WorldWideScience

Sample records for interstitial helium generation

  1. Resistivity studies of interstitial helium mobility in niobium

    International Nuclear Information System (INIS)

    Chen, C.G.; Birnbaum, H.K.; Johnson, A.B. Jr.

    1979-01-01

    The mobility of interstitial helium in Nb and Nb-O alloys was studied in the temperature range of 10-383 K using resistivity measurements. The helium was introduced by radioactive decay of solute tritium (approximately 1 at%). At T < 100 K the resistivity increased due to conversion of tritium trapped at oxygen interstititals to helium. The formation of helium caused a very significant resistance increase at room temperature and above. The results suggest that helium is mobile at temperatures above 295 K and that the precipitation of large helium bubbles occurs along grain boundaries. The mobile helium species may either be single interstitials or small helium clusters. The activation enthalpy for the diffusion of the mobile helium species was estimated to be about 55 kJ/mol (0.66 eV). (Auth.)

  2. Condensation of helium in interstitial sites of carbon nanotubes bundles

    International Nuclear Information System (INIS)

    Marcone, B.; Orlandini, E.; Toigo, F.; Ancilotto, F.

    2006-01-01

    Helium atoms are believed to be strongly bound within the interstitial channels in bundles of carbon nanotubes. In a recent paper [F. Ancilotto et al., Phys. Rev. B 70, 165422 (2004)] inhomogeneity in the size distribution of nanotube radii was shown to make a system of 4 He atoms in such an environment effectively a four-dimensional Bose gas, thus permitting a Bose-Einstein condensation (BEC) of the adsorbed atoms into the minimum energy state. This surprising result was obtained for a model of noninteracting atoms in a continuum distribution of (virtually) infinite interstitial channels. Here we investigate how the singular thermal properties of the ideal system and the occurrence of BEC are affected by a more realistic modeling of a bundle of nanotubes where (i) the number of nanotubes is finite and where (ii) 4 He atoms adsorbed within the same interstitial channel interact among themselves. Also in this case we observe an anomalous heat capacity close to the ideal condensation temperature, suggesting the persistence of the condensation transition for interacting 4 He atoms, which might be experimentally observed

  3. Hydrogen generation using the modular helium reactor

    International Nuclear Information System (INIS)

    Richards, M.; Shenoy, A.

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg.C to 950 deg.C can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. Electricity can also be used to split water, using conventional, low-temperature electrolysis. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyser to generate hydrogen. In this paper we investigate the coupling of the Modular Helium Reactor (MHR) to the SI process and HTE. These concepts are referred to as the H2-MHR. Optimization of the MHR core design to produce higher coolant outlet temperatures is also discussed. The use of fixed orifices to control the flow distribution is a promising design solution for increasing the coolant outlet temperature without increasing peak fuel temperatures significantly

  4. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Tschopp, M. A., E-mail: mark.tschopp@gatech.edu [Dynamic Research Corporation, (on site at) U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Center for Advanced Vehicular Systems, Mississippi State University, Starkville, Mississippi 39762 (United States); Gao, F.; Yang, L. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Solanki, K. N. [Arizona State University, School for Engineering of Matter, Transport and Energy, Tempe, Arizona 85287 (United States)

    2014-01-21

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He{sub 2}V, HeInt, He{sub 2}Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels.

  5. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    International Nuclear Information System (INIS)

    Tschopp, M. A.; Gao, F.; Yang, L.; Solanki, K. N.

    2014-01-01

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He 2 V, HeInt, He 2 Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels

  6. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  7. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  8. Helium generation in fusion-reactor materials. Progress report, October-December 1982

    International Nuclear Information System (INIS)

    Kneff, D.W.; Farrar, H. IV.

    1982-01-01

    The objectives of this work are to measure helium generation rates of materials for Magnetic Fusion Reactor applications in the Be(d,n) neutron environment, to characterize this neutron environment, and to develop helium accumulation neutron dosimeters for routine neutron fluence and energy spectrum measurements in Be(d,n) and Li(d,n) neutron fields

  9. Effect of thermal friction on the generation and transport of interstitial defects in irradiated metals

    CERN Document Server

    Dudarev, S L

    2002-01-01

    Generation of interstitial and vacancy defects under 14.1 MeV neutron irradiation is expected to drive the evolution of microstructure of materials in a future fusion power station. We investigate effects of thermal friction associated with the interaction between mobile clusters of interstitial atoms produced in collision cascades and phonon excitations. Phonons give rise to the random Brownian motion of clusters in the crystal lattice. Phonon excitations are also responsible for the dissipation of energy of rapidly moving clusters formed at the periphery of collision cascades. We investigate how the coefficient of thermal friction depends on the structure of clusters. We also discuss implications of our findings for understanding the origin of higher resistance of bcc metals to irradiation and the connection between this phenomenon and the long-range effect observed in experiments on ion implantation.

  10. Helium generation in fusion reactor materials. Technical progress report, April--September 1977

    International Nuclear Information System (INIS)

    1978-01-01

    The near-term objectives of this program are to measure the spectrum-integrated helium generation rates and cross sections of a number of pure elements and alloys in several high-intensity neutron sources, and to develop and demonstrate neutron dosimetry procedures using some of these materials. To this end, four neutron irradiation experiments have now been run: one using accelerator-produced d-Be neutrons, two using the accelerator-produced d-T reaction, and one in the neutron field of a mixed-spectrum fission reactor. All of these irradiations have incorporated a large number of helium-generation materials

  11. Cooling of superconducting electric generators by liquid helium

    International Nuclear Information System (INIS)

    Nakayama, W.; Ogata, H.

    1987-01-01

    Superconducting generators have a great potential in future electric supply systems in increasing the efficiency of generators and in enhancing the stability of power network systems. Recognition of possible advantages over gas-cooled and water-cooled generators has led research institutes and manufacturers in several countries to wage substantial research and development efforts. The authors show the electric power capacities of the test generators already built, under construction, or in the planning stage. Since earlier attempts, steady improvements in the design of generators have been made, and experience of generator operation has been accumulated

  12. Helium generation reaction rates for 6Li and 10B in benchmark facilities

    International Nuclear Information System (INIS)

    Farrar, Harry IV; Oliver, B.M.; Lippincott, E.P.

    1980-01-01

    The helium generation rates for 10 B and 6 Li have been measured in two benchmark reactor facilities having neutron spectra similar to those found in a breeder reactor. The irradiations took place in the Coupled Fast Reactivity Measurements Facility (CFRMF) and in the 10% enriched 235 U critical assembly, BIG-10. The helium reaction rates were obtained by precise high-sensitivity gas mass spectrometric analyses of the helium content of numerous small samples. Comparison of these reaction rates with other reaction rates measured in the same facilities, and with rates calculated from published cross sections and from best estimates of the neutron spectral shapes, indicate significant discrepancies in the calculated values. Additional irradiations in other benchmark facilities have been undertaken to better determine the energy ranges where the discrepancies lie

  13. Numerical Study on the Helium Flow Characteristics for Steam Generator Subsystem of HTR

    International Nuclear Information System (INIS)

    Ha, Jung Hoon; Ham, Jin Ki; Ki, Min-Hwan; Lee, Won Jae

    2014-01-01

    The High Temperature Reactor (HTR), one of the 4th generation reactors, utilizes helium as the primary coolant. A Steam Generator Subsystem (SGS) is installed to transfer heat from the primary coolant to feed water and subsequently produce steam so that it supplies electricity as well as process heat over a wide range. The SGS is composed of a helical heat exchanger, shrouds directing the flow of the shell side helium and support systems, which are located within the steam generator vessel. In this study, helium flow characteristics in the SGS were investigated at various operating conditions using Computational Fluid Dynamics (CFD). A full-scale 3-D model of the SGS was developed and the reynolds stress model with standard wall treatment was used as a turbulence model. The CFD result was compared to that of the concept design of the steam cycle modular helium reactor for the design verification of the SGS. From the CFD analysis, it was found that the primary coolant flow had non-uniform distribution while it passed the inlet in the helical heat exchanger. In order to make the uniform primary coolant flow uniform, a special type of screen was suggested in front of the helical heat exchanger. As a result, the overall design adequacy of the SGS has been evaluated. (author)

  14. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  15. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  16. Evaluation of sulfur hexafluoride and helium for steam generator leak location: Final report

    International Nuclear Information System (INIS)

    Kassen, W.R.

    1987-01-01

    Since the use of sulfur hexafluoride as a tracer for identifying sources of primary to secondary leakage in PWR steam generators appeared to offer significant sensitivity advantages, the thermal stability of sulfur hexafluoride in water was evaluated at steam generator operating temperature. Significant decomposition was observed after 2 to 4 hours at temperature. Key decomposition products were fluoride and sulfide ions. Based on this observation and these limited test results, the use of SF 6 for PWR steam generator leak location can not be recommended at this time. A survey of 15 utilities was conducted in regard to their application experience with the helium tracer-mass spectroscopy technique for steam generator leak location. Although several successful steam generator integrity programs do not include use of this technique, it has proven to be a useful addition to the inspection program at some plants. No corrosion concerns appear to be associated with this technique

  17. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  18. The effect of helium generation and irradiation temperature on tritium release from neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Gorokhov, V.A.; Vlasov, V.V.; Kovalev, A.M.; Chakin, V.P.

    2004-01-01

    The effect of neutron irradiation condition on tritium release from beryllium is described in this paper. Beryllium samples were irradiated in the SM reactor with neutron fluence (E > 0.1 MeV) of (0.37-2.0) x 10 22 cm -2 at 70-100degC and 650-700degC. Mass-spectrometer technique was used in out of tritium release experiments during stepped-temperature anneal within a temperature range from 250 to 1300degC. The total amount of helium accumulated in irradiated beryllium samples varied from 521 appm to 3061 appm. The first signs of tritium release were detected at temperature of 406-553degC. It was shown that irradiation temperature and helium generation level significantly affect the tritium release. A fraction of 44 - 74 % of tritium content in samples irradiated at low temperature (70 - 100degC) is release from beryllium at an annealing temperature below 800degC, whereas for samples after high temperature irradiation (650 - 700 degC) tritium release did not exceed 14 %. Majority of tritium (∼68%) is released within a temperature range from 800 to 920 degC. The increase of helium generation from 521 appm to 3061 appm results in lowering the temperature of maximal tritium release rate and the upper temperature of tritium release from beryllium by 100-130degC and 200-240degC, correspondingly. On the basis of data obtained, the diffusion coefficients of tritium in beryllium were calculated. (author)

  19. Method and apparatus for replenishing the helium bath in the rotor of a superconducting generator

    International Nuclear Information System (INIS)

    Hofmann, A.; Schnapper, C.

    1980-01-01

    In order to replenish a helium bath in the super-conducting rotor of an electrical machine, in which bath liquid helium boils at subatmospheric pressure, with liquid helium from a helium reservoir, the liquid helium in the reservoir being at ambient pressure and a part of the liquid helium changing to the vapor phase during flow from the reservoir to the bath, liquid helium is introduced into the bath at a distance from the rotor axis of rotation, the liquid and vapor phases of the helium flowing from the reservoir to the bath are separated from one another in a phase separator fixed to the rotor, and the separated vapor phase is extracted from the separator. (MM) [de

  20. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  1. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  2. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  3. Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi; Kato, Yasuyoshi; Nishio, Satoshi; Hayashi, Takumi; Nomoto, Yasunobu

    2008-01-01

    Power generation systems such as steam turbine cycle, helium turbine cycle and supercritical CO 2 (S-CO 2 ) turbine cycle are examined for the prototype nuclear fusion reactor. Their achievable cycle thermal efficiencies are revealed to be 40%, 34% and 42% levels for the heat source outlet coolant temperature of 480degC, respectively, if no other restriction is imposed. In the current technology, however, low temperature divertor heat source is included. In this actual case, the steam turbine system and the S-CO 2 turbine system were compared in the light of cycle efficiency and plant cost. The values of cycle efficiency were 37.7% and 36.4% for the steam cycle and S-CO 2 cycle, respectively. The construction cost was estimated by means of component volume. The volume became 16,590 m 3 and 7240 m 3 for the steam turbine system and S-CO 2 turbine system, respectively. In addition, separation of permeated tritium from the coolant is much easier in S-CO 2 than in H 2 O. Therefore, the S-CO 2 turbine system is recommended to the fusion reactor system than the steam turbine system. (author)

  4. Interstitial nephritis.

    Science.gov (United States)

    Papper, S

    1980-01-01

    There are many causes of interstitial nephritis other than pyelonephritis. The term interstitial nephritis does not connote a single etiologic or pathogenetic mechanism; it rather arbitrarily places together a wider variety of renal diseases that have a predilection for early and major involvement of the renal interstitium. The prototype of acute interstitial nephritis is acute pyelonephritis. In addition, there is a drug-related acute interstitial disease that is probably of immunological nature and usually reverses with discontinuance of the offending drug. Chronic interstitial nephritis includes many diverse illnesses. Nonobstructive pyelonephritis occurs but its prevalence is debated. Analgesic abuse nephropathy is not rare and is potentially reversible. Papillary necrosis has many causes and a wide spectrum of clinical presentations. Heavy metals, such as lead, cause interstitial nephritis. Balkan nephropathy occurs in an endemic area and although not bacterial in origin is of unknown cause.

  5. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  6. Influence of helium generation rate and temperature history on mechanical properties of model Fe-Cr-Ni alloys irradiated in FFTF at relatively low displacement rates

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Edwards, D.J.

    1993-01-01

    In agreement with earlier studies conducted at higher displacement rates, evolution of mechanical properties of model Fe-Cr-Ni alloys irradiated at lower displacement rates in the 59 Ni isotopic doping experiment does not appear to be strongly affected by large differences in helium generation rate. This insensitivity to helium/dpa ratio is exhibited during both isothermal and non-isothermal irradiation. The overall behavior of the model alloys used in this study is dominated by the tendency to converge to a saturation strength level that is independent of thermomechanical starting state and helium/dpa ratio, but which is dependent on irradiation temperature and alloy composition

  7. Interstitial cystitis

    Science.gov (United States)

    ... symptoms get better. Reduce or stop consuming caffeine, chocolate, carbonated beverages, citrus drinks, and foods with a ... rarely done anymore Support Groups Some people may benefit from taking part in interstitial cystitis support groups . ...

  8. Interstitial Cystitis

    Science.gov (United States)

    ... relieve symptoms. Diet. Alcohol, tomatoes, spices, carbonated drinks, chocolate, caffeine, citrus fruits and drinks, pickled foods, artificial ... at scheduled times and using relaxation techniques. Physical therapy. People who have interstitial cystitis may have painful ...

  9. Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-01-01

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  10. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    Science.gov (United States)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  11. High-order sum and difference-frequency generation in helium

    International Nuclear Information System (INIS)

    Crane, J.K.; Perry, M.D.

    1993-01-01

    High-order harmonic generation provides a new method for generating coherent, XUV radiation. These harmonics are characterized by a rapid, pertubative drop at low orders, followed by a broad plateau extending to photon energies of 150 eV in the lighter, rare gas atoms. An experimentally observed limit coincides with the theoretical limit for harmonic generation in neutral atoms given by the expression E c (eV)=IP(0)+3U p (I), where E c is the energy cutoff of the harmonic plateau, IP(O) is the field-free ionization potential and U p is the electron quiver energy at the maximum intensity, I seen by the atom. As part of an effort to develop this technique into a general purpose XUV source, extensive work to understand the phase-matching between the harmonic and driving fields, and the resulting effect on the conversion efficiency, angular distribution and spectral brightness has been undertaken at several. Though, certain aspects of the harmonically generated radiation such as the polarization, relative strength of a given harmonic, and the plateau extent, are defined by the single atom-field interaction. Specifically, the single-atom harmonic spectrum is determined primarily by the interaction of a driven, quasi-free electron with the atomic potential. Using two, independent fields one can affect the electron motion by controlling the relative strength, polarization, and phase of the fields and alter the harmonic spectrum. In this paper we discuss initial, two-color experiments where we drive the atom with two fields of different frequencies: 1053 nm (1ω) and 526 nm (2ω). In addition to the higher, odd harmonics, we observe sets of three additional peaks that we attribute to sum and difference-frequency generation between the two fields. By controlling the relative polarization between the two fields we can control the relative strength of the harmonic and mixing components, as well as the polarization of the output XUV photon

  12. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.

    1994-01-01

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab

  13. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, M A; Raepsaet, X; Proust, E

    1994-12-31

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab.

  14. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  15. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  16. Interstitial radiotherapy

    International Nuclear Information System (INIS)

    Scardino, P.T.; Bretas, F.

    1987-01-01

    The authors now have 20 years of experience with modern techniques of brachytherapy. The large number of patients treated in medical centers around the world and the widespread use of this type of radiotherapy have provided us with substantial information about the indications and contraindications, advantages and disadvantages, pitfalls and complications, as well as the results of these techniques. Although the focus of this review is the experience at Baylor using the combined technique of gold seed implantation plus external beam irradiation, the alternative forms of brachytherapy will be described and compared. The authors' intention is to provide the busy clinician with a succinct and informative review indicating the status of modern interstitial radiotherapy and describing day-to-day approach and results

  17. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  18. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  19. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population

    International Nuclear Information System (INIS)

    Chun, J.J.; Shatz, C.J.

    1989-01-01

    The postnatal fate of the first-generated neurons of the cat cerebral cortex was examined. These neurons can be identified uniquely by 3H-thymidine exposure during the week preceding the neurogenesis of cortical layer 6. Previous studies in which 3H-thymidine birthdating at embryonic day 27 (E27) was combined with immunohistochemistry have shown that these neurons are present in large numbers during fetal and early postnatal life within the subplate (future white matter), that they are immunoreactive for the neuron-specific protein MAP2 and for the putative neurotransmitters GABA, NPY, SRIF, and CCK. Here, the same techniques were used to follow the postnatal location and disappearance of the early generated subplate neuron population. At birth (P0), subplate neurons showing immunoreactivity for GABA, NPY, SRIF, or CCK are present in large numbers and at high density within the white matter throughout the neocortex, and the entire population can be observed as a dense MAP2-immunoreactive band situated beneath cortical layer 6. Between P0 and P401 (adulthood), the MAP2-immunostained band disappears so that comparatively few MAP2-immunoreactive neurons remain within the white matter. There is a corresponding decrease in the number and density of neurons stained with antibodies against neurotransmitters. In each instance, these neurons could be double-labeled by the administration of 3H-thymidine at E27, indicating that they are the remnants of the early generated subplate neuron population. The major period of decrease occurs during the first 4 postnatal weeks, and adult values are attained by 5 months. Within the white matter of the lateral gyrus (visual cortex), the density of immunostained neurons decreases dramatically: MAP2, 82%, SRIF, 81%, and NPY, 96%

  20. Generation of a tenascin-C-CreER2 knockin mouse line for conditional DNA recombination in renal medullary interstitial cells.

    Directory of Open Access Journals (Sweden)

    Wenjuan He

    Full Text Available Renal medullary interstitial cells (RMIC are specialized fibroblast-like cells that exert important functions in maintaining body fluid homeostasis and systemic blood pressure. Here, we generated a RMIC specific tenascin-C promoter driven inducible CreER2 knockin mouse line with an EGFP reporter. Similar as endogenous tenascin-C expression, the reporter EGFP expression in the tenascin-C-CreER2(+/- mice was observed in the inner medulla of the kidney, and co-localized with COX2 but not with AQP2 or AQP1, suggesting selective expression in RMICs. After recombination (tenascin-C-CreER2(+/-/ROSA26-lacZ(+/- mice + tamoxifen, β-gal activity was restricted to the cells in the inner medulla of the kidney, and didn't co-localize with AQP2, consistent with selective Cre recombinase activity in RMICs. Cre activity was not obvious in other major organs or without tamoxifen treatment. This inducible RMIC specific Cre mouse line should therefore provide a novel tool to manipulate genes of interest in RMICs.

  1. Design of multi-input multi-output controller for magnetic bearing which suspends helium gas-turbine generator rotor for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Takada, Shoji; Funatake, Yoshio; Inagaki, Yoshiyuki

    2009-01-01

    A design of a MIMO controller, which links magnetic forces of multiple magnetic bearings by feedback of multiple measurement values of vibration of a rotor, was proposed for the radial magnetic bearings for the generator rotor of helium gas turbine with a power output of 300 MWe. The generator rotor is a flexible rotor, which passes over the forth critical speed. A controller transfer function was derived at the forth critical speed, in which the bending vibration mode is similar to the one which is excited by unbalance mass to reduce a modeling error. A 1404-dimensional un-symmetric coefficient matrix of equation of state for the rotating rotor affected by Jayro effect was reduced by a modal decomposition using Schur decomposition to reduce a reduction error. The numerical results showed that unbalance response of rotor was 53 and 80 μm p-p , respectively, well below the allowable limits both at the rated and critical speeds. (author)

  2. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  3. Observation of reduction of secondary electron emission from helium ion impact due to plasma-generated nanostructured tungsten fuzz

    International Nuclear Information System (INIS)

    Hollmann, E M; Doerner, R P; Nishijima, D; Pigarov, A Yu

    2017-01-01

    Growth of nanostructured fuzz on a tungsten target in a helium plasma is found to cause a significant (∼3×) reduction in ion impact secondary electron emission in a linear plasma device. The ion impact secondary electron emission is separated from the electron impact secondary electron emission by varying the target bias voltage and fitting to expected contributions from electron impact, both thermal and non-thermal; with the non-thermal electron contribution being modeled using Monte-Carlo simulations. The observed (∼3×) reduction is similar in magnitude to the (∼2×) reduction observed in previous work for the effect of tungsten fuzz formation on secondary electron emission due to electron impact. It is hypothesized that the observed reduction results from re-absorption of secondary electrons in the tungsten fuzz. (paper)

  4. Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal.

    Science.gov (United States)

    Fedigan, Stephen; Bradley, Eamonn; Webb, Timothy; Large, Roddy J; Hollywood, Mark A; Thornbury, Keith D; McHale, Noel G; Sergeant, Gerard P

    2017-11-01

    Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit Ca 2+ -activated Cl - currents (I ClCa ) that are important for the development of urethral tone. Here, we examined if TMEM16A (ANO1) contributed to this activity by examining the effect of "new-generation" TMEM16A inhibitors, CACC inh -A01 and T16A inh -A01, on I ClCa recorded from freshly isolated rabbit urethral ICC (RUICC) and on contractions of intact strips of rabbit urethra smooth muscle. Real-time quantitative PCR experiments demonstrated that TMEM16A was highly expressed in rabbit urethra smooth muscle, in comparison to TMEM16B and TMEM16F. Single-cell RT-PCR experiments revealed that only TMEM16A was expressed in freshly isolated RUICC. Depolarization-evoked I ClCa in isolated RUICC, recorded using voltage clamp, were inhibited by CACC inh -A01 and T16A inh -A01 with IC 50 values of 1.2 and 3.4 μM, respectively. Similarly, spontaneous transient inward currents (STICs) recorded from RUICC voltage clamped at -60 mV and spontaneous transient depolarizations (STDs), recorded in current clamp, were also inhibited by CACC inh -A01 and T16A inh -A01. In contrast, spontaneous Ca 2+ waves in isolated RUICC were only partially reduced by CACC inh -A01 and T16A inh -A01. Finally, neurogenic contractions of strips of rabbit urethra smooth muscle (RUSM), evoked by electric field stimulation (EFS), were also significantly reduced by CACC inh -A01 and T16A inh -A01. These data are consistent with the idea that TMEM16A is involved with CACCs in RUICC and in contraction of rabbit urethral smooth muscle.

  5. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  6. Expansion of the cathode spot and generation of shock waves in the plasma of a volume discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Omarov, O. A.; Kurbanismailov, V. S.; Arslanbekov, M. A.; Gadzhiev, M. Kh.; Ragimkhanov, G. B.; Al-Shatravi, Ali J. G.

    2012-01-01

    The expansion of the cathode spot and the generation of shock waves during the formation and development of a pulsed volume discharge in atmospheric-pressure helium were studied by analyzing the emission spectra of the cathode plasma and the spatiotemporal behavior of the plasma glow. The transition of a diffuse volume discharge in a centimeter-long gap into a high-current diffuse mode when the gas pressure increased from 1 to 5 atm and the applied voltage rose from the statistical breakdown voltage to a 100% overvoltage was investigated. Analytical expressions for the radius of the cathode spot and its expansion velocity obtained in the framework of a spherically symmetric model agree satisfactorily with the experimental data.

  7. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  8. Interstitial microwave hyperthermia treatment investigations

    International Nuclear Information System (INIS)

    Siauve, N; Lormel, C

    2012-01-01

    Microwave ablation also called interstitial hyperthermia is a medical procedure used in the treatment of many cancers, cardiac arrhythmias and other medical conditions. With this medical therapy, an electromagnetic source (antenna) is directly positioned in the target tissue and a sufficient power is injected to necrosis the tissue. The aim of this study is to propose a design procedure and develop the associated tools, for determining the optimal shape, dimensions, type and operating frequency of antenna according to the target volume. In this context, a 3D numerical predictive model of temperature elevation induced by the electric fields and two benches for thermal and electrical tissues properties characterization have been developed. To validate the procedure and the different tools, an experimental bench test which includes interstitial antenna, external microwave generator, phantom that represents the target tissue and measurement system of temperature and electric field has been elaborated.

  9. Tungsten surface evolution by helium bubble nucleation, growth and rupture

    International Nuclear Information System (INIS)

    Sefta, Faiza; Wirth, Brian D.; Hammond, Karl D.; Juslin, Niklas

    2013-01-01

    Molecular dynamics simulations reveal sub-surface mechanisms likely involved in the initial formation of nanometre-sized ‘fuzz’ in tungsten exposed to low-energy helium plasmas. Helium clusters grow to over-pressurized bubbles as a result of repeated cycles of helium absorption and Frenkel pair formation. The self-interstitials either reach the surface as isolated adatoms or trap at the bubble periphery before organizing into prismatic 〈1 1 1〉 dislocation loops. Surface roughening occurs as single adatoms migrate to the surface, prismatic loops glide to the surface to form adatom islands, and ultimately as over-pressurized gas bubbles burst. (paper)

  10. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  11. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  12. Acute interstitial pneumonia

    International Nuclear Information System (INIS)

    Cuervo M, Francisco; Carrillo Bayona, Jorge; Ojeda, Paulina

    2004-01-01

    The paper refers to a 71 year-old patient, to who is diagnosed acute interstitial pneumonia; with square of 20 days of evolution of cough dry emetizant, fever, general uneasiness, migraine, progressive dyspnoea and lost of weight

  13. Intracranial interstitial radiation

    International Nuclear Information System (INIS)

    Willis, D.; Rittenmeyer, H.; Hitchon, P.

    1986-01-01

    Primary malignant brain tumors are fatal, with 90% of patients having these tumors dying within two years following diagnosis. Cranial interstitial radiation therapy, a technique under investigation to control these tumors, involves implantation of radioactive iodine 125 seeds into the tumor bed by stereotaxic technique. The interstitial radiation technique, monitoring of radiation, and nursing care of patients are discussed. Case histories are presented, along with discussion of results attained using this therapy, and its future

  14. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  15. Ab initio calculation of harmonic generation spectra of helium using a time-dependent non-Hermitian formalism

    Czech Academy of Sciences Publication Activity Database

    Gilary, I.; Kaprálová, Petra; Moiseyev, N.

    2006-01-01

    Roč. 74, - (2006), 052505-1 ISSN 1050-2947 R&D Projects: GA AV ČR(CZ) KJB100550501; GA MŠk(CZ) LC512 Grant - others:Israel Science Foundation(IL) 1152/04 Institutional research plan: CEZ:AV0Z40550506 Keywords : high-order harmonic generation * symmetry selection rules * even harmonics * complex scaling * F-produkt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.047, year: 2006

  16. Nature of interstitially induced lattice strains

    International Nuclear Information System (INIS)

    Emin, D.

    1978-01-01

    The addition of interstitial atoms to a metal lattice has been likened to the addition of extra billiard balls to an array of tangentially touching billiard balls. In such a picture the increased clustering of interstitials can lead to the buildup of larger and larger strain fields which ultimately are associated with the production of broken bonds. Simple models of the strain fields associated with the addition of particles to a lattice in which the force exerted between the added atoms and host atoms is finite have been studied. From these studies one can define situations in which the billiard-ball approach has qualitative validity and those in which it is inappropriate. Basically, those situations in which the displacements of the host atoms can be represented as involving acoustic phonons yield long-range strain fields analogous to those of the billiard-ball model with the radius of the extra billiard ball being determined by the stiffness of the host lattice and the forces between the added atom and the surrounding host atoms. If the displacements produced by the added atoms are represented as involving primarily optical phonons the displacement pattern is short-ranged and not described by the usual elasticity theory. For example, Vegard's law does not apply in these instances. Such concerns arise in considering the strains induced by interstitial helium in tritides

  17. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  18. The energy and stability of helium-related cluster in nickel: A study of molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Hengfeng, E-mail: gonghengfeng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Chengbin; Zhang, Wei; Xu, Jian [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Division of Nuclear Materials and Engineering, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Deng, Huiqiu; Hu, Wangyu [Hunan University, Department of Applied Physics, Changsha 410082 (China)

    2016-02-01

    Highlights: • The He-related clusters exhibit the very high symmetry. • The trapping capability of vacancy to defects becomes weak due to the pre-existed SIA. • The average length of He{sub N}V{sub 1} clusters is longer than one of He{sub N} and He{sub N}V{sub 1}SIA{sub 1} cluster. - Abstract: Using molecular dynamics simulation, we investigated the energy and stability of helium-related cluster in nickel. All the binding energies of the He-related clusters are demonstrated to be positive and increase with the cluster sizes. Due to the pre-existed self-interstitial nickel atom, the trapping capability of vacancy to defects becomes weak. Besides, the minimum energy configurations of He-related clusters exhibit the very high symmetry in the local atomistic environment. And for the He{sub N} and He{sub N}V{sub 1}SIA{sub 1} clusters, the average length of He–He bonds shortens, but it elongates for the He{sub N}V{sub 1} clusters with helium cluster sizes. The helium-to-vacancy ratio plays a decisive role on the binding energies of He{sub N}V{sub M} cluster. These results can provide some excellent clues to insight the initial stage of helium bubbles nucleation and growth in the Ni-based alloys for the Generation-IV Molten Salt Reactor.

  19. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  20. Interstitial irradiation for craniopharyngioma

    International Nuclear Information System (INIS)

    Barlas, O.; Bayindir, C.; Can, M.

    2000-01-01

    The results of interstitial irradiation treatment for craniopharyngioma in two patients with six year follow-ups are presented. Stereotactic interstitial irradiation with iodine-125 sources as sole therapy was employed in two adult patients who refused surgical resection. The diagnoses were confirmed by stereotactic biopsy. The first tumour which underwent interstitial irradiation was solid and 4 cm in diameter, and the second, 2.7 cm in diameter, had both cystic and solid components. The implanted iodine-125 seeds delivered 67 Gy and 60 Gy to tumour periphery at the rate of 12 and 14 cGy/h, respectively, were removed at the end of designated radiation periods. Tumour shrinkage and central hypo density, first observed 3 months after irradiation, continued until one tumour shrank to less than 1 cm at 12 months, and the other disappeared completely at 24 months. In both cases functional integrity was restored, and neither radiation induced toxicity nor recurrence has occurred six years after treatment. The results in these two cases suggest that solid craniopharyngiomas are sensitive to interstitial irradiation. (author)

  1. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  2. Interstitial granulomatous dermatitis (IGD)

    NARCIS (Netherlands)

    Tebeica, Tiberiu; Voicu, Cristiana; Patterson, James W.; Mangarov, Hristo; Lotti, T.; Wollina, Uwe; Lotti, Jacopo; França, Katlein; Batashki, Atanas; Tchernev, Georgi

    2017-01-01

    We report the case of a 42 years old male patient suffering from skin changes, which appeared in the last 7-8 years. Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of

  3. Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron

    International Nuclear Information System (INIS)

    Wirth, B.D.; Odette, G.R.; California Univ., Santa Barbara, CA; Maroudas, D.; Lucas, G.E.; California Univ., Santa Barbara, CA

    1997-01-01

    Energetic primary recoil atoms from fast neutron irradiation generate both isolated point defects and clusters of vacancies and interstitials. Self-interstitial mobility as well as defect cluster stability and mobility play key roles in the subsequent fate of defects and, hence, in the overall microstructural evolution under irradiation. Self-interstitials and two, three and four-member self-interstitial clusters are highly mobile at low temperatures as observed in molecular-dynamics simulations and high mobility probably also extends to larger clusters. In this study, the morphology, energetics and mobility of self-interstitials and small self-interstitial clusters in α-iron are studied by molecular-statics and molecular-dynamics simulations using a Finnis-Sinclair many-body interatomic potential. Self-interstitial migration is found to be a two-step process consisting of a rotation out of the split-dumbbell configuration into the split-dumbbell configuration and translational jumps through the crowdion configuration before returning to the dumbbell configuration. Self-interstitial clusters of type split-interstitials assembled on adjacent {110} planes migrate along directions in an amoeba-like fashion by sequential local dissociation and re-association processes. (orig.)

  4. Interstitial Granulomatous Dermatitis (IGD

    Directory of Open Access Journals (Sweden)

    Tiberiu Tebeica

    2017-07-01

    Full Text Available We report the case of a 42 years old male patient suffering from skin changes , which appeared in the last 7-8 years.  Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of lymphocytes and histiocytes dispersed among collagen bundles, with variable numbers of neutrophils scattered throughout. Some histiocytes were clustered in poorly formed granuloma that included rare giant cells, with discrete Palisades and piecemeal collagen degeneration, but without mucin deposition or frank necrobiosis of collagen. The clinical and histologic findings were supportive for interstitial granulomatous dermatitis. Interstitial granulomatous dermatitis (IGD is a poorly understood entity that was regarded by many as belonging to the same spectrum of disease or even synonym with palisaded and neutrophilic granulomatous dermatitis (PNGD. Although IGD and PNGD were usually related to connective tissue disease, mostly rheumatoid arthritis, some patients with typical histologic findings of IGD never develop autoimmune disorders, but they have different underlying conditions, such as metabolic diseases, lymphoproliferative disorders or other malignant tumours. These observations indicate that IGD and PNGD are different disorders with similar manifestations.

  5. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sancho, Maria; Bradley, Eamonn; Garcia-Pascual, Angeles; Triguero, Domingo; Thornbury, Keith D; Hollywood, Mark A; Sergeant, Gerard P

    2017-11-05

    Cyclic nucleotide-gated (CNG) channels are non-selective cation channels that mediate influx of extracellular Na + and Ca 2+ in various cell types. L-cis-Diltiazem, a CNG channel blocker, inhibits contraction of urethral smooth muscle (USM), however the mechanisms underlying this effect are still unclear. We investigated the possibility that CNG channels contribute to spontaneous pacemaker activity in freshly isolated interstitial cells of Cajal (ICC) isolated from the rabbit urethra (RUICC). Using immunocytochemistry, we found intense CNG1-immunoreactivity in vimentin-immunoreactive RUICC, mainly within patches of the cellular body and processes. In contrast, α-actin immunoreactive smooth muscle cells (SMC) did not show significant reactivity to a specific CNGA1 antibody. Freshly isolated RUICC, voltage clamped at -60mV, developed spontaneous transient inward currents (STICs) that were inhibited by L-cis-Diltiazem (50µM). Similarly, L-cis-Diltiazem (50µM) also inhibited Ca 2+ waves in isolated RUICC, recorded using a Nipkow spinning disk confocal microscope. L-cis-Diltiazem (50µM) did not affect caffeine (10mM)-induced Ca 2+ transients, but significantly reduced phenylephrine-evoked Ca 2+ oscillations and inward currents in in RUICC. L-type Ca 2+ current amplitude in isolated SMC was reduced by ~18% in the presence of L-cis-Diltiazem (50µM), however D-cis-Diltiazem, a recognised L-type Ca 2+ channel blocker, abolished L-type Ca 2+ current but did not affect Ca 2+ waves or STICs in RUICC. These results indicate that the effects of L-cis-diltiazem on rabbit USM could be mediated by inhibition of CNG1 channels that are present in urethral ICC and therefore CNG channels contribute to spontaneous activity in these cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  7. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  8. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  9. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  10. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  11. Interstitial pregnancy: role of MRI

    International Nuclear Information System (INIS)

    Filhastre, M.; Lesnik, A.; Dechaud, H.; Taourel, P.

    2005-01-01

    We report the MRI features of two cases of interstitial pregnancy. In both cases, MRI was able to localize the ectopic pregnancy by showing a gestational structure surrounded by a thick wall in the upper part of the uterine wall separated from the endometrium by an uninterrupted junctional zone. Because US may confuse angular and interstitial pregnancies and because interstitial pregnancy has a particular evolutive course, MR imaging may play a key role in the diagnosis and management of women with interstitial pregnancy. (orig.)

  12. Correlation for boron carbide helium release in fast reactors

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  13. The solubility and diffusion coefficient of helium in uranium dioxide

    International Nuclear Information System (INIS)

    Nakajima, Kunihisa; Serizawa, Hiroyuki; Shirasu, Noriko; Haga, Yoshinori; Arai, Yasuo

    2011-01-01

    Highlights: ► The solubility and diffusivity of He in single-crystal UO 2 were determined. ► The determined He solubility lay within the scatter of the available data. ► The determined He diffusivity was in good agreement with recent experimental data. ► The He behavior was analyzed in terms of a simple interstitial diffusion mechanism. ► The experimental diffusivity was much lower than that analyzed theoretically. - Abstract: The solubility and diffusion coefficient of helium in the single-crystal UO 2 samples were determined by a Knudsen-effusion mass-spectrometric method. The measured helium solubilities were found to lie within the scatter of the available data, but to be much lower than those for the polycrystalline samples. The diffusion analysis was conducted based on a hypothetical equivalent sphere model and the simple Fick’s law. The helium diffusion coefficient was determined by using the pre-exponential factor and activation energy as the fitting parameters for the measured and calculated fractional releases of helium. The optimized diffusion coefficients were in good agreement with those obtained by a nuclear reaction method reported in the past. It was also found that the pre-exponential factors of the determined diffusion coefficients were much lower than those analyzed in terms of a simple interstitial diffusion mechanism.

  14. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  15. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  16. Regulation of tumor invasion by interstitial fluid flow

    International Nuclear Information System (INIS)

    Shieh, Adrian C; Swartz, Melody A

    2011-01-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell–cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals

  17. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    Science.gov (United States)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  18. Tumorous interstitial lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Meyer, E.; Mundinger, A.; Helwig, A.; Blum, U.; Wuertemberger, G.

    1990-01-01

    The radiological findings in pulmonary lymphangitic carcinomatosis and in leukemic pulmonary infiltrates mirror the tumor-dependent monomorphic interstitial pathology of lung parenchyma. It is a proven fact that pulmonary lymphangitic carcinomatosis is caused by hematogenous tumor embolization to the lungs; pathogenesis by contiguous lymphangitic spread is the exception. High-resolution CT performed as a supplement to the radiological work-up improves the sensitivity for pulmonary infiltrates in general and thus makes the differential diagnosis decided easier. Radiological criteria cannot discriminate the different forms of leukemia. Plain chest X-ray allows the diagnosis of pulmonary involvement in leukemia due to tumorous infiltrates and of tumor- or therapy-induced complications. It is essential that the radiological findings be interpreted with reference to the stage of tumor disease and the clinical parameters to make the radiological differential diagnosis of opportunistic infections more reliable. (orig.) [de

  19. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  20. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  1. Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.L. [Key Lab for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Department of Physics, Guangxi University, Nanning 530004 (China); Wang, J. [Key Lab for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Hou, Q., E-mail: qhou@scu.edu.cn [Key Lab for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Deng, A.H. [Department of Physics, Sichuan University, Chengdu 610064 (China)

    2014-03-15

    Molecular dynamics (MD) simulations are performed on the diffusion and coalescence of helium in tungsten. A new method for determining the effective capture radii (ECRs) and the dissociation energies of helium-related defects is proposed in this work. It is observed that the ECR of an interstitial helium atom trapping helium interstitials (denoted as He–He{sub n}, n = 1–3) decreases with increasing temperature, except for He–He{sub 2} at T < 400 K. The traditional view that the ECR is approximately equal to the lattice constant, which has been widely used in kinetic Monte Carlo (KMC) and rate theory (RT) models, is only valid in some cases. However, the ECR between an interstitial helium atom and a substitutional helium atom (denoted as He–HeV) always approximates the third nearest-neighbor tetrahedral positions of the HeV. The diffusion coefficients D{sub n} for helium clusters are also investigated. He{sub 2} migrates more quickly than a single He atom does at T < 400 K, whereas the diffusion path of He{sub 2} changes at higher temperatures. Another counterintuitive observation is that D{sub 5} > D{sub 3} > D{sub 4} at T < 500 K, which can be attributed to the disordered structure of He{sub 5}. The Arrhenius relation describes the diffusion of He{sub n} well in the temperature range from 300 K to 550 K, whereas the diffusion is not a standard thermally activated process at higher temperatures. Taken together, these results help elucidate the initial stage of helium bubble formation in tungsten as well as the requirements of long-term evolution methods such as KMC or RT models.

  2. Interstitial Cells of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Vladimír Pucovský

    2010-01-01

    Full Text Available Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.

  3. Helium bubble formation and retention in Cu-Nb nanocomposites

    International Nuclear Information System (INIS)

    Dunn, A.Y.; McPhie, M.G.; Capolungo, L.; Martinez, E; Cherkaoui, M.

    2013-01-01

    A spatially dependent rate theory model for helium migration, clustering, and trapping on interfaces between Cu and Nb layers is introduced to predict the evolution of the concentrations of He clusters of various sizes during implantation and early annealing. Migration and binding energies of point defects and small clusters in bulk Cu and Nb are found using conjugate gradient minimization and the nudged elastic band method. The model is implemented in a three-dimensional framework and used to predict the relationship between helium bubble formation and the nano-composite microstructure, including interfacial free volume, grain size, and layer thickness. Interstitial and vacancy-like migration of helium is considered. The effects of changing layer thickness and interfacial misfit dislocation density on the threshold for helium bubble nucleation are found to match experiments. Accelerated helium release due to interfaces and grain boundaries is shown to occur only when diffusion rates on interfaces and grain boundaries are greatly increased relative to the bulk material.

  4. Molecular dynamics and density functional simulations of tungsten nanostructure formation by helium plasma irradiation

    International Nuclear Information System (INIS)

    Ito, A.M.; Takayama, A.; Oda, Y.

    2014-10-01

    For the purposes of long-term use of tungsten diverter walls, it is necessary to suppress the surface deterioration due to the helium ash which induces the formations of helium bubbles and tungsten fuzzy nanostructures. In the present paper, the formation mechanisms of helium bubbles and tungsten fuzzy nanostructures were explained by the four-step process which is composed of the penetration process, the diffusion and agglomeration process, the helium bubble growth process and the tungsten fuzzy nanostructure formation process. The first to third step processes of the four-step process were investigated by using binary collision approximation, density functional theory and molecular dynamics, respectively. Furthermore, newly developed molecular dynamics and Monte-Carlo hybrid simulation has successfully reproduced the early formation process of tungsten fuzzy nanostructure. From these simulations, we here suggest the following key mechanisms of the formations of helium bubbles and tungsten fuzzy nanostructures: (1) By comparison between helium, neon, argon and hydrogen, the noble gas atoms can agglomerate limitlessly not only at a vacancy but also at an interstitial site. In particular, at the low incident energy, only helium atoms bring about the nucleation for helium bubble. (2) In the helium bubble growth process, the strain of the tungsten material around a helium atom is released as a dislocation loop, which is regarded as the loop punching phenomenon. (3) In the tungsten nanostructure formation process, the bursting of a helium bubble forms cavity and convexity in the surface. The helium bubbles tend to be grown and to burst at the cavity region, and then the difference of height between the cavity and convexity on the surface are enhanced. Consequently, the tungsten fuzzy nanostructure is formed. (author)

  5. Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten

    International Nuclear Information System (INIS)

    Zhou, Y.L.; Wang, J.; Hou, Q.; Deng, A.H.

    2014-01-01

    Molecular dynamics (MD) simulations are performed on the diffusion and coalescence of helium in tungsten. A new method for determining the effective capture radii (ECRs) and the dissociation energies of helium-related defects is proposed in this work. It is observed that the ECR of an interstitial helium atom trapping helium interstitials (denoted as He–He n , n = 1–3) decreases with increasing temperature, except for He–He 2 at T n for helium clusters are also investigated. He 2 migrates more quickly than a single He atom does at T 2 changes at higher temperatures. Another counterintuitive observation is that D 5 > D 3 > D 4 at T 5 . The Arrhenius relation describes the diffusion of He n well in the temperature range from 300 K to 550 K, whereas the diffusion is not a standard thermally activated process at higher temperatures. Taken together, these results help elucidate the initial stage of helium bubble formation in tungsten as well as the requirements of long-term evolution methods such as KMC or RT models

  6. Sapphire capillary interstitial irradiators for laser medicine

    Science.gov (United States)

    Shikunova, I. A.; Dolganova, I. N.; Dubyanskaya, E. N.; Mukhina, E. E.; Zaytsev, K. I.; Kurlov, V. N.

    2018-04-01

    In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.

  7. Interstitial cystitis: painful bladder syndrome

    Directory of Open Access Journals (Sweden)

    R F Sholan

    2018-02-01

    Full Text Available Interstitial cystitis, or painful bladder syndrome, is a chronic inflammatory disease of a bladder of unknown etiology. It negatively affects the quality of life, causes depressive disorders, anxiety, and sexual dysfunction. Despite numerous studies, the etiology of interstitial cystitis is still unclear and it’s considered as painful bladder syndrome with multifactorial origin. According to the US National Health and Nutrition Examination Survey, 470/100 000 people (60/100 000 men, 850/100 000 women are diagnosed with interstitial cystitis. Diagnosis of the disease is difficult and is substantially based on clinical symptoms. Pelvic pain, urinary urgency, frequency and nocturia are the basic complaints in this pathology. The diagnosis requires exclusion of diseases with similar manifestations. So interstitial cystitis is frequently misdiagnosed as urinary tract infection, overactive bladder, urethral obstruction or diverticulosis, chronic prostatitis, bladder cancer, vulvodynia, endometriosis, and chronic pelvic pain. Etiopathogenesis of the disease is uncertain, which makes etiologic treatment impossible. Currently scientific discussions on the causes of disease continue as well as different treatment regimens are offered, but are often ineffective, palliative and temporary. The treatment for intersticial cystitis should focus on restoring normal bladder function, prevention of relapse of symptoms and improvement of patients’ quality of life. The literature review presents current view on the terminology, epidemiology, diagnosis and treatment of interstitial cystitis.

  8. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  9. Cosmological helium production simplified

    International Nuclear Information System (INIS)

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  10. Interstitial impurity interactions and dislocation microdynamics in Mo crystals

    International Nuclear Information System (INIS)

    Kwok, D.N.

    1975-05-01

    The effects of interstitial impurities on the mechanical properties of molybdenum are explored by comparing results obtained for crystals of various interstitial contents controlled by ultra-high vacuum outgassing. Results show a modulus reduction for as-grown samples and for outgassed specimens at low applied stresses. As a function of plastic microstrain, the values of modulus defect for both as-grown and outgassed specimens saturate at the same value. Interstitial impurities act as pinning agents to dislocation bowing, but when all the easy dislocation loops have broken away from local interstitial pins, the modulus defect reaches a constant saturation value. Etch pitting techniques were used to correlate microstrain observations with dislocation generation and motion. It has been found that edge dislocation generation and movement are active in the microstrain region while screw dislocations are relatively inactive until the macrostrain region is reached. Dislocation velocities range from 10 -6 to 10 -3 cm/s and the average distance between interstitial impurity pinning points is found to be approximately 8 x 10 -4 cm. (U.S.)

  11. Room temperature desorption of helium-3 from metal tritides

    International Nuclear Information System (INIS)

    Beavis, L.C.; Kass, W.J.

    1976-10-01

    It has long been known that helium-3 accumulates in metal tritides as tritium decays. Early in life nearly 100% of the helium-3 is retained in the lattice, but when a critical concentration is reached (material dependent), the lattice will no longer retain the helium-3 and it is emitted at about the generation rate. Measurements were recently made on a number of erbium tritides with varying concentrations in the ditritide phase. The expected early release characteristics are observed for all of the samples. However, ditritides with higher tritium concentrations reach the rapid release state at much lower helium-3 concentrations. For instance, the helium to metal concentration for rapid release in the unsaturated ditritide is about 0.22, whereas it is only one-tenth this value in the saturated ditritide. The additional tritium in the tritide appears to be the cause of this effect

  12. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  13. Molecular dynamics study of the role of symmetric tilt grain boundaries on the helium distribution in nickel

    Science.gov (United States)

    Torres, E.; Pencer, J.

    2018-04-01

    Helium impurities, from either direct implantation or transmutation reactions, have been associated with embrittlement in nickel-based alloys. Helium has very low solubility in nickel, and has been found to aggregate at lattice defects such as vacancies, dislocations, and grain boundaries. The retention and precipitation of helium in nickel-based alloys have deleterious effects on the material mechanical properties. However, the underlying mechanisms that lead to helium effects in the host metal are not fully understood. In the present work, we investigate the role of symmetric tilt grain boundary (STGB) structures on the distribution of helium in nickel using molecular dynamics simulations. We investigate the family of STGBs specific to the 〈 110 〉 tilt axis. The present results indicate that accumulation of helium at the grain boundary may be modulated by details of grain boundary geometry. A plausible correlation between the grain boundary energy and misorientation with the accumulation and mobility of helium is proposed. Small clusters with up to 6 helium atoms show significant interstitial mobility in the nickel bulk, but also become sites for nucleation and grow of more stable helium clusters. High-energy GBs are found mainly populated with small helium clusters. The high mobility of small clusters along the GBs indicates the role of these GBs as fast two-dimensional channels for diffusion. In contrast, the accumulation of helium in large helium clusters at low-energy STGB creates a favorable environment for the formation of large helium bubbles, indicating a potential role for low-energy STGB in promoting helium-induced GB embrittlement.

  14. Helium bubbles aggravated defects production in self-irradiated copper

    Science.gov (United States)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  15. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  16. Helium hammer in superfluid transfer

    Science.gov (United States)

    Tward, E.; Mason, P. V.

    1984-01-01

    Large transient pressure pulses, referred to as a helium hammer, which occurred in the transfer line of the main cryogenic tank during the development tests of the Infrared Astronomical Satellite, launched on January 25, 1983, are analyzed, and the measures taken to prevent a failure described. The modifications include an installation of a 2.3-liter surge tank upstream, and a back-up relief valve downstream, of a burst disk. The surge tank is designed to attenuate a 0.33-MPa pressure pulse at the inlet down to 0.092 MPa at the outlet. A mechanism of the pulse generation is suggested, which involves flashing and rapid recondensation of the small amount of liquid entering the warm section of a transition to room temperature.

  17. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  18. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  19. Henry's law and accumulation of weak source for crust-derived helium: A case study of Weihe Basin, China

    Directory of Open Access Journals (Sweden)

    Yuhong Li

    2017-12-01

    Full Text Available Crust-derived helium is generated from the radioactive decay of uranium, thorium and other radioactive elements in geological bodies. Compared with conventional natural gas, helium is a typical weak source gas as a result of extremely slow generation rate and absence of helium-generating peak. It is associated with methane or carbon dioxide reservoirs frequently and related to groundwater closely. Helium can meet the industry standard with 0.1% in volume fraction. In order to study the accumulation mechanism of helium, the previous research on Henry's coefficient and solubility of helium, nitrogen and methane are summarized and the key roles of Henry's Law in the helium migration, accumulation and preservation are discussed by simulating calculation taking Weihe Basin as an example. According to the Law, the gas solubility in dilute solution is controlled by the gas partial pressure and the Henry's coefficient. Compared with the carrier gases, the Henry's constant of helium is high, with striking difference at low and high temperature. In addition, the helium partial pressure is greatly different in helium source rocks and gas reservoirs, resulting in the great differences of helium solubility in the two places. The accumulation progresses are as follows. Firstly, helium can dissolve into water and migrate out of helium source rocks due to the high helium solubility, which is caused by high helium partial pressure and high temperature in source rock. Secondly, when dissolved helium is transported to the shallow gas reservoir, it is prone to be out of solution and into reservoir due to the extremely low partial pressure and low temperature. Meanwhile part of carrier gases dissolves into water, as if helium is “replaced” out. Furthermore, the low concentration funnel of dissolved helium is formed near the gas reservoir, then other dissolved helium continues to migrate towards the gas reservoir, which greatly improves the helium accumulation

  20. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    de Reuck, K M; McCarty, R D

    2013-01-01

    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  1. Use of helium in uranium exploration, Grants district

    International Nuclear Information System (INIS)

    DeVoto, R.H.; Mead, R.H.; Martin, J.P.; Bergquist, L.E.

    1980-01-01

    The continuous generation of inert helium gas from uranium and its daughter products provides a potentially useful means for remote detection of uranium deposits. The practicality of conducting helium surveys in the atmosphere, soil gas, and ground water to explore for buried uranium deposits has been tested in the Grants district and in the Powder River Basin of Wyoming. No detectable helium anomalies related to buried or surface uranium deposits were found in the atmosphere. However, reproducible helium-in-soil-gas anomalies were detected spatially related to uranium deposits buried from 50 to 800 ft deep. Diurnal and atmospheric effects can cause helium content variations (noise) in soil gas that are as great as the anomalies observed from instantaneous soil-gas samples. Cumulative soil-gas helium analyses, such as those obtained from collecting undisturbed soil samples and degassing them in the laboratory, may reveal anomalies from 5 to 100 percent above background. Ground water samples from the Grants district, New Mexico, and the Powder River Basin, Wyoming, have distinctly anomalous helium values spatially related to buried uranium deposits. In the southern Powder River Basin, helium values 20 to 200 percent above background occur 2 to 18 mile down the ground-water flow path from known uranium roll-front deposits. In the Grants district, helium contents 40 to 700 percent above background levels are present in ground waters from the host sandstone in the vicinity of uranium deposits and from aquifers up to 3,000 ft stratigraphically above the deep uranium deposits. The use of helium in soil and ground-water surveys, along with uranium and radon analyses of the same materials, is strongly recommended is expensive, deep, uranium-exploration programs such as those being conducted in the Grants district

  2. Tritium and helium-3 in metals

    International Nuclear Information System (INIS)

    Lasser, R.

    1989-01-01

    The book surveys recent results on the behaviour of tritium and its decay product helium-3 metals. In contrast to many earlier books which discuss the properties of the stable hydrogen isotopes without mentioning tritium, this book reviews mainly the results on tritium in metals. Due to the difficulties in preparing metal tritide samples, very important quantities such as diffusivity, superconductivity, solubility, etc. have only been determined very recently. The book not only presents the measured tritium data, but also the isotopic dependency of the different physical properties by comparing H, D and T results. A chapter is devoted to helium-3 in metals. Aspects such as helium release, generation of helium bubbles, swelling, and change of the lattice parameter upon aging are discussed. The book provides the reader with up-to-date information and deep insight into the behaviour of H, D, T and He-3 in metals. Further important topics such a tritium production, its risks, handling and discharge to the environment are also addressed

  3. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  4. Diffusion of He interstitial and di-He cluster at grain boundaries in α-Fe

    International Nuclear Information System (INIS)

    Gao, F.; Heinisch, H.L.; Kurtz, R.J.

    2007-01-01

    A systematic molecular dynamics study of the diffusion mechanisms of He interstitial and di-He cluster at two representative interfaces has been carried out in α-Fe. The diffusion coefficient of a He interstitial and the effective migration energies were determined. The He atom diffuses along the Σ11 grain boundary one-dimensionally along specific directions, while it migrates two-dimensionally at low temperatures, and three-dimensionally at higher temperatures, in the Σ3 grain boundary. The di-He interstitial cluster can migrate rapidly along the Σ3 interface at low temperatures, but not at the Σ11 interface. It has been observed that a di-He interstitial cluster can kick out a self interstitial atom (SIA) at high temperatures, forming a He 2 V complex. The SIA migrates rapidly near interfaces, whereas the He 2 V complex is immobile at the temperatures considered. This small cluster may serve as the smallest nucleation for the formation of helium bubbles at interfaces

  5. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  6. Helium production in mixed spectrum reactor-irradiated pure elements

    International Nuclear Information System (INIS)

    Kneff, D.W.; Oliver, B.M.; Skowronski, R.P.

    1986-01-01

    The objectives of this work are to apply helium accumulation neutron dosimetry to the measurement of neutron fluences and energy spectra in mixed-spectrum fission reactors utilized for fusion materials testing, and to measure helium generation rates of materials in these irradiation environments. Helium generation measurements have been made for several Fe, Cu Ti, Nb, Cr, and Pt samples irradiated in the mixed-spectrum High Flux Isotope Reactor (HFIR) and Oak Ridge Research Reactor (ORR) at the Oak Ridge National Laboratory. The results have been used to integrally test the ENDF/B-V Gas Production File, by comparing the measurements with helium generation predictions made by Argonne National Laboratory using ENDF/B-V cross sections and adjusted reactor spectra. The comparisons indicate consistency between the helium measurements and ENDF/B-V for iron, but cross section discrepancies exist for helium production by fast neutrons in Cu, Ti, Nb, and Cr (the latter for ORR). The Fe, Cu, and Ti work updates and extends previous measurements

  7. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  8. Simulation of liquid helium

    International Nuclear Information System (INIS)

    Ceperley, D.M.

    1985-07-01

    The author discusses simulation methods for quantum mechanical systems at finite temperatures. Recently it has been shown that static properties of some quantum systems can be obtained by simulation in a straightforward manner using path integrals, albeit with an order of magnitude more computing effort needed than for the corresponding classical systems. Some dynamical information can be gleaned from these simulations as will be discussed below. But this is very limited - there is no quantum version of the molecular dynamics method. The path integral method is illustrated by discussing the application to liquid helium. 12 refs., 8 figs

  9. Interstitial lung disease: Diagnostic approach

    OpenAIRE

    Kaushik Saha

    2014-01-01

    Interstitial lung disease (ILD) is a final common pathway of a broad heterogeneous group of parenchymal lung disorders. It is characterized by progressive fibrosis of the lung leading to restriction and diminished oxygen transfer. Clinically, the presenting symptoms of ILD are non-specific (cough and progressive dyspnea on exertion) and are often attributed to other diseases, thus delaying diagnosis and timely therapy. Clues from the medical history along with the clinical context and radiolo...

  10. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  11. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  12. A helium regenerative compressor

    International Nuclear Information System (INIS)

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-01-01

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors

  13. Helium production in reactor materials

    International Nuclear Information System (INIS)

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  14. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  15. Helium bubbles in bcc Fe and their interactions with irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail: X.Gai@lboro.ac.uk; Lazauskas, Tomas; Smith, Roger; Kenny, Steven D.

    2015-07-15

    The properties of helium bubbles in a body-centred cubic (bcc) Fe lattice have been examined. The atomic configurations and formation energies of different He–vacancy complexes were determined. The 0 K results show that the most energetically favourable He to Fe vacancy ratio increases from about 1:1 for approximately 5 vacancies up to about 4:1 for 36 vacancies. The formation mechanisms for small He clusters have also been considered. Isolated interstitials and small clusters can diffuse quickly through the lattice. MD simulations of randomly placed interstitial He atoms at 500 K showed clustering over the time scale of nanoseconds with He clusters containing up to 4 atoms being mobile over this time scale. He clusters containing 4 or 5 atoms were shown to eject an Fe dumbbell interstitial which could then detach from the He cluster and diffuse with the remaining He–vacancy complex being effectively immobile. Collision cascades initiated near larger bubbles showed that Fe vacancies produced by the cascades readily become part of the He–vacancy complexes. Energy barriers for He to join an existing bubble as a function of the He–vacancy ratio are also calculated. These can be larger than the diffusion barrier in the pristine lattice, but are lower when the bubbles contain excess vacancies, thus indicating that bubble growth may be kinetically constrained.

  16. The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Danny, E-mail: danny-perez@lanl.gov; Sandoval, Luis; Voter, Arthur F. [Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Uberuaga, Blas P. [Materials Science and Technology MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-28

    Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.

  17. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  18. Diffusion and agglomeration of helium in stainless steel in the temperature range from RT to 600 deg. C

    International Nuclear Information System (INIS)

    Zhang, C.H.; Chen, K.Q.; Zhu, Z.Y.

    2000-01-01

    Diffusion of helium and formation of helium bubbles in stainless steel in conditions of atomic displacement in the temperature range from RT to 600 deg. C are studied theoretically using standard rate equations. The dissociative mechanism via self-interstitial/He replacement is assumed to control helium diffusion and bubble formation. The numerical analysis shows that the temperature dependence of the effective diffusion coefficient of helium, the number density and the mean radius of bubbles has two distinctly different regimes with the transition occurring around 300 deg. C. The effective diffusion coefficient of helium, the number density and the mean radius of bubbles show weak temperature dependence in the low temperature regime, while they change abruptly with temperature in the high temperature regime. The results are qualitatively in agreement with the results of our experimental study on helium diffusion and bubble formation in helium-implanted 316L stainless steel. However, the discrepancy in the absolute values of number density and mean radius of bubbles between theoretical and experimental studies indicates that helium diffusion and bubble formation may be controlled by some athermal mechanisms in the low temperature regime

  19. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten

    Science.gov (United States)

    Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-11-01

    Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½ type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.

  20. Photoionization of helium dimers

    International Nuclear Information System (INIS)

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  1. Smoking-related interstitial lung diseases

    International Nuclear Information System (INIS)

    Marten, K.

    2007-01-01

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis

  2. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  3. Theoretical study of helium insertion and diffusion in 3C-SiC

    International Nuclear Information System (INIS)

    Van Ginhoven, Renee M.; Chartier, Alain; Meis, Constantin; Weber, William J.; Rene Corrales, L.

    2006-01-01

    Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191-194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions

  4. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Brimbal, Daniel, E-mail: Daniel.brimbal@areva.com [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Fournier, Lionel [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Barbu, Alain [Alain Barbu Consultant, 6 Avenue Pasteur Martin Luther King, 78230 Le Pecq (France)

    2016-01-15

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium. - Highlights: • Irradiation of steels with helium is studied through a new cluster dynamics model. • There is only a small effect of helium on cavity distributions in PWR conditions. • An increase in helium production causes an increase in cavity density over 500 °C. • The role of helium is to stabilize cavities via reduced emission of vacancies.

  5. Electronic properties of physisorbed helium

    International Nuclear Information System (INIS)

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  6. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  7. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  8. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  9. A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects

    International Nuclear Information System (INIS)

    Reed, D.J.

    1977-01-01

    Recent theoretical calculations of the properties of rare gases, and in particular helium, in the common f.c.c. and b.c.c. metals, are reviewed from the viewpoint of the investigator concerned with the behaviour of rare gas in such radiation damage processes as surface blistering and void swelling. Particular attention is paid to mechanisms by which helium may migrate in a damaged metal lattice during irradiation and to the properties of small gas and vacancy clusters which may represent bubble or void nuclei. Initially the proposed rapid migration of interstitial helium is discussed together with the substitutional de-trapping mechanism, whereby thermally activated helium jumps from a substitutional to an interstitial position. This enables a mechanism of substitutional helium diffusion to be proposed which may proceed at temperatures below those of self-diffusion. The formation, binding, migration and dissociation energies of gas-vacancy clusters have been reviewed. The relevance of the predicted trend towards the optimum stability of clusters composed of equal numbers of gas atoms and vacancies is discussed. The limited data available concerned with the binding of a helium atom to a pure dislocation line is presented together with comments on the possible nature of the interaction of helium with the dislocation jog. (author)

  10. Experimental method for investigating helium effects in irradiated vanadium

    International Nuclear Information System (INIS)

    Smith, D.L.; Matsui, H.; Greenwood, L.; Loomis, B.

    1987-10-01

    Analyses have been performed which indicate that an effective method for experimentally investigating helium effects in neutron irradiated vanadium base alloys can be developed. The experimental procedure involves only modest modifications to existing procedures currently used for irradiation testing of vanadium-base alloys in the FFTF reactor. Helium is generated in the vanadium alloy by decay of tritium which is either preinjected or generated within the test capsule. Calculations indicate that nearly constant He/dpa ratios of desired magnitude can be attained by proper selection of experimental parameters. The proposed method could have a major impact on the development of vanadium base alloys for fusion reactor applications. 8 refs., 4 figs

  11. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  12. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  13. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  14. High Accuracy Vector Helium Magnetometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed HAVHM instrument is a laser-pumped helium magnetometer with both triaxial vector and omnidirectional scalar measurement capabilities in a single...

  15. The interstitial pneumonitis induced by cytostatics

    International Nuclear Information System (INIS)

    Dubrava, M.; Markova, I.; Mistina, L.

    1998-01-01

    The author presents a cause of 9-year old boy with ALL-F2B in the stage of the prevention treatment where in the its course the induced interstitial pneumonitis by cytostatics was developed. The bacterial, virus, mycological and parasitic causes of the interstitial pneumonitis on the basis of the bronchoscopy, BAL, CT, scintigraphy, laboratory and by cultivation were excluded. (authors)

  16. The behavior of interstitials in irradiated graphite

    International Nuclear Information System (INIS)

    Pedraza, D.F.

    1991-01-01

    A computer model is developed to simulate the behavior of self-interstitials with particular attention to clustering. Owing to the layer structure of graphite, atomistic simulations can be performed using a large parallelepipedic supercell containing a few layers. In particular, interstitial clustering is studied here using a supercell that contains two basal planes only. Frenkel pairs are randomly produced. Interstitials are placed at sites between the crystal planes while vacancies are distributed in the two crystal planes. The size of the computational cell is 20000 atoms and periodic boundary conditions are used in two dimensions. Vacancies are assumed immobile whereas interstitials are given a certain mobility. Two point defect sinks are considered, direct recombination of Frenkel pairs and interstitial clusters. The clusters are assumed to be mobile up to a certain size where they are presumed to become loop nuclei. Clusters can shrink by emission of singly bonded interstitials or by recombination of a peripheral interstitial with a neighboring vacancy. The conditions under which interstitial clustering occurs are reported. It is shown that when clustering occurs the cluster size population gradually shifts towards the largest size cluster. The implications of the present results for irradiation growth and irradiation-induced amorphization are discussed

  17. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    International Nuclear Information System (INIS)

    Dethloff, Christian; Gaganidze, Ermile; Svetukhin, Vyacheslav V.; Aktaa, Jarir

    2012-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different 10 B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  18. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  19. Chlorambucil-Induced Acute Interstitial Pneumonitis

    Directory of Open Access Journals (Sweden)

    Hammad Shafqat

    2014-01-01

    Full Text Available Chlorambucil is an alkylating agent commonly used in treatment of chronic lymphocytic leukemia (CLL. We report a case of interstitial pneumonitis developing in an 83-year-old man 1.5 months after completing a six-month course of chlorambucil for CLL. The interstitial pneumonitis responded to therapy with prednisone. We performed a systematic review of literature and identified 13 other case reports of chlorambucil-induced pulmonary toxicity, particularly interstitial pneumonitis. No unifying risk factor could be discerned and the mechanism of injury remains unknown. In contrast, major randomized trials of chlorambucil therapy in CLL have not reported interstitial pneumonitis as an adverse effect, which may be due to the rarity of the phenomenon or due to underreporting of events occurring after completion of treatment. Clinicians should consider drug-induced interstitial pneumonitis in the differential diagnosis of a suggestive syndrome developing even after discontinuation of chlorambucil.

  20. The early history of high-temperature helium gas-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Simnad, M.T.; California Univ., San Diego, La Jolla, CA

    1991-01-01

    The original concepts in the proposals for high-temperature helium gas-cooled power reactors by Farrington Daniels, during the decade 1944-1955, are summarized. The early research on the development of the helium gas-cooled power reactors is reviewed, and the operational experiences with the first generation of HTGRs are discussed. (author)

  1. Effect of helium on tensile properties of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  2. Postoperative interstitial radiotherapy of keloids

    International Nuclear Information System (INIS)

    Clavere, P.; Bonnafoux-Clavere, A.; Roullet, B.; Morzel, A.; Rhein, B.; Bonnetblanc, J.M.; Olivier, J.P.

    1993-01-01

    During an 8-year period, 21 patients with keloids (27 keloids) were treated with keloidectomy and post-operative interstitial radiotherapy by an iridium 192 wire. Only one patient had been previously treated by corticoids, without results. A dose of 12 Gy (three patients) to 15 Gy (18 patients) was delivered at a point 2.5 mm from the axis of the wire. The follow-up time was from 2 - 104 months. The success rate, at 7 months, was close to 88%. Ao recurrence occurred in three patients without relation to the method used, the lesion-age or the localization of the lesions. There were no side-effects. This method represents an effective, non-constraining and safe treatment for keloids if the contra-indications are respected

  3. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  4. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  5. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  6. Helium turbomachine design for GT-MHR power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Orlando, R.J.

    1994-07-01

    The power conversion system in the gas turbine modular helium reactor (GT-MHR) power plant is based on a highly recuperated closed Brayton cycle. The major component in the direct cycle system is a helium closed-cycle gas turbine rated at 286 MW(e). The rotating group consists of an intercooled helium turbocompressor coupled to a synchronous generator. The vertical rotating assembly is installed in a steel vessel, together with the other major components (i.e., recuperator, precooler, intercooler, and connecting ducts and support structures). The rotor is supported on an active magnetic bearing system. The turbine operates directly on the reactor helium coolant, and with a temperature of 850 degree C (1562 degree F) the plant efficiency is over 47%. This paper addresses the design and development planning of the helium turbomachine, and emphasizes that with the utilization of proven technology, this second generation nuclear power plant could be in service in the first decade of the 21st century

  7. Photoacoustic imaging driven by an interstitial irradiation source

    Directory of Open Access Journals (Sweden)

    Trevor Mitcham

    2015-06-01

    Full Text Available Photoacoustic (PA imaging has shown tremendous promise in providing valuable diagnostic and therapy-monitoring information in select clinical procedures. Many of these pursued applications, however, have been relatively superficial due to difficulties with delivering light deep into tissue. To address this limitation, this work investigates generating a PA image using an interstitial irradiation source with a clinical ultrasound (US system, which was shown to yield improved PA signal quality at distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional radiology procedures.

  8. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.

    1994-01-01

    The development of the thermonuclear technology has given rise to a renewed interest in the study of the behavior of helium in metals. A great amount of work is still required for the understanding of the role of helium on the mechanical properties of structural materials for fusion technology, especially austenitic stainless steels. This article deals with the study of the influence of thermomechanical heat treatments, aging conditions (temperature and time), and helium concentration of helium bubble precipitation in a 316L austenitic steel. Helium was generated by the radioactive decay of tritium (tritium trick). Helium bubbles impede the grain growth in 316L steel aged at 1,373 K and also the recrystallization reaction at this temperature if cold working is performed prior to aging. Transmission electron microscopy (TEM) observations indicated a weak helium precipitation at 1,073 and 1,223 K, presumably due to the presence of trapping sites for tritium, and no bubble growth after aging up to 100 hours. Precipitation sites are mainly dislocations in the matrix at 1,073 K and grain boundaries and individual dislocations in the matrix at 1,223 K. The large bubble size (50 nm) observed at 1,373 K, even for short aging times (0.083), can partly be attributed to bubble dragging by dislocations toward the grain boundaries. Cold deformation prior to aging leads to a larger bubble size due to growth enhancement during recrystallization. Decreasing the helium content leads to a smaller helium bubble size and density. Tritium trapping at helium bubbles may favor helium 3 accumulation on defects such as grain boundaries, as observed by tritium autoradiography

  9. Chylothorax in dermatomyositis complicated with interstitial pneumonia.

    Science.gov (United States)

    Isoda, Kentaro; Kiboshi, Takao; Shoda, Takeshi

    2017-04-01

    Chylothorax is a disease in which chyle leaks and accumulates in the thoracic cavity. Interstitial pneumonia and pneumomediastinum are common thoracic manifestations of dermatomyositis, but chylothorax complicated with dermatomyositis is not reported. We report a case of dermatomyositis with interstitial pneumonia complicated by chylothorax. A 77-year-old woman was diagnosed as dermatomyositis with Gottron's papules, skin ulcers, anti-MDA5 antibody and rapid progressive interstitial pneumonia. Treatment with betamethasone, tacrolimus and intravenous high-dose cyclophosphamide was initiated, and her skin symptoms and interstitial pneumonia improved once. However, right-sided chylothorax began to accumulate and gradually increase, and at the same time, her interstitial pneumonia began to exacerbate, and skin ulcers began to reappear on her fingers and auricles. Although her chylothorax improved by fasting and parenteral nutrition, she died due to further exacerbations of dermatomyositis and interstitial pneumonia in spite of steroid pulse therapy, increase in the betamethasone dosage, additional intravenous high-dose cyclophosphamide and plasma pheresis. An autopsy showed no lesions such as malignant tumors in the thoracic cavity. This is the first report of chylothorax complicated by dermatomyositis with interstitial pneumonia.

  10. HRCT of diffuse interstitial pneumonia during treatment

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sano, Akira; Imanaka, Kazufumi

    1989-01-01

    HRCT was carried out in twenty patients with diffuse interstitial pneumonia: 13 cases of IIP, 3 of BOOP, 2 of drug-induced pneumonia, 1 of rheumatoid lung and acute interstitial pneumonia of unknown origin. With special attention to inflammatory activity, the patients underwent HRCT periodically during the treatment. Correlative investigation between HRCT image and grade of accumulation in 67 Ga scintigraphy was also performed. Response to steroid therapy was clearly reflected on HRCT image, that was shown as decreasing pulmonary density or thinning of honeycomb wall. HRCT is considered to be useful in assessing the activity of diffuse interstitial pneumonia. (author)

  11. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  12. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.

  13. Modeling radiation damage near grain boundary in helium-doped α-iron

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C.P. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, X.-Y. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gao, F. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Y.H. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Wang, Y.Q., E-mail: yqwang@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-08-01

    Molecular dynamics (MD) simulations are performed to investigate how ∑3〈110〉(1 2 1) symmetric tilt grain boundary (GB) affects point defects and defect clusters in He-doped α-iron at 300 K in picosecond time scales. Molecular statics calculations are also performed and show that the formation energy is reduced in the GB, and the GB acts as a good sink for point defects, especially for interstitial He and self-interstitial atoms (SIAs). It is observed that the average size of He{sub n}V{sub m} (m > n) clusters becomes smaller in the GB-containing Fe system, where m and n represent the number of vacancies and He atoms in the cluster, respectively. It is also found that the number of He{sub n}V (n = 2, 3) clusters in the GB region decreases, while the number of the HeV clusters increases. The GBs loaded with substitutional or interstitial helium atoms are found to facilitate the growth of helium clusters in the GB region.

  14. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  15. The diffuse interstitial lung disease - with emphasis in the idiopathic interstitial pneumonias

    International Nuclear Information System (INIS)

    Bustillo P, Jose G; Pacheco, Pedro M; Matiz, Carlos; Ojeda, Paulina; Carrillo B, Jorge A.

    2003-01-01

    The term diffuse interstitial lung disease, it refers to those diseases that commit the interstice basically, the space between the membrane basal epithelial and endothelial, although the damage can also commit the outlying air spaces and the vessels; the supplement is centered in the diffuse interstitial lung illness of unknown cause; well-known as idiopathic interstitial pneumonias, making emphasis in the more frequents, the pulmonary fibrosis idiopathic or cryptogenic fibrosant alveolitis

  16. Interstitial rotating shield brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Adams, Quentin E.; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.; Enger, Shirin A.

    2014-01-01

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq 153 Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D 98% ), I-RSBT reduced urethral D 0.1cc below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D 1cc was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D 1cc was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq 153 Gd sources. Conclusions: For the case considered, the proposed 153 Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows

  17. Interstitial Metabolic Monitoring During Hemorrhagic Shock

    National Research Council Canada - National Science Library

    Pamnani, Motilal

    2004-01-01

    .... We hypothesize that decompensation results from potassium-mediated vasodilation and/or loss of cardiac contractility, and thus a method of measuring interstitial potassium should be a crucial part...

  18. Interstitial meiofauna of Namib sandy beaches

    African Journals Online (AJOL)

    1988-03-16

    Mar 16, 1988 ... Zoology Department, Institute for Coastal Research, University of Port Elizabeth, P.O. Box ... Oliff, Gardner, Turner & Sharp (1970) and later Dye, ... Wooldridge, Dye & ...... potential sources of food for interstitial organisms,.

  19. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  20. Origin of unbalanced reaction of vacancies and interstitials during irradiation with cascades and influence on microstructural evolution

    International Nuclear Information System (INIS)

    Kiritani, M.; Yoshiie, T.; Kojima, S.; Satoh, Y.

    1993-01-01

    Based upon the underlying premise that all the microstructure evolution during irradiation results from the asymetrical reaction between vacancies and interstitials, the origin of the asymetry is sought and categorized, and the mechanism of defect structure evolution for each source of asymetry is investigated. The role of neutral sinks and the influence of dislocations are examined for the cases of irradiation with and without cascade damage. Vacancy cluster formation directly from cascades is found to favor the generation of freely migrating interstitials. Stochastic fluctuations of the point defect reactions under the balanced condition of vacancy and interstitial is experimentally detected, and the important role of the fluctuations is found in the determination of the fate of small interstitial cluster embryos produced by cascade damage. The influence of the unbalanced point defect reaction starting from difference in spacial distribution between vacancies and interstitials formed by cascade collisions is discussed as one of the important origins of vacancy dominant reactions. (orig.)

  1. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  2. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  3. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  4. Helium localization around the microscopic impurities embedded to liquid helium

    International Nuclear Information System (INIS)

    Gordon, E.B.; Shestakov, A.F.

    2000-01-01

    The structure and properties of the environment round the impurity atoms (Im) embedded in liquid helium are considered. It is shown that there are two qualitatively different types of structure of the He atom layer next to Im - attraction and repulsion structures. For the center attraction structure (strong Im-He interaction) the Im-He separation is longer than the equilibrium one for the pair Im-He potential, and the density and localization of He atoms are higher than in the bulk. It this case the He atom content in the layer, n, is almost independent of applied pressure. In the repulsion structure realized for alkaline metal atoms the Im-He separation is shorter than the equilibrium one and the density is lower than in the helium bulk. At T approx 1 K occupied are several states with different n and their energies differ only by approx 0.1 K, an increase in pressure resulting in a considerable reduction of n. The optical and EPR spectra of the atoms embedded to liquid and solid helium are interpreted on the basis of the analysis carried out. A simple model is proposed to evaluate the helium surroundings characteristics from the experimental pressure dependences of atomic line shifts in the absorption and emission spectra. The attraction structures in 3 He - 4 He mixtures are suggested to be highly enriched by 4 He atoms which the repulsion structures - by 3 He atoms. a possibility for existence of phase transitions in helium shells surrounding impurity atoms is considered

  5. Helium behaviour in aluminium under hydrostatic pressure

    International Nuclear Information System (INIS)

    Sokurskij, Yu.N.; Tebus, V.N.; Zudilin, V.A.; Tumanova, G.M.

    1989-01-01

    Effect of hydrostatic compression on equilibrium helium bubbles in low aluminium-lithium alloy irradiated in reactor at 570 K is investigated. Measurements of hydrostatic density and electron-microscopic investigations have shown, that application of up to 2 GPa pressure reduces equilibrium size of helium bubbles and reduces helium swelling. Kinetics and thermodynamics of the process are considered with application of 'rigid sphere' equation which describes helium state in bubbles

  6. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  7. Absolute calibration of TFTR helium proportional counters

    International Nuclear Information System (INIS)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Loughlin, M.

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  8. Explosive helium burning in white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, A.M. (AN SSSR, Moscow. Astronomicheskij Sovet)

    1984-04-01

    Helium burning kinetics in white dwarfs has been considered at constant temperatures T >= 10/sup 9/ K and densities rho >10/sup 5/ g/cm/sup 3/. It is found, that helium detonation in white dwarfs does not lead to formation of light (A < 56) elements. Thus, helium white dwarf model for supernova 1 is inconsistent with observations.

  9. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  10. Muonium and neutral muonic helium

    International Nuclear Information System (INIS)

    Orth, H.

    1981-01-01

    In this brief article the current status on muonium spectroscopy with emphasis on recent developments will be summarized. The experimental and theoretical progress of the muonic helium atom will be reviewed. Future directions in this field of research will be discussed. (orig./HSI)

  11. Electric response in superfluid helium

    Czech Academy of Sciences Publication Activity Database

    Chagovets, Tymofiy

    2016-01-01

    Roč. 488, May (2016), s. 62-66 ISSN 0921-4526 R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2016

  12. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  13. Simplicity works for superfluid helium

    International Nuclear Information System (INIS)

    Bowley, Roger

    2000-01-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  14. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  15. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr [Center for Galaxy Evolution Research, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-06-20

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to the second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  16. Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Carrasco, A., E-mail: alvarogc@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Petersson, P.; Hallén, A. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Grzonka, J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Gilbert, M.R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Fortuna-Zalesna, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Rubel, M. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden)

    2016-09-01

    Molybdenum mirrors were irradiated with Mo and He ions to simulate the effect of neutron irradiation on diagnostic first mirrors in next-generation fusion devices. Up to 30 dpa were produced under molybdenum irradiation leading to a slight decrease of reflectivity in the near infrared range. After 3 × 10{sup 17} cm{sup −2} of helium irradiation, reflectivity decreased by up to 20%. Combined irradiation by helium and molybdenum led to similar effects on reflectivity as irradiation with helium alone. Ion beam analysis showed that only 7% of the implanted helium was retained in the first 40 nm layer of the mirror. The structure of the near-surface layer after irradiation was studied with scanning transmission electron microscopy and the extent and size distribution of helium bubbles was documented. The consequences of ion-induced damage on the performance of diagnostic components are discussed.

  17. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    International Nuclear Information System (INIS)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook

    2017-01-01

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y ini ). We show that Y ini brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y ini . We discuss the implications and prospects for the helium-enhanced populations in relation to the second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  18. First-principles study of helium clustering at initial stage in ThO2

    International Nuclear Information System (INIS)

    Shao Kuan; Han Han; Zhang Wei; Wang Chang-Ying; Guo Yong-Liang; Ren Cui-Lan; Huai Ping

    2017-01-01

    The clustering behavior of helium atoms in thorium dioxide has been investigated by first-principles calculations. The results show that He atoms tend to form a cluster around an octahedral interstitial site (OIS). As the concentration of He atoms in ThO 2 increases, the strain induced by the He atoms increases and the octahedral interstitial site is not large enough to accommodate a large cluster, such as a He hexamer. We considered three different Schottky defect (SD) configurations (SD 1 , SD 2 , and SD 3 . When He atoms are located in the SD sites, the strain induced by the He atoms is released and the incorporation and binding energies decrease. The He trimer is the most stable cluster in SD 1 . Large He clusters, such as a He hexamer, are also stable in the SDs. (paper)

  19. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  20. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  1. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  2. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  3. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-12-15

    Dislocation loops induced by helium irradiation at elevated temperatures in reduced-activation martensitic steels were investigated using transmission electron microscopy. Steels were irradiated with 100 keV helium ions to 0.8 dpa between 300 K and 723 K. At irradiation temperatures T{sub irr} ⩽ 573 K, small defects with both Burger vectors b = 1/2〈1 1 1〉 and b = 〈1 0 0〉 were observed, while at T{sub irr} ⩾ 623 K, the microstructure was dominated by large convoluted interstitial dislocation loops with b = 〈1 0 0〉. Only small cavities were found in the steels irradiated at 723 K.

  4. [Modern Views on Children's Interstitial Lung Disease].

    Science.gov (United States)

    Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu

    2015-01-01

    Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.

  5. Di-interstitial defect in silicon revisited

    International Nuclear Information System (INIS)

    Londos, C. A.; Antonaras, G.; Chroneos, A.

    2013-01-01

    Infrared spectroscopy was used to study the defect spectrum of Cz-Si samples following fast neutron irradiation. We mainly focus on the band at 533 cm −1 , which disappears from the spectra at ∼170 °C, exhibiting similar thermal stability with the Si-P6 electron paramagnetic resonance (EPR) spectrum previously correlated with the di-interstitial defect. The suggested structural model of this defect comprises of two self-interstitial atoms located symmetrically around a lattice site Si atom. The band anneals out following a first-order kinetics with an activation energy of 0.88 ± 0.3 eV. This value does not deviate considerably from previously quoted experimental and theoretical values for the di-interstitial defect. The present results indicate that the 533 cm −1 IR band originates from the same structure as that of the Si-P6 EPR spectrum

  6. An overview of interstitial brachytherapy and hyperthermia

    International Nuclear Information System (INIS)

    Brandt, B.B.; Harney, J.

    1989-01-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references

  7. Idiopathic interstitial pneumonias: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Yoon, Young Cheol; Suh, Gee Young; Han, Joung Ho; Lee, Kyung Soo

    2002-01-01

    Idiopathic interstitial pneumonias are at present classified as one of four types: usual, nonspecific, acute, or desquamative. The acute form has the worst prognosis, followed by the usual and the nonspecific form; it is in desquamative cases that prognosis is best. At high-resolution CT, usual interstitial pneumonia, the most frequent type, manifests as patchy subpleural areas of ground-glass attenuation, irregular linear opacity, and honeycombing, which the nonspecific type, the second most frequent, appears as subpleural patchy areas of ground-glass attenuation with associated areas of irregular linear opacity. Acute interstitial pneumonia demonstrates extensive bilateral airspace consolidation and patchy or diffuse bilateral areas of ground-glass attenuation in middle and lower lung zones

  8. Impulse approximation in solid helium

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1985-01-01

    The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium

  9. Liquid helium plant in Dubna

    International Nuclear Information System (INIS)

    Agapov, N.N.; Baldin, A.M.; Kovalenko, A.D.

    1995-01-01

    The liquid-helium cooling capacity installed at the Laboratory of High Energies is about 5 kw at a 4.5 K temperature level. It is provided with four industrial helium liquefiers of 1.6 kw/4.5 K each. They have been made by the Russian enterprise NPO GELYMASH and upgraded by the specialists of the Laboratory. The first one was put into operation in 1980, the two others in 1991, and the last one is under commissioning. The development of the LHE cryoplant was concerned with the construction of the new superconducting accelerator Nuclotron aimed to accelerate nuclei and heavy ions up to energies of 6 GeV/u. The first test run at the Nuclotron was carried out in March 1993, and the total running time has been about 2000 hours up to now. Since 1992 the cryoplant has been intensively used by the users outside the Laboratory. More than a million liters of liquid helium was provided in 1993 for such users. The reliability of the cryoplant system was as high as 98 percent for 4500 hours of operation in 1993-1994. 7 refs., 4 figs., 1 tab

  10. Idiopathic interstitial pneumonias: imaging-pathology correlation

    International Nuclear Information System (INIS)

    Ellis, Stephen M.; Hansell, David M.

    2002-01-01

    The terminology related to idiopathic interstitial pneumonia (IIP) remains confusing and in some cases wholly inaccurate. In addition, a greater understanding of the correlation between high-resolution computed tomography (HRCT) appearances and the corresponding histopathological changes found in the interstitial pneumonias has resulted in a crucial role for HRCT in the investigation of IIPs. The role of the radiologist is becoming increasingly important with a strong emphasis on establishing a diagnosis without resorting to lung biopsy. We aim to clarify the current classification of the IIPs highlighting their clinical, pathological and imaging characteristics in order to assist the radiologist in performing their increasingly important diagnostic role. (orig.)

  11. Quantum diffusion of light interstitials in metals

    International Nuclear Information System (INIS)

    McMullen, T.; Bergersen, B.

    1978-01-01

    A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)

  12. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  13. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou, Henan 450011 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Wang, Yongwei, E-mail: wangyongwei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China)

    2014-07-01

    Highlights: • Heat transfer in heat exchanger can be improved by increasing helium's flow rate. • The outlet temperature of helium decreases with increasing helium's flow rate. • Balance is necessary between good heat transfer and high helium outlet temperature. - Abstract: LBE-helium experimental loop of ADS (LELA) and LBE-helium heat exchanger have been designed and constructed with the supporting of the “ADS Transmutation System” project of Chinese Academy of Sciences. In order to investigate the flow and heat transfer characteristics between LBE and helium, 3D numerical simulation of fluid–solid coupled heat transfer with variable property in the LBE-helium heat exchanger is conducted in the present study. The effects of mass-flow-rates of helium and LBE in the shell-side and tube-side on the heat transfer performance are addressed. It is found that the heat transfer performance can be significantly improved by increasing helium mass-flow-rate in the shell-side. In order to easily and quickly obtain the outlet temperatures of helium and LBE, a concept of modified effectiveness is introduced and correlated as the function of tube-side to shell-side heat capacity rate ratio. The results show that the outlet temperature of helium decreases with increasing helium mass-flow-rate. Therefore, considering the utilization of high-temperature helium in the future, for example power generation, there should be a tradeoff between good heat transfer performance and high outlet helium temperature when confirming helium mass-flow-rate.

  14. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  15. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs

  16. Summary report on technical experiences from high-temperature helium turbomachinery testing in Germany

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1996-01-01

    In Germany a comprehensive research and development program was initiated in 1968 for a Brayton (closed) cycle power conversion system. The program was for ultimate use with a high temperature, helium cooled nuclear reactor heat source (the HHT project) for electricity generation using helium as the working fluid. The program continued until 1982 in international cooperation with the United States and Switzerland. This document describes the designs and reports the results of testing activities that addressed the development of turbines, compressors, hot gas ducts, materials, heat exchangers and other equipment items for use with a helium working fluid at high temperatures. 67 refs, 34 figs, tabs

  17. Impact of the injected interstitial on the correlation of charged-particle and neutron-induced radiation damage

    International Nuclear Information System (INIS)

    Garner, F.A.

    1983-01-01

    The successful conclusion of an intercorrelation program developed in the U.S. Breeder program has provided significant insight on the factors governing the swelling that develops in ion-bombardment studies and its relationship to the swelling that occurs during neutron irradiation. It appears that the injected interstitial or a related phenomenon exerts a pronounced influence on ion-induced swelling. This conclusion has ramifications with respect to the conduct and interpretation of ion irradiation experiments employed to study the effect of helium or composition on swelling

  18. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  19. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity

    DEFF Research Database (Denmark)

    Huizinga, J D; Thuneberg, L; Klüppel, M

    1995-01-01

    The pacemaker activity in the mammalian gut is responsible for generating anally propagating phasic contractions. The cellular basis for this intrinsic activity is unknown. The smooth muscle cells of the external muscle layers and the innervated cellular network of interstitial cells of Cajal......, which is closely associated with the external muscle layers of the mammalian gut, have both been proposed to stimulate pacemaker activity. The interstitial cells of Cajal were identified in the last century but their developmental origin and function have remained unclear. Here we show...... of Cajal associated with Auerbach's nerve plexus and intestinal pacemaker activity....

  20. Radionuclide study for the interstitial lung disease

    International Nuclear Information System (INIS)

    Kawakami, Kenji; Mori, Yutaka; Ujita, Masuo

    1991-01-01

    The contribution of pulmonary nuclear medicine was evaluated in 105 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with 81m Kr, distribution of compliance in thoraco-pulmonary system (C) by 81m Kr gas bolus inhalation method, perfusion study (Q) with 99m Tc-MAA, 67 Ga scintigraphy and an assessment of pulmonary epithelial permeability with 99m Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q which was high V/Q mismatch finding, in the interstitial pneumonia. Correlation between V/Q mismatch and PaO 2 was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. 67 Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of 67 Ga. 67 Ga might be useful to evaluate activity of the diseases. Pulmonary epithelial permeability was assessed by 99m Tc-DTPA inhalation study. This permeability accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author)

  1. Interstitial laser thermotherapy in neurosurgery: a review

    NARCIS (Netherlands)

    Menovsky, T.; Beek, J. F.; van Gemert, M. J.; Roux, F. X.; Bown, S. G.

    1996-01-01

    One of the most recent laser treatment modalities in neurosurgery is interstitial laser thermotherapy (ILTT). In this review, experimental and clinical studies concerning intracranial ILTT are discussed. Two methods for intra-operative control of the laser induced lesions are described; i.e.,

  2. Desquamative interstitial pneumonia: A case report

    Directory of Open Access Journals (Sweden)

    Lovrenski Aleksandra

    2014-01-01

    Full Text Available Introduction. Desquamative interstitial pneumonia is one of the rarest idiopathic interstitial pneumonias and the rarest form of smoking-related interstitial lung diseases. It was first described by Liebow in 1965. Histologically, it is characterized by the presence of eosinophilic macrophages uniformly filling airspaces which often contain a finely granular light-brown pigment that does not stain for hemosiderin. The alveolar walls are usually mildly thickened by fibrous tissue and infiltrated by a moderate number of lymphocytes. Case Outline. Our patient was a 56-year-old male, heavy smoker, with bilateral lung infiltrations of unknown etiology and several months of discomfort in the form of dry cough and shortness of breath. Lung function tests showed a moderate restrictive ventilation disorder and a severe reduction of diffusing capacity. Since bronchoscopic specimens did not reveal lung lesion etiology, an open lung biopsy of the lower left pulmonary lobe was performed, and based on the obtained surgical material the pathohistologically diagnosis of desquamative interstitial pneumonia was established. The patient was started on corticosteroid and immunosuppressive therapy, and he ceased smoking. At the last control examination, two years after the onset of symptoms, the patient was feeling well, and high-resolution computed tomography (HRCT scan of the thorax showed regression of pathological changes. Conclusion. Although, as in our case, the majority of DIP patients improve on treatment, some patients still develop progressive irreversible fibrosis despite therapy.

  3. Radionuclide study for the interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji; Mori, Yutaka; Ujita, Masuo (Jikei Univ., Tokyo (Japan). School of Medicine)

    1991-07-01

    The contribution of pulmonary nuclear medicine was evaluated in 105 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with {sup 81m}Kr, distribution of compliance in thoraco-pulmonary system (C) by {sup 81m}Kr gas bolus inhalation method, perfusion study (Q) with {sup 99m}Tc-MAA, {sup 67}Ga scintigraphy and an assessment of pulmonary epithelial permeability with {sup 99m}Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q which was high V/Q mismatch finding, in the interstitial pneumonia. Correlation between V/Q mismatch and PaO{sub 2} was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. {sup 67}Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of {sup 67}Ga. {sup 67}Ga might be useful to evaluate activity of the diseases. Pulmonary epithelial permeability was assessed by {sup 99m}Tc-DTPA inhalation study. This permeability accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author).

  4. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  5. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  6. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  7. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  8. Behaviour of helium after implantation in molybdenum

    International Nuclear Information System (INIS)

    Viaud, C.; Maillard, S.; Carlot, G.; Valot, C.; Gilabert, E.; Sauvage, T.; Peaucelle, C.; Moncoffre, N.

    2009-01-01

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature

  9. Helium Extraction from LNG End Flash

    OpenAIRE

    Kim, Donghoi

    2014-01-01

    Helium is an invaluable element as it is widely used in industry such as cryo-genics and welding due to its unique properties. However, helium shortage is expected in near future because of increasing demand and the anxiety of sup-ply. Consequently, helium production has attracted the attention of industry. The main source of He is natural gas and extracting it from LNG end-flash is considered as the most promising way of producing crude helium. Thus, many process suppliers have proposed proc...

  10. Helium supply demand in future years

    International Nuclear Information System (INIS)

    Laverick, C.

    1975-01-01

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  11. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    International Nuclear Information System (INIS)

    Desai, S.R.; Ryan, S.M.; Colby, T.V.

    2003-01-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed

  12. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Ryan, S.M.; Colby, T.V

    2003-04-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed.

  13. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  14. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1996-01-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of 60 Ni which produces no helium, 59 Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ( Nat Ni) which provides an intermediate level of helium due to delayed development of 59 Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to ∼7 dpa at 300 and 400 degrees C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400 degrees C than at 300 degrees C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from 59 Ni and Nat Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400 degrees C. At 300 degrees C, it appeared that high densities of bubbles formed whereas at 400 degrees C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces

  15. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  16. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  17. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  18. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  19. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  20. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  1. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  2. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  3. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  4. Pancreas tumor interstitial pressure catheter measurement

    Science.gov (United States)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  5. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  6. HEINBE; the calculation program for helium production in beryllium under neutron irradiation

    International Nuclear Information System (INIS)

    Shimakawa, Satoshi; Ishitsuka, Etsuo; Sato, Minoru

    1992-11-01

    HEINBE is a program on personal computer for calculating helium production in beryllium under neutron irradiation. The program can also calculate the tritium production in beryllium. Considering many nuclear reactions and their multi-step reactions, helium and tritium productions in beryllium materials irradiated at fusion reactor or fission reactor may be calculated with high accuracy. The calculation method, user's manual, calculated examples and comparison with experimental data were described. This report also describes a neutronics simulation method to generate additional data on swelling of beryllium, 3,000-15,000 appm helium range, for end-of-life of the proposed design for fusion blanket of the ITER. The calculation results indicate that helium production for beryllium sample doped lithium by 50 days irradiation in the fission reactor, such as the JMTR, could be achieved to 2,000-8,000 appm. (author)

  7. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  8. Research and development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1990-12-01

    We report on work accomplished in the first 30 months of a research and development program to investigate the feasibility of a new technique to detect solar neutrinos in superfluid helium. Accomplishments include the successful completion of design, construction and operation of the entire cryogenic, mechanical and electronic apparatus. During the last several months we have begun a series of experiments in superfluid helium to test the method. Experimental results include the first observation of the combined physical processes essential to the detection technique: ballistic roton generation by energetic charged particles, quantum evaporation of helium at a free surface and bolometric detection of the evaporated helium by physisorption on a cold silicon wafer. Additional results are also presented

  9. Helium induced degradation in the weldability of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Lin, H.T.; Goods, S.H.; Grossbeck, M.L.; Chinl, B.A.

    1988-01-01

    Autogenous gas tungsten arc welding was performed on He-doped type 316 stainless steel. Helium was uniformly implanted in the material using the ''tritium trick'' to levels of 27 and 105 appm. Severe intergranular cracking occurred in both fusion and heat-affected zones. Microstructural observations of fusion zone indicated that the pore size, degree of porosity, and tendency to form cracks increased with increasing helium concentration. Scanning electron microscopy showed that cracking in He-doped materials was due to the precipitation of helium bubbles on grain boundaries and dentrite interfaces. Results of the present study demonstrate that the use of conventional welding techniques to repair materials degraded by exposure to radiation may be difficult if the irradiation results in the generation of even rather small amounts of helium. 23 refs., 9 figs., 2 tabs

  10. Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling

    Science.gov (United States)

    Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun

    2018-02-01

    Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.

  11. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  12. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  13. Fatal interstitial lung disease associated with icotinib

    OpenAIRE

    Zhang, Jiexia; Zhan, Yangqing; Ouyang, Ming; Qin, Yinyin; Zhou, Chengzhi; Chen, Rongchang

    2014-01-01

    The most serious, and maybe fatal, yet rare, adverse reaction of gefitinib and erlotinib is drug-associated interstitial lung disease (ILD), which has been often described. However, it has been less well described for icotinib, a similar orally small-molecule tyrosine kinase inhibitor (TKI). The case of a 25-year-old female patient with stage IV lung adenocarcinoma who developed fatal ILD is reported here. She denied chemotherapy, and received palliative treatment with icotinib (125 mg po, th...

  14. A case of idiopathic interstitial pneumonia

    OpenAIRE

    豊見山, 寛; 兼島, 洋; 下地, 克佳; 金城, 勇徳; 中富, 昌夫; 小張, 一峰; 松井, 克明; Tomiyama, Hiroshi; Kaneshima, Hiroshi; Shimoji, Katsuyoshi; Kinjo, Yutoku; Nakatomi, Masao; Kobari, Kazumine; Matsui, Katsuaki; 琉球大学医学部第一内科

    1982-01-01

    A case of idiopathic interstitial pneumonia was reported. A 53-year-old man was admitted to our hospital with his complaint of shortness of breath. On physical examination clubbing of the fingers was noticed and velcro rales was heard on the bilateral lower back. On laboratory data no remarkable finding was revealed. Chest roentgenogram showed diffuse reticulonodular shadow and small ring shadow of the bilateral lower lung fields. On pulmonary function test decline of VC and DLco was revealed...

  15. Self-interstitial atoms in metals

    International Nuclear Information System (INIS)

    Schilling, W.

    1978-01-01

    The present state of knowledge and understanding of the properties of self-interstitial atoms (SIAs) in metals is reviewed. Special emphasis is given to a discussion of the structure of SIAs and those properties which relate to structure such as relaxation volumes, elastic polarizabilities, defect vibrations, geometry of jump processes, and elastic interactions. The present experimental status with respect to these properties is summarized, and the basic theoretical concepts for their understanding are presented as simply as possible. (Auth.)

  16. Chronic interstitial lung disease in children

    Directory of Open Access Journals (Sweden)

    Matthias Griese

    2018-02-01

    Full Text Available Children's interstitial lung diseases (chILD are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks.

  17. Defects induced by helium implantation in SiC

    International Nuclear Information System (INIS)

    Oliviero, E.; Barbot, J.F.; Declemy, A.; Beaufort, M.F.; Oliviero, E.

    2008-01-01

    SiC is one of the considered materials for nuclear fuel conditioning and for the fabrication of some core structures in future nuclear generation reactors. For the development of this advance technology, a fundamental research on this material is of prime importance. In particular, the implantation/irradiation effects have to be understood and controlled. It is with this aim that the structural alterations induced by implantation/irradiation in SiC are studied by different experimental techniques as transmission electron microscopy, helium desorption, X-ray diffraction and Rutherford backscattering spectrometry. In this work, the different types of defects induced by helium implantation in SiC, point or primary defects (obtained at low energy (∼100 eV) until spread defects (obtained at higher energy (until ∼2 MeV)) are exposed. The amorphization/recrystallization and swelling phenomena are presented too. (O.M.)

  18. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  19. Temperature control in interstitial laser cancer immunotherapy

    Science.gov (United States)

    Bandyopadhyay, Pradip K.; Holmes, Kyland; Burnett, Corinthius; Zharov, Vladimir P.

    2003-07-01

    Positive results of Laser-Assisted Cancer Immunotherapy (LACI) have been reported previously in the irradiation of superficial tumors. This paper reports the effect of LACI using laser interstitial therapy approach. We hypothesize that the maximum immuno response depends on laser induced tumor temperature. The measurement of tumor temperature is crucial to ensure necrosis by thermal damage and immuno response. Wister Furth female rats in this study were inoculated with 13762 MAT B III rat mammary adinocarcinoma. LACI started seven to ten days following inoculation. Contrary to surface irradation, we applied laser interstitial irradiation of tumor volume to maximize the energy deposition. A diode laser with a wavelength of 805 nm was used for tumor irradiation. The laser energy was delivered inside the tumor through a quartz fiber. Tumor temperature was measured with a micro thermocouple (interstitial), while the tumor surface temperature was controlled with an IR detector. The temperature feedback demonstrates that it is possible to maintain the average tumor temperature at the same level with reasonable accuracy in the desired range from 65°C-85°C. In some experiments we used microwave thermometry to control average temperature in deep tissue for considerable period of time, to cause maximum thermal damage to the tumor. The experimental set-up and the different temperature measurement techniques are reported in detail, including the advantages and disadvantages for each method.

  20. Role of interstitial implantation in gynecological cancer

    International Nuclear Information System (INIS)

    Nori, D.; Hilaris, B.S.

    1987-01-01

    Recurrent cancer at any site carries a gloomy prognosis. Cancer of the cervix that recurs after radical surgery or curative radiation therapy is a perplexing problem confronting both gynecological and radiation oncologists. In the authors' series, 45% of the patients survived disease-free at 1 year and 10% survived without disease at 5 years or longer following interstitial implantation for recurrent cervical cancer. The optimal utilization of this procedure seems to depend on the site of recurrence, the extent of the disease in the pelvis, and the status of para-aortic node involvement. This retrospective analysis enabled the authors to identify the prognostic factors. The most favorable group benefited by this technique were those who presented with either central recurrence or unilateral, localized pelvic side wall recurrent disease. The least morbidity was noticed in those patients with minimal surgical manipulations at the time of the interstitial implantation. The authors recommended that only a limited and essential surgical procedure should accompany interstitial implantation, since the associated morbidity and mortality is high and survival brief

  1. Interstitial lung involvement in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    David Vladimirovich Bestaev

    2014-01-01

    Full Text Available Rheumatoid arthritis (RA is a systemic autoimmune rheumatic disease of unknown etiology, characterized by chronic erosive arthritis and extraarticular manifestations. Pulmonary involvement is one of the common extraarticular manifestations of RA and may show itself as bronchial tree lesions, rheumatoid nodules, Caplan's syndrome, and lesions in the pleura or pulmonary interstitium (interstitial lung involvement (ILI. High-resolution computed tomography allows the diagnosis of ILI in RA in nearly 70% of cases although the incidence of ILI may be lower (4 to 30% depending on diagnostic methods and patient selection criteria. There are several histopathological types of ILI, the differential diagnosis of which can be troublesome. Usual interstitial pneumonia (UIP and nonspecific interstitial pneumonia are major types of RA-associated ILI. UIP-pattern ILI has a more severe course than ILI with other histological patterns. The clinical presentation of ILI may be complicated by the likely toxic effect of a number of disease-modifying antirheumatic drugs (DMARDs used to treat RA, such as methotrexate and leflunomide, and biological agents (BAs, tumor necrosis factor-α (TNF-α inhibitors. The pathogenesis of pulmonary involvement in RA and the role of synthetic DMARDs and BAs in the development of ILI call for further investigations.An extraarticular manifestation, such as ILI, affects the choice of treatment policy in patients with RA.The relevance of a study of ILI is beyond question. The paper discusses the state-of-the-art of investigations in this area.

  2. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  3. Correlation of gene expression with bladder capacity in interstitial cystitis/bladder pain syndrome.

    Science.gov (United States)

    Colaco, Marc; Koslov, David S; Keys, Tristan; Evans, Robert J; Badlani, Gopal H; Andersson, Karl-Erik; Walker, Stephen J

    2014-10-01

    Interstitial cystitis and bladder pain syndrome are terms used to describe a heterogeneous chronic pelvic and bladder pain disorder. Despite its significant prevalence, our understanding of disease etiology is poor. We molecularly characterized interstitial cystitis/bladder pain syndrome and determined whether there are clinical factors that correlate with gene expression. Bladder biopsies from female subjects with interstitial cystitis/bladder pain syndrome and female controls without signs of the disease were collected and divided into those with normal and low anesthetized bladder capacity, respectively. Samples then underwent RNA extraction and microarray assay. Data generated by these assays were analyzed using Omics Explorer (Qlucore, Lund, Sweden), GeneSifter® Analysis Edition 4.0 and Ingenuity® Pathway Analysis to determine similarity among samples within and between groups, and measure differentially expressed transcripts unique to each phenotype. A total of 16 subjects were included in study. Principal component analysis and unsupervised hierarchical clustering showed clear separation between gene expression in tissues from subjects with low compared to normal bladder capacity. Gene expression in tissue from patients with interstitial cystitis/bladder pain syndrome who had normal bladder capacity did not significantly differ from that in controls without interstitial cystitis/bladder pain syndrome. Pairwise analysis revealed that pathways related to inflammatory and immune response were most involved. Microarray analysis provides insight into the potential pathological condition underlying interstitial cystitis/bladder pain syndrome. This pilot study shows that patients with this disorder who have low compared to normal bladder capacity have significantly different molecular characteristics, which may reflect a difference in disease pathophysiology. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc

  4. The Mechanism of Helium-Induced Preconditioning: A Direct Role for Nitric Oxide in Rabbits

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    BACKGROUND Helium produces preconditioning against myocardial infarction by activating prosurvival signaling, but whether nitric oxide (NO) generated by endothelial NO synthase plays a role in this phenomenon is unknown. We tested the hypothesis that NO mediates helium-induced cardioprotection in vivo. METHODS Rabbits (n = 62) instrumented for hemodynamic measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3 h reperfusion, and received 0.9% saline (control) or three cycles of 70% helium–30% oxygen administered for 5 min interspersed with 5 min of an air–oxygen mixture before left anterior descending coronary artery occlusion in the absence or presence of pretreatment with the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg), the selective inducible NOS inhibitor aminoguanidine hydrochloride (AG; 300 mg/kg), or selective neuronal NOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg). In additional rabbits, the fluorescent probe 4,5-diaminofluroscein diacetate (DAF-2DA) and confocal laser microscopy were used to detect NO production in the absence or presence of helium with or without L-NAME pretreatment. RESULTS Helium reduced (P < 0.05) infarct size (24% ± 4% of the left ventricular area at risk; mean ± sd) compared with control (46% ± 3%). L-NAME, AG, and 7-NI did not alter myocardial infarct size when administered alone. L-NAME, but not 7-NI or AG, abolished helium-induced cardioprotection. Helium enhanced DAF-2DA fluorescence compared with control (26 ± 8 vs 15 ± 5 U, respectively). Pretreatment with L-NAME abolished these helium-induced increases in DAF-2DA fluorescence. CONCLUSIONS The results indicate that cardioprotection by helium is mediated by NO that is probably generated by endothelial NOS in vivo. PMID:18713880

  5. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    Bohman, S.O.; Sundelin, B.; Forsum, U.; Tribukait, B.

    1988-01-01

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  6. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  7. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  8. [Nonspecific interstitial pneumonitis: a clinicopathologic entity, histologic pattern or unclassified group of heterogeneous interstitial pneumonitis?].

    Science.gov (United States)

    Morais, António; Moura, M Conceição Souto; Cruz, M Rosa; Gomes, Isabel

    2004-01-01

    Nonspecific interstitial pneumonitis (NSIP) initially described by Katzenstein and Fiorelli in 1994, seems to be a distinct clinicopathologic entity among idiopathic interstitial pneumonitis (IIP). Besides different histologic features from other IIP, NSIP is characterized by a better long-term outcome, associated with a better steroids responsiveness than idiopathic pulmonar fibrosis (IPF), where usually were included. Thus, differentiating NSIP from other IIP, namely IPF is very significant, since it has important therapeutic and prognostic implications. NSIP encloses different pathologies, namely those with inflammatory predominance (cellular subtype) or fibrous predominance (fibrosing subtype). NSIP is reviewed and discussed by the authors, after two clinical cases description.

  9. Superfluid helium-4: An introductory review

    International Nuclear Information System (INIS)

    Vinen, W.F.

    1983-01-01

    Helium was first liquefied by Kamerlingh Onnes in Leiden in July 1908, an achievement that followed much careful and painstaking work. On the same day Onnes reduced the temperature of his helium to a value approaching lK, and he must therefore have produced and observed the superfluid phase. These experimental discoveries led very quickly to a series of remarkable theoretical contributions that laid the foundations for all subsequent work. The period since the second world war has of course seen an enormous amount of work on superfluid helium-4. In reviewing it the author tries to see it in terms of two threads: one originating from Landau; the other from London

  10. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  11. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  12. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  13. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  14. Modular helium reactor for non-electric applications

    International Nuclear Information System (INIS)

    Shenoy, A.

    1997-01-01

    The high temperature gas-cooled Modular Helium Reactor (MHR) is an advanced, high efficiency reactor system which can play a vital role in meeting the future energy needs of the world by contributing not only to the generation of electric power, but also the non-electric energy traditionally served by fossil fuels. This paper summarizes work done over 20 years, by several people at General Atomics, how the Modular Helium Reactor can be integrated to provide different non-electric applications during Process Steam/Cogeneration for industrial application, Process Heat for transportation fuel development and Hydrogen Production for various energy applications. The MHR integrates favorably into present petrochemical and primary metal process industries, heavy oil recovery, and future shale oil recovery and synfuel processes. The technical fit of the Process Steam/Cogeneration Modular Helium Reactor (PS/C-MHR) into these processes is excellent, since it can supply the required quantity and high quality of steam without fossil superheating. 12 refs, 25 figs, 2 tabs

  15. Helium release from neutron-irradiated Li{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Daiju; Tanifuji, Takaaki; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Helium release behavior in post-irradiation heating tests was investigated for Li{sub 2}O single crystals which had been irradiated with thermal neutrons in JRR-4 and JRR-2, and fast neutrons in FFTF. It is clarified that the helium release curves from JRR-4 and JRR-2 specimens consists of only one broad peak. From the dependence of the peak temperatures on the neutron fluence and the crystal diameter, and the comparison with the results obtained for sintered pellets, it is considered that the helium generated in the specimen is released through the process of bulk diffusion with trapping by irradiation defects such as some defect clusters. For the helium release from FFTF specimens, two broad peaks were observed in the release curves. It is considered to suggest that two different diffusion paths exist for helium migration in the specimen, that is, bulk diffusion and diffusion through the micro-crack due to the heavy irradiation. In addition, helium bubble formation after irradiation due to the high temperature over 800K is suggested. (J.P.N.)

  16. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  17. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  18. Smoking-related interstitial lung diseases; Interstitielle Lungenerkrankungen bei Rauchern

    Energy Technology Data Exchange (ETDEWEB)

    Marten, K. [Technische Univ. Muenchen (Germany). Klinikum rechts der Isar, Inst. fuer Roentgendiagnostik

    2007-03-15

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis.

  19. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  20. Renal extramedullary hematopoiesis: interstitial and glomerular pathology.

    Science.gov (United States)

    Alexander, Mariam P; Nasr, Samih H; Kurtin, Paul J; Casey, Edward T; Hernandez, Loren P Herrera; Fidler, Mary E; Sethi, Sanjeev; Cornell, Lynn D

    2015-12-01

    Renal extramedullary hematopoiesis is rarely recognized in the antemortem setting. We identified 14 patients with renal extramedullary hematopoiesis on antemortem specimens from 1994 to 2015. The mean age was 68 years (range 47-87 years); males predominated (M:F=9:5). All presented with renal insufficiency, including five (36%) with acute kidney injury. The mean serum creatinine at biopsy was 2.9 mg/dl (range 1.2-7.3 mg/dl). All had proteinuria (mean 7.9 g/24 h; range 0.5-28; n=13), including 9 with ≥3 g/24 h. Renal extramedullary hematopoiesis appeared histologically as an interstitial infiltrate (n=12) and/or a perirenal infiltrate (n=3) or mass-like lesion (n=1). Five were misdiagnosed as interstitial nephritis. Concurrent glomerular disease was prevalent and included fibrillary-like glomerulonephritis (n=3), chronic thrombotic microangiopathy (n=5), focal segmental glomerulosclerosis (n=6), and diabetic glomerulosclerosis (n=2). All patients had an underlying hematologic malignancy: primary myelofibrosis in 9, myeloproliferative neoplasm not otherwise specified in 1, essential thrombocythemia in 1, polycythemia vera in 1, and plasma cell myeloma in 2. Clinical follow-up was available in 12 patients, mean of 29 months (range 4-120 months). In 10 patients for whom treatment history could be obtained, 9 were treated with chemotherapy, and 1 was treated with steroids. The mean creatinine at last follow-up was 2 mg/dl (range 1.2-3.9 mg/dl) (n=9). Ten patients died in the follow-up period from their underlying hematological disease and had persistent renal disease. The two remaining patients had persistent chronic kidney disease. Renal extramedullary hematopoiesis should be considered in the differential diagnosis of interstitial infiltrates, particularly in the presence of a glomerulopathy and a hematologic malignancy.

  1. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    Science.gov (United States)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  2. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal

    Directory of Open Access Journals (Sweden)

    Ward Sean M

    2003-06-01

    Full Text Available Abstract Background The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. Method The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. Results Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0–2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1–3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. Conclusions These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission.

  3. The evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders.

    Science.gov (United States)

    Becheanu, G; Manuc, M; Dumbravă, Mona; Herlea, V; Hortopan, Monica; Costache, Mariana

    2008-01-01

    Interstitial cells of Cajal (ICC) are pacemakers that generate electric waves recorded from the gut and are important for intestinal motility. The aim of the study was to evaluate the distribution of interstitial cells of Cajal in colon specimens from patients with idiopathic chronic pseudo-obstruction and other non-tumoral colon disorders as compared with samples from normal colon. The distribution pattern of ICC in the normal and pathological human colon was evaluated by immunohistochemistry using antibodies for CD117, CD34, and S-100. In two cases with intestinal chronic idiopathic pseudo-obstruction we found a diffuse or focal reducing number of Cajal cells, the loss of immunoreactivity for CD117 being correlated with loss of immunoreactivity for CD34 marker. Our study revealed that the number of interstitial cells of Cajal also decrease in colonic diverticular disease and Crohn disease (p<0.05), whereas the number of enteric neurones appears to be normal. These findings might explain some of the large bowel motor abnormalities known to occur in these disorders. Interstitial Cajal cells may play an important role in pathogenesis and staining for CD117 on transmural intestinal surgical biopsies could allow a more extensive diagnosis in evaluation of chronic intestinal pseudo-obstruction.

  4. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  5. Evidence of interstitial microsegregation in iron obtained by ion microscopy

    International Nuclear Information System (INIS)

    Price, C.W.

    1984-01-01

    Segregation of impurity atoms to the strain fields of dislocations and the effective locking of the dislocations by the impurity atmospheres have been suggested earlier by others. The formation of interstitial atmospheres and their effect in iron was first treated mathematically by Cottrell and Bilby (Proc. Phys. Soc.; A62: 49(1949). Hirth and Lothe (Theory of Discolations, McGraw-Hill, New York (1968) reviewed more recent evidence of interstitial effects and theoretical treatments of interstitial dislocation interactions. This paper describes additional evidence of microsegregation of several interstitial elements in iron that were detected using secondary-ion mass spectroscopy (SIMS). 10 references, 2 figures

  6. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    Science.gov (United States)

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; Ppulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  7. Migration of di- and tri-interstitials in silicon

    International Nuclear Information System (INIS)

    Posselt, M.; Gao, F.; Zwicker, D.

    2005-01-01

    A comprehensive study on the migration of di- and tri-interstitials in silicon is performed using classical molecular dynamics simulations with the Stillinger-Weber potential. The initial di- and tri-interstitial configurations with the lowest formation energies are determined, and then, the defect migration is investigated for temperatures between 800 and 1600 K. The defect diffusivity and the self-diffusion coefficient per defect are calculated. Compared to the mono-interstitial, the di-interstitial migrates faster, whereas the tri-interstitial diffuses slower. The migration mechanism of the di-interstitial shows a pronounced dependence on the temperature. Like in the case of the mono-interstitial, the mobility of the di-interstitial is higher than the mobility of the lattice atoms during the defect diffusion. On the other hand, the tri-interstitial mobility is lower than the corresponding atomic mobility. The implications of the present results for the analysis of experimental data on defect evolution and migration are discussed

  8. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  9. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  10. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  11. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  12. Charged condensate and helium dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-10-15

    White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  13. On the helium gas leak test

    International Nuclear Information System (INIS)

    Nishikawa, Akira; Ozaki, Susumu

    1975-01-01

    The helium gas leak test (Helium mass spectrometer testing) has a leak detection capacity of the highest level in practical leak tests and is going to be widely applied to high pressure vessels, atomic and vacuum equipments that require high tightness. To establish a standard test procedure several series of experiments were conducted and the results were investigated. The conclusions are summarized as follows: (1) The hood method is quantitatively the most reliable method. The leak rate obtained by tests using 100% helium concentration should be the basis of the other method of test. (2) The integrating method, bell jar method, and vacuum spray method can be considered quantitative when particular conditions are satisfied. (3) The sniffer method is not to be considered quantitive. (4) The leak rate of the hood, integrating, and bell jar methods is approximately proportional to the square of the helium partial pressure. (auth.)

  14. Helium-Hydrogen Recovery System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  15. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  16. Realization of mechanical rotation in superfluid helium

    Science.gov (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  17. Helium leak testing the Westinghouse LCP coil

    International Nuclear Information System (INIS)

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  18. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    pressure tubing. Helium gas enters the bottom of the settling chamber, passing through two ... A 40 mesh, flat stainless steel screen is placed across the orifice exit. ... PIV and PLIF measurements are carried out in phase resolved manner.

  19. Hybrid Circuit QED with Electrons on Helium

    Science.gov (United States)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  20. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  1. Helium cosmic ray flux measurements at Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kerry [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States)]. E-mail: ktlee@ems.jsc.nasa.gov; Pinsky, Lawrence [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Andersen, Vic [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Zeitlin, Cary [National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX (United States); Cleghorn, Tim [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Cucinotta, Frank [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Saganti, Premkumar [Prairie View A and M University, P.O. Box 519, Prairie View, TX 77446-0519 (United States); Atwell, William [The Boeing Company, Houston, TX (United States); Turner, Ron [Advancing National Strategies and Enabling Results (ANSER), Arlington, Virginia (United States)

    2006-10-15

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range.

  2. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon

    CERN Document Server

    Makarenko, L F; Lastovskii, S B; Murin, L I; Moll, M; Pintilie, I

    2014-01-01

    It is shown experimentally that, in contrast to the stable configuration of (interstitial carbon)-(interstitial oxygen) complexes (CiOi), the corresponding metastable configuration (CiOi{*}) cannot be found in n-Si based structures by the method of capacitance spectroscopy. The rates of transformation CiOi{*} -> CiOi are practically the same for both n- and p-Si with a concentration of charge carriers of no higher than 10(13) cm(-3). It is established that the probabilities of the simultaneous formation of stable and metastable configurations of the complex under study in the case of the addition of an atom of interstitial carbon to an atom of interstitial oxygen is close to 50\\%. This is caused by the orientation dependence of the interaction potential of an atom of interstitial oxygen with an interstitial carbon atom, which diffuses to this oxygen atom.

  4. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  5. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  6. Electrons on the surface of liquid helium

    International Nuclear Information System (INIS)

    Lambert, D.K.

    1979-05-01

    Spectroscopic techniques were used to study transitions of electrons between bound states in the potential well near a helium surface. The charge density distribution of electrons on the surface was independently obtained from electrical measurements. From the measurements, information was obtained both about the interaction of the bound state electrons with the surface of liquid helium and about local disorder in the positions of electrons on the surface

  7. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  8. The problem of helium in structural materials for fusion reactor

    International Nuclear Information System (INIS)

    Nikiforov, A.S.; Zakharov, A.P.; Chuev, V.I.

    1982-01-01

    The processes of helium buildup in some metals and alloys at different energy neutron flux irradiation under thermonuclear reactor conditions are considered. The data on high temperature helium embrittlement of a number of stainless steels, titanium and aluminium alloys etc. are given A review of experiments concerning the implanted helium behaviour is presented. Possible reactions between helium atoms and point defects or their clusters are discussed. Analysed are material structure variations upon buildup in them up to 1 at % of helium

  9. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  10. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  11. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  12. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  13. First-principles studies of di-arsenic interstitial and its implications for arsenic-interstitial diffusion in crystalline silicon

    International Nuclear Information System (INIS)

    Kim, Yonghyun; Kirichenko, Taras A.; Kong, Ning; Larson, Larry; Banerjee, Sanjay K.

    2007-01-01

    We propose new structural configurations and novel diffusion mechanisms for neutral di-arsenic interstitial (As 2 I 2 ) in silicon with a first-principle density functional theory simulation within the generalized gradient approximation. With an assumption of excess silicon interstitials and high arsenic concentrations, neutral As 2 I 2 is expected to be favorable and mobile with low-migration barrier. Moreover, because the diffusion barrier of arsenic interstitial pairs (AsI) is very low ( 2 I 2 can be easily formed and likely intermediate stage of larger arsenic interstitial clusters

  14. Recombination of positive helium ions in gaseous helium

    International Nuclear Information System (INIS)

    Shyu, J.S.

    1988-01-01

    The Wigner-Keck Monte Carlo trajectory method and the resonance complex theory are employed to calculate the rate coefficient k for H e + ions recombining in gaseous helium in the temperature range 80 2 + is obtained from a Morse potential and a long range ion-induced dipole interaction term. The three body He 3 + interaction is represented by an approximate expression which, for practical purpose, depends on the same parameters that determine the two body interaction. Russell had employed the Wigner-Keck Monte Carlo trajectory method to the same reaction. Unlike his calculation, in which the final quasibound states are treated as continuous, we apply the JWKB approximation to quantize those quasibound states. Both the values of k, calculated from two different quasibound state treatments, are found to be very close and give good agreement with experimental results obtained by Biondi, although they are still 10% to 20% lower than the experimental results. The resonance complex theory, developed by Roberts et al, is then employed to investigated de-excitation from the highest quasibound state, which can be populated by inward tunneling through the rotational (centrifugal) barrier. It is found that this strongly supports a suggestion proposed by Russell. He had suggested that the remaining difference between the Wigner-Keck method and experiment might be largely due to the formation of highly excited quasibound states. The statistical errors of the rate constants, which is the sun of results obtained from both methods, are kept less then 5% by running 2500 trajectories in the first method and 500 in the second

  15. The Interstitial Language and Transnational Experience

    Directory of Open Access Journals (Sweden)

    Paolo Bartoloni

    2013-08-01

    Full Text Available In this essay I argue that the idea of inhabiting, and of human individuality as the house of being, are fruitful ideas if located in a space defined by movement, porosity, interstitiality, and in an urban and architectural paradigm which is based on openness and inclusiveness. Transnational experiences and localities can be, to this end, extremely instructive. It is essential to articulate the notion of dwelling within an urban context in which building is the result of complex cultural and social interactions, which are characterised not only by the negotiation of space and materials but also, and more importantly, by a range of symbolic values. The symbolism that I refer to here is the product of mnemonic and emotional experiences marked by time and space, which in the case of the migratory and transnational experiences is arrived at through a delicate negotiation of the past and the present, and the ‘here’ (the current locality and the ‘there’ (the native locality. The dwelling that I speak of is, therefore, a double dwelling divided between the present at-hand and the remembered past, and as such it inhabits a space, which is both interstitial and liminal, simultaneously in and out-of-place. I have chosen the Italian Forum in Sydney as a working sample of the place-out-of-place

  16. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  17. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  18. Properties of vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment*1

    Science.gov (United States)

    Chung, H. M.; Loomis, B. A.; Smith, D. L.

    1996-10-01

    One property of vanadium-base alloys that is not well understood in terms of their potential use a fusion reactor structural materials, is the effect of simultaneous generation of helium and neutron damage. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of ≈ 0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600°C in Li-filled capsules in a sodium-cooled fast reactor. This paper presents results of postirradiation examination and tests of microstructure and mechanical properties of V5Ti, V3Ti1Si, V8Cr6Ti, and V4Cr4Ti (the latter alloy has been identified as the most promising candidate vanadium alloy). Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at > 420°C. However, postirradiation ductilities at irradiation. Ductile—brittle transition behavior of the DHCE specimens was also determined from bend tests and fracture appearance of transmission electron microscopy (TEM) disks and broken tensile specimens. No brittle behavior was observed at temperatures > - 150°C in DHCE specimens. Predominantly brittle-cleavage fracture morphologies were observed only at - 196°C in some specimens that were irradiated to 31 dpa at 425°C during the DHCE. For the helium generation rates in this experiment (≈ 0.4-4.2 appm He/dpa), grain-boundary coalescence of helium microcavities was negligible and intergranular fracture was not observed.

  19. Experimental method to determine the role of helium in neutron-induced microstructural evolution

    International Nuclear Information System (INIS)

    Gelles, D.S.; Garner, F.A.

    1978-12-01

    A method is presented which allows the determination of the role of helium on microstructural evolution in complex alloys and which avoids many of the problems associated with other simulation experiments. It involves a direct comparison of the materials' response to a primary difference in fission and fusion environments, namely the rate of helium generation. This is accomplished by irradiating specimens in a fission reactor and conducting microstructural analyses which concentrate on alloy matrix regions adjacent to precipitates rich in boron or nitrogen. Procedures are outlined for calculation of background and injected helium levels as well as displacement doses generated by neutrons and alpha particles. An example of the analysis method is shown for an experimental austenitic stainless steel containing boride particles and irradiated to 3 and 7 x 10 22 n/cm 2

  20. The Gas Turbine - Modular Helium Reactor: A Promising Option for Near Term Deployment

    International Nuclear Information System (INIS)

    LaBar, Malcolm P.

    2002-01-01

    The Gas Turbine - Modular Helium Reactor (GT-MHR) is an advanced nuclear power system that offers unparalleled safety, high thermal efficiency, environmental advantages, and competitive electricity generation costs. The GT-MHR module couples a gas-cooled modular helium reactor (MHR) with a high efficiency modular Brayton cycle gas turbine (GT) energy conversion system. The reactor and power conversion systems are located in a below grade concrete silo that provides protection against sabotage. The GT-MHR safety is achieved through a combination of inherent safety characteristics and design selections that take maximum advantage of the gas-cooled reactor coated particle fuel, helium coolant and graphite moderator. The GT-MHR is projected to be economically competitive with alternative electricity generation technologies due to the high operating temperature of the gas-cooled reactor, high thermal efficiency of the Brayton cycle power conversion system, high fuel burnup (>100,000 MWd/MT), and low operation and maintenance requirements. (author)

  1. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  2. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    Science.gov (United States)

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Solubility of helium in mercury for bubbling technology of the spallation neutron mercury target

    International Nuclear Information System (INIS)

    Hasegawa, S.; Naoe, T.; Futakawa, M.

    2010-01-01

    The pitting damage of mercury target container that originates in the pressure wave excited by the proton beam incidence becomes a large problem to reach the high-power neutron source in JSNS and SNS. The lifetime of mercury container is decreased remarkably by the pitting damage. As one of solutions, the pressure wave is mitigated by injecting the helium micro bubbles in mercury. In order to inject the helium micro bubbles into mercury, it is important to understand the characteristic of micro bubbles in mercury. The solubility of mercury-helium system is a key factor to decide bubbling conditions, because the disappearance behavior, i.e. the lifetime of micro bubbles, depends on the solubility. In addition, the bubble generation method is affected by it. Moreover, the experimental data related to the solubility of helium in mercury hardly exist. In this work, the solubility was obtained experimentally by measuring precisely the pressure drop of the gas that is facing to mercury surface. The pressure drop was attributed to the helium dissolution into mercury. Based on the measured solubility, the lifetime of micro bubbles and the method of the bubble generation is estimated using the solubility data.

  4. Ignition and extinction phenomena in helium micro hollow cathode discharges

    International Nuclear Information System (INIS)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R.; Sadeghi, N.; Overzet, L. J.

    2013-01-01

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*( 3 S 1 ) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*( 3 S 1 ) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities

  5. Ignition and extinction phenomena in helium micro hollow cathode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d' Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d' Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  6. Bladder pain syndrome/interstitial cystitis in a Danish population

    DEFF Research Database (Denmark)

    Richter, Benedikte; Hesse, Ulrik; Hansen, Alastair B

    2010-01-01

    To characterize and evaluate a Danish patient population with bladder pain syndrome/interstitial cystitis (BPS/IC), using a working definition for BPS/IC incorporating six variables, and a set of criteria defined by the European Society for the Study of Interstitial Cystitis (ESSIC); to describe...... the clinical course and treatment intensity in relation to these variables....

  7. Theory of the change of elastic constants by interstitials

    International Nuclear Information System (INIS)

    Breuer, N.; Dederichs, P.H.; Lehmann, C.; Leibfried, G.; Scholz, A.

    1975-01-01

    The theory of the change of elastic constants by point-defects, in particular by interstitials, is briefly summarized. The typical effects of spring changes in a defect lattice on the elastic data are discussed qualitatively. Numerical results for the change of elastic constants by self-interstitials and vacancies are given and compared with experimental data for Cu and Al

  8. Time scales of transient enhanced diffusion: Free and clustered interstitials

    Science.gov (United States)

    Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.

    1996-12-01

    Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.

  9. Advanced sickle cell associated interstitial lung disease presenting ...

    African Journals Online (AJOL)

    Previous studies have reported abnormal pulmonary function and pulmonary hypertension among Nigerians with sickle cell disease, but there is no report of interstitial lung disease among them. We report a Nigerian sickle cell patient who presented with computed tomography proven interstitial lung disease complicated by ...

  10. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  11. Rotons, Superfluidity, and Helium Crystals

    Science.gov (United States)

    Balibar, Sébastien

    2006-09-01

    Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous "roton" which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his "theory based on the shaky grounds of imaginary rotons". Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist. In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state.

  12. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  13. Microstructural observation on helium injected and creep ruptured JPCA

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shiraishi, H.; Hishinuma, A.

    1986-01-01

    Detailed and quantitative TEM observation was performed on high temperature helium injected and creep ruptured JPCA to seek the prominent TiC distribution developed for suppression of helium embrittlement. Three different preinjection treatments were adopted for changing the TiC distribution. Considerable degradation in creep rupture strength by helium occurred in solution-annealed specimens, although there was much less effect of other treatments which included aging prior to injection. The concentration of helium at grain boundaries and the promotion of precipitation by helium during injection were responsible for the degradation. Therefore, the presence of TiC precipitates before helium introduction will help prevent degradation. On the other hand, the rupture elongation was reduced by helium after all treatments, although helium trapping by TiC precipitates in the matrix was successfully achieved. Consequently, the combined use of several methods may be necessary for further suppression of helium embrittlement. (orig.)

  14. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  15. Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    OpenAIRE

    Kwon, Ronald Y.; Meays, Diana R.; Meilan, Alexander S.; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A.

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intrigu...

  16. Selective Uterine Artery Embolization for Management of Interstitial Ectopic Pregnancy

    International Nuclear Information System (INIS)

    Yang, Seung Boo; Lee, Sang Jin; Joe, Hwan Sung; Goo, Dong Erk; Chang, Yun Woo; Kim, Dong Hun

    2007-01-01

    Interstitial pregnancy is defined as any gestation that develops in the uterine portion of the fallopian tubes lateral to the round ligament. Interstitial pregnancies account for 2-4% of all ectopic pregnancies and have been reported to have an associated 2% to 2.5% maternal mortality rate. The traditional treatment for interstitial pregnancy using surgical cornual resection may cause infertility or uterine rupture in subsequent pregnancies. Recently, the early identification of intact interstitial pregnancy has been made possible in many cases with high resolution transvaginal ultrasound as well as more sensitive assays for betahuman chorionic gonadotropin (β-hCG). The treatment includes: hysteroscopic transcervical currettage, local and systemic methotrexate (MTX) therapy and prostaglandin or potassium chloride injection of the ectopic mass under sonographic guidance. We describe a case of successful treatment of interstitial pregnancy using uterine artery embolization, after failure of methotrexate treatment

  17. Selective Uterine Artery Embolization for Management of Interstitial Ectopic Pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Boo; Lee, Sang Jin; Joe, Hwan Sung; Goo, Dong Erk; Chang, Yun Woo [Soonchunhyang University Gumi Hospital, Gumi (Korea, Republic of); Kim, Dong Hun [Chosun University Hospital, Gwangju (Korea, Republic of)

    2007-04-15

    Interstitial pregnancy is defined as any gestation that develops in the uterine portion of the fallopian tubes lateral to the round ligament. Interstitial pregnancies account for 2-4% of all ectopic pregnancies and have been reported to have an associated 2% to 2.5% maternal mortality rate. The traditional treatment for interstitial pregnancy using surgical cornual resection may cause infertility or uterine rupture in subsequent pregnancies. Recently, the early identification of intact interstitial pregnancy has been made possible in many cases with high resolution transvaginal ultrasound as well as more sensitive assays for betahuman chorionic gonadotropin ({beta}-hCG). The treatment includes: hysteroscopic transcervical currettage, local and systemic methotrexate (MTX) therapy and prostaglandin or potassium chloride injection of the ectopic mass under sonographic guidance. We describe a case of successful treatment of interstitial pregnancy using uterine artery embolization, after failure of methotrexate treatment.

  18. Liquid Metallic Hydrogen II. A Critical Assessment of Current and Primordial Helium Levels in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available Before a solar model becomes viable in astrophysics, one mus t consider how the ele- mental constitution of the Sun was ascertained, especially relative to its principle com- ponents: hydrogen and helium. Liquid metallic hydrogen has been proposed as a solar structural material for models based on condensed matter (e .g. Robitaille P.-M. Liq- uid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys. , 2011, v. 3, 60–74. There can be little doubt that hydrogen plays a d ominant role in the uni- verse and in the stars; the massive abundance of hydrogen in t he Sun was established long ago. Today, it can be demonstrated that the near isointe nse nature of the Sun’s Balmer lines provides strong confirmatory evidence for a dis tinct solar surface. The situation relative to helium remains less conclusive. Stil l, helium occupies a prominent role in astronomy, both as an element associated with cosmol ogy and as a byproduct of nuclear energy generation, though its abundances within the Sun cannot be reliably estimated using theoretical approaches. With respect to th e determination of helium lev- els, the element remains spectroscopically silent at the le vel of the photosphere. While helium can be monitored with ease in the chromosphere and the prominences of the corona using spectroscopic methods, these measures are hig hly variable and responsive to elevated solar activity and nuclear fragmentation. Dire ct assays of the solar winds are currently viewed as incapable of providing definitive in formation regarding solar helium abundances. As a result, insight relative to helium r emains strictly based on the- oretical estimates which couple helioseismological appro aches to metrics derived from solar models. Despite their “state of the art” nature, heliu m estimates based on solar models and helioseismology are suspect on several fronts, i ncluding their reliance on solar opacities. The best knowledge can only come from the so

  19. Balance point characterization of interstitial fluid volume regulation.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2009-07-01

    The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.

  20. Systems medicine advances in interstitial lung disease.

    Science.gov (United States)

    Greiffo, Flavia R; Eickelberg, Oliver; Fernandez, Isis E

    2017-09-30

    Fibrotic lung diseases involve subject-environment interactions, together with dysregulated homeostatic processes, impaired DNA repair and distorted immune functions. Systems medicine-based approaches are used to analyse diseases in a holistic manner, by integrating systems biology platforms along with clinical parameters, for the purpose of understanding disease origin, progression, exacerbation and remission.Interstitial lung diseases (ILDs) refer to a heterogeneous group of complex fibrotic diseases. The increase of systems medicine-based approaches in the understanding of ILDs provides exceptional advantages by improving diagnostics, unravelling phenotypical differences, and stratifying patient populations by predictable outcomes and personalised treatments. This review discusses the state-of-the-art contributions of systems medicine-based approaches in ILDs over the past 5 years. Copyright ©ERS 2017.

  1. Interstitial radiophosphorus diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Portnoj, S.M.; Gabuniya, R.I.; Godin, V.P.; Letyagin, V.P.

    1992-01-01

    Method of invasive β-radiometry in breast cancer was developed. Analysis of observations of 148 patients with breast cancer was presented. Qualitative increase of count efficiency is the important advantage for interstitial β-radiometry in intratumoral situation of β-detector. Radionuclide activity of 37-74 kBq/kg permits to receive values of relative accumulation of 32 P in a tumor (RAPTu1) by invasive method. Tendency is evident to some decrease of mean values of RAPTu1 in investigations conducted in 70 hrs and more after 32 P introduction. Study on relative accumulation of radionuclide in tumor after conservative treatment can serve as a criterion for evaluation of efficiency of antitumor treatment

  2. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  3. Recent developments in liquid helium 3

    International Nuclear Information System (INIS)

    Ramarao, I.

    1977-01-01

    The current status of the theories for the ground state of liquid helium 3, are reviewed. To begin with, a brief summary of the experimental results on the thermodynamic properties of liquid helium 3 including its recently discovered superfulid phases is given. The basic ideas of the Landau theory of a normal Fermi liquid are then introduced. A qualitative discussion of the current understanding of the anisotropic phases of superfluid helium 3 is given, the microscopic calculaations for the binding energy of liquid helium 3 are reviewed and the results obtained for the two-body contributions to the binding energy using the Brueckner-Goldstone formulation and that of Mohling and his collaborators are summarized and discussed. The importance of a proper estimate of the three-body contributions to the binding energy is stressed. The results obtained in the literature using variational methods and constrained variational methods are discussed. A critical analysis of the results by various methods is given. Despite much effort the basic problem of the ground state of liquid helium 3, remains unresolved. (author)

  4. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  5. Helium release from radioisotope heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in 238 PuO 2 fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel

  6. Testing of degradation of alloy 800 H in impure helium at 760 °C

    Czech Academy of Sciences Publication Activity Database

    Berka, J.; Vilémová, Monika; Sajdl, P.

    2015-01-01

    Roč. 464, September (2015), s. 221-229 ISSN 0022-3115 Institutional support: RVO:61389021 Keywords : High temperature corrosion * impure helium * 800 H * Generation IV nuclear reactors Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311515002019#

  7. High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Hogervorst, W.; Vassen, W.

    2005-01-01

    A high-power, frequency-stabilized laser for cooling of metastable helium atoms using the 2 S13 →3 P23 transition at 389 nm has been developed. The 389 nm light is generated by frequency doubling of a titanium:sapphire laser in an external enhancement cavity containing a lithium-triborate nonlinear

  8. The role of helium ion microscopy in the characterisation of complex three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Rodenburg, C.; Liu, X.; Jepson, M.A.E.; Zhou, Z.; Rainforth, W.M.; Rodenburg, J.M.

    2010-01-01

    This work addresses two major issues relating to Helium Ion Microscopy (HeIM). First we show that HeIM is capable of solving the interpretation difficulties that arise when complex three-dimensional structures are imaged using traditional high lateral resolution techniques which are transmission based, such as scanning transmission electron microscopy (STEM). Secondly we use a nano-composite coating consisting of amorphous carbon embedded in chromium rich matrix to estimate the mean escape depth for amorphous carbon for secondary electrons generated by helium ion impact as a measure of HeIM depth resolution.

  9. Feasibility of lunar Helium-3 mining

    Science.gov (United States)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  10. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  11. Prestressed concrete vessels suitable for helium high temperature reactors

    International Nuclear Information System (INIS)

    Lockett, G.E.; Kinkead, A.N.

    1967-02-01

    In considering prestressed concrete vessels for use with helium cooled high temperature reactors, a number of new problems arise and projected designs involve new approaches and new solutions. These reactors, having high coolant outlet temperature from the core and relatively high power densities, can be built into compact designs which permit usefully high working pressures. Consequently, steam generators and circulating units tend to be small. Although circuit activity can be kept quite low with coated particle fuels, designs which involve entry for subsequent repair are not favoured, and coupled with the preferred aim of using fully shop fabricated units within the designs with removable steam generators which involve no tube welding inside the vessel. A particular solution uses a number of slim cylindrical assemblies housed in the wall of the pressure vessel and this vessel design concept is presented. The use of helium requires very high sealing standards and one of the important requirements is a vessel design which permits leak testing during construction, so that a repair seal can be made to any faulty part in a liner seam. Very good demountable joint seals can be made without particular difficulty and Dragon experience is used to provide solutions which are suitable for prestressed concrete vessel penetrations. The concept layout is given of a vessel meeting these requirements; the basis of design is outlined and special features of importance discussed. (author)

  12. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  13. Recent progress in the modelling of helium and tritium behaviour in irradiated beryllium pebbles

    International Nuclear Information System (INIS)

    Rabaglino, E.; Ronchi, C.; Cardella, A.

    2003-01-01

    One of the key issues of the European Helium Cooled Pebble Bed blanket is the behaviour under irradiation of beryllium pebbles, which have the function of neutron multiplier. An intense production of helium occurs in-pile, as well as a non negligible generation of tritium. Helium bubbles induce swelling and a high tritium inventory is a safety issue. Extensive studies for a better understanding, characterisation and modelling of the behaviour of helium and tritium in irradiated beryllium pebbles are being carried out, with the final aim to enable a reliable prediction of gas release and swelling in the full range of operating and accidental conditions of a Fusion Power Reactor. The general strategy consists in integrating studies on macroscopic phenomena (gas release) with the characterisation of corresponding microscopic diffusion phenomena (bubble kinetics) and the assessment of some fundamental diffusion parameter for the models (gas atomic diffusion coefficients). The present work gives a summary of the latest achievements in this context. By an inverse analysis of experimental out-of-pile gas release from weakly irradiated pebbles, coupled to the study of the characteristics of bubble population, it has been possible to assess the thermal diffusion coefficients of helium and tritium in and to improve and validate the classical model of gas precipitation into bubbles inside the grain. The improvement of the description of gas atomic diffusion and precipitation is the first step to enable a more reliable prediction of gas release

  14. Free-piston driver performance characterisation using experimental shock speeds through helium

    Science.gov (United States)

    Gildfind, D. E.; James, C. M.; Morgan, R. G.

    2015-03-01

    Tuned free-piston driver operation involves configuring the driver to produce a relatively steady blast of driver gas over the critical time scales of the experiment. For the purposes of flow condition development and parametric studies, it is useful to establish some average working values of the driver pressure and temperature for a given driver operating condition. However, in practise, these averaged values need to produce sufficiently accurate estimates of performance. In this study, two tuned driver conditions in the X2 expansion tube have been used to generate shock waves through a helium test gas. The measured shock speeds have then been used to calculate the effective driver gas pressure and temperature after diaphragm rupture. Since the driver gas is typically helium, or a mixture of helium and argon, and the test gas is also helium, ideal gas assumptions can be made without significant loss of accuracy. The technique is applicable to tuned free-piston drivers with a simple area change, as well as those using orifice plates. It is shown that this technique can be quickly used to establish average working driver gas properties which produce very good estimates of actual driven shock speed, across a wide range of operating conditions. The use of orifice plates to control piston dynamics at high driver gas sound speeds is also discussed in the paper, and a simple technique for calculating the restriction required to modify an established safe condition for use with lighter gases, such as pure helium, is presented.

  15. Preliminary study on helium turbomachine for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Chen Yihua; Wang Jie; Zhang Zuoyi

    2003-01-01

    In the high temperature gas-cooled reactor (HTGR), gas turbine cycle is a new concept in the field of nuclear power. It combines two technologies of HTGR and gas turbine cycle, which represent the state-of-the-art technologies of nuclear power and fossil fuel generation respectively. This approach is expected to improve safety and economy of nuclear power plant significantly. So it is a potential scheme with competitiveness. The heat-recuperated cycle is the main stream of gas turbine cycle. In this cycle, the work medium is helium, which is very different from the air, so that the design features of the helium turbomachine and combustion gas turbomachine are different. The paper shows the basic design consideration for the heat-recuperated cycle as well as helium turbomachine and highlights its main design features compared with combustion gas turbomachine

  16. Thermal instability of helium-burning shell in stars evolving toward carbon-detonation supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D; Nomoto, K [Tokyo Univ. (Japan). Coll. of General Education

    1975-07-01

    Artificially suppressing the occurrence of thermal pulses, evolution in the phase of a growing carbon-oxygen core was computed through the ignition of carbon burning. From this computation we chose two models with the core masses of 1.074 and 1.393 Msub(solar mass). Starting from these models, we followed by numerical computation the occurrence of thermal pulses in the helium-burning shell. We have found the following. More than 4000 thermal pulses take place through the evolutionary phase. The peak energy generation rate is 10/sup 7/Lsub(solar) at most, a rate too small to induce any major dynamical effect. After each pulse the convective envelope penetrates into the helium zone, and the products of helium burning, which contain carbon and s-process elements, are mixed into the convective envelope, which thereby develops composition characteristics of carbon stars.

  17. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  18. Electron-helium scattering in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-01-01

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a 0 ). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  19. Rotary magnetic refrigerator for superfluid helium production

    International Nuclear Information System (INIS)

    Hakuraku, Y.; Ogata, H.

    1986-01-01

    A new rotary-magnetic refrigerator designed to obtain superfluid helium temperatures by executing a magnetic Carnot cycle is developed. A rotor containing 12 magnetic refrigerants (gadolinium-gallium-garnet) is immersed in liquid helium at 4.2 K and rotated at constant speed in a steady magnetic field distribution. Performance tests demonstrate that the new rotary refrigerator is capable of obtaining a temperature of 1.48 K. The maximum useful cooling power obtained at 1.8 K is 1.81 W which corresponds to a refrigeration efficiency of 34%

  20. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  1. Calculation of electron-helium scattering

    International Nuclear Information System (INIS)

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3 3 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs

  2. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    Science.gov (United States)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  3. Interstitial lung diseases with fibrosis - the pattern at high resolution

    International Nuclear Information System (INIS)

    Jarzemska, A.; Lasek, W.; Nawrocka, E.; Meder, G.; Zapala, M.

    2003-01-01

    Surgical lung biopsy, either open thoracotomy or video-assisted thoracoscopy is recommended in the diagnosis of interstitial lung diseases (ILD). In some cases, however, the repetitive pattern of radiological features in high-resolution computed tomography is often sufficient to confirm the diagnosis in a non-invasive manner. The purpose of the study was to determine whether patients with ILD can be selected on the basis of the HRCT pattern. Thin-section CT scans were performed in 40 patients with histologically proven idiopathic interstitial pneumonia (26 patients with usual interstitial pneumonia UIP, 2 patients with desquamative interstitial pneumonia DIP, 2 patients with bronchiolitis obliterans organizing pneumonia BOOP, 2 patients with non-specific interstitial pneumonia NSIP, 11 patients with hypersensitivity pneumonitis, and 3 patients with pulmonary histiocytosis X). The location and the intensity of lesions were taken into consideration. Clinical and histopathological findings were compared. HRCT features of interstitial lung diseases such as nodules and cystic spaces in hypersensitivity pneumonitis and pulmonary histiocytosis, and ground-glass opacities in idiopathic interstitial pneumonias (IIP) were statistically significant for differential diagnosis in ILD cases. Combination of honeycombing and ground-glass opacities found in UIP and nodules found in DIP were also statistically significant features in IIP subtypes diagnosis. In some cases, HRCT patterns of hypersensitivity pneumonitis, pulmonary histiocytosis X and IPF combined with clinical findings allowed for the accurate diagnosis without resorting to lung biopsy. Within a group of idiopathic interstitial pneumonia only in usual interstitial pneumonia characteristic pattern in thin-section CT can be defined. In other subgroups some typical features can imply a diagnosis. (author)

  4. Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid

    Science.gov (United States)

    Woo, C. H.; Wen, Haohua

    2017-09-01

    The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature, effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically temperature independent. We have shown that both effects have their physical origin in the athermal lattice vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only valid in a narrow range between ˜300 and ˜700 K. The diffusivity becomes temperature independent on the low-temperature side while increasing linearly with temperature on the high-temperature side.

  5. Dissolved helium and TDS in groundwater from Bhavnagar in Gujarat

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2003-01-02

    Jan 2, 2003 ... by enhanced pumping of old groundwater with relatively higher concentration of dissolved helium and salt .... solubility changes due to these (Weiss 1971) can- ... aquifers and relatively low helium concentra- .... permeability.

  6. Gallium interstitial contributions to diffusion in gallium arsenide

    Science.gov (United States)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    A new diffusion path is identified for gallium interstitials, which involves lower barriers than the barriers for previously identified diffusion paths [K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008), P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009)] for the charge states which dominate diffusion over most of the available range of Fermi energies. This path passes through the ⟨110⟩ gallium-gallium split interstitial configuration, and has a particularly low diffusion barrier of 0.35 eV for diffusion in the neutral charge state. As a part of this work, the character of the charge states for the gallium interstitials which are most important for diffusion is investigated, and it is shown that the last electron bound to the neutral interstitial occupies a shallow hydrogenic bound state composed of conduction band states for the hexagonal interstitial and both tetrahedral interstitials. How to properly account for the contributions of such interstitials is discussed for density-functional calculations with a k-point mesh not including the conduction band edge point. Diffusion barriers for gallium interstitials are calculated in all the charge states which can be important for a Fermi level anywhere in the gap, q = 0, +1, +2, and +3, for diffusion via the ⟨110⟩ gallium-gallium split interstitial configuration and via the hexagonal interstitial configuration. The lowest activation enthalpies over most of the available range of Fermi energies are found to correspond to diffusion in the neutral or singly positive state via the ⟨110⟩ gallium-gallium split interstitial configuration. It is shown that several different charge states and diffusion paths contribute significantly for Fermi levels within 0.2 eV above the valence band edge, which may help to explain some of the difficulties [H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005)] which have been

  7. High-resolution CT of lymphoid interstitial pneumonia

    International Nuclear Information System (INIS)

    Vilgrain, V.; Frija, J.; Yana, C.; Couderc, L.J.; David, M.; Clauvel, J.P.; Laval-Jeantet, M.

    1989-01-01

    Three patients with lymphoid interstitial pneumonia (two HIV 1+ patients with chronic lymphadenopathic syndromes and one with a not-characterized autoimmune disease) have been studied with high-resolution computed tomography (HR-CT). This technique reveals septal lines, small reticulonodular opacities, polyhedral micronodular opacities, 'ground-glass' opacities and a dense, subpleural, curved broken line in one patient. The lesions dominate in the bases of the lungs. They are not characteristic for lymphoid interstitial pneumonia. If a patient presents with a chronic lymphadenopathic syndrome, the diagnosis of an opportunistic infection should not be automatically made, since the syndrome can be caused by lymphoid interstitial pneumonia [fr

  8. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  9. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  10. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  11. Doubly excited helium. From strong correlation to chaos

    International Nuclear Information System (INIS)

    Jiang, Yuhai

    2006-03-01

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  12. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  13. A first-principles and experimental study of helium diffusion in periclase MgO

    Science.gov (United States)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  14. Electron microscopy observations of helium bubble-void transition effects in nimonic PE16 alloys

    International Nuclear Information System (INIS)

    Mazey, D.J.; Nelson, R.S.

    1980-01-01

    High-nickel alloys based on the Nimonic PE16 composition have been injected at temperatures of 525 0 C and 625 0 C with 1000 ppm helium to produce a high gas-bubble concentration and subsequently irradiated with 36 MeV nickel ions. Extensive heterogeneous nucleation of bubbles is observed on faulted interstitial loops and dislocations. Evidence is found in standard PE16 alloy for bimodal bubble plus void distributions which persist during nickel-ion irradiation to 30 and 60 dpa at 625 0 C and result in a low void volume swelling of approximately 1%. The observations can be correlated with the critical bubble/void transition radius which is calculated from theory to be approximately 4.4 nm. Pre-injection of helium into a 'matrix' PE16 (low Si, Ti and Al) alloy produced an initial bubble population whose average size was above the calculated transition radius such that all bubbles eventually grew as voids during subsequent nickel-ion irradiation up to 60 dpa at 625 0 C where the void volume swelling reached approximately 12%. The observations are discussed briefly and related to theoretical predictions of the bubble/void transition radius. (author)

  15. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  16. Helium release from metals with face-centered cubic structure

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt

  17. Interstitial shadow on chest CT is associated with the onset of interstitial lung disease caused by chemotherapeutic drugs

    International Nuclear Information System (INIS)

    Niho, Seiji; Goto, Koichi; Yoh, Kiyotaka; Kim, Y.H.; Ohmatsu, Hironobu; Kubota, Kaoru; Saijo, Nagahiro; Nishiwaki, Yutaka

    2006-01-01

    Pretreatment computerized tomography (CT) films of the chest was studied to clarify the influence of interstitial shadow on developing interstitial lung disease (ILD). Eligible patients were those lung cancer patients who started to receive first-line chemotherapy between October 2001 and March 2004. Patients who received thoracic radiotherapy to the primary lesion, mediastinum, spinal or rib metastases were excluded. We reviewed pretreatment conventional CT and plain X-ray films of the chest. Ground-glass opacity, consolidation or reticular shadow without segmental distribution was defined as interstitial shadow, with this event being graded as mild, moderate or severe. If interstitial shadow was detected on CT films of the chest, but not via plain chest X-ray, it was graded as mild. Patients developing ILD were identified from medial records. A total of 502 patients were eligible. Mild, moderate and severe interstitial shadow was identified in 7, 8 and 5% of patients, respectively. A total of 188 patients (37%) received tyrosine kinase inhibitor (TKI) treatment, namely gefitinib or erlotinib. Twenty-six patients (5.2%) developed ILD either during or after chemotherapy. Multivariate analyses revealed that interstitial shadow on CT films of the chest and treatment history with TKI were associated with the onset of ILD. It is recommended that patients with interstitial shadow on chest CT are excluded from future clinical trials until this issue is further clarified, as it is anticipated that use of chemotherapeutic agents frequently mediate onset of ILD in this context. (author)

  18. Directional interstitial brachytherapy from simulation to application

    Science.gov (United States)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  19. On the evolution of normal ionizing shock waves in helium

    International Nuclear Information System (INIS)

    Synakh, V.S.; Zakajdakov, V.V.

    1982-01-01

    The generation, structure and propagation of one-dimensional ionizing MHD shock waves in helium under a pressure of 100 mTorr are investigated with the help of numerical simulation. The normal magnetic field varies within 3 to 10 kG and the longitudinal magnetic field varies up to 2.5 kG. The model includes the kinetics of ionization and photo-processes. If a solid conducting piston is a source of perturbation, it may give rise to generation and further development of an MHD switch-on wave. Its evolution at an advanced stage depends weakly on the source. The curves for the dependence of the shock speed on time and the driving magnetic field as well as the profiles for the main quantities are presented. A possibility of comparison with real experiments is discussed. Algorithms based on Godunov's sliding meshes and the imbedding methods are used for numerical simulation. (author)

  20. Nuclear fuel rod helium leak inspection apparatus and method

    International Nuclear Information System (INIS)

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  1. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  2. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  3. Cooling by mixing of helium isotopes

    International Nuclear Information System (INIS)

    Hansen, O.P.; Olsen, M.; Rasmussen, F.B.

    1975-01-01

    The principles of the helium dilution refrigerator are outlined. The lowest temperature attained with a continuously operated dilution refrigerator was about 10 mK, and 5 mK for a limited period when the supply of concentrated 3 He to the mixing chamber was interrupted. (R.S.)

  4. Diffusion of helium in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Noerdlinger, P D [Michigan State Univ., East Lansing (USA). Dept. of Astronomy and Astrophysics; Amsterdam Univ. (Netherlands). Sterrenkundig Instituut)

    1977-05-01

    I have reduced the set of diffusion and flow equations developed by Burgers for a multi-component gas to a workable scheme for the actual evaluation of the relative diffusion of hydrogen and helium in stars. Previous analyses have used the Aller and Chapman equations, which apply only to trace constitutents and whose coefficients are not believed to be as accurate as Burgers'. Furthermore, the resulting equations have been combined consistently with Paczynski's stellar evolution code to demonstrate small but significant effects in the Sun, from the thermal and gravitational settling of Helium. The core helium content of a 1 M star goes up about 0.04 and the surface helium content down by about -0.03 in 4.5 10/sup 9/ years. The results are still somewhat uncertain because of uncertainties in the underlying plasma physics, and further research is suggested. In any case, the diffusion process speeds up with time, due to increased temperature gradient, and it will be of interest to follow the process in older stars and in later stellar evolution.

  5. Conceptual design of helium experimental loop

    International Nuclear Information System (INIS)

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  6. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  7. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  8. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  9. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  10. Helium ion lithography principles and performance

    NARCIS (Netherlands)

    Drift, E. van der; Maas, D.J.

    2012-01-01

    Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From

  11. Resource letter SH-1: superfluid helium

    International Nuclear Information System (INIS)

    Hallock, R.B.

    1982-01-01

    The resource letter covers the general subject of superfluid helium and treats 3 He and 3 He-- 4 He mixtures as well as 4 He. No effort has been made to include the fascinating experiments on either solid helium or the equally fascinating work on adsorbed helium where the helium coverage is below that necessary for superfluidity. An earlier resource letter by C. T. Lane [Am. J. Phys. 35, 367 (1967)] may be consulted for additional comments on some of the cited earlier manuscripts, but the present work is self-contained and may be used independently. Many high-quality research reports have not been cited here. Rather, the author has tried in most cases to include works particularly readable or relevant. There is a relatively heavy emphasis on experimental references. The primary reason is that these works tend to be more generally readable. No doubt some works that might have been included, have not, and for this the author takes responsibility with apology. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are marked with an asterisk(*). Following each referenced work the general level of difficulty is indicated by E, I, or A for elementary, intermediate, or advanced

  12. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  13. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  14. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry; Calorimetre mixte a helium-3 et helium-4. Calorimetrie a tres basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Testard, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author) [French] On decrit un calorimetre a double enceinte utilisant comme fluide cryogenique l'helium-4 et l'helium-3 et permettant de varier continuement la temperature de 0,35 K a 4,2 K. L'utilisation d'un regulateur thermique electrique ainsi que celle d'hydrogene, liquide permettent d'etendre cette gamme jusqu'a 30 K environ. Dans une deuxieme partie, on passe en revue les diverses methodes de mesure des chaleurs specifiques. La methode concrete utilisee dans l'appareil precedemment decrit est exposee en detail. Les difficultes inherentes a l'utilisation de gaz d'echange comme agent de contact thermique ont ete levees par la mise en oeuvre de pompes a adsorbant. (auteur)

  15. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  16. Development of helium isotopic database in Japan

    International Nuclear Information System (INIS)

    Kusano, Tomohiro; Asamori, Koichi; Umeda, Koji

    2012-09-01

    We constructed “Helium Isotopic Database in Japan”, which includes isotope ratios of noble gases and chemical compositions of gas samples collected from hot springs and drinking water wells. The helium isotopes are excellent natural tracers for indicating the presence of mantle derived volatiles, because they are chemically inert and thus conserved in crustal rock-water systems. It is common knowledge that mantle degassing does not occur homogeneously over the Earth's surface. The 3 He/ 4 He ratios higher than the typical crustal values are interpreted to indicate that transfer of mantle volatiles into the crust by processes or mechanisms such as magmatic intrusion, faulting. In particular the spatial variation of helium isotope ratios could provide a valuable information to identify volcanic regions and tectonically active areas. The database was compiled geochemical data of hot spring gas etc. from 108 published papers. As a result of the data compiling, the database has 1728 helium isotopic data. A CD-ROM is attached as an appendix. (author)

  17. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  18. Ultraviolet spectra of Mg in liquid helium

    International Nuclear Information System (INIS)

    Moriwaki, Y.; Morita, N.

    1999-01-01

    Emission and absorption spectra of Mg atoms implanted in liquid helium have been observed in the ultraviolet region. We have presented a model of exciplex formation of Mg-He 10 and found that this model is more suitable for understanding the dynamics in the 3s3p 1 P→3s 21 S transition than the bubble model. (orig.)

  19. Parametric study of radiofrequency helium discharge under ...

    Indian Academy of Sciences (India)

    The excitation temperatures in the α and γ modes were 3266 and 4500 K respectively, evaluated by Boltzmann's plot method. The estimated gas temperature increased from 335 K in the α mode to 485 K in the γ mode, suggesting that the radio frequency atmospheric pressure helium discharge can be used for surface ...

  20. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  1. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  2. Synthesized interstitial lung texture for use in anthropomorphic computational phantoms

    Science.gov (United States)

    Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan

    2016-04-01

    A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.

  3. Fatal interstitial lung disease associated with icotinib.

    Science.gov (United States)

    Zhang, Jiexia; Zhan, Yangqing; Ouyang, Ming; Qin, Yinyin; Zhou, Chengzhi; Chen, Rongchang

    2014-12-01

    The most serious, and maybe fatal, yet rare, adverse reaction of gefitinib and erlotinib is drug-associated interstitial lung disease (ILD), which has been often described. However, it has been less well described for icotinib, a similar orally small-molecule tyrosine kinase inhibitor (TKI). The case of a 25-year-old female patient with stage IV lung adenocarcinoma who developed fatal ILD is reported here. She denied chemotherapy, and received palliative treatment with icotinib (125 mg po, three times daily) on March 1, 2013. One month after treatment initiation, the patient complained of continuous dry cough and rapid progressive dyspnea. Forty one days after icotinib treatment, icotinib associated ILD was suspected when the patient became increasingly dyspnoeic despite of treatment of pericardial effusion, left pleural effusion and lower respiratory tract infection, and X-ray computed tomography (CT) of chest revealed multiple effusion shadows and ground-glass opacities in bilateral lungs. Then, icotinib was discontinued and intravenous corticosteroid was started (methylprednisolone 40 mg once daily, about 1 mg per kilogram) respectively. Forty three days after icotinib treatment, the patient died of hypoxic respiratory failure. ILD should be considered as a rare, but often fatal side effect associated with icotinib treatment.

  4. Magnetic effects of interstitial hydrogen in nickel

    Energy Technology Data Exchange (ETDEWEB)

    León, Andrea [Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso (Chile); Velásquez, E.A. [Facultad de Física y Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago (Chile); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, Medellín (Colombia); Mazo-Zuluaga, J. [Grupo de Instrumentación Científica y Microelectrónica, Grupo de Estado Sólido, IF-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mejía-López, J. [Facultad de Física y Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago (Chile); Florez, J.M. [Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso (Chile); and others

    2017-01-01

    Hydrogen storage in materials is among the most relevant fields when thinking about energy conversion and storage. In this work we present a study that responds to a couple of questions concerning induced electronic changes that H produces in ferromagnetic nickel (Ni) host. We calculate and explain the change of magnetic properties of Ni with different concentrations of H. Density functional theory calculations (DFT) were performed for super-cells of fcc Ni with interstitial H in octahedral sites at different concentrations. In order to physically explain the effect of magnetization diminishing as the hydrogen concentration increases, we propose a simple Stoner type of model to describe the influence of the H impurity on the magnetic properties of Ni. The exchange splitting reduction, as shown in first principles calculations, is clearly explained within this physical model. Using a paramagnetic Ni fcc band with variable number of electrons and a Stoner model allow us to obtain the correct trend for the magnetic moment of the system as a function of the H concentration. - Highlights: • We calculate and explain the change of magnetic properties of Ni with different concentrations of H. • We propose a simple Stoner type of model to describe the influence of the H impurity on the magnetic properties of Ni. • The band exchange splitting reduction as the H concentration increases, is a consequence of the competition between the band energy term (kinetic energy) and the ferromagnetic energy term (Weiss field).

  5. Interstitial cells of Cajal in chagasic megaesophagus.

    Science.gov (United States)

    de Lima, Marcus Aurelho; Cabrine-Santos, Marlene; Tavares, Marcelo Garcia; Gerolin, Gustavo Pacheco; Lages-Silva, Eliane; Ramirez, Luis Eduardo

    2008-08-01

    Chagasic visceromegalies are the most important digestive manifestations of Chagas disease and are characterized by motor disorders and dilation of organs such as esophagus and colon. One of the theories raised to explain the physiopathogenesis of chagasic megas is the plexus theory. Recent studies have shown a reduction of interstitial cells of Cajal (ICCs) in the colon of chagasic patients. These cells are present throughout the gastrointestinal tract and are considered to be pacemaker cells, that is, they are responsible for coordinating peristalsis and for mediating nerve impulses. In view of the lack of studies on these cells in megaesophagus and the previous observation of a reduction of ICCs in chagasic megacolons, we compared the distribution of ICCs in the esophagus of chagasic and nonchagasic patients to contribute to a better understanding of the physiopathogenesis of this esophageal disease. Esophageal biopsy samples from 10 chagasic and 5 nonchagasic patients were used. Cells were identified with the anti-CD117 antibody. The number of ICCs was quantified in longitudinal and circular muscle layers and myenteric plexus. The results were analyzed statistically by comparison of means. An intense reduction in the number of ICCs was observed in muscle layers and in the myenteric plexus of patients with megaesophagus. We conclude that there is an intense reduction of ICCs in the esophagus of chagasic patients when compared to nonchagasic patients, a finding supporting the important role of these cells in gastrointestinal tract motility. A deficiency in these cells might be implied in the genesis of megaesophagus.

  6. Classical patterns of interstitial lung diseases

    International Nuclear Information System (INIS)

    Mueller-Mang, C.

    2014-01-01

    High resolution computed tomography (HRCT) is the most important non-invasive tool in the diagnostics and follow-up of patients with interstitial lung disease (ILD). A systematic review of the HRCT patterns of ILD was carried out and the most relevant differential diagnoses are discussed in order to provide a road map for the general radiologist to successfully navigate the complex field of ILD. Using HRCT four basic patterns of ILD can be identified: linear and reticular patterns, the nodular pattern, the high attenuation and low attenuation patterns. These patterns can be further differentiated according to their localization within the secondary pulmonary lobule (SPL), e.g. centrilobular or perilymphatic and their distribution within the lungs (e.g. upper or lower lobe predominance). Relevant clinical data, such as smoking history and course of the disease provide useful additional information in the diagnosis of ILD. On the basis of the pattern and anatomical distribution on HRCT, an accurate diagnosis can be achieved in some cases of ILD; however, due to morphological and clinical overlap the final diagnosis of many ILDs requires close cooperation between clinicians, radiologists and pathologists. (orig.) [de

  7. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  8. Interstitial adenosine concentration is increased by dipyridamole

    International Nuclear Information System (INIS)

    Gorman, M.W.; Wangler, R.D.; DeWitt, D.F.; Wang, C.Y.; Bassingthwaighte, J.B.; Sparks, H.V.

    1986-01-01

    The authors used the multiple indicator dilution technique to observe the capillary transport of adenosine (ADO) in isolated guinea pig hearts. Radiolabelled albumin, sucrose and ADO were injected on the arterial side and measured in venous samples collected during the following 20 seconds. Transport parameters calculated from these data include permeability-surface area products (PS) for transendothelial diffusion, endothelial cell (EC) uptake at the lumenal and ablumenal membranes, and EC metabolism. With simultaneous measurements of arterial and venous ADO concentrations and flow, the authors calculated the steady-state interstitial fluid (ISF) ADO concentration. Under control conditions the venous ADO concentration was 7.1 +/- 2.8 nM. The calculated ISF concentration depends on whether they assume the venous ADO comes from the ISF, or directly from ECs. These ISF concentrations are 25 +/- 12 nM and 9.8 +/- 4.0 nM, respectively. During dipyridamole infusion (10 uM) the EC transport parameters became nearly zero. Venous and ISF ADO concentrations increased to 33 +/- 8.9 nM and 169 +/- 42 nM, respectively. The authors conclude that the ISF ADO concentration is 1.5-4 fold higher than the venous concentration at rest, and the ISF concentration increases greatly with dipyridamole

  9. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte

    2006-01-01

    patients,       treated for recurrent rectal and cervical cancer, flexible catheters were       sutured intra-operatively to the tumour bed in areas with compromised       surgical margin. Both non-optimised, geometrically and graphically       optimised CT -based dose plans were made. The overdose index...... on the       regularity of the implant, such that the benefit of optimisation was       larger for irregular implants. OI and HI correlated strongly with target       volume limiting the usability of these parameters for comparison of dose       plans between patients. CONCLUSIONS: Dwell time optimisation significantly......BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  10. Californium-252 radiotherapy sources for interstitial afterloading

    International Nuclear Information System (INIS)

    Permar, P.H.; Walker, V.W.

    1976-01-01

    Californium-252 neutron sources for interstitial afterloading were developed to investigate the value of this radionuclide in cancer therapy. Californium-252 seed assemblies contain essentially point sources of 252 Cf permanently sealed on 1-cm centers within a flexible plastic tube. The seed assemblies are fabricated with remotely operated, specially designed machines. The fabrication process involves the production of a Pt-10 percent Ir-clad wire with a 252 Cf 2 O 3 -Pd cermet core. The wire is swaged and drawn to size, cut to length, and welded in a Pt-10 percent Ir capsule 0.8 mm in diameter and 6 mm long. Each seed capsule contains approximately 0.5 microgram of 252 Cf. Because the effective half-life of 252 Cf is 2.6 years, the seed assemblies are not disposable and must be reused until their activities have decreased to unsuitable levels. The flexible plastic components must therefore have sufficient resistance to radiation damage to survive the neutron-plus-gamma radiation from 252 Cf. On the basis of accelerated irradiation tests with a large 252 Cf source, a recently developed fluoropolymer, ''Tefzel'' (trademark of E. I. du Pont de Nemours and Company) has adequate radiation resistance for this application. Californium-252 seed assembly systems are loaned by the United States Energy Research and Development Administration for clinical investigations under a protocol of the Radiation Therapy Oncology Group, U.S. National Cancer Institute

  11. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  12. Thirty years of screw compressors for helium; Dreissig Jahre Schraubenkompressoren fuer Helium

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, H. [Kaeser Kompressoren GmbH, Coburg (Germany). Technisches Buero/Auftragskonstruktion

    2007-07-01

    KAESER helium compressors, as well as their other industrial compressors, will be further developed with the intention to improve the availability and reliability of helium liquefaction systems. Further improvement of compressor and control system efficiency will ensure a low and sustainable operating cost. Fast supply of replacement parts with several years of warranty is ensured by a world-wide distribution system and is also worked on continuously. (orig.)

  13. A new interstitial flatworm (Turbellaria: Promesostomidae) from the Indian Ocean

    NARCIS (Netherlands)

    Clerck, De G.G.

    1994-01-01

    Paraproboscifer alacerregis, representing a new genus and a new species of the interstitial typloplanoid flatworms is described from the Seychelles and Kenya. It is placed in the turbellarian family Promesostomidae, The type locality is on Mahé Island, Seychelles.

  14. Leflunomide-Induced Interstitial Lung Disease: A Case Report

    Directory of Open Access Journals (Sweden)

    Aygül Güzel

    2015-04-01

    Full Text Available Leflunomide (LEF induced interstitial pneumonitis is a very rare condition but potentially fatal. We report a case of LEF induced interstitial pneumonitis. A 63-year-old woman followed-up for 37 years with the diagnosis of rheumatoid arthritis treated with LEF (20 mg/day since 5 months were admitted to our hospital with cough, dyspnea, fever, and dark sputum.Chest radiography represented bilateral alveolar consolidation. High-resolution computed tomography demonstrated diffuse ground-glass appearance and interlobular septal thickening. Since the patient’s clinics and radiologic findings improved dramatically after the cessation of LEF and recieving oral steriod therapy, she was diagnosed as drug-induced interstitial lung disease. In conclusion, when nonspecific clinical signs such as respiratory distress, cough and fever seen during the use of LEF, drug-induced interstitial lung disease should be kept in mind for the differantial diagnosis.

  15. Helium (24He, 23He) within deuterated Pd-black

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1997-01-01

    Authors have clearly proven for the first time that deuterium nuclear reaction was continuously generated inside a highly deuterated solid by showing both of the excess energy and corresponding amount of helium as the reaction product generated simultaneously. Whenever there is a nuclear fusion reaction inside a metal, helium generated is unable to escape to the surroundings and is trapped in a frozen state inside that metal. The concentration of the helium within the metal will rise with increasing rate of reactions. Pd-black is under such state as the sample used and sealed within the 'closed QMS' developed by the authors (closed vessel including the Getter pump and the QMS). It is completely separated from the surroundings and the internal gases are removed to create super-vacuum. The reaction product released by the 'Sample-Heating' process (room temp. ↔ 1500(degC)) is thus the only matter which occupies the interior of the closed vessel and its detection by the QMS is assured. When the 'closed QMS' works under the above mentioned-state, it was clarified that the 'ash' or the reaction product of this fusion reaction within a solid is 2 4 He and 2 3 He and their ratio is 2 4 He/ 2 3 He ≅ 4. It can be concluded from the result that the main reaction product is 2 4 He and it is created directly as an inherent feature of the solid-state nuclear fusion. Authors think that the reaction process responsible for the creation of 2 3 He may be a different one from that created 2 4 He. One of which is the Rutherford reaction process and the other occurs based on the specific properties of solid, similar to the case of 2 4 He. The existence of 1 3 T will be required that the process is responsible for the generation of 2 3 He as the Rutherford reaction. The proof for the existence of 1 3 T within the 'closed QMS', however, was not obtained in this experiments. (author)

  16. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  17. Evaluation of helium cooling for fusion divertors

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  18. Neutral transport and helium pumping of ITER

    International Nuclear Information System (INIS)

    Ruzic, D.N.

    1990-08-01

    A 2-D Monte-Carlo simulation of the neutral atom densities in the divertor, divertor throat and pump duct of ITER was made using the DEGAS code. Plasma conditions in the scrape-off layer and region near the separatrix were modeled using the B2 plasma transport code. Wall reflection coefficients including the effect of realistic surface roughness were determined by using the fractal TRIM code. The DEGAS and B2 coupling was iterated until a consistent recycling was predicted. Results were obtained for a helium and a deuterium/tritium mixture on 7 different ITER divertor throat geometries for both the physics phase reference base case and a technology phase case. The geometry with a larger structure on the midplane-side of the throat opening closing the divertor throat and a divertor plate which maintains a steep slope well into the throat removed helium 1.5 times better than the reference geometry for the physics phase case and 2.2 times better for the technology phase case. At the same time the helium to hydrogen pumping ratio shows a factor of 2.34 ± .41 enhancement over the ratio of helium to hydrogen incident on the divertor plate in the physics phase and an improvement of 1.61 ± .31 in the technology phase. If the helium flux profile on the divertor plate is moved outward by 20 cm with respect to the D/T flux profile for this particular geometry, the enhancement increases to 4.36 ± .90 in the physics phase and 5.10 ± .92 in the technology phase

  19. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  20. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  1. A CURIOUS CASE OF FEVER AND INTERSTITIAL LUNG DISEASE

    OpenAIRE

    Dr. Shahid Mahdi; Dr. Darpanarayan Hazra; Dr. Zainab Mahdi

    2017-01-01

    Antisynthetase syndrome is a rare chronic autoimmune inflammatory myopathy with fever, interstitial lung disease, Raynaud’s phenomenon and polyarthritis. The exact underlying cause of antisynthetase syndrome is not yet known. Diagnosis is made with presence of Jo-1 (Histydyl t RNA synthase) antigen in a patient with underlying interstitial lung disease, myositis, arthritis, Raynaud’s phenomenon and mechanic’s hand. Some of the other antisynthetase anti bodies are PL-7 (antigen – threonyl-tRNA...

  2. The idiopathic interstitial pneumonias: understanding key radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, S. [Department of Radiology, Churchill Hospital, Old Road, Oxford OX3 7LJ (United Kingdom); Benamore, R., E-mail: Rachel.Benamore@orh.nhs.u [Department of Radiology, Churchill Hospital, Old Road, Oxford OX3 7LJ (United Kingdom)

    2010-10-15

    Many radiologists find it challenging to distinguish between the different interstitial idiopathic pneumonias (IIPs). The British Thoracic Society guidelines on interstitial lung disease (2008) recommend the formation of multidisciplinary meetings, with diagnoses made by combined radiological, pathological, and clinical findings. This review focuses on understanding typical and atypical radiological features on high-resolution computed tomography between the different IIPs, to help the radiologist determine when a confident diagnosis can be made and how to deal with uncertainty.

  3. The idiopathic interstitial pneumonias: understanding key radiological features

    International Nuclear Information System (INIS)

    Dixon, S.; Benamore, R.

    2010-01-01

    Many radiologists find it challenging to distinguish between the different interstitial idiopathic pneumonias (IIPs). The British Thoracic Society guidelines on interstitial lung disease (2008) recommend the formation of multidisciplinary meetings, with diagnoses made by combined radiological, pathological, and clinical findings. This review focuses on understanding typical and atypical radiological features on high-resolution computed tomography between the different IIPs, to help the radiologist determine when a confident diagnosis can be made and how to deal with uncertainty.

  4. Rheumatoid arthritis associated interstitial lung disease: a review

    Directory of Open Access Journals (Sweden)

    Deborah Assayag

    2014-04-01

    Full Text Available Rheumatoid arthritis is a common inflammatory disease affecting about 1% of the population. Interstitial lung disease is a serious and frequent complication of rheumatoid arthritis. Rheumatoid arthritis associated interstitial lung disease (RA-ILD is characterized by several histopathologic subtypes. This article reviews the proposed pathogenesis and risk factors for RA-ILD. We also outline the important steps involved in the work-up of RA-ILD and review the evidence for treatment and prognosis.

  5. T2 mapping of CT remodelling patterns in interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Buzan, Maria T.A. [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Pneumology, Cluj-Napoca (Romania); Thoraxklinik at Heidelberg University Hospital, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg (Germany); University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Eichinger, Monika; Heussel, Claus Peter [Thoraxklinik at Heidelberg University Hospital, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Kreuter, Michael; Herth, Felix J. [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Thoraxklinik at Heidelberg University Hospital, Department of Pneumology, Center for Rare and Interstitial Lung Diseases, Heidelberg (Germany); Kauczor, Hans-Ulrich [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Warth, Arne [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); University Hospital Heidelberg, Institute for Pathology, Heidelberg (Germany); Pop, Carmen Monica [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Pneumology, Cluj-Napoca (Romania); Dinkel, Julien [Thoraxklinik at Heidelberg University Hospital, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich (Germany); Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-11-15

    To evaluate lung T2 mapping for quantitative characterization and differentiation of ground-glass opacity (GGO), reticulation (RE) and honeycombing (HC) in usual interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP). Twelve patients with stable UIP or NSIP underwent thin-section multislice CT and 1.5-T MRI of the lung. A total of 188 regions were classified at CT into normal (n = 29) and pathological areas, including GGO (n = 48), RE (n = 60) and HC (n = 51) predominant lesions. Entire lung T2 maps based on multi-echo single shot TSE sequence (TE: 20, 40, 79, 140, 179 ms) were generated from each subject with breath-holds at end-expiration and ECG-triggering. The median T2 relaxation of GGO was 67 ms (range 60-72 ms). RE predominant lesions had a median relaxation of 74 ms (range 69-79 ms), while for HC pattern this was 79 ms (range 74-89 ms). The median T2 relaxation for normal lung areas was 41 ms (ranged 38-49 ms), and showed significant difference to pathological areas (p < 0.001). A statistical difference was found between the T2 relaxation of GGO, RE and HC (p < 0.05). The proposed method provides quantitative information for pattern differentiation, potentially allowing for monitoring of progression and response to treatment, in interstitial lung disease. (orig.)

  6. Architecture of interstitial nodal spaces in the rodent renal inner medulla.

    Science.gov (United States)

    Gilbert, Rebecca L; Pannabecker, Thomas L

    2013-09-01

    Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.

  7. T2 mapping of CT remodelling patterns in interstitial lung disease

    International Nuclear Information System (INIS)

    Buzan, Maria T.A.; Eichinger, Monika; Heussel, Claus Peter; Kreuter, Michael; Herth, Felix J.; Kauczor, Hans-Ulrich; Warth, Arne; Pop, Carmen Monica; Dinkel, Julien

    2015-01-01

    To evaluate lung T2 mapping for quantitative characterization and differentiation of ground-glass opacity (GGO), reticulation (RE) and honeycombing (HC) in usual interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP). Twelve patients with stable UIP or NSIP underwent thin-section multislice CT and 1.5-T MRI of the lung. A total of 188 regions were classified at CT into normal (n = 29) and pathological areas, including GGO (n = 48), RE (n = 60) and HC (n = 51) predominant lesions. Entire lung T2 maps based on multi-echo single shot TSE sequence (TE: 20, 40, 79, 140, 179 ms) were generated from each subject with breath-holds at end-expiration and ECG-triggering. The median T2 relaxation of GGO was 67 ms (range 60-72 ms). RE predominant lesions had a median relaxation of 74 ms (range 69-79 ms), while for HC pattern this was 79 ms (range 74-89 ms). The median T2 relaxation for normal lung areas was 41 ms (ranged 38-49 ms), and showed significant difference to pathological areas (p < 0.001). A statistical difference was found between the T2 relaxation of GGO, RE and HC (p < 0.05). The proposed method provides quantitative information for pattern differentiation, potentially allowing for monitoring of progression and response to treatment, in interstitial lung disease. (orig.)

  8. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    Science.gov (United States)

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. A helium based pulsating heat pipe for superconducting magnets

    Science.gov (United States)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  10. An entropy flow optimization technique for helium liquefaction cycles

    International Nuclear Information System (INIS)

    Minta, M.; Smith, J.L.

    1984-01-01

    This chapter proposes a new method of analyzing thermodynamic cycles based on a continuous distribution of precooling over the temperature range of the cycle. The method gives the optimum distribution of precooling over the temperature range of the cycle by specifying the mass flow to be expanded at each temperature. The result is used to select a cycle configuration with discrete expansions and to initialize the independent variables for final optimization. Topics considered include the continuous precooling model, the results for ideal gas, the results for real gas, and the application to the design of a saturated vapor compression (SVC) cycle. The optimization technique for helium liquefaction cycles starts with the minimization of the generated entropy in a cycle model with continuous precooling. The pressure ratio, the pressure level and the distribution of the heat exchange are selected based on the results of the continuous precooling analysis. It is concluded that the technique incorporates the non-ideal behavior of helium in the procedure and allows the trade-off between heat exchange area and losses to be determined

  11. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    Science.gov (United States)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  12. Modeling of long-range migration of boron interstitials

    International Nuclear Information System (INIS)

    Velichko, O.I.; Burunova, O.N.

    2009-01-01

    A model of the interstitial migration of ion-implanted dopant in silicon during low-temperature thermal treatment has been formulated. It is supposed that the boron interstitials are created during ion implantation or at the initial stage of annealing. During thermal treatment a migration of these impurity interstitials to the surface and in the bulk of a semiconductor occurs. On this basis, a simulation of boron redistribution during thermal annealing for 35 minutes at a temperature of 800 0 C has been carried out. The calculated boron profile agrees well with the experimental data. A number of the parameters describing the interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 0.092 μm at a temperature of 800 0 C. To carry out modeling of ion-implanted boron redistribution, the analytical solutions of nonstationary diffusion equation for impurity interstitials have been obtained. The case of Dirichlet boundary conditions and the case of reflecting boundary on the surface of a semiconductor have been considered. (authors)

  13. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  14. An approach to interstitial lung disease in India

    Directory of Open Access Journals (Sweden)

    J N Pande

    2014-07-01

    Full Text Available Interstitial lung diseases are common and have varied etiology, clinical presentation, clinical course and outcome. They pose a diagnostic challenge to physicians and pulmonologists. Patients present with dry cough, exertional dyspnoea, interstitial lesions on X-ray of the chest and restrictive ventilatory defect on spirometry. A sharp decline in oxygen saturation with exercise is characteristic. Careful evaluation of the history of the patient and physical examination help in narrowing down diagnostic probabilities. HRCT of the chest has emerged as an important tool in the evaluation of these disorders. Idiopathic Interstitial Pneumonias (IIP are a group of conditions which are classified into several types based on pathological features. Bronchoscopic procedures are helpful in diagnosis of certain disorders but are of limited value in classification of IIP which requires surgical biopsy. Usual Interstitial Pneumonia (UIP, also referred to as Idiopathic Pulmonary Fibrosis, has a progressive course and an unfavourable outcome. Certain new drugs have recently become available for treatment of UIP. Our approach towards diagnosis and management of interstitial lung diseases based on personal experience over the past three decades is reported here. Key words: Usual interstitial pneumonia – sarcoidosis – pneumoconiosis – bronchoscopy – lung biopsy 

  15. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  16. The future of helium as a natural resource

    CERN Document Server

    Glowacki, Bartek A; Nuttall, William J

    2012-01-01

    The book reveals the changing dynamics of the helium industry on both the supply-side and the demand-side. The helium industry has a long-term future and this important gas will have a role to play for many decades to come. Major new users of helium are expected to enter the market, especially in nuclear energy (both fission and fusion). Prices and volumes supplied and expected to rise and this will prompt greater efforts towards the development of new helium sources and helium conservation and recycling.

  17. Experiments for post accident hydrogen dispersion in F.M. vault using helium

    International Nuclear Information System (INIS)

    Bajaj, S.S.; Bhattacharyya, D.; Mishra, S.

    1994-01-01

    Under certain postulated accident scenarios involving a Loss of Coolant Accident (LOCA) simultaneous with impairment of Emergency Core Cooling (ECC), generation of hydrogen due to reaction between the zirconium clad and coolant is predicted in the coolant channel. The hydrogen generated in the coolant channels would eventually get released either in Fuelling Machine (FM) vault or in the pump room atmosphere depending on the location of the break. Analytical studies carried out so far to estimate the time dependent hydrogen concentration in the accident FM Vault consider the entire vault as a single volume. Tests were, therefore, planned to assess the mixing within the FM vault atmosphere with and without the availability of cooling fan units by releasing a known quantity of helium (instead of hydrogen) at selected locations and monitoring the relative concentration of helium in air at various locations. Test was conducted by releasing about 360 1 helium over a period of to 4 minutes at preselected locations and by measuring the relative concentration (leak rates indicated by helium leak detectors) at various locations in the FM vault. The results of cases with fans operating indicate repeatable and consistent trends of good mixing in the vault. For other cases (non turbulent, still condition) the results are sensitive to various factors including orientation of release. The former set of cases (turbulent. fans operating) are more relevant for postulated accident conditions. (author). 1 tab., 18 figs

  18. Biomolecular ions in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Gonzalez Florez, Ana Isabel

    2016-01-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  19. Biomolecular ions in superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Florez, Ana Isabel

    2016-07-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  20. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  1. Cross section for calculating the helium formation rate in construction materials irradiated by nucleons at energies to 800 MeV

    International Nuclear Information System (INIS)

    Konobeev, A.Yu.; Korovin, Yu.A.

    1992-01-01

    Recently, effects related to the formation of helium in irradiated construction materials have been studied extensively. Data on the nuclear cross sections for producing helium in these materials form the initial information necessary for such investigations. If the spectrum of the incoming particles is known, the value of the helium production cross section makes it possible to calculate the helium generation rate. In recent years, plans and simulating experiments on radiating materials with high-energy particles made it necessary to determine the helium production cross sections in constructionmaterials, which are irradiated by protons and neutrons with energies to 800 MeV. Helium-formation cross sections have been calculated at these energies. However, a correct description of the experimental data for various construction materials does not yet exist. For example, the calculated helium-formation cross sections turned out to overestimate the experimental data, and to underestimate the experimental data. The objective here is to calculate the helium-formation cross sections for various construction materials, which are irradiated by protons and neutrons to energies from 20 to 800 MeV, and to analyze the probable causes of deviations between experimental and earlier calculated cross sections

  2. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  3. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  4. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  5. Perioperative interstitial brachytherapy for recurrent keloid scars

    International Nuclear Information System (INIS)

    Rio, E.; Bardet, E.; Peuvrel, P.; Martinet, L.; Perrot, P.; Baraer, F.; Loirat, Y.; Sartre, J.Y.; Malard, O.; Ferron, C.; Dreno, B.

    2010-01-01

    Purpose: Evaluation of the results of perioperative interstitial brachytherapy with low dose-rate (L.D.R.) Ir-192 in the treatment of keloid scars. Patients and methods: We performed a retrospective analysis of 73 histologically confirmed keloids (from 58 patients) resistant to medico surgical treated by surgical excision plus early perioperative brachytherapy. All lesions were initially symptomatic. Local control was evaluated by clinical evaluation. Functional and cosmetic results were assessed in terms of patient responses to a self-administered questionnaire. Results: Median age was 28 years (range 13-71 years). Scars were located as follows: 37% on the face, 32% on the trunk or abdomen, 16% on the neck, and 15% on the arms or legs. The mean delay before loading was four hours (range, 1-6 h). The median dose was 20 Gy (range, 15-40 Gy). Sixty-four scars (from 53 patients) were evaluated. Local control was 86% (follow-up, 44.5 months; range, 14-150 months). All relapses occurred early within 2 years posttreatment. At 20 months, survival without recurrence was significantly lower when treated lengths were more than 6 cm long. The rate was 100% for treated scars below 4.5 cm in length, 95% (95% CI: 55-96) for those 4.5-6 cm long, and 75% (95% CI: 56-88) beyond 6 cm (p = 0.038). Of the 35 scars (28 patients) whose results were reassessed, six remained symptomatic and the esthetic results were considered to be good in 51% (18/35) and average in 37% (13/35) (median follow-up, 70 months; range, 16-181 months). Conclusion: Early perioperative L.D.R. brachytherapy delivering 20 Gy at 5 mm reduced the rate of recurrent keloids resistant to other treatments and gave good functional results. (authors)

  6. Co-morbidities of Interstitial Cystitis

    Directory of Open Access Journals (Sweden)

    Gisela eChelimsky

    2012-08-01

    Full Text Available Introduction: This study aimed to estimate the proportion of patients with Interstitial Cystitis/Painful Bladder Syndrome (IC/BPS with systemic dysfunction associated co-morbidities such as irritable bowel syndrome (IBS and fibromyalgia (FM. Material and Methods: Two groups of subjects with IC/BPS were included: 1 Physician diagnosed patients with IC/BPS and 2 Subjects meeting NIDDK IC/PBS criteria based on a questionnaire (ODYSA. These groups were compared to healthy controls matched for age and socio-economic status. NIDDK criteria required: pain with bladder filling that improves with emptying, urinary urgency due to discomfort or pain, polyuria > 11 times/24 hrs, and nocturia > 2 times/night. The ODYSA instrument evaluates symptoms pertaining to a range of disorders including chronic fatigue, orthostatic intolerance, syncope, IBS, dyspepsia, cyclic vomiting syndrome, headaches and migraines, sleep, Raynaud’s syndrome and chronic aches and pains. Results: IC/BPS was diagnosed in 26 subjects (mean age 47 +/- 16 yrs, 92% females, 58 had symptoms of IC/BPS by NIDDK criteria, (mean age 40 +/- 17 yrs, 79% females and 48 were healthy controls (mean age 31+/- 14 yrs, mean age 77%. Co-morbid complaints in the IC/BPS groups included gastrointestinal symptoms suggestive of IBS and dyspepsia, sleep abnormalities with delayed onset of sleep, feeling poorly refreshed in the morning, waking up before needed, snoring, severe chronic fatigue and chronic generalized pain, migraines and syncope. Discussion: Patients with IC/BPS had co-morbid central and autonomic nervous system disorders. Our findings mirror those of others in regard to IBS, symptoms suggestive of FM, chronic pain and migraine. High rates of syncope and functional dyspepsia found in the IC/BPS groups merit further study to determine if IC/BPS is part of a diffuse disorder of central, autonomic and sensory processing affecting multiple organs outside the bladder.

  7. Interstitial Lung disease in Systemic Sclerosis

    International Nuclear Information System (INIS)

    Ooi, G.C.; Mok, M.Y.; Tsang, K.W.T.; Khong, P.L.; Fung, P.C.W.; Chan, S.; Tse, H.F.; Wong, R.W.S.; Lam, W.K.; Lau, C.S.; Wong, Y.

    2003-01-01

    Purpose: To evaluate high-resolution CT (HRCT) parameters of inflammation and fibrosis in systemic sclerosis (SSc), for correlation with lung function, skin scores and exercise tolerance. Material and Methods: : 45 SSc patients (40 women, 48.5±13.4 years), underwent thoracic HRCT, lung function assessment, and modified Rodnan skin scores. Exercise tolerance was also graded. HRCT were scored for extent of 4 HRCT patterns of interstitial lung disease (ILD): ground glass opacification (GGO), reticular, mixed and honeycomb pattern in each lobe. Total HRCT score, inflammation index (GGO and mixed score) and fibrosis index (reticular and honeycomb scores) were correlated with lung function and clinical parameters. Results: ILD was present in 39/45 (86.7%) patients. Abnormal (<80% predicted) forced vital capacity (FVC), total lung capacity (TLC) and carbon monoxide diffusion factor (DLco) were detected in 30%, 22% and 46% of patients. Total HRCT score correlated with FVC (r=0.43, p=0.008), FEV1 (forced expiratory volume) (r=-0.37, p=0.03), TLC (r=-0.47, p=0.003), and DLCO (r=-0.43, p=0.008); inflammatory index with DLCO (r=-0.43, p=0.008) and exercise tolerance (r=-0.39, p < 0.05); and fibrosis index with FVC (r=-0.31, p=0.05) and TLC (r=-0.38, p=0.02). Higher total HRCT score, and inflammation and fibrosis indices were found in patients with abnormal lung function. Conclusion: Qualitative HRCT is able to evaluate inflammation and fibrosis, showing important relationships with diffusion capacity and lung volume, respectively

  8. Experimental and numerical thermohydraulic study of a supercritical helium loop in forced convection under pulsed heat loads

    International Nuclear Information System (INIS)

    Lagier, Benjamin

    2014-01-01

    Future fusion reactor devices such as ITER or JT-60SA will produce thermonuclear fusion reaction in plasmas at several millions of degrees. The confinement in the center of the chamber is achieved by very intense magnetic fields generated by superconducting magnets. These coils have to be cooled down to 4.4 K through a forced flow of supercritical helium. The cyclic behavior of the machines leads to pulsed thermal heat loads which will have to be handled by the refrigerator. The HELIOS experiment built in CEA Grenoble is a scaled down model of the helium distribution system of the tokamak JT-60SA composed of a saturated helium bath and a supercritical helium loop. The thesis work explores HELIOS capabilities for experimental and numerical investigations on three heat load smoothing strategies: the use of the saturated helium bath as an open thermal buffer, the rotation speed variation of the cold circulator and the bypassing of the heated section. The developed model describes well the physical evolutions of the helium loop (pressure, temperature, mass flow) submitted to heat loads observed during experiments. Advanced controls have been tested and validated to improve the stability of the refrigerator and to optimize the refrigeration power. (author) [fr

  9. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  10. Acquisition system testing with superfluid helium

    International Nuclear Information System (INIS)

    Anderson, J.E.; Fester, D.A.; DiPirro, M.J.

    1988-01-01

    NASA is evaluating both a thermomechanical pump and centrifugal pump for the SHOOT experiment using capillary fluid acquisition systems. Tests were conducted for these systems with superfluid helium under adverse operating conditions. Minus one-g outflow tests were run in conjunction with the thermomechanical pump. Both fine mesh screen and porous sponges were tested. A screen acquisition device was also tested with the low-NPSH centrifugal pump. Results to date show that the screen and sponge are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to four cm. This is more than sufficient for the SHOOT application. Results with the sponge were reproducible while those with the screen could not always be repeated

  11. Helium emission in the middle chromosphere

    International Nuclear Information System (INIS)

    Livshits, M.A.

    1976-01-01

    Slitless spectrograms obtained during the eclipse of 10 June 1972 have been analyzed to determine the height distribution of the D 3 He line intensity. For undisturbed regions the maximum of D 3 line intensity is confirmed to exist at about 1700 km above the limb. Besides the above mentioned maximum, in plages a considerable intensity may be observed at low heights (h 1000 km has been carried out within the low temperature mechanism of triplet helium emission taking into account the helium ionization by XUV radiation. The density dependence of the 2 3 S level population at different XUV flux values has been calculated. The observations give Nsub(e) approximately 2x10 10 cm -3 in the chromosphere at h = 2000 km. The probable coincidence of the H and He emission small filaments in the middle chromosphere is discussed. (Auth.)

  12. Safety in handling helium and nitrogen

    International Nuclear Information System (INIS)

    Schmauch, G.; Lansing, L.; Santay, T.; Nahmias, D.

    1991-01-01

    Based upon the authors' industrial experience and practices, they have provided an overview of safety in storage, handling, and transfer of both laboratory and bulk quantities of gaseous and liquid forms of nitrogen and helium. They have addressed the properties and characteristics of both the gaseous and liquid fluids, typical storage and transport containers, transfer techniques, and the associated hazards which include low temperatures, high pressures, and asphyxiation. Methods and procedures to control and eliminate these hazards are described, as well as risk remediation through safety awareness training, personal protective equipment, area ventilation, and atmosphere monitoring. They have included as an example a recent process hazards analysis performed by Air Products on the asphyxiation hazard associated with the use of liquid helium in MRI magnet systems

  13. Stellar pulsation and the abundance of helium

    International Nuclear Information System (INIS)

    Schmidt, E.G.

    1978-01-01

    It has been suggested that the appearance of nonvariable stars within the Cepheid strip could be explained by a range in the helium abundance of Population I stars. In order to study this possibility, spectra were obtained of the main-sequence B stars in the galactic cluster NGC 129, which contains a nonvariable Cepheid-strip star, and M25, which contains a relatively hot Cepheid. Unfortunately, several of the stars in these clusters turn out to be helium-weak stars. In NGC 129 two stars which appear normal give a normal abundance, while in M25 all of the observed stars have abnormally low abundances. The significance of the low abundance in M25 is not clear. The abundance in NGC 129 is not low enough to support the above suggestion. 4 figures, 2 tables

  14. Studies of helium distribution in metal tritides

    International Nuclear Information System (INIS)

    Bowman, R.C. Jr.; Attalla, A.

    1976-01-01

    The distribution of helium ( 3 He) in LiT, TiT 2 , and UT 3 , which are regarded as representative metal tritides, was investigated using pulse nuclear magnetic resonance (NMR) techniques. Analyses of the NMR lineshapes and nuclear relaxation times indicate the 3 He atoms are trapped in microscopic gas bubbles for each tritide. The effects of concentration and temperature on the 3 He distributions were investigated as well

  15. Born-Mayer type molybdenum-helium and helium-helium interaction potentials, fitted to the results of the helium desorption experiments

    International Nuclear Information System (INIS)

    Heugten, W.F.W.M. van; Veen, A. van; Caspers, L.M.

    1979-01-01

    Classes of Born-Mayer type Mo-He and He-He potentials have been derived from helium desorption experiments. The classes are described by linear relations between the Born-Mayer parameters A and b. For computer simulations the Mo-He potential phisub(MoHe)(r)=exp (6.5-3.63 r) and the He-He potential phisub(HeHe)(r)=exp(5.3-5.51 r) are proposed. (Auth.)

  16. Correlation of Helium Solubility in Liquid Nitrogen

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  17. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  18. Helium synthesis, neutrino flavors, and cosmological implications

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1980-01-01

    The problem of the production of helium in the big bang is reexamined in the light of several recent astrophysical observations. These data, and theoretical particle-physics considerations, lead to some important inconsistencies in the standard big-bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid

  19. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  20. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  1. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  2. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  3. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  4. Dispersion of breakdown voltage of liquid helium

    International Nuclear Information System (INIS)

    Ishii, Itaru; Noguchi, Takuya

    1978-01-01

    As for the electrical insulation characteristics of liquid helium, the discrepancy among the measured values by each person is very large even in the fundamental DC breakdown voltage in uniform electric field. The dispersion of experimental values obtained in the experiments by the same person is also large. Hereafter, the difference among the mean values obtained by each experimenter will be referred to as ''deviation of mean values'', and the dispersion of measured values around the mean value obtained by the same person as ''deviation around the man value''. The authors have mainly investigated on the latter experimentally. The cryostat was made of stainless steel, and the innermost helium chamber was of 500 mm I.D. and approximately 1200 mm deep. The high voltage electrode was of brass sphere of 25 mm diameter, and the low voltage electrode was of brass plate. The experiment was conducted for liquid helium boiling at 4.2 K and 1 atm, and the breakdown voltage and time lag were measured by applying the approximately square wave impulses of fast rise and long tail, ramp and DC voltages. The cause of the deviation of mean values may be the presence of impurity particles or the effect of electrode shape. As for the deviation around the mean value, the dispersion is large, and its standard deviation may amount to 10 to 20% of the man value. The dispersion is not due to the statistical time lag, but is due to parameters that vary with breakdown. (Wakatsuki, Y.)

  5. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  6. Helium storage and control system for the PBMR

    International Nuclear Information System (INIS)

    Verkerk, E.C.

    1997-01-01

    The power conversion unit will convert the heat energy in the reactor core to electrical power. The direct-closed cycle recuperated Brayton Cycle employed for this concept consists of a primary helium cycle with helium powered turbo compressors and a power turbine. The helium is actively cooled with water before the compression stages. A recuperator is used to preheat the helium before entering the core. The start of the direct cycle is initiated by a mass flow from the helium inventory and control system via a jet pump. When the PBMR is connected to the grid, changes in power demand can be followed by changing the helium flow and pressure inside the primary loop. Small rapid adjustments can be performed without changing the helium inventory of the primary loop. The stator blade settings on the turbines and compressors are adjustable and it is possible to bypass reactor and turbine. This temporarily reduces the efficiency at which the power conversion unit is operating. Larger or long term adjustments require storage or addition of helium in order to maintain a sufficient level of efficiency in the power conversion unit. The helium will be temporarily stored in high pressure tanks. After a rise in power demand it will be injected back into the system. Some possibilities how to store the helium are presented in this paper. The change of helium inventory will cause transients in the primary helium loop in order to acquire the desired power level. At this stage, it seems that the change of helium inventory does not strongly effect the stability of the power conversion unit. (author)

  7. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  8. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  9. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Hidalgo, Alberto; Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta; Bordes, Ramon

    2006-01-01

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  10. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  11. Acute Abdomen in Interstitial Ectopic Pregnancy, An Emergency Laparoscopic Treatment

    Directory of Open Access Journals (Sweden)

    E. Picardo

    2014-01-01

    Full Text Available The present case report demonstrates a laparoscopic approach to treat interstitial cornual pregnancy in emergency. Interstitial ectopic pregnancy develops in the uterine portion of the fallopian tube which accounts for 2–4% of all ectopic pregnancies and has the potential to cause life-threatening hemorrhage at rupture. The mortality rate for a woman diagnosed with such a pregnancy is 2–2.5%. Diagnosis of interstitial pregnancy is made by ultrasound. In this case a 32 year-old woman, Gravida 0 Parity 0 Living 0 Ectopic 1, presented to the emergency obstetrical room complaining acute abdominal pain. There was a history of 10 weeks of pregnancy but no pelvic ultrasound scan was performed before the access. A transvaginal ultrasound scan immediately performed demonstrated a gestational sac with viable fetus in the right interstitial region. Moreover there was an ultrasound evidence of hemoperitoneum. She was transferred to the operating room and an emergency laparoscopy surgery was performed. The postoperative course was uneventful and the patient was discharged two days after the surgery. Interstitial pregnancies present a difficult management problem with no absolute standard of care in literature. Laparoscopic technique is under study with favorable results. For our personal point of view a treatment via laparoscopy could be performed both in elective and in emergency cases.

  12. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alberto [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Hospital de la Santa Creu i Sant Pau, Thoracic Radiology, Department of Radiology, Barcelona (Spain); Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Bordes, Ramon [Universidad Autonoma de Barcelona, Department of Pathology, Hospital de Sant Pau, Barcelona (Spain)

    2006-11-15

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  13. Californium-252 interstitial implants in carcinoma of the tongue

    International Nuclear Information System (INIS)

    Vtyurin, B.M.; Ivanov, V.N.; Medvedev, V.S.; Galantseva, G.F.; Abdulkadyrov, S.A.; Ivanova, L.F.; Petrovskaya, G.A.; Plichko, V.I.

    1985-01-01

    A clinical study using 252 Cf sources in brachytherapy of tumors began in the Research Institute of Medical Radiology of the Academy of Medical Sciences of the USSR in 1973. 252 Cf afterloading cells were utilized by the method of simple afterloading. Dosimetry and radiation protection of medical personnel were developed. To substantiate optimal therapeutic doses of 252 Cf neutrons, a correlation of dose, time, and treatment volume factors with clinical results of 252 Cf interstitial implants in carcinoma of the tongue for 47 patients with a minimum follow-up period of 1 year was studied. Forty-nine interstitial implants have been performed. Seventeen patients received 252 Cf implants alone (Group I), 17 other patients received 252 Cf implants in combination with external radiation (Group II), and 15 patients were treated with interstitial implants for recurrent or residual tumors (Groups III). Complete regression of carcinoma of the tongue was obtained in 48 patients (98%). Thirteen patients (27%) developed radiation necrosis. The therapeutic dose of neutron radiation from 252 Cf sources in interstitial radiotherapy of primary tongue carcinomas (Group I) was found to be 7 to 9 Gy. Optimal therapeutic neutron dose in combined interstitial and external radiotherapy of primary tumors (Group II) was 5 to 6 Gy with an external radiation dose of 40 Gy. For recurrent and residual tumors (Group III), favorable results were obtained with tumor doses of 6.5 to 7 Gy

  14. Dislocation climb and interstitial loop growth under cascade damage irradiation

    International Nuclear Information System (INIS)

    Woo, C.H.; Semenov, A.A.

    1993-01-01

    The effects of intracascade clustering and recombination in radiation damage have been considered previously in semiquantitative calculations involving vacancy accumulation at voids, within the concept of production bias. To model void swelling and microstructural evolution quantitatively, similar effects on dislocation climb and interstitial loop growth have to be considered. In this regard, at elevated temperatures (such as in the peak-swelling temperature regime), the concentration of freely migrating vacancies is much higher than that of the interstitials, owing to the evaporation from the primary vacancy clusters (i.e. those produced by intracascade clustering). It is not immediately obvious how the dislocations can be net interstitials sinks, and hence that the observed nucleation and growth of the interstitial loops at elevated temperatures can be correctly predicted as in the conventional theory. To address these basic questions, a rate theory model is formulated in this paper, which describes the dislocation climb and loop growth in the presence of intracascade primary clusters. Within this model, conservation equations for the concentrations and average radii of the two kinds of primary cluster are derived, and the corresponding steady-state concentrations and average radii are calculated. From this, the dislocation climb velocity and interstitial loop growth rate are calculated. On the basis of the results of this calculation, some of the basic questions of production bias are discussed. (Author)

  15. Disease progression in usual interstitial pneumonia compared with desquamative interstitial pneumonia. Assessment with serial CT

    International Nuclear Information System (INIS)

    Hartman, T.E.; Primack, S.L.; Kang, E.Y.

    1997-01-01

    Objective. To determine the outcome of areas of ground-glass attenuation and assess disease progression on serial high-resolution CT (HRCT) scans of patients with biopsy specimen-proved usual interstitial pneumonia (UIP) and desquamative interstitial pneumonia (DIP). Materials and methods. Twelve patients with biopsy specimen-proved UIP and 11 patients with biopsy specimen-proved DIP who had initial and follow-up HRCT scans (median interval, 10 months) were reviewed. Eleven patients with UIP and 11 with DIP received treatment between the initial and follow-up CT scans. The scans were evaluated for the presence and extent of ground-glass attenuation, irregular linear opacities and honeycombing, and overall extent of parenchymal involvement. Results. On initial CT scans, all 12 patients with UIP had areas of ground-glass attenuation (mean±SD extent, 30±16%) and irregular lines (mean±SD extent, 17±7%) and 10 patients had honeycombing (mean±SD extent, 10±6%). All 11 patients with DIP had areas of ground-glass attenuation on initial HRCT scans (mean±SD extent, 51±26%), 5 patients had irregular linear opacities (mean±SD extent, 5±5%), and 1 patient had honeycombing. Nine of the 12 patients with UIP showed increase in the extent of ground-glass attenuation (n=6) or progression to irregular lines (n=2) or honeycombing (n=4) on follow-up as compared with only 2 patients with DIP who showed progression to irregular lines (n=1) or honeycombing (n=1) (p 2 test). Conclusion. In patients with UIP, areas of ground-glass attenuation usually increase in extent or progress to fibrosis despite treatment. Areas of ground-glass attenuation in most patients with DIP remain stable or improve with treatment. (authors)

  16. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    Science.gov (United States)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  17. Analysis of helium purification system capability during water ingress accident in RDE

    Science.gov (United States)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  18. A reciprocating liquid helium pump used for forced flow of supercritical helium

    International Nuclear Information System (INIS)

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  19. 67Gallium citrate lung scans in interstitial lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-01-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting

  20. /sup 67/Gallium citrate lung scans in interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-02-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting.

  1. Interstitial integrals in the multiple-scattering model

    International Nuclear Information System (INIS)

    Swanson, J.R.; Dill, D.

    1982-01-01

    We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set

  2. Acute ciprofloxacin-induced crystal nephropathy with granulomatous interstitial nephritis

    Directory of Open Access Journals (Sweden)

    R Goli

    2017-01-01

    Full Text Available Crystal-induced acute kidney injury (AKI is caused by the intratubular precipitation of crystals, which results in obstruction and kidney injury. Ciprofloxacin, a commonly used antibiotic, causes AKI secondary to immune-mediated interstitial injury. Rare mechanisms of ciprofloxacin-induced renal injury include crystalluria, rhabdomyolysis, and granulomatous interstitial nephritis. Clinical and experimental studies have suggested that crystalluria and crystal nephropathy due to ciprofloxacin occur in alkaline urine. Preexisting kidney function impairment, high dose of the medication, and advanced age predispose to this complication. We report a case of ciprofloxacin-induced crystal nephropathy and granulomatous interstitial nephritis in a young patient with no other predisposing factors. The patient responded to conservative treatment without the need for glucocorticoids.

  3. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  4. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  5. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  6. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  7. Role of Si self-interstitials on the electrical de-activation of B doped

    International Nuclear Information System (INIS)

    Piro, A.M.; Romano, L.; Badala, P.; Mirabella, S.; Grimaldi, M.G.; Rimini, E.

    2006-01-01

    The off-lattice displacement of B atoms in B-doped Si induced by the irradiation with light ion beam at room temperature has been investigated. A proton beam with energy ranging from 300 to 1300 keV was used to irradiate the single crystal Si samples containing a 400 nm thick surface layer (grown by molecular beam epitaxy) uniformly doped with B at a concentration of 1 x 10 2 B/cm 3 . Channelling analyses along the axis using the 11 B(p, α) 8 Be reaction (at 650 keV proton energy) were used to detect the off-lattice displacements of B during irradiation. B is substitutional in the as-grown sample. During irradiation the normalized channelling yield of B χ B increases with the ion fluence and saturates at a value χ F smaller than unity, being this value independent of the energy of the irradiating beam. No change on the Si channelling yield was detected. The B displacement rate decreases with increasing the beam energy, it is controlled by the generation rate of Si self-interstitials, and it can be fitted by the following formula χ = χ F - [χ F - χ ] * exp(-σ * N I ), where χ is the χ of the non-irradiated sample, N I is the fluence of the Si self-interstitials generated by the irradiating beam and σ is a fitting parameter that accounts for the probability for a self-interstitial to be trapped by substitutional B. Displaced B is not randomly located in the lattice and channelling analyses indicate the formation of a B complex, mediated by B i intersticialcy diffusion mechanism, partially displaced within the channel

  8. A comparison between tandem and ovoids and interstitial gynecologic template brachytherapy dosimetry using a hypothetical computer model

    International Nuclear Information System (INIS)

    Hsu, I-Chow J.; Speight, Joycelyn; Hai, Jenny; Vigneault, Eric; Phillips, Theodore; Pouliot, Jean

    2002-01-01

    Purpose: To evaluate the dose distribution within the clinical target volume between two gynecologic brachytherapy systems - the tandem and ovoids and the Syed-Neblett gynecologic template - using a hypothetical computer model. Methods and Materials: Source positions of an intracavitary system (tandem and ovoids) and an interstitial system (GYN template) were digitized into the Nucletron Brachytherapy Planning System. The GYN template is composed of a 13-catheter implant (12 catheters plus a tandem) based on the Syed-Neblett gynecologic template. For the tandem and ovoids, the dwell times of all sources were evenly weighted to produce a pear-shaped isodose distribution. For the GYN template, the dwell times were determined using volume optimization. The prescribed dose was then normalized to point A in the intracavitary system and to a selected isodose line in the interstitial system. The treated volume in the two systems was kept approximately the same, and a cumulative dose-volume histogram of the treated volume was then generated with the Nucletron Brachytherapy Planning System to use for comparison. To evaluate the dose to a hypothetical target, in this case the cervix, a 2-cm-long, 3-cm-diameter cylinder centered along the tandem was digitized as the clinical target volume. The location of this hypothetical cervix was based on the optimal application of the brachytherapy system. A visual comparison of clinical target coverage by the treated volume on three different orthogonal planes through the treated volume was performed. The percentage dose-volume histograms of the target were generated for comparison. Multiple midline points were also placed at 5-mm intervals away from the tandem in the plane of the cervix to simulate the location of potential bladder and rectal dose points. Doses to these normal structures were calculated for comparison. Results: Although both systems covered the hypothetical cervix adequately, the interstitial system had a better

  9. Lung lobar volume in patients with chronic interstitial pneumonia

    International Nuclear Information System (INIS)

    Harada, Hisao; Koba, Hiroyuki; Saitoh, Tsukasa; Abe, Shosaku.

    1997-01-01

    We measured lung lobar volume by using helical computed tomography (HCT) in 23 patients with idiopathic interstitial pneumonia (IIP), 7 patients with chronic interstitial pneumonia associated with collagen vascular disease (CVD-IP), and 5 healthy volunteers HCT scanning was done at the maximal inspiratory level and the resting end-expiratory level. To measure lung lobar volume, we traced the lobar margin on HCT images with a digitizer and calculated the lobar volume with a personal computer. The lower lobar volume and several factors influencing it in chronic interstitial pneumonia were studied. At the maximal inspiratory level, the lower lobar volume as a percent of the whole lung volume was 46.8±4.13% (mean ± SD) in the volunteers, 39.5±6.19% in the patients with IIP, and 27.7±7. 86% in the patients with CVD-IP. The lower lobar volumes in the patients were significantly lower than in the volunteers. Patients with IIP in whom autoantibody tests were positive had lower lobar volumes that were very low and were similar to those of patients with CVD-IP. These data suggest that collagen vascular disease may develop in patients with interstitial pneumonia. The patients with IIP who had emphysematous changes on the CT scans had smaller decreases in total lung capacity and lower ratios of forced expiratory volume in one second to forced vital capacity than did those who had no emphysematous changes, those two groups did not differ in the ratio of lower lobar volume to whole lung volume. This suggests that emphysematous change is not factor influencing lower lobar volume in patients with chronic interstitial pneumonia. We conclude that chronic interstitial pneumonia together with very low values for lower lobar volume may be a pulmonary manifestation of collagen vascular disease. (author)

  10. Helium solubility and bubble growth in metals under high pressure

    International Nuclear Information System (INIS)

    Laakmann, J.

    1985-07-01

    Helium solubility and bubble growth in metals under high pressure polycrystals and single crystals of gold were heated in helium at temperatures between 475 K and 1250 K in a pressure regime of 200 to 2700 bar to measure the solubility of helium in gold. After quenching to room temperature the helium content, measured by mass spectrometry, showed the following properties: 1) A linear dependence of the He solubility on pressure. 2) Thinning of the specimen reduces the helium content by a factor 10 to 100 but does not change the linear pressure dependence. 3) The thermal release of He from thinned polycrystals and single crystals occurs mainly in a single peak at 500 K. 4) The He concentration of the thinned single crystals was lower by a factor of 10 to 50 than that of the thinned polycrystals. 5) The He solubility in single crystals can be described by an enthalpy of solution Hsub(s)sup(f) = 0.85 +- 0.7 eV and a non-configurational entropy of Ssub(s)sup(f) between 0 k and 1 k (k: Boltzmann-constant). In order to measure the pressure dependence of helium bubble growth in nickel polycrystal Ni-foils were α-implanted to a helium content of 130 appm. The evaluation of the size distribution of the helium bubbles after heat treatments shows 1) The helium content of the observable bubbles - assumed to be in equilibrium - equals the amount of helium implanted into the specimen. 2) The activation energy for the growth of helium bubbles is 1.25 +- 0.3 eV. The comparison of specimen which had been heated at low pressures up to 10 bar with others heated at 2500-2700 bar does not show an unequivocal pressure dependence for helium bubble growth. (orig./IHOE) [de

  11. Pressurized-helium breakdown at very low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Metas, R J

    1972-06-01

    An investigation of the electrical-breakdown behavior of helium at very low temperatures has been carried out to assist the design and development of superconducting power cables. At very high densities, both liquid and gaseous helium showed an enhancement in electric strength when pressurized to a few atmospheres; conditioned values of breakdown fields then varied between 30 and 45 MV/m. Breakdown processes occurring over a wide range of helium densities are discussed. 24 references.

  12. Pulmonary interstitial emphysema in neonates -reporting of 11 cases

    International Nuclear Information System (INIS)

    Alvares, Beatriz Regina; Santos Mezzacappa, Maria Aparecida dos; Marba, Sergio Tadeu Martins

    1997-01-01

    The present paper relates the radiologic and clinical aspects of pulmonary interstitial emphysema in 11 infants submitted to assisted ventilation. The radiologic diagnosis was made using the classification of Boothroyd and Barson (levels I to III). A prevalence of pulmonary interstitial emphysema of levels II and III was observed in masculine premature infants with hyaline membrane disease and intrauterine pneumonia. Mortality was high and occurred in the infants with advanced levels of the disease. The authors emphasize the importance of early radiologic diagnosis of this condition during the treatment of premature infants submitted to assisted ventilation. (author)

  13. Interstitial diffusion in crystal and the Moessbauer effect

    International Nuclear Information System (INIS)

    Dzyublik, A.Ya.

    1976-01-01

    The role of different vibrational states of a crystal is taken into account in the model of interstitial uncorrelated jumps. The relation of the diffusion coefficient for an interstitial with probabilities of jumps is found. The cross section for resonant absorption of γ-quanta by a nucleus of a diffusing atom in a crystal is calculated. The existence of vibrational levels is shown to lead to less broadening and intensity of the Moessbauer line than those predicted by the simple model of jumps. The absorption line shape for atom jumping through octahedral sites in bcc lattice is investigated [ru

  14. Dose and volume specification for reporting interstitial therapy

    International Nuclear Information System (INIS)

    1997-01-01

    The ICRU has previously published reports dealing with Dose Specification for Reporting External Beam Therapy with Photons and Electrons (ICRU Report 29, ICRU, 1978), Dose Specification for Reporting External Beam Therapy (ICRU Report 50, ICRU, 1993) and Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology (ICRU Report 38, ICRU, 1985). The present report addresses the problem of absorbed dose specification for report interstitial therapy. Although specific to interstitial therapy, many of the concepts developed in this report are also applicable to certain other kinds of brachytherapy applications. In particular, special cases of intraluminal brachytherapy and plesio-brachytherapy via surface molds employing x or gamma emitters are addressed in this report

  15. Global concepts of bladder pain syndrome (interstitial cystitis)

    DEFF Research Database (Denmark)

    Nordling, Jørgen; Fall, Magnus; Hanno, Philip

    2012-01-01

    Bladder pain syndrome (BPS), commonly referred to as "interstitial cystitis", is no longer considered a rare disorder. It may affect up to 2.7% of the adult female population (Ueda et al. in Int J Urol 10:1-70, 2003) with up to 20% of cases occurring in men.......Bladder pain syndrome (BPS), commonly referred to as "interstitial cystitis", is no longer considered a rare disorder. It may affect up to 2.7% of the adult female population (Ueda et al. in Int J Urol 10:1-70, 2003) with up to 20% of cases occurring in men....

  16. Painful bladder syndrome/interstitial cystitis: Aetiology, evaluation and management

    Directory of Open Access Journals (Sweden)

    William Rourke

    2014-06-01

    Full Text Available Interstitial cystitis or bladder pain syndrome (BPS is often a chronic debilitating condition characterised by predominantly storage symptoms and associated frequently with pelvic pain that varies with bladder filling. The aetiology is uncertain as the condition occurs in the absence of a urinary tract infection or other obvious pathology. Resulting discomfort may vary and ranges from abdominal tenderness to intense bladder spasms. Diagnosis and management of this syndrome may be difficult and is often made by its typical cystoscopic features. This review discusses the diagnosis and management of interstitial cystitis according to the current available best evidence and advises a multimodal approach in its management.

  17. On the atomic displacement fields of small interstitial dislocation loops

    International Nuclear Information System (INIS)

    Zhou, Z.; Dudarev, S.L.; Jenkins, M.L.; Sutton, A.P.; Kirk, M.A.

    2005-01-01

    The atomic displacement fields of dislocation loops of size 1-5 nm formed by self-interstitial atoms in α-Fe have been calculated using isotropic elasticity theory and anisotropic elasticity theory, and compared with atomic simulations for loops formed by 43-275 self-interstitial atoms. The atomic displacements predicted by anisotropic elasticity theory were in good agreement with those given by the atomistic simulations at distances greater than 3 nm from the loop plane, but the displacements predicted by isotropic elasticity theory showed significant discrepancies at distances up to 15 nm

  18. Interstitial lung abnormalities are associated with increased mortality in smokers

    DEFF Research Database (Denmark)

    Hoyer, Nils; Wille, Mathilde M W; Thomsen, Laura H

    2018-01-01

    OBJECTIVE: The aim of this study was to investigate whether smokers with incidental findings of interstitial lung abnormalities have an increased mortality during long-term follow-up, and review the contributing causes of death. METHODS: Baseline CT scans of 1990 participants from the Danish Lung...... in this lung cancer screening population of relatively healthy smokers and were associated with mortality regardless of the interstitial morphological phenotype. The increased mortality was partly due to an association with lung cancer and non-pulmonary malignancies....

  19. Interstitial cells of Cajal in human gut and gastrointestinal disease

    DEFF Research Database (Denmark)

    Vanderwinden, J M; Rumessen, J J

    1999-01-01

    This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective of their fun......This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective...

  20. The Syed temporary interstitial iridium gynaecological implant: an inverse planning system

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.

    2002-01-01

    Patients with advanced gynaecological cancer are often treated with a temporary interstitial implant using the Syed template and Ir-192 ribbons at the Memorial Sloan-Kettering Cancer Center. Urgency in planning is great. We created a computerized inverse planning system for the Syed temporary gynaecological implant, which optimized the ribbon strengths a few seconds after catheter digitization. Inverse planning was achieved with simulated annealing. We discovered that hand-drawn target volumes had drawbacks; hence instead of producing a grid of points based on target volume, the optimization points were generated directly from the catheter positions without requiring an explicit target volume. Since all seeds in the same ribbon had the same strength, the minimum doses were located at both ends of the implant. Optimization points generated at both ends ensured coverage of the whole implant. Inverse planning took only a few seconds, and generated plans that provide a good starting point for manual improvement. (author)

  1. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  2. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  3. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  4. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  5. Electron temperature measurements in lowdensity plasmas by helium spectroscopy

    International Nuclear Information System (INIS)

    Brenning, N.

    1977-09-01

    This method to use relative intensities of singlet and triplet lines of neutral helium to measure electron temperature in low-density plasmas is examined. Calculations from measured and theoretical data about transitions in neutral helium are carried out and compared to experimental results. It is found that relative intensities of singlet and triplet lines from neutral helium only can be used for TE determination in low-density, short-duration plasmas. The most important limiting processes are excitation from the metastable 2 3 S level and excitation transfer in collisions between electrons and excited helium atoms. An evaluation method is suggested, which minimizes the effect of these processes. (author)

  6. Asteroseismic estimate of helium abundance of 16 Cyg A, B

    Directory of Open Access Journals (Sweden)

    Verma Kuldeep

    2015-01-01

    Full Text Available The helium ionization zone in a star leaves a characteristic signature on its oscillation frequencies, which can be used to estimate the helium content in the envelope of the star. We use the oscillation frequencies of 16 Cyg A and B, obtained using 2.5 years of Kepler data, to estimate the envelope helium abundance of these stars. We find the envelope helium abundance to lie in the range 0.231–0.251 for 16 Cyg A and 0.218–0.266 for 16 Cyg B.

  7. Analysis of a 115MW, 3 shaft, helium Brayton cycle

    International Nuclear Information System (INIS)

    Pradeepkumar, K.N.

    2002-01-01

    This research theme is originated from a development project that is going on in South Africa, for the design and construction of a closed cycle gas turbine plant using gas-cooled reactor as the heat source to generate 115 MW of electricity. South African Power utility company, Eskorn, promotes this developmental work through its subsidiary called PBMR (Pebble Bed Modular Reactor). Some of the attractive features of this plant are the inherent and passive safety features, modular geometry, small evacuation area, small infrastructure requirements for the installation and running of the plant, small construction time, quick starting and stopping and also low operational cost. This exercise is looking at the operational aspects of a closed cycle gas turbine, the finding of which will have a direct input towards the successful development and commissioning of the plant. A thorough understanding of the fluid dynamics in this three-shaft system and its transient performance analysis were the two main objectives of this research work. A computer programme called GTSI, developed by a previous Cranfield University research student, has been used in this as a base programme for the performance analysis. Some modifications were done on this programme to improve its control abilities. The areas covered in the performance analysis are Start-up, Shutdown and Load ramping. A detailed literature survey has been conducted to learn from the helium Turbo machinery experiences, though it is very limited. A critical analysis on the design philosophy of the PBMR is also carried out as part of this research work. The performance analysis has shown the advantage, disadvantage and impact of various power modulation methods suggested for the PBMR. It has tracked the effect of the operations of the various valves included in the PBMR design. The start-up using a hot gas injection has been analysed in detail and a successful start region has been mapped. A start-up procedure is also written

  8. Helium sources to groundwater in active volcanic terrain, and implications for tritium-helium dating at Mount St. Helens

    Energy Technology Data Exchange (ETDEWEB)

    Gates, John B. [Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 217 Bessey Hall, Lincoln NE 68588 (United States)

    2013-07-01

    Groundwater helium sources and residence times were investigated using groundwater discharging from springs surrounding Mount St. Helens in the Cascades region of the United States. Significant contributions of mantle helium were found in all samples and are attributable to interaction between groundwater and magmatic gases. Bounding calculations for residence times were made on the basis of helium isotope mixing plots and historical tritium data. (authors)

  9. Evaluation of the Gas Turbine Modular Helium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  10. Evaluation of the Gas Turbine Modular Helium Reactor

    International Nuclear Information System (INIS)

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs

  11. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  12. Leak testing using helium leak detector

    International Nuclear Information System (INIS)

    Aparicio, G.; Mathot, S.; Munoz, C.; Orlando, O.

    1997-01-01

    Most of the equipment used in the industry and particularly in the nuclear activity need to be, vacuum or pressure tight, for operative and safety requirements. These devices have to satisfy particular regulations in order to be qualified by means of operating licences. One of the most efficient system to ensure leaktightnes is using a helium leak detector with a mass spectrometer. In this paper we show the equipment and the devices employed in fuel rods fabrication for CAREM project, and some typical material defects. Operating system and the sensitivity of this method is also described. (author) [es

  13. The recombination of a helium plasma

    International Nuclear Information System (INIS)

    Hollenstein, C.; Sayasov, Y.; Schneider, H.

    1975-01-01

    A helium plasma (Tsub(e) 15 cm -3 ) in the afterglow without magnetic field was investigated. The measurements of the electron density and temperature are presented. Laser interferometry and radiowave diagnostics were used. The measured exponential decay of the electron density and temperature was explained with the collisional-radiative recombination and the thermal conduction of the electrons towards the wall of the discharge vessel. The measured recombination coefficients were compared with measurements and calculations of other authors. The best agreement was found with the calculations by Drawin. (Auth.)

  14. Dynamic Simulation of AN Helium Refrigerator

    Science.gov (United States)

    Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.

    2008-03-01

    A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.

  15. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  16. Lamb shift in helium-like uranium

    International Nuclear Information System (INIS)

    Munger, C.T. Jr.

    1987-01-01

    The author reports an experimental value of 70.4 (8.3) ev for the one-electron Lamb shift in uranium, in agreement with the theoretical value of 75.3 (0.4) ev. He extracts the Lamb shift from a beam-foil time-of-flight measurement of the 54.4 (3.4) ps lifetime of the 1s2p/sub 1/2/ 3 P 0 state of helium-like (two electron) uranium

  17. Dissipation in the superfluid helium film

    International Nuclear Information System (INIS)

    Turkington, R.R.; Harris-Lowe, R.F.

    1977-01-01

    We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021

  18. Transient heat transfer characteristics of liquid helium

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    1976-01-01

    The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)

  19. Modeling of helium effects in metals: High temperature embrittlement

    International Nuclear Information System (INIS)

    Trinkaus, H.

    1985-01-01

    The effects of helium on swelling, creep rupture and fatigue properties of fusion reactor materials subjected to (n,α)-reactions and/or direct α-injection, are controlled by bubble formation. The understanding of such effects requires therefore the modeling of (1) diffusional reactions of He atoms with other defects; (2) nucleation and growth of He bubbles; (3) transformation of such bubbles into cavities under continuous He generation and irradiation or creep stress. The present paper is focussed on the modeling of the (coupled) high temperature bubble nucleation and growth processes within and on grain boundaries. Two limiting cases are considered: di-atomic nucleation described by the simplest possible sets of rate equations, and multi-atomic nucleation described by classical nucleation theory. Scaling laws are derived which characterize the dependence of the bubble densities upon time (He-dose), He generation rate and temperature. Comparison with experimental data of AISI 316 SS α-implanted at temperatures around 1000 K indicates bubble nucleation of the multi-atomic type. The nucleation and growth models are applied to creep tests performed during α-implantation suggesting that in these cases gas driven bubble growth is the life time controlling mechanism. The narrow (creep stress/He generation rate) range of this mechanism in a mechanism map constructed from these tests indicates that in many reactor situations the time to rupture is probably controlled by stress driven cavity growth rather than by gas driven bubble growth. (orig.)

  20. High level helium leak testing methods developed at ICSI Rm. Valcea

    International Nuclear Information System (INIS)

    Saros, Gili; Armeanu, Adrian; Saros, Irina; Ciortea, Constantin

    2007-01-01

    Full text: Helium leak detection is one of the most widely used methods of nondestructive testing in use today. In principle two methods are applied for leak testing and localization of leaks, the 'Vacuum method' and the 'Overpressure method'. In case of the 'Vacuum method' the object to be examined for leaks is evacuated and filled instead with Helium. The gas penetrates through any leaks found in the object and is detected by the leak test instrument. In case of the 'Overpressure method' the object to be examined for leaks is filled with Helium, under slight overpressure. The gas escapes through any leaks present and it is detected by a detector probe. This detector probe sometimes called a 'sniffer' acting as a gas sampling probe. Varian 979 Helium Leak Detector has a built-in turbo pump and an externally mounted dry forepump located below the system. The leak detector is configured for the evacuation type leak testing. In this case, the vacuum system under test is evacuated by the leak detector. Helium is then sprayed on the outside of the vacuum system and is pumped into the leak detector if a leak is present. The leak detector is capable to detect leaks down to 10 -9 atm-cc/sec range. The Specton 300E is a strong, rugged leak detector designed to operate in dirty industrial conditions as well as clean research areas. A number of applications are mentioned: - Generators; - Buried Pipelines; - Chemical and power plants; - Vacuum furnace installations; - Heat Exchangers; - Tank Floors; - Nuclear research centers; - Refrigeration installations; - Any type of industrial vacuum system. (authors)