)

    Goffin, C.; Verly, W.G.

    1983-01-01

    Storage of a solution of DNA containing apurinic sites, even at 4 0 C leads to the appearance of interstrand crosslinks. Possible consequences of these crosslinks, when they appear in cell DNA, are briefly discussed. Formation of interstrand crosslinks in DNA containing tritium-labelled thymine and kept in an aqueous solution might be due, at least partly, to the loss of bases by the autoirradiated DNA. (Auth.)

  17. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Bianca M Sirbu

    Full Text Available Homologous recombination (HR is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB. However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.

  18. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    Science.gov (United States)

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  19. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  20. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage

    OpenAIRE

    Zhang, Pan; Herbig, Utz; Coffman, Frederick; Lambert, Muriel W.

    2013-01-01

    Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid ?-spectrin (?IISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that ?IISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recrui...

  1. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  2. Fanconi anemia (cross)linked to DNA repair.

    Science.gov (United States)

    Niedernhofer, Laura J; Lalai, Astrid S; Hoeijmakers, Jan H J

    2005-12-29

    Fanconi anemia is characterized by hypersensitivity to DNA interstrand crosslinks (ICLs) and susceptibility to tumor formation. Despite the identification of numerous Fanconi anemia (FANC) genes, the mechanism by which proteins encoded by these genes protect a cell from DNA interstrand crosslinks remains unclear. The recent discovery of two DNA helicases that, when defective, cause Fanconi anemia tips the balance in favor of the direct involvement of the FANC proteins in DNA repair and the bypass of DNA lesions.

  3. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    OpenAIRE

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.; Wang, Yinsheng; Gates, Kent S.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3?ddR5p) at the 3?-terminus of the strand break. Interestingly, this strand scission process leaves an electr...

  4. The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells

    Directory of Open Access Journals (Sweden)

    Nadège Bossuet-Greif

    2018-03-01

    Full Text Available Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR, and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2 protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells.

  5. Ultraviolet irradiation produces cytotoxic synergy and increased DNA interstrand crosslinking with cis- and trans-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Swinnen, L.J.; Erickson, L.C.

    1989-01-01

    The excision-repair mechanism responsible for the removal of UV-induced thymine dimers may also play a role in the repair of cis-diamminedichloroplatinum(II) (cis-DDP)-induced DNA adducts in both bacteria and mammalian cells. It was hypothesized that UV dimers and cis-DDP adducts, when present simultaneously, might compete for a common repair system. Colony survival assays were performed in HT-29 human colon carcinoma cells exposed either to cis-DDP alone or to cis-DDP immediately followed by UV exposure. Progressively greater cytotoxic synergy with both increasing UV dose and cis-DDP dose was observed, to a point of saturation beyond which further toxicity was purely additive. An approximate doubling in DNA crosslink frequency, relative to cis-DDP alone, was found in cells exposed to cis-DDP plus UV. Since cis-DDP produces both inter- and intrastrand DNA crosslinks similar studies were performed with trans-DDP, which is incapable of producing intrastrand crosslinks, but does produce interstrand crosslinks. Cytotoxic synergy and increased interstrand crosslinking again resulted from the addition of UV exposure, but not to the same extent as seen with cis-DDP. (author)

  6. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1

    Directory of Open Access Journals (Sweden)

    Jianqiu Zou

    2013-08-01

    DNA damage response (DDR and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC. We further show that, in addition to its role in interstrand crosslinking (ICL repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1. We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response.

  7. Structure of a DNA glycosylase that unhooks interstrand cross-links

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.; Eichman, Brandt F. (Vanderbilt)

    2017-04-10

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.

  8. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    International Nuclear Information System (INIS)

    Clingen, Peter H.; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-01-01

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity

  9. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  10. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    Science.gov (United States)

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El‐Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-01-01

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  12. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  14. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks.

    Science.gov (United States)

    Kottemann, Molly C; Smogorzewska, Agata

    2013-01-17

    The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.

  15. Interstrand DNA crosslinking by 4,5',8-trimethylpsoralen plus monochromatic ultraviolet light

    International Nuclear Information System (INIS)

    Cohen, L.F.; Ewig, R.A.G.; Kohn, K.W.; Glaubiger, D.

    1980-01-01

    DNA crosslinking by 4,5',8-trimethylpsoralen plus monochromatic ultraviolet light of wavelength 365 nm was studied in mouse L1210 leukemia cells. DNA breaks and crosslinking were evaluated by alkaline elution of DNA from poly(vinyl chloride) filters. Trimethylpsoralen plus 365 nm light produced DNA crosslinks but not breaks. The kinetics of crosslinging were linear with respect to concentration and second-order with respect to light exposure time. The latter finding supports the proposed two photon mechanism for the formation of diadducts. In contrast to DNA crosslinking agents such as nitrogen mustard, nitrosoureas and platinums, trimethylpsoralen crosslinks were resistant to proteolytic digestion. Thus, trimethylpsoralen plus 365 nm light produced interstrand crosslinks, as proposed for a bifunctional agent binding to bases on opposite DNA strands. (Auth.)

  16. Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers.

    Science.gov (United States)

    Lombardi, Anne J; Hoskins, Elizabeth E; Foglesong, Grant D; Wikenheiser-Brokamp, Kathryn A; Wiesmüller, Lisa; Hanenberg, Helmut; Andreassen, Paul R; Jacobs, Allison J; Olson, Susan B; Keeble, Winifred W; Hays, Laura E; Wells, Susanne I

    2015-04-15

    Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc(-/-) mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual. ©2015 American Association for Cancer Research.

  17. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links

    DEFF Research Database (Denmark)

    Räschle, Markus; Smeenk, Godelieve; Hansen, Rebecca K

    2015-01-01

    DNA interstrand cross-links (ICLs) block replication fork progression by inhibiting DNA strand separation. Repair of ICLs requires sequential incisions, translesion DNA synthesis, and homologous recombination, but the full set of factors involved in these transactions remains unknown. We devised ...

  18. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  19. DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Wai Shan Yuen

    Full Text Available There is some interest in how mammalian oocytes respond to different types of DNA damage because of the increasing expectation of fertility preservation in women undergoing chemotherapy. Double strand breaks (DSBs induced by ionizing radiation and agents such as neocarzinostatin (NCS, and interstrand crosslinks (ICLs induced by alkylating agents such as mitomycin C (MMC, are toxic DNA lesions that need to be repaired for cell survival. Here we examined the effects of NCS and MMC treatment on oocytes collected from antral follicles in mice, because potentially such oocytes are readily collected from ovaries and do not need to be in vitro grown to achieve meiotic competency. We found that oocytes were sensitive to NCS, such that this ionizing radiation mimetic blocked meiosis I and caused fragmented DNA. In contrast, MMC had no impact on the completion of either meiosis I or II, even at extremely high doses. However, oocytes treated with MMC did show γ-H2AX foci and following their in vitro maturation and parthenogenetic activation the development of the subsequent embryos was severely compromised. Addition of MMC to 1-cell embryos caused a similarly poor level of development, demonstrating oocytes have eventual sensitivity to this ICL-inducing agent but this does not occur during their meiotic division. In oocytes, the association of Fanconi Anemia protein, FANCD2, with sites of ICL lesions was not apparent until entry into the embryonic cell cycle. In conclusion, meiotic maturation of oocytes is sensitive to DSBs but not ICLs. The ability of oocytes to tolerate severe ICL damage and yet complete meiosis, means that this type of DNA lesion goes unrepaired in oocytes but impacts on subsequent embryo quality.

  20. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation.

    Science.gov (United States)

    Demuth, Ilja; Digweed, Martin; Concannon, Patrick

    2004-11-11

    DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.

  1. Knockdown of μ-calpain in Fanconi Anemia, FA-A, cells by siRNA Restores αII Spectrin levels and Corrects Chromosomal Instability and Defective DNA Interstrand Cross-link Repair†

    OpenAIRE

    Zhang, Pan; Sridharan, Deepa; Lambert, Muriel W.

    2010-01-01

    We have previously shown that there is a deficiency in the structural protein, nonerythroid α spectrin (αIISp), in cells from patients with Fanconi anemia (FA). These studies indicate that this deficiency is due to reduced stability of αIISp and correlates with decreased repair of DNA interstrand cross-links and chromosomal instability in FA cells. An important factor in the stability of αIISp is its susceptibility to cleavage by the protease, μ-calpain. We hypothesized that increased μ-calpa...

  2. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  3. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    Directory of Open Access Journals (Sweden)

    Spanswick Victoria J

    2012-09-01

    Full Text Available Abstract Background DNA interstrand cross-links (ICLs are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma and solid tumours (ovarian cancer that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Methods Using a modification of the single cell gel electrophoresis (Comet assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Results Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The

  4. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    International Nuclear Information System (INIS)

    Spanswick, Victoria J; Hartley, John A; Lowe, Helen L; Newton, Claire; Bingham, John P; Bagnobianchi, Alessia; Kiakos, Konstantinos; Craddock, Charles; Ledermann, Jonathan A; Hochhauser, Daniel

    2012-01-01

    DNA interstrand cross-links (ICLs) are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma) and solid tumours (ovarian cancer) that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Using a modification of the single cell gel electrophoresis (Comet) assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The RAD51 foci response was both drug and cell line

  5. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  6. Induction and removal of DNA interstrand cross-links in V-79 Chinese hamster cells measured by hydroxylapatite chromatography after treatments with bifunctional furocoumarins

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.

    1988-01-01

    DNA interstrand crosslinks (CL) photoinduced by bifunctional furocoumarins in V-79 Chinese hamster cells were measured by alkaline denaturation and hydroxylapatite chromatography. Treatments with 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) and 365 nm irradiation (UVA) confer a dose-dependent linear increase in the amount of double-stranded DNA indicating the induction of CL. Determination in alkaline sucrose gradients of the molecular weight of the DNA and estimation of drug-induced strand breakage allowed quantification of the CL induced. 5-MOP was found to be slightly more effective than 8-MOP whereas 4,5',8-TMP was 9 times more effective for the induction of CL. The fate of CL during post-treatment incubation was also followed. Cells in exponential growth phase were found to be efficient in the removal of CL. (Author)

  7. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  8. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks.

    Science.gov (United States)

    Chun, Min Jeong; Kim, Sunshin; Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun

    2016-08-16

    Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.

  9. Cellular Repair of DNA–DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane

    Directory of Open Access Journals (Sweden)

    Lisa N. Chesner

    2017-05-01

    Full Text Available Xenobiotic-induced interstrand DNA–DNA cross-links (ICL interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl-2,3-butanediol (bis-N7G-BD cross-links induced by 1,2,3,4-diepoxybutane (DEB. High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI+-MS/MS assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79 and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.

  10. Unique structural properties of DNA interstrand cross-links formed by a new antitumor dinuclear Pt(II) complex

    Czech Academy of Sciences Publication Activity Database

    Hrabina, O.; Kašpárková, J.; Suchánková, Tereza; Novohradský, Vojtěch; Guo, Z.; Brabec, Viktor

    2017-01-01

    Roč. 9, č. 5 (2017), s. 494-500 ISSN 1756-5901 Institutional support: RVO:68081707 Keywords : cisplatin-modified dna * nucleotide excision-repair * hmg domain proteins Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.975, year: 2016

  11. On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5′-CAp Sequences in Duplex DNA

    Science.gov (United States)

    Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

    2014-01-01

    We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

  12. Genetic inactivation of the Fanconi anemia gene FANCC identified in the hepatocellular carcinoma cell line HuH-7 confers sensitivity towards DNA-interstrand crosslinking agents

    Directory of Open Access Journals (Sweden)

    Bassermann Florian

    2010-05-01

    Full Text Available Abstract Background Inactivation of the Fanconi anemia (FA pathway through defects in one of 13 FA genes occurs at low frequency in various solid cancer entities among the general population. As FA pathway inactivation confers a distinct hypersensitivity towards DNA interstrand-crosslinking (ICL-agents, FA defects represent rational targets for individualized therapeutic strategies. Except for pancreatic cancer, however, the prevalence of FA defects in gastrointestinal (GI tumors has not yet been systematically explored. Results A panel of GI cancer cell lines was screened for FA pathway inactivation applying FANCD2 monoubiquitination and FANCD2/RAD51 nuclear focus formation and a newly identified FA pathway-deficient cell line was functionally characterized. The hepatocellular carcinoma (HCC line HuH-7 was defective in FANCD2 monoubiquitination and FANCD2 nuclear focus formation but proficient in RAD51 focus formation. Gene complementation studies revealed that this proximal FA pathway inactivation was attributable to defective FANCC function in HuH-7 cells. Accordingly, a homozygous inactivating FANCC nonsense mutation (c.553C > T, p.R185X was identified in HuH-7, resulting in partial transcriptional skipping of exon 6 and leading to the classic cellular FA hypersensitivity phenotype; HuH-7 cells exhibited a strongly reduced proliferation rate and a pronounced G2 cell cycle arrest at distinctly lower concentrations of ICL-agents than a panel of non-isogenic, FA pathway-proficient HCC cell lines. Upon retroviral transduction of HuH-7 cells with FANCC cDNA, FA pathway functions were restored and ICL-hypersensitivity abrogated. Analyses of 18 surgical HCC specimens yielded no further examples for genetic or epigenetic inactivation of FANCC, FANCF, or FANCG in HCC, suggesting a low prevalence of proximal FA pathway inactivation in this tumor type. Conclusions As the majority of HCC are chemoresistant, assessment of FA pathway function in HCC could

  13. PAM-OBG: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma

    Science.gov (United States)

    Sharpe, Martyn A.; Raghavan, Sudhir; Baskin, David S.

    2018-01-01

    Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O6-methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo, a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O6-benzylguanine (O6BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O6BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time. PMID:29844863

  14. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.

    Science.gov (United States)

    Walden, Helen; Deans, Andrew J

    2014-01-01

    Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.

  15. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas.

    Science.gov (United States)

    Kohn, K W

    1977-05-01

    Bifunctional alkylating agents are known to cross-link DNA by simultaneously alkylating two guanine residues located on opposite strands. Despite this apparent requirement for bifunctionality, 1-(2-chloroethyl)-1-nitrosoureas bearing a single alkylating function were found to cross-link DNA in vitro. Cross-linking was demonstrated by showing inhibition of alkali-induced strand separation. Extensive cross-linking was observed in DNA treated with 1-(2-chloroethyl)-1-nitrosourea, 1,3-bis-(2-chloroethyl)-1-nitrosourea, and 1-(2-chloroethyl(-3-cyclohexyl-1-nitrosourea. The reaction occurs in two steps, an intital binding followed by a second step which can proceed after removal of unbound drug. It is suggested that the first step is chloroethylation of a nucleophilic site on one strand and that the second step involves displacement of Cl- by a nucleophilic site on the opposite strand, resulting in an ethyl bridge between the strands. Consistent with this possibility, 1-(2-fluoroethyl)-3-cyclohexyl-1-nitrosourea produced much less cross-linking, as expected from the known low activity of F-, compared with Cl-, as leaving group. 1-Methyl-1-nitrosourea, which is known to depurinate DNA, produced no detectable cross-linking.

  16. ACCIDENTAL DUPLICATION: Beyond interstrand crosslinks repair: Contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA.

    Science.gov (United States)

    Federico, Maria B; Campodónico, Paola; Paviolo, Natalia S; Gottifredi, Vanesa

    2017-09-25

    The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/ 10.1016/j.mrfmmm.2017.09.006. This duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Repair of 8-methoxypsoralen induced DNA interstrand cross-links in Tetrahymena thermophila. The effect of inhibitors of macromolecular synthesis

    DEFF Research Database (Denmark)

    Nielsen, P E; Køber, L

    1985-01-01

    -beta-D-arabinofuranoside (10 mM), puromycin (1 mM), hydroxyurea (5 mM) or 3-aminobenzamide (2.5 mM). None of the compounds showed any effect on the protein-DNA complexing step, and the ligation was partly inhibited only by nalidixic acid (150 micrograms/ml). The involvement of topoisomerases...

  18. The Fanconi Anemia Pathway in Replication Stress and DNA Crosslink Repair

    Science.gov (United States)

    Jones, Mathew JK.; Huang, Tony T.

    2013-01-01

    Interstand crosslinks (ICLs) are DNA lesions where the bases of opposing DNA strands are covalently linked, inhibiting critical cellular processes such as transcription and replication. Chemical agents that generate ICLs cause chromosomal abnormalities including breaks, deletions and rearrangements, making them highly genotoxic compounds. This toxicity has proven useful for chemotherapeutic treatment against a wide variety of cancer types. The majority of our understanding of ICL repair in humans has been uncovered thorough analysis of the rare genetic disorder Fanconi anemia, in which patients are extremely sensitive to crosslinking agents. Here, we discuss recent insights into ICL repair gained through new ICL repair assays and highlight the role of the Fanconi Anemia repair pathway during replication stress. PMID:22744751

  19. Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells.

    Science.gov (United States)

    Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2010-03-01

    cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.

  20. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  1. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y; Kano, Y; Paul, P; Goto, K; Yamamoto, K [Kobe Univ. (Japan). School of Medicine

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD/sup +/, suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation.

  2. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    International Nuclear Information System (INIS)

    Fujiwara, Yoshisada; Kano, Yoshio; Paul, P.; Goto, Kaoru; Yamamoto, Kazuo

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD + , suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation. (J.P.N.)

  3. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y.; Kano, Y.; Paul, P.; Goto, K.; Yamamoto, K. (Kobe Univ. (Japan). School of Medicine)

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD/sup +/, suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation.

  4. Preparation and characterization of platinum(II) and (IV) complexes of 1,3-diaminepropane and 1,4-diaminebutane: circumvention of cisplatin resistance and DNA interstrand cross-link formation in CH1cisR ovarian tumor cells.

    Science.gov (United States)

    Alvarez-Valdés, Amparo; Pérez, José Manuel; López-Solera, Isabel; Lannegrand, Raúl; Continente, José Manuel; Amo-Ochoa, Pilar; Camazón, María José; Solans, Xavier; Font-Bardía, Mercè; Navarro-Ranninger, Carmen

    2002-04-25

    The reaction of Pt(dimethyl sulfoxide)(2)CBDCA (CBDCA = 1,1-cyclobutanedicarboxylate) with 1,4-diaminebutane and 1,3-diaminepropane ligands yields, under certain conditions, new [Pt(diamine)(2)]CBDCA complexes (1a,b), where the CBDCA ligand has been removed from the coordination sphere of the platinum atom by the diamine ligand, instead of forming the expected [Pt(diamine)CBDCA] complexes (1'a,b). The structure of complexes 1a and 1'b was solved by X-ray diffraction. Complex 1a crystallizes in the orthorhombic system, in the noncentrosymmetric C222 space group, with unit cell parameters: a = 20.053(2) A; b = 8.655(2) A, c = 5.711(3) A; V = 991.2(6) A(3); delta (calcd) = 1.627 mg/m(3); and R = 0.050. The Pt atom displays an unexpected distorted tetrahedral coordination with a N-Pt-N inner bond angle equal to 81(2) degrees for N atoms of the same 1,3-propanediamine ligand and a N-Pt-N bond angle for different ligands equal to 135.4(9) degrees. Complex 1'b crystallizes in the monoclinic system, in the centrosymmetric P2(1)/c space group, with unit cell parameters: a = 6.007(2) A; b = 15.336(4) A, c = 13.232(5) A; beta = 101.90(3) degrees; V = 1192.8(7) A(3); delta (calcd) = 2.369 mg/m(3); and R = 0.067. Cytotoxicity data show that of all the synthesized compounds, only complexes 1'a and 1'b exhibit remarkable cytotoxic properties. Thus, in contrast with carboplatin (cis-diammine-1,1-cyclobutane dicarboxilatoplatinum(II)), compounds 1'a and 1'b, which also contain the CBDCA ligand, are able to circumvent cisplatin (cis-diamminedichloroplatinum(II)) resistance in several tumor cells. Moreover, after 24 h of incubation of CH1cisR ovarian tumor cells with 10 microM of compounds 1'a and 1'b, the level of DNA interstrand cross-links (ICLs) induced by compounds 1'a and 1'b is 3.3 and 3.8 times higher, respectively, than that of carboplatin and 3.5 and 4.0 times higher, respectively, than that of cisplatin. Interestingly, under the same conditions, the intracellular

  5. A Bridging Water Anchors the Tethered 5-(3-Aminopropyl)-2′-deoxyuridine Amine in the DNA Major Groove Proximate to the N+2 C·G Base Pair: Implications for Formation of Interstrand 5′-GNC-3′ Cross-Links by Nitrogen Mustards‡

    Science.gov (United States)

    Wang, Feng; Li, Feng; Ganguly, Manjori; Marky, Luis A.; Gold, Barry; Egli, Martin; Stone, Michael P.

    2009-01-01

    Site-specific insertion of 5-(3-aminopropyl)-2′-deoxyuridine (Z3dU) and 7-deaza-dG into the Dickerson-Drew dodecamers 5′-d(C1G2C3G4A5A6T7T8C9Z10C11G12)-3′ · 5′-d(C13G14C15G16A17A18T19T20-C21Z22C23G24)-3′ (named DDDZ10) and 5′-d(C1G2C3G4A5A6T7X8C9Z10C11G12)-3′ · 5′-d(C13G14C15G16A17A18-T19X20C21Z22C23G24)-3′ (named DDD2+Z10)(X = Z3dU; Z = 7-deaza-dG) suggests a mechanism underlying the formation of interstrand N+2 DNA cross-links by nitrogen mustards, e.g., melphalan and mechlorethamine. Analysis of the DDD2+Z10 duplex reveals that the tethered cations at base pairs A5 · X20 and X8 · A17 extend within the major groove in the 3′-direction, toward conserved Mg2+ binding sites located adjacent to N+2 base pairs C3 · Z22 and Z10 · C15. Bridging waters located between the tethered amines and either Z10 or Z22 O6 stabilize the tethered cations and allow interactions with the N + 2 base pairs without DNA bending. Incorporation of 7-deaza-dG into the DDD2+Z10 duplex weakens but does not eliminate electrostatic interactions between tethered amines and Z10 O6 and Z22 O6. The results suggest a mechanism by which tethered N7-dG aziridinium ions, the active species involved in formation of interstrand 5′-GNC-3′ cross-links by nitrogen mustards, modify the electrostatics of the major groove and position the aziridinium ions proximate to the major groove edge of the N+2 C · G base pair, facilitating interstrand cross-linking. PMID:18549246

  6. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments

    DEFF Research Database (Denmark)

    Hansen, Anders Johannes; Mitchell, D.L.; Wiuf, C.

    2006-01-01

    , and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate about hundred times faster than single stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen...... conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost...

  7. Formation and repair of DNA-protein cross-links (DPCs) in newly replicated DNA

    International Nuclear Information System (INIS)

    Chiu, S.; Friedman, L.R.; Oleinick, N.L.

    1987-01-01

    DPCs preferentially involve proteins of the nuclear matrix, the site of replication and transcription. To elucidate the relationship with replication, the formation and repair of DPCs has been studied in newly replicated DNA. Log-phase V79 cells were pulsed with /sup 3/H-TdR (10-20 μCi/ml) for 30-90 sec at 22 0 followed by up to a 60 min chase at 37 0 . Irradiation (0-100 Gy) immediately after the pulse increases the labeled DNA in DPCs with a dose-dependence that is unaffected by the initial level of labeled DPC or by chase time. When cells are irradiated before the pulse, DNA synthesis is inhibited; however, release of pulse-labeled DPCs appears normal. The data suggest that during replication, DNA is cross-linked to (matrix) protein, contributing to background DPCs

  8. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    Science.gov (United States)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  9. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  10. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Steffi Mayer

    Full Text Available Neonates with congenital diaphragmatic hernia and large defects often require patch closure. Acellular collagen matrices (ACM have been suggested as an alternative to synthetic durable patches as they are remodeled by the host or could also be used for tissue engineering purposes.2.0x1.0 cm diaphragmatic defects were created in 6-weeks old New-Zealand white rabbits. We compared reconstruction with a purpose-designed cross-linked ACM (Matricel to 4-layer non-cross-linked small intestinal submucosa (SIS and a 1-layer synthetic Dual Mesh (Gore-Tex. Unoperated animals or animals undergoing primary closure (4/0 polyglecaprone served as age-matched controls. 60 (n = 25 resp. 90 (n = 17 days later, animals underwent chest x-ray and obduction for gross examination of explants, scoring of adhesion and inflammatory response. Also, uniaxial tensiometry was done, comparing explants to contralateral native diaphragmatic tissue.Overall weight nearly doubled from 1,554±242 g at surgery to 2,837±265 g at obduction (+84%. X-rays did show rare elevation of the left diaphragm (SIS = 1, Gore-Tex = 1, unoperated control = 1, but no herniation of abdominal organs. 56% of SIS and 10% of Matricel patches degraded with visceral bulging in four (SIS = 3, Matricel = 1. Adhesion scores were limited: 0.5 (Matricel to 1 (SIS, Gore-Tex to the left lung (p = 0.008 and 2.5 (Gore-Tex, 3 (SIS and 4 (Matricel to the liver (p<0.0001. Tensiometry revealed a reduced bursting strength but normal compliance for SIS. Compliance was reduced in Matricel and Gore-Tex (p<0.01. Inflammatory response was characterized by a more polymorphonuclear cell (SIS resp. macrophage (Matricel type of infiltrate (p<0.05. Fibrosis was similar for all groups, except there was less mature collagen deposited to Gore-Tex implants (p<0.05.Matricel induced a macrophage-dominated inflammatory response, more adhesions, had appropriate strength but a lesser compliance compared to native tissue. The herein

  11. Repair of damaged DNA in-vivo. Comprehensive progress report, August 1980-August 1983

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1983-07-01

    We have extended our characterization of long patch excision repair (LPER) and have demonstrated that LPER is not mutagenic (or error-prone); that the recA function is required for LPER, at least for its regulation; that the substrate for LPER is produced as a linear (not an exponential) function of uv (254 nm) dose; and that LPER can occur in uvr - cells treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG). We have developed 3 methods for measuring the frequency of interstrand crosslinks in DNA and are now applying these methods to the study of the formation and repair of DNA crosslinks in E.Coli. We have developed a monoclonal antibody specific for thymine glycol in DNA, and are using it to study the repair of thymine glycol in E. coli

  12. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    Science.gov (United States)

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was measured by alkaline elution in cells treated with four chloroethylnitrosoureas. Whereas VA-13 cells exhibited dose-dependent interstrand crosslinking, little or none was detected in IMR-90 cells. The IMR-90 cells, however, exhibited at least as much DNA-protein crosslinking as did VA-13 cells. The results can be interpreted in terms of a possible difference in DNA repair between the cell lines. PMID:6928639

  13. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  14. Repair by genetic recombination in bacteria: overview

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1975-01-01

    DNA molecules that have been damaged in both strands at the same level are not subject to repair by excision but instead can be repaired through recombination with homologous molecules. Examples of two-strand damage include postreplication gaps opposite pyrimidine dimers, two-strand breaks produced by x-rays, and chemically induced interstrand cross-links. In ultraviolet-irradiated bacteria, and newly synthesized DNA is of length equal to the interdimer spacing. With continued incubation, this low-molecular-weight DNA is joined into high-molecular-weight chains (postreplication repair), a process associated with sister exchanges in bacteria. Recombination is initiated by pyrimidine dimers opposite postreplication gaps and by interstrand cross-links that have been cut by excision enzymes. The free ends at the resulting gaps presumably initiate the exchanges. Postreplication repair in Escherichia coli occurs in recB - and recC - but is greatly slowed in recF - mutants. RecB and recC are the structural genes for exonuclease V, which digests two-stranded DNA by releasing oligonucleotides first from one strand and then from the other. The postreplication sister exchanges in ultraviolet-irradiated bacteria result in the distribution of pyrimidine dimers between parental and daughter strands, indicating that long exchanges involving both strands of each duplex occur. The R1 restriction endonuclease from E. coli has been used to cut the DNA of a bacterial drug-resistance transfer factor with one nuclease-sensitive site, and also DNA from the frog Xenopus enriched for ribosomal 18S and 28S genes. The fragments were annealed with the cut plasmid DNA and ligated, producing a new larger plasmid carrying the eukaryotic rDNA and able to infect and replicate in E. coli

  15. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  16. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis

    DEFF Research Database (Denmark)

    Adelman, Carrie A.; Lolo, Rafal L.; Birkbak, Nicolai Juul

    2013-01-01

    Repair of interstrand crosslinks (ICLs) requires the coordinated action of the intra-S-phase checkpoint and the Fanconi anaemia pathway, which promote ICL incision, translesion synthesis and homologous recombination (reviewed in refs 1, 2). Previous studies have implicated the 3'-5' superfamily 2......, phenotype than the null, indicative of haploinsufficiency. We establish that HELQ interacts directly with the RAD51 paralogue complex BCDX2 and functions in parallel to the Fanconi anaemia pathway to promote efficient homologous recombination at damaged replication forks. Thus, our results reveal a critical...

  17. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    Science.gov (United States)

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    International Nuclear Information System (INIS)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun; Ren, Li

    2015-01-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair

  19. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China)

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair.

  20. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  1. Hoechst 33258 dye generates DNA-protein cross-links during ultraviolet light-induced photolysis of bromodeoxyuridine in replicated and repaired DNA

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xicang; Morgan, W.F.; Cleaver, J.E.

    1986-08-01

    Substitution of bromodeoxyuridine for thymidine in the DNA of mammalian cells sensitizes them to a range of wavelengths of ultraviolet light. Cells are also sensitized to photochemical reactions involving dyes such as Hoechst 33258, which is used to produce differential staining of chromatids according to their bromodeoxyuridine content. Irradiation with 313 nm light of human and hamster cells containing bromodeoxyuridine in their DNA produced single-strand breaks but no DNA-protein cross-links. Irradiation with 360 nm light in the presence of Hoechst 33258 produced extensive DNA-protein cross-linkage as well as single-strand breaks. These cross-links were observed in DNA containing bromodeoxyuridine incorporated by either semiconservative or repair replication. When the protein was removed with proteinase K, bromodeoxyuridine in repair patches after irradiation by doses of ultraviolet (254 nm) light as low as 0.26 J/m/sup 2/ could readily be detected. Hoechst 33258-mediated photolysis, therefore, provides a sensitive new technique for measuring repair replication after ultraviolet light irradiation.

  2. Homologous and non-homologous recombination differentially affect DNA damage repair in mice.

    NARCIS (Netherlands)

    J. Essers (Jeroen); H. van Steeg (Harry); J. de Wit (Jan); M. Vermeij (Marcel); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland); S.M.A. Swagemakers (Sigrid)

    2000-01-01

    textabstractIonizing radiation and interstrand DNA crosslinking compounds provide important treatments against cancer due to their extreme genotoxicity for proliferating cells. Both the efficacies of such treatments and the mutagenic potential of these agents are modulated by

  3. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    International Nuclear Information System (INIS)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-01-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables

  4. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    Science.gov (United States)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-10-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables.

  5. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines

    International Nuclear Information System (INIS)

    Bedford, P.; Fichtinger-Schepman, A.M.; Shellard, S.A.; Walker, M.C.; Masters, J.R.; Hill, B.T.

    1988-01-01

    The formation and removal of four platinum-DNA adducts were immunochemically quantitated in cultured cells derived from a human bladder carcinoma cell line (RT112) and from two lines derived from germ cell tumors of the testis (833K and SUSA), following exposure in vitro to 16.7 microM (5 micrograms/ml) cisplatin. RT112 cells were least sensitive to the drug and were proficient in the repair of all four adducts, whereas SUSA cells, which were 5-fold more sensitive, were deficient in the repair of DNA-DNA intrastrand cross-links in the sequences pApG and pGpG. Despite expressing a similar sensitivity to SUSA cells, 833K cells were proficient in the repair of all four adducts, although less so than the RT112 bladder tumor cells. In addition, SUSA cells were unable to repair DNA-DNA interstrand cross-links whereas 50-85% of these lesions were removed in RT112 and 833K cells 24 h following drug exposure. It is possible that the inability of SuSa cells to repair platinated DNA may account for their hypersensitivity to cisplatin

  6. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  7. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  8. The role of the Fanconi anemia pathway in DNA repair and maintenance of genome stability

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Koczorowska

    2014-05-01

    Full Text Available The Fanconi anemia (FA pathway is one of the DNA repair systems involved in removal of DNA crosslinks. Proteins which belong to this pathway are crucial to the protection of genetic information, whereas disturbances in their function have serious implications for the whole organism. Biallelic mutations in FA genes are the cause of Fanconi anemia – a genetic disease which manifests itself through numerous congenital abnormalities, chromosomal instability and increased predisposition to cancer. The FA pathway is composed of fifteen proteins. Eight of them, in the presence of DNA interstrand crosslinks (ICLs, form a nuclear core complex responsible for monoubiquitination of FANCD2 and FANCI, which is a key step of ICL repair. FA proteins which are not involved in the monoubiquitination step participate in repair of DNA double strand breaks via homologous recombination. Some of the FA proteins, besides having a direct role in the repair of DNA damage, are engaged in replication, cell cycle control and mitosis. The unperturbed course of those processes determines the maintenance of genome stability.

  9. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    Science.gov (United States)

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fanconi anemia and DNA repair.

    Science.gov (United States)

    Grompe, M; D'Andrea, A

    2001-10-01

    Fanconi anemia (FA) is an autosomal recessive disorder caused by defects in at least eight distinct genes FANCA, B, C, D1, D2, E, F and G. The clinical phenotype of all FA complementation groups is similar and is characterized by progressive bone marrow failure, cancer proneness and typical birth defects. The principal cellular phenotype is hypersensitivity to DNA damage, particularly interstrand DNA crosslinks. The FA proteins constitute a multiprotein pathway whose precise biochemical function(s) remain unknown. Five of the FA proteins (FANCA, C, E, F and G) interact in a nuclear complex upstream of FANCD2. FANCB and FANCD1 have not yet been cloned, but it is likely that FANCB is part of the nuclear complex and that FANCD1 acts downstream of FANCD2. The FA nuclear complex regulates the mono-ubiquitination of FANCD2 in response to DNA damage, resulting in targeting of this protein into nuclear foci. These foci also contain BRCA1 and other DNA damage response proteins. In male meiosis, FANCD2 also co-localizes with BRCA1 at synaptonemal complexes. Together, these data suggest that the FA pathway functions primarily as a DNA damage response system, although its exact role (direct involvement in DNA repair versus indirect, facilitating role) has not yet been defined.

  11. p53 downregulates the Fanconi anaemia DNA repair pathway.

    Science.gov (United States)

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  12. Implication of the E. coli K12 uvrA and recA genes in the repair of 8-methoxypsoralen-induced mono adducts and crosslinks on plasmid DNA

    International Nuclear Information System (INIS)

    Paramio, J.M.; Bauluz, C.; Vidania, R. de

    1986-01-01

    Genotoxicity of psoralen damages on plasmid DNA has been studied. pBR322 DNA was randomly modified with several concentrations of 8-methoxypsoralen plus 365 nm-UV light. After transformation into E. coli strains (wild-type, uvrA and recA) plasmid survival and mutagenesis were analyzed. To study the influence of the SOS response on plasmid recovery, preirradiation of the cells was performed. In absence of cell preirradiation, crosslinks were not repaired in any strain. Mono adducts were also lethal but in part removed by the excision-repair pathway. Preirradiation of the cells significantly. increased plasmid recovery in recA+ celia. In uvrA- only the mutagenic pathway seemed to be involved in the repair of the damaged DNA. Wild type strain showed the highest increase in plasmid survival, involving the repair of mono adducts and some fraction of crosslinks mainly through an error-free repair pathway. This suggests an enhancement of the excision repair promoted by the induction of SOS functions. (Author) 32 refs

  13. Theoretical approach of complex DNA lesions: from formation to repair

    International Nuclear Information System (INIS)

    Bignon, Emmanuelle

    2017-01-01

    This thesis work is focused on the theoretical modelling of DNA damages, from formation to repair. Several projects have been led in this framework, which can be sorted into three different parts. One on hand, we studied complex DNA reactivity. It included a study about 8-oxo-7,8-dihydro-guanine (8oxoG) mechanisms of formation, a project concerning the UV-induced pyrimidine 6-4 pyrimidone (6-4PP) endogenous photo-sensitizer features, and another one about DNA photo-sensitization by nonsteroidal anti-inflammatory drugs (i.e. ketoprofen and ibuprofen). On the other hand, we investigated mechanical properties of damaged DNA. The structural signature of a DNA lesion is of major importance for their repair, unfortunately only few NMR and X-ray structures of such systems are available. In order to gain insights into their dynamical structure, we investigated a series of complex damages: clustered abasic sites, interstrand cross-links, and the 6-4PP photo-lesion. Likewise, we studied the interaction modes DNA with several polyamines, which are well known to interact with the double helix, but also with the perspective to model DNA-protein cross-linking. The third part concerned the study of DNA interactions with repair enzymes. In line with the structural study about clustered abasic sites, we investigated the dynamics of the same system, but this time interacting with the APE1 endonuclease. We also studied interactions between the Fpg glycosylase with an oligonucleotides containing tandem 8-oxoG on one hand and 8-oxoG - abasic site as multiply damaged sites. Thus, we shed new lights on damaged DNA reactivity, structure and repair, which provides perspectives for biomedicine and life's mechanisms understanding as we begin to describe nucleosomal DNA. (author)

  14. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    Science.gov (United States)

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    Science.gov (United States)

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  16. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Science.gov (United States)

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  17. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Directory of Open Access Journals (Sweden)

    María Belén Federico

    2016-01-01

    Full Text Available Fanconi Anemia (FA is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs. FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  18. Molecular analysis by electron microscopy of the removal of psoralen-photoinduced DNA cross-links in normal and Fanconi's anemia fibroblasts

    International Nuclear Information System (INIS)

    Rousset, S.; Nocentini, S.; Revet, B.; Moustacchi, E.

    1990-01-01

    The induction and fate of psoralen-photoinduced DNA interstrand cross-links in the genome of Fanconi's anemia (FA) fibroblasts of complementation groups A and B, and of normal human fibroblasts, were investigated by quantitative analysis of totally denatured DNA fragments visualized by electron microscopy. 8-Methoxypsoralen (5 x 10(-5) M) interstrand cross-links were induced as a function of the near ultraviolet light dose. With time of postexposure incubation, a fraction of interstrand cross-links disappeared in all cell lines. However, 24 h after treatment, this removal was significantly lower in the two FA group A cell lines examined (34-39%) than in the FA group B and normal cell lines (43-53 and 47-57%, respectively). These data indicate that FA cells are at least able to recognize and incise interstrand cross-links, as normal cells do, although group A cells seem somewhat hampered in this process. This is in accord with data obtained on the same cell lines using another biochemical assay. Since the fate of cross-links in FA constituted a controversial matter, it is important to stress that two different methodologies applied to genetically well defined cell lines led to the same conclusions

  19. Synthesis and antitumor activity evaluation of a novel combi-nitrosourea prodrug: Designed to release a DNA cross-linking agent and an inhibitor of O(6)-alkylguanine-DNA alkyltransferase.

    Science.gov (United States)

    Sun, Guohui; Zhang, Na; Zhao, Lijiao; Fan, Tengjiao; Zhang, Shufen; Zhong, Rugang

    2016-05-01

    The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Interstrand cross-linking implies contrasting structural consequences for DNA: insights from molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Bignon, E.; Dršata, Tomáš; Morell, C.; Lankaš, Filip; Dumont, E.

    2017-01-01

    Roč. 45, č. 4 (2017), s. 2188-2195 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : abasic sites * duplex DNA * mechanical properties Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 10.162, year: 2016 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1253

  1. Distinct roles of FANCO/RAD51C in DNA damage signaling and repair: implications for fanconi anemia and breast cancer susceptibility

    International Nuclear Information System (INIS)

    Nagaraju, G.; Somyajit, K.; Subramanya, S.

    2012-01-01

    Unrepaired or misrepaired chromosomal double-strand breaks (DSBs) can cause gross chromosomal rearrangements which eventually can lead to tumorigenesis through inactivation of tumor suppressor genes or activation of oncogenes. There are two major mechanisms of DSB repair: non-homologous end joining (NHEJ) and homologous recombination (HR). DSBs that are generated during S and G2 phase of the cell are preferentially repaired by sister chromatid recombination (SCR), an HR pathway that utilizes neighboring sister chromatid as a template. Since the copied information is accurate, SCR is potentially an error-free pathway. HR also plays a critical role in the repair of daughter strand gaps (DSGs) that arise as a result of replication fork stalling and facilitates replication fork recovery. Furthermore, in collaboration with nucleotide excision repair and translesion synthesis, HR is involved in the repair of DNA interstrand cross-links (ICLs). Thus, HR is important for the maintenance of genome integrity and its dysfunction can lead to various genetic disorders and cancer

  2. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    Science.gov (United States)

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The involvement of DNA repair genes in the hypoxia-dependent NLCQ-1 (NSC 709257) toxicity and its synergistic interaction with cisplatin or melphalan

    International Nuclear Information System (INIS)

    Papadopoulou, M.V.; Xue, C.-J.; Bloomer, W.D.

    2003-01-01

    4-[3-(2-Nitro-1-imidazolyl)-propylamino]-7-chloro-quinoline hydrochloride (NLCQ-1) is a weakly DNA-intercalating hypoxia selective cytotoxin, which synergistically enhances the antitumor effect of several chemotherapeutic agents or radiation against mouse tumors or human xenografts. Synergy with melphalan (L-PAM) or cisplatin (cisPt) requires hypoxic pre-exposure of cells to NLCQ-1 or, in mice, administration of NLCQ-1 about 1 h before L-PAM or cisPt. This suggests that NLCQ-1 may cause DNA lesions upon reductive metabolism. To indirectly identify such lesions, rodent cell lines defective in specific DNA repair genes (EM9 and UV41) and their repair-proficient parental AA8, were exposed to NLCQ-1 alone and in combination with L-PAM or cisPt under hypoxic/aerobic conditions and appropriate routes, and assessed for clonogenicity. Selected comparisons with tirapazamine (TPZ) were also performed. DNA ssbs were identified by using the alkaline comet assay. Synergism was assessed by isobologramic analysis. EM9, which lack the functional XRCC1 gene and are unable to efficiently repair DNA ssbs, were 3.7x and 4.5x more sensitive to NLCQ-1 and TPZ, respectively, than the parental AA8 cells. Similarly, UV41, which are defective in the ERCC4/XPF gene and thus, hypersensitive to DNA cross-linking agents, were 4.1x more sensitive than AA8 cells to NLCQ-1. Equitoxic concentrations of NLCQ-1 and TPZ gave similar numbers of ssbs in AA8 and EM9 cells exposed to each compound for 1 h under hypoxic conditions. In combination with L-PAM or cisPt, synergy was observed in AA8 but not in EM9 or UV41 cells, with either NLCQ-1 or TPZ. These results suggest that NLCQ-1 is involved in the formation of DNA ssbs and interstrand crosslinks, with the latter being most likely responsible for NLCQ-1 hypoxic toxicity. The synergistic interaction of NLCQ-1 with L-PAM or cisPt is probably due to an enhancement in the L-PAM/cisPt-induced DNA interstrand crosslinks, possibly as a result of an inhibited

  4. DNA modifications by antitumor platinum and ruthenium compounds: Their recognition and repair

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor

    2002-01-01

    Roč. 71, - (2002), s. 1-68 ISSN 0079-6603 R&D Projects: GA AV ČR IAA5004101 Institutional research plan: CEZ:AV0Z5004920 Keywords : interstrand cross-link * cisplatin -demaged DNA * anticancer drug cisplatin Subject RIV: BO - Biophysics Impact factor: 4.839, year: 2002

  5. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells.

    Science.gov (United States)

    Yang, Yun-Gui; Herceg, Zdenko; Nakanishi, Koji; Demuth, Ilja; Piccoli, Colette; Michelon, Jocelyne; Hildebrand, Gabriele; Jasin, Maria; Digweed, Martin; Wang, Zhao-Qi

    2005-10-01

    Fanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells. We show that the targeted deletion of Fanca exons 37-39 generates a null for Fanca in mice and abolishes ubiquitination of Fancd2, the downstream effector of the FA complex. Cells lacking Fanca exhibit increased chromosomal aberrations and attenuated accumulation of Brca1 and Rad51 foci in response to DNA damage. The absence of Fanca greatly reduces gene-targeting efficiency in mouse embryonic stem (ES) cells and compromises the survival of fibroblast cells in response to ICL agent treatment. Fanca-null cells exhibit compromised homology-directed repair (HDR) of DSBs, particularly affecting the single-strand annealing pathway. These data identify the Fanca protein as an integral component in the early step of HDR of DSBs and thereby minimizing the genomic instability.

  6. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Science.gov (United States)

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  7. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.

    Science.gov (United States)

    Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd

    2017-08-01

    Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Theory of equilibria of elastic 2-braids with interstrand interaction

    Science.gov (United States)

    Starostin, E. L.; van der Heijden, G. H. M.

    2014-03-01

    Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.

  9. Inter-strand resistance measurements in the termination of the ITER SULTAN samples

    International Nuclear Information System (INIS)

    Cau, F; Bruzzone, P

    2009-01-01

    In cabled conductors a perfect uniformity of the current among the strands is hardly reached, due to the non-homogeneity of the contact resistance distribution between the strands and the copper of the electrical terminations. In the case of large current unbalance, the overloaded strands hit the critical surface at high field early, developing a current sharing voltage, which drives the redistribution of the current, mainly in the electrical terminations where the inter-strand resistance is lower than in the high field conductor. If the inter-strand resistance in the termination is low, the voltage levels are sufficiently low to allow an effective redistribution of the current to the less loaded strands. The inter-strand resistance of three different termination layouts of ITER short length samples is measured to make a database available which can be used to qualify the layout of the joints and their capability of redistributing the current among the strands.

  10. Radiation-induced strand-breaks and DNA-protein crosslinks depend predominantly on the dose, oxygen concentration and repair time

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Miyagi, Y.; Zhang, H.

    1995-01-01

    It has been known for many years that the DNA damage produced by ionizing radiation depends upon the oxygen concentration around the DNA. For example, the number of DNA strand-breaks (SBs) formed per unit dose decreases at low oxygen concentrations, and the number of DNA-protein crosslinks formed per unit dose increases at low oxygen concentrations. If radiation-induced SBs and DPCs are to be useful for detecting and/or quantifying hypoxic cells in solid tumors, the formation of these lesions must depend predominantly on the oxygen concentration around the DNA. All other physical, biological, and physiological factors must either be controllable or have little influence on the assay used to measure these lesions. This paper is a summary of the authors' recent experiments to determine if the radiation-induced SBs and DPCs measured by alkaline elution may be used to estimate the hypoxic fraction or fractional hypoxic volume of solid tumors

  11. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    Science.gov (United States)

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging.

    Science.gov (United States)

    Brosh, Robert M; Bellani, Marina; Liu, Yie; Seidman, Michael M

    2017-01-01

    Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features. Published by Elsevier B.V.

  13. Implication of the E. coli K12 uvrA and recA genes in the repair of 8-methoxypsoralen-induced mono adducts and crosslinks on plasmid DNA; Implicacion de los genes uvrA de E. coli K12 en la reparacion de monoaductos y entrecruzamien tos inducidos en DNA plasmidico por 8-metoxipso raleno mas luz ultravioleta A

    Energy Technology Data Exchange (ETDEWEB)

    Paramio, J M; Bauluz, C; Vidania, R de

    1986-07-01

    Genotoxicity of psoralen damages on plasmid DNA has been studied. pBR322 DNA was randomly modified with several concentrations of 8-methoxypsoralen plus 365 nm-UV light. After transformation into E. coli strains (wild-type, uvrA and recA) plasmid survival and mutagenesis were analyzed. To study the influence of the SOS response on plasmid recovery, preirradiation of the cells was performed. In absence of cell preirradiation, crosslinks were not repaired in any strain. Mono adducts were also lethal but in part removed by the excision-repair pathway. Preirradiation of the cells significantly. increased plasmid recovery in recA+ celia. In uvrA- only the mutagenic pathway seemed to be involved in the repair of the damaged DNA. Wild type strain showed the highest increase in plasmid survival, involving the repair of mono adducts and some fraction of crosslinks mainly through an error-free repair pathway. This suggests an enhancement of the excision repair promoted by the induction of SOS functions. (Author) 32 refs.

  14. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    Science.gov (United States)

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  15. Combined use of chondroitinase-ABC, TGF-β1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair.

    Science.gov (United States)

    Makris, Eleftherios A; MacBarb, Regina F; Paschos, Nikolaos K; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-08-01

    Patients suffering from damaged or diseased fibrocartilages currently have no effective long-term treatment options. Despite their potential, engineered tissues suffer from inferior biomechanical integrity and an inability to integrate in vivo. The present study identifies a treatment regimen (including the biophysical agent chondroitinase-ABC, the biochemical agent TGF-β1, and the collagen crosslinking agent lysyl oxidase) to prime highly cellularized, scaffold-free neofibrocartilage implants, effecting continued improvement in vivo. We show these agents drive in vitro neofibrocartilage matrix maturation toward synergistically enhanced Young's modulus and ultimate tensile strength values, which were increased 245% and 186%, respectively, over controls. Furthermore, an in vitro fibrocartilage defect model found this treatment regimen to significantly increase the integration tensile properties between treated neofibrocartilage and native tissue. Through translating this technology to an in vivo fibrocartilage defect model, our results indicate, for the first time, that a pre-treatment can prime neofibrocartilage for significantly enhanced integration potential in vivo, with interfacial tensile stiffness and strength increasing by 730% and 745%, respectively, compared to integration values achieved in vitro. Our results suggest that specifically targeting collagen assembly and organization is a powerful means to augment overall neotissue mechanics and integration potential toward improved clinical feasibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Study on interstrand coupling losses in Rutherford-type superconducting cables

    International Nuclear Information System (INIS)

    Lei, Y.Z.; Shintomi, T.; Terashima, A.; Hirabayashi, H.

    1993-02-01

    Two sets of experimental apparatus for measuring the AC losses in superconducting strands and Rutherford-type cable conductors have been constructed. A few strand samples and a number of compacted cable samples with and without a CuMn matrix have been measured. The hysteresis loss, loss from coupling within strands and loss from coupling between strands in cables have been distinguished from each other. The results show that, even for Rutherford cables without any soldering and coating, their AC losses may be quite different from each other due to the variation of the interstrand coupling loss. For cables without a CuMn matrix, interstrand coupling loss increases nearly according to a geometrical series with an increase of curing temperature simulating coil fabrication. However, cables with the CuMn matrix show a relatively small curing temperature dependence. For most of the samples, losses do not show any evident dependence on the mechanical pressure. Interstrand resistances in one of these cables have also been measured; the results indicate that the tendency for a decrease in the interstrand resistances is consistent with the results of AC loss measurements. (author)

  17. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  18. An electron microscopic study of the photochemical cross-linking of DNA in guinea pig epidermis by psoralen derivatives

    International Nuclear Information System (INIS)

    Cech, T.; Pathak, M.A.; Biswas, R.K.

    1979-01-01

    Albino guinea pigs were treated with psoralen derivatives plus 320-400 nm ultraviolet radiation, and DNA was extracted from their epidermis. The DNA was assayed for the presence of interstrand cross-links by standard denaturation-renaturation assays and by a new technique, electron microscopy of the DNA under totally denaturing conditions. The latter method allows individual cross-links to be directly observed and counted. When either 4,5',8-trimethylpsoralen or 8-methoxypsoralen was applied topically to the skin (8-20 μg/cm 2 ) or administered orally (10-12 mg/kg body weight), followed by exposure to 320-400 nm ultraviolet radiation, most of the epidermal DNA was found to contain a high frequency of cross-links. For example, oral or topical trimethylpsoralen treatment gave an average of one cross-link per 250 nucleotide pairs or about 3 . 10 5 cross-links per guinea pig chromosome. When the dose of either drug was decreased 20-fold to the level used in the clinical treatment of psoriasis, however, no cross-links could be detected in the epidermal DNA. The electron microscopic assay is sensitive enough that one can put an upper limit of 1 cross-link per 10 6 nucleotide pairs (80 cross-links per chromosome) for the low dose studies. The significance of these findings to the understanding of the effectiveness of psoralens in psoriasis therapy is discussed. (Auth.)

  19. Mechanism of melphalan crosslink enhancement by misonidazole pretreatment

    International Nuclear Information System (INIS)

    Taylor, Y.C.; Sawyer, J.M.; Hsu, B.; Brown, J.M.

    1984-01-01

    Sensitization of Chinese hamster ovary cells to melphalan (L-PAM) toxicity by prior treatment with misonidazole is associated with increased levels of DNA crosslinks believed to be the critical lesion for bifunctional alkylating agent toxicity. Enhanced L-PAM crosslinking of DNA could occur by a variety of mechanisms in MISO-pretreated cells including: (1) increased transport or binding of L-PAM, (2) decreased repair of L-PAM monoadducts which would allow more time for their conversion to crosslinks, (3) decreased crosslink repair (unhooking of one arm), or (4) chemical modification of the DNA structure, presumably by bound MISO derivatives, such that crosslink formation is facilitated. Previous studies have eliminated mechanisms (1) and (3). Mechanism (4) was investigated by following MISO-pretreatments of whole cells with L-PAM treatments of the isolated DNA from these cells. Treatment of bare DNA with L-PAM modeled very well the crosslinking behavior in whole cells although it was somewhat more efficient. In the presence of double stranded DNA and absence of repair systems during and after the L-PAM exposure, it was determined that MISO-pretreatments did not increase the crosslinking efficiency of L-PAM

  20. Radiation crosslinking of polypropylene

    International Nuclear Information System (INIS)

    Nojiri, A.; Sawasaki, T.

    1984-01-01

    The radiation crosslinking of polypropylene with several kinds of polyfunctional monomers has been examined, and it has been clarified that the enhanced crosslinking may be classified into two types. In particular, the irradiation crosslinking process of polypropylene containing a polyfunctional monomer having an acryloyloxy group giving a specific gel - dose curve has been studied by infrared absorption spectrum and oxygen absorptivity measurement in comparison with the non-enhanced system. (author)

  1. Alkali reversal of psoralen cross-link for the targeted delivery of psoralen monoadduct lesion

    International Nuclear Information System (INIS)

    Yeung, A.T.; Dinehart, W.J.; Jones, B.K.

    1988-01-01

    Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. The authors used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90 0 C (BCR). The BCR reaction is more efficient than the photoreversal reaction. They show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine based freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, they have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site

  2. Measurement of inter-strand contact resistance in epoxy impregnated Nb3Sn Rutherford cables

    International Nuclear Information System (INIS)

    Giorgio Ambrosio

    2003-01-01

    An apparatus for the measurement, under transverse pressure, of the inter-strand contact resistance in epoxy-impregnated Nb 3 Sn Rutherford cables has been recently assembled at Fermilab. Procedures have been developed to instrument and measure samples extracted from Nb 3 Sn coils. Samples were extracted from coils fabricated with the Wind-and-React and the React-and-Wind technology, both presently under development at Fermilab. A ceramic binder is used to improve the insulation and to simplify the fabrication of coils using the Wind-and-React technology. Synthetic oil is used to prevent sintering during the heat treatment of coils to be wound after reaction. In order to evaluate the effects of the ceramic binder and of the synthetic oil on the inter-strand resistance, measurements of samples extracted from coils were compared with measurements of cable stacks with varying characteristics. In this paper we describe the apparatus, the sample preparation, the measurement procedure, and the results of the first series of tests

  3. Both hMutSα and hMutSß DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Akihiro Tajima

    Full Text Available Patients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-fluorouracil (5-FU-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR complex hMutSα binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs induced by drugs such as cisplatin and psoralen, it has not been demonstrated to interact with 5-FU incorporated into DNA. Our aim was to examine if hMutSß plays a role in 5-FU recognition.We compared the normalized growth of 5-FU treated cells containing either or both mismatch repair complexes using MTT and clonogenic assays. We utilized oligonucleotides containing 5-FU and purified baculovirus-synthesized hMutSα and hMutSß in electromobility shift assays (EMSA and further analyzed binding using surface plasmon resonance.MTT and clonogenic assays after 5-FU treatment demonstrated the most cytotoxicity in cells with both hMutSα and hMutSß, intermediate cytotoxicity in cells with hMutSα alone, and the least cytotoxicity in cells with hMutSß alone, hMutSß binds 5-FU-modified DNA, but its relative binding is less than the binding of 5-FU-modified DNA by hMutSα.Cytotoxicity induced by 5-FU is dependent on intact DNA MMR, with relative cell death correlating directly with hMutSα and/or hMutSß 5-FU binding ability (hMutSα>hMutSß. The MMR complexes provide a hierarchical chemosensitivity for 5-FU cell death, and may have implications for treatment of patients with certain MMR-deficient tumors.

  4. DNA-crosslinker cisplatin eradicates bacterial persister cells.

    Science.gov (United States)

    Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K

    2016-09-01

    For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Fanconi anaemia in South Africa: Past, present and future

    African Journals Online (AJOL)

    research and enhanced understanding of this disorder, the diagnosis of FA remains a .... inter-strand cross-link repair, nucleolytic incision and translesion. DNA synthesis. .... In developed nations, the availability of haematopoietic stem cell.

  6. Influence of Compaction During Reaction Heat Treatment on the Interstrand Contact Resistances of Nb3Sn Rutherford Cables

    NARCIS (Netherlands)

    Collings, E.W.; Sumption, Mike D.; Majoros, Milan; Wang, Xiaorong; Dietderich, Daniel R.; Yagotyntsev, K.; Nijhuis, Arend

    2018-01-01

    The amplitudes of multipoles in the bore fields of dipole and quadrupole magnets, induced by ramp-rate-dependent coupling currents, are under the control of the interstrand contact resistances - crossing-strand, Rc, adjacent strand, Ra, or a combination of them, Reff. Although two decades ago it was

  7. Repair of 8-methoxypsoralen + UVA-induced damage in specific sequences in chromosomal and episomal DNA in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Dean, S.W.

    1989-07-01

    A study of the repair of DNA damage in the dihydrofolate reductase (dhfr) gene of SV40-transformed human fibroblasts after treatment with 8-methoxypsoralen (8MOP) and UVA is described. 8MOP+UVA-induced cross-links in the dhfr gene were completely repaired by 12 h in one normal and one Fanconi's anaemia (FA) group A cell line. In contrast, approximately 35% of cross-links in an episomally maintained Epstein--Barr virus derived plasmid remained unrepaired even after 48 h. Cross-linkable monoadducts in the dhfr gene were repaired more slowly than cross-links, and there was no detectable repair of cross-linkable monoadducts in the plasmid. Thus the ability of a cell to repair 8MOP+UVA-induced cross-links or cross-linkable monoadducts in an episome does not reflect its capacity to repair such lesions in genomic DNA.

  8. Repair of 8-methoxypsoralen + UVA-induced damage in specific sequences in chromosomal and episomal DNA in human cells

    International Nuclear Information System (INIS)

    Dean, S.W.

    1989-01-01

    A study of the repair of DNA damage in the dihydrofolate reductase (dhfr) gene of SV40-transformed human fibroblasts after treatment with 8-methoxypsoralen (8MOP) and UVA is described. 8MOP+UVA-induced cross-links in the dhfr gene were completely repaired by 12 h in one normal and one Fanconi's anaemia (FA) group A cell line. In contrast, ∼35% of cross-links in an episomally maintained Epstein-Barr virus derived plasmid remained unrepaired even after 48 h. Cross-linkable monoadducts in the dhfr gene were repaired more slowly than cross-links, and there was no detectable repair of cross-linkable monoadducts in the plasmid. Thus the ability of a cell to repair 8MOP+UVA-induced cross-links or cross-linkable monoadducts in an episome does not reflect its capacity to repair such lesions in genomic DNA. (author)

  9. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  10. Structures of DNA containing psoralen crosslink and thymine dimer

    International Nuclear Information System (INIS)

    Kim, S.H.; Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.

    1985-01-01

    UV irradiation by itself or in conjunction with other chemicals can cause covalent damages to DNA in living cells. To overcome the detrimental effect of DNA damage, cells developed a repair mechanism by which damaged DNA is repaired. In the absence of such repair, cell malfunction or cell death can occur. Two most studied radiation-induced DNA damage are thymine dimer formation by UV irradiation and psoralen crosslink by combination of psoralens and UV: In the former, two adjacent thymine bases on a strand of DNA are fused by forming cyclobutane ring, and in the latter, one pyrimidine on one DNA strand is crosslinked to another pyrimidine on the other strand via a psoralen. The authors' objective is to deduce the structure of DNA segment which contains a psoralen crosslink or a thymine dimer using the combination of results of X-ray crystallographic studies, molecular model building, and energy minimization. These structural features may be important for understanding the biological effects of such damages and for the recognition by the repair enzymes

  11. Radiation crosslinking of elastomers

    International Nuclear Information System (INIS)

    Pearson, D.S.

    1981-01-01

    In the first part of this paper a review is presented of recent results which show that the tensile strength and fatigue life of synthetic elastomers cured by radiation are essentially equivalent to those prepared by other crosslinking techniques. An explanation for the conflict of these new results with the earlier studies on natural rubber is presented. Investigations into the mechanisms and kinetics of crosslinking mentioned above have also shown that the irradiation method should be ideal for preparing well characterized networks. Such materials are useful for testing theoretical relationships between the structure of rubber networks and their stress-strain behavior. The second part of this paper is devoted to this aspect. (author)

  12. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  13. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells

    NARCIS (Netherlands)

    L.J. Niedernhofer (Laura); J. Essers (Jeroen); G. Weeda (Geert); H.B. Beverloo (Berna); J. de Wit (Jan); M. Muijtjens (Manja); H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2001-01-01

    textabstractThe Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Erccl-Xpf incises

  14. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  15. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks

    DEFF Research Database (Denmark)

    Thoma, Brian S; Wakasugi, Mitsuo; Christensen, Jesper

    2005-01-01

    (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B...... recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs...... are recognized by XPC-hHR23B alone, but also that XPA-RPA may interact cooperatively with XPC-hHR23B on damaged DNA, forming a multimeric complex. Since XPC-hHR23B and XPA-RPA participate in the recognition and verification of DNA damage, these results support the hypothesis that interplay between components...

  16. Sequence Specificity, Corformation, and Recognition by HMG1 Protein of Major DNA Interstrand Cross-links of Antitumor Dinuclear Platinum Complexes

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, Jana; Farrell, N.; Brabec, Viktor

    2000-01-01

    Roč. 275, - (2000), s. 15789-15798 ISSN 0021-9258 R&D Projects: GA ČR GA305/99/0695; GA ČR GA307/97/P029; GA AV ČR IAA5004702; GA MŠk ME 152 Institutional research plan: CEZ:A17/98:Z5-004-9-ii Subject RIV: BO - Biophysics Impact factor: 7.368, year: 2000

  17. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  18. Radiation crosslinking of polymer materials

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2004-01-01

    It was found that some polyfunctional monomers (PFM) like triallyl isocyanurate (TAIC) and trimethallyl isocyanurate (TMAIC) when incorporated at low concentrations, are effective for promotion of crosslinking of biodegradable polymers such as polycaprolactone (PCL), poly(butylene succinate-co-adipate) (PBS) and poly(lactic acid) (PLA). PFM are kneaded with biodegradable polymers at molten condition before irradiation. Radiation crosslinking of PBS and PCL with 1% TAIC gave gel fractions of 80% at 20 kGy. This crosslinking is effective to improve deformation of biodegradable polymers at high temperature. The irradiated materials retained their biodegradability even after crosslinking when subjected to soil burial test. Irradiation at molten state (melting temperature, 340degC) led to crosslinking structures for polytetrafluoroethylene (PTFE). Crosslinked PTFE forms transparent films with high abrasion property and high radiation resistance. High-density polyethylene (HDPE) has a higher gel fraction in irradiation at molten state than irradiation at ordinary temperature. Crosslinked HDPE has been applied as knee joints in order to have high abrasion. Radiation crosslinked polycarbosilane (PCS) fiber gives high heat resistant silicon carbide (SiC) after firing. EB irradiation of PCS is effective to improve strength of product and to inhibit flow during carbonization. SiC, being resistant to high temperature will be applied in turbine and body of rockets. (author)

  19. DNA Photolithography with Cinnamate Crosslinkers

    Science.gov (United States)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  20. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    '-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA...

  1. Cross-linking and relaxation of supercoiled DNA by psoralen and light

    International Nuclear Information System (INIS)

    Yoakum, G.H.; Cole, R.S.

    1978-01-01

    Photoreaction of 4,5',8-trimethylpsoralen with superhelical ColE1 and ColE1amp DNA was studied. Changes in mobilities in agarose gels, formation of interstrand cross-links, and DNA strand breaks were determined. Psoralen and light treatment removed negative superhelical turns, and extensive treatments failed to produce positive superhelical turns in covalently closed plasmid DNA. The rate of relaxation of superhelical turns by psoralen photobinding appeared to be directly proportional to the number of superhelical turns remaining. A unique reaction mechanism is presented to explain these results. By this interpretation the initial rate of psoralen photobinding to superhelical DNA was estimated to be 3 times that for linear DNA, and the ratio of cross-linking to monofunctional adducts appears to be dependent on the superhelical conformation of the DNA. The estimated ratio of psoralen molecules bound to DNA strand breaks was 1.7 . 10 4 :1, and 70% of this breakage is caused by the light alone. (Auth.)

  2. Characterisation of radiation crosslinked polydimethylsiloxane

    International Nuclear Information System (INIS)

    Preston, C.M.L.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1998-01-01

    Polysiloxanes, or silicones, are used widely in industry, as lubricants and process additives, as well as in many household products. The most common of the silicones is polydimethylsiloxane (PDMS). The fact that silicones crosslink during exposure to high energy radiation is well established. However, despite the number of studies performed on these systems, the exact mechanism of crosslinking has yet to be determined. Nuclear Magnetic Resonance spectroscopy (NMR) provides a useful method for the analysis of crosslinked polymer systems. Linear uncrosslinked PDMS is easily characterised in the solution state by NMR, as PDMS is readily soluble in common organic solvents. However, the onset of gelation caused by crosslinking results in an insoluble polymer network. The use of cross-polarisation (CP) and magic-angle spinning (MAS) in conjunction with high power decoupling has been shown to greatly enhance sensitivity of the NMR technique in solids. The true mechanism of crosslinking between polymer chains will be discussed

  3. HPLC-UV, MALDI-TOF-MS and ESI-MS/MS analysis of the mechlorethamine DNA crosslink at a cytosine-cytosine mismatch pair.

    Directory of Open Access Journals (Sweden)

    Pornchai Rojsitthisak

    Full Text Available Mechlorethamine [ClCH(2CH(2N(CH(3CH(2CH(2Cl], a nitrogen mustard alkylating agent, has been proven to form a DNA interstrand crosslink at a cytosine-cytosine (C-C mismatch pair using gel electrophoresis. However, the atomic connectivity of this unusual crosslink is unknown.HPLC-UV, MALDI-TOF-MS, and ESI-MS/MS were used to determine the atomic connectivity of the DNA C-C crosslink formed by mechlorethamine, MALDI-TOF-MS of the HPLC-purified reaction product of mechlorethamine with the DNA duplex d[CTCACACCGTGGTTC]•d[GAACCACCGTGTGAG] (underlined bases are a C-C mismatch pair indicated formation of an interstrand crosslink at m/z 9222.088 [M-2H+Na](+. Following enzymatic digestion of the crosslinked duplex by snake venom phosphodiesterase and calf intestinal phosphatase, ESI-MS/MS indicated the presence of dC-mech-dC [mech = CH(2CH(2N(CH(3CH(2CH(2] at m/z 269.2 [M](2+ (expected m/z 269.6, exact mass 539.27 and its hydrolytic product dC-mech-OH at m/z 329.6 [M](+ (expected m/z 329.2. Fragmentation of dC-mech-dC gave product ions at m/z 294.3 and 236.9 [M](+, which are both due to loss of the 4-amino group of cytosine (as ammonia, in addition to dC and dC+HN(CH(3CH = CH(2, respectively. The presence of m/z 269.2 [M](2+ and loss of ammonia exclude crosslink formation at cytosine N(4 or O(2 and indicate crosslinking through cytosine N(3 with formation of two quaternary ammonium ions.Our results provide an important addition to the literature, as the first example of the use of HPLC and MS for analysis of a DNA adduct at the N(3 position of cytosine.

  4. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  5. Ubiquitylation and the Fanconi Anemia Pathway

    Science.gov (United States)

    Garner, Elizabeth; Smogorzewska, Agata

    2012-01-01

    The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability. PMID:21605559

  6. Radiation crosslinking of polymer blends

    International Nuclear Information System (INIS)

    Spenadel, L.

    1979-01-01

    Rocked by the one-two punch of rising energy costs and tougher pollution controls, a growing number of companies are looking to radiation crosslinking as a cheaper, cleaner alternative to heat and costly chemical crosslinking agents such as peroxides. With the development of larger, more powerful electron beam machines it is now possible to irradiate parts as thick as 400 mils in a single pass. Two application areas which have been investigated at our laboratory are the electron beam processing of thermoplastic elastomeric automotive parts and EPDM electrical insulation. This paper covers work carried out to develop the necessary technology base for the radiation crosslinking of ethylene propylene/polyolefin blends. Initial results indicate that EP/PE blends of electrical insulation quality cross-link quite readily when irradiated. On the other hand, EP/PP blends developed for automotive fascia require the addition of crosslinking monomers such as trimethylol propane trimethacrylate in order for crosslinking to predominate over chain scission. Crosslinking EP/PP blends improve mar resistance, flexural set and deformation at elevated temperatures. These are all key properties for automotive fascia. (author)

  7. Hypoxia-Activated Alkylating Agents in BRCA1-Mutant Ovarian Serous Carcinoma.

    Science.gov (United States)

    Conroy, Michael; Borad, Mitesh J; Bryce, Alan H

    2017-07-26

    Breast cancer 1 antigen (BRCA 1) and breast cancer 2 antigen (BRCA2) genes play a significant role in deoxyribonucleic acid (DNA) repair by means of interstrand crosslink repair, and deleterious germline mutations of these are responsible for most hereditary breast and ovarian cancers. Therapeutic strategies which specifically target interstrand crosslink repair can therefore be helpful in patients with harmful mutations. We describe two patients with advanced ovarian cancer and deleterious BRCA1 mutations who were treated with TH-302, a hypoxia-activated alkylating agent.

  8. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Science.gov (United States)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  9. Automobile parts by radiation crosslinking

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. The crosslinking causes improvement in strength, heat stability and processability to gives network structure for polymer materials and hence crosslinked materials are used in various fields, especially car parts. Electron beam (EB) of short time irradiation is used for these modifications. Irradiated (pre-vulcanized) before sulfur vulcanization rubber tires, heat resistant wires/cables, shrinkable tubes and foams of car parts are achieved by EB crosslinking. Polyethylene and polyvinyl chloride are used in cables and wires, polypropylene in plastic foams and natural rubber etc. In this paper radiation processing of tire, wire/cables, foams, shrinkable tubes and circuit protection devices (CPT) are explained. (author)

  10. Covalent crosslinking of carbon nanostructures

    Indian Academy of Sciences (India)

    Composites of the binary conjugates with polymer can be readily prepared by using the ... Besides the preparation of crosslinked ... of graphite oxide following the procedure described ... several times to remove the metal nanoparticles and.

  11. Radiation induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  12. Crosslinking of agarose bioplastic using citric acid.

    Science.gov (United States)

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    NARCIS (Netherlands)

    Wienk, H.L.J.; Slootweg, J.C.; Speerstra, S.; Kaptein, R.; Boelens, R.; Folkers, G.E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL

  14. EB radiation crosslinking of elastomers

    International Nuclear Information System (INIS)

    Bik, J.; Rzymski, M.; Gluszewski, W.; Zagorski, Z.P.

    2002-01-01

    Complete text of publication follows. The first paper in the series described by the general title, starts with radiation crosslinking of hydrogenated butadiene-nitrile rubber (HBNR). This high-tech elastomer is obtained by catalytic hydrogenation of >C=C 99.5 and 94.5% of starting double bonds. Samples were irradiated with 10 MeV electrons, monoenergetical, 6 kW power, used as scanned beam over the conveyor, securing homogeneity of dose distribution. The doses were up to 300 kGy, applied in 20 kGy increments to avoid radiation generated heating of the material. The influence of presence or absence of oxygen was considered. Irradiated samples were investigated for the extend of crosslinking in the function of dose and for properties important for understanding of mechanisms. Samples are transparent, what allowed conventional absorption spectrophotometry, also time resolved. The quantitative interpretation of results shows that for 100 crosslinks there are 6-9 acts of chain-scission. It is less, than expected from the participation of multi-ionization spurs, also in the solid state, as announced during the previous, 9th Tihany Conference. However, the apparent lower yield of multi-ionization spurs is explained by partial conversion of products into crosslinks of specific type. Our investigations confirm the usefulness of consideration of radiation spurs in polymers as well as in all, low LET irradiated media

  15. Meningocele repair

    Science.gov (United States)

    ... is surgery to repair birth defects of the spine and spinal membranes. Meningocele and myelomeningocele ... is covered by a sterile dressing. Your child may then be transferred to a neonatal intensive ...

  16. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  17. DNA repair and its coupling to DNA replication in eukaryotic cells. [UV, x ray

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1978-01-01

    This review article with 184 references presents the view that mammalian cells have one major repair system, excision repair, with many branches (nucleotide excision repair, base excision repair, crosslink repair, etc.) and a multiplicity of enzymes. Any particular carcinogen makes a spectrum of damaged sites and each kind of damage may be repaired by one or more branches of excision repair. Excision repair is rarely complete, except at very low doses, and eukaryotic cells survive and replicate DNA despite the presence of unrepaired damage. An alteration in a specific biochemical pathway seen in damaged or mutant cells will not always be the primary consequence of damage or of the biochemical defect of the cells. Detailed kinetic data are required to understand comprehensively the various facets of excision repair and replication. Correlation between molecular events of repair and cytological and cellular changes such as chromosomal damage, mutagenesis, transformation, and carcinogenesis are also rudimentary.

  18. Microfabrication of crosslinked PTFE by synchrotron radiation

    International Nuclear Information System (INIS)

    Sato, Yasunori; Yamaguchi, Daichi; Oshima, Akihiro; Washio, Masakazu; Katoh, Takanori; Aoki, Yasushi; Ikeda, Shigetoshi; Tanaka, Shigeru

    2003-01-01

    Microfabrication of crosslinked polytetrafluoroethylene (PTFE) using synchrotron radiation (SR) has been demonstrated for production of micro-components applicable to radiation fields. The method of microfabrication was readily capable of obtaining a microstructure with aspect-ratio of 25 made of crosslinked PTFE. The etching rate of crosslinked PTFE was higher than that of non-crosslinked PTFE. The results show that the etching rate of crosslinked PTFE depends only on the degree of crosslinking. The effect of molecular motion on etching process was discussed from temperature dependence on etching rate. Moreover, in order to examine whether any change of chemical structures and crystallinity would be induced by SR-irradiation on PTFE, SR-irradiated PTFE was measured by NMR spectroscopy and DSC analysis. The results showed that the crosslinking reaction of PTFE would be induced by SR-irradiation in the solid state. (author)

  19. Synthesis of Hydrophobic, Crosslinkable Resins.

    Science.gov (United States)

    1985-12-01

    product by methanol precipitation the majority of the first oligomer was L-"- lost. 4.14 DIFFERENTIAL SCANNING CALORIMETRY. The DSC trace of a typical...polymer from the DSC traces obtained to dcte. Preliminary studies using an automated torsional pendulum indicate that the Tg of the crosslinked polymer is...enabling water to be used in the purification steps. The diethyl phosphonates are readily prepared by heating triethyl phosphite with the chloromethyl

  20. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  1. The phenotype of FancB-mutant mouse embryonic stem cells

    OpenAIRE

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu, Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslink...

  2. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  3. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  4. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    International Nuclear Information System (INIS)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-01-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  5. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  6. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  7. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  8. Radiation induced estane polymer crosslinking

    International Nuclear Information System (INIS)

    Fletcher, M.; Foster, P.

    1997-01-01

    The exposure of polymeric materials to radiation has been known to induce the effects of crosslinking and degradation. The crosslinking phenomena comes about when two long chain polymers become linked together by a primary bond that extends the chain and increases the viscosity, molecular weight and the elastic modules of the polymer. This process has been observed in relatively short periods of time with fairly high doses of radiation, on the order of several megarads/hour. This paper address low dose exposure over long periods of time to determine what the radiation effects are on the polymeric binder material in PBX 9501. An experimental sample of binder material without explosives will be placed into a thermal and radiation field produced from a W-48 put mod 0. Another sample will be placed in a thermal environment without the radiation. The following is the test plan that was submitted to the Pantex process. The data presented here will be from the first few weeks of exposure and this test will be continued over the next few years. Subsequent data will hopefully be presented in the next compatibility and aging conference

  9. A yeast mutant specifically sensitive to bifunctional alkylation

    International Nuclear Information System (INIS)

    Ruhland, A.; Kircher, M.; Wilborn, F.; Brendel, M.

    1981-01-01

    A mutation that specifically confers sensitivity to bi- and tri-functional alkylating agents is presented. No or little cross-sensitivity to radiation or monofunctional agents could be detected. Sensitivity does not seem to be due to preferential alkylation of mutant DNA as parent and mutant strain exhibit the same amount of DNA alkylation and the same pattern of DNA lesions including interstrand crosslinks. The mutation is due to a defect in a nuclear gene which has been designated SNM1 (sensitive to nitrogen mustard); it may control an important step in the repair of DNA interstrand crosslinks (orig.(AJ)

  10. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  11. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    Science.gov (United States)

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  12. Cytotoxic platinum coordination compounds. DNA binding agents

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor; Hrabina, O.; Kašpárková, Jana

    2017-01-01

    Roč. 351, č. 2017 (2017), s. 2-31 ISSN 0010-8545 R&D Projects: GA ČR GA17-09436S Institutional support: RVO:68081707 Keywords : interstrand cross-links * nucleotide excision-repair * pt-ii complex Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 13.324, year: 2016

  13. "Head-to-head" double-hamburger-like structure of di-ruthenated d(GpG) adducts of monofunctional Ru-arene anticancer complexes

    Czech Academy of Sciences Publication Activity Database

    Liu, H.; Kostrhunová, Hana; Habtemariam, A.; Kong, Y.Q.; Deeth, R.J.; Brabec, Viktor; Sadler, Peter J.

    2016-01-01

    Roč. 45, č. 46 (2016), s. 18676-18688 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA14-21053S Institutional support: RVO:68081707 Keywords : interstrand cross-links * nucleotide excision-repair * cis-diamminedichloroplatinum(ii) induced distortion Subject RIV: BO - Biophysics Impact factor: 4.029, year: 2016

  14. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  15. Chemical cross-linking of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...

  16. Poly(tetramethyleneterephthalate) crosslinked by irradiation

    International Nuclear Information System (INIS)

    Nyberg, D.D.

    1978-01-01

    Crosslinking, e.g., by irradiation, of a polymer comprising poly(tetramethyleneterephthalate) is made possible by the addition of a member selected from the group consisting of triallyl cyanurate and N,N'-m-phenylenedimaleimide. The resulting crosslinked modified polymer may be rendered heat recoverable

  17. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  19. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  20. The role of crosslinkers in epoxy-amine crosslinked silicon sol-gel barrier protection coatings

    International Nuclear Information System (INIS)

    Vreugdenhil, A.J.; Gelling, V.J.; Woods, M.E.; Schmelz, J.R.; Enderson, B.P.

    2008-01-01

    The search for chromate replacements in corrosion prevention materials has identified the use of hybrid sol-gel coatings as one, very promising approach. Appropriately functionalized hybrid sol-gel materials can be crosslinked to enhance their chemical durability and mechanical strength. In this work, we evaluate three crosslinkers used in a tetramethoxysilane-glycidoxypropyltrimethoxysilane binary sol-gel system in order to identify the role of the crosslinkers in corrosion protection. The crosslinkers examined were ethylenediamine, N-aminethylepiperazine, and diethylenetriamine. The sol-gel coatings were examined by contact angle, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). Circuit modeling of the EIS results yielded valuable insights into the significant differences between the durabilities of the variously crosslinked coatings. Crosslinker hydrophobicity was identified as not playing a significant role whereas the number of reactive sites per crosslinker and the resulting morphology of the material may be an important parameter

  1. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing.

    Science.gov (United States)

    Takei, Takayuki; Danjo, So; Sakoguchi, Shogo; Tanaka, Sadao; Yoshinaga, Takuma; Nishimata, Hiroto; Yoshida, Masahiro

    2018-04-01

    Moist wounds were known to heal more rapidly than dry wounds. Hydrogel wound dressings were suitable for the moist wound healing because of their hyperhydrous structure. Chitosan was a strong candidate as a base material for hydrogel wound dressings because the polymer had excellent biological properties that promoted wound healing. We previously developed physically-crosslinked chitosan cryogels, which were prepared solely by freeze-thawing of a chitosan-gluconic acid conjugate (CG) aqueous solution, for wound treatment. The CG cryogels were disinfected by immersing in 70% ethanol before applying to wounds in our previous study. In the present study, we examined the influence of autoclave sterilization (121°C, 20 min) on the characteristics of CG cryogel because complete sterilization was one of the fundamental requirements for medical devices. We found that optimum value of gluconic acid content of CG, defined as the number of the incorporated gluconic acid units per 100 glucosamine units of chitosan, was 11 for autoclaving. An increased crosslinking level of CG cryogel on autoclaving enhanced resistance of the gels to enzymatic degradation. Furthermore, the autoclaved CG cryogels retained favorable biological properties of the pre-autoclaved CG cryogels in that they showed the same hemostatic activity and efficacy in repairing full-thickness skin wounds as the pre-autoclaved CG cryogels. These results showed the great potential of autoclavable CG cryogels as a practical wound dressing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells

    International Nuclear Information System (INIS)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-01-01

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O 6 -methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p

  3. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  4. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  5. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  6. Human inherited diseases with altered mechanisms for DNA repair and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1977-01-01

    A variety of human diseases involving clinical symptoms of increased cancer risk, and disorders of the central nervous system, and of hematopoietic, immunological, ocular, and cutaneous tissues and embryological development have defects in biochemical pathways for excision repair of damaged DNA. Excision repair has multiple branches by which damaged nucleotides, bases, and cross-links are excised and requires cofactors that control the access of repair enzymes to damage in DNA in chromatin. Diseases in which repair defects are a consistent feature of their biochemistry include xeroderma pigmentosum, ataxia telangiectasia and Fanconi's anemia.

  7. DNA repair in B. subtilis: an inducible dimer-specific W-reactivation system

    International Nuclear Information System (INIS)

    Fields, P.I.; Yasbin, R.E.

    1982-01-01

    The W-reactivation system of Bacillus subtilis can repair pyrimidine dimers in bacteriophage DNA. This inducible repair system can be activated by treatment of the bacteria with uv, alkylating agents, cross-linking agents and gamma irradiation. However, bacteriophage treated with agents other than those that cause pyrimidine dimers to be produced was not repaired by this unique form of W-reactivation. In contrast, the W-reactivation system of Escherichia coli can repair a variety of damages placed in the bacteriophage DNA

  8. Crosslinkable coatings from phosphorylcholine-based polymers.

    Science.gov (United States)

    Lewis, A L; Cumming, Z L; Goreish, H H; Kirkwood, L C; Tolhurst, L A; Stratford, P W

    2001-01-01

    2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesised and then used in the preparation of crosslinked polymer membranes with lauryl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate (crosslinker) comonomers. Some physical aspects of the membrane properties were evaluated in order to establish the basis for the synthesis of a series of post-crosslinkable polymers. These materials were made by copolymerisation of the constituent monomers via a free radical method, and characterised using NMR, FT-IR, viscometry and elemental analysis. The optimum crosslink density and conditions required for curing coatings of these polymers were investigated using atomic force microscopy (AFM) and showed the inclusion of 5 mol% silyl crosslinking agent to be ideal. A nanoindentation technique was employed to determine if the coating developed elasticity upon crosslinking. The biological properties of the coatings were evaluated using a variety of protein adsorption assays and blood contacting experiments, and an enzyme immunoassay was developed to detect E. coli in order to assess the level of bacterial adhesion to these biomaterials. Polymers of this type were shown to be very useful as coating materials for improving the biocompatibility of, or reducing the levels of adherent bacteria to medical devices.

  9. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  10. DNA repair processes and their impairment in some human diseases

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1977-01-01

    Some human diseases show enhanced sensitivity to the action of environmental mutagens, and among these several are known which are defective in the repair of damaged DNA. Xeroderma pigmentosum (XP) is mainly defective in excision repair of a large variety of damaged DNA bases caused by ultraviolet light and chemical mutagens. XP involves at least 6 distinct groups, some of which may lack cofactors required for excising damage from chromatin. As a result of these defects the sensitivity of XP cells to many mutagens is increased 5- to 10-fold. Ataxia telangiectasia and Fanconi's anemia may similarly involve defects in repair of certain DNA base damage or cross-links, respectively. But most of these and other mutagen-sensitive diseases only show increases of about 2-fold in sensitivity to mutagens, and the biochemical defects in the diseases may be more complex and less directly involved in DNA repair than in XP. (Auth.)

  11. Mesh hernia repair and male infertility: a retrospective register study.

    Science.gov (United States)

    Hallén, Magnus; Westerdahl, Johan; Nordin, Pär; Gunnarsson, Ulf; Sandblom, Gabriel

    2012-01-01

    Previous studies have suggested that the use of mesh in groin hernia repair may be associated with an increased risk for male infertility as a result of inflammatory obliteration of structures in the spermatic cord. In a recent study, we could not find an increased incidence of involuntary childlessness. The aim of this study was to evaluate this issue further. Men born between 1950 and 1989, with a hernia repair registered in the Swedish Hernia Register between 1992 and 2007 were cross-linked with all men in the same age group with the diagnosis of male infertility according to the Swedish National Patient Register. The cumulative and expected incidences of infertility were analyzed. Separate multivariate logistic analyses, adjusted for age and years elapsed since the first repair, were performed for men with unilateral and bilateral repair, respectively. Overall, 34,267 men were identified with a history of at least 1 inguinal hernia repair. A total of 233 (0.7%) of these had been given the diagnosis of male infertility after their first operation. We did not find any differences between expected and observed cumulative incidences of infertility in men operated with hernia repair. Men with bilateral hernia repair had a slightly increased risk for infertility when mesh was used on either side. However, the cumulative incidence was less than 1%. Inguinal hernia repair with mesh is not associated with an increased incidence of, or clinically important risk for, male infertility. Copyright © 2012 Mosby, Inc. All rights reserved.

  12. DNA repair in a Fanconi's anemia fibroblast cell strain

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Little, J.B.; Weichselbaum, R.R.

    1979-01-01

    DNA repair and colony survival were measured in fibroblasts from a patient with Fanconi's anemia, HG 261, and from normal human donors after exposure to these cells to the cross-linking agent mitomycin C, X-rays or ultraviolet light. Survival was similar in HG 261 and normal cells after X-ray or ultraviolet radiation, but was reduced in the Fanconi's anemia cells after treatment with mitomycin C. The level of DNA cross-linking, as measured by the method of alkaline elution, was the same in both cell strains after exposure to various doses of mitomycin C. With incubation after drug treatment, a gradual decrease in the amount of cross-linking was observed, the rate of this apparent repair of cross-link damage was the same in both normal and HG 261 cells. The rejoining of DNA single strand breaks after X-irradiation and the production of excision breaks after ultraviolet radiation were also normal in HG 261 cells as determined by alkaline elution. (Auth.)

  13. DNA repair in a Fanconi's anemia fibroblast cell strain

    Energy Technology Data Exchange (ETDEWEB)

    Fornace, Jr, A J; Little, J B [Harvard School of Public Health, Boston, MA (USA); Weichselbaum, R R [Harvard Medical School, Boston, MA (USA)

    1979-01-26

    DNA repair and colony survival were measured in fibroblasts from a patient with Fanconi's anemia, HG 261, and from normal human donors after exposure to these cells to the cross-linking agent mitomycin C, X-rays or ultraviolet light. Survival was similar in HG 261 and normal cells after X-ray or ultraviolet radiation, but was reduced in the Fanconi's anemia cells after treatment with mitomycin C. The level of DNA cross-linking, as measured by the method of alkaline elution, was the same in both cell strains after exposure to various doses of mitomycin C. With incubation after drug treatment, a gradual decrease in the amount of cross-linking was observed, the rate of this apparent repair of cross-link damage was the same in both normal and HG 261 cells. The rejoining of DNA single strand breaks after X-irradiation and the production of excision breaks after ultraviolet radiation were also normal in HG 261 cells as determined by alkaline elution.

  14. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan

    2016-12-30

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  15. Radiation crosslinking of highly plasticized PVC

    Science.gov (United States)

    Mendizabal, E.; Cruz, L.; Jasso, C. F.; Burillo, G.; Dakin, V. I.

    1996-02-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolelcules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield ( Gc) and molecular weight of interjunctions chains ( Mc), were calculated for different systems studied. Addition of ethylene glycol dimethacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment.

  16. Radiation crosslinking of highly plasticized PVC

    International Nuclear Information System (INIS)

    Mendizabal, E.; Cruz, L.; Jasso, C.F.; Burillo, G.; Dakin, V.I.

    1996-01-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolecules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield (G c ) and molecular weight of interjunctions chains (M c ), were calculated for different systems studied. Addition of ethylene glycol dimethyacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment. (author)

  17. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan; Falca, Gheorghe; Musteata, Valentina-Elena; Boi, Cristiana; Nunes, Suzana Pereira

    2016-01-01

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  18. Relationship of DNA lesions and their repair to chromosomal aberration production

    International Nuclear Information System (INIS)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers

  19. Relationship of DNA lesions and their repair to chromosomal aberration production

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers.

  20. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  1. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features

    Directory of Open Access Journals (Sweden)

    Simona Dimida

    2017-01-01

    Full Text Available Genipin (GN is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the cross-linking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma and the hMSCs (human mesenchymal stem cells, as suitable cell models for bone tissue engineering applications of biomaterials.

  2. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  3. Synthesis and Characterization of Ionically Crosslinked Elastomers

    Science.gov (United States)

    2016-01-01

    was prepared by quaternization of vinyl benzyl chloride, while a  common dicarboxylic RAFT agent was neutralized with  potassium . The ideal structure...polymerization  where each mole of RAFT agent will  produce one mole of crosslink  junctions.  Initial polymerizations of n‐butyl  acrylate  (BA) were...butyl  acrylate  was polymerized  with the RAFT crosslinking agent in  methanol to low conversion to  introduce BA units, but limit the crosslinking

  4. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  5. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  6. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs.

    Science.gov (United States)

    Elsabahy, Mahmoud; Samarajeewa, Sandani; Raymond, Jeffery E; Clark, Corrie; Wooley, Karen L

    2013-10-21

    The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)- block -poly(DL-lactide) (PAEA 90 - b -PDLLA 40 ) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) ( i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine.

  7. Cross-linking for microbial keratitis

    Directory of Open Access Journals (Sweden)

    Jayesh Vazirani

    2013-01-01

    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  8. Heating tubes of cross-linked polyethylene

    International Nuclear Information System (INIS)

    Knoeppler, H.; Hoffmann, M.

    1981-01-01

    Oxygen permeability of plastic tubes for floor heating systems was measured as a function of the reduced oxygen content of water in plastic tubes at a flow rate of 0.5 m/s and a temperature of 30 0 C and as a function of oxygen uptake of low-oxygen water in floor heating tubes. Pipes of VEP, periodically cross-linked polyethylene (Engels process), polypropylene copolymeride, and polybutene were compared. The permeability of periodically cross-linked polyethylene is twice as high as that of VEP. Measurements, results, and consequences for floor heating systems are discussed. (KH) [de

  9. Combined theoretical and computational study of interstrand DNA guanine-guanine cross-linking by trans-[Pt(pyridine)2] derived from the photoactivated prodrug trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2

    Czech Academy of Sciences Publication Activity Database

    Tai, H.-Ch.; Brodbeck, R.; Kašpárková, Jana; Farrer, N.J.; Brabec, Viktor; Sadler, P.J.; Deeth, R.J.

    2012-01-01

    Roč. 51, č. 12 (2012), s. 6830-6841 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GAP301/10/0598 Institutional research plan: CEZ:AV0Z50040702 Keywords : platinum * photoactivation * DNA Subject RIV: BO - Biophysics Impact factor: 4.593, year: 2012

  10. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Ian R Kelsall

    Full Text Available The many proteins that function in the Fanconi anaemia (FA monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.

  11. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  12. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  13. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  15. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  16. Mesoscopic simulations of crosslinked polymer networks

    NARCIS (Netherlands)

    Megariotis, G.; Vogiatzis, G.G.; Schneider, L.; Müller, M.; Theodorou, D.N.

    2016-01-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1'4-polyisoprene' is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn

  17. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  18. Retinal detachment repair

    Science.gov (United States)

    ... medicines Problems breathing You may not recover full vision. ... detachments can be repaired. Failure to repair the retina always results in loss of vision to some degree. After surgery, the quality of ...

  19. Crosslinking of viral nanoparticles with “clickable” fluorescent crosslinkers at the interface

    Institute of Scientific and Technical Information of China (English)

    KAUR; Gagandeep; BARNHILL; Hannah

    2010-01-01

    Cu (I) catalyzed alkyne-azide cycloaddition (CuAAC) reaction,a typical "click" reaction,is one of the modular synthetic approaches which has been broadly used in various organic syntheses,medicinal chemistry,materials development and bioconjugation applications.We have for the first time synthesized two dialkyne derivatized fluorescent crosslinkers which could be applied to crosslink two biomolecules using CuAAC reaction.Turnip yellow mosaic virus,a plant virus with unique structural and chemical properties,was used as a prototypical scaffold to form a 2D single layer at the interface of two immiscible liquids and crosslinked with these two linkers by the CuAAC reaction.Upon crosslinking,the fluorescence of both linkers diminished,likely due to the distortion of the polymethylene backbone,which therefore could be used to indicate the completion of the reaction.

  20. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao

    1997-01-01

    Free radicals in crosslinked PTFE which formed by 60 Co γ-rays irradiation at 77 K and at room temperature were studied by electron spin resonance (ESR) spectroscopy. The crosslinked PTFE specimens with different crosslinking density were prepared by electron beam irradiation in the molten state. The ESR spectra observed in the irradiated crosslinked PTFE are much different from those in non-crosslinked PTFE (virgin); a broad singlet component increases with increasing the crosslinking density, G-value of radicals is much higher in crosslinked PTFE than in non-crosslinked one. Free radicals related to the broad component are trapped in the non-crystalline region of crosslinked PTFE and rather stable at room temperature, whereas radicals trapped in amorphous non-crosslinked PTFE are unstable at room temperature. It is thought that most of free radicals trapped in the crosslinked PTFE are formed in the crosslinked amorphous region. The trapped radicals decays around 383 K (110 o C) due to the molecular motion of α-relaxation. (Author)

  1. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  2. Location of DNA-protein cross-links in mammalian cell nuclei

    International Nuclear Information System (INIS)

    Oleinick, N.L.

    1985-01-01

    DNA-protein cross-links (DPCs) occur in 1-3% of the bulk DNA of unirradiated cells, and dose-dependent increases in DPCs with γ- or UV-radiation can be detected by filter-binding. DPCs may contribute to cell lethality, since their formation is prevented by radical scavengers. Since the environment of DNA varies within eukaryotic nuclei, we have probed the composition and sub-nuclear location of DPCs. Both before and after irradiation, the major proteins cross-linked to DNA have molecular weights similar to known proteins of the nuclear matrix. The DNA cross-linked to protein is enriched in sequences which hybridize to mRNA or rRNA transcripts; such sequences are also found preferentially in preparations of nuclear matrix. When histone-depleted, matrix-associated DNA is separated from the DNA of the supercoiled ''loops'' by digestion with EcoRI and assayed for DPCs by filter binding, the frequency of DPCs is greater in the matrix. During repair of DPCs, protein-associated DNA becomes depleted in actively transcribing DNA, followed by reconstitution of the active-gene-enriched nuclear matrix. These data are consistent with known properties of the matrix and suggest the hypothesis that in intact cells, radiation-induced DPCs are primarily a product of matrix-associated DNA sequences and matrix protein

  3. Radiation cross-linking of fluoropolymers: Pt.2

    International Nuclear Information System (INIS)

    Sun Jiazhen; Zhu Xianglin; Zhang Yuefang

    1987-01-01

    On the basis of the results of IR analysis, ESR, ESCA and chemical anlaysis, the mechanism of radiation crosslinking of fluoropolymer Fs-46 was suggested. The crosslinking point of Fs-46 is not on the side chain-CF 3 -group, as Bowers suggest with their theoretical analysis, it may carried out with recombination of two side chain radicals directly, crosslinking with H type, or recombination of side chain radicals and chain end radicals through branching and then crosslinking. It is crosslinking with T type or Y type. The later one is the probable mechanism

  4. Comparison of radiation-induced DNA-protein cross-links formed in oxic, hypoxic, and glutathione depleted cells

    International Nuclear Information System (INIS)

    Xue, L.; Friedman, L.R.; Chiu, S.; Ramakrishnan, N.; Oleinick, N.L.

    1987-01-01

    Treatment of cells with L-buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH). Subsequent metabolism depletes the cells of GSH. GSH-depletion sensitizes both oxic and hypoxic cells to the lethal effects of ionizing radiation. DNA-protein cross-links (DPC) are formed preferentially between DNA sequences active in transcription and a subset of proteins of the nuclear matrix. Thus, DPC may be an indicator lesion of damage in sensitive regions of the genome. The interrelationships between GSH level, oxic vs. hypoxic status, and the yield of DPC have been studied in terms of number of lesions and repair rate in Chinese hamster V79 and in human lung carcinoma A549 cells. The data suggest that elevated background levels of DPC are indicative of a reduced repair capacity, and greater radiation-induced yields of DPC in hypoxia may also be indicative of a compromised repair mechanism

  5. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    Science.gov (United States)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  6. Crosslinking of wire and cable insulation using electron accelerators

    International Nuclear Information System (INIS)

    Feng Yongxiang; Ma Zueteh

    1992-01-01

    Radiation crosslinking of wire and cable insulation is a well-established technology that is widely used in industry. The advantages of radiation crosslinking over chemical crosslinking have helped maintain its steady growth. Since successful utilization of electron beam processing relies on the formulation of compounds used in insulation, the radiation crosslinking of various polymers is reviewed. The handling technology for crosslinking wire and cable insulation and the throughput capacity of electron beam processors are also discussed. More than 30% of the industrial electron accelerators in the world are used for the radiation crosslinking of wire and cable insulation. Prospects of increased use of electron accelerators for crosslinking of wire and cable insulation are very good. (orig.)

  7. Crosslinked polyurethanes based on hyperbranched polymers

    Directory of Open Access Journals (Sweden)

    Vuković Jasna

    2008-01-01

    Full Text Available In this paper, two samples of polyurethane (PU crosslinked with hydroxy -functonal hyperbranched aliphatic polyester of the second pseudo generation were investigated. For the synthesis of these crosslinked PUs two different macrodiols were used: poly(tetramethyleneoxide (PTMO for PUPTMO and ethylene oxide-poly(dimethylsiloxane-ethylene oxide (PDMS-EO for PUPDMS-EO sample. Synthesized samples behave as elastomers and have yellow color. Obtained results show that swelling degree of the sample PUPDMS-EO in N-methyl-2-pyrrolidinon (NMP determined at room temperature is higher than for the sample PUPTMO. It has been also observed that thermal properties of these polyurethane networks can be changed by incorporation of siloxane sequences in their structure.

  8. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  9. [Riboflavin UVA crosslinking in progressive keratoconus].

    Science.gov (United States)

    Maier, P; Reinhard, T

    2017-06-01

    In patients with keratoconus, a progressive, ectatic disease of the cornea, the shape of the cornea is continuously changing leading to a reduction in visual acuity by progressive myopia and more and more (irregular) astigmatism. The symptomatic treatment consists of the prescription of glasses or special gas-permeable rigid contact lenses. Corneal tomography is generally used for diagnosis. After initial diagnosis of keratoconus, regular tomographic follow-ups should be performed. If clinically significant progression is found and confirmed by repeated measurements, riboflavin UVA collagen crosslinking should be offered to the patients. The aim of riboflavin UVA collagen crosslinking is to halt the progression of the disease to avoid further complications. The therapeutic principle is a combined effect of the photosensitizer riboflavin and UVA light. This stiffening effect of the corneal tissue halts the progression of keratoconus. The efficacy of this treatment has been demonstrated in various randomized, controlled trials.

  10. Mesoscopic Simulations of Crosslinked Polymer Networks

    Science.gov (United States)

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  11. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    Science.gov (United States)

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  12. Radiation crosslinking of PVC with polyfunctional monomers

    International Nuclear Information System (INIS)

    Dobo, J.; Takacs, E.; Csato, P.

    1984-01-01

    The radiation crosslinking of PVC in the presence of ethylene glycol dimethacrylate (EGDM) and of trimethylol propane trimethacrylate (TMPTM) was investigated. The effect of PVC powders of different types on the polymerization rate of these monomers was studied by a Calvet-type microcalorimeter. In the milled PVC sheets containing 50 part EGDM a high concentration of trapped free radicals was found by ESR after 16 months storage. (author)

  13. Intrastromal crosslinking in post-LASIK ectasia

    Directory of Open Access Journals (Sweden)

    Bernardo Kaplan Moscovici

    2014-06-01

    Full Text Available Descrevemos um caso de ectasia de córnea precoce após cirurgia de LASIK, detectado no primeiro semestre pós-operatório. Nós optamos tratar este paciente com "crosslinking" embaixo do "flap" , sem desepitelização com bons resultados. A paciente permaneceu sem progressão da ectasia até o momento atual, dois anos após o procedimento.

  14. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    Adhesion between two surfaces may be strongly improved by chemical crosslinking of the interfaces. Polydimethylsiloxane (PDMS) is a widely used polymer that has received considerable attention due to its unique properties, such as relatively low price, biocompatibility, flexibility, high thermal...... investigated by rheology and microscopy. The objective of this work was to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films....

  15. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  16. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    Science.gov (United States)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  17. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  18. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    Science.gov (United States)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  19. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  20. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  1. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  2. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  3. Relation between four types of radiation damage and induced repair

    International Nuclear Information System (INIS)

    Radar, M.L.

    1977-08-01

    Four strains of Escherichia coli were exposed to uv and gamma radiation. Procedures are described for mutational studies, classification of revertants, inhibition of postirradiation DNA degradation and radioresistance. Comparisons were made of induction of the error-prone repair (epr) system with four mutagens; uv radiation, near uv radiation, gamma radiation, and DNA-protein crosslinks. An increase in the number of mutations was shown in every case. The observation that induction of mutagenesis, induction of inhibition of post-irradiation DNA degradation, and induction of radioresistance are closely parallel phenomena led to the investigation of the possibility that DNA-protein crosslinks which were known mutagens were also inducers of the epr system. The significance of the results is discussed

  4. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  5. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  6. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjian; BAI Shu; SUN Yan

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin. Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization. Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads. The effects of reaction conditions, such as crosslinking time, the amount of crosslinking agent and the NaOtt concentration,on the physical properties of the chitosan beads were investigated. The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde. The capacity for copper ions is as high as 40mg/g. The beads have good mechanical strength and can be reused.

  7. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANGYongjina; BAIShu; 等

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin.Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization.Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads.The effects of reaction conditions,such as crosslinking time,the amount of crosslinking agent and the NaOH concentration,on the physical properties of the chitosan beads were investigated.The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde.The capacity for copper ions in as high as 40mg/g,The beads have good mechanical strength and can be reused.

  8. Crosslinkers of Different Types in Precipitation Polymerization of Acrylic Acid

    Directory of Open Access Journals (Sweden)

    H. Eshaghi

    2013-01-01

    Full Text Available Crosslinked poly(acrylic acids were prepared using two types of crosslinker by precipitation polymerization method in a binary organic solvent. N,N’-methylenebisacrylamide (MBA and polyethylene glycol dimethacrylate (PEGDMA-330 were used as low-molecular weight and long-chain crosslinkers, respectively. The effect of various types of crosslinkers on polymer characteristics (i.e., gel content, equilibrium swelling, glass transition temperature, and rheological properties was investigated. Maximum amount of viscosity was obtained by using long-chain crosslinker. The Flory-Rehner equation and rubber elasticity theory were used to discuss the network structure of polymer. It was observed that, the glass transition temperature (Tg of the synthesized polymer containing PEGDMA-330 is higher than that of polymer containing MBA. Apparent and rotational viscosity were used to determine the optimal crosslinker type. In addition, the consistencycoefficient (m and flow behavior index (n parameter of Ostwald equation were investigated as well.

  9. Loss of FANCC function is associated with failure to inhibit late firing replication origins after DNA cross-linking

    International Nuclear Information System (INIS)

    Phelps, Randall A.; Gingras, Helene; Hockenbery, David M.

    2007-01-01

    Fanconi anemia (FA) cells are abnormally sensitive to DNA cross-linking agents with increased levels of apoptosis and chromosomal instability. Defects in eight FA complementation groups inhibit monoubiquitination of FANCD2, and subsequent recruitment of FANCD2 to DNA damage and S-phase-associated nuclear foci. The specific functional defect in repair or response to DNA damage in FA cells remains unknown. Damage-resistant DNA synthesis is present 2.5-5 h after cross-linker treatment of FANCC, FANCA and FANCD2-deficient cells. Analysis of the size distribution of labeled DNA replication strands revealed that diepoxybutane treatment suppressed labeling of early but not late-firing replicons in FANCC-deficient cells. In contrast, normal responses to ionizing radiation were observed in FANCC-deficient cells. Absence of this late S-phase response in FANCC-deficient cells leads to activation of secondary checkpoint responses

  10. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks

  11. DNA-to-protein crosslinks and backbone breaks caused by far- and near-ultraviolet, and visible light radiations in mammalian cells

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.

    1986-01-01

    Spectral responses for DNA damages caused by far-uv, near-uv, and visible light radiations have been studied. The near congruence of the spectra for far-uv damages and the spectrum of DNA is good evidence that the mechanism is the same for the induction of breaks, crosslinks, and pyrimidine dimers. For near-uv, the different spectra imply that at least several nonDNA sensitizer molecules act as primary chromophores, but that DNA damage eventually results. With the understanding that near-uv and visible radiations produce a variety of chemically potent reactive oxygen species within the cell, we recognize the possibility for many types of DNA damage. If we assume that SSBs and DNA-to-protein crosslinks are random single events along the genome, it is possible to compute the number of events per cell genome per lethal event caused by the different energies used. In the near-uv and visible region, many more breaks and crosslinks are formed per lethal event than by far-uv. About 20 times more SSBs per lethal event are caused by 365-nm radiation than by x-rays, strong evidence that these breaks are effectively repaired. It is therefore likely that SSBs are not a serious event with regard to cellular lethality. The role of crosslinks and their repair in lethal events is less clear. The lack of any correlation at all between the action spectra for SSBs, or crosslinks, and lethality and mutagenesis in the same cells is evidence that another lesion or lesions are involved in these events. The multitude of chemical events that can be caused in cellular metabolites by the reactive species generated by these long wavelengths of radiation means that death is attributable to the total spectrum of changed chemicals delivered by a lethal dose, only some of which are DNA changes leading to SSBs and crosslinks. 43 refs., 3 figs., 2 tabs

  12. Transepithelial photorefractive keratectomy with crosslinking for keratoconus.

    Science.gov (United States)

    Mukherjee, Achyut N; Selimis, Vasilis; Aslanides, Ioannis

    2013-01-01

    To analyse visual, refractive and topographic outcomes of combining transepithelial photorefractive keratectomy (tPRK) with simultaneous corneal crosslinking for the visual rehabilitation of contact lens intolerant keratoconus patients. Patients with topographically significant keratoconus, limited corrected vision and intolerant of contact lenses were prospectively recruited, subject to ethical approval and consent. All patients underwent single step aspheric tPRK and sequential crosslinking. Preoperative vision, refraction, corneal topography and wavefront were assessed, with postoperative assessment at 1, 3, 6, and 12 months. 22 eyes of 14 patients were included in the pilot study. Mean age was 32 years (SD 6.8, range 24 to 43). Mean preoperative unaided vision was 1.39 LogMAR (SD 0.5) best corrected 0.31 LogMAR (SD 0.2). Mean preoperative spherical equivalent was -2.74 Diopters (D) (SD 4.1 range -12.25 to +7.75), and mean cylinder -2.9 D (SD 1.2, range 0 to -5.5). Mean central corneal thickness was 461um (SD 29, range 411 to 516). Vision improved postoperatively; unaided 0.32 LogMAR (SD 0.4), best corrected 0.11 (SD 0.13) (P=<0.005). Mean postoperative cylinder was -1.4D (SD1.2), significantly reduced (p<0.005). Maximum keratometry (Kmax) was stable throughout postoperative follow up. (p<0.05). Non topographic transepithelial PRK with simultaneous crosslinking improves vision, and may offer an alternative to keratoplasty in contact lens intolerant keratoconus. Further comparative studies to topographic PRK techniques are indicated.

  13. Comparison study of crosslink density determination in cured rubber

    International Nuclear Information System (INIS)

    El-sabbagh, S.H.; Yehia, A.A.

    2005-01-01

    The crosslink density is an important property affecting the major characteristics of cured rubber. The crosslink density can be determined by different methods such as: 1. Dynamic mechanical method using the data of stress-strain relationship. 2. Mooney-Rivlin equation 3. Swelling in organic solvents measurements using Flory-Rehner equation. The crosslink density calculated by the previous methods were discussed and compared with each other for cured NR, SBR and NBR. The obtained data showed that the dynamic-mechanical method can be considered as a simple and reliable method for determination of crosslink density for cured rubbers

  14. Irradiation Crosslinking of Polyamides for the Electrical and Automotive Industry

    International Nuclear Information System (INIS)

    Gehring, J.

    2006-01-01

    Irradiation crosslinking of electrical cables and heat shrinkable tubes have been widely accepted in the automotive and electrical industry for a long time. Due higher demands regarding temperature resistance, arc resistance and good chemical resistance against oil and greases crosslinked injection moulded parts made out of polyamid and polybutylentherephtalate become also more and more interesting. Crosslinked polyamide can also replace thermosets for switches and offers therefore additional financial benefits. It will be shown on the basis of already realized projects, which basic requirements exist and how irradiation crosslinking can fulfil these demands

  15. Snowmobile Repair. Teacher Edition.

    Science.gov (United States)

    Hennessy, Stephen S.; Conrad, Rex

    This teacher's guide contains 14 units on snowmobile repair: (1) introduction to snowmobile repair; (2) skis, front suspension, and steering; (3) drive clutch; (4) drive belts; (5) driven clutch; (6) chain drives; (7) jackshafts and axles; (8) rear suspension; (9) tracks; (10) shock absorbers; (11) brakes; (12) engines; (13) ignition and…

  16. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  17. Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Juncosa-Melvin, Natalia; Shearn, Jason T; Boivin, Gregory P; Galloway, Marc T; Gooch, Cynthia; Bradica, Gino; Butler, David L

    2009-08-01

    Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases both construct stiffness and the biomechanical properties of the repair tissue after surgery. When optimized using response surface methodology, our results indicate that a mechanical stimulus with three components (2.4% strain, 3000 cycles/day, and one cycle repetition) produced the highest in vitro linear stiffness. Such positive correlations between construct and repair stiffness after surgery suggest that enhancing structural stiffness before surgery could not only accelerate repair stiffness but also prevent premature failures in culture due to poor mechanical integrity. In this study, we examined the combined effects of scaffold crosslinking and subsequent mechanical stimulation on construct mechanics and biology. Autologous tissue-engineered constructs were created by seeding mesenchymal stem cells (MSCs) from 15 New Zealand white rabbits on type I collagen sponges that had undergone additional dehydrothermal crosslinking (termed ADHT in this manuscript). Both constructs from each rabbit were mechanically stimulated for 8h/day for 12 consecutive days with half receiving 100 cycles/day and the other half receiving 3000 cycles/day. These paired MSC-collagen autologous constructs were then implanted in bilateral full-thickness, full-length defects in the central third of rabbit patellar tendons. Increasing the number of in vitro cycles/day delivered to the ADHT constructs in culture produced no differences in stiffness or gene expression and no changes in biomechanical properties or histology 12 weeks after surgery. Compared to MSC-based repairs from a previous study that received no additional treatment in culture, ADHT crosslinking of the scaffolds actually lowered the 12-week repair stiffness. Thus, while ADHT crosslinking may initially stiffen a construct in culture, this specific treatment also appears to mask any benefits

  18. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  19. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway

    OpenAIRE

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A.; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D’Andrea, Alan D.

    2015-01-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCA...

  20. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  1. Towards a Molecular Understanding of the Fanconi Anemia Core Complex

    Directory of Open Access Journals (Sweden)

    Charlotte Hodson

    2012-01-01

    Full Text Available Fanconi Anemia (FA is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs. The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC, required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.

  2. Towards a Molecular Understanding of the Fanconi Anemia Core Complex

    Science.gov (United States)

    Hodson, Charlotte; Walden, Helen

    2012-01-01

    Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI. PMID:22675617

  3. Properties of sericin films crosslinking with dimethylolurea

    International Nuclear Information System (INIS)

    Turbiani, Franciele R.B.; Stroher, Gylles Ricardo; Tomadon Junior, Jose; Seixas, Fernanda L.; Stroher, Gylles Ricardo; Gimenes, Marcelino L.

    2011-01-01

    Sericin is a natural silk protein which is removed from silk in a process called degumming. Thus, finding a use for the extracted sericin as a bio polymer film will create added value product which will benefit both the economy and society. The films were manufactured with silk sericin, using different dimethylolurea (DMU) concentrations as cross-linking agent and glycerol as plasticizer. Sericin films produced by crosslinking method were light yellow, homogeneous, transparent and visually attractive. The average film thickness was 0.10 ± 0.02 mm. The bio films show low water solubility (up to 30% of total dry mass), good tension strength and high elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Structural transformations in silk sericin films were analyzed using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and X-ray diffraction. This resulted in aggregated β-sheet structure (peak at 1616 cm-1 in the amide I absorption) by FTIR studies and increasing the DMU concentration in film decreased the peak intensity at 2θ = 20 degree. Sericin-based film properties are dependent on components used to form film, which can used to tailor the desired film flexibility and minimize permeability of films. (author)

  4. Properties of sericin films crosslinking with dimethylolurea

    Energy Technology Data Exchange (ETDEWEB)

    Turbiani, Franciele R.B.; Stroher, Gylles Ricardo [Federal Technology University - UTFPR, Campus Apucarana, PR (Brazil); Tomadon, Junior, Jose; Seixas, Fernanda L; Stroher, Gylles Ricardo; Gimenes, Marcelino L., E-mail: francieler@utfpr.edu.br [State University of Maringa. UEM, Campus Maringa, PR (Brazil)

    2011-07-01

    Sericin is a natural silk protein which is removed from silk in a process called degumming. Thus, finding a use for the extracted sericin as a bio polymer film will create added value product which will benefit both the economy and society. The films were manufactured with silk sericin, using different dimethylolurea (DMU) concentrations as cross-linking agent and glycerol as plasticizer. Sericin films produced by crosslinking method were light yellow, homogeneous, transparent and visually attractive. The average film thickness was 0.10 {+-} 0.02 mm. The bio films show low water solubility (up to 30% of total dry mass), good tension strength and high elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Structural transformations in silk sericin films were analyzed using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and X-ray diffraction. This resulted in aggregated {beta}-sheet structure (peak at 1616 cm-1 in the amide I absorption) by FTIR studies and increasing the DMU concentration in film decreased the peak intensity at 2{theta} = 20 degree. Sericin-based film properties are dependent on components used to form film, which can used to tailor the desired film flexibility and minimize permeability of films. (author)

  5. Regulation of homologous recombination in eukaryotes

    OpenAIRE

    Heyer, Wolf-Dietrich; Ehmsen, Kirk T.; Liu, Jie

    2010-01-01

    Homologous recombination is required for accurate chromosome segregation during the first meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage including DNA double-stranded breaks, interstrand crosslinks, and DNA gaps. In addition, recombination and replication are inextricably linked, as recombination recovers stalled and broken replication forks enabling the evolution of larger genomes/replicons. Defects in recombination lead to genomic instability and ...

  6. The Simple Chordate Ciona intestinalis Has a Reduced Complement of Genes Associated with Fanconi Anemia

    OpenAIRE

    Stanley, Edward C.; Azzinaro, Paul A.; Vierra, David A.; Howlett, Niall G.; Irvine, Steven Q.

    2016-01-01

    Fanconi anemia (FA) is a human genetic disease characterized by congenital defects, bone marrow failure, and increased cancer risk. FA is associated with mutation in one of 24 genes. The protein products of these genes function cooperatively in the FA pathway to orchestrate the repair of DNA interstrand cross-links. Few model organisms exist for the study of FA. Seeking a model organism with a simpler version of the FA pathway, we searched the genome of the simple chordate Ciona intestinalis ...

  7. SnapShot: Fanconi anemia and associated proteins.

    Science.gov (United States)

    Wang, Anderson T; Smogorzewska, Agata

    2015-01-15

    Fanconi anemia is a genetic disorder resulting from biallelic mutations in one of the 17 FANC genes. It is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. The underlying cause is genomic instability resulting from the deficiency in replication-dependent DNA interstrand crosslink repair pathway commonly referred to as the Fanconi anemia-BRCA pathway. This SnapShot presents the key factors involved. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Rolle der Helikase RTEL1 in DNA-Reparatur, Rekombination sowie in der Telomerstabilität in Arabidopsis thaliana

    OpenAIRE

    Recker, Julia

    2014-01-01

    In Arabidopsis thaliana, the DNA helicase RTEL1 plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination and is involved in interstrand and intrastrand DNA cross-link repair. RTEL1 contributes to telomere homeostasis. The concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations.

  9. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  10. Cross-linked polyelectrolyte multilayers for marine antifouling applications

    NARCIS (Netherlands)

    Zhu, X.; Janczewski, D.; Lee, S.S.C.; Teo, S.L-M.; Vancso, Gyula J.

    2013-01-01

    A polyionic multilayer film was fabricated by layer-by-layer (LbL) sequential deposition followed by cross-linking under mild conditions on a substrate surface to inhibit marine fouling. A novel polyanion, featuring methyl ester groups for an easy cross-linking was used as a generic solution for

  11. Characterization of Aldehyde Crosslinked Kenaf Regenerated Cellulose Film

    Directory of Open Access Journals (Sweden)

    Hatika Kaco

    2015-08-01

    Full Text Available Regenerated cellulose film with better mechanical properties was successfully produced by introducing aldehyde crosslinker during the regeneration process. The cellulose source material was derived from kenaf core powder and dissolved in LiOH/urea solvent at −13 °C to form a cellulose solution. The cellulose solution was cast and coagulated in a crosslinker bath at different percentages of glutaraldehyde (GA and glyoxal (GX to form a regenerated cellulose film. According to Fourier transform infrared spectroscopy (FTIR spectra, the hydroxyl group of the cellulose was reduced, reducing the percentage of swelling as the percentage of crosslinker was increased. X-ray diffraction (XRD patterns showed that the crystallinity index of the crosslinked film was decreased. The pore size of the films decreased as the percentage of crosslinker was increased, resulting in decreased film transparency. The pore volume and percentage of swelling in water of the films also increased with decreases in the pore size as the percentage of crosslinker was increased. The tensile strengths of the GA- and GX-crosslinked films increased by 20 and 15% with the addition of 20% of each crosslinker, respectively.

  12. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  13. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application

    International Nuclear Information System (INIS)

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-01-01

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d ) and the residue left after thermogravimetric analysis was about 16  ±  5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young’s modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application. (paper)

  14. Nuclear magnetic resonance structure investigations on crosslinked polyesters

    International Nuclear Information System (INIS)

    Grobelny, J.

    1999-01-01

    Styrene-crosslinked mixed polyesters derived from maleic anhydride, 2,2-di(4-hydroxypropoxyphenyl)propane, oligo(propylene oxide) and 1,2-propylene glycol were investigated by high-resolution solid-state 13 C NMR spectroscopy. The structural modifications accompanying crosslinking were characterized in terms of spin-lattice relaxation times as a function of unsaturated polyester composition. Copolymerization and crosslinking effects were individually evaluated and the latter effect was related to variations in crosslinking density associated with the chemical structure of the unsaturated prepolymer. As the crosslinking effect is suppressed, the mechanical properties undergo expected changes, e.g., impact strength is increased and modulus of elasticity in tension is decreased. (author)

  15. Recent advances in corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Gitansha Shreyas Sachdev

    2017-01-01

    Full Text Available Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications.

  16. Carboxymethylcellulose hydrogel crosslinked with citric acid for biomedical application

    International Nuclear Information System (INIS)

    Capanema, Nadia S.V.; Mansur, Alexandra A.P.; Mansur, Herman S.; Universidade Federal de Minas Gerais

    2016-01-01

    The carboxymethylcellulose (CMCel) has been extensively used in order application as flexible polymer membrane. Biopolymers crosslinked have been studied to optimize their performance in biomedical applications. In this work, CMCel films with a degree of substitution (DS = 0.77) were prepared by evaporation of solvent and crosslinked with different concentrations of citric acid (CA). The synthesized CMCel was characterized by Infrared Spectroscopy by Fourier Transform X-ray spectroscopy (FTIR), and morphology assessed by scanning electron microscopy (SEM). Morphological analysis performed using the SEM indicated the crosslinked CMCel and not crosslinked with a very smooth and uniform appearance. The FTIR results indicated the modification of existing bands and appearance of a new band 1715 cm"-"1 suggesting that there has been change in the structure of the crosslinked CMCel. (author)

  17. Radiation-induced crosslinking of poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    1977-07-01

    The factors influencing radiation-induced crosslinking efficiency of poly(vinylidene fluoride) (PVdF) have been studied. Results of the basic research on irradiation conditions (dose rate and atmosphere) and initial physical properties of PVdF (structure of molecular chain and molecular mobility of chain segment) showed that crosslinking efficiency is raised in irradiation at high temperature above 50 0 C under vacuum in the presence of an absorbent for the evolved hydrogen fluoride. The crosslinking reaction is also accelerated with irregular molecular structure such as head-to-head bond in main chain. High crosslinking efficiency is obtained by addition of a polyfunctional monomer having good solubility with PVdF. Mechanical properties of PVdF, the strength at high temperature near the melting point in particular, are improved by crosslinking in the presence of a polyfunctional monomer. (auth.)

  18. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon x irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 0 C/15 min) given prior to radiation dose not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 0 C. The DNA-protein crosslinks produced y 50-Gy x ray alone are removed after 2 hr at 37 0 C. However, if hyperthermia (43 0 C/15 min) is given prior to 100-Gy x ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding

  19. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  20. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  1. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  2. Omphalocele repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100033.htm Omphalocele repair - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Omphalocele is an abdominal wall defect at the base ...

  3. Gamma irradiation Effect on the Non-Crosslinked and Crosslinked Poly(vinyl alcohol) Films

    International Nuclear Information System (INIS)

    El-Sawy, N.M.; El-Arnaouty, M.B.; Abdel Ghaffar, A.M.

    2008-01-01

    The non-crosslinked and crosslinked poly(vinyl alcohol) (PVA) films were prepared by the cast method then irradiated with gamma rays for various doses up to 300 kGy. The structure and characterization of PVA were determined by using Infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV). Swelling behaviour was also investigated. Mechanical properties have been examined with respect to the absorbed dose. The color of the films changed to yellowish-white after irradiation. Additional changes were observed using FTIR analysis on the degradation products demonstrated that the radiolysis of PVA was initiated by liberation of H and OH groups leading to scission of the main chains and formation of carbonyl and double bond groups. Thermogravimetric analysis (TGA) was performed

  4. Radiation crosslinked materials with antithrombotical properties

    International Nuclear Information System (INIS)

    Schunk, W.; Kloecking, H.P.; Merkmann, G.; Giessmann, C.; Knoll, H.; Borgmann, S.

    1991-01-01

    Described is a flexible drainage tube of good tissue tolerance developed for the postoperative continuous withdrawal of secretions from wounds which - owing to the addition of an active ingredient in sustained release dosage form (pentosanpolysulfate stored in the molecular sieve) - inhibits or considerably delays clogging as a result of coagulation processes. The tube is made of a mixture of natural or silicone rubbers and 4% coagulation inhibitor that is extruded onto a metal mandrel, crosslinked using electron rays (100 kGy, 20 s) and simultaneously sterilised. The mandrel is subsequently removed. In vitro trials (using blood plasm for open flow systems and blood for circulatory flow systems) provided evidence in confirmation of a continuous regular release of active ingredient that inhibited coagulation processes over prolonged periods of time. (orig.) [de

  5. Corneal collagen crosslinking and pigment dispersion syndrome.

    Science.gov (United States)

    LaHood, Benjamin R; Moore, Sacha

    2017-03-01

    We describe the case of a keratoconus patient with pigment dispersion syndrome (PDS) who was treated for progressive corneal ectasia with corneal collagen crosslinking (CXL). Pigment dispersion syndrome has been shown to have associated morphologic changes of the corneal endothelium. Corneal CXL has the potential to cause toxicity to the corneal endothelium, and adjacent pigment might increase the likelihood of damage. In this case, the presence of PDS had no detrimental effect on the outcome of treatment, and no complications were observed at 12 months follow-up, indicating that it may be safe to perform corneal CXL in the setting of PDS. This is an important observation as the number of indications for corneal CXL grows. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices : Effects of crosslink density, heparin immobilization, and bFGF loading

    NARCIS (Netherlands)

    van Wachem, PB; Plantinga, JA; Wissink, MJB; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J; van Luyn, MJA

    2001-01-01

    Collagen matrices, crosslinked using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (E) and N-hydroxvsuccinimide (N), were previously developed as a substrate for endothelial cell seeding of small-diameter vascular grafts. In the present study, the biocompatibility of various EN-crosslinked collagen

  7. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Measurement of DNA-protein crosslinks in mammalian cells without X-irradiation

    International Nuclear Information System (INIS)

    Gantt, R.; Stephens, E.V.; Davis, S.R.

    1985-01-01

    To study the mechanisms of formation and repair of DNA-protein crosslinks in mammalian cells, the best general method to assay these lesions is the Kohn membrane alkaline elution procedure. Use of this sensitive technique requires the introduction of random strand breaks in the DNA by X-irradiation to reduce the very high molecular weight so that it elutes off the filter at an appropriate rate. This report describes an alternative method for fragmenting the DNA in the absence of X-irradiation equipment. Convenient reproducible elution rates of DNA from various mouse and human cells in culture without X-irradiation result from elution through polyvinyl chloride filters with 75 mM sodium hydroxide (0.33 ml/min) instead of the standard 20 mM EDTA-tetrapropylammonium hydroxide, pH 12.2 (0.03 to 0.04 ml/min). Dose-dependent retardation of the DNA elution was observed over the range 0 to 30 microM trans-platinum(II)diamminedichloride, and proteinase K treatment during cell lysis restored the elution rate to that of the untreated control cell DNA. In the absence of X-irradiation, this elution method measures DNA-protein crosslinks with higher sensitivity and equivalent reproducibility as the air-burst procedure

  9. The Modification of PVDF Membrane via Crosslinking with Chitosan and Glutaraldehyde as the Crosslinking Agent

    OpenAIRE

    Silitonga, Romaya Sitha; Widiastuti, Nurul; Jaafar, Juhana; Ismail, Ahmad Fauzi; Abidin, Muhammad Nidzhom Zainol; Azelee, Ihsan Wan; Naidu, Mahesan

    2018-01-01

    Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed...

  10. Characterization of the degree of cross-linking in radiation cross-linked low and high density polyethylenes

    International Nuclear Information System (INIS)

    Posselt, K.; Haedrich, W.

    1986-01-01

    In practice the cross-linking of irradiated polyethylene is mostly characterized by solubility and thermomechanical data. The irradiation of samples of a LDPE and a HDPE yields very different gel-dose curves. But for a quantitative comparison the complicated connection between the gel values and the corresponding densities of cross-links, especially the dependence on the initial molecular size distribution, has to take into consideration. The analysis of the solubility data according to the statistical theory of cross-linking developed by Inokuti and Saito shows that at equal doses in both investigated PE types in spite of the different gel values nearly the same densities of cross-links are present. That result is confirmed by the densities of cross-links determined from stress-strain measurements at 423 K. (author)

  11. Moisture curable toughened poly(lactide utilizing vinyltrimethoxysilane based crosslinks

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-10-01

    Full Text Available Vinyltrimethoxysilane (VTMOS was grafted on to the backbone of poly(lactide (PLA through a free radical grafting reaction using reactive extrusion (REX processing. The methoxy groups of the silane provide the modified PLA sites for crosslinking through a moisture induced pathway. VTMOS grafting efficiencies of up to 90% were obtained. The newly created methoxy functionality of the modified PLA readily undergoes hydrolysis and condensation forming siloxane crosslinks in the material. Crosslinking with VTMOS exhibited improved modulus, strength, and impact toughness while showing a decrease in ductility. Incorporating silanol-terminated poly(dimethylsiloxane (OH-PDMS resulted in the formation of longer siloxane crosslinks. These samples showed an increase in modulus and impact toughness due to the crosslinking, while the longer siloxane linkages resulted in improved ductility and tensile toughness. This is unusual for polymers toughened through crosslinking reactions. Scanning Electron Microscopy (SEM of the fractured surfaces showed the presence of these elongated siloxane crosslinks. This enhanced ability for the modified PLA to deform and absorb energy results in the increase in both impact and tensile toughness.

  12. Development of new materials by utilizing radiation crosslinking

    International Nuclear Information System (INIS)

    Ueno, Keiji; Uda, Yujiro; Suzuki, Shizuo

    1989-01-01

    About 30 years have elapsed since the cables by electron beam crosslinking were developed as the first industrial utilization of radiation in Japan. At present about 200 electron beam accelerators are used industrially in Japan, and cable industry ranks at the top, followed by foaming polyethylene and curing, and the preliminary vulcanization of tires. The effect of these irradiations is the reforming of polymers by radiation crosslinking. In cables, the heat resistance and chemical resistance of insulators are improved by radiation crosslinking. By applying radiation crosslinking to polyurethane elastomer, its weakest point, waterproof property, was improved. Moreover, by using this crosslinked polyurethane elastomer for cable coating, the reliability of the sensor cables for brake system was able to be remarkably improved. As another new application of radiation crosslinking process, the improvement of the heat resistance of engineering plasties was examined. The structure of radiation crosslinked urethane elastomer cables, their endurance in hot water and oil, and the life, and the characteristics of sensor cables are reported. Multi-functional monomers, the molecular structure, and the various characteristics of engineering plastics are described. (K.I.)

  13. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  14. Mutation induction in repair-deficient strains of Drosophila

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.

    1980-01-01

    Experimental evidence indicates a polygenic control of mutagenesis in Drosophila melanogaster. In oocytes chromosome aberrations detected as half-translocations or dominant lethals depend on a repair system which in a number of genetically nonrelated strains shows different repair capacities. Sister chromatid exchanges are easily studied as ring chromosome losses. They develop through a genotype controlled mechanism from, premutational lesions. Stocks with particular pairs of third chromosomes were discovered in which increased sensitivity of larvae to the toxic effects of a monofunctional alkylating agent correlates with high frequencies of x-ray induced SCE's. Sex-linked mutagen-sensitive mutants could be shown to control mutation fixation: pronounced maternal effects were found when sperm carrying particular types of premutational lesions were introduced into different types of mutant oocytes. The mutant mus(1)101D1 was found to be unable to process lesions induced by the crosslinking agent nitrogen mustard into point mutations. Alkylation damage leads to increased point mutation frequencies in the excision repair deficient mutant mei-9L1, but to reduced frequencies in the post-replication repair deficient mutant mei-41D5. It became clear that the study of maternal effects on mutagenized sperm represents an efficient tool to analyze the gentic control of mutagenesis in the eukaryotic genome of Drosophila melanogaster

  15. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  16. Crosslinking of commercial polyethylenes by 10 MeV electrons

    International Nuclear Information System (INIS)

    Singh, A.; Lopata, V.J.; Kremers, W.; Sze, Yu-keung

    1995-08-01

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  17. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    Science.gov (United States)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  18. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  19. Radiation degradation and crosslinking of polytetrafluoroethylene and its application

    International Nuclear Information System (INIS)

    Wu Guozhong; Wang Mouhua; Tang Zhongfeng

    2009-01-01

    Polytetrafluoroethylene (PTFE) is a high-performance engineering plastic and known as a typical material of radiation degradation. PTFE can be degraded by radiation under various conditions and PTFE micro-powder is usually fabricated by a combination of radiation and milling. PTFE can also be crosslinked by irradiation in the melt state (330∼340 degree C). The materials can be applied as a special additive due to its excellent wear resistance. Crosslinked PTFE may also be applied in lithography and fuel cell membrane in the future. In this paper, history and application of PTFE degradation and crosslinking products are reviewed. (authors)

  20. Production of radiation crosslinked polymeric compositions using diacetylenes

    International Nuclear Information System (INIS)

    Patel, G.N.

    1979-01-01

    Crosslinked polymeric compositions, useful as electrical insulators, heat shrinkable packaging, and lightweight foam plastics, are described. The crosslinked polymeric compositions are produced by admixing a diacetylene monomer, oligomer, polymer or mixture thereof, wherein the monomer has the formula, RNHCO-O-CH 2 -C==C-C==C-CH- 2 -O-OCNHR' in which R and R' are the same or different and are alkyl containing 1 to 20 carbon atoms, with a thermoplastic crosslinkable polymer and then subjecting the resulting mixture to actinic radiation

  1. DNA single-strand breaks during repair of uv damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Kohn, K.W.; Kann, H.E. Jr.

    1976-01-01

    The method of DNA alkaline elution was applied to a study of the formation and resealing of DNA single-strand breaks after irradiation of human fibroblasts with ultraviolet light (UV). The general features of the results were consistent with current concepts of DNA excision repair, in that breaks appeared rapidly after uv, and resealed slowly in normal fibroblasts, whereas breaks did not appear in those cells of patients with xeroderma pigmentosum (XP) that are known to have defects in DNA repair synthesis. The appearance of breaks required a short post-uv incubation, consistent with the expected action of an endonuclease. Cells of the variant form of XP characterized by normal DNA repair synthesis exhibited normal production of breaks after uv, but were slower than normal cells in resealing these breaks. This difference was enhanced by caffeine. A model is proposed to relate this finding with a previously described defect in post-replication repair in these XP variant cells. DNA crosslinking appears to cause an underestimate in the measurement of DNA breakage after uv

  2. A Molecular Dynamics Study of Crosslinked Phthalonitrile Polymers: The Effect of Crosslink Density on Thermomechanical and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Janel Chua

    2018-01-01

    Full Text Available In this work, molecular dynamics (MD and molecular mechanics (MM simulations are used to study well-equilibrated models of 4,4′-bis(3,4-dicyanophenoxybiphenyl (BPh–1,3-bis(3-aminophenoxybenzene (m-APB phthalonitrile (PN system with a range of crosslink densities. A cross-linking technique is introduced to build a series of systems with different crosslink densities; several key properties of this material, including thermal expansion, mechanical properties and dielectric properties are studied and compared with experimental results. It is found that the coefficient of linear thermal expansion predicted by the model is in good agreement with experimental results and indicative of the good thermal stability of the PN polymeric system. The simulation also shows that this polymer has excellent mechanical property, whose strength increases with increasing crosslink density. Lastly and most importantly, the calculated dielectric constant—which shows that this polymer is an excellent insulating material—indicates that there is an inverse relation between cross-linking density and dielectric constant. The trend gave rise to an empirical quadratic function which can be used to predict the limits of attainable dielectric constant for highly crosslinked polymer systems. The current computational work provides strong evidence that this polymer is a promising material for aerospace applications and offers guidance for experimental studies of the effect of cross-linking density on the thermal, mechanical and dielectric properties of the material.

  3. Fanconi anemia: a disorder defective in the DNA damage response.

    Science.gov (United States)

    Kitao, Hiroyuki; Takata, Minoru

    2011-04-01

    Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin-phosphorylation network called the "FA pathway" and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.

  4. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  5. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  6. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1984-01-01

    Enhanced crosslinking of synthetic polymer simultaneous with grafting and homopolymerization processes have been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. Extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. New method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  7. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1986-01-01

    Enhanced crosslinking of synthetic polymer simultaneously with grafting and homopolymerization processes has been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. The extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. A new method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  8. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical healing results.

  9. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  10. Riboflavin for corneal cross-linking.

    Science.gov (United States)

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Radiation induced crosslinking of cellulose ethers

    International Nuclear Information System (INIS)

    Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T.

    2002-01-01

    The effects of high-energy radiation on four ethers of cellulose: carboxymethyl (CMC); hydroxypropyl (HPC), hydroxyethyl (HEC) and methylcellulose (MC) were investigated. Polymers are irradiated in solid state and in aqueous solutions at various concentrations. Degree of substitution (DS) of the derivatives, the concentration of their aqueous solutions and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid state and in diluted aqueous solutions resulted in their degradation. However, it was found that for concentrated solutions gel formation occurred. Paste-like form of the initial material, when water plasticizes the bulk of polymer as well as the high dose rate, what prevents oxygen penetration of the polymer during irradiation, have been found favourable for hydrogel formation. Up to 95% of gel fraction was obtained from solutions of CMC with concentration over 50% irradiated by γ-rays or electron beam. It was pointed out that the ability to the formation of the three-dimensional network is related to the DS of anhydroglucose units and a type of chemical group introduced to main chain of cellulose. Produced hydrogels swelled markedly in water. Despite of the crosslinked structure they underwent degradation by the action of cellulase enzyme or microorganisms from compost, and can be included into the group of biodegradable materials. (author)

  12. Crosslinked polyimide electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D. [Case Western Reserve University, Department of Physics, Cleveland, Ohio 44106-7079 (United States); Beuhler, A.J.; Wargowski, D.A. [Amoco Research Center, Amoco Chemical Co., Naperville, Illinois 60566 (United States); Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Laboratories, Division 1811, Albuquerque, New Mexico 87185-1407 (United States); Ermer, S. [Lockheed Research and Development Division, Palo Alto, California 94304 (United States)

    1995-11-15

    We report studies of the optical and electro-optic properties of guest--host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest--host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile) (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest--host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Covalently crosslinked diels-alder polymer networks.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  14. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate... shall be determined using size exclusion chromatography or an equivalent method. When conducting the...

  15. Syntheses of crosslinked latex nanoparticles using differential microemulsion polymerization

    Science.gov (United States)

    Hassmoro, N. F.; Rusop, M.; Abdullah, S.

    2013-06-01

    The differential microemulsion polymerization was used to synthesize latex nanoparticles. In this paper, 1, 3-butylene glycol dimethacrylate (1, 3-BGDMA) was used as a crosslinker respectively 1-5 weight% of monomer total. Butyl acrylate (BA), butyl methacrylate (BMA), and methacrylic acid (MAA) was used as the monomer. The thin film of latex nanoparticles were prepared by using spin coating method and have been dried at 100°C for 5 minutes. The amount of the crosslinker added in the polymerization was optimized and we found that the particle sizes fall in the range of 30-60 nm. The structural morphology of the uncrosslinked latex represented the most homogeneous image compared to the crosslinked latex. The effect of the amount of crosslinker on the particle sizes investigated by the Zeta-sizer Nano series while Atomic Force microscopy (AFM) was used to study the structural properties of latex nanoparticles.

  16. Syntheses of crosslinked latex nanoparticles using differential microemulsion polymerization

    International Nuclear Information System (INIS)

    Hassmoro, N F; Abdullah, S; Rusop, M

    2013-01-01

    The differential microemulsion polymerization was used to synthesize latex nanoparticles. In this paper, 1, 3-butylene glycol dimethacrylate (1, 3-BGDMA) was used as a crosslinker respectively 1–5 weight% of monomer total. Butyl acrylate (BA), butyl methacrylate (BMA), and methacrylic acid (MAA) was used as the monomer. The thin film of latex nanoparticles were prepared by using spin coating method and have been dried at 100°C for 5 minutes. The amount of the crosslinker added in the polymerization was optimized and we found that the particle sizes fall in the range of 30–60 nm. The structural morphology of the uncrosslinked latex represented the most homogeneous image compared to the crosslinked latex. The effect of the amount of crosslinker on the particle sizes investigated by the Zeta-sizer Nano series while Atomic Force microscopy (AFM) was used to study the structural properties of latex nanoparticles.

  17. Photoreactivities and thermal properties of psoralen cross-links

    International Nuclear Information System (INIS)

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-01-01

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link

  18. Shaped articles of cross-linked fluorocarbon polymers

    International Nuclear Information System (INIS)

    Gotcher, A.J.; Germeraad, P.B.

    1981-01-01

    A process is described which comprises (1) contacting (a) a shaped article of a polymeric composition wherein the polymer is a fluorocarbon polymer having a melting point of at least 200 0 C, the article having a tensile strength of at least 3,000 psi, with (b) a fluid composition comprising a cross-linking agent, until the article contains at least 2.5% by weight of the cross-linking agent; and (2) irradiating the shaped article with ionising radiation to a dosage not exceeding 50 Mrads under conditions such that the composition is cross-linked sufficiently to impart thereto an M 100 value of at least 300 psi, while maintaining a tensile strength of at least 3000 psi, the shaped article containing a specified proportion of the cross-linking agent. (author)

  19. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  20. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Olde Damink, L.H.H.; Olde damink, L.H.H.; Dijkstra, Pieter J.; Feijen, Jan; Nieuwenhuis, P.

    1994-01-01

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanatecrcrosslinked DSC (HDSC)

  1. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Science.gov (United States)

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Multiple molecular forms of pyridinoline crosslinks generated by the ...

    African Journals Online (AJOL)

    molecular forms of pyridinoline crosslinks from insoluble bone type I collagen, and we studied ... resorbed in a dynamic process during ... proteins at 4 C for 24H in 4 mol/L .... fragments was merely due to interactions ... completely elucidated.

  3. The Effect of Polymer Molecular Weight on Citrate Crosslinked ...

    African Journals Online (AJOL)

    Erah

    Purpose: To develop citrate crosslinked chitosan films using chitosan of different molecular weights. (MW) in .... left to stand until trapped air bubbles ... blotted out carefully with filter paper from the .... potential as biodegradable stent coatings. J.

  4. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Dizdaroglu, M.; Gajewski, E.; Simic, M.G.

    1984-01-01

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  5. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  6. Highly efficient perovskite solar cells with crosslinked PCBM interlayers

    KAUST Repository

    Qiu, W.

    2017-01-09

    Commercially available phenyl-C-butyric acid methyl ester (PCBM) is crosslinked with 1,6-diazidohexane (DAZH), resulting in films resistant to common solvents used in perovskite solar cell processing. By using crosslinked PCBM as an interlayer and (HC(NH))(CHNH)PbIBr as the active layer, we achieve small area devices and modules with a maximum steady-state power conversion efficiency of 18.1% and 14.9%, respectively.

  7. Donor cross-linking for keratoplasty: a laboratory evaluation.

    Science.gov (United States)

    Mukherjee, Achyut; Hayes, Sally; Aslanides, Ioannis; Lanchares, Elena; Meek, Keith M

    2015-12-01

    This laboratory-based investigation compares the topographic outcomes of conventional penetrating keratoplasty with that of a novel procedure in which donor corneas are cross-linked prior to keratoplasty. Penetrating keratoplasty procedures with continuous running sutures were carried out in a porcine whole globe model. Sixty eyes were randomly paired as 'donor' and 'host' tissue before being assigned to one of two groups. In the cross-linked group, donor corneas underwent riboflavin/UVA cross-linking prior to being trephined and sutured to untreated hosts. In the conventional keratoplasty group, both host and donor corneas remained untreated prior to keratoplasty. Topographic and corneal wavefront measurements were performed following surgery, and technical aspects of the procedure evaluated. Mean keratometric astigmatism was significantly lower in the cross-linked donor group at 3.67D (SD 1.8 D), vs. 8.43 D (SD 2.4 D) in the conventional keratoplasty group (p < 0.005). Mean wavefront astigmatism was also significantly reduced in the cross-linked donor group 4.71 D (SD 2.1) vs. 8.29D (SD 3.6) in the conventional keratoplasty group (p < 0.005). Mean RMS higher order aberration was significantly lower in the cross-linked donor group at 1.79 um (SD 0.98), vs. 3.05 um (SD 1.9) in the conventional keratoplasty group (P = 0.02). Qualitative analysis revealed less tissue distortion at the graft-host junction in the cross-linked group. Cross-linking of donor corneas prior to keratoplasty reduces intraoperative induced astigmatism and aberrations in an animal model. Further studies are indicated to evaluate the implications of this potential modification of keratoplasty surgery.

  8. Radiation crosslinking of polymer materials and its functional properties

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2006-01-01

    It was found out that radiation crosslinking of biodegradable polymer such as poly (butylene succinate, PBS) and poly(ε-caprolactone, PCL) could be achieved by radiation in the presence of small amount of trimethallyl isocyanurate (TMAIC) or 1% triallyl isocyanurate (TAIC). Such modification is very effective to improve heat resistance for PBS and PCL. Poly (lactic acid, PLA) undergoes crosslinking effectively with 3% TAIC by radiation. Outstanding feature of these polymers is their biodegradability even after crosslinking. Radiation crosslinking of polysaccharide derivatives such as carboxymethyl-cellulose (CMC) is also achieved in aqueous solution at high concentration (paste-like state). The crosslinking behavior was largely affected by the degree of substitution (DS) and polymer concentration. After removal of water the dry CMC gel is used as water absorbent material. This dry gel is the most effective for removal of large amounts of water from organic wastes, resulting in the acceleration of their fermentation. Measurement of swelling ratio of the dry CMC gel in 0.9% NaCl aqueous solution was carried out to expand application fields for this material. Radiation crosslinked poly (vinyl alcohol) hydrogel was successfully commercialized from July 2004 as wound dressing for accelerated healing. Furthermore, this material was also used as gel protector to prevent shore sore and was further commercialized. (author)

  9. Composite Repair System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the...

  10. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  11. Vesicovaginal Fistula Repair During Pregnancy

    African Journals Online (AJOL)

    Vesicovaginal Fistula Repair During Pregnancy: A Case Report ... Abstract. We report a repair of Vesicovaginal fistula during pregnancy that was aimed at preventing another spontaneous ... practices that encourage teenage marriage and girl.

  12. Ship Repair Workflow Cost Model

    National Research Council Canada - National Science Library

    McDevitt, Mike

    2003-01-01

    The effects of intermittent work patterns and funding on the costs of ship repair and maintenance were modeled for the San Diego region in 2002 for Supervisor of Shipbuilding and Repair (SUPSHIP) San Diego...

  13. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  14. Social repair of relationships

    DEFF Research Database (Denmark)

    Fahnøe, Kristian Relsted

    2017-01-01

    organisations, friends and family, and communities. These social relations are viewed as the foundation of citizenship as experienced and practised. Focusing on how two dimensions of lived citizenship, namely rights-responsibilities and belonging, are affected by the social repairs, the chapter shows how...

  15. Comprehensive Small Engine Repair.

    Science.gov (United States)

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  16. Patent urachus repair - slideshow

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Patent urachus repair - series—Normal anatomy URL of this ...

  17. Patent urachus repair

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Patent urachus repair URL of this page: //medlineplus.gov/ ...

  18. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  19. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  20. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  1. The spectra character of photodegraded the pyridinoline cross-links by Hypocrellin B

    International Nuclear Information System (INIS)

    Zhang Jucheng; Chen Rui; Liu Wei; Chen Zhuo; Shu Lidan; Liu Yingji

    2011-01-01

    Pyridinoline cross-links is one of the cross-link formation in collagen which in cell matrix, many research shown that this cross-link cause the fibrosis. Hypocrellin B (HB) is one of the nature photosensitizers, this work investigated the pyridinoline cross-link in collagen was photodegraded by HB. The result shown HB can degrade the pyridinoline cross-link with photo. This is to say, HB may be use as the photodynamic reagent to study the fibrosis.

  2. Cleft lip and palate repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002979.htm Cleft lip and palate repair To use the sharing features on this ... Cheiloplasty; Cleft rhinoplasty; Palatoplasty; Tip rhinoplasty Patient Instructions Cleft lip and palate repair - discharge Images Cleft lip repair - series References ...

  3. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  4. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  5. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    International Nuclear Information System (INIS)

    Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Henriques, C.M.R.; Silva, J.C.

    2013-01-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds

  6. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, S.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Rodrigues, G.; Martins, G.G. [Centro de Biologia Ambiental / Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, FCUL, 1749-016 Campo Grande, Lisboa (Portugal); Henriques, C.M.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Silva, J.C., E-mail: jcs@fct.unl.pt [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds.

  7. Properties of crosslinked ultra-high-molecular-weight polyethylene.

    Science.gov (United States)

    Lewis, G

    2001-02-01

    Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.

  8. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  9. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  10. Development of new cross-linked polyethylene for atomic energy

    International Nuclear Information System (INIS)

    Fujimura, Shun-ichi; Ohya, Shingo; Kubo, Masaji; Tsutsumi, Yukihiro; Seguchi, Tadao.

    1988-01-01

    Cross-linked polyethylene is the material which is used most as the insulating material for electric wires and cables, but for the cables for nuclear power stations and the wiring materials within machinery and equipment, the cross-linked polyethylene which is hard to burn by mixing burning-retarding agent is frequently used as the disaster-preventing countermeasures. As the burning-retarding agent for cross-linked polyethylene, bromine system agent that gives high burning retardation, chlorine system agent that can prevent melting and dripping at the time of burning and so on have been used so as to meet the objective. However by the addition of burning-retarding agents, the electrical and mechanical characteristics of cross-linked polyethylene lower, therefore consideration must be given to the use. In this paper, the results of the examination on the application of condensed acenaphthylene bromide as a new burning-retarding agent to cross-linked polyethylene are reported. White lead was effective for catching HBr. It was confirmed that more than 30 parts of this agent ensured burning retardation. By mixing this agent, the tensile strength increased, but the elongation lowered. It was found that the good radiation resistance was obtained by adding this agent. (K.I.)

  11. Radiation cross-linked polymers: Recent developments and new applications

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2005-01-01

    The purpose of the present paper is to review the innovative and recent applications of radiation cross-linking of polymers that reinforces their dimensional stability in chemically aggressive and high temperature conditions. Radiation cross-linking can be applied to a great number of plastics: thermoplastics, elastomers and thermoplastic elastomers (TPE). Some of them can cross-link on their own, some others need to be formulated with a cross-linking agent (promoter) or to be modified during their polymerization. Some results of chemical and thermomechanical characterizations of radiation cross-linked plastics based on engineering polymers will be described, and their advantages will be emphasized in relation with their applications in various sectors: pipes and cables, packaging, automotive, electrical engineering and electronics, including connectors, surface mounted devices, integrated circuits, 3D-MID technology, etc. The paper will conclude with a short review of the industrial irradiation facilities (EB facilities and gamma plants) adapted to the treatment of such various products

  12. Sorption characteristics of technetium on crosslinked chitosan from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    Sorption of technetium on crosslinked chitosan was studied using batch techniques in static arrangement of experiment under aerobic conditions at laboratory temperature. The adsorption of technetium was rapid and the percentage of the technetium sorption was > 98 %. In the pH range of 3-11 adsorption of technetium on crosslinked chitosan was > 98 %. The competition effect of Fe 3+ towards TcO 4 - sorption on crosslinked chitosan was stronger than the competition effect of other observed cations. The selectivity of crosslinked chitosan for these cations in solution with the concentration above 1·10 -3 mol·dm -3 was in the order Fe 3+ > Ca 2+ > Na + > Fe 2+ . The competition effect of (ClO 4 ) - towards TcO 4 - sorption was stronger than the competition effect of (SO 4 ) 2 - ions. From these results it can be expected that crosslinked chitosan could be a suitable sorbent for the immobilization of technetium in the liquid radioactive waste. (authors)

  13. Handbook of Equipment Repair.

    Science.gov (United States)

    1981-05-14

    state of leapin- fn’rw.rd. Tn recent years, many mechanical repair workers often write and ask us to reprint the book. In our consideration, however...ast 4iron 1. .-eat _--OSIS-RTS 5.5 . . 4-5 t4- cast -3.01 -6 ~.0 ’ ɘ.᝱ 5,,:e j?24 2 * 10- 5 aron C l 50 S lcon : Ielt rSSIS-RQTS-s;.4 u a 2.47 5at- .0

  14. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-01-01

    Full Text Available Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL and continuous light accelerated corneal collagen crosslinking (cl-ACXL with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA with 8 minutes (1 sec. on/1 sec. off of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA, corneal topography and aberrometry (CSO EyeTop, Florence, Italy, corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany, endothelial cells count (I-Conan Non Co Robot, and in vivo scanning laser confocal microscopy (Heidelberg, Germany at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment.

  15. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study.

    Directory of Open Access Journals (Sweden)

    Firouzeh Sabri

    Full Text Available BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA coated with: poly-L-lysine, basement membrane extract (BME, and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1 untreated PCSA surfaces do not support attachment and growth of nerve cells, 2 a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3 three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4 laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration.

  16. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages.

    Science.gov (United States)

    Garbati, Michael R; Hays, Laura E; Rathbun, R Keaney; Jillette, Nathaniel; Chin, Kathy; Al-Dhalimy, Muhsen; Agarwal, Anupriya; Newell, Amy E Hanlon; Olson, Susan B; Bagby, Grover C

    2016-03-01

    The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia. © Society for Leukocyte Biology.

  17. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Ikeda, Shigetoshi; Katoh, Etsuko; Tabata, Yoneho

    2001-01-01

    The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking

  18. Preparation and properties of silk sericin/cellulose cross-linking films

    Directory of Open Access Journals (Sweden)

    Wang Kunyan

    2017-01-01

    Full Text Available Silk sericin/cellulose cross-linked films were successfully prepared using glutaraldehyde as cross-linkinger. FTIR was applied to characterize the chemical structure of films. Cross-linked silk sericin film was found the peak intensity of FTIR for cross-linked film decreased markedly compared to pure silk sericin, which indicating cross-linking reaction has been occurred. The increasing value of swelling ratio also indicated the cross-linking has been happened. The cross-linking reaction increased the thermal decomposition temperature.

  19. Photo-crosslinkable polymers for fabrication of photonic multilayer sensors

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan C.

    2013-03-01

    We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.

  20. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  1. Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering

    Science.gov (United States)

    Frohbergh, Michael E.; Katsman, Anna; Botta, Gregory P.; Lazarovici, Phillip; Schauer, Caroline L.; Wegst, Ulrike G. K.; Lelkes, Peter I.

    2012-01-01

    -containing scaffolds had the highest rate of osteonectin mRNA expression over 2 weeks, indicating enhanced osteoinductivity of the composite scaffolds. Our results suggest that crosslinking electrospun hydroxyapatite-containing chitosan with genipin yields bio-composite scaffolds, which combine non-weight-bearing bone mechanical properties with a periosteum-like environment and facilitate the proliferation, differentiation and maturation of osteoblast-like cells. We propose that these scaffolds might be useful for the repair and regeneration of maxillofacial defects and injuries. PMID:23022346

  2. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Baratéla, Fernando José Costa; Zazuco Higa, Olga [Biotechnology Center, Institute of Energy and Nuclear Research (IPEN), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Duarte dos Passos, Esdras [PostGraduate Program in Materials for Engineering, Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Physics and Chemistry Institute (IFQ), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); High Voltage Laboratory (LAT-EFEI), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil)

    2017-04-01

    Electrospinning is a suitable method to produce scaffolds composed of nanoscale to microscale fibers, which are comparable to the extracellular matrix (ECM). Hyperbranched polyglycerol (HPGL) is a highly biocompatible polyether polyol potentially useful for the design of fibrous scaffolds mimicking the ECM architecture. However, scaffolds developed from HPGL have poor mechanical properties and morphological stability in the aqueous environments required for tissue engineering applications. This work reports the production of stable electrospun HPGL scaffolds (EHPGLS) using glycidyl methacrylate (GMA) as cross-linker to enhance the water stability and mechanical property of electrospun HPGL. The diameter and morphology of the produced EHPGLS were analyzed by scanning electron microscopy (SEM). It was observed that electrical fields in the range of 0.2 kV·cm{sup −1} to 1.0 kV·cm{sup −1} decrease the average fiber diameter of EHPGLS. The increase in porosity of EHPGLS with GMA concentration indicates the in situ formation of a heterogeneous structure resultant from the phase separation during crosslinking of HPGL by GMA. EHPGLS containing 20% (w/w) GMA concentration possessed highest tensile strength (295.4 ± 11.32 kPa), which is approximately 58 times higher than that of non-crosslinked EHPGLS (5.1 ± 2.12 kPa). The MTS cell viability results showed that the EHPGLS have no significant cytotoxicity effect on Chinese hamster ovary (CHO-K1) cells. Scanning electron microscopy (SEM) indicates that the cultured BALB/3T3 fibroblasts cells were able to keep contact each other's, thus forming a homogeneous monolayer on the internal surface of the EHPGLS. - Highlights: • A hyperbranched polyglycerol (HPGL) scaffold with elastic modulus of 295.4 ± 11.32 kPa was developed for soft tissue repair. • HPGL scaffold was prepared by electrospinning method. • The porosity of HPGL scaffolds can be tuned by selecting the degree of GMA in HPGL. • Electrospun HPGL

  3. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana.

    Science.gov (United States)

    Klemm, Tobias; Mannuß, Anja; Kobbe, Daniela; Knoll, Alexander; Trapp, Oliver; Dorn, Annika; Puchta, Holger

    2017-08-01

    Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Improving Aviation Depot Level Repairable (AVDLR) Inventory and Repair Management

    National Research Council Canada - National Science Library

    Baird, Dennis

    1997-01-01

    .... Additionally, research was conducted to document the management process for determining repair requirements at the Naval Inventory Control Point Philadelphia and how those requirements are accepted...

  5. In vivo oxidation in remelted highly cross-linked retrievals.

    Science.gov (United States)

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight

  6. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  7. Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases

    International Nuclear Information System (INIS)

    Carre, D.S.; Thomas, G.; Favre, A.

    1974-01-01

    The behavior of mixed E. coli tRNAs ''cross-linked'' by irradiation with near ultraviolet light (310-400 nm) has been compared to that of the intact molecules in two enzymatic processes. No change in the rate and extent of the repair of the pCpCpA 3' terminus of tRNA by purified E. coli tRNA nucleotidyltransferase can be detected. In contrast, complex data were obtained in the acylation reaction. They can be understood using other tRNA specific modifications as well as our present knowledge of E. coli tRNA sequences and rare base content [fr

  8. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  9. A review of crosslinked fracturing fluids prepared with produced water

    Directory of Open Access Journals (Sweden)

    Leiming Li

    2016-12-01

    Full Text Available The rapidly increasing implementations of oilfield technologies such as horizontal wells and multistage hydraulic fracturing, particularly in unconventional formations, have expanded the need for fresh water in many oilfield locations. In the meantime, it is costly for services companies and operators to properly dispose large volumes of produced water, generated annually at about 21 billion barrels in the United States alone. The high operating costs in obtaining fresh water and dealing with produced water have motivated scientists and engineers, especially in recent years, to use produced water in place of fresh water to formulate well treatment fluids. The objective of this brief review is to provide a summary of the up-to-date technologies of reusing oilfield produced water in preparations of a series of crosslinked fluids implemented mainly in hydraulic fracturing operations. The crosslinked fluids formulated with produced water include borate- and metal-crosslinked guar and derivatized guar fluids, as well as other types of crosslinked fluid systems such as crosslinked synthetic polymer fluids and crosslinked derivatized cellulose fluids. The borate-crosslinked guar fluids have been successfully formulated with produced water and used in oilfield operations with bottomhole temperatures up to about 250 °F. The produced water sources involved showed total dissolved solids (TDS up to about 115,000 mg/L and hardness up to about 11,000 mg/L. The metal-crosslinked guar fluids prepared with produced water were successfully used in wells at bottomhole temperatures up to about 250 °F, with produced water TDS up to about 300,000 mg/L and hardness up to about 44,000 mg/L. The Zr-crosslinked carboxymethyl hydroxypropyl guar (CMHPG fluids have been successfully made with produced water and implemented in operations with bottomhole temperatures at about 250+ °F, with produced water TDS up to about 280,000 mg/L and hardness up to about 91,000

  10. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  11. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    Science.gov (United States)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  12. a study of the kinetic of synthesis and crosslinking of methylol ...

    African Journals Online (AJOL)

    Nurudeen

    The reaction was carried out in ... temperature of reaction medium reduced the time of formation and subsequent crosslinking to the ... The experiment was repeated using 3, 4, 5 and 6 ... increase the rate of the crosslinking in the formation of.

  13. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    Science.gov (United States)

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  14. Permanent antistatic phthalocyanine/epoxy nanocomposites – Influence of crosslinking agent, solvent and processing temperature

    NARCIS (Netherlands)

    Yuan, M.; Brokken-Zijp, J.C.M.; With, de G.

    2010-01-01

    Cross-linked epoxy matrices containing small amounts of semi-conductive phthalocyanine (Phthalcon) nanoparticles were prepared using different crosslinking agents and processing temperatures. A starting mixture containing an optimum dispersion of these nanoparticles and with an almost equal and

  15. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  16. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.; Koros, William J.

    2010-01-01

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a

  17. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  18. Porous Cross-Linked Polyimide-Urea Networks

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  19. Scleral lens tolerance after corneal cross-linking for keratoconus

    NARCIS (Netherlands)

    Visser, Esther Simone; Soeters, Nienke; Tahzib, Nayyirih G.

    2015-01-01

    Purpose. Subjective and objective evaluation of scleral lens tolerance and fitting before and after corneal cross-linking (CXL) for progressive keratoconus. Methods. In this prospective cohort, evaluations were made of 18 unilateral eyes in patients who underwent CXL and had been wearing scleral

  20. Effects of genipin corneal crosslinking in rabbit corneas.

    Science.gov (United States)

    Avila, Marcel Y; Narvaez, Mauricio; Castañeda, Juan P

    2016-07-01

    To evaluate the effect of genipin, a natural crosslinking agent, in rabbit eyes. Department of Ophthalmology, Universidad Nacional de Colombia Centro de Tecnologia Oftalmica, Bogotá, Colombia. Experimental study. Ex vivo rabbit eyes (16; 8 rabbits) were treated with genipin 1.00%, 0.50%, and 0.25% for 5 minutes with a vacuum device to increase corneal permeability. Penetration was evaluated using Scheimpflug pachymetry (Pentacam). In the in vivo model (20 rabbits; 1 eye treated, 1 eye with vehicle), corneas were crosslinked with genipin as described. Corneal curvature, corneal pachymetry, and intraocular pressure (IOP) assessments as well as slitlamp examinations were performed 0, 7, 30, and 60 days after treatment. In the ex vivo model, Scheimpflug pachymetry showed deep penetration in the rabbit corneas with an increase in corneal density and a dose-dependent relationship. Corneal flattening was observed in treated eyes (mean 4.4 diopters ± 0.5 [SD]) compared with the control eyes. Pachymetry and IOP were stable in all evaluations. No eye showed toxicity in the anterior chamber or in the lens. Corneal crosslinking induced by genipin produced significant flattening of the cornea with no toxicity in rabbit eyes. This crosslinking could be useful in the treatment of corneal ectasia and in the modification of corneal curvature. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Fabrication of chemically cross-linked porous gelatin matrices.

    Science.gov (United States)

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  2. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  3. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  4. Swelling of cross-linked polymers: interpretations and misinterpretations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková-Smrčková, Miroslava

    2017-01-01

    Roč. 254, 20 August (2017), s. 102 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  5. Molecular Model for HNBR with Tunable Cross-Link Density.

    Science.gov (United States)

    Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A

    2016-12-15

    We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.

  6. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.|info:eu-repo/dai/nl/073609609

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  7. Cholesterol Removal from Whole Egg by Crosslinked β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    H. J. Jeong

    2014-04-01

    Full Text Available This study was carried out to optimize cholesterol removal in whole egg using crosslinked β-cyclodextrin (β-CD and to recycle the β-CD. Various factors for optimizing conditions were concentration of the β-CD, mixing temperature, mixing time, mixing speed and centrifugal speed. In the result of this study, the optimum conditions of cholesterol removal were 25% crosslinked β-CD, 40°C mixing temperature, 30 min mixing time, 1,200 rpm mixing speed and 2,810×g centrifugal speed. The recycling was repeated five times. The cholesterol removal was 92.76% when treated with the optimum conditions. After determining the optimum conditions, the recyclable yields of the crosslinked β-CD ranged from 86.66% to 87.60% in the recycling and the percentage of cholesterol removal was over 80% until third recycling. However, the cholesterol removal efficiency was decreased when the number of repeated recycling was increased. Based on the result of this study, it was concluded that the crosslinked β-CD was efficient for cholesterol removal in whole egg, and recycling is possible for only limited repeating times due to the interaction of the β-CD and egg protein.

  8. Crosslink Radio Occultation for the Remote Sensing of Planetary Atmospheres

    Science.gov (United States)

    Mannucci, A. J.; Ao, C. O.; Asmar, S.; Edwards, C. D.; Kahan, D. S.; Paik, M.; Pi, X.; Williamson, W.

    2015-12-01

    Radio occultation utilizing deep space telecommunication signals has been used with great success in the profiling of planetary atmospheres and ionospheres since the 1960s. A shortcoming of this technique, however, is the limited temporal and spatial sampling that it provides. We consider a different approach where radio occultation measurements are taken between two spacecraft orbiting an extra-terrestrial body. Such "crosslink" radio occultations between the Global Positioning System satellites and low-earth orbiting spacecraft have been routinely acquired to provide global observations of the Earth's atmosphere and ionosphere that are used for weather forecast, climate analysis, and space weather applications. The feasibility of applying this concept to other planets has recently been demonstrated for the first time, where crosslink occultation measurements have been acquired between the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft. These measurements leverage the proximity link telecommunication payloads on each orbiter, which are nominally used to provide relay communication and navigation services to Mars landers and rovers. In this presentation, we will describe the Mars crosslink experiments and the corresponding data analysis in detail. In addition, we will discuss how the crosslink occultation concepts can be effectively applied in future space exploration missions.

  9. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.

    Science.gov (United States)

    Gomes, S R; Rodrigues, G; Martins, G G; Henriques, C M R; Silva, J C

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Jack of all trades: Versatile catechol crosslinking mechanisms

    NARCIS (Netherlands)

    Yang, J.; Cohen Stuart, M.A.; Kamperman, M.M.G.

    2014-01-01

    Catechols play an important role in many natural systems. They are known to readily interact with both organic (e.g., amino acids) and inorganic (e.g., metal ions, metal oxides) compounds, thereby providing a powerful system for protein curing. Catechol crosslinked protein networks, such as

  11. Mitosis, diffusible crosslinkers, and the ideal gas law.

    Science.gov (United States)

    Odde, David J

    2015-03-12

    During mitosis, molecular motors hydrolyze ATP to generate sliding forces between adjacent microtubules and form the bipolar mitotic spindle. Lansky et al. now show that the diffusible microtubule crosslinker Ase1p can generate sliding forces between adjacent microtubules, and it does so without ATP hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  13. The Effect of Polymer Molecular Weight on Citrate Crosslinked ...

    African Journals Online (AJOL)

    SEM), dissolution studies and differential scanning calorimetry (DSC) for surface ... Conclusion: The citrate-crosslinked chitosan films can be modulated to vary swelling and drug release at pH 3.5 and 6.2; this feature makes them useful tools for ...

  14. Practical application of thermoreversibly Cross-linked rubber products

    Science.gov (United States)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  15. Radiation cross-linked PVC and its applications

    International Nuclear Information System (INIS)

    Lan Junming; Chen Ruyan; Jia Chaoxing; Li Min; Li Chengxin

    1990-04-01

    The radiation cross-linking technique is adopted for improving the polyvinyl chloride (PVC) heat-resistance and reducing its thermocontractibility. For examining its properties a small insulation sheath made from modified PVC material has been tested at 260 0 5 seconds. The results obtained were satisfactory

  16. Synthesis of crosslinked poly (styrene-co-divinylbenzene-co ...

    Indian Academy of Sciences (India)

    Synthesis of crosslinked poly(styrene--divinylbenzene--sulfopropyl methacrylate) nanoparticles by emulsion polymerization: Tuning the particle size and surface charge density. Dhamodaran Arunbabu Mousumi Hazarika Somsankar Naik Tushar Jana. Polymers Volume 32 Issue 6 December 2009 pp 633-641 ...

  17. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  18. UV laser-induced cross-linking in peptides

    Science.gov (United States)

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  19. Functionalisation of cross-linked polyethylenimine for the removal of ...

    African Journals Online (AJOL)

    ... and describe the experimental data. The thermodynamic study of the adsorption process indicated high activation energies (55.91 kJ mol-1) which confirms chemisorption as a mechanism of interaction between As and PCPEI. Keywords: Adsorption; arsenic; phosphonated cross-linked polyethylenimine, functionalisation ...

  20. Vision Restoration with a Collagen Crosslinked Boston Keratoprosthesis Unit

    Science.gov (United States)

    2016-09-01

    ex vivo using vitamin B2 (riboflavin) and ultraviolet light. The overall objective of this study is to prevent sight-threatening keratoprosthesis...keratoprosthesis carrier cornea using tissue that has been cross-linked using vitamin B2 (riboflavin) and ultraviolet light prior to prosthesis

  1. Effects of the nature of the antioxidant on the radiation crosslinking of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Gal, O S; Markovic, V M; Novakovic, L R; Stannett, V T

    1985-01-01

    The effects of three antioxidants, a hindered phenolic, a secondary amine and a thioester on the radiation crosslinking efficiency of low-density polyethylene were studied. Both gel content and thermomechanical analysis were used to follow the crosslinking. All three antioxidants decreased the amount of crosslinking at a given dose, the thioester being the most effective. The ratios of G (scission) to G (X linking) increased with all three antioxidants. This is attributed to the antioxidants only interfering with the crosslinking reaction. (author).

  2. The effects of the nature of the antioxidant on the radiation crosslinking of polyethylene

    International Nuclear Information System (INIS)

    Gal, O.S.; Markovic, V.M.; Novakovic, L.R.; Stannett, V.T.

    1985-01-01

    The effects of three antioxidants, a hindered phenolic, a secondary amine and a thioester on the radiation crosslinking efficiency of low-density polyethylene were studied. Both gel content and thermomechanical analysis were used to follow the crosslinking. All three antioxidants decreased the amount of crosslinking at a given dose, the thioester being the most effective. The ratios of G (scission) to G (X linking) increased with all three antioxidants. This is attributed to the antioxidants only interfering with the crosslinking reaction. (author)

  3. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mapping of repair genes

    International Nuclear Information System (INIS)

    Hori, Tadaaki

    1985-01-01

    Chromosome mapping of repair genes involved in U.V. sensitivity is reported. Twenty-three of 25 hybrid cells were resistant to U.V. light. Survival curves of 2 U.V.-resistant cell strains, which possessed mouse chromosomes and human chromosome No.7 - 16, were similar to those of wild strain (L5178Y). On the other hand, survival curves of U.V.-sensitive hybrid cells was analogous to those of Q31. There was a definitive difference in the frequency of inducible chromosome aberrations between U.V. resistant and sensitive mouse-human hybrid cells. U.V.-resistant cell strains possessed the ability of excision repair. Analysis of karyotype in hybrid cells showed that the difference in U.V. sensitivity is dependent upon whether or not human chromosome No.13 is present. Synteny test on esterase D-determining locus confirmed that there is an agreement between the presence of chromosome No.13 and the presence of human esterase D activity. These results led to a conclusion that human genes which compensate recessive character of U.V.-sensitive mutant strain, Q31, with mouse-human hybrid cells are located on the locus of chromosome No.13. (Namekawa, K.)

  5. Fanconi anemia proteins and endogenous stresses

    Energy Technology Data Exchange (ETDEWEB)

    Pang Qishen [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States); Andreassen, Paul R., E-mail: Paul.Andreassen@cchmc.org [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2009-07-31

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  6. Fanconi anemia proteins and endogenous stresses

    International Nuclear Information System (INIS)

    Pang Qishen; Andreassen, Paul R.

    2009-01-01

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  7. Crosslinking of oriented polyethylene by electron beam radiation. Influence of morphology induced by drawing

    International Nuclear Information System (INIS)

    Aerle, N.A.J.M. van; Crevecoeur, G.; Lemstra, P.J.

    1988-01-01

    The influence of drawing on the crosslinking efficiency for electron beam radiation is reported for solution-crystallized ultra-high molecular weight polyethylene. A maximum in crosslinking efficiency is found at a draw ratio of approximately five, indicating an optimum morphology for inducing crosslinks during the hot-drawing process. (author)

  8. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  9. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  10. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne

    2006-01-01

    The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set...

  11. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  12. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  13. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymers (MAn-g-EPM) were thermoreversibly cross-linked using diamines and amino-alcohols. Covalent cross-links are formed via the equilibrium reaction of the grafted anhydride groups with di-functional cross-linkers containing combinations of primary (1°) and secondary

  14. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    Science.gov (United States)

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Proton conducting sulphonated fluorinated poly(styrene) crosslinked electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soules, A.; Ameduri, B.; Boutevin, B.; David, G. [Institut Charles Gerhardt UMR CNRS 5253 Equipe, Ingenierie et Architectures Macromoleculaires,' ' Ecole Nationale Superieure de Chimie de Montpellier, 8 rue de l' Ecole Normale, 34296 Montpellier, Cedex 05 (France); Perrin, R. [CEA Le Ripault Departement des Materiaux, DMAT/SCMF/LSTP, BP16 - 37260 Monts (France); Gebel, G. [Structure et Proprietes des Architectures Moleculaires UMR 5819 (CEA-CNRS-UJF), INAC, SPrAM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2011-10-15

    Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide-telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6-diiodoperfluorohexane followed by azido chain-end functionalisation. Then azide-telechelic polystyrene was efficiently crosslinked with 1,10-diazido-1H,1H,2H,2H,9H,9H,10H,10H-perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g{sup -1}. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small-angle X-ray scattering, was found to be a lamellar-type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq.g{sup -1}, proton conductivity was in the same range as that of Nafion {sup registered} (120-135 mS.cm{sup -1}), whereas the membrane IEC value of 3.2 meq.g{sup -1} showed a proton conductivity higher than that of Nafion {sup registered} in liquid water from 25 to 80 C, though a high water uptake. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  17. [Constitutional mismatch repair deficiency syndrome

    NARCIS (Netherlands)

    Jongmans, M.C.J.; Gidding, C.E.M.; Loeffen, J.; Wesseling, P.; Mensenkamp, A.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. CASE DESCRIPTION: An 8-year-old

  18. Clamp wins pipe repair prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-04-01

    This paper describes the permanent pipeline repair system, developed by Tekmar, which is powered by seawater hydraulics and is easily installed and tested by any workclass remotely operated vehicle (rov). Details are given of the two main components of the system, namely, the diverless high pressure split repair clamp and the rov-operated tool to install it.

  19. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  20. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  1. The journey of DNA repair

    OpenAIRE

    Saini, Natalie

    2015-01-01

    21 years ago, the DNA Repair Enzyme was declared “Molecule of the Year”. Today, we are celebrating another “year of repair”, with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  2. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridine-moieties as well as epoxide groups, were synthesized via free-radical polymeri-zation. The products were cross-linked non-covalently with iron(II) ions and cova-lently by treatment with AlCl3. Both steps could be combined in

  3. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridinemoieties as well as epoxide groups, were synthesized via free-radical polymerization. The products were cross-linked non-covalently with iron(II) ions and covalently by treatment with AlCl3. Both steps could be combined in

  4. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2015-10-01

    ICAM-1-coupled signaling pathways in astrocytes converge to cyclic AMP response element-binding protein phosphorylation and TNF-alpha secretion. J...D, Apap-Bologna A, Kemp G. A dye-photosensitized reaction that generates stable protein-protein crosslinks. Analytical biochemistry . 1989 May 15;179(1

  5. Study of the direct detection of crosslinking in hydrocarbons by 13C-NMR. II. Identification of crosslink in model compound and application to irradiate paraffins

    International Nuclear Information System (INIS)

    Bennett, R.L.; Keller, A.; Stejny, H.H.; Murray, M.

    1976-01-01

    A 13 C-NMR investigation was carried out in aid of direct detection of crosslinks in hydrocarbons with the future objective of studying radiation-induced crosslinking in polyethylene by a direct method. The resonance signal due to a tertiary carbon atom appropriate to a crosslink far remote from molecular ends has been identified in a definitive manner with the aid of the H-shaped model compound 1,1,2,2-tetra(tridecyl)ethane synthetized in Part I of this study. This identification was then put to use in the examination of the irradiated linear paraffins n-hexadecane and n-eicosane, where it enabled the detection of radiation-induced crosslinks. This crosslinking could then be associated with corresponding changes in molecular weight (dimer, trimer formation) as revealed by discrete peaks in the gel-permeation chromatograms of the same samples and randomness of the crosslinking process in the liquid state of these compounds being inferred

  6. Procedures for maintenance and repairs

    International Nuclear Information System (INIS)

    Pickel, E.

    1981-01-01

    After a general review of the operation experience in the history of more than 12 operating years, the organization in the plant will be shown with special aspect to quality assurance, capacity of the workshops and connected groups as radiation protection, chemical laboratories etc. The number, time intervals and manpower effort for the repeating tests will be discussed. Reasons and examples for back-fitting activities in the plant are given. Besides special repair and maintenance procedures as repair of the steam generators, in-service inspection of the reactor pressure vessel, repair of a feed-water pipe and repair of the core structure in the pressure vessel, the general system to handle maintenance and repair-work in the KWO-plant will be shown. This includes also the detailed planning of the annual refueling and revision of the plant. (orig./RW)

  7. Wound repair in Pocillopora

    Science.gov (United States)

    Rodríguez-Villalobos, Jenny Carolina; Work, Thierry M.; Calderon-Aguileraa, Luis Eduardo

    2016-01-01

    Corals routinely lose tissue due to causes ranging from predation to disease. Tissue healing and regeneration are fundamental to the normal functioning of corals, yet we know little about this process. We described the microscopic morphology of wound repair in Pocillopora damicornis. Tissue was removed by airbrushing fragments from three healthy colonies, and these were monitored daily at the gross and microscopic level for 40 days. Grossly, corals healed by Day 30, but repigmentation was not evident at the end of the study (40 d). On histology, from Day 8 onwards, tissues at the lesion site were microscopically indistinguishable from adjacent normal tissues with evidence of zooxanthellae in gastrodermis. Inflammation was not evident. P. damicornis manifested a unique mode of regeneration involving projections of cell-covered mesoglea from the surface body wall that anastomosed to form gastrovascular canals.

  8. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Reward optimization of a repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, I.T. [Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad, s/n. 10071 Caceres (Spain)]. E-mail: inmatorres@unex.es; Perez-Ocon, R. [Departamento de Estadistica e Investigacion Operativa, Facultad de Ciencias, Universidad de Granada, Avenida de Severo Ochoa, s/n. 18071 Granada (Spain)]. E-mail: rperezo@ugr.es

    2006-03-15

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures.

  10. Reward optimization of a repairable system

    International Nuclear Information System (INIS)

    Castro, I.T.; Perez-Ocon, R.

    2006-01-01

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures

  11. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  12. Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging

    Directory of Open Access Journals (Sweden)

    Tamarand Lee Darling

    2017-09-01

    Full Text Available Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein–protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV and Ebolavirus (EBOV. Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking. Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking

  13. Effect of Structure Change on Radiation Crosslinking of Unsaturated Polyesters

    International Nuclear Information System (INIS)

    Ranogajec, F.

    2006-01-01

    During the course of crosslinking of unsaturated polyesters reacting system, that was liquid prior to reaction, gels, and becomes solid. Crosslinking reaction begins to be controlled by the change of the physical state of the system at an early stage of reaction. The kinetics can not be studied by the usual kinetical methods. In-source 60 C o gamma rays induced crosslinking of unsaturated polyester with styrene was followed directly and continuously by measuring electrical conductivity change. The results of extraction analysis proved good correlation between the change of electrical conductivity and the extent of curing. The gel content was inversely proportional to conductivity and free styrene content directly proportional to conductivity. DC-electrical conductivity has shown high sensitivity toward structural changes and enabled us to detect liquid-liquid transitions in unsaturated polyester. The upper liquid-liquid transition (T l ρ) is less known transition caused by a stepwise decrease of intramolecular short-range local order that remains above the glass and lower liquid-liquid transitions. The local order is based on secondary valent interactions and is enhanced by hydrogen bonding. The linear temperature dependence of the viscosity and dc electrical conductivity of unsaturated polyesters showed a change of slope caused by the (T l ρ). Those changes were the result of the diminishing of the local order (which includes several bond lengths) caused by breaking of the intramolecular interactions. The intramolecular nature of the (T l ρ) in the polyesters under consideration was proved by its insensitivity to crosslinking and dilution with solvents. In the corresponding temperature range, DSC thermograms shoved expected endothermic changes. The structure changes related to the (T l ρ) in the investigated polyesters were determined by 1 H NMR and NIR spectroscopy. The proton NMR indicated that the stepwise change in hydrogen bonding occurred in the

  14. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    Science.gov (United States)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  15. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  16. Repair system and mitomycin mutagenesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Otsuji, N; Murayama, I [Kyushu Univ., Fukuoka (Japan). Faculty of Pharmaceutical Sciences

    1974-03-01

    Ultraviolet light sensitive mutants of E. coli defective at the uvrA, uvrB or uvrC locus showed increased sensitivity to the lethal effects of monofunctional mitomycin, 7-methoxymitosene (7-MMT) or decarbamoyl mitomycin C (DCMTC), as well as mitomycin C (MTC). (1) Treatment of wild type bacteria with these monofunctional mitomycins resulted in the production of single-strand breaks in DNA, which were repaired upon incubation in a growth medium. Such breaks in DNA were not produced in the UvrA and the UvrB mutants. In the UvrC mutant, single-strand breaks were produced by 7-MMT or by DCMTC, but these breaks were not repaired upon incubation. (2) Exposure of E. coli to MTC caused cross-linkage between DNA strands, which converted to a normally denaturable form during further incubation after treatment. This was not occurred in the UvrB strain. In the UvrC mutant, a portion of the cross-links was removed upon incubation. (3) 7-MMT and DCMTC induced mutation in UV sensitive UvrB and UvrC mutants with much higher frequency than in wild type bacteria, while MTC did not induce mutation in these Uvr-strains.

  17. Repair system and mitomycin mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Otsuji, Nozomu; Murayama, Ichiko

    1974-01-01

    Ultraviolet light sensitive mutants of E. coli defective at the uvrA, uvrB or uvrC locus showed increased sensitivity to the lethal effects of monofunctional mitomycin, 7-methoxymitosene (7-MMT) or decarbamoyl mitomycin C (DCMTC), as well as mitomycin C (MTC). (1) Treatment of wild type bacteria with these monofunctional mitomycins resulted in the production of single-strand breaks in DNA, which were repaired upon incubation in a growth medium. Such breaks in DNA were not produced in the UvrA and the UvrB mutants. In the UvrC mutant, single-strand breaks were produced by 7-MMT or by DCMTC, but these breaks were not repaired upon incubation. (2) Exposure of E. coli to MTC caused cross-linkage between DNA strands, which converted to a normally denaturable form during further incubation after treatment. This was not occurred in the UvrB strain. In the UvrC mutant, a portion of the cross-links was removed upon incubation. (3) 7-MMT and DCMTC induced mutation in UV sensitive UvrB and UvrC mutants with much higher frequency than in wild type bacteria, while MTC did not induce mutation in these Uvr-strains. (author)

  18. Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.

    Science.gov (United States)

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    International Nuclear Information System (INIS)

    Thompson, J.F.; Hearst, J.E.

    1983-01-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T 1 RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes

  20. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  1. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    Science.gov (United States)

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Shape memory behaviour of radiation-crosslinked PCL/PMVS blends

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu Shuogui; Wang Jinhua; Zhang Longbin

    2006-01-01

    The performance and radiation crosslinking of polycaprolactone (PCL) and polymethylvinylsiloxane (PMVS) blends has been investigated. Radiation crosslinking of PCL/PMVS blends followed the Charlesby-Pinner equation, and PMVS promoted the radiation crosslinking of the blends. As the concentration of PMVS increased, the gelation dose and the ratio of degradation to crosslinking (p 0 /q 0 ) decreased and the efficiency of radiation crosslinking increased. The elastic modulus below the melting point of PCL of radiation-crosslinked PCL/PMVS blends decreased with the increase of PMVS, and increased above the melting point. The crosslinked PCL/PMVS blends exhibited excellent shape memory effects, and the ratios of deformation to recovery were more than 95%

  3. Crosslinking in the diglycidyl ether oligoepichlorhydrin-piperazine

    Directory of Open Access Journals (Sweden)

    Konstantyn E. Varlan

    2014-03-01

    Full Text Available The possibility of acquiring film material from a mixture of oligoepichlorhydrin diglycidylether and piperazyne discussed. The process involves elongation of the chain by means of reaction of the oligomer terminal oxyran cycles with piperazine aminogrups, and the subsequent formation of crosslinked by tertiary amine alongthe chainsalkylation whis chlorometyl dand groups of macromolecules. With this purpose, the model system investigated: epichlorohydrin−piperidine, epichlorohydrin−piperazine, oligoetylenglikol glicidyl ether−piperazine. The possibility of regulating the contributions of reactions of epoxy group and alkylation on crosslinking primary stage is disclosed, as well as material properties. Taking into account the found regularities receive elastic film structured materials with quaternary nitrogen atoms in the nodes. The ratio of tertiary and quaternary structure of nitrogen depends on the process conditions. Films swell in polar solvents and has ion-exchange properties.

  4. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.

    Science.gov (United States)

    Shen, Jie; Gao, Guorong; Liu, Xincai; Fu, Jun

    2015-03-01

    Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate, for example, in comparison to 51.2 ± 0.7 MPa (p = 0.75) and 58 ± 5 kJ/m(2) (p = 0.29) before aging. The pin-on-disc wear rates of 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate and 0.05 wt% gallic acid

  5. Preparation of micro-pored silicone elastomer through radiation crosslinking

    International Nuclear Information System (INIS)

    Gao Xiaoling; Gu Mei; Xie Xubing; Huang Wei

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer, which was performed by vulcanization and foaming respectively. Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology. Silicon dioxide was used as filler, and silicone elastomer was vulcanized by electron beams, then the micro-pored material was made by heating method at a high temperature. The effects of absorbed dose and filler content on the performance and morphology were investigated. The structure and distribution of pores were observed by SEM. The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content. It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm. And the good mechanical performance can be suitable for further uses. (authors)

  6. Absorbed energy for radiation crosslinking in stabilized PE systems

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various γ-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author)

  7. Absorbed energy for radiation crosslinking in stabilized PE systems

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).

  8. Monogenic diseases of DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bakula, Daniela; Scheibye-Knudsen, Morten

    2017-01-01

    Maintaining the stability of the genome is essential for all organisms, and it is not surprising that damage to DNA has been proposed as an explanation for multiple chronic diseases.1-5 Conserving a pristine genome is therefore of central importance to our health. To overcome the genotoxic stress...... of a growing number of human diseases. Notably, many of these monogenic DNA-repair disorders display features of accelerated aging, supporting the notion that genome maintenance is a key factor for organismal longevity. This review focuses on the physiological consequences of loss of DNA repair, particularly...... in the context of monogenic DNA-repair diseases....

  9. Repairing and Upgrading Your PC

    CERN Document Server

    Thompson, Robert

    2009-01-01

    Repairing and Upgrading Your PC delivers start-to-finish instructions, simple enough for even the most inexperienced PC owner, for troubleshooting, repairing, and upgrading your computer. Written by hardware experts Robert Bruce Thompson and Barbara Fritchman Thompson, this book covers it all: how to troubleshoot a troublesome PC, how to identify which components make sense for an upgrade, and how to tear it all down and put it back together. This book shows how to repair and upgrade all of your PC's essential components.

  10. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    International Nuclear Information System (INIS)

    Gao, Shuang; Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun; Xi, Tingfei; Guo, Quanyi

    2017-01-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  11. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shuang [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Xi, Tingfei, E-mail: tingfeixi@163.com [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Shenzhen Institute, Peking University, Shenzhen 518057 (China); Guo, Quanyi, E-mail: doctorguo_301@163.com [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China)

    2017-02-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  12. Effect of Different Surface Treatments on the Bond Strength of Repaired Resin Restorations

    International Nuclear Information System (INIS)

    Engy Fahmy Ismaiel Fekry Abaza

    2010-01-01

    In the last decade, growing demands by patients for mercury-free esthetic restorations had markedly increased the use of resin composites in restorative dentistry. However, despite the continuing development of resin composites with improved properties, several factors, such as discoloration, color mismatch, wear; chipping or bulk fracture might present clinical problems (Mjor and Gordan. 2002, Vichi et al. 2004 and Kolbeck et al. 2006). As a result, the clinician should decide whether to replace or simply repair these restorations. Total replacement of the restoration might be regarded as over-treatment since in most cases, large portions of the restorations might be clinically and radio graphically considered free of failure. Moreover, complete removal of the restoration inevitably resulted in weakening of the tooth, unnecessary removal of intact dental tissues, more money and time consuming. For these reasons, the repair of the restoration instead of its removal would be a favorable procedure (Lucena-Martin et al. 2001, Frankenberger et al. 2003 a and Oztas et al. 2003). The key element in the determination of successful repair procedures was the adequate bond strength between the existing resin composite and the new one. Various methods have been suggested to improve the bond strength of the repaired resin restorations (Tezvergil et al. 2003 and Bonstein et al. 2005). Mechanical and/or chemical treatments had been investigated for preparation of the aged resin restorations to be repaired (Tezvergil et al. 2003, Ozcan et al. 2005 and Hannig et al. 2006). These treatments were introduced to counteract the problems of aged resin restorations which were limited amount of residual free radicals available for reaction with the repair material, contaminated surface, and highly cross-linked resin matrix ( Dall Oca et al. 2006 and Papacchini et al. 2007 a) Previous studies emphasized that mechanical treatments are the most important factor in obtaining optimal repair

  13. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  14. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  15. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    International Nuclear Information System (INIS)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH 2 -PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH 2 -PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His 6 -tagged protein molecules to AFM tips via noncovalent NTA-Ni 2+ -His 6 bridges. The new crosslinker was applied to link a recombinant His 6 -tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin β1 was studied in detail by SMRFM, using the new crosslinker to link His 6 -tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557

  16. Studies on flame retardancy of radiation crosslinked PE foam

    International Nuclear Information System (INIS)

    Yang Huili; Yao Zhanhai; Xu Jun

    1996-01-01

    CPE, DBDPO and Sb 2 O 3 were used as flame-retardant of PE foam. Effect of CPE on PE foam under radiation and it's flame-retardancy were studied. The result showed that CPE can enhance radiation cross-linking of PE, and trinary of addition being made of CPE, DBDPO and Sb 2 O 3 made oxygen index of PE foam achieve over 30, and self-extinguish, it did not influence manufacture and mechanical properties of PE foam

  17. The effects of trioctyl trimellitate concentration on crosslinking

    International Nuclear Information System (INIS)

    Jamaliah Sharif; Rozana Abu Bakar

    1997-01-01

    The effects of trimellitate type plasticizer concentration on PVC formulation were investigated. The results show that the degree of crosslinking is higher in the PVC compounds containing lower concentration of plasticizer compared to others. The tensile properties were decreased with the increase of plasticizer. However, the ageing properties of the lower concentration samples were very poor. The electrical properties of the compounds were acceptable with the volume resistivity value above 1014 . The heat deformation properties of the samples also improved after irradiation

  18. The Evaluation of Corneal Fragility After UVA/Riboflavin Crosslinking.

    Science.gov (United States)

    Li, Zhiwei; Wang, Yumeng; Xu, Yanyun; Jhanji, Vishal; Zhang, Chunxiao; Mu, Guoying

    2017-03-01

    To evaluate the fragility of cornea after UVA/riboflavin crosslinking (CXL). Sixty New Zealand rabbits received UVA/riboflavin crosslinking treatment (wavelength 365 nm, irradiance 3.0 mW/cm, and total dose 5.4 J/cm) on right eyes. Animals were sacrificed before and immediately after treatment (day 0), day 1, 3, 7, and 28 after treatment. A 4×10 mm corneal strip for biomechanical evaluation was harvested after sacrifice. The corneal fragility was evaluated by measurement of elongation rate, whereby the elongation rate equals elongation length/baseline length. The Youngs modulus and maximal stress were 1.41±0.51 MPa and 5.56±1.84 MPa before CXL, and increased to 2.31±0.68 MPa (P=0.008) and 9.25±2.74 MPa (P=0.04), respectively, on day 0, then maintained a stable level within a 28 days follow-up. The elongation rate was 62.04±9.34% before CXL and decreased to 48.95%±8.24% (P=0.02) on day 0, then maintained a stable level within a 28 days follow-up. This study showed an increase in the corneal fragility after UVA/riboflavin crosslinking along with an increase in the corneal stiffness. A long-term follow-up should be taken to evaluate the potential deleterious effect of the increasing corneal fragility after UVA/riboflavin crosslinking.

  19. Recycling tires? Reversible crosslinking of poly(butadiene).

    Science.gov (United States)

    Trovatti, Eliane; Lacerda, Talita M; Carvalho, Antonio J F; Gandini, Alessandro

    2015-04-01

    Furan-modified poly(butadiene) prepared by the thiol-ene click reaction is crosslinked with bismaleimides through the Diels-Alder reaction, giving rise to a novel recyclable elastomer. This is possible because of the thermal reversibility of the adducts responsible for the formation of the network. The use of this strategy provides the possibility to produce recyclable tires. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical and structural behaviors of crosslinked polyvinyl alcohol thin films

    Science.gov (United States)

    Pandit, Subhankar; Kundu, Sarathi

    2018-04-01

    Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.

  1. Cross-linked polymeric membranes for carbon dioxide separation

    Science.gov (United States)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  2. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-01-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost

  3. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Crosslinking and corneal cryotherapy in acanthamoeba keratitis -- a histological study.

    Science.gov (United States)

    Hager, Tobias; Hasenfus, A; Stachon, T; Seitz, B; Szentmáry, N

    2016-01-01

    Acanthamoeba keratitis is rare, but difficult to treat. Penetrating keratoplasty is performed in therapy-resistant cases. Nevertheless, subsequent recurrences occur in 40 % of the cases. In addition to triple-topical therapy (polyhexamid, propamidinisoethionat, neomycin), treatment alternatives are corneal cryotherapy and/or crosslinking (CXL). The aim of our present histological study was to analyze the persistence of acanthamoebatrophozoites and cysts, the persistence of bacteria, and activation of keratocytes in corneas of acanthamoeba keratitis patients following corneal cryotherapy and/or CXL. We analyzed histologically corneal buttons (from penetrating keratoplasties) of nine patients with acanthamoeba keratitis, following corneal cryotherapy (two patients) or a combination of crosslinking and corneal cryotherapy (seven patients), using haematoxilin–eosin, periodic acid Schiff (PAS), Gram and alpha-smooth muscle actin (alpha-SMA) stainings. Acanthamoeba trophozoites persisted in three corneas after cryotherapy and CXL. Cysts persisted in one of two corneas following corneal cryotherapy and in six of seven corneas after a combination of CXL and cryotherapy. One cornea showed positive Gram staining, but there were no alpha-SMA positive keratocytes in any of the corneas. Crosslinking and corneal cryotherapy have only limited impact on killing of acanthamoeba trophozoites, cysts, or bacteria. Corneal cryotherapy and CXL did not stimulate myofibroblastic transformation of keratocytes.

  5. Radiation-induced crosslinking of syndiotactic 1,2-polybutadiene

    International Nuclear Information System (INIS)

    Iwai, Tadashi; Hoshino, Sadao; Yamamoto, Rokuro; Okamoto, Hidemasa; Obana, Kazuyoshi.

    1978-01-01

    Crystalline syndiotactic 1, 2-polybutadiene (hereafter abbreviated as 1, 2-PB) developed in Ube Industries, Ltd. by its own technology is a new thermoplastic resin belonging to the intermediate region between rubber and plastics in its flexibility. By selecting appropriate catalyst composition, 1, 2-PB having the melting point of 90 to 200 deg. C and crystallization of 10 to 65% can be obtained. These 1, 2-PBs can be worked to formed products by general thermoplastic forming methods such as injection molding, extrusion forming and blow forming. Radiation-crosslinked 1, 2-PB changed to very hard polymers through heat treatment. This change has been found to be radical chain reaction of cyclic polymerization. The relation of radiation-induced crosslinking and thermal expansion behavior, and the changes of appearance and structural and physical properties with heat treatment of these polymers are described. That is, specific gravity has increased, tensile strength has been enhanced, and elongation has decreased. While dielectric strength and arc resistivity have been upgraded. Therefore, these polymers can be used for the following applications: food wrapping film, molded notions, molded low foaming material for the soles of footwears, highly foaming moldings such as sponges, electric insulation material such as cable coating and adhesives for many materials. It is considered that crosslinking contributes to the application to electric insulation materials and heat curing to heat-resistant materials and parts. (Wakatsuki, Y.)

  6. Superficial corneal crosslinking during laser in situ keratomileusis.

    Science.gov (United States)

    Seiler, Theo G; Fischinger, Isaak; Koller, Tobias; Derhartunian, Viktor; Seiler, Theo

    2015-10-01

    To determine the safety of superficial corneal crosslinking after laser in situ keratomileusis (LASIK). Institut für Refraktive und Ophthalmo-Chirurgie, Zurich, Switzerland. Prospective study. Eyes with an ectasia risk score of 2 or higher were treated with standard LASIK (90 μm flap) for myopia correction, after which a rapid corneal crosslinking was performed in the interface (riboflavin 0.5% for 2 minutes, 9 mW/cm(2) for 5 minutes) (Group 1). The follow-up was up to 1 year. The prevalence of complications was statistically compared with that in a group of eyes matched regarding age, sex, and attempted refractive correction that were treated with standard LASIK only (Group 2). One month postoperatively, 5 eyes in Group 1 lost 1 line of corrected distance visual acuity (CDVA) compared with 1 eye in Group 2 (P rate of less than 5%. The refractive success was identical in both groups. Early postoperative complications such as erosions (16%), diffuse lamellar keratitis (DLK) stage 1 (38%), and DLK stage 2 (5%) were statistically significantly more frequent after superficial corneal crosslinking, leading to a statistically significantly reduced uncorrected distance visual acuity at 1 month (P interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    Science.gov (United States)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  8. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  9. Umbilical hernia repair - series (image)

    Science.gov (United States)

    ... treatment. The indications for umbilical hernia repair include: incarcerated (strangulated) umbilical hernia defects not spontaneously closed by 4 to 5 years of age children under 2 with very large defects unacceptable to ...

  10. Mammalian DNA Repair. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard D.

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  11. Canadian company innovates dam repair

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Successful repair without any downtime, of the Sabana Yegua power and irrigation structure in the western Dominican Republic by Aquatic Sciences Ltd., a St. Catherine, Ontario-based underwater specialist company, is discussed. The structure was damaged by Hurricane George last when when rising water levels damaged a major valve in the control gate chamber. The repair strategy designed by Aquatic Sciences used a remotely operated vehicle with a mechanical arm for minor tasks which placed a specially-made plug into the inlet pipe. The work was completed in one week, saving the utility company a great deal of money by making it possible to make the repairs remotely in the gate chamber without having to drain the tunnel, as would have been necessary had the repair been completed manually. The remotely operated vehicles use a scanning sonar as well as light to find their way. They are particularly well adapted to work underwater under low-visibility conditions

  12. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  13. 40 CFR 63.1005 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1005 Section 63.1005... Standards for Equipment Leaks-Control Level 1 § 63.1005 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected no later than 15 calendar days after it is detected, except as...

  14. 40 CFR 63.1024 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1024 Section 63.1024... Standards for Equipment Leaks-Control Level 2 Standards § 63.1024 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical, but not later than 15 calendar...

  15. 40 CFR 65.105 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Leak repair. 65.105 Section 65.105... FEDERAL AIR RULE Equipment Leaks § 65.105 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is...

  16. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  17. Laparoscopic Repair of Inguinal Hernias

    OpenAIRE

    Carter, Jonathan; Duh, Quan-Yang

    2011-01-01

    For patients with recurrent inguinal hernia, or bilateral inguinal hernia, or for women, laparoscopic repair offers significant advantages over open techniques with regard to recurrence risk, pain, and recovery. For unilateral first-time hernias, either laparoscopic or open repair with mesh can offer excellent results. The major drawback of laparoscopy is that the technique requires a significant number of cases to master. For surgeons in group practice, it makes sense to have one surgeon in ...

  18. Repair Types, Procedures - Part 1

    Science.gov (United States)

    2010-05-01

    Affordable Combat Aircraft, AGARD - CP -600, 1997. [17] Helbling J, Grover R and Ratwani M. M “Analysis and Structural Test of Composite Reinforcement to...considered suitable for the composite patch repair of aluminum structure. Ductile adhesives such as FM- 73 are preferred over brittle adhesives Repair Types...zone. A proper cure cycle is followed as prescribed by the adhesive manufacturer. For FM- 73 adhesive cure at 2500F (1210C) for 120 minutes is

  19. Laparoscopic repair of postoperative perineal hernia.

    LENUS (Irish Health Repository)

    Ryan, Stephen

    2010-01-01

    Perineal hernias are infrequent complications following abdominoperineal operations. Various approaches have been described for repair of perineal hernias including open transabdominal, transperineal or combined abdominoperineal repairs. The use of laparoscopic transabdominal repair of perineal hernias is not well-described. We present a case report demonstrating the benefits of laparoscopic repair of perineal hernia following previous laparoscopic abdominoperineal resection (APR) using a nonabsorbable mesh to repair the defect. We have demonstrated that the use of laparoscopy with repair of the pelvic floor defect using a non absorbable synthetic mesh offers an excellent alternative with many potential advantages over open transabdominal and transperineal repairs.

  20. Overlapping sphincteroplasty and posterior repair.

    Science.gov (United States)

    Crane, Andrea K; Myers, Erinn M; Lippmann, Quinn K; Matthews, Catherine A

    2014-12-01

    Knowledge of how to anatomically reconstruct extensive posterior-compartment defects is variable among gynecologists. The objective of this video is to demonstrate an effective technique of overlapping sphincteroplasty and posterior repair. In this video, a scripted storyboard was constructed that outlines the key surgical steps of a comprehensive posterior compartment repair: (1) surgical incision that permits access to posterior compartment and perineal body, (2) dissection of the rectovaginal space up to the level of the cervix, (3) plication of the rectovaginal muscularis, (4) repair of internal and external anal sphincters, and (5) reconstruction of the perineal body. Using a combination of graphic illustrations and live video footage, tips on repair are highlighted. The goals at the end of repair are to: (1) have improved vaginal caliber, (2) increase rectal tone along the entire posterior vaginal wall, (3) have the posterior vaginal wall at a perpendicular plane to the perineal body, (4) reform the hymenal ring, and (5) not have an overly elongated perineal body. This video provides a step-by-step guide on how to perform an overlapping sphincteroplasty and posterior repair.

  1. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  2. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    International Nuclear Information System (INIS)

    Gul, Rizwan M; Oral, Ebru; Muratoglu, Orhun K

    2014-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E

  3. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    International Nuclear Information System (INIS)

    Gul, R. M.; Oral, E.; Muratoglu, O. K.

    2013-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E. (author)

  4. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ruizhi; Zhang Jianfeng; Fan Yuwei; Xu Xiaoming [Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States); Stoute, Diana; Lallier, Thomas, E-mail: xxu@lsuhsc.edu [Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States)

    2011-06-15

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 {sup 0}C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  5. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    International Nuclear Information System (INIS)

    Doan Binh; Nguyen Thanh Duoc; Pham Thi Thu Hong

    2013-01-01

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  6. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Science.gov (United States)

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  7. The phenotype of FancB-mutant mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  8. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  9. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  10. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  11. 49 CFR 1242.42 - Administration, repair and maintenance, machinery repair, equipment damaged, dismantling retired...

    Science.gov (United States)

    2010-10-01

    ... repair, equipment damaged, dismantling retired property, fringe benefits, other casualties and insurance, lease rentals, joint facility rents, other rents, depreciation, joint facility, repairs billed to others... maintenance, machinery repair, equipment damaged, dismantling retired property, fringe benefits, other...

  12. Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair

    International Nuclear Information System (INIS)

    Jiang Liuyun; Li Yubao; Zhang Li; Wang Xuejiang

    2009-01-01

    The composite biomaterial made from nano-hydroxyapatite(n-HA) and chitosan(CS) cross-linked with carboxymethyl cellulose(CMC) by a co-solution method has been studied. Fourier transform infrared absorption spectra (IR), X-ray diffraction (XRD), burn-out test, chemical analysis, transmission electron microscope(TEM) and universal material testing machine were used to test the properties of the composite. The experiment of SBF soaking for 8 weeks was used to investigate their degradation and bioactivity in vitro. The results show that the formation of composite is mainly contributed to the ionic cross-linking of CMC with CS, and n-HA particles in the form of nanometer grade short crystals are uniformly distributed in the organic network structure of polyelectrolyte complexes, which endows the composite with high compressive strength and good bioactivity. The compressive strength and degradation rate are concerned with the content of n-HA. It can be stated that the n-HA/CS/CMC composite whose weight ratio is 40/30/30 may be a potential candidate as one of novel bone repair materials because of its high compressive strength and acceptable degradation rate as well as good bioactivity, displaying a promising prospect of the clinical application of CMC-contained composite in the field of bone repair

  13. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  14. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate

    International Nuclear Information System (INIS)

    Carbinatto, F.M.; Cury, B.S.F.; Evangelista, R.C.

    2010-01-01

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  15. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    DEFF Research Database (Denmark)

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.

    2012-01-01

    the mechanisms of formation of functional pectic polysaccharide cross-links, including covalent cross-links (notably phenolic esters and uronyl ester linkages) and non-covalent, ionic cross-links (which involve calcium and borate ester links). The treatise examines how such cross-links can be designed via......Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...... specific enzymatic reactions, and highlights the most recent data concerning enzyme catalyzed engineering of cross-links for in situ structural design of functional properties of foods....

  16. The effect of chain flexibility and chain mobility on radiation crosslinking reactions of polymers

    International Nuclear Information System (INIS)

    Sun Jiazhen

    2003-01-01

    Flexibility of polymer chains is an important factor to effects of radiation crosslinking of the polymer. Polymers with flexible chains are easier to be crosslinked, with lower dose of gelation, than polymers with more rigid chains. And it is known that most polymers with abnormal rigidity can be radiation-crosslinked only at high temperatures when the molecular chains get enough mobility. The flexibility of polymer chains also influences the relationship between degree of degradation and radiation dose. A chain flexibility factor β has been introduced to modify the Charlesby-Pinner equation of sol-fraction and radiation dose. The new relationship equation applies to a wider range of polymers in radiation crosslinking. Studies also show that for flexible polymers with lower T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in H type, whereas for rigid polymers with higher T g and molecular internal rotating factor, mechanism of radiation crosslinking is mainly in T type

  17. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    OpenAIRE

    Gonçalves,Vanessa L.; Laranjeira,Mauro C. M.; Fávere,Valfredo T.; Pedrosa,Rozângela C.

    2005-01-01

    In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS), and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree ...

  18. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    Science.gov (United States)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  19. Polymeric Micelles with Ionic Cores Containing Biodegradable Crosslinks for Delivery of Chemotherapeutic Agents

    OpenAIRE

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V.; Bronich, Tatiana K.

    2010-01-01

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca2+) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like n...

  20. Covalent Crosslinking of Porous Poly(Ionic Liquid) Membrane via a Triazine Network

    OpenAIRE

    Täuber, Karoline; Dani, Alessandro; Yuan, Jiayin

    2017-01-01

    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.