WorldWideScience

Sample records for interstitial fluid pressure

  1. The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication

    Science.gov (United States)

    Ateshian, Gerard A.

    2009-01-01

    Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed. PMID:19464689

  2. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Role of interstitial fluid pressurization in TMJ lubrication.

    Science.gov (United States)

    Zimmerman, B K; Bonnevie, E D; Park, M; Zhou, Y; Wang, L; Burris, D L; Lu, X L

    2015-01-01

    In temporomandibular joints (TMJs), the disc and condylar cartilage function as load-bearing, shock-absorbing, and friction-reducing materials. The ultrastructure of the TMJ disc and cartilage is different from that of hyaline cartilage in other diarthrodial joints, and little is known about their lubrication mechanisms. In this study, we performed micro-tribometry testing on the TMJ disc and condylar cartilage to obtain their region- and direction-dependent friction properties. Frictional tests with a migrating contact area were performed on 8 adult porcine TMJs at 5 different regions (anterior, posterior, central, medial, and lateral) in 2 orthogonal directions (anterior-posterior and medial-lateral). Some significant regional differences were detected, and the lateral-medial direction showed higher friction than the anterior-posterior direction on both tissues. The mean friction coefficient of condylar cartilage against steel was 0.027, but the disc, at 0.074, displayed a significantly higher friction coefficient. The 2 tissues also exhibited different frictional dependencies on sliding speed and normal loading force. Whereas the friction of condylar cartilage decreased with increased sliding speed and was independent of the magnitude of normal force, friction of the disc showed no dependence on sliding speed but decreased as normal force increased. Further analysis of the Péclet number and frictional coefficients suggested that condylar cartilage relies on interstitial fluid pressurization to a greater extent than the corresponding contact area of the TMJ disc. © International & American Associations for Dental Research 2014.

  4. A batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement

    Science.gov (United States)

    Maleki, Teimour; Fogle, Benjamin; Ziaie, Babak

    2011-05-01

    In this paper, we present the design, fabrication and test of a batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement. The sensor is composed of 12 µm thick single crystalline silicon membrane and a 3 µm gap, hermetically sealed through silicon-glass anodic bonding. A novel batch scale method for creating electrical feed-throughs inside the sealed capacitor chamber is developed. The Guyton capsule consists of an array of 10 µm diameter access holes etched onto a silicon back-plate separated from the silicon sensing membrane by a gap of 5 µm. The presence of the Guyton capsule (i.e. plates with access holes plus the gap separating them from the sensing membrane) allows for the ingress of interstitial fluid inside the 5 µm gap following the implantation, thus, providing an accurate measurement of interstitial fluid pressure. The fabricated sensor is 3 × 2 × 0.42 mm3 in dimensions and has a maximum sensitivity of 10 fF mmHg-1.

  5. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secr...

  6. A numerical framework for interstitial fluid pressure imaging in poroelastic MRE.

    Directory of Open Access Journals (Sweden)

    Likun Tan

    Full Text Available A numerical framework for interstitial fluid pressure imaging (IFPI in biphasic materials is investigated based on three-dimensional nonlinear finite element poroelastic inversion. The objective is to reconstruct the time-harmonic pore-pressure field from tissue excitation in addition to the elastic parameters commonly associated with magnetic resonance elastography (MRE. The unknown pressure boundary conditions (PBCs are estimated using the available full-volume displacement data from MRE. A subzone-based nonlinear inversion (NLI technique is then used to update mechanical and hydrodynamical properties, given the appropriate subzone PBCs, by solving a pressure forward problem (PFP. The algorithm was evaluated on a single-inclusion phantom in which the elastic property and hydraulic conductivity images were recovered. Pressure field and material property estimates had spatial distributions reflecting their true counterparts in the phantom geometry with RMS errors around 20% for cases with 5% noise, but degraded significantly in both spatial distribution and property values for noise levels > 10%. When both shear moduli and hydraulic conductivity were estimated along with the pressure field, property value error rates were as high as 58%, 85% and 32% for the three quantities, respectively, and their spatial distributions were more distorted. Opportunities for improving the algorithm are discussed.

  7. Early Effects of Combretastatin-A4 Disodium Phosphate on Tumor Perfusion and Interstitial Fluid Pressure

    Directory of Open Access Journals (Sweden)

    Carsten D. Ley

    2007-02-01

    Full Text Available Combretastatin-A4 disodium phosphate (CA4DP is a vascular-disruptive agent that causes an abrupt decrease in tumor blood flow. The direct actions of CA4DP include increases in vascular permeability and destabilization of the endothelial cytoskeleton, which are thought to contribute to occlusion of the tumor vasculature. It has been proposed that increased permeability causes a transient increase in interstitial fluid pressure (IFP, which in turn could collapse intratumoral blood vessels. We examined the immediate effects of CA4DP on tumor IFP in C3H mammary carcinoma. Mice were treated with 100 mg/kg CA4DP by intraperitoneal injection. Tumor perfusion was recorded by laser Doppler flowmetry at separate time points, and IFP was recorded continuously by the wickin-needle method. In this study, we found that CA4DP treatment resulted in a rapid reduction in tumor perfusion, followed by a decrease in IFP; no increases in IFP were observed. This suggests that CA4DP-induced reductions in tumor perfusion are not dependent on increases in IFP.

  8. Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Stephane Ferretti

    2009-09-01

    Full Text Available Solid tumors have a raised interstitial fluid pressure (IFP due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days or later (6 or 7 days lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P ≤ .005 correlated with late changes in tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  9. Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours

    International Nuclear Information System (INIS)

    Lunt, Sarah Jane; Kalliomaki, Tuula MK; Brown, Allison; Yang, Victor X; Milosevic, Michael; Hill, Richard P

    2008-01-01

    High tumour interstitial fluid pressure (IFP) has been adversely linked to poor drug uptake in patients, and to treatment response following radiotherapy in cervix cancer patients. In this study we measured IFP values in a selection of murine and xenograft models, spontaneously arising or transplanted either intramuscularly (i/m) or orthotopically and analysed their relationship to tumour vascularity and metastatic spread. KHT-C murine fibrosarcoma, ME180 and SiHa human cervix carcinoma were grown either intramuscularly (i/m), sub-cutaneously (s/c) or orthotopically. Polyoma middle-T (MMTV-PyMT) transgenic spontaneous mammary tumours were studied either as spontaneous tumours or following orthotopic or i/m transplantation. IFP was measured in all tumours using the wick-in-needle method. Spontaneous metastasis formation in the lungs or lymph nodes was assessed in all models. An immunohistochemical analysis of tumour hypoxia, vascular density, lymphatic vascular density and proliferation was carried out in ME180 tumours grown both i/m and orthotopically. Blood flow was also assessed in the ME180 model using high-frequency micro-ultrasound functional imaging. Tumour IFP was heterogeneous in all the models irrespective of growth site: KHT-C i/m: 2–42 mmHg, s/c: 1–14 mmHg, ME180: i/m 5–68 mmHg, cervix 4–21 mmHg, SiHa: i/m 20–56 mmHg, cervix 2–26 mmHg, MMTV-PyMT: i/m: 13–45 mmHg, spontaneous 2–20 mmHg and transplanted 2–22 mmHg. Additionally, there was significant variation between individual tumours growing in the same mouse, and there was no correlation between donor and recipient tumour IFP values. Metastatic dissemination to the lungs or lymph nodes demonstrated no correlation with tumour IFP. Tumour hypoxia, proliferation, and lymphatic or blood vessel density also showed no relationship with tumour IFP. Speckle variance analysis of ultrasound images showed no differences in vascular perfusion between ME180 tumours grown i/m versus orthotopically

  10. EXPERIMENTAL VERIFICATION OF THE ROLE OF INTERSTITIAL FLUID PRESSURIZATION IN CARTILAGE LUBRICATION

    Science.gov (United States)

    Krishnan, Ramaswamy; Kopacz, Monika; Ateshian, Gerard A.

    2010-01-01

    Summary The objective of the current study was to measure the friction coefficient simultaneously with the interstitial fluid load support in bovine articular cartilage, while sliding against glass under a constant load. Ten visually normal 6 mm diameter cartilage plugs harvested from the humeral head of four bovine shoulder joints (ages 2-4 months) were tested in a custom friction device under reciprocating linear motion (range of translation ±2mm; sliding velocity 1mm/s), subjected to a 4.5N constant load. The frictional coefficient was found to increase with time from a minimum value of μmin = 0.010±0.007 (mean±standard deviation) to a maximum value of 0.243±0.044 over a duration ranging from 920s to 19,870s (median: 4,560 s). The corresponding interstitial fluid load support decreased from a maximum of 88.8±3.8% to 8.6±8.6%. A linear correlation was observed between the friction coefficient and interstitial fluid load support (r2=0.96±0.03). These results support the hypothesis that the temporal variation of the friction coefficient correlates negatively with the interstitial fluid load support, and that consequently interstitial fluid load support is a primary mechanism regulating the frictional response in articular cartilage. Fitting the experimental data to a previously proposed biphasic boundary lubrication model for cartilage yielded an equilibrium friction coefficient of μeq =0.284±0.044. The fraction of the apparent contact area over which the solid matrix of cartilage is in contact with the glass slide was predicted at φ =1.7%±6.3%, significantly smaller than the solid volume fraction of the tissue, φs =13.8%±1.8%. The model predictions suggest that mixed lubrication prevailed at the contact interface under the loading conditions employed in this study. PMID:15099636

  11. High interstitial fluid pressure is associated with low tumour penetration of diagnostic monoclonal antibodies applied for molecular imaging purposes.

    Directory of Open Access Journals (Sweden)

    Markus Heine

    Full Text Available The human epithelial cell adhesion molecule (EpCAM is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.

  12. Amyloid-β and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus.

    Science.gov (United States)

    Herukka, Sanna-Kaisa; Rummukainen, Jaana; Ihalainen, Jouni; von Und Zu Fraunberg, Mikael; Koivisto, Anne M; Nerg, Ossi; Puli, Lakshman K; Seppälä, Toni T; Zetterberg, Henrik; Pyykkö, Okko T; Helisalmi, Seppo; Tanila, Heikki; Alafuzoff, Irina; Hiltunen, Mikko; Rinne, Jaakko; Soininen, Hilkka; Jääskeläinen, Juha E; Leinonen, Ville

    2015-01-01

    Amyloid-β (Aβ1 - 42), total tau (T-tau), and phosphorylated tau (P-tau181) in the cerebrospinal fluid (CSF) are the most promising biomarkers of Alzheimer's disease (AD). Still, little is known about the dynamics of these molecules in the living brain. In a transgenic mouse brain, soluble Aβ decreases with increasing age and advanced Aβ pathology as seen similarly in CSF. To assess the relationship between AD-related pathological changes in human brain tissue, ventricular and lumbar CSF, and brain interstitial fluid (ISF). Altogether 11 patients with suspected idiopathic normal pressure hydrocephalus underwent frontal cortical brain biopsy, 24-h intraventricular pressure monitoring, and a microdialysis procedure. AD-related biomarkers were analyzed from brain tissue, CSF, and ISF. ISF T-tau levels decreased strongly within the first 12 h, then plateauing until the end of the experiment. Aβ1 - 42 and P-tau181 remained stable during the experiment (n = 3). T-tau and P-tau were higher in the ISF than in ventricular or lumbar CSF, while Aβ1 - 42 levels were within similar range in both CSF and ISF samples. ISF P-tau correlated with the ventricular CSF T-tau (r = 0.70, p = 0.017) and P-tau181 (r = 0.64, p = 0.034). Five patients with amyloid pathology in the brain biopsy tended to reveal lower ISF Aβ1 - 42 levels than those six without amyloid pathology. This is the first study to report ISF Aβ and tau levels in the human brain without significant brain injury. The set-up used enables sampling from the brain ISF for at least 24 h without causing adverse effects due to the microdialysis procedure to follow the dynamics of the key molecules in AD pathogenesis in the living brain at various stages of the disease.

  13. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    Directory of Open Access Journals (Sweden)

    Ronald Y Kwon

    Full Text Available Interstitial fluid flow (IFF is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of

  14. Change in interstitial fluid pressure measurements in carcinoma of the uterine cervix as an early predictor of radioresponsiveness

    International Nuclear Information System (INIS)

    Karasek, Kristina; Faul, Clare; Znati, Cindy

    1996-01-01

    Purpose/Objective: Interstitial fluid pressure (IFP) has been found to be elevated in cervical carcinomas. This study sought to evaluate IFP as a potential early measure of tumor response to radiation therapy. Identification of poor responders early in the course of treatment may allow the clinician to modify the treatment strategy early in the course of therapy. Materials and Methods: IFP was measured using the wick-in-needle technique in 42 patients undergoing definitive radiotherapy for carcinoma of the cervix. Measurements were taken before and after external beam radiation treatment (EBRT) in 25, after intracavitary treatment (ICT) in 7, and after both EBRT and ICT in 10 patients. An additional 10 patients had weekly measurements during radiotherapy. Tumor stage, size, hemoglobin, and clinical response were assessed and correlated with IFP readings. Results: All initial IFP readings were elevated. The extent of elevation did not correlate with outcome (p=0.76) or stage (p=0.6). Smaller tumors had a higher initial IFP (p=0.02). Tumor response correlated with change in IFP readings (p=0.01), tumor size (0.04), hemoglobin (p=0.01), and stage (0.04). On multivariate analysis, change in IFP remained an independent predictor of response. The IFP change from pretreatment to post-EBRT was - 13±3 in complete responders versus 4±11 and 18±10 in the partial and nonresponders respectively (p=0.01). In those with post-ICT readings, the change was -18±4 in complete responders versus 54±18 in the partial responders (p=0.01). In 10 patients undergoing weekly measurement, 8 complete responders had decreasing IFP measurements. An average fall of 51.6% was seen in five patients at < 1620cGy despite little or no change in tumor size, and by 2700cGy (average decrease 31%) in the remaining 3 complete responders. Nonresponders had either no change or an increase in IFP throughout EBRT. Conclusion: IFP is elevated in tumors of the uterine cervix. Decreasing IFP measurement

  15. Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2012-01-01

    Full Text Available Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells caused by interstitial fluid flow. The numerical simulation results show the following: (i the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments.

  16. Bone tissue engineering: the role of interstitial fluid flow

    Science.gov (United States)

    Hillsley, M. V.; Frangos, J. A.

    1994-01-01

    It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.

  17. Granular Material Flows with Interstitial Fluid Effects

    Science.gov (United States)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  18. Peritumoral interstitial fluid flow velocity predicts survival in cervical carcinoma

    International Nuclear Information System (INIS)

    Hompland, Tord; Lund, Kjersti V.; Ellingsen, Christine; Kristensen, Gunnar B.; Rofstad, Einar K.

    2014-01-01

    Background and purpose: High tumor interstitial fluid pressure (IFP) is associated with poor outcome in locally advanced carcinoma of the uterine cervix. We have recently developed a noninvasive assay of the IFP of tumors, and in this assay, the outward interstitial fluid flow velocity at the tumor surface (v 0 ) is measured by Gd-DTPA-based DCE-MRI and used as a parameter for IFP. Here, we investigated the independent prognostic significance of v 0 in cervical cancer patients given cisplatin-based concurrent chemoradiotherapy with curative intent. Patients: The study involved 62 evaluable patients from a cohort of 74 consecutive patients (Stage IB through IIIB) with a median follow-up of 5.5 years. Results: The actuarial disease-free survival (DFS) and overall survival (OS) at 5 years were 67% and 76%, respectively. Significant associations were found between v 0 dichotomized about the median value and DFS and OS, both in the total patient cohort and a subcohort of 40 Stage IIB patients. Multivariate analysis involving stage, tumor volume, lymph node status, and v 0 revealed that only v 0 provided independent prognostic information about DFS and OS. Conclusion: This investigation demonstrates a strong, independent prognostic impact of the pretreatment peritumoral fluid flow velocity in cervical cancer

  19. The effect of neoadjuvant chemotherapy by sequential paclitaxel and doxorubicin on the interstitial fluid pressure and pO2 in patients with palpable breast cancer

    International Nuclear Information System (INIS)

    Taghian, A.G.; Assaad, S.I.; Molokhia, P.; Raad, R.A.; Yeh, E.; Powell, S.N.; Casty, A.

    2003-01-01

    Tumors with high interstitial fluid pressure (IFP) are thought to respond poorly to chemotherapy (CT) due to poor drug delivery. In addition, a decrease in IFP is hypothesized to improve drug delivery and therefore result in a better response to CT. Pre-clinical studies suggested that Paclitaxel specifically reduces the IFP, with the consequence of improved pO 2 and tumor response to subsequent CT. Evaluate the IFP and pO 2 , using ultrasound guidance, before and after neoadjuvant CT using paclitaxel (P) or doxorubicin (D) in patients with breast cancer of >3cm. Patients were randomized, according to IRB approved protocol, to receive neoadjuvant sequential CT: 4 cycles of dose-dense D (60mg/m 2 / 2 weeks) followed by 9 cycles of P (80 mg/m 2 / week) (D->P arm) or the reverse sequence (P->D arm). Patients were reevaluated clinically and radiologically and IFP (wick-in-needle technique) and pO 2 (Eppendorff) were measured in tumors and in normal tissue at baseline, after completion of the first and the second drug. Forty-two patients have enrolled in the protocol, with 30 of them having completed CT. Fifteen patients were randomized to each arm. The mean IFP at baseline was 7.3 mmHg (range 0.6-17), while in normal tissue 1 mmHg (range -1 to 1.3) (p 2 measurements varied between 1.6 and 49.4 mmHg with overall mean of 22 mmHg. The median pO 2 in normal tissue was 45 mmHg (range 26-55) (p=0.0002. In the P->D arm, the mean IFP at baseline and after P were 7.3 mmHg and 4.6 mmHg, respectively (p=0.01). The mean pO 2 in this group before and after P was 13.2 and 27.0 mmHg, respectively (p=0.01). In the D->P arm, the mean IFP at baseline and after D were 6.6 mmHg and 5.2 mmHg, respectively (p=NS). The mean pO 2 at baseline and after D was 19.6 and 13.7 mmHg, respectively (p=0.38). These preliminary data showed that Paclitaxel significantly decreased the IFP and increased the pO 2 , whereas doxorubicin did not change the IFP and had a tendency to decrease the pO 2 . These

  20. Seasonal Variation in Interstitial Fluid Quality of the Andoni Flats ...

    African Journals Online (AJOL)

    Physicochemical characteristics of the interstitial fluid of the sediment of the intertidal and subtidal zones of the Andoni flats were studied. The results for the interstitial fluid showed low dissolved oxygen levels (0.1 – 1.3mg/l), high temperature values (26.2 -32.4°C), wide salinity range (8 – 21ppt) and near neutral pH (6.26 ...

  1. A new method for isolation of interstitial fluid from human solid tumors applied to proteomic analysis of ovarian carcinoma tissue.

    Directory of Open Access Journals (Sweden)

    Hanne Haslene-Hox

    Full Text Available Major efforts have been invested in the identification of cancer biomarkers in plasma, but the extraordinary dynamic range in protein composition, and the dilution of disease specific proteins make discovery in plasma challenging. Focus is shifting towards using proximal fluids for biomarker discovery, but methods to verify the isolated sample's origin are missing. We therefore aimed to develop a technique to search for potential candidate proteins in the proximal proteome, i.e. in the tumor interstitial fluid, since the biomarkers are likely to be excreted or derive from the tumor microenvironment. Since tumor interstitial fluid is not readily accessible, we applied a centrifugation method developed in experimental animals and asked whether interstitial fluid from human tissue could be isolated, using ovarian carcinoma as a model. Exposure of extirpated tissue to 106 g enabled tumor fluid isolation. The fluid was verified as interstitial by an isolated fluid:plasma ratio not significantly different from 1.0 for both creatinine and Na(+, two substances predominantly present in interstitial fluid. The isolated fluid had a colloid osmotic pressure 79% of that in plasma, suggesting that there was some sieving of proteins at the capillary wall. Using a proteomic approach we detected 769 proteins in the isolated interstitial fluid, sixfold higher than in patient plasma. We conclude that the isolated fluid represents undiluted interstitial fluid and thus a subproteome with high concentration of locally secreted proteins that may be detected in plasma for diagnostic, therapeutic and prognostic monitoring by targeted methods.

  2. Regulation of tumor invasion by interstitial fluid flow

    Science.gov (United States)

    Shieh, Adrian C.; Swartz, Melody A.

    2011-02-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell-cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals.

  3. Regulation of tumor invasion by interstitial fluid flow

    International Nuclear Information System (INIS)

    Shieh, Adrian C; Swartz, Melody A

    2011-01-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell–cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals

  4. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy.

    Science.gov (United States)

    Winslow, Timothy B; Eranki, Annu; Ullas, Soumya; Singh, Anurag K; Repasky, Elizabeth A; Sen, Arindam

    2015-01-01

    The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy.

  5. Nonequilibrium effects in fixed-bed interstitial fluid dispersion

    NARCIS (Netherlands)

    Kronberg, Alexandre E.; Westerterp, K.R.

    1999-01-01

    Continuum models for the role of the interstitial fluid with respect to mass and heat dispersion in a fixed bed are discussed. It is argued that the departures from local equilibrium and not the concentration and temperature gradients as such should be considered as the driving forces for mass and

  6. Tumor interstitial fluid - a treasure trove of cancer biomarkers.

    Science.gov (United States)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J; Timmermans-Wielenga, Vera; Talman, Mai-Lis; Serizawa, Reza R; Moreira, José M A

    2013-11-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets for therapeutic intervention. Here we provide an overview of the features of tumor-associated interstitial fluids, based on recent and updated information obtained mainly from our studies of breast cancer. Data from the study of interstitial fluids recovered from several other types of cancer are also discussed. This article is a part of a Special Issue entitled: The Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.

    1978-01-01

    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  8. Effect of portal hypertension and duct ligature on pancreatic fluid pressures in cats

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Heyeraas, K J

    1990-01-01

    measured before and after acutely induced portal hypertension; in the other group of cats the pressures were measured after an overnight ligature of the pancreatic main duct. At rest the needle pressure was equal to duct pressure but significantly lower than interstitial fluid pressure and portal pressure....... Acute portal hypertension caused no significant changes in micropipette, needle, or duct pressures. Pancreatic duct ligature increased duct pressure, interstitial fluid pressure, and needle pressure. We conclude that the fluid pressure in the pancreas is probably influenced by the production......In two groups of cats recordings were performed, during laparotomy, of pancreatic tissue fluid pressure measured by a needle technique, interstitial fluid pressure measured by micropipette technique, pancreatic intraductal pressure, and portal vein pressure. In one group of cats the pressures were...

  9. Effect of portal hypertension and duct ligature on pancreatic fluid pressures in cats

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Heyeraas, K J

    1990-01-01

    In two groups of cats recordings were performed, during laparotomy, of pancreatic tissue fluid pressure measured by a needle technique, interstitial fluid pressure measured by micropipette technique, pancreatic intraductal pressure, and portal vein pressure. In one group of cats the pressures were...... measured before and after acutely induced portal hypertension; in the other group of cats the pressures were measured after an overnight ligature of the pancreatic main duct. At rest the needle pressure was equal to duct pressure but significantly lower than interstitial fluid pressure and portal pressure...

  10. High-Salt Diet Causes Osmotic Gradients and Hyperosmolality in Skin Without Affecting Interstitial Fluid and Lymph.

    Science.gov (United States)

    Nikpey, Elham; Karlsen, Tine V; Rakova, Natalia; Titze, Jens M; Tenstad, Olav; Wiig, Helge

    2017-04-01

    The common notion is that the body Na + is maintained within narrow limits for fluid and blood pressure homeostasis. Several studies have, however, shown that considerable amounts of Na + can be retained or removed from the body without commensurate water loss and that the skin can serve as a major salt reservoir. Our own data from rats have suggested that the skin is hypertonic compared with plasma on salt storage and that this also applies to skin interstitial fluid. Even small electrolyte gradients between plasma and interstitial fluid would represent strong edema-generating forces. Because the water accumulation has been shown to be modest, we decided to reexamine with alternative methods in rats whether interstitial fluid is hypertonic during salt accumulation induced by high-salt diet (8% NaCl and 1% saline to drink) or deoxycorticosterone pellet implantation. These treatments resulted both in increased systemic blood pressure, skin salt, and water accumulation and in skin hyperosmolality. Interstitial fluid isolated from implanted wicks and lymph draining the skin was, however, isosmotic, and Na + concentration in fluid isolated by centrifugation and in lymph was not different from plasma. Interestingly, by eluting layers of the skin, we could show that there was an osmolality and urea gradient from epidermis to dermis. Collectively, our data suggest that fluid leaving the skin as lymph is isosmotic to plasma but also that the skin can differentially control its own electrolyte microenvironment by creating local gradients that may be functionally important. © 2017 American Heart Association, Inc.

  11. Interstitial fluid contains higher in vitro IGF bioactivity than serum

    DEFF Research Database (Denmark)

    Espelund, Ulrick; Søndergaard, Klaus; Bjerring, Peter

    2012-01-01

    CONTEXT: Circulating insulin-like growth factors (IGFs) are bound in complexes which affect their tissue-accessibility. Interstitial fluid is in close proximity to target cells, but the IGF-system is not well-described herein. OBJECTIVE: To perform a thorough comparison of the IGF-system in sucti...... relate to an increased enzymatic IGFBP-degradation and an altered IGFBP-composition in SBF, making more IGF-I and -II accessible to the IGF-IR. The impact of food intake on the IGF system differs between serum and interstitial fluid....... blister fluid (SBF) vs. in serum, with emphasis on bioactive IGF levels. DESIGN: Eight hour study including samples collected in the fasting state (20h) and after a meal. SETTING: Clinical research facility. PARTICIPANTS: Six healthy males (age 37.0±8.8years, BMI 22.5±1.4kg/m(2)) (mean±SD). MAIN OUTCOME...... was observed, including 3-fold elevated amounts of IGFBP-3 fragments in SBF (Pfood intake differed between serum and SBF (all P≤0.03). CONCLUSION: Despite lower concentrations, the in vitro IGF bioactivity was higher in SBF than in serum. This may...

  12. Interstitial pressure and lung oedema in chronic hypoxia

    Czech Academy of Sciences Publication Activity Database

    Rivolta, I.; Lucchini, G.; Rocchetti, M.; Kolář, František; Palazzo, F.; Zaza, A.; Miserocchi, G.

    2011-01-01

    Roč. 37, č. 4 (2011), s. 943-949 ISSN 0903-1936 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillary patency * lung morphometry * microvascular permeability * pulmonary hypertension * pulmonary interstitial pressure Subject RIV: FC - Pulmology Impact factor: 5.895, year: 2011

  13. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  14. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...

  15. Channel formation by piping: destabilization of loosely consolidated dense granular media due to interstitial fluid flow

    Science.gov (United States)

    Johnsen, Ø.; Chevalier, C.; Lindner, A.; Toussaint, R.; Clément, E.; Måløy, K. J.; Flekkøy, E. G.; Schmittbuhl, J.

    2008-12-01

    We study experimentally the injection of a fluid into a loosely consolidated granular media confined a in quasi two dimensional linear cell geometry, initially close to the jamming transition. In this miscible case of an interstitial fluid flow in a deformable porous phase, the assembly of solid grains can behave as a conducting porous matrix, or form a dense particulate flow when the mechanical coupling with the imposed fluid is strong. The fluidization process is represented by a non-trivial destabilization mechanism determining the subsequent channel formation: A hydrodynamically driven decompaction front manifests itself at the outlet side of the cell. It is distinguished optically from the immobile and strictly conducting jammed material by a sharp contrast in porosity and deformation by particle mobilization. The front is retropropagating (with respect to the average fluid flow) and typically evolves into several localized and parallel zones of enhanced porosity. Within these zones the granular material is unjammed, yielding an effective particle transport. Eventually, when the granular packing is decompacted over the entire system length, the ultimate displacement process is triggered. It is characterized by finger-like patterns empty of grains, dictated by the preferential flow paths prepared by the decompaction front. These channels control entirely the subsequent fluid transport properties of the system. The dynamical and geometrical features of the displacement patterns depend strongly on the identified control parameters: the fluid over-pressure, and the thickness of the granular layer. In practice, the addressed problem might issue important aspects in the formation and sustenance of increased permeability macropore networks as demonstrated in nature and industry through e.g. piping/internal erosion in soils or dams, sand production in oil wells, and "wormholes" in oil sands.

  16. An Implantable Wireless Interstitial Pressure Sensor With Integrated Guyton Chamber: in vivo Study in Solid Tumors.

    Science.gov (United States)

    Song, Seung Hyun; Kim, Albert; Brown, Marcus; Jung, Chaeyong; Ko, S; Ziaie, Babak

    2016-11-01

    A wireless implantable interstitial fluid pressure (IFP) sensor with an integrated Guyton chamber is presented. This implantable device enables noninvasive and continuous measurements of IFP. The Guyton chamber allows for an accurate measurement of IFP without the interference from various cellular/tissue components. The sensor consists of a coil, an air chamber, a silicone membrane embedded with a nickel plate, and a Guyton chamber. The fabricated device is 3 mm in diameter and 1 mm in thickness. The sensor shows a linear response to the pressure with a sensitivity of 60 kHz/mmHg and a resolution of 1 mmHg. Experiments in human prostate cancer tumors grown in mice confirm the sensor's capability to operate in vivo and provide continuous wireless measurement of IFP, a surrogate parameter indicating the "window of opportunity" for delivering chemo- and radio-therapeutic agents.

  17. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  18. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  19. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.

    Science.gov (United States)

    Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein

    2015-01-01

    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.

  20. Relationships between fluid pressure and capillary pressure in ...

    African Journals Online (AJOL)

    In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...

  1. Intraperitoneal pressure: ascitic fluid and splanchnic vascular pressures, and their role in prevention and formation of ascites

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Stage, J G; Schlichting, P

    1980-01-01

    .005). After diuretic therapy WHVP decreased to an average of 20 mmHg. Mean plasma colloid osmotic pressures were 20 mmHg (range 18-24 mmHg)( and 23 mmHg (range 19-29 mmHg) in patients with and without ascites, the values being significantly different (P osmotic pressure of ascitic fluid...... pressure, (b) decreased interstitial fluid colloid osmotic pressure, (c) increased lymph flow, and it is concluded that the peritoneal space can be considered as a special part of the interstitium in which IFP is considered to play an important role in regulation of ascitic fluid.......Seventeen patients with ascites due to cirrhosis underwent hepatic venous catheterization and pressure measurement in the ascitic fluid. Intraperitoneal fluid hydrostatic pressure (IFP) ranged 3.5-22, mean 11.2 mm Hg, and correlated closely to the pressure in the inferior vena cava (r = 0.97, P

  2. Overview of Methods Able to Overcome Impediments to tumor Drug Delivery with Special Attention to Tumor Interstitial Fluid.

    Directory of Open Access Journals (Sweden)

    Gianfranco eBaronzio

    2015-07-01

    Full Text Available Every drug used to treat cancer (chemotherapeutics, immunologic, monoclonal antibodies, nanoparticles, radionuclides must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells they must overcome a number of impediments created by the tumor microenvironment, beginning with tumor interstitial fluid pressure (TIFP and a multifactorial increase in composition of the extracellular matrix (ECM. A primary modifier of tumor microenvironment is hypoxia, which increases the production of growth factors such as vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF. These growth factors released by both tumor cells and bone marrow recruited myeloid cells (MDS, form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass [tumor interstitial fluid (TIF], ultimately creating an increased pressure (TIFP. Fibroblasts are also up-regulated by the tumor microenvironment, and deposit fibers that further augment the density of the extracellular matrix (ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and decreasing ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview we will describe all the methods (drugs, nutraceuticals, physical methods of treatment able to lower TIFP and to modify ECM that can be used for increasing drug concentration within the tumor tissue.

  3. Pore fluid pressure and the seismic cycle

    Science.gov (United States)

    French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.

    2017-12-01

    In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes

  4. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting

    DEFF Research Database (Denmark)

    Kandarian, S C; Boushel, Robert Christopher; Schulte, Lars

    1991-01-01

    ) by tail suspension. Soleus muscles were studied after 28 days and compared with those from five age-matched control (C) rats. Interstitial fluid volume ([3H]inulin space) and maximum tetanic tension (Po) were measured in vitro at 25 degrees C. Soleus muscles atrophied 58% because of unweighting (C = 147...

  5. Mechanisms of sampling interstitial fluid from skin using a microneedle patch.

    Science.gov (United States)

    Samant, Pradnya P; Prausnitz, Mark R

    2018-04-16

    Although interstitial fluid (ISF) contains biomarkers of physiological significance and medical interest, sampling of ISF for clinical applications has made limited impact due to a lack of simple, clinically useful techniques that collect more than nanoliter volumes of ISF. This study describes experimental and theoretical analysis of ISF transport from skin using microneedle (MN) patches and demonstrates collection of >1 µL of ISF within 20 min in pig cadaver skin and living human subjects using an optimized system. MN patches containing arrays of submillimeter solid, porous, or hollow needles were used to penetrate superficial skin layers and access ISF through micropores (µpores) formed upon insertion. Experimental studies in pig skin found that ISF collection depended on transport mechanism according to the rank order diffusion < capillary action < osmosis < pressure-driven convection, under the conditions studied. These findings were in agreement with independent theoretical modeling that considered transport within skin, across the interface between skin and µpores, and within µpores to the skin surface. This analysis indicated that the rate-limiting step for ISF sampling is transport through the dermis. Based on these studies and other considerations like safety and convenience for future clinical use, we designed an MN patch prototype to sample ISF using suction as the driving force. Using this approach, we collected ISF from human volunteers and identified the presence of biomarkers in the collected ISF. In this way, sampling ISF from skin using an MN patch could enable collection of ISF for use in research and medicine.

  6. Effect of the chemical pressure by the addition of interstitials in CePd3:

    International Nuclear Information System (INIS)

    Nieva, G.L.

    1988-01-01

    The effect of the 'chemical pressure' on the intermediate valence compound CePd 3 , is studied by means of specific heat measurements with and without magnetic field. The addition of interstitials in the cubic structure on the alloys CePd 3 A H (A = B, Be, Si) is analyzed. At low interstitial concentration the thermal and magnetic properties that characterize the evolution of the Ce valence show a universal behaviour with the volume displaced by the interstitial. For higher concentrations two different behaviours were found in the trivalent state: a) With the larger interstitials, Be and Si, the system evolves toward a long range antiferromagnetic order; b) With the smaller interstitial, B, the system evolves toward a concentrated Kondo state. (Author) [es

  7. Geometry and Composition of Interstitial Fluids in Frozen Electrolyte Solutions

    Science.gov (United States)

    Cheng, J.; Colussi, A. J.; Hoffmann, M. R.

    2009-12-01

    The composition and morphology of the fluid microchannels threading polycrystaline ice affects the integrity of ice core records and the strength of ice-atmosphere interactions. These fluids owe their existence to impurities and curvature depression. Electrolyte impurities induce bulk colligative effects, but also charge ice surfaces, while screening the resulting electrostatic repulsion. A non-monotonic rather than positive dependence of channel width δ on electrolyte concentration has thus been predicted. Herein we report the first time-resolved, confocal microscopy study of freezing water and electrolyte solutions doped with 10 μM of C-SNARF-1, a fluorescent pH probe. The freezing of doped water concentrates the probe into discrete δ = (12 ± 2) μm channels embedded in pristine ice, whereas ice fronts advancing (at < 5 μm/s) into 1 mM electrolytes destabilize and engulf them into < 1 μm fluid occlusions distributed over the sample. These findings are consistent with a non-monotonic dependence of δ on ion concentration. pH increases by less than 0.4 unit within the occlusions formed in freezing NaCl solutions, and by over 1 unit upon subsequent thawing, revealing that hydroxide ion slowly produced via the dissociation of water molecule in ice seeps from ice to relieve the excess charge generated by chloride inclusion. In contrast, the preferential incorporation of the ammonium ions over the acetate anions into ice leads to the acidification of partially frozen ammonium acetate solutions.

  8. Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function

    Science.gov (United States)

    Marunaka, Yoshinori

    2015-01-01

    The pH of body fluids is one the most important key factors regulating various cell function such as enzyme activity and protein-protein interaction via modification of its binding affinity. Therefore, to keep cell function normal, the pH of body fluids is maintained constant by various systems. Insulin resistance is one of the most important, serious factors making the body condition worse in diabetes mellitus. I have recently found that the pH of body (interstitial) fluids is lower in diabetes mellitus than that in non-diabetic control, and that the lowered pH is one of the causes producing insulin resistance. In this review article, I introduce importance of body (interstitial) fluid pH in regulation of body function, evidence on abnormal regulation of body fluid pH in diabetes mellitus, and relationship between the body fluid pH and insulin resistance. Further, this review proposes perspective therapies on the basis of regulation of body fluid pH including propolis (honeybee product) diet. PMID:25685283

  9. PRESSURE ANALYSIS AND FLUID CONTACT PREDICTION FOR ...

    African Journals Online (AJOL)

    As pressure data was not acquired in the water leg of the reservoir, pressure gradient analysis was done with the field-wide hydrostatic profile for contact and fluid prediction. Also, an evaluation of the possibility of having an oil rim within the region of fluid-type uncertainty was carried out. The predicted results revealed that ...

  10. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin.

    Directory of Open Access Journals (Sweden)

    Derek M Foster

    Full Text Available Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL, and the MIC90 for Mannheimia haemolytica (1.0 μg/mL for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations

  11. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    Science.gov (United States)

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  12. Simulation of interstitial fluid flow in ligaments: comparison among Stokes, Brinkman and Darcy models.

    Science.gov (United States)

    Yao, Wei; Shen, Zhoufeng; Ding, Guanghong

    2013-01-01

    In this paper, we use Stokes, Brinkman and Darcy equations to approximate the porous continuum media of ligament tissues respectively, simulate the flow field with FLUENT software, and study the shear stress on the cell surface due to the interstitial fluid flow. Since the Brinkman equation approaches Stokes equation well in high hydraulic permeability (k p) condition (k p ≥1.0×10(-8) m(2) in our numerical simulation), and it is an approximation to Darcy model in low k p condition (k p ≤5.0×10(-12) m(2) in our numerical simulation), we used the Brinkman model to simulate the interstitial fluid flow in the ligament where k p is approximately 1.0×10(-16) m(2). It shows k p and anisotropic property have a little effect on the flow field, but have a great effect on the shear stress on the membrane of interstitial cells (τ cell). There is a linear relationship between τ cell and , when k p =1.0×10(-16) m(2) and the maximum τ cell (τ cell,max) is approximately 10 Pa. The anisotropic property will affect τ cell's distribution on the cell surface. When k x/k y>1, low τ cell dominates the cell, while when k x/k y<1, high τ cell dominants the cell.

  13. A high-accuracy measurement method of glucose concentration in interstitial fluid based on microdialysis

    Science.gov (United States)

    Li, Dachao; Xu, Qingmei; Liu, Yu; Wang, Ridong; Xu, Kexin; Yu, Haixia

    2017-11-01

    A high-accuracy microdialysis method that can provide the reference values of glucose concentration in interstitial fluid for the accurate evaluation of non-invasive and minimally invasive continuous glucose monitoring is reported in this study. The parameters of the microdialysis process were firstly optimized by testing and analyzing three main factors that impact microdialysis recovery, including the perfusion rate, temperature, and glucose concentration in the area surrounding the microdialysis probe. The precision of the optimized microdialysis method was then determined in a simulation system that was designed and established in this study to simulate variations in continuous glucose concentration in the human body. Finally, the microdialysis method was tested for in vivo interstitial glucose concentration measurement.

  14. Quantification of interstitial fluid on whole body CT: comparison with whole body autopsy.

    Science.gov (United States)

    Lo Gullo, Roberto; Mishra, Shelly; Lira, Diego A; Padole, Atul; Otrakji, Alexi; Khawaja, Ranish Deedar Ali; Pourjabbar, Sarvenaz; Singh, Sarabjeet; Shepard, Jo-Anne O; Digumarthy, Subba R; Kalra, Mannudeep K; Stone, James R

    2015-12-01

    Interstitial fluid accumulation can occur in pleural, pericardial, and peritoneal spaces, and subcutaneous tissue planes. The purpose of the study was to assess if whole body CT examination in a postmortem setting could help determine the presence and severity of third space fluid accumulation in the body. Our study included 41 human cadavers (mean age 61 years, 25 males and 16 females) who had whole-body postmortem CT prior to autopsy. All bodies were maintained in the morgue in the time interval between death and autopsy. Two radiologists reviewed the whole-body CT examinations independently to grade third space fluid in the pleura, pericardium, peritoneum, and subcutaneous space using a 5-point grading system. Qualitative CT grading for third space fluid was correlated with the amount of fluid found on autopsy and the quantitative CT fluid volume, estimated using a dedicated software program (Volume, Syngo Explorer, Siemens Healthcare). Moderate and severe peripheral edema was seen in 16/41 and 7/41 cadavers respectively. It is not possible to quantify anasarca at autopsy. Correlation between imaging data for third space fluid and the quantity of fluid found during autopsy was 0.83 for pleural effusion, 0.4 for pericardial effusion and 0.9 for ascites. The degree of anasarca was significantly correlated with the severity of ascites (p < 0.0001) but not with pleural or pericardial effusion. There was strong correlation between volumetric estimation and qualitative grading for anasarca (p < 0.0001) and pleural effusion (p < 0.0001). Postmortem CT can help in accurate detection and quantification of third space fluid accumulation. The quantity of ascitic fluid on postmortem CT can predict the extent of anasarca.

  15. Surfactant administration for neonatal respiratory distress does not improve lung interstitial fluid clearance: echographic and experimental evidence.

    Science.gov (United States)

    Cattarossi, Luigi; Copetti, Roberto; Poskurica, Besa; Miserocchi, Giuseppe

    2010-09-01

    Recent ultrasonographic studies suggest that the administration of surfactant to preterm infants with respiratory distress syndrome (RDS) does not affect lung water clearance. The purpose of the study was also to look at clearance of lung water in preterm rabbits receiving surfactant. Lung ultrasound was performed in 73 neonates at different gestational ages (range 23-34 weeks) with radiological and clinical signs of RDS, before and after surfactant administration. In premature rabbits (28-29 days' gestational age), either receiving or not receiving surfactant, we followed the time course of lung water balance considering the wet weight/dry weight ratio, the morphology and compliance of alveoli and pulmonary interstitial pressure. In all RDS infants lung ultrasound images consistently showed a generalized increase in extravascular lung fluid which remained unchanged after surfactant administration and did not affect the rate of fluid clearance. Surfactant administration in premature rabbits did not improve the time course of lung fluid clearance. Data from ultrasound in preterm babies are confirmed by animal experiments.

  16. Negative interstitial pressure in the peritendinous region during exercise

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Bülow, J

    1999-01-01

    In the present study, tissue pressure in the peritendinous area ventral to the human Achilles tendon was determined. The pressure was measured during rest and intermittent isometric calf muscle exercise at three torques (56, 112, and 168 Nm) 20, 40 and 50 mm proximal to the insertion of the tendon...... in 11 healthy, young individuals. In all experiments a linear significant decrease in pressure was obtained with increasing torque [e.g., at 40 mm: -0.4 +/- 0.3 mmHg (rest) to -135 +/- 12 mmHg (168 Nm)]. No significant differences were obtained among the three areas measured. On the basis...

  17. Negative interstitial pressure in the peritendinous region during exercise

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Bülow, J

    1999-01-01

    of these observations, microdialysis was performed in the peritendinous region with a colloid osmotic active substance (Dextran 70, 0.1 g/ml) added to the perfusate with the aim of counteracting the negative tissue pressure. Dialysate volume was found to be fully restored (100 +/- 4%) during exercise. It is concluded......In the present study, tissue pressure in the peritendinous area ventral to the human Achilles tendon was determined. The pressure was measured during rest and intermittent isometric calf muscle exercise at three torques (56, 112, and 168 Nm) 20, 40 and 50 mm proximal to the insertion of the tendon...... in 11 healthy, young individuals. In all experiments a linear significant decrease in pressure was obtained with increasing torque [e.g., at 40 mm: -0.4 +/- 0.3 mmHg (rest) to -135 +/- 12 mmHg (168 Nm)]. No significant differences were obtained among the three areas measured. On the basis...

  18. Cytokine profiling of tumor interstitial fluid of the breast and its relationship with lymphocyte infiltration and clinicopathological characteristics

    DEFF Research Database (Denmark)

    Espinoza, Jaime A.; Jabeen, Shakila; Batra, Richa

    2016-01-01

    uncharacterized. Moreover, the data obtained regarding the origin of cytokine secretions, the levels of secretion associated with tumor development, and the possible clinical relevance of cytokines remain controversial. Therefore, we profiled 27 cytokines in 78 breast tumor interstitial fluid (TIF) samples, 43...... normal interstitial fluid (NIF) samples, and 25 matched serum samples obtained from BC patients with Luminex xMAP multiplex technology. Eleven cytokines exhibited significantly higher levels in the TIF samples compared with the NIF samples: interleukin (IL)-7, IL-10, fibroblast growth factor-2, IL-13...

  19. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    International Nuclear Information System (INIS)

    1997-01-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements

  20. Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid.

    Science.gov (United States)

    Jiang, Dongping; Morefield, Garry L; HogenEsch, Harm; Hem, Stanley L

    2006-03-06

    The objective of this research was to determine how the mechanism by which antigens adsorb to aluminum-containing adjuvants affects the elution upon exposure to interstitial fluid. Antigens (alpha lactalbumin, bovine serum albumin, lysozyme and myoglobin) that adsorb to aluminum-containing adjuvants principally by electrostatic attraction were found to elute readily in vitro when exposed to interstitial fluid. Phosphorylated antigens (alpha casein, hepatitis B surface antigen and phosphorylated bovine serum albumin) that adsorb to aluminum-containing adjuvants principally by ligand exchange exhibit little if any elution during 12-24 h in vitro exposure to interstitial fluid. Dephosphorylated alpha casein, which contains less than two phosphate groups, was less strongly adsorbed by ligand exchange in comparison to alpha casein, which contains eight phosphate groups. Dephosphorylated alpha casein was completely eluted when exposed to interstitial fluid. The results of this study lead to the generalization that antigens that adsorb to aluminum-containing adjuvants by electrostatic attraction are more likely to elute upon intramuscular or subcutaneous administration than antigens that adsorb by ligand exchange.

  1. Mechanisms underlying the volume regulation of interstitial fluid by capillaries: a simulation study

    Directory of Open Access Journals (Sweden)

    Yukiko Himeno

    2016-03-01

    Conclusion: Mathematical analyses revealed that the system of the capillary is stable near the equilibrium point at steady state and normal physiological capillary pressure. The time course of the tissue-volume change was determined by two kinetic mechanisms: rapid fluid exchange and slow protein fluxes.

  2. Bronchoalveolar lavage in patients with interstitial lung diseases: side effects and factors affecting fluid recovery.

    Science.gov (United States)

    Dhillon, D P; Haslam, P L; Townsend, P J; Primett, Z; Collins, J V; Turner-Warwick, M

    1986-05-01

    One hundred and seventy patients with interstitial lung diseases undergoing bronchoalveolar lavage (BAL), were contrasted with 51 patients undergoing fibreoptic bronchoscopy alone to define the factors which predispose to post-lavage side-effects. Transient post-bronchoscopy fall in the peak expired flow (PEF) greater than or equal to 20% occurred in both groups (24% and 23% respectively), and thus was probably related to the bronchoscopy procedure. Post-lavage pyrexia (greater than or equal to 1 degree C) occurred only in the patients undergoing BAL (26%), p less than 0.001. Only 4% with pyrexia required antibiotics, and only 2% with falls in PEF needed bronchodilator therapy. The only significant clinical association was more frequent pyrexia in patients on treatment with prednisolone, particularly in women (p less than 0.01). Pyrexia was also associated with higher lavage fluid introduction volumes (greater than 240 ml). Side effects did not relate to the percentages of lavage fluid recovered, although smokers had lower recoveries and, recoveries tended to be higher in sarcoidosis than cryptogenic fibrosing alveolitis. Serial lavages in 25 patients caused no significant increase in side effects.

  3. Water in hydroxyapatite nanopores: Possible implications for interstitial bone fluid flow.

    Science.gov (United States)

    Lemaire, T; Pham, T T; Capiez-Lernout, E; de Leeuw, N H; Naili, S

    2015-09-18

    The role of bone water in the activity of this organ is essential in structuring apatite crystals, providing pathways for nutrients and waste involved in the metabolism of bone cells and participating in bone remodelling mechanotransduction. It is commonly accepted that bone presents three levels of porosity, namely the vasculature, the lacuno-canalicular system and the voids of the collagen-apatite matrix. Due to the observation of bound state of water at the latter level, the interstitial nanoscopic flow that may exist within these pores is classically neglected. The aim of this paper is to investigate the possibility to obtain a fluid flow at the nanoscale. That is why a molecular dynamics based analysis of a water-hydroxyapatite system is proposed to analyze the effect of water confinement on transport properties. The main result here is that free water can be observed inside hydroxyapatite pores of a few nanometers. This result would have strong implications in the multiscale treatment of the poromechanical behaviour of bone tissue. In particular, the mechanical properties of the bone matrix may be highly controlled by nanoscopic water diffusion and the classical idea that osteocytic activity is only regulated by bone fluid flow within the lacuno-canalicular system may be discussed again. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Waves of pressure in viscous incompressible fluid

    Science.gov (United States)

    Prosviryakov, E. Yu.

    2017-12-01

    A three-dimensional non-stationary flow of a viscous incompressible fluid in the infinite space is examined. The description of possible shapes of pressure is based on the equation for the axial component of velocity, which is an exact consequence of the basic equations. New analytical exact solutions to the Navier-Stokes equations for periodic and localized traveling waves have been found.

  5. Formation of Frenkel pairs and diffusion of self-interstitial in Si under normal and hydrostatic pressure: Quantumchemical simulation

    International Nuclear Information System (INIS)

    Gusakov, Vasilii; Belko, Victor; Dorozhkin, Nikolai

    2009-01-01

    A theoretical modeling of the formation of Frenkel pairs and the diffusion of a self-interstitial atom in silicon crystals at normal and high (hydrostatic) pressures has been performed using quantum-chemical (NDDO-PM5), methods. It is shown that, in a silicon crystal, the most stable configuration of a self-interstitial atom in the neutral charge state (I 0 ) is the split configuration . The tetrahedral configuration is not stable, an interstitial atom being shifted from T position in a new position T 1 on a distance Δd=0.2 A. The hexagonal configuration is not stable in NDDO approximation. The split interstitial configuration remains the more stable configuration under hydrostatic pressure (P a ( →T 1 )=0.59 eV, E a (T 1 →neighboring T 1 )=0.1 eV and E a (T 1 → )=0.23 eV. The hydrostatic pressure (P<80 kbar) increases the activation barrier for diffusion of self-interstitial atoms in silicon crystals. The energies of the formation of a separate Frenkel pair, a self-interstitial atom, and a vacancy are determined. It is demonstrated that the hydrostatic pressure decreases the energy of the formation of Frenkel pairs.

  6. Profiling of microRNAs in tumor interstitial fluid of breast tumors – a novel resource to identify biomarkers for prognostic classification and detection of cancer

    DEFF Research Database (Denmark)

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel

    2017-01-01

    It has been hypothesized based on accumulated data that a class of small noncoding RNAs, termed microRNAs, are key factors in intercellular communication. Here, microRNAs present in interstitial breast tumor fluids have been analyzed to identify relevant markers for a diagnosis of breast cancer...... and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer...... the cross-talk that occurs between tumor cells and their surrounding stroma....

  7. Effect of topical anaesthetics on interstitial colloid osmotic pressure in human subcutaneous tissue sampled by wick technique.

    Directory of Open Access Journals (Sweden)

    Hans Jørgen Timm Guthe

    Full Text Available To measure colloid osmotic pressure in interstitial fluid (COP(i from human subcutaneous tissue with the modified wick technique in order to determine influence of topical application of anaesthetics, dry vs. wet wick and implantation time on COP(i.In 50 healthy volunteers interstitial fluid (IF was collected by subcutaneous implantation of multi-filamentous nylon wicks. Study subjects were allocated to two groups; one for comparing COP(i obtained from dry and saline soaked wicks, and one for comparing COP(i from unanaesthetized skin, and skin after application of a eutectic mixture of local anaesthetic (EMLA®, Astra Zeneca cream. IF was sampled from the skin of the shoulders, and implantation time was 30, 60, 75, 90 and 120 min. Colloid osmotic pressure was measured with a colloid osmometer. Pain assessment during the procedure was compared for EMLA cream and no topical anaesthesia using a visual analogue scale (VAS in a subgroup of 10 subjects.There were no significant differences between COP(i obtained from dry compared to wet wicks, except that the values after 75 and 90 min. were somewhat higher for the dry wicks. Topical anaesthesia with EMLA cream did not affect COP(i values. COP(i decreased from 30 to 75 min. of implantation (23.2 ± 4.4 mmHg to 19.6 ± 2.9 mmHg, p = 0.008 and subsequently tended to increase until 120 min. EMLA cream resulted in significant lower VAS score for the procedure.COP(i from subcutaneous tissue was easily obtained and fluid harvesting was well tolerated when topical anaesthetic was used. The difference in COP(i assessed by dry and wet wicks between 75 min. and 90 min. of implantation was in accordance with previous reports. The use of topical analgesia did not influence COP(i and topical analgesia may make the wick technique more acceptable for subjects who dislike technical procedures, including children.ClinicalTrials.gov NCT01044979.

  8. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis.

    Science.gov (United States)

    Chang, Hao; Zheng, Mengjia; Yu, Xiaojun; Than, Aung; Seeni, Razina Z; Kang, Rongjie; Tian, Jingqi; Khanh, Duong Phan; Liu, Linbo; Chen, Peng; Xu, Chenjie

    2017-10-01

    Skin interstitial fluid (ISF) is an emerging source of biomarkers for disease diagnosis and prognosis. Microneedle (MN) patch has been identified as an ideal platform to extract ISF from the skin due to its pain-free and easy-to-administrated properties. However, long sampling time is still a serious problem which impedes timely metabolic analysis. In this study, a swellable MN patch that can rapidly extract ISF is developed. The MN patch is made of methacrylated hyaluronic acid (MeHA) and further crosslinked through UV irradiation. Owing to the supreme water affinity of MeHA, this MN patch can extract sufficient ISF in a short time without the assistance of extra devices, which remarkably facilitates timely metabolic analysis. Due to covalent crosslinked network, the MN patch maintains the structure integrity in the swelling hydrated state without leaving residues in skin after usage. More importantly, the extracted ISF metabolites can be efficiently recovered from MN patch by centrifugation for the subsequent offline analysis of metabolites such as glucose and cholesterol. Given the recent trend of easy-to-use point-of-care devices for personal healthcare monitoring, this study opens a new avenue for the development of MN-based microdevices for sampling ISF and minimally invasive metabolic detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Persistent SIRS and acute fluid collections are associated with increased CT scanning in acute interstitial pancreatitis.

    Science.gov (United States)

    Kamal, Ayesha; Faghih, Mahya; Moran, Robert A; Afghani, Elham; Sinha, Amitasha; Parsa, Nasim; Makary, Martin A; Zaheer, Atif; Fishman, Elliot K; Khashab, Mouen A; Kalloo, Anthony N; Singh, Vikesh K

    2018-01-01

    The use of computed tomography (CT) in acute pancreatitis (AP) continues to increase in parallel with the increasing use of diagnostic imaging in clinical medicine. To determine the factors associated with obtaining >1 CT scan in acute interstitial pancreatitis (AIP). Demographic and clinical data of all adult patients admitted between 1/2010 and 1/2015 with AP (AP) were evaluated. Only patients with a CT severity index (CTSI) ≤ 3 on a CT obtained within 48 h of presentation were included. A total of 229 patients were included, of whom 206 (90%) had a single CT and 23 (10%) had >1 CT during the first week of hospitalization. Patients undergoing >1 CT had significantly higher rates of acute fluid collection (AFC), persistent SIRS, opioid use ≥4 days, and persistent organ failure compared to those undergoing 1 CT (p SIRS (OR = 3.6, 95% CI 1.4-9.6, p = .01) and an AFC on initial CT (OR = 3.5, 95% CI 1.4-9, p = .009) were independently associated with obtaining >1 CT. An AFC on initial CT and persistent SIRS are associated with increased CT imaging in AIP patients. However, these additional CT scans did not change clinical management.

  10. Development of a fluorescent method for simultaneous measurement of glucose concentrations in interstitial fluid and blood

    International Nuclear Information System (INIS)

    Shi, Ting; Li, Dachao; Li, Guoqing; Xu, Kexin; Chen, Limin; Lin, Yuan; Lu, Luo

    2013-01-01

    Continuous blood glucose monitoring is of great clinical significance to patients with diabetes. One of the effective methods to monitor blood glucose is to measure glucose concentrations of interstitial fluid (ISF). However, a time-delay problem exists between ISF and blood glucose concentrations, which results in difficulty in indicating real-time blood glucose concentrations. Therefore, we developed a fluorescent method to verify the accuracy and reliability of simultaneous ISF and blood glucose measurement, especially incorporating it into research on the delay relationship between blood and ISF glucose changes. This method is based on a competitive reaction among borate polymer, alizarin and glucose. When glucose molecules combine with borate polymers in alizarin–borate polymer competitively, changes in fluorescence intensity demonstrate changes in glucose concentrations. By applying the measured results to the blood and ISF glucose delay relationship, we were able to calculate the time delay as an average of 2.16 ± 2.05 min for ISF glucose changes with reference to blood glucose concentrations. (paper)

  11. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    Science.gov (United States)

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  12. Gene Profiling of Aortic Valve Interstitial Cells under Elevated Pressure Conditions: Modulation of Inflammatory Gene Networks

    Directory of Open Access Journals (Sweden)

    James N. Warnock

    2011-01-01

    Full Text Available The study aimed to identify mechanosensitive pathways and gene networks that are stimulated by elevated cyclic pressure in aortic valve interstitial cells (VICs and lead to detrimental tissue remodeling and/or pathogenesis. Porcine aortic valve leaflets were exposed to cyclic pressures of 80 or 120 mmHg, corresponding to diastolic transvalvular pressure in normal and hypertensive conditions, respectively. Linear, two-cycle amplification of total RNA, followed by microarray was performed for transcriptome analysis (with qRT-PCR validation. A combination of systems biology modeling and pathway analysis identified novel genes and molecular mechanisms underlying the biological response of VICs to elevated pressure. 56 gene transcripts related to inflammatory response mechanisms were differentially expressed. TNF-α, IL-1α, and IL-1β were key cytokines identified from the gene network model. Also of interest was the discovery that pentraxin 3 (PTX3 was significantly upregulated under elevated pressure conditions (41-fold change. In conclusion, a gene network model showing differentially expressed inflammatory genes and their interactions in VICs exposed to elevated pressure has been developed. This system overview has detected key molecules that could be targeted for pharmacotherapy of aortic stenosis in hypertensive patients.

  13. The giraffe kidney tolerates high arterial blood pressure by high renal interstitial pressure and low glomerular filtration rate

    DEFF Research Database (Denmark)

    Damkjær, Mads; Wang, T; Brøndum, E

    2015-01-01

    adaption in the giraffe kidney allows normal for size renal haemodynamics and glomerular filtration rate (GFR) despite a MAP double that of other mammals. METHODS: Fourteen anaesthetized giraffes were instrumented with vascular and bladder catheters to measure glomerular filtration rate (GFR) and effective......BACKGROUND: The tallest animal on earth, the giraffe (Giraffa camelopardalis) is endowed with a mean arterial blood pressure (MAP) twice that of other mammals. The kidneys reside at heart level and show no sign of hypertension-related damage. We hypothesized that a species-specific evolutionary...... renal plasma flow (ERPF). Renal interstitial hydrostatic pressure (RIHP) was assessed by inserting a needle into the medullary parenchyma. Doppler ultrasound measurements provided renal artery resistive index (RI). Hormone concentrations as well as biomechanical, structural and histological...

  14. Mechanism and physiologic significance of the suppression of cholesterol esterification in human interstitial fluid

    Directory of Open Access Journals (Sweden)

    Norman Eric Miller

    2016-07-01

    Full Text Available Cholesterol esterification in high density lipoproteins (HDLs by lecithin:cholesterol acyltransferase (LCAT promotes unesterified cholesterol (UC transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER in lymph is only five per cent of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate, and LCAT specific activity averaged respectively 11.8, 10.3, and 84.9 per cent of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI, fatty acid-free albumin, Intralipid, or the d<1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC to lymph increased ECER ten-fold, while addition of apo AI/PC/UC discs did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins.

  15. Revolutionizing Therapeutic Drug Monitoring with the Use of Interstitial Fluid and Microneedles Technology

    Directory of Open Access Journals (Sweden)

    Tony K.L. Kiang

    2017-10-01

    Full Text Available While therapeutic drug monitoring (TDM that uses blood as the biological matrix is the traditional gold standard, this practice may be impossible, impractical, or unethical for some patient populations (e.g., elderly, pediatric, anemic and those with fragile veins. In the context of finding an alternative biological matrix for TDM, this manuscript will provide a qualitative review on: (1 the principles of TDM; (2 alternative matrices for TDM; (3 current evidence supporting the use of interstitial fluid (ISF for TDM in clinical models; (4 the use of microneedle technologies, which is potentially minimally invasive and pain-free, for the collection of ISF; and (5 future directions. The current state of knowledge on the use of ISF for TDM in humans is still limited. A thorough literature review indicates that only a few drug classes have been investigated (i.e., anti-infectives, anticonvulsants, and miscellaneous other agents. Studies have successfully demonstrated techniques for ISF extraction from the skin but have failed to demonstrate commercial feasibility of ISF extraction followed by analysis of its content outside the ISF-collecting microneedle device. In contrast, microneedle-integrated biosensors built to extract ISF and perform the biomolecule analysis on-device, with a key feature of not needing to transfer ISF to a separate instrument, have yielded promising results that need to be validated in pre-clinical and clinical studies. The most promising applications for microneedle-integrated biosensors is continuous monitoring of biomolecules from the skin’s ISF. Conducting TDM using ISF is at the stage where its clinical utility should be investigated. Based on the advancements described in the current review, the immediate future direction for this area of research is to establish the suitability of using ISF for TDM in human models for drugs that have been found suitable in pre-clinical experiments.

  16. Revolutionizing Therapeutic Drug Monitoring with the Use of Interstitial Fluid and Microneedles Technology

    Science.gov (United States)

    Kiang, Tony K.L.; Ranamukhaarachchi, Sahan A.; Ensom, Mary H.H.

    2017-01-01

    While therapeutic drug monitoring (TDM) that uses blood as the biological matrix is the traditional gold standard, this practice may be impossible, impractical, or unethical for some patient populations (e.g., elderly, pediatric, anemic) and those with fragile veins. In the context of finding an alternative biological matrix for TDM, this manuscript will provide a qualitative review on: (1) the principles of TDM; (2) alternative matrices for TDM; (3) current evidence supporting the use of interstitial fluid (ISF) for TDM in clinical models; (4) the use of microneedle technologies, which is potentially minimally invasive and pain-free, for the collection of ISF; and (5) future directions. The current state of knowledge on the use of ISF for TDM in humans is still limited. A thorough literature review indicates that only a few drug classes have been investigated (i.e., anti-infectives, anticonvulsants, and miscellaneous other agents). Studies have successfully demonstrated techniques for ISF extraction from the skin but have failed to demonstrate commercial feasibility of ISF extraction followed by analysis of its content outside the ISF-collecting microneedle device. In contrast, microneedle-integrated biosensors built to extract ISF and perform the biomolecule analysis on-device, with a key feature of not needing to transfer ISF to a separate instrument, have yielded promising results that need to be validated in pre-clinical and clinical studies. The most promising applications for microneedle-integrated biosensors is continuous monitoring of biomolecules from the skin’s ISF. Conducting TDM using ISF is at the stage where its clinical utility should be investigated. Based on the advancements described in the current review, the immediate future direction for this area of research is to establish the suitability of using ISF for TDM in human models for drugs that have been found suitable in pre-clinical experiments. PMID:29019915

  17. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow.

    Science.gov (United States)

    Goulet, G C; Cooper, D M L; Coombe, D; Zernicke, R F

    2008-08-01

    Bone is a dynamic tissue that undergoes structural modification in response to its mechanical environment, but how bone cells sense and respond to loading conditions remains incompletely understood. Current theories focus on strain-induced fluid flow for the primary means of mechanotransduction. To examine the influence of age-related cortical rarefaction on lacunocanalicular fluid characteristics, coupled fluid flow and mechanical computational models of bone specimens representing young, mid-age and aged samples were derived artificially from the same original micro-computed tomography image data. Simulated mechanical loading was applied to the bone models to induce pressure-driven interstitial fluid flow. Results demonstrated a decrease in pore pressure and fluid velocity magnitudes with age as a result of increased cortical porosity. Mean canal separation, as opposed to canal size, was implicated as a primary factor affecting age-related fluid dynamics. Future investigations through refinement of the model may implicate fluid stasis or inadequate nutrient transport experienced by osteocytes as a key factor in the initiation of cortical remodelling events.

  18. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System.

    Science.gov (United States)

    Matsumae, Mitsunori; Sato, Osamu; Hirayama, Akihiro; Hayashi, Naokazu; Takizawa, Ken; Atsumi, Hideki; Sorimachi, Takatoshi

    2016-07-15

    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.

  19. The giraffe kidney tolerates high arterial blood pressure by high renal interstitial pressure and low glomerular filtration rate.

    Science.gov (United States)

    Damkjaer, M; Wang, T; Brøndum, E; Østergaard, K H; Baandrup, U; Hørlyck, A; Hasenkam, J M; Smerup, M; Funder, J; Marcussen, N; Danielsen, C C; Bertelsen, M F; Grøndahl, C; Pedersen, M; Agger, P; Candy, G; Aalkjaer, C; Bie, P

    2015-08-01

    The tallest animal on earth, the giraffe (Giraffa camelopardalis) is endowed with a mean arterial blood pressure (MAP) twice that of other mammals. The kidneys reside at heart level and show no sign of hypertension-related damage. We hypothesized that a species-specific evolutionary adaption in the giraffe kidney allows normal for size renal haemodynamics and glomerular filtration rate (GFR) despite a MAP double that of other mammals. Fourteen anaesthetized giraffes were instrumented with vascular and bladder catheters to measure glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). Renal interstitial hydrostatic pressure (RIHP) was assessed by inserting a needle into the medullary parenchyma. Doppler ultrasound measurements provided renal artery resistive index (RI). Hormone concentrations as well as biomechanical, structural and histological characteristics of vascular and renal tissues were determined. GFR averaged 342 ± 99 mL min(-1) and ERPF 1252 ± 305 mL min(-1) . RIHP varied between 45 and 140 mmHg. Renal pelvic pressure was 39 ± 2 mmHg and renal venous pressure 32 ± 4 mmHg. A valve-like structure at the junction of the renal and vena cava generated a pressure drop of 12 ± 2 mmHg. RI was 0.27. The renal capsule was durable with a calculated burst pressure of 600 mmHg. Plasma renin and AngII were 2.6 ± 0.5 mIU L(-1) and 9.1 ± 1.5 pg mL(-1) respectively. In giraffes, GFR, ERPF and RI appear much lower than expected based on body mass. A strong renal capsule supports a RIHP, which is >10-fold that of other mammals effectively reducing the net filtration pressure and protecting against the high MAP. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  1. Immunological indices of blood and interstitial fluid in estimation of a program of therapy of upper limb secondary edemas

    International Nuclear Information System (INIS)

    Kuz'mina, E.G.; Degtyareva, A.A.; Doroshenko, L.N.; Rogova, N.M.; Zorina, L.N.

    1990-01-01

    The efficacy of therapy of upper limb secondary edemas after 4 programs was compared among 83 patients. The methods were as follows: traditional method (TM) including routine conservative therapy, acupuncture (AP), He-Ne laser OKG-13 and semiconductor laser against a background of traditional therapy. A study was made of the time course of the extent of edema, total protein, IG, G, A and M and circulating immune complexes (CIC) during therapy of such patients. Blood serum and interstitial fluid indices were compared. It was shown that the application of both lasers led to increasing efficacy of TM and AP

  2. Interpolated pressure laws in two-fluid simulations and hyperbolicity

    OpenAIRE

    Helluy, Philippe; Jung, Jonathan

    2014-01-01

    We consider a two-fluid compressible flow. Each fluid obeys a stiffened gas pressure law. The continuous model is well defined without considering mixture regions. However, for numerical applications it is often necessary to consider artificial mixtures, because the two-fluid interface is diffused by the numerical scheme. We show that classic pressure law interpolations lead to a non-convex hyperbolicity domain and failure of well-known numerical schemes. We propose a physically relevant pres...

  3. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... were compared with preoperative endoscopic retrograde cholangiopancreatography (ERCP) morphology. The preoperatively elevated pressure decreased in all patients but one, to normal or slightly elevated values. The median pressure decrease was 50% (range, 0-90%; p = 0.01). The drainage anastomosis (a...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  4. Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support.

    Science.gov (United States)

    Cooper, B G; Lawson, T B; Snyder, B D; Grinstaff, M W

    2017-07-01

    Osteoarthritis (OA) is associated with increased articular cartilage hydraulic permeability and decreased maintenance of high interstitial fluid load support (IFLS) during articulation, resulting in increased friction on the cartilage solid matrix. This study assesses frictional response following in situ synthesis of an interpenetrating polymer network (IPN) designed to mimic glycosaminoglycans (GAGs) depleted during OA. Cylindrical osteochondral explants containing various interpenetrating polymer concentrations were subjected to a torsional friction test under unconfined creep compression. Time-varying coefficient of friction, compressive engineering strain, and normalized strain values (ε/ε eq ) were calculated and analyzed. The polymer network reduced friction coefficient over the duration of the friction test, with statistically significantly reduced friction coefficients (95% confidence interval 14-34% reduced) at equilibrium compressive strain upon completion of the test (P = 0.015). A positive trend was observed relating polymer network concentration with magnitude of friction reduction compared to non-treated tissue. The cartilage-interpenetrating polymer treatment improves lubrication by augmenting the biphasic tissue's interstitial fluid phase, and additionally improves the friction dissipation of the tissue's solid matrix. This technique demonstrates potential as a therapy to augment tribological function of articular cartilage. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. [Raman spectroscopic study on silicone fluid as pressure gauge].

    Science.gov (United States)

    Liu, Jin; Sun, Qiang

    2010-09-01

    Within a diamond-anvil cell, the in-situ Raman spectroscopic study of silicone fluid was operated at room temperature 298. 1 K and under pressures from 0.1 to 5140.2 MPa. The present study analyzed the correlation of the modes 2906 and 2967 cm(-1) with different pressures, indicating that their wavenumbers linearly increased with increasing pressure. Therefore, this provided the potential to consider the pressure medium silicone fluid as a pressure gauge. The result suggested that silicone fluid could be used as a reliable pressure gauge in high-pressure experiments using diamond-anvil cells with Raman spectrometer, and the correlations between pressure and (delta nu p)2906, (delta nu p)2967 are, p = -0.05[(delta nu p)2967]2 + 73.07 (delta nu p)2967 + 91.54 and p = 0.14 [(delta nu p)2906]2 + 81.9 (delta nu p)2906 + 92.01, respectively.

  6. Pancreatic tissue fluid pressure and pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N

    1992-01-01

    A casual relation between pancreatic pressure and pain has been searched for decades but lack of appropriate methods for pressure measurements has hindered progress. During the 1980's the needle method has been used for direct intraoperative pancreatic tissue fluid pressure measurements and later...... for percutaneous sonographically-guided pressure measurements. Clinical and experimental evaluation of the method showed comparable results at intraoperative and percutaneous measurements and little week-to-week variation. Furthermore, comparable pressures in duct and adjacent pancreatic tissue were found, i.......e. the needle pressure mirrors the intraductal pressure. Comparisons of pain registrations, morphological and functional parameters with pancreatic tissue fluid pressure measurements have revealed a relation between pressure and pain which probably is causal. In patients with pain the high pressures previously...

  7. Numerical modeling of fluid flow in solid tumors.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1 tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure. Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2 there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid

  8. Numerical solutions of Williamson fluid with pressure dependent viscosity

    Directory of Open Access Journals (Sweden)

    Iffat Zehra

    2015-01-01

    Full Text Available In the present paper, we have examined the flow of Williamson fluid in an inclined channel with pressure dependent viscosity. The governing equations of motion for Williamson fluid model under the effects of pressure dependent viscosity and pressure dependent porosity are modeled and then solved numerically by the shooting method with Runge Kutta Fehlberg for two types of geometries i.e., (i Poiseuille flow and (ii Couette flow. Four different cases for pressure dependent viscosity and pressure dependent porosity are assumed and the physical features of pertinent parameters are discussed through graphs.

  9. Effect of pressure on the physical properties of magnetorheological fluids

    Directory of Open Access Journals (Sweden)

    A. Spaggiari

    2013-01-01

    Full Text Available To date, several applications of magnetorheological (MR fluids are present in the industrial world, nonetheless system requirements often needs better material properties. In technical literature a previous work shows that MR fluids exhibit a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices are rotary devices, this paper investigates the behaviour of MR fluids under pressure when a rotation is applied to shear the fluid. The system is designed in order to apply both the magnetic field and the pressure and follows a Design of Experiment approach. The experimental apparatus comprises a cylinder in which a piston is used both to apply the pressure and to shear the fluid. The magnetic circuit is designed to provide a nearly constant induction field in the MR fluid. The experimental apparatus measures the torque as a function of the variables considered and the yield shear stress is computed. The analysis of the results shows that there is a positive interaction between magnetic field and pressure, which enhances the MR fluid performances more than twice.

  10. Plastic reactor suitable for high pressure and supercritical fluid electrochemistry

    OpenAIRE

    Branch, Jack; Alibouri, Mehrdad; Cook, David A.; Richardson, Peter; Bartlett, Philip N.; Matefi-Tempfli, Maria; Matefi-Tempfli, Stefan; Bampton, Mark; Cookson, Tamsin; Connell, Phil; Smith, David

    2017-01-01

    The paper describes a reactor suitable for high pressure, particularly supercritical fluid, electrochemistry and electrodeposition at pressures up to 30 MPa at 115°C. The reactor incorporates two key, new design concepts; a plastic reactor vessel and the use of o-ring sealed brittle electrodes. These two innovations widen what can be achieved with supercritical fluid electrodeposition. The suitability of the reactor for electroanalytical experiments is demonstrated by studies of the voltammet...

  11. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    Science.gov (United States)

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-03-20

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  12. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  13. Critical Pressures of the Thrust Bearing Using a Magnetic Fluid

    OpenAIRE

    長屋, 幸助; 武田, 定彦; 佐藤, 淳; 井開, 重男; 関口, 肇; 斉藤, 登

    1990-01-01

    This paper proposes a thrust bearing lubricated by a magnetic fluid under a magnetic field. The critical pressures of the bearing versus the magnitude of the magnetic flux densities have been investigated experimentally. It is clarified that the critical pressures of the proposed bearing are larger than those of the normal lubricant bearing under high speeds.

  14. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  15. Plastic reactor suitable for high pressure and supercritical fluid electrochemistry

    DEFF Research Database (Denmark)

    Branch, Jack; Alibouri, Mehrdad; Cook, David A.

    2017-01-01

    The paper describes a reactor suitable for high pressure, particularly supercritical fluid, electrochemistry and electrodeposition at pressures up to 30 MPa at 115◦C. The reactor incorporates two key, new design concepts; a plastic reactor vessel and the use of o-ring sealed brittle electrodes....... These two innovations widen what can be achieved with supercritical fluid electrodeposition. The suitability of the reactor for electroanalytical experiments is demonstrated by studies of the voltammetry of decamethylferrocene in supercritical difluromethane and for electrodeposition is demonstrated...

  16. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model

    OpenAIRE

    Liao, Fan; Zhang, Tony J.; Mahan, Thomas E.; Jiang, Hong; Holtzman, David M.

    2014-01-01

    Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sle...

  17. A selected reaction monitoring-based analysis of acute phase proteins in interstitial fluids from experimental equine wounds healing by secondary intention.

    Science.gov (United States)

    Bundgaard, Louise; Bendixen, Emøke; Sørensen, Mette Aa; Harman, Victoria M; Beynon, Robert J; Petersen, Lars J; Jacobsen, Stine

    2016-05-01

    In horses, pathological healing with formation of exuberant granulation tissue (EGT) is a particular problem in limb wounds, whereas body wounds tend to heal without complications. Chronic inflammation has been proposed to be central to the pathogenesis of EGT. This study aimed to investigate levels of inflammatory acute phase proteins (APPs) in interstitial fluid from wounds in horses. A novel approach for absolute quantification of proteins, selected reaction monitoring (SRM)-based mass spectrometry in combination with a quantification concatamer (QconCAT), was used for the quantification of five established equine APPs (fibrinogen, serum amyloid A, ceruloplasmin, haptoglobin, and plasminogen) and three proposed equine APPs (prothrombin, α-2-macroglobulin, and α-1-antitrypsin). Wound interstitial fluid was recovered by large pore microdialysis from experimental body and limb wounds from five horses at days 1, 2, 7, and 14 after wounding and healing without (body) and with (limb) the formation of EGT. The QconCAT included proteotypic peptides representing each of the protein targets and was used to direct the design of a gene, which was expressed in Escherichia coli in a media supplemented with stable isotopes for metabolically labeling of standard peptides. Co-analysis of wound interstitial fluid samples with the stable isotope-labeled QconCAT tryptic peptides in known amounts enabled quantification of the APPs in absolute terms. The concentrations of fibrinogen, haptoglobin, ceruloplasmin, prothrombin, and α-1-antitrypsin in dialysate from limb wounds were significantly higher than in dialysate from body wounds. This is the first report of simultaneous analysis of a panel of APPs using the QconCAT-SRM technology. The microdialysis technique in combination with the QconCAT-SRM-based approach proved useful for quantification of the investigated proteins in the wound interstitial fluid, and the results indicated that there is a state of sustained inflammation in

  18. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    Science.gov (United States)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  19. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  20. Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention

    Directory of Open Access Journals (Sweden)

    Qin Yi-Xian

    2010-03-01

    Full Text Available Abstract Background Interstitial fluid flow induced by loading has demonstrated to be an important mediator for regulating bone mass and morphology. It is shown that the fluid movement generated by the intramedullary pressure (ImP provides a source for pressure gradient in bone. Such dynamic ImP may alter the blood flow within nutrient vessel adjacent to bone and directly connected to the marrow cavity, further initiating nutrient vessel adaptation. It is hypothesized that oscillatory ImP can mediate the blood flow in the skeletal nutrient vessels and trigger vasculature remodeling. The objective of this study was then to evaluate the vasculature remodeling induced by dynamic ImP stimulation as a function of ImP frequency. Methods Using an avian model, dynamics physiological fluid ImP (70 mmHg, peak-peak was applied in the marrow cavity of the left ulna at either 3 Hz or 30 Hz, 10 minutes/day, 5 days/week for 3 or 4 weeks. The histomorphometric measurements of the principal nutrient arteries were done to quantify the arterial wall area, lumen area, wall thickness, and smooth muscle cell layer numbers for comparison. Results The preliminary results indicated that the acute cyclic ImP stimuli can significantly enlarge the nutrient arterial wall area up to 50%, wall thickness up to 20%, and smooth muscle cell layer numbers up to 37%. In addition, 3-week of acute stimulation was sufficient to alter the arterial structural properties, i.e., increase of arterial wall area, whereas 4-week of loading showed only minimal changes regardless of the loading frequency. Conclusions These data indicate a potential mechanism in the interrelationship between vasculature adaptation and applied ImP alteration. Acute ImP could possibly initiate the remodeling in the bone nutrient vasculature, which may ultimately alter blood supply to bone.

  1. Cholesteryl palmitate crystals in bronchoalveolar lavage fluid smears as a possible prognostic biomarker for chronic interstitial pneumonia: A preliminary study.

    Science.gov (United States)

    Fukuhara, Naoko; Tachihara, Motoko; Tanino, Yoshinori; Saito, Junpei; Sato, Suguru; Nikaido, Takefumi; Misa, Kenichi; Fukuhara, Atsuro; Wang, Xintao; Ishida, Takashi; Onami, Tetsuo; Munakata, Mitsuru

    2016-03-01

    We observed cholesterol-like crystals (Crystal X) in the bronchoalveolar lavage fluid (BALF) smears of patients with diffuse pulmonary disease. We analyzed the clinical data of patients with and without crystals, and elucidated the structure of Crystal X and its concentration in the BALF. Two hundred eighty-nine patients with diffuse pulmonary disease who underwent bronchoalveolar lavage (BAL) were analyzed. The relationships between the presence and number of Crystal X in BALF smears and clinical parameters were investigated. Furthermore, structure determination and quantitative analyses of the crystals were performed. Seventy-five (26.0%) patients had Crystal X in their BALF. The crystals were frequently observed in patients with chronic interstitial pneumonia (CIP, 60/160=35.3%). Patients with Crystal X exhibited significantly higher serum Kerbs von Lungren 6 antigen and surfactant protein-D levels (PCrystal X. The number of crystals was significantly correlated with these parameters. The presence of crystals was also associated with a lower survival rate at 1 year after the BAL. The interfacial angles of the crystals were 126±2° and 144±2°, different from those of cholesterol monohydrate crystals. Infrared absorption spectrometry showed Crystal X was cholesteryl palmitate. Its concentration was significantly higher in BALF with crystals than in BALF without crystals (PCrystal X in the BALF of patients with diffuse pulmonary disease was identified as cholesteryl palmitate, which may be a useful prognostic biomarker for CIP. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  2. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  3. The Key Roles of Negative Pressure Breathing and Exercise in the Development of Interstitial Pulmonary Edema in Professional Male SCUBA Divers.

    Science.gov (United States)

    Castagna, Olivier; Regnard, Jacques; Gempp, Emmanuel; Louge, Pierre; Brocq, François Xavier; Schmid, Bruno; Desruelle, Anne-Virginie; Crunel, Valentin; Maurin, Adrien; Chopard, Romain; MacIver, David Hunter

    2018-01-03

    Immersion pulmonary edema is potentially a catastrophic condition; however, the pathophysiological mechanisms are ill-defined. This study assessed the individual and combined effects of exertion and negative pressure breathing on the cardiovascular system during the development of pulmonary edema in SCUBA divers. Sixteen male professional SCUBA divers performed four SCUBA dives in a freshwater pool at 1 m depth while breathing air at either a positive or negative pressure both at rest or with exercise. Echocardiography and lung ultrasound were used to assess the cardiovascular changes and lung comet score (a measure of interstitial pulmonary edema). The ultrasound lung comet score was 0 following both the dives at rest regardless of breathing pressure. Following exercise, the mean comet score rose to 4.2 with positive pressure breathing and increased to 15.1 with negative pressure breathing. The development of interstitial pulmonary edema was significantly related to inferior vena cava diameter, right atrial area, tricuspid annular plane systolic excursion, right ventricular fractional area change, and pulmonary artery pressure. Exercise combined with negative pressure breathing induced the greatest changes in these cardiovascular indices and lung comet score. A diver using negative pressure breathing while exercising is at greatest risk of developing interstitial pulmonary edema. The development of immersion pulmonary edema is closely related to hemodynamic changes in the right but not the left ventricle. Our findings have important implications for divers and understanding the mechanisms of pulmonary edema in other clinical settings.

  4. Pressure Enhancement in Confined Fluids: Effect of Molecular Shape and Fluid-Wall Interactions.

    Science.gov (United States)

    Srivastava, Deepti; Santiso, Erik E; Gubbins, Keith E

    2017-10-24

    Recently, several experimental and simulation studies have found that phenomena that normally occur at extremely high pressures in a bulk phase can occur in nanophases confined within porous materials at much lower bulk phase pressures, thus providing an alternative route to study high-pressure phenomena. In this work, we examine the effect on the tangential pressure of varying the molecular shape, strength of the fluid-wall interactions, and pore width, for carbon slit-shaped pores. We find that, for multisite molecules, the presence of additional rotational degrees of freedom leads to unique changes in the shape of the tangential pressure profile, especially in larger pores. We show that, due to the direct relationship between the molecular density and the fluid-wall interactions, the latter have a large impact on the pressure tensor. The molecular shape and pore size have a notable impact on the layering of molecules in the pore, greatly influencing both the shape and scale of the tangential pressure profile.

  5. Fluid-to-fluid scaling of heat transfer phenomena with supercritical pressure fluids: Results from RANS analyses

    International Nuclear Information System (INIS)

    Pucciarelli, A.; Ambrosini, W.

    2016-01-01

    Highlights: • A methodology for fluid-to-fluid scaling of heat transfer to supercritical fluids is proposed. • The methodology is based on a dimensionless formulation. • A first assessment of the methodology is obtained on the basis of RANS calculations. - Abstract: A methodology for fluid-to-fluid scaling of predicted heat transfer phenomena with supercritical pressure fluids is being developed with the aid of RANS calculations. The proposed approach rephrases and further develops a previous attempt, whose preliminary validation was limited by the considerable inaccuracy of the adopted turbulence models when applied to deteriorated heat transfer. A recent improvement in the accuracy of heat transfer predictions allowed this further step, also based on the broader experience gained in the mean time in the prediction of experimental data. Four representative experimental data cases related to water and CO 2 , for which reasonably accurate results have been obtained by RANS turbulence equations, are addressed by changing the working fluid and imposing an approximate invariance of the dimensionless trends of fluid enthalpy at the wall and in bulk. Intrinsic differences in the thermal behaviour of the considered fluids (e.g., in the Prandtl number) are reflected in corresponding changes in the value of a single dimensionless parameter, following an indication coming from simple theoretical considerations. Results of RANS models for different fluids are used as a preliminary support to the validity of the approach, showing an interesting persistence of heat transfer behaviour in dimensionless form in the four addressed cases. The present uncertainties in the proposed methodology are mainly a consequence of the limited accuracy of the adopted simulation models. The obtained indications can be used in planning experimental or better resolved computational analyses (LES, DNS) which may better clarify the promising features of this approach.

  6. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters

    Science.gov (United States)

    Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.

    2018-03-01

    The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

  7. Comparison of Interstitial Fluid pH, PCO2, PO2 with Venous Blood Values During Repetitive Handgrip Exercise

    Science.gov (United States)

    Hagan, Ronald Donald; Soller, Babs R.; Shear, Michael; Walz, Matthias; Landry, Michelle; Heard, Stephen

    2006-01-01

    We evaluated the use of a small, fiber optic sensor to measure pH, PCO2 and PO2 from forearm muscle interstitial fluid (IF) during handgrip dynamometry. PURPOSE: Compare pH, PCO2 and PO2 values obtained from venous blood with those from the IF of the flexor digitorum superficialis (FDS) during three levels of exercise intensity. METHODS: Six subjects (5M/1F), average age 29+/-5 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space and a fiber optic sensor (Paratrend, Diametrics Medical, Inc.) was placed through a 22 G catheter into the FDS muscle under ultrasound guidance. After a 45 min rest period, subjects performed three 5-min bouts of repetitive handgrip exercise (2s contraction/1 s relaxation) at attempted levels of 15%, 30% and 45% of maximal voluntary contraction. The order of the exercise bouts was random with the second and third bouts started after blood lactate had returned to baseline. Venous blood was sampled every minute during exercise and analyzed with an I-Stat CG-4+ cartridge, while IF fiber optic sensor measurements were obtained every 2 s. Change from pre-exercise baseline to end of exercise was computed for pH, PCO2 and PO2. Blood and IF values were compared with a paired t-test. RESULTS: Baseline values for pH, PCO2 and PO2 were 7.37+/-0.02, 46+/-4 mm Hg, and 36+/-6 mm Hg respectively in blood and 7.39+/-0.02, 44+/-6 mm Hg, and 35+/-14 mm Hg in IF. Average changes over all exercise levels are noted in the Table below. For each parameter the exercise-induced change was at least twice as great in IF as in blood. In blood and IF, pH and PCO2 increases were directly related to exercise intensity. Change in venous PO2 was unrelated to exercise intensity, while IF PO2 decreased with increases in exercise intensity. CONCLUSIONS: Measurement of IF pH, PCO2 and PO2 is more sensitive to exercise intensity than measurement of the same parameters in venous blood and provides continuous

  8. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  9. Variability of hydrostatic hepatic vein and ascitic fluid pressure, and of plasma and ascitic fluid colloid osmotic pressure in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1980-01-01

    The variability of hydrostatic hepatic vein and ascitic fluid pressures and of plasma and ascitic fluid colloid osmotic (oncotic) pressures was assessed during hepatic venous catheterization by repeated measurements on different days and at different locations in patients with cirrhosis...... during catheterization give a good reproducibility in determination of the hydrostatic pressures in hepatic vein and ascitic fluid and of the colloid osmotic (oncotic) pressure in plasma and ascitic fluid in the resting supine patient with cirrhosis, which substantiates the use of measurements during...... of the liver. Furthermore, calculation of oncotic pressure from protein determinations was compared to the directly measured value of plasma and ascitic fluid samples. Repeated measurements of hydrostatic pressure in the same hepatic vein within 15 min showed a standard deviation (SD) below 1 mm...

  10. Analytical solution for dynamic pressurization of viscoelastic fluids

    International Nuclear Information System (INIS)

    Hashemabadi, S.H.; Etemad, S.Gh.; Thibault, J.; Golkar Naranji, M.R.

    2003-01-01

    The flow of simplified Phan-Thien-Tanner model fluid between parallel plates is studied analytically for the case where the upper plate moves at constant velocity. Two forms of the stress coefficient, linear and exponential, are used in the constitutive equation. For the linear stress coefficient, the dimensionless pressure gradient, the velocity profile and the product of friction factor and Reynolds number are obtained for a wide range of flow rate, Deborah number and elongational parameter. The results indicate the strong effects of the viscoelastic parameter on the velocity profile, the extremum of the velocity, and the friction factor. A correlation for the maximum pressure rise in single screw extruders is proposed. For the exponential stress coefficient, only velocity profiles were obtained and compared with velocity profiles obtained with the linear stress coefficient

  11. Early effects of combretastatin-A4 disodium phosphate on tumor perfusion and interstitial fluid pressure

    DEFF Research Database (Denmark)

    Ley, C.D.; Horsman, Michael Robert; Kristjansen, P.E.G.

    2007-01-01

    /kg CA4DP by intraperitoneal injection. Tumor perfusion was recorded by laser Doppler flowmetry at separate time points, and IFP was recorded continuously by the wick-in-needle method. In this study, we found that CA4DP treatment resulted in a rapid reduction in tumor perfusion, followed by a decrease...

  12. Variability of hydrostatic hepatic vein and ascitic fluid pressure, and of plasma and ascitic fluid colloid osmotic pressure in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1980-01-01

    The variability of hydrostatic hepatic vein and ascitic fluid pressures and of plasma and ascitic fluid colloid osmotic (oncotic) pressures was assessed during hepatic venous catheterization by repeated measurements on different days and at different locations in patients with cirrhosis...... of the liver. Furthermore, calculation of oncotic pressure from protein determinations was compared to the directly measured value of plasma and ascitic fluid samples. Repeated measurements of hydrostatic pressure in the same hepatic vein within 15 min showed a standard deviation (SD) below 1 mm......Hg. The variation in hydrostatic hepatic vein pressures, pressure differences and ascitic fluid pressures (when measured at different locations within the liver and peritoneal space during a single examination) was 1.5, 1.0 and 1.0 mmHg (SD), respectively. When measured on different days, the variation...

  13. Effect of Interstitial Fluid Flow on Drug-Coated Balloon Delivery in a Patient-Specific Arterial Vessel with Heterogeneous Tissue Composition: A Simulation Study.

    Science.gov (United States)

    Sarifuddin; Mandal, Prashanta Kumar

    2018-03-05

    Angioplasty with drug-coated balloons (DCBs) using excipients as drug carriers is emerging as a potentially viable strategy demonstrating clinical efficacy and proposing additional compliance for the treatment of obstructive vascular diseases. An attempt is made to develop an improved computational model where attention has been paid to the effect of interstitial flow, that is, plasma convection and internalization of bound drug. The present model is capable of capturing the phenomena of the transport of free drug and its retention, and also the internalization of drug in the process of endocytosis to atherosclerotic vessel of heterogeneous tissue composition comprising of healthy tissue, as well as regions of fibrous cap, fibro-fatty, calcified and necrotic core lesions. Image processing based on an unsupervised clustering technique is used for color-based segmentation of a patient-specific longitudinal image of atherosclerotic vessel obtained from intravascular ultrasound derived virtual histology. As the residence time of drug in a stent-based delivery within the arterial tissue is strongly influenced by convective forces, effect of interstitial fluid flow in case of DCB delivery can not be ruled out, and has been investigated by modeling it through unsteady Navier-Stokes equations. Transport of free drug is modeled by considering unsteady advection-reaction-diffusion process, while the bound drug, assuming completely immobilized in the tissue, by unsteady reaction process. The model also takes into account the internalization of drug through the process of endocytosis which gets degraded by the lysosomes and finally recycled into the extracellular fluid. All the governing equations representing the flow of interstitial fluid, the transport of free drug, the metabolization of free drug into bound phase and the process of internalization along with the physiologically realistic boundary and initial conditions are solved numerically using marker and cell method

  14. Minimally-invasive, microneedle-array extraction of interstitial fluid for comprehensive biomedical applications: transcriptomics, proteomics, metabolomics, exosome research, and biomarker identification.

    Science.gov (United States)

    Taylor, Robert M; Miller, Philip R; Ebrahimi, Parwana; Polsky, Ronen; Baca, Justin T

    2018-01-01

    Interstitial fluid (ISF) has recently garnered interest as a biological fluid that could be used as an alternate to blood for biomedical applications, diagnosis, and therapy. ISF extraction techniques are promising because they are less invasive and less painful than venipuncture. ISF is an alternative, incompletely characterized source of physiological data. Here, we describe a novel method of ISF extraction in rats, using microneedle arrays, which provides volumes of ISF that are sufficient for downstream analysis techniques such as proteomics, genomics, and extracellular vesicle purification and analysis. This method is potentially less invasive than previously reported techniques. The limited invasiveness and larger volumes of extracted ISF afforded by this microneedle-assisted ISF extraction method provide a technique that is less stressful and more humane to laboratory animals, while also allowing for a reduction in the numbers of animals needed to acquire sufficient volumes of ISF for biomedical analysis and application.

  15. Pressure and compressibility factor of bidisperse magnetic fluids

    Science.gov (United States)

    Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.

    2018-04-01

    In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.

  16. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease

    OpenAIRE

    Schamberger, A.; Schiller, H.; Fernandez, I.; Sterclova, M.; Heinzelmann, K.; Hennen, E.; Hatz, R.; Behr, J.; Vasakova, M.; Mann, M.; Eickelberg, O.; Staab-Weijnitz, C.

    2016-01-01

    Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase ...

  17. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    Science.gov (United States)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  19. Elevated cerebrospinal fluid pressure in patients with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Fellmann Jere

    2006-05-01

    Full Text Available Abstract Background Abnormalities in cerebrospinal fluid (CSF production and turnover, seen in normal pressure hydrocephalus (NPH and in Alzheimer's disease (AD, may be an important cause of amyloid retention in the brain and may relate the two diseases. There is a high incidence of AD pathology in patients being shunted for NPH, the AD-NPH syndrome. We now report elevated CSF pressure (CSFP, consistent with very early hydrocephalus, in a subset of AD patients enrolled in a clinical trial of chronic low-flow CSF drainage. Our objective was to determine the frequency of elevated CSFP in subjects meeting National Institutes of Neurological and Communicative Diseases and Stroke – Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA criteria for AD, excluding those with signs of concomitant NPH. Methods AD subjects by NINCDS-ADRDA criteria (n = 222, were screened by history, neurological examination, and radiographic imaging to exclude those with clinical or radiographic signs of NPH. As part of this exclusion process, opening CSFP was measured supine under general anesthesia during device implantation surgery at a controlled pCO2 of 40 Torr (40 mmHg. Results Of the 222 AD subjects 181 had pressure measurements recorded. Seven subjects (3.9% enrolled in the study had CSFP of 220 mmH20 or greater, mean 249 ± 20 mmH20 which was significantly higher than 103 ± 47 mmH2O for the AD-only group. AD-NPH patients were significantly younger and significantly less demented on the Mattis Dementia Rating Scale (MDRS. Conclusion Of the AD subjects who were carefully screened to exclude those with clinical NPH, 4% had elevated CSFP. These subjects were presumed to have the AD-NPH syndrome and were withdrawn from the remainder of the study.

  20. A selected reaction monitoring-based analysis of acute phase proteins in interstitial fluids from experimental equine wounds healing by secondary intention

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Bendixen, Emøke; Sørensen, Mette Aamand

    2016-01-01

    , ceruloplasmin, prothrombin, and α-1-antitrypsin in dialysate from limb wounds were significantly higher than in dialysate from body wounds. This is the first report of simultaneous analysis of a panel of APPs using the QconCAT-SRM technology. The microdialysis technique in combination with the Qcon...... five horses at days 1, 2, 7, and 14 after wounding and healing without (body) and with (limb) the formation of EGT. The QconCAT included proteotypic peptides representing each of the protein targets and was used to direct the design of a gene, which was expressed in Escherichia coli in a media...... supplemented with stable isotopes for metabolically labeling of standard peptides. Co-analysis of wound interstitial fluid samples with the stable isotope-labeled QconCAT tryptic peptides in known amounts enabled quantification of the APPs in absolute terms. The concentrations of fibrinogen, haptoglobin...

  1. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Mei Uemura

    2017-07-01

    Full Text Available BackgroundContinuous glucose monitoring (CGM is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET. Here we evaluated the accuracy of interstitial fluid glucose (IG AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference.MethodsThirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. ResultsA significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76 and nighttime (r=0.82. The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity.ConclusionWe showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day.

  2. Evaluation of pancreatic tissue fluid pressure measurements intraoperatively and by sonographically guided fine-needle puncture

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    pressure measurements via direct puncture. Furthermore, no significant difference was seen between pancreatic duct and tissue fluid pressure. The technical evaluation was performed by repeated pressure measurements in human pancreatic autopsy specimens and living rats in a pressure chamber at various...

  3. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    Science.gov (United States)

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  4. Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Ville Leinonen

    2011-01-01

    Full Text Available The diagnosis of idiopathic normal pressure hydrocephalus (iNPH is still challenging. Alzheimer's disease (AD, along with vascular dementia, the most important differential diagnosis for iNPH, has several potential cerebrospinal fluid (CSF biomarkers which might help in the selection of patients for shunt treatment. The aim of this study was to compare a battery of CSF biomarkers including well-known AD-related proteins with CSF from patients with suspected iNPH collected from the external lumbar drainage test (ELD. A total of 35 patients with suspected iNPH patients were evaluated with ELD. CSF was collected in the beginning of the test, and the concentrations of total tau, ptau181, Aβ42, NFL, TNF-α, TGFβ1, and VEGF were analysed by ELISA. Twenty-six patients had a positive ELD result—that is, their gait symptoms improved; 9 patients had negative ELD. The levels of all analyzed CSF biomarkers were similar between the groups and none of them predicted the ELD result in these patients. Contrary to expectations lumbar CSF TNF-α concentration was low in iNPH patients.

  5. Computer program TMOC for calculating of pressure transients in fluid filled piping networks

    International Nuclear Information System (INIS)

    Siikonen, T.

    1978-01-01

    The propagation of a pressure wave in fluid filles tubes is significantly affected by the pipe wall motion and vice versa. A computer code TMOC (Transients by the Method of Characteristics) is being developed for the analysis of the coupled fluid and pipe wall transients. Because of the structural feedback, the pressure can be calculated more accurately than in the programs commonly used. (author)

  6. Intraperitoneal pressure: ascitic fluid and splanchnic vascular pressures, and their role in prevention and formation of ascites

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Stage, J G; Schlichting, P

    1980-01-01

    Seventeen patients with ascites due to cirrhosis underwent hepatic venous catheterization and pressure measurement in the ascitic fluid. Intraperitoneal fluid hydrostatic pressure (IFP) ranged 3.5-22, mean 11.2 mm Hg, and correlated closely to the pressure in the inferior vena cava (r = 0.97, P ....001), which was on average 1.8 mmHg above that of ascitic fluid (P ascites (range 12-27, mean 20 mmHg, P ....005). After diuretic therapy WHVP decreased to an average of 20 mmHg. Mean plasma colloid osmotic pressures were 20 mmHg (range 18-24 mmHg)( and 23 mmHg (range 19-29 mmHg) in patients with and without ascites, the values being significantly different (P ascitic fluid...

  7. Study of high-pressure adsorption from supercritical fluids by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... with thermodynamic properties that depend on the distance from the solid surface (or position in the porous space). The description involves the two kinds of interactions present in the adsorbed fluid, i.e. the fluid-fluid and fluid-solid interactions. accounted for by means of an equation of state (Eo......S) and interaction potential functions, respectively. This makes it possible to generate the different MPTA models by combination of the relevant EoS/potentials. In the present work, the simplified perturbed-chain statistical associating fluid theory (sPC-SAFT) EoS is used for the thermodynamic description of both...

  8. Do Arthroscopic Fluid Pumps Display True Surgical Site Pressure During Hip Arthroscopy?

    Science.gov (United States)

    Ross, Jeremy A; Marland, Jennifer D; Payne, Brayden; Whiting, Daniel R; West, Hugh S

    2018-01-01

    To report on the accuracy of 5 commercially available arthroscopic fluid pumps to measure fluid pressure at the surgical site during hip arthroscopy. Patients undergoing hip arthroscopy for femoroacetabular impingement were block randomized to the use of 1 of 5 arthroscopic fluid pumps. A spinal needle inserted into the operative field was used to measure surgical site pressure. Displayed pump pressures and surgical site pressures were recorded at 30-second intervals for the duration of the case. Mean differences between displayed pump pressures and surgical site pressures were obtained for each pump group. Of the 5 pumps studied, 3 (Crossflow, 24K, and Continuous Wave III) reflected the operative field fluid pressure within 11 mm Hg of the pressure readout. In contrast, 2 of the 5 pumps (Double Pump RF and FMS/DUO+) showed a difference of greater than 59 mm Hg between the operative field fluid pressure and the pressure readout. Joint-calibrated pumps more closely reflect true surgical site pressure than gravity-equivalent pumps. With a basic understanding of pump design, either type of pump can be used safely and efficiently. The risk of unfamiliarity with these differences is, on one end, the possibility of pump underperformance and, on the other, potentially dangerously high operating pressures. Level II, prospective block-randomized study. Copyright © 2017. Published by Elsevier Inc.

  9. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients - association with tumor biology and clinical outcome.

    Science.gov (United States)

    Terkelsen, Thilde; Haakensen, Vilde D; Saldova, Radka; Gromov, Pavel; Hansen, Merete Kjaer; Stöckmann, Henning; Lingjaerde, Ole Christian; Børresen-Dale, Anne-Lise; Papaleo, Elena; Helland, Åslaug; Rudd, Pauline M; Gromova, Irina

    2018-04-26

    Particular N-glycan structures are known to be associated with breast malignancies by coordinating various regulatory events within the tumor and corresponding microenvironment, thus implying that N-glycan patterns may be used for cancer stratification and as predictive or prognostic biomarkers. However, the association between N-glycans secreted by breast tumor and corresponding clinical relevance remain to be elucidated. We profiled N-glycans by HILIC UPLC across a discovery dataset composed of tumor interstitial fluids (TIF, n=85), paired normal interstitial fluids (NIF, n=54) and serum samples (n=28) followed by independent evaluation, with the ultimate goal of identifying tumor-related N-glycan patterns in blood of breast cancer patients. The segregation of N-linked oligosaccharides revealed 33 compositions, which exhibited differential abundances between TIF and NIF. TIFs were depleted of bisecting N-glycans, which are known to play essential roles in tumor suppression. An increased level of simple high mannose N-glycans in TIF strongly correlated with the presence of tumor infiltrating lymphocytes within tumor. At the same time, a low level of highly complex N-glycans in TIF inversely correlated with the presence of infiltrating lymphocytes within tumor. Survival analysis showed that patients exhibiting increased TIF abundance of GP24 had better outcomes, whereas low levels of GP10, GP23, GP38, and coreF were associated with poor prognosis. Levels of GP1, GP8, GP9, GP14, GP23, GP28, GP37, GP38, and coreF were significantly correlated between TIF and paired serum samples. Cross-validation analysis using an independent serum dataset supported the observed correlation between TIF and serum, for five out of nine N-glycan groups: GP8, GP9, GP14, GP23, and coreF. Collectively, our results imply that profiling of N-glycans from proximal breast tumor fluids is a promising strategy for determining tumor-derived glyco-signature(s) in the blood. N-glycans structures

  10. Impact of cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus on the amyloid cascade.

    Directory of Open Access Journals (Sweden)

    Masao Moriya

    Full Text Available The aim of this study was to determine whether the improvement of cerebrospinal fluid (CSF flow dynamics by CSF shunting, can suppress the oligomerization of amyloid β-peptide (Aβ, by measuring the levels of Alzheimer's disease (AD-related proteins in the CSF before and after lumboperitoneal shunting. Lumbar CSF from 32 patients with idiopathic normal pressure hydrocephalus (iNPH (samples were obtained before and 1 year after shunting, 15 patients with AD, and 12 normal controls was analyzed for AD-related proteins and APLP1-derived Aβ-like peptides (APL1β (a surrogate marker for Aβ. We found that before shunting, individuals with iNPH had significantly lower levels of soluble amyloid precursor proteins (sAPP and Aβ38 compared to patients with AD and normal controls. We divided the patients with iNPH into patients with favorable (improvement ≥ 1 on the modified Rankin Scale and unfavorable (no improvement on the modified Rankin Scale outcomes. Compared to the unfavorable outcome group, the favorable outcome group showed significant increases in Aβ38, 40, 42, and phosphorylated-tau levels after shunting. In contrast, there were no significant changes in the levels of APL1β25, 27, and 28 after shunting. After shunting, we observed positive correlations between sAPPα and sAPPβ, Aβ38 and 42, and APL1β25 and 28, with shifts from sAPPβ to sAPPα, from APL1β28 to 25, and from Aβ42 to 38 in all patients with iNPH. Our results suggest that Aβ production remained unchanged by the shunt procedure because the levels of sAPP and APL1β were unchanged. Moreover, the shift of Aβ from oligomer to monomer due to the shift of Aβ42 (easy to aggregate to Aβ38 (difficult to aggregate, and the improvement of interstitial-fluid flow, could lead to increased Aβ levels in the CSF. Our findings suggest that the shunting procedure can delay intracerebral deposition of Aβ in patients with iNPH.

  11. On Pressure Boundary Conditions for Steady Flows of Incompressible Fluids with Pressure and Shear Rate Dependent Viscosities

    Czech Academy of Sciences Publication Activity Database

    Lanzendörfer, Martin; Stebel, Jan

    2011-01-01

    Roč. 56, č. 3 (2011), s. 265-285 ISSN 0862-7940 R&D Projects: GA MŠk LC06052 Grant - others:GA ČR(CZ) GA201/06/0352 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : existence * weak solutions * incompressible fluids * non-Newtonian fluids * pressure dependent viscosity * shear dependent viscosity * inflow/outflow boundary conditions * pressure boundary conditions * filtration boundary conditions Subject RIV: BK - Fluid Dynamics Impact factor: 0.480, year: 2011 http://dml.cz/handle/10338.dmlcz/141486

  12. Interstitial Cystitis

    Science.gov (United States)

    ... bathroom at scheduled times and using relaxation techniques. Physical therapy. People who have interstitial cystitis may have painful spasms of pelvic floor muscles. If you have muscle spasms, you can ...

  13. Interstitial nephritis

    Science.gov (United States)

    ... Allergic reaction to a drug (acute interstitial allergic nephritis). Autoimmune disorders, such as antitubular basement membrane disease, Kawasaki disease, Sjögren syndrome, systemic lupus erythematosus, or Wegener granulomatosis. Infections. Long-term use ...

  14. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement.

    Science.gov (United States)

    Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner

    2012-01-01

    Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800cm(-1) range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described. A variation of blood glucose between approx. 80mg/dl and 250mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054cm(-1) and 1084cm(-1), a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients. Copyright © 2011 Elsevier B.V. All

  15. Generation and maintenance of low effective pressures due to fluid flow in fractured rocks

    Science.gov (United States)

    Garagash, D.; Brantut, N.; Schubnel, A.; Bhat, H. S.

    2017-12-01

    The pore fluid pressure is expected to increase with increasing depth in the crust, primarily due to gravity forces. Because direct measurements are impossible beyond a few kilometers depths, the pore pressure gradient is often assumed to be linear (e.g., hydrostatic). However, a number of processes can severely modify the fluid pressure distribution in the crust. Here, we investigate the effect of fluid flow coupled to nonlinear permeability-effective pressure relationship. We performed a set of laboratory fluid flow experiments on thermally cracked Westerly granite at confining pressures up to 200 MPa and pore fluid pressures up to 120 MPa. Fluid flow was generated by imposing very strong pore pressure differences, up to 120 MPa, between the ends of the sample. The vertical fluid pressure distribution inside the sample was inferred by a set of 8 radial strain gauges, and an array of 10 P- and S-wave transducers. When the effective stress is kept near zero at one end of the sample and maintained high at the other end, the steady-state pore pressure profile is nonlinear. The effective stress, as inferred from the strain gauge array, remains close to zero through 2/3 of the sample, and increases sharply near the drained end of the sample. The ultrasonic data are used to build a vertical P- and S-wave velocity structure. The wave velocity profiles are consistent with a nonlinear relationship between wave velocity and effective pressure, as expected in thermally cracked granite. Taken together, our experimental data confirm the theoretical prediction that near zero effective stress can be generated through significant sections of rocks as a response to an imposed fluid flow. This has strong implications for the state of stress of the Earth's crust, especially around major continental transform faults that act as conduits for deep volatiles.

  16. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    Science.gov (United States)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the

  17. Simple flow cytometric protocol of CD4+/CD8+ lymphocyte ratio assessment in bronchoalveolar lavage fluids from patients with interstitial lung diseases.

    Science.gov (United States)

    Szpechcinski, Adam; Kopinski, Piotr; Giedronowicz, Dorota; Rozy, Adriana; Jagus, Paulina; Szolkowska, Malgorzata; Chorostowska-Wynimko, Joanna

    2011-10-01

    To validate the fast and accurate flow cytometric (FCM) protocol using blood-standardized antibodies for alveolar lymphocyte subtyping with respect to standard immunocytochemistry (IC). FCM and IC were applied to immunophenotype T cell subsets in bronchoalveolar lavage (BAL) fluids from patients with interstitial lung diseases. Diagnostic BAL specimens from 50 patients with suspected sarcoidosis, idiopathic pulmonary fibrosis, and hypersensitivity pneumonitis were evaluated by both IC and FCM. In FCM, CD4+ and CD8+ T cells were identified by light scatter gating with CD3 selection using basic tricolor cytometer. Relative amounts of CD4+, CD8+ T cells, and CD4+/CD8+ ratios demonstrated by the FCM showed excellent, significant correlations with IC results. FCM values did not differ significantly from IC results. However, the sensitivity and specificity of conventional IC staining were not sufficient to assess CD4+/ CD8+ ratio in most idiopathic pulmonary fibrosis cases. Additionally, performing IC immunophenotyping in BAL samples with low lymphocyte content introduced a remarkable error into CD4+/CD8+ ratio assessment. FCM allowed reliable, precise, and fast T-cell subset measurement in all BAL samples, overcoming the IC disadvantages. Our validated FCM protocol provides diagnostically relevant CD4+/CD8+ ratio determination by simple light scatter gating strategy with CD3 selection.

  18. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation

    Directory of Open Access Journals (Sweden)

    Fung Peter

    2009-05-01

    Full Text Available Abstract This article hypothesizes that the Chinese medicine meridian system is a special channel network comprising of skin with abundant nerves and nociceptive receptors of various types, and deeper connective tissues inside the body with the flowing interstitial fluid system. These meridian channels provide efficient migratory tracks mainly due to durotaxis (also including chemotaxis for mast cells, fibroblasts and other cells to migrate and carry out a number of physiological functions. Acupuncture acting on meridian channel causes cytoskeletal remodeling through mechanotransduction, leading to regulation of gene expression and the subsequent production of related proteins. Also, stimulation on cell surface can trigger Ca2+ activities, resulting in a cascade of intra- and inter-cellular signaling. Moreover, nerve endings in the meridian channels interact with mast cells and induce the degranulation of these cells, leading to the release of many specific biomolecules needed for homeostasis, immune surveillance, wound healing and tissue repair. Acupoint along a meridian channel is a functional site to trigger the above functions with specificity and high efficiency.

  19. Evaluation of testosterone serum levels in testicular interstitial fluid under thyroxine influence; Avaliacao da testosterona no fluido intersticial testicular sob influencia da tiroxina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Isvania Maria S. da; Pereira, Simey de L.S.; Souza, Grace Mary L.; Carvalho, Elaine F.M.B.; Catanho, Maria Teresa J. de A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia; Silveira, Maria de Fatima G. da [Pernambuco Univ., Recife, PE (Brazil). Dept. de Anatomia; Lima Filho, Guilherme L. [Universidade de Pernambuco (UPE), Nazare da Mata, PE (Brazil). Faculdade de Formacao de Professores

    2000-07-01

    The thyroid hormones possibly exert a reciprocal action between testicular steroids and Sertoli's cells during the premature period. This work aims to evaluate thyroxine effect on testosterone serum levels and in the testicular interstitial fluid (TIF) in rats. Wistar males rats, 22 days old, 80g of body weight, were induced to hyperthyroidism with thyroxine (20{mu}g/kg) in periods of 5, 10, 15 and 20 consecutive days. After the treatment the animals were weighed and sacrificed for blood and testis collection. From the blood serum and from the TIF drained from the testis were performed testes in order to obtain testosterone attached to {sup 125} I with a specific activity of 36,86 MBq/ig. The results have shown a testosterone significant lineal increase in both - serum and TIF - in the group treated with thyroxine as a time function. In the control group, testosterone levels remained low in both serum and TIF dosages. As a result, we were able to verify that the testosterone levels could be modified by thyroxine in serum and TIF. And so, it could affect luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels in hypophysis. (author)

  20. Long-term performance of interstial fluid pressure and hypoxia as prognostic factors in cervix cancer

    International Nuclear Information System (INIS)

    Fyles, Anthony; Milosevic, Michael; Pintilie, Melania; Syed, Ami; Levin, Wilf; Manchul, Lee; Hill, Richard P.

    2006-01-01

    Objectives: Hypoxia and high interstitial fluid pressure (IFP) have been shown to independently predict for nodal and distant metastases, as well as survival, in patients with cervix cancer. Using data from our prospective trial, we updated a cohort of patients treated with definitive radiation alone without chemotherapy, to assess the long-term prognostic impact of these microenvironmental features. Methods: Between April 1994 and January 1999, 107 eligible patients with cervix cancer were entered into a prospective study of tumor oxygenation and IFP prior to primary radiation therapy. Oxygenation data are presented as the hypoxic proportion, defined as the percentage of pO 2 readings 5 ). Patients with HP 5 values >50% were considered to have hypoxic tumors. IFP is presented in mm Hg, divided into high and low IFP groups by the median value. Patients ranged in age from 23 to 78 years with a mean of 53 years. The maximum tumor size ranged from 2 to 10 cm, with a median diameter of 5 cm. FIGO stage was IB in 28 patients, IIA in 4, IIB in 42 and IIIB in 33 patients. Twenty-two patients (21%) had evidence of pelvic lymph node involvement on staging CT abdomen/pelvis or MR pelvis. HP 5 ranged from 0% to 99% with a median of 48%. IFP ranged from -3 to 48 mm Hg (median 19 mm Hg). Median follow-up was 6.7 years (range 0.9-10.6). Results: Disease-free survival (DFS) at 5 years was 50%. Five year DFS was 42% for patients with hypoxic tumors (HP 5 > 50%), and 58% in patients with oxygenated tumors (HR 1.01 per %, p = 0.05). DFS at 5 years was 42% for patients with interstitial hypertension (IFP >19 mm Hg), and 63% in patients with IFP ≤19 mm Hg (HR 1.05 per mm Hg, p = 0.001). In a multivariate analysis only tumor size (HR 1.2, p = 0.009) pelvic nodal metastases (HR 3.3, p = 0.0004) and IFP (HR 1.06, p = 0.0005) were predictive of DFS. Because an interaction between nodal status and oxygenation was observed (p = 0.03), further analysis indicated a borderline significant

  1. Amyloid-β peptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: A review of experimental and clinical studies

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2013-06-01

    Full Text Available Traumatic brain injury (TBI survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in most severe TBI patients, results in accumulation of amyloid precursor protein (APP. Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ peptides, a hallmark finding in Alzheimer’s disease (AD. At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF using cerebral microdialysis and/or cerebrospinal fluid (CSF following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques and the complexity of TBI in available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using e.g. rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long

  2. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    Science.gov (United States)

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  3. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well......-known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...

  4. Initial boundary-value problem for the spherically symmetric Einstein equations with fluids with tangential pressure.

    Science.gov (United States)

    Brito, Irene; Mena, Filipe C

    2017-08-01

    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.

  5. Comparison of regional pancreatic tissue fluid pressure and endoscopic retrograde pancreatographic morphology in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation. The predrain......The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation...

  6. Pressure in an exactly solvable model of active fluid

    Science.gov (United States)

    Marini Bettolo Marconi, Umberto; Maggi, Claudio; Paoluzzi, Matteo

    2017-07-01

    We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

  7. Experimental Study of Pressure Drop in Compressible Fluid through Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Kyo [Hanwha Corporation Defence R and D Center, Daejeon (Korea, Republic of); Kim, Do Hun; Seo, Chan Woo; Lee, Seoung Youn; Jang, Seok Pil; Koo, Jaye [Korea Aerospace Univ., Goyang (Korea, Republic of)

    2013-08-15

    This study proposes the characteristics of the pressure drop in a compressible fluid through porous media for application to a porous injector in a liquid rocket engine in order to improve the uniformity of the drop size distribution and the mixing performance of shear coaxial injectors. The fluid through the porous media is a Non-Darcy flow that shows a Nonlinear relation between the pressure drop and the velocity at high speed and high mass flow rate. The pressure drop of the Non-Darcy flow can be derived using the Ferrochrome equation that includes the losses of viscous and inertia resistance. The permeability and Erg un coefficient represented as a function of the pressure drop and pore size can be applied to the porous injector, where the fluid through the porous media is compressible. A generalized correlation between the pressure drop in relation to the pore size was derived.

  8. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    Science.gov (United States)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  9. Pressure-surge mitigation methods in fluid-conveying piping

    International Nuclear Information System (INIS)

    Shin, Y.W.; Youngdahl, C.K.; Wiedermann, A.H.

    1991-01-01

    Pressure surges in the heat transport system of nuclear reactor plants can affect the safety and reliability of the plants. Hence the pressure surges must be considered in the design, operation, and maintenance of the plants in order to minimize their occurrence and impacts. The objectives of this paper are to review various methods to control or mitigate the pressure surges, to analyze these methods to gain understanding of the mitigation mechanisms, and examine applicability of the methods to nuclear power plants. 6 refs., 13 figs

  10. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    Science.gov (United States)

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  11. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores

    International Nuclear Information System (INIS)

    Bordin, José Rafael; Krott, Leandro B.; Barbosa, Marcia C.

    2014-01-01

    The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales

  12. Influence of the MBC/MIC ratio on the antibacterial activity of vancomycin versus linezolid against methicillin-resistant Staphylococcus aureus isolates in a pharmacodynamic model simulating serum and soft tissue interstitial fluid concentrations reported in diabetic patients.

    Science.gov (United States)

    Gonzalez, Natalia; Sevillano, David; Alou, Luis; Cafini, Fabio; Gimenez, Maria-Jose; Gomez-Lus, Maria-Luisa; Prieto, Jose; Aguilar, Lorenzo

    2013-10-01

    To explore serum and tissue pharmacodynamics of linezolid versus vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates with different MBC/MIC ratios. Five strains (vancomycin MIC/MBCs, mg/L) were used: TOL-1 (2/≥64), TOL-2 (1/16), LT-1 and LT-2 (1/8) and NT (1/2). The linezolid MIC/MBC for all strains was 2/≥64 mg/L. A two-compartment dynamic computerized device was used (inocula 10(7) cfu/mL). Free concentrations obtained in serum and interstitial fluid with twice-daily regimens of 1 g of vancomycin or 600 mg of linezolid were simulated over 48 h. ABBCs (differences between control growth curves and killing curves of bacteria exposed to antibiotics; log10 cfu × h/mL) and log10 reductions in initial inocula were calculated. In serum simulations, vancomycin (AUC0-24/MIC = 251.8 for TOL-1 and 503.6 for the remaining strains) was bacteriostatic against strains with MBC/MIC ≥8, but bactericidal against NT. In interstitial fluid simulations (AUC0-24/MIC = 54.6 for TOL-1 and 109.2 for the remaining strains), initial inocula grew in all cases. Linezolid, both in serum (AUC0-24/MIC = 87.0) and in interstitial fluid (AUC0-24/MIC = 130.6) simulations, reduced initial inocula ≥2.2 log10 for all strains (apart from LT-1 in serum simulations that showed a bacteriostatic profile). ABBCs were similar in serum and interstitial fluid with linezolid, but significantly lower in interstitial fluid simulations with vancomycin. From the pharmacodynamic perspective (serum concentrations), vancomycin tolerance should include MBC/MIC ≥8 since strains exhibiting this ratio showed bacteriostatic profiles similar to those obtained with isolates with MBC/MIC ratios of 16 or 32. Insufficient concentrations of vancomycin at the simulated infected site were linked to bacteriological failure. Free concentrations of linezolid at the infection site pharmacodynamically covered MRSA.

  13. Coupled fluid structural analysis for a spherical BWR containment with pressure suppression system

    International Nuclear Information System (INIS)

    Krieg, R.; Goeller, B.; Hailfinger, G.

    1979-01-01

    The condensation of steam, blown into the water pool of the pressure suppression system of a boiling water reactor, causes pressure oscillations in the pool and, as a consequence, corresponding vibrations of the surrounding walls. However, as a feed back, also the structural deformations of the walls have a considerable influence on the pressure fields in the water pool. Therefore, a theoretical investigation of the dynamics of the pressure suppression system cannot be subdivided in a separate analysis of the fluid behaviour, followed by calculations of the structural response. Rather an analysis taking into account the fluid structural coupling must be carried through. Often this is achieved by a step-by-step technique where in the simplest case for small time steps either the pressures or the accelerations at the fluid-structural interface are extrapolated, separate codes for fluid and structural dynamics check whether the extrapolated values satisfy the interface conditions and an iterative improvement is made if necessary. Although in this method standard fluid and structural dynamics codes can be used as moduls and non-linearities can be treated easily, an essential drawback is that often a very large number of time steps is required in order to obtain numerical stability. Therefore, in this paper a so-called simultaneous coupling technique is used (computer code SING-S), where the unknown structural loadings at the fluid-structural interfaces are eliminiated by direct substitution of relations describing the fluid dynamics. Neglecting the fluid compressibility, equations of motion for the coupled problem are obtained which have the same form as the equations of motion for the structural dynamics without coupling. Only the masses are changed. They include now the added mass effect from the fluid. Consequently, for the further treatment of the coupled problem similar methods may be used as in pure structural dynamics. (orig.)

  14. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  15. Investigations of lymphatic drainage from the interstitial space

    Science.gov (United States)

    Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration

    2017-11-01

    The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.

  16. Load response of periodontal ligament: assessment of fluid flow, compressibility, and effect of pore pressure.

    Science.gov (United States)

    Bergomi, Marzio; Wiskott, H W Anselm; Botsis, John; Mellal, Aïssa; Belser, Urs C

    2010-01-01

    The periodontal ligament (PDL) functions both in tension and in compression. The presence of an extensive vascular network inside the tissue suggests a significant contribution of the fluid phase to the mechanical response. This study examined the load response of bovine PDL under different pore pressure levels. A custom-made pressure chamber was constructed. Rod-shaped specimens comprising portions of dentine, bone, and intervening layer of PDL were extracted from bovine mandibular molars. The dentine ends of the specimens were secured to the actuator while the bone ends were affixed to the load cell. The entire assemblage was surrounded by the pressure chamber, which was then filled with saline. Specimens loaded at 1.0 Hz sinusoidal displacement were subjected to four different environmental fluid pressures (i.e., pressures of 0.0-1.0 MPa). The video images recorded during the tests were analyzed to determine whether or not fluid exchange between the PDL and the surrounding medium took place during mechanical loading. A value for the tissue's apparent Poisson ratio was also determined. The following observations were made: (1) fluid was squeezed out and pumped into the ligament during the compressive and tensile loading phases, (2) the PDL was highly compressible, and (3) the pore pressure had no influence on the mechanical response of the PDL. The present tests emphasized the biphasic structure of PDL tissue, which should be considered as a porous solid matrix through which fluid can freely flow.

  17. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  18. Comparison of extraction techniques, including supercritical fluid, high-pressure solvent, and soxhlet, for organophosphorus hydraulic fluids from soil.

    Science.gov (United States)

    David, M D; Seiber, J N

    1996-09-01

    The efficiencies of three extraction techniques for removal of nonpesticidal organophosphates from soil were determined. Traditional Soxhlet extraction was compared to supercritical fluid extraction (SFE) and a low solvent volume flow through technique referred to here as high-pressure solvent extraction (HPSE). SFE, optimized by varying parameters of temperature, pressure, and methanol polarity modifier, showed at least 90% efficiency in the extraction of OPs from both spiked and native soils. HPSE experiments showed efficient and consistent recoveries over a range of temperatures up to 200 °C and pressures up to 170 atm. Recovery of TCP from spiked soils with HPSE depends on the system variables of temperature and pressure, which dictate density and flow rate. HPSE provided extraction efficiencies comparable to those obtained with Soxhlet extraction and SFE but with substantial savings of time and cost.

  19. Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G

    Science.gov (United States)

    Parker, D. E.

    1977-01-01

    This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.

  20. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model.

    Science.gov (United States)

    Liao, Fan; Zhang, Tony J; Mahan, Thomas E; Jiang, Hong; Holtzman, David M

    2015-07-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHR(lit/lit) mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHR(lit/lit) mice was significantly smaller than that in PS1APP/GHRHR(lit/+) mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition. Copyright © 2014

  1. Interstitial fluid flow-induced growth potential and hyaluronan synthesis of fibroblasts in a fibroblast-populated stretched collagen gel culture.

    Science.gov (United States)

    Saito, Natsumi; Adachi, Hiroaki; Tanaka, Hiroshi; Nakata, Satoru; Kawada, Norifumi; Oofusa, Ken; Yoshizato, Katsutoshi

    2017-09-01

    Tensioned collagen gels with dermal fibroblasts (DFs) as a dermis model are usually utilized in a static culture (SC) that lacks medium flowing. To make the model closer to its in vivo state, we created a device to perfuse the model with media flowing at a physiological velocity and examined the effects of medium flow (MF) on the cultures. We constructed a medium perfusion device for human DF-embedded stretched collagen gels (human dermis model), exposed the model to media that flows upwardly at ~1mL/day, and examined water retention of the gels, cells' growth ability, metabolic activity, expression profiles of nine extracellular matrix (ECM)-related genes. The obtained data were compared with those from the model in SC. MF increases the gels' water retention and cells' growth potential but had little effect on their metabolic activities. MF robustly enhanced hyaluronan synthase 2 (HAS2) and matrix metalloprotease 1 (MMP1) gene expressions but not of the other genes (MMP2, HYAL1, HYAL2, HYAL3, COL1A1, COL3A1, and CD44). MF significantly increased the amounts of cellular hyaluronan and adenosine triphosphate. The MF at a physiological speed significantly influences the nature of ECMs and their resident fibroblasts and remodels ECMs by regulating hyaluronan metabolism. Fibroblasts in tensioned collagen gels altered their phenotypes in a MF rate-dependent manner. Collagen gel culture with tension and MF could be utilized as an appropriate in vitro model of interstitial connective tissues to evaluate the pathophysiological significance of mechanosignals generated by fluid flow and cellular/extracellular tension. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces.

    Science.gov (United States)

    Carmichael, Justin R; Rother, Gernot; Browning, James F; Ankner, John F; Banuelos, Jose L; Anovitz, Lawrence M; Wesolowski, David J; Cole, David R

    2012-04-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300-473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can be used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO(2) in contact with quartz and Si/SiO(2) wafers are also shown. © 2012 American Institute of Physics

  3. Analysis of pressure variation of fluid in bounded circular reservoirs ...

    African Journals Online (AJOL)

    The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. The result obtained from the analysis also shows the pressure variation outside wellbore of the same reservoir. It is important to note that ...

  4. Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid

    Directory of Open Access Journals (Sweden)

    B. Klenow

    2010-01-01

    Full Text Available Cavitation effects play an important role in the UNDEX loading of a structure. For far-field UNDEX, the structural loading is affected by the formation of local and bulk cavitation regions, and the pressure pulses resulting from the closure of the cavitation regions. A common approach to numerically modeling cavitation in far-field underwater explosions is Cavitating Acoustic Finite Elements (CAFE and more recently Cavitating Acoustic Spectral Elements (CASE. Treatment of cavitation in this manner causes spurious pressure oscillations which must be treated by a numerical damping scheme. The focus of this paper is to investigate the severity of these oscillations on the structural response and a possible improvement to CAFE, based on the original Boris and Book Flux-Corrected Transport algorithm on structured meshes [6], to limit oscillations without the energy loss associated with the current damping schemes.

  5. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas.

    Science.gov (United States)

    Moore, A C; Burris, D L

    2014-01-03

    For nearly a century, articular cartilage has been known for its exceptional tribological properties. For nearly as long, there have been research efforts to elucidate the responsible mechanisms for application toward biomimetic bearing applications. It is now widely accepted that interstitial fluid pressurization is the primary mechanism responsible for the unusual lubrication and load bearing properties of cartilage. Although the biomechanics community has developed elegant mathematical theories describing the coupling of solid and fluid (biphasic) mechanics and its role in interstitial lubrication, quantitative gaps in our understanding of cartilage tribology have inhibited our ability to predict how tribological conditions and material properties impact tissue function. This paper presents an analytical model of the interstitial lubrication of biphasic materials under migrating contact conditions. Although finite element and other numerical models of cartilage mechanics exist, they typically neglect the important role of the collagen network and are limited to a specific set of input conditions, which limits general applicability. The simplified approach taken in this work aims to capture the broader underlying physics as a starting point for further model development. In agreement with existing literature, the model indicates that a large Peclet number, Pe, is necessary for effective interstitial lubrication. It also predicts that the tensile modulus must be large relative to the compressive modulus. This explains why hydrogels and other biphasic materials do not provide significant interstitial pressure under high Pe conditions. The model quantitatively agrees with in-situ measurements of interstitial load support and the results have interesting implications for tissue engineering and osteoarthritis problems. This paper suggests that a low tensile modulus (from chondromalacia or local collagen rupture after impact, for example) may disrupt interstitial

  6. Effect of initial fluid-system pressures on the behavior of a rupture-disc pressure-relief device

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Shin, Y.W.; Kot, C.A.

    1983-01-01

    Rupture disc assemblies are used in piping network systems as a pressure-relief device to protect the system from being exposed to excess pressures. Among the various disc assemblies, the reverse-buckling type is chosen for application in the Clinch River Breeder Reactor. This rupture-disc assembly consists of a portion of a thin spherical shell with its convex side subjected to the fluid system. The reverse-buckling type rupture disc assemblies have been used successfully in environments where the fluid is gas, i.e. highly compressible, and their performances have been judged as adequate in the liquid environment. To analyze the piping system, an analysis method is needed taking into consideration of the fluid/disc interaction, the nonlinear dynamic buckling phenomenon of the disc, and the possible cavitation of the fluid. A computer code SWAAM-I had been written at the Components Technology Division, Argonne National Laboratory. Among its many functions, one is to compute the response of 1-dimensional pressure pulse propagation including the effects of many different types of boundary conditions and possible pipe plasticity

  7. Shear-induced pressure anisotropization and correlation with fluid vorticity in a low collisionality plasma

    Science.gov (United States)

    Del Sarto, Daniele; Pegoraro, Francesco

    2018-03-01

    The momentum anisotropy contained in a sheared flow may be transferred to a pressure anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations of the pressure tensor components. This possible mechanism of anisotropy generation from an initially isotropic pressure is purely dynamical and can be described in a fluid framework where the full pressure tensor evolution is retained. Here, we interpret the correlation between vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence, as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some implications of this analysis for the onset of the Kelvin-Helmholtz instability in collisionless plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary reconnection in turbulence.

  8. VHBORE: A code to compute borehole fluid conductivity profiles with pressure changes in the borehole

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1994-06-01

    This report describes the code VHBORE which can be used to model fluid electric conductivity profiles in a borehole intersecting fractured rock under conditions of changing pressure in the well bore. Pressure changes may be due to water level variations caused by pumping or fluid density effects as formation fluid is drawn into the borehole. Previous reports describe the method of estimating the hydrologic behavior of fractured rock using a time series of electric conductivity logs and an earlier code, BORE, to generate electric conductivity logs under constant pressure and flow rate conditions. The earlier model, BORE, assumed a constant flow rate, q i , for each inflow into the well bore. In the present code the user supplies the location, constant pressure, h i , transmissivity, T i , and storativity, S i , for each fracture, as well as the initial water level in the well, h w (0), In addition, the input data contains changes in the water level at later times, Δh w (t), typically caused by turning a pump on or off. The variable density calculation also requires input of the density of each of the inflow fluids, ρ i , and the initial uniform density of the well bore fluid, ρ w (0). These parameters are used to compute the flow rate for each inflow point at each time step. The numerical method of Jacob and Lohman (1952) is used to compute the flow rate into or out of the fractures based on the changes in pressure in the wellbore. A dimensionless function relates flow rate as a function of time in response to an imposed pressure change. The principle of superposition is used to determine the net flow rate from a time series of pressure changes. Additional reading on the relationship between drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6, open-quotes Constant-Pressure Flow Testingclose quotes

  9. Colloid osmotic pressure in decompensated cirrhosis. A 'mirror image' of portal venous hypertension

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1985-01-01

    in the interstitial space and ascitic fluid is related to and most likely secondary to the elevated portal pressure in decompensated cirrhosis. Effective colloid osmotic pressure may therefore be regarded as a 'mirror image' of transmural portal pressure. The role of colloid osmotic pressure in the genesis...

  10. Analytical solution for charged fluid pressure profiles - circulation in combined electromagnetic field

    Science.gov (United States)

    Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey

    2017-12-01

    We introduce a general transformation leading to an integral form of pressure equations characterizing equilibrium configurations of charged perfect fluid circling in strong gravitational and combined electromagnetic fields. The transformation generalizes our recent analytical treatment applicable to electric or magnetic fields treated separately along with the gravitational one. As an example, we present a particular solution for a fluid circling close to a charged rotating black hole immersed in an asymptotically uniform magnetic field.

  11. Fluid Pressures at the Shoe-Floor-Contaminant Interface During Slips: Effects of Tread & Implications on Slip Severity

    Science.gov (United States)

    Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.

    2018-01-01

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270

  12. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations

    Science.gov (United States)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris

    2017-04-01

    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  13. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  14. Kitchen Physics: Lessons in Fluid Pressure and Error Analysis

    Science.gov (United States)

    Vieyra, Rebecca Elizabeth; Vieyra, Chrystian; Macchia, Stefano

    2017-02-01

    Although the advent and popularization of the "flipped classroom" tends to center around at-home video lectures, teachers are increasingly turning to at-home labs for enhanced student engagement. This paper describes two simple at-home experiments that can be accomplished in the kitchen. The first experiment analyzes the density of four liquids using a waterproof case and a smartphone barometer in a container, sink, or tub. The second experiment determines the relationship between pressure and temperature of an ideal gas in a constant volume container placed momentarily in a refrigerator freezer. These experiences provide a ripe opportunity both for learning fundamental physics concepts as well as to investigate a variety of error analysis techniques that are frequently overlooked in introductory physics courses.

  15. Biocatalytic Synthesis of Acrylates in Supercritical Fluids: Tuning Enzyme Activity by Changing Pressure

    Science.gov (United States)

    Kamat, Sanjay V.; Iwaskewycz, Brian; Beckman, Eric J.; Russell, Alan J.

    1993-04-01

    Supercritical fluids are a unique class of non-aqueous media in which biocatalytic reactions can occur. The physical properties of supercritical fluids, which include gas-like diffusivities and liquid-like densities, can be predictably controlled with changing pressure. This paper describes how adjustment of pressure, with the subsequent predictable changes of the dielectric constant and Hildebrand solubility parameter for fluoroform, ethane, sulfur hexafluoride, and propane, can be used to manipulate the activity of lipase in the transesterification of methylmethacrylate with 2-ethyl-1-hexanol. Of particular interest is that the dielectric constant of supercritical fluoroform can be tuned from approximately 1 to 8, merely by increasing pressure from 850 to 4000 psi (from 5.9 to 28 MPa). The possibility now exists to predictably alter both the selectivity and the activity of a biocatalyst merely by changing pressure.

  16. Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid

    DEFF Research Database (Denmark)

    Moos, Torben; Morgan, Evan H.

    1998-01-01

    Neuroscience, blood-brain barrier, choroid plexus, interstitial fluid, transferrin receptor, uptake......Neuroscience, blood-brain barrier, choroid plexus, interstitial fluid, transferrin receptor, uptake...

  17. Interstitial Cystitis Association

    Science.gov (United States)

    ... frequency? You may have IC. Get The Facts Interstitial Cystitis Association The Interstitial Cystitis Association (ICA) is the ... news and events. Please leave this field empty Interstitial Cystitis Association 7918 Jones Branch Drive, Suite 300 McLean, ...

  18. Natural occurrence and significance of fluids indicating high pressure and temperature

    Science.gov (United States)

    Roedder, E.

    1981-01-01

    Most natural minerals have formed from a fluid phase such as a silicate melt or a saline aqueous solution. Fluid inclusions are tiny volumes of such fluids that were trapped within the growing crystals. These inclusions can provide valuable but sometimes ambiguous data on the temperature, pressure, and composition of these fluids, many of which are not available from any other source. They also provide "visual autoclaves" in which it is possible to watch, through the microscope, the actual phase changes take place as the inclusions are heated. This paper reviews the methods of study and the results obtained, mainly on inclusions formed from highly concentrated solutions, at temperatures ???500??C. Many such fluids have formed as a result of immiscibility with silicate melt in igneous or high-temperature metamorphic rocks. These include fluids consisting of CO2, H2O, or hydrosaline melts that were <50% H2O. From the fluid inclusion evidence it is clear that a boiling, very hot, very saline fluid was present during the formation of most of the porphyry copper deposits in the world. Similarly, from the inclusion evidence it is clear that early (common) pegmatites formed from essentially silicate melts and that the late, rare-element-bearing and chamber-type pegmatites formed from a hydrosaline melt or a more dilute water solution. The evidence on whether this change in composition from early to late solutions was generally continuous or involved immiscibility is not as clear. ?? 1981.

  19. Relationship of cerebrospinal fluid pressure, fungal burden and outcome in patients with cryptococcal meningitis undergoing serial lumbar punctures.

    NARCIS (Netherlands)

    Bicanic, T.; Brouwer, A.E.; Meintjes, G.; Rebe, K.; Limmathurotsakul, D.; Chierakul, W.; Teparrakkul, P.; Loyse, A.; White, N.J.; Wood, R.; Jaffar, S.; Harrison, T.

    2009-01-01

    OBJECTIVES: To assess impact of serial lumbar punctures on association between cerebrospinal fluid (CSF) opening pressure and prognosis in HIV-associated cryptococcal meningitis; to explore time course and relationship of opening pressure with neurological findings, CSF fungal burden, immune

  20. The Effect of Well-Bore Reverse Flow of Fluid on Pressure ...

    African Journals Online (AJOL)

    Well-bore storage may dominate the bottom-hole pressure profile of a well particularly for the short time situation, The dominance may be strongly accentuated in cases where reverse flow into a passive sand or casing leakage down-hole cannot be isolated from the test zone. This analysis shows that reverse flow of fluid in ...

  1. Fluid mechanics of needle valves with rounded components Part III: Pressure distributions on walls

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2016-01-01

    Roč. 248, September (2016), s. 138-147 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * pressure measurements * valves Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303417

  2. Acetazolamide lowers intracranial pressure and modulates the cerebrospinal fluid secretion pathway in healthy rats

    DEFF Research Database (Denmark)

    Uldall, Maria; Botfield, Hannah; Jansen-Olesen, Inger

    2017-01-01

    Acetazolamide is one of the most widely used drugs for lowering intracranial pressure (ICP) and is believed to reduce cerebrospinal fluid (CSF) secretion via its action on the choroid plexus (CP). In the CP the main driving force for CSF secretion is primarily active transport of Na...

  3. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI

    DEFF Research Database (Denmark)

    Gideon, P; Ståhlberg, F; Thomsen, C

    1994-01-01

    An interleaved velocity-sensitised fast low-angle shot pulse sequence was used to study cerebrospinal fluid (CSF) flow in the cerebral aqueduct, and supratentorial CSF production in 9 patients with normal pressure hydrocephalus (NPH) and 9 healthy volunteers. The peak aqueduct CSF flow, both caudal...

  4. Intracranial arachnoid cysts; A quantitative analysis of fluid dynamics and continuous intracystic pressure monitoring

    International Nuclear Information System (INIS)

    Oi, Shizuo; Shose, Yoshiteru; Okuda, Yasuhiro; Yamada, Hiroshi; Ijichi, Akihiro; Matsumoto, Satoshi.

    1986-01-01

    The natural history and pathophysiology of intracranial arachnoid cysts are still obscure. The purpose of this paper is to analyze the characteristics of the fluid dynamics of arachnoid cysts by utilizing the quantitative analysis method of metrizamide CT cisternography (CTCG). These results are then compared with those of intracystic pressure dynamics. We discuss the pathophysiology of and the operative indication for intracranial arachnoid cysts. The patterns of fluid dynamics in arachnoid cysts in the major pathway of CSF circulation are various. It is not possible to classify 3 or 4 types of cyst-CSF circulation patterns, as has been done in many previous reports, with just this quantitative analysis method, namely, CTCG. There was no close correlation between the type of fluid communication and either clinical symptoms or intracystic pressure dynamics. From these points of view, it was suggested that the operative or therapeutic goal in treating arachnoid cysts is to normalize the pressure dynamics, which are likely to damage the regional brain function with its expansile ballooning pressure in non-communicating cysts or stagnating fluid force in communicating cysts. We hereby propose a new concept of ''localized hydrocephalus'' with regard to intracranial arachnoid cysts. (author)

  5. Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2017-07-01

    Full Text Available A study on the internal fluid dynamic of a high-pressure external gear pump is described in this paper. The pump has been analyzed with both numerical and experimental techniques. Starting from a geometry of the pump, a three-dimensional computational fluid dynamics (CFD model has been built up using the commercial code PumpLinx®. All leakages have been taken into account in order to estimate the volumetric efficiency of the pump. Then the pump has been tested on a test bench of Casappa S.p.A. Model results like the volumetric efficiency, absorbed torque, and outlet pressure ripple have been compared with the experimental data. The model has demonstrated the ability to predict with good accuracy the performance of the real pump. The CFD model has been also used to evaluate the effect on the pump performance of clearances in the meshing area. With the validated model the pressure inside the chambers of both driving and driven gears have been studied underlining cavitation in meshing fluid volume of the pump. For this reason, the model has been implemented in order to predict the cavitation phenomena. The analysis has allowed the detection of cavitating areas, especially at high rotation speeds and delivery pressure. Isosurfaces of the fluid volume have been colored as a function of the total gas fraction to underline where the cavitation occurs.

  6. Novel cavitation fluid jet polishing process based on negative pressure effects.

    Science.gov (United States)

    Chen, Fengjun; Wang, Hui; Tang, Yu; Yin, Shaohui; Huang, Shuai; Zhang, Guanghua

    2018-04-01

    Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multi-solid model modified to predict paraffin in petroleum fluids at high temperatures and pressures

    International Nuclear Information System (INIS)

    Escobar Remolina, Juan Carlos M; Barrios Ortiz, Wilson; Santoyo Ramirez Gildardo

    2009-01-01

    A thermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

  8. Smart monitoring of fluid intake and bladder voiding using pressure sensitive mats.

    Science.gov (United States)

    Cohen-McFarlane, Madison; Green, James R; Knoefel, Frank; Goubran, Rafik

    2016-08-01

    Pressure sensitive mats have been used in noninvasive smart monitoring for a variety of problems including breathing rate monitoring, sleep monitoring, mobility, and weight. This paper describes a proof of concept application of pressure mats to monitor fluid intake/output (fluid cycle) events during the night. The ability to more accurately track such events has potential implications for monitoring those individuals who have nocturia, a condition where a person wakes at night to urinate. Data were collected from a healthy young female subject instructed to drink as much water as was comfortable (700mL) and lie in a supine position on a mattress located directly on three pressure mats. This was compared to an initial data set collected immediately after voiding but before drinking, 30 minutes after drinking, 60 minutes after drinking and a final data set after again voiding the bladder. The additional pressure from the 700mL of water was detectible and tracked over the course of the hour-long testing session under idealized conditions. This provides a proof-of-concept that nocturnal fluid intake and bladder voiding events can be tracked using non-invasive pressure-sensitive mats, however additional testing and development is required to achieve a deployable monitoring system.

  9. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  10. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    Science.gov (United States)

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. Copyright © 2014, American Association for the Advancement of Science.

  11. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  12. More advanced Alzheimer's disease may be associated with a decrease in cerebrospinal fluid pressure

    Directory of Open Access Journals (Sweden)

    De Deyn Peter

    2009-11-01

    Full Text Available Abstract In a recent article, elevated cerebrospinal fluid pressure (CSFP consistent with very early normal pressure hydrocephalus (NPH, was found in a small subset of Alzheimer's disease (AD patients (possible AD-NPH hybrids enrolled in a clinical trial for chronic low-flow cerebrospinal fluid drainage. Also in the same study, was another interesting finding that merits further discussion: a substantial proportion of AD patients had very low CSFP. Based on the characteristics of these subjects, we hypothesize that more advanced AD may be associated with a decrease in CSFP. Reduced CSFP among a group of AD patients could provide a clue towards a better understanding of the high rate of comorbidity reported between AD and glaucoma since it has been shown that mean CSFP is lower in subjects with primary open-angle glaucoma. This could result in an abnormally high trans-lamina cribrosa pressure difference and lead to glaucomatous damage.

  13. Pressurized Intravenous Fluid Administration in the Professional Football Player: A Unique Setting for Venous Air Embolism.

    Science.gov (United States)

    Fibel, Kenton H; Barnes, Ronnie P; Kinderknecht, James J

    2015-07-01

    Venous air embolism (VAE) is a potentially life-threatening event that is most commonly associated with certain surgical procedures, although this theoretical complication of pressurized rapid infusion of intravenous (IV) fluids has been described. This series of cases describes 4 athletes who presented with continuous coughing and other chest complaints after peripheral IV infusion of normal saline through manual pressurized infusion. Symptoms resolved within 20 minutes, and these incidences did not interfere with resuming athletic competition with no recurrence of symptoms or complications. These cases are most consistent with varying degrees of VAE and reveal the risk of VAE associated with pressurized peripheral IV fluid administration along with the unique clinical presentation of more modest forms of VAE in an awake patient. Becoming more knowledgeable about IV infusion technique and understanding potential pitfalls can be helpful in reducing future incidences of VAE.

  14. High temperature-high pressure apparatus for neutron diffraction on fluids: structure factor of expanded fluid rubidium

    International Nuclear Information System (INIS)

    Freyland, W.; Hensel, F.; Glaeser, W.

    1979-01-01

    The paper describes a new experimental set-up for neutron scattering experiments on fluid systems at high temperatures and pressures. This technique has been applied for the investigation of the static structure factor S(Q) of expanded fluid rubidium up to 1970 K and 150 bat. The first results obtained up to these conditions show a strong decrease of the intensity of the first peak in S(Q) and a pronounced increase of the scattering at small angles with reducing densities. Within experimental errors no shift in the position of the first peak is found above 900 K. These observations together with the corresponding behaviour of the Fourier transform of S(Q) indicate, that with expansion the distance of nearest neighbours changes only a little, whereas the number of nearest neighbours decreases by about a factor of two, if the density is reduced from 1.2 g cm -3 at 900 K. It is the first time that such a change in the microscopic structure has been studied experimentally for a fluid metal over a wide range of temperatures and densities. The correlation between the increase in S(O) and the change in the mean interatomic is briefly discussed. (orig.) 891 HK/orig. 892 BRE

  15. The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    Science.gov (United States)

    Gatta, G. D.; Lotti, P.; Tabacchi, G.

    2018-02-01

    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the

  16. The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    Science.gov (United States)

    Gatta, G. D.; Lotti, P.; Tabacchi, G.

    2017-08-01

    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the

  17. The effect of ascitic fluid hydrostatic pressure on albumin extravasation rate in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Parving, H H; Lassen, N A

    1981-01-01

    and pigs with posthepatic portal hypertension and intraperitoneally instilled fluid were studied before and after abdominal paracentesis in order to evaluate the effect of ascitic fluid hydrostatic pressure on the transvascular escape rate of albumin. TERalb of the ascitic patients (n = 6) were on average......, TERalb rose significantly to an average of 24.3% IVMalb.h-1. The increased albumin extravasation rate after removal of ascites is best explained by an increased sinusoidal-tissue pressure difference caused by a decreased hydrostatic fluid pressure in the liver interstitium (portal and subcapsular spaces......) due to the hydrostatic effect of the removed ascitic fluid....

  18. The use of paleo-thermo-barometers and coupled thermal, fluid flow and pore fluid pressure modelling for hydrocarbon and reservoir prediction in fold and thrust belts

    NARCIS (Netherlands)

    Roure, F.; Andriessen, P.A.M.; Callot, J.P.; Ferket, H.; Gonzales, E.; Guilhaumou, N.; Hardebol, N.J.; Lacombe, O.; Malandain, J.; Mougin, P.; Muska, K.; Ortuno, S.; Sassi, W.; Swennen, R.; Vilasi, N.

    2010-01-01

    Basin modelling tools are now more efficient to reconstruct palinspastic structural cross sections and compute the history of temperature, pore-fluid pressure and fluid flow circulations in complex structural settings. In many cases and especially in areas where limited erosion occurred, the use of

  19. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.

    2015-01-01

    Reservoir fluids are multicomponent mixtures in confined spaces, where the role of capillary force becomes important when the average pore size is on the order of tens of nanometers, such as in tight rocks and shale. We present an algorithm for calculating the phase envelope of multicomponent...... the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...

  20. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity

    Czech Academy of Sciences Publication Activity Database

    Hirn, A.; Lanzendörfer, Martin; Stebel, Jan

    2012-01-01

    Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012

  1. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  2. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    Science.gov (United States)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  3. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    Science.gov (United States)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  4. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  5. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  6. Along fault friction and fluid pressure effects on the spatial distribution of fault-related fractures

    Science.gov (United States)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa

    2018-03-01

    Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.

  7. Pressure Distribution in a Porous Squeeze Film Bearing Lubricated with a Herschel-Bulkley Fluid

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2016-12-01

    Full Text Available The influence of a wall porosity on the pressure distribution in a curvilinear squeeze film bearing lubricated with a lubricant being a viscoplastic fluid of a Herschel-Bulkley type is considered. After general considerations on the flow of the viscoplastic fluid (lubricant in a bearing clearance and in a porous layer the modified Reynolds equation for the curvilinear squeeze film bearing with a Herschel-Bulkley lubricant is given. The solution of this equation is obtained by a method of successive approximation. As a result one obtains a formula expressing the pressure distribution. The example of squeeze films in a step bearing (modeled by two parallel disks is discussed in detail.

  8. A method for pressure-pulse suppression in fluid-filled piping

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.W.; Bielick, E.F. (Argonne National Lab., IL (USA)); Wiedermann, A.H. (IIT Research Inst., Chicago, IL (USA)); Ockert, C.E. (USDOE, Washington, DC (USA))

    1989-01-01

    A simple, nondestructive method to suppress pressure pulses in fluid-filled piping was proposed and theoretically analyzed earlier. In this paper, the proposed method is verified experimentally. The results of experiments performed for the range of parameters of practical importance indicated that the attenuation of pressure pulses was in accordance with the theoretical predictions. This paper describes the experimental setup and the test models of the proposed pulse suppression devices and discusses the experimental results. In particular, the measured attenuation factors are presented and compared with the theoretical predictions. 8 ref., 17 fig., 2 tab.

  9. Loss-of-Fluid Test findings in pressurized water reactor core's thermal-hydraulic behavior

    International Nuclear Information System (INIS)

    Russell, M.

    1983-01-01

    This paper summarizes the pressurized water reactor (PWR) core's thermal-hydraulic behavior findings from experiments performed at the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The potential impact of these findings on the safety and economics of PWR's generation of electricity is also discussed. Reviews of eight important findings in the core's physical behavior and in experimental methods are presented with supporting evidence

  10. Geometrical statistics of fluid deformation: Restricted Euler approximation and the effects of pressure

    OpenAIRE

    Li, Y.

    2012-01-01

    The geometrical statistics of fluid deformation are analyzed theoretically within the framework of the restricted Euler approximation, and numerically using direct numerical simulations. The restricted Euler analysis predicts that asymptotically a material line element becomes an eigenvector of the velocity gradient regardless its initial orientation. The asymptotic stretching rate equals the intermediate eigenvalue of the strain rate tensor. Analyses of numerical data show that the pressure ...

  11. Universal morphologies of fluid interfaces deformed by the radiation pressure of acoustic or electromagnetic waves.

    Science.gov (United States)

    Bertin, N; Chraïbi, H; Wunenburger, R; Delville, J-P; Brasselet, E

    2012-12-14

    We unveil the generation of universal morphologies of fluid interfaces by radiation pressure regardless of the nature of the wave, whether acoustic or optical. Experimental observations reveal interface deformations endowed with steplike features that are shown to result from the interplay between the wave propagation and the shape of the interface. The results are supported by numerical simulations and a quantitative interpretation based on the waveguiding properties of the field is provided.

  12. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    Science.gov (United States)

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  13. [Interstitial lung diseases].

    Science.gov (United States)

    Junker, K; Brasch, F

    2008-11-01

    Interstitial lung diseases comprise a heterogeneous group of about 200 entities. In the classification of these diseases, diffuse parenchymal lung diseases with known cause, granulomatous diseases, and other specific interstitial lung diseases are separated from the important group of idiopathic interstitial pneumonias, which are classified according to the 2002 ATS/ERS consensus classification. Concerning the histological pattern, this classification differentiates between "usual interstitial pneumonia" (UIP), "nonspecific interstitial pneumonia" (NSIP), "organising pneumonia" (COP), "diffuse alveolar damage" (DAD), "respiratory bronchiolitis" (RB), "desquamative interstitial pneumonia" (DIP), "lymphocytic interstitial pneumonia" (LIP) and "unclassifiable interstitial pneumonias". A key message of this classification is that the pathologist will give the diagnosis of a histological pattern, whereas the final clinicopathologic diagnosis can be made only by the clinical pulmonologist after careful correlation with the clinical and radiologic features, which is essential in the diagnosis of interstitial lung diseases.

  14. Computational fluid dynamics simulation of pressure and velocity distribution inside Meniere’s diseased vestibular system

    Science.gov (United States)

    Shamsuddin, N. F. H.; Isa, N. M.; Taib, I.; Mohammed, A. N.

    2017-09-01

    Meniere’s disease or known as endolymphatic hydrops is an incurable vestibular disorder of the inner ear. This is due to the excessive fluid build-up in the endolymphatic sac which causing the vestibular endolymphatic membrane to start stretching. Although this mechanism has been widely accepted as the likely mechanism of Meniere’s syndrome, the reason for its occurrence remains unclear. Thus, the aims of this study to investigate the critical parameters of fluid flow in membranous labyrinth that is influencing instability of vestibular system. In addition, to visualise the flow behaviour between a normal membranous labyrinth and dilated membranous labyrinth in Meniere’s disease in predicting instability of vestibular system. Three dimensional geometry of endolymphatic sac is obtained from Magnetic Resonance Images (MRI) and reconstructed using commercial software. As basis of comparison the two different model of endolymphatic sac is considered in this study which are normal membranous labyrinth for model I and dilated membranous labyrinth for model II. Computational fluid dynamics (CFD) method is used to analyse the behaviour of pressure and velocity flow in the endolymphatic sac. The comparison was made in terms of pressure distribution and velocity profile. The results show that the pressure for dilated membranous labyrinth is greater than normal membranous labyrinth. Due to abnormally pressure in the vestibular system, it leads to the increasing value of the velocity at dilated membranous labyrinth while at the normal membranous labyrinth the velocity values decreasing. As a conclusion by changing the parameters which is pressure and velocity can significantly affect to the instability of vestibular system for Meniere’s disease.

  15. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid.

    Science.gov (United States)

    Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio

    2016-08-01

    We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.

  16. Cr(III) solubility in aqueous fluids at high pressures and temperatures

    Science.gov (United States)

    Watenphul, Anke; Schmidt, Christian; Jahn, Sandro

    2014-02-01

    Trivalent chromium is generally considered relatively insoluble in aqueous fluids and melts. However, numerous counterexamples in nature indicate Cr(III) mobilization by aqueous fluids during metamorphism or hydrothermal alteration of chromite-bearing rocks, or by pegmatite melts. So far, very little is known about the chromium concentrations and speciation in such fluids. In this study, the solubility of eskolaite (Cr2O3) in 1.6-4.2 m aqueous HCl solutions was determined in situ at elevated pressures up to 1 GPa and temperatures ranging between 400 and 700 °C using synchrotron micro-X-ray fluorescence spectroscopy (μ-XRF). Determined concentrations of dissolved Cr ranged between about 900-18,000 ppm, with the highest concentrations found at 500 °C and 861 MPa. The Cr(III) solubility in aqueous HCl fluids is retrograde in the studied temperature range and increases with pressure. In addition, Cr(III) complexation in these fluids was explored by Raman spectroscopy on a 12.3 mass% HCl fluid in equilibrium with eskolaite at 400 and 600 °C, 0.3-1.6 GPa. All spectra show two prominent Cr-Cl stretching bands at about 275 and 325 cm-1, which display some fine structure, and in some spectra weak bands in the region between 380 and 500 cm-1. The sum of the integrated intensities of the two dominant bands reveals qualitatively the same changes with temperature along an isochore, with pressure at constant temperature, and with the time required for equilibration as the Cr(III) concentrations in the fluid determined by μ-XRF. Complementary ab initio molecular dynamics simulations of a 4 m HCl solution at two different densities (0.8 and 0.97 g/cm3) and temperatures (427 and 727 °C) were performed to investigate the vibrational properties of various(O)y3-x and (O)y(OH)z3-x-z complexes with 3⩽x+z⩽4 and 0⩽y⩽2. Quasi-normal mode analysis reveals that both the tetrahedral symmetric and antisymmetric Cr-Cl stretching vibrations of CrCl4(H2O)0-2- have characteristic

  17. Transitiometric investigation of asphaltenic fluids under real conditions of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, C.; Grolier, J.P.E. [Univ. Blaise Pascal, Lab. de Thermodynamique et Genie Chimique, Aubiere (France); Randzio, S. [Polish Academy of Sciences, Inst. of Physical Chemistry, Warsaw (Poland)

    2000-08-01

    Flocculation of asphaltenes is a major concern in the petroleum industry in such activities as production, extraction and transport. With the aim of characterising flocculation phenomena and primarily the flocculation threshold, titration calorimetry has already been used to study the effect of solvents on asphaltenic fluids; the precipitation of asphaltenes is in that case induced by the addition of solvent (usually n-alkanes, according to the definition of asphaltenes). We have recently developed a new experimental technique, scanning transitiometry which appears typically suitable to investigate phase changes in asphaltenic fluids. This technique which makes use of a calorimetric detector allows to scan one of the three independent variables p, V or T, while one is maintained constant. From the recording of the variation of the dependent variable and of the associated heat effect, thermomechanical coefficients of the bulk phase can be computed and phase changes detected very accurately. The scanning rates as well as the operating ranges of T and p permit to rigorously monitor the thermodynamic behaviour of the system loaded in the transitiometric cell. Moreover, a full thermodynamic study is possible over an extended p, V, T-surface and fluids under real high T-high p in-well conditions can be treated. This means also that the possible reversibility of phase transitions can be investigated with this technique. We report here a preliminary investigation on real petroleum fluids under in-well conditions of temperature and pressure. Fluids containing asphaltenes have been used to illustrate the advantages of scanning transitiometry to investigate such systems. Of particular importance is the transferring of the fluid system into the measuring cell under isobaric condition. (au)

  18. Interstitial Lung Diseases

    Science.gov (United States)

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and ... is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among coal ...

  19. A Pressure Transient Model for Power-Law Fluids in Porous Media Embedded with a Tree-Shaped Fractal Network

    Directory of Open Access Journals (Sweden)

    Xiao-Hua Tan

    2014-01-01

    Full Text Available This work studies the pressure transient of power-law fluids in porous media embedded with a tree-shaped fractal network. A pressure transient model was created based on the fractal properties of tree-shaped capillaries, generalized Darcy’s law and constitutive equation for power-law fluids. The dimensionless pressure model was developed using the Laplace transform and Stehfest numerical inversion method. According to the model’s solution, the bi-logarithmic type curves of power-law fluids in porous media embedded with a tree-shaped fractal network are illustrated. The influences of different fractal factors and Power-law fluids parameters on pressure transient responses are discussed.

  20. Fluid and rock interactions in silicate and aluminosilicate systems at elevated pressure and temperature

    Science.gov (United States)

    Davis, Mary Kathleen

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubilities of cations, such as silicon, in water strongly affect both the physical and chemical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In situ Raman experiments of the silica-water, alumina-water, and alumina water systems were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples and synthetic ruby samples were used in the experiments. Samples were loaded in the sample chamber with a water pressure medium. All experiments used rhenium gaskets of uniform thickness with a 500 mum drill hole for the sample chamber. Temperature was measured using K-type thermocouples encompassing both the upper and lower diamond anvils. Pressures are obtained on the basis of the Raman shift of the 464 cm-1 quartz mode where possible or the Raman shift of the tips of the diamond anvils according to a method developed in this work. This work characterizes the state of stress in the diamond anvil cell, which is used as the basis for the pressure calibration using only the diamond anvils. Raman measurements of silicate fluid confirm the presence of H4 SiO4 and H6Si2O7 in solution and expand the pressure range for in-situ structural observations in the silica-water system. Additionally, we identify the presence of another silica species present at mantle conditions, which occurs at long time scales in the diamond cell. This study provides the first in situ data in the alumina-water and alumina-silica-water systems at pressures and temperatures relevant to the slab environment. Al(OH) 3 appears to be the dominant form of alumina present under these conditions and in the alumina

  1. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  2. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... as well, but the increase is less. The effect of water is studied at different water fractions; it results in lower increase of the final temperature than observed for black oil. The presence of brine in black oil is also studied at different brine fractions. The addition of brine increases the final...

  3. Fluid-electrolyte and renal pelvic pressure changes during ureteroscopic lithotripsy.

    Science.gov (United States)

    Shao, Yi; Shen, Zhi-Jie; Zhu, Yi-Yong; Sun, Xiao-Wen; Lu, Jun; Xia, Shu-Jie

    2012-07-01

    Abstract The objective of the study was to evaluate fluid-electrolyte and renal pelvic pressure (RPP) changes during ureteroscopic lithotripsy. Fifteen patients were detected with residual ureteral calculi after minimally invasive percutaneous nephrolithotomy (MPCNL), distal ureter calculi in three, midureter calculi in four, proximal calculi in eight. RPP was measured via the percutaneous nephrostomy tube by urodynamic study at irrigation pressures of 50, 100 and 200 mmHg. Haemoglobin (Hb), haematocrit (Hct), blood urea mitrogen (BUN), creatinine (Cre), serum sodium (Na(+)), potassium (K(+)), chlorine (Cl(-)) were recorded before and after ureteroscopic lithotripsy. There were no significant differences between Hb, Hct, BUN, Cre, Na(+), K(+), Cl(-) values. Baseline RPP was (16.37 ± 3.14) cmH(2)O, RPPs were 46.06 ± 6.85 cmH(2)O, 99.07 ± 14.62 cmH(2)O and 166.27 ± 33.08 cmH(2)O at irrigation pressures of 50, 100 and 200 mmHg, they were much higher than baseline RPP (p cmH(2)O versus 40.44 ± 4.07 cmH(2)O (p = 0.0004), 110.26 ± 2.39 cmH(2)O versus 86.29 ± 11.60 cmH(2)O (p = 0.0014), 193.21 ± 5.88 cmH(2)O versus 135.47 ± 20.95 cmH(2)O (p = 0.0002) at irrigation pressures of 50, 100 and 200 mmHg. There were no significant changes in fluid-electrolyte. RPP was significantly increased during ureteroscopic lithotripsy, it was correlated with the irrigation pressure and the position in the ureter.

  4. Shear-wave anisotropy reveals pore fluid pressure-induced seismicity in the U.S. midcontinent.

    Science.gov (United States)

    Nolte, Keith A; Tsoflias, George P; Bidgoli, Tandis S; Watney, W Lynn

    2017-12-01

    Seismicity in the U.S. midcontinent has increased by orders of magnitude over the past decade. Spatiotemporal correlations of seismicity to wastewater injection operations have suggested that injection-related pore fluid pressure increases are inducing the earthquakes. We present direct evidence linking earthquake occurrence to pore pressure increase in the U.S. midcontinent through time-lapse shear-wave ( S -wave) anisotropy analysis. Since the onset of the observation period in 2010, the orientation of the fast S -wave polarization has flipped from inline with the maximum horizontal stress to inline with the minimum horizontal stress, a change known to be associated with critical pore pressure buildup. The time delay between fast and slow S -wave arrivals exhibits increased variance through time, which is common in critical pore fluid settings. Near-basement borehole fluid pressure measurements indicate pore pressure increase in the region over the earthquake monitoring period.

  5. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  6. A checking device for pipes in which a high pressure fluid is circulated

    International Nuclear Information System (INIS)

    Bauerle, R.D.; Pitt, W.A.; White, M.A.

    1974-01-01

    A checking device for restricting the movements of a pipe in which a high pressure fluid is circulated, should said pipe happen to be ruptured. That device comprises a U-shaped checking, or retaining bar surrounding the pipe, and slightly spaced therefrom at each end of said bar a support member fixed to a frame member of the steam generator and an articulated connection between each of said ends and its respective support-member. That device can be applied to nuclear steam boilers [fr

  7. Irrigation dynamics associated with positive pressure, apical negative pressure and passive ultrasonic irrigations: a computational fluid dynamics analysis.

    Science.gov (United States)

    Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil

    2014-08-01

    Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  8. Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models

    International Nuclear Information System (INIS)

    Sharabi, Medhat; Ambrosini, Walter

    2009-01-01

    The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them

  9. Elevated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome.

    Science.gov (United States)

    Denning, D W; Armstrong, R W; Lewis, B H; Stevens, D A

    1991-09-01

    Increased intracranial pressure has been a noteworthy problem in some of our patients with cryptococcal meningitis and acquired immunodeficiency syndrome (AIDS), and this appears to be a feature observed in patients with cryptococcal meningitis reported in the literature. Whereas most attention of clinicians is presently focused on optimizing the antifungal regimen, so as to improve on high failure rates in cryptococcal meningitis in AIDS, little attention has been paid to the problem of intracranial hypertension. We argue that visual loss and some of the cases of death early after the onset of chemotherapy may be related to high cerebrospinal fluid (CSF) pressure, regardless of antifungal therapy. The possible pathophysiologic mechanisms are discussed, and we postulate that the mechanism is reduced CSF outflow possibly due to increased outflow resistance, not necessarily accompanied by prominent cerebral edema. Optimal therapy of this complication is not yet established, but some measures that may be helpful are ventricular shunting, frequent high-volume lumbar punctures, and possibly glucocorticoids.

  10. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  11. Reconstruction of fluid (over-)pressure evolution from sub-seismic fractures in folds and foreland basins

    Science.gov (United States)

    Beaudoin, Nicolas; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2013-04-01

    Deciphering the evolution of pressure, temperature and chemistry of fluids during fold history is a challenging problem. While temperature and chemistry of paleo-fluids can be determined using vein mineralizations in fault zones and/or in diffuse sub-seismic fracture sets, few methods exist to constrain the evolution through time of fluid pressure, especially when no hydrocarbons are encountered. This contribution aims at presenting and discussing a new approach to reconstruct the evolution of fluid pressure based on paleostress analyses. The combination of stress inversion of fault slip data and calcite twin data with rock mechanics data allows determining both the orientations and the magnitudes of principal stresses during basin evolution. Assuming no burial change through time, the comparison of the computed magnitudes of the effective vertical stress with its theoretical value (calculated with respect to the paleo-overburden and hydrostatic fluid pressure) may be used to quantitatively estimate fluid overpressure in limestones at different steps of the tectonic history. Alternatively, if hydrostatic fluid pressure is assumed to prevail in the system from step to step, results likely reflect overburden variations. The application focuses on the diffuse fracture populations observed in limestones of the famous Mississippian-Permian Madison and Phosphoria formations in Laramide basement-cored folds of the Rocky Mountains: the Sheep Mountain and the Rattlesnake Mountain anticlines (Bighorn Basin, Wyoming, USA). The location of these basement-folds on each edge of the Bighorn Basin ensures that depositional and erosional events can be neglected before folding, and thus grants the opportunity to constrain and to discuss the level of fluid overpressure during both the Sevier (thin-skinned) and Laramide (thick-skinned) related Layer-Parallel Shortening (LPS) phases at both fold scale and basin scale. Results highlight an initial fluid overpressure in limestones buried

  12. Pressure differences between over-pressured sands and bounding shales of the Eugene island 330 field (offshore Louisiana, USA) with implications for fluid flow induced by sediment loading

    Energy Technology Data Exchange (ETDEWEB)

    Stump, B.B.; Flemings, P.B. [Pennsylvania Univ., Philadelphia, PA (United States); Finkbeiner, Th.; Zoback, M.D. [Stanford Univ., Dept. of Geophysics, CA (United States)

    1999-04-01

    We document pressure differences between adjacent sands and shales in geopressured Plio-Pleistocene strata of offshore Louisiana and we quantify a sediment loading model that describes the origin of these differences. The JD sand is in moderate geo-pressure (P{sub f}/{sigma}{sub 1} = 0.6) and has a lower pressure than its bounding shale. The L1 sand is severely over-pressured (P{sub f}/{sigma}{sub 1} = 0.9) and has a pressure greater than its bounding shale. Shales which are adjacent to the JD and L1 sands have pressures (derived from a porosity-effective stress relationship) which follow a litho-static gradient. We interpret this behaviour to result from rapid, spatially varying loading of permeable sand bodies by relatively impermeable shales. Under these conditions. pore pressures at the peak of structure can significantly exceed the pore pressure of bounding shales. The L1 sand records this behaviour. In contrast, the low relative pressures in the JD sand may record dissipation of pressure by fluid migration along permeable pathways. The sediment loading model predicts along-stratal flow within sands and cross-stratal flow at structural highs. In a companion paper. FINKBEINER et al. (this volume) describe how sediment loading and the buoyant effect of hydrocarbons combine to drive sand pressures toward the minimum principal stress of bounding cap rocks, resulting in fluid migration. (author)

  13. Multibody Dynamics of a Fluid Power Radial Piston Motor Including Transient Hydrodynamic Pressure Models of Lubricating Gaps

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2014-01-01

    The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...... is a multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure...

  14. Ventilator-induced central venous pressure variation can predict fluid responsiveness in post-operative cardiac surgery patients

    NARCIS (Netherlands)

    Cherpanath, T. G. V.; Geerts, B. F.; Maas, J. J.; de Wilde, R. B. P.; Groeneveld, A. B.; Jansen, J. R.

    2016-01-01

    Ventilator-induced dynamic hemodynamic parameters such as stroke volume variation (SVV) and pulse pressure variation (PPV) have been shown to predict fluid responsiveness in contrast to static hemodynamic parameters such as central venous pressure (CVP). We hypothesized that the ventilator-induced

  15. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  16. Paleostress and fluid-pressure regimes inferred from the orientations of Hishikari low sulfidation epithermal gold veins in southern Japan

    Science.gov (United States)

    Faye, Guillaume D.; Yamaji, Atsushi; Yonezu, Kotaro; Tindell, Thomas; Watanabe, Koichiro

    2018-05-01

    The orientation distribution of dilational fractures is affected by the state of stress around the fractures and by the pressure of the fluid that opened the fractures. Thus, the distribution can be inverted to determine not only the stress but also the pressure condition at the time of vein formation. However, epithermal ore veins that we observe today are the results of a great number of intermittent upwelling of overpressured fluids with different pressures. Here, we define driving pressure index (DPI) as the representative non-dimensionalized fluid pressure for the fluids. We collected the orientations of ∼1000 ore veins in the Hishikari gold mine, which were deposited at around 1 Ma, in southern Kyushu, Japan. It was found that the majority of the veins were deposited under an extensional stress with a NW-SE-trending σ3-axis and a northeasterly-inclined σ1-axis with relatively high stress ratio. The representative driving pressure ratio was ∼0.2. Data sets obtained at different depths in the mine indicated a positive correlation of representative driving pressure ratios with the depths. The correlation suggests repeated formation and break of pressure seals during the mineralization. Our compilation of the Pliocene-Quaternary stress regimes in southern Kyushu, including the result of the present study, suggests that epithermal gold mineralization was associated with distributed extensional deformations in southern Kyushu, and strain localization into an intra-arc rift seems to have terminated the mineralization.

  17. Numerical prediction of pressure loss of fluid in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Abdulwahhab, Mohammed; Kumar Injeti, Niranjan [Department of Marin Engineering, Andhra University, AP (India); Fahad Dakhil, Sadoun [Department of Fuel and Energy, Basrah Technical College (Iraq)

    2013-07-01

    This work presents a prediction of pressure loss of fluid with turbulent incompressible flow through a 90° tee junction was carried out and compared with analytical and experimental results. One turbulence model was used in the numerical simulations: {kappa}-{epsilon} model for two different values of area ratio between the main pipe and the branch pipe were 1.0 and 4.0, and flow rate ratios. The continuity, momentum and energy equations were discredited by means of a finite volume technique and the SIMPLE algorithm scheme was applied to link the pressure and velocity fields inside the domain. A three dimensional steady state flow was solving by using CFX 5 code ANSYS FLUENT13. The effect of the flow rate ratio q (ratio between the flow rate in the branch and outlet pipes) on pressure drop and velocity profile was predicted at different Reynolds numbers. The results show that increasing the flow rate ratio the pressure and total energy losses increase because the presence of recirculation and the strong streamline curvature.

  18. Instability of a shear layer between multicomponent fluids at supercritical pressure

    Science.gov (United States)

    Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun

    2018-04-01

    The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.

  19. The effect of whole body position on lumbar cerebrospinal fluid opening pressure

    Directory of Open Access Journals (Sweden)

    Udommongkol Chesda

    2008-07-01

    Full Text Available Abstract We compared cerebrospinal fluid (CSF opening pressure measurements in the lumbar subarachnoid space between the flexed position (F-OP and relaxed position (R-OP in recumbent patients. We devised an equation for using F-OP to determine the existence of raised intracranial pressure (ICP. Patients (n = 83 underwent lumbar puncture while in the flexed lateral decubitus position and then were moved to the relaxed position. F-OP and R-OP were measured with a water manometer. R-OP > 180 mmH2O plus relevant clinical signs were taken as indicators of raised intracranial pressure. Mean pressures for F-OP and R-OP were 178.54 and 160.52 mmH2O respectively, p 180, raised ICP could be significantly over diagnosed. The authors recommend an equation [R-OP(calculated, mmH2O = 0.885 × F-OP(measured, mmH2O] or using 200 mmH2O as the threshold for increased ICP with flexed posture.

  20. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  1. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    Science.gov (United States)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  2. An Interstitial Network of Podoplanin-Expressing Cells in the Human Endolymphatic Duct

    Science.gov (United States)

    Mayerl, Christina; Rubin, Kristofer; Wick, Georg; Rask-Andersen, Helge

    2006-01-01

    The human endolymphatic duct (ED) with encompassing interstitial connective tissue (CT) is believed to be important for endolymph resorption and fluid pressure regulation of the inner ear. The periductal CT cells are interconnected via numerous cellular extensions, but do not form vessel structures. Here we report that the periductal CT is populated by two distinct cell phenotypes; one expressing podoplanin, a protein otherwise found on lymph endothelia and on epithelia involved in fluid fluxes, and a second expressing a fibroblast marker. A majority of the interstitial cells expressed podoplanin but not the lymphatic endothelial cell markers hyaluronan receptor (LYVE-1) or vascular endothelial growth factor receptor-3 (VEGFR-3). The fibroblast marker positive cells were found close to the ED epithelium. In the mid- and distal parts of the ED, these cells were enriched under folded epithelia. Furthermore, subepithelial CT cells were found to express activated platelet derived growth factor (PDGF)-β receptors. Cultured CT cells from human inner ear periductal and perisaccular explant tissues were identified as fibroblasts. These cells compacted a three-dimensional collagen lattice by a process that could be promoted by PDGF-BB, a factor involved in interstitial fluid pressure regulation. Our results are compatible with the notion that the periductal CT cells are involved in the regulation of inner ear fluid pressure. By active compaction of the periductal CT and by the formation of villous structures, the CT cells could modulate fluid fluxes over the ED epithelium as well as the longitudinal flow of endolymph in the ED. PMID:16408168

  3. FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

    Directory of Open Access Journals (Sweden)

    GYUN-HO GIM

    2014-10-01

    Full Text Available In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI. The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency of pump, and fluid-structure interaction.

  4. Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates

    International Nuclear Information System (INIS)

    Son, Hyung Min; Yang, Soo Hyung; Park, Jong Hark

    2014-01-01

    Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime

  5. Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Yang, Soo Hyung; Park, Jong Hark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime.

  6. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers

    Directory of Open Access Journals (Sweden)

    Moshe Einat

    2016-11-01

    Full Text Available Three dimensional (3D printing technology is rapidly evolving such that printing speed is now a crucial factor in technological developments and future applications. For printing heads based on the inkjet concept, the number of nozzles on the print head is a limiting factor of printing speed. This paper offers a method to practically increase the number of nozzles unlimitedly, and thus to dramatically ramp up printing speed. Fluid reservoirs are used in inkjet print heads to supply fluid through a manifold to the jetting chambers. The pressure in the reservoir’s outlet is important and influences device performance. Many efforts have been made to regulate pressure inside the fluid reservoirs so as to obtain a constant pressure in the chambers. When the number of nozzles is increased too much, the regulation of uniform pressure among all the nozzles becomes too complicated. In this paper, a different approach is taken. The reservoir is divided into an array of many micro-reservoirs. Each micro-reservoir supports one or a few chambers, and has a unique structure with auto-pressure regulation, where the outlet pressure is independent of the fluid level. The regulation is based on auto-compensation of the gravity force and a capillary force having the same dependence on the fluid level; this feature is obtained by adding a wedge in the reservoir with a unique shape. When the fluid level drops, the gravitational force and the capillary force decrease with it, but at similar rates. Terms for the force balance are derived and, consequently, a constant pressure in the fluid micro-reservoir segment is obtained automatically, with each segment being autonomous. This micro reservoir array is suggested for the enlargement of an inkjet print head and the achievement of high-speed 3D printing.

  7. Estimating maximum sustainable injection pressure duringgeological sequestration of CO2 using coupled fluid flow andgeomechanical fault-slip analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2006-10-17

    This paper demonstrates the use of coupled fluid flow andgeomechanical fault slip (fault reactivation) analysis to estimate themaximum sustainable injection pressure during geological sequestration ofCO2. Two numerical modeling approaches for analyzing faultslip areapplied, one using continuum stress-strain analysis and the other usingdiscrete fault analysis. The results of these two approaches to numericalfault-slip analyses are compared to the results of a more conventionalanalytical fault-slip analysis that assumes simplified reservoirgeometry. It is shown that the simplified analytical fault-slip analysismay lead to either overestimation or underestimation of the maximumsustainable injection pressure because it cannot resolve importantgeometrical factors associated with the injection induced spatialevolution of fluid pressure and stress. We conclude that a fully couplednumerical analysis can more accurately account for the spatial evolutionof both insitu stresses and fluid pressure, and therefore results in amore accurate estimation of the maximum sustainable CO2 injectionpressure.

  8. Flows of Carreau fluid with pressure dependent viscosity in a variable porous medium: Application of polymer melt

    Directory of Open Access Journals (Sweden)

    M.Y. Malik

    2014-06-01

    Full Text Available The present work concerns the pressure dependent viscosity in Carreau fluid through porous medium. Four different combinations of pressure dependent viscosity and pressure dependent porous medium parameters are considered for two types of flow situations namely (i Poiseuille flow and (ii Couette flow. The solutions of non-linear equations have been evaluated numerically by Shooting method along with Runge-Kutta Fehlberg method. The physical features of pertinent parameters have been discussed through graphs.

  9. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses

    Science.gov (United States)

    Wakayama, Tadashi; Suzuki, Masaaki; Tanuma, Tadashi

    2016-01-01

    Objective Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction. Methods We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject’s CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine. Results Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups. Conclusion This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow

  10. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.

    Science.gov (United States)

    Wakayama, Tadashi; Suzuki, Masaaki; Tanuma, Tadashi

    2016-01-01

    Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction. We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject's CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine. Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups. This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow velocity was found.

  11. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.

    Directory of Open Access Journals (Sweden)

    Tadashi Wakayama

    Full Text Available Nasal obstruction is a common problem in continuous positive airway pressure (CPAP therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD, and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction.We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group. Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject's CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine.Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups.This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow velocity was found.

  12. Proteomic Assessment of Fluid Shifts and Association with Visual Impairment and Intracranial Pressure in Twin Astronauts

    Science.gov (United States)

    Rana, Brinda K.; Stenger, Michael B.; Lee, Stuart M. C.; Macias, Brandon R.; Siamwala, Jamila; Piening, Brian Donald; Hook, Vivian; Ebert, Doug; Patel, Hemal; Smith, Scott; hide

    2016-01-01

    BACKGROUND: Astronauts participating in long duration space missions are at an increased risk of physiological disruptions. The development of visual impairment and intracranial pressure (VIIP) syndrome is one of the leading health concerns for crew members on long-duration space missions; microgravity-induced fluid shifts and chronic elevated cabin CO2 may be contributing factors. By studying physiological and molecular changes in one identical twin during his 1-year ISS mission and his ground-based co-twin, this work extends a current NASA-funded investigation to assess space flight induced "Fluid Shifts" in association with the development of VIIP. This twin study uniquely integrates physiological and -omic signatures to further our understanding of the molecular mechanisms underlying space flight-induced VIIP. We are: (i) conducting longitudinal proteomic assessments of plasma to identify fluid regulation-related molecular pathways altered by long-term space flight; and (ii) integrating physiological and proteomic data with genomic data to understand the genomic mechanism by which these proteomic signatures are regulated. PURPOSE: We are exploring proteomic signatures and genomic mechanisms underlying space flight-induced VIIP symptoms with the future goal of developing early biomarkers to detect and monitor the progression of VIIP. This study is first to employ a male monozygous twin pair to systematically determine the impact of fluid distribution in microgravity, integrating a comprehensive set of structural and functional measures with proteomic, metabolomic and genomic data. This project has a broader impact on Earth-based clinical areas, such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma. HYPOTHESIS: We predict that the space-flown twin will experience a space flight-induced alteration in proteins and peptides related to fluid balance, fluid control and brain injury as compared to his pre-flight protein

  13. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  14. Fluid Shifts: Otoacoustical Emission Changes in Response to Posture and Lower Body Negative Pressure

    Science.gov (United States)

    Melgoza, R.; Kemp, D.; Ebert, D.; Danielson, R.; Stenger, M.; Hargens, A.; Dulchavsky, S.

    2016-01-01

    INTRODUCTION: The purpose of the NASA Fluid Shifts Study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to correlate these findings with vision changes and other elements of the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. Due to the invasive nature of direct measures of ICP, a noninvasive technique of monitoring ICP is desired for use during spaceflight. The phase angle and amplitude of otoacoustic emissions (OAEs) have been shown to be sensitive to posture change and ICP (1, 2), therefore use of OAEs is an attractive option. OAEs are low-level sounds produced by the sensory cells of the cochlea in response to auditory stimulation. These sounds travel peripherally from the cochlea, through the oval window, to the ear canal where they can be recorded. OAE transmission is sensitive to changes in the stiffness of the oval window, occurring as a result of changes in cochlear pressure. Increased stiffness of the oval window largely affects the transmission of sound from the cochlea at frequencies between 800 Hz and 1600 Hz. OAEs can be self-recorded in the laboratory or on the ISS using a handheld device. Our primary objectives regarding OAE measures in this experiment were to 1) validate this method during preflight testing of each crewmember (while sitting, supine and in head-down tilt position), and 2) determine if OAE measures (and presumably ICP) are responsive to lower body negative pressure and to spaceflight. METHODS: Distortion-product otoacoustic emissions (DPOAEs) and transient evoked otoacoustic emissions (TEOAEs) were recorded preflight using the Otoport Advance OAE system (Otodynamics Ltd., Hatfield, UK). Data were collected in four conditions (seated

  15. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  16. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    Science.gov (United States)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  17. Using the resources framework to design, assess, and refine interventions on pressure in fluids

    Directory of Open Access Journals (Sweden)

    Daniel E. Young

    2017-05-01

    Full Text Available The resources framework provides a useful and generative model of student thinking and learning. In particular, it suggests various strategies for instruction such as priming resources and refining intuition that allow students to build on knowledge they already have. In this paper, we describe the affordances of the resources framework in guiding the design, assessment, and refinement of interventions on pressure in fluids. This perspective kept us alert for cognitive resources on which students could build a deeper understanding and encouraged us to model student thinking as complex and context dependent, even on this narrow topic. This framework also facilitated a focus on evidence of productivity in student work as an alternative assessment to conceptual pre- and post testing.

  18. Characteristics of time-varying intracranial pressure on blood flow through cerebral artery: A fluid-structure interaction approach.

    Science.gov (United States)

    Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih

    2016-02-01

    Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.

  19. Pulsatile flow of cerebrospinal fluid on magnetic resonance images and its relation to intracranial pressure

    International Nuclear Information System (INIS)

    Ohara, Shigeki

    1988-01-01

    In a retrospective study of the magnetic resonance (MR) images of 289 neurosurgical patients, loss of signal intensity (the signal void phenomenon) of cerebrospinal fluid (CSF) in the mesencephalic aqueduct was observed in 77 patients. This signal void phenomenon (SVP) was seen most frequently in patients suffering from communicating hydrocephalus (12 of 14), less frequently in patients with supratentorial tumors (7 of 50), and not at all in patients with noncommunicating hydrocephalus (none of 9). Eight of 19 patients with infratentorial lesions who did not demonstrate the SVP preoperatively, developed it after suboccipital craniectomy. It is known that CSF in the cranial cavity flows toward the spinal CSF space in a to and fro manner in response to the pulsations of the brain. The velocity of this flow is faster in the narrower parts in the ventricular system such as the aqueduct, Monro's foramen and the fourth ventricle. The SVP reflects CSF pulsatile flow forced out of the intracranial space into the intraspinal space by the brain's pulsations. The SVP was observed frequently in the MR images of patients with communicating hydrocephalus who showed normal intracranial mean pressure (mICP) and normal pulse pressure (PP), whereas the SVP was observed rarely in patients with high mICP and high PP, such as those with a supratentorial tumor. The SVP may reflect the capacity of the craniospinal cavity to buffer pressure within it. It may be possible to differentiate normal from increased intracranial pressure by detection of the SVP in CSF in the ventricular system. (author)

  20. Prediction of wall friction for fluids at supercritical pressure with CFD models

    International Nuclear Information System (INIS)

    Angelucci, M.; Ambrosini, W.; Forgione, N.

    2011-01-01

    In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of friction factor observed in experimental data at supercritical pressures at various operating conditions. A short survey of available data and correlations for smooth pipe friction in circular pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-like and the gas-like regions and within the transitional region around the pseudo-critical temperature. For smooth pipes, a general decrease of the friction factor in the transitional region is reported, constituting one of the relevant effects to be predicted by the computational fluid-dynamic models. A limited number of low-Reynolds number models is adopted, making use of refined near-wall discretisations as required by the constraint y + < 1 at the wall. In particular, the Lien k-ε and the SST k-ω models are considered. The values of the wall shear stress calculated by the code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then the Darcy-Weisbach friction factors, basing on their classical definitions. The obtained values are compared with those provided by experimental tests and correlations, finding a reasonable qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, where fluid property changes are moderate, than in the transitional region, where the trends provided by available correlations are reproduced only in a qualitative way. (author)

  1. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Science.gov (United States)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  2. Modelling the fluid structure interaction produced by a waterhammer during shutdown of high-pressure pumps

    International Nuclear Information System (INIS)

    Erath, W.; Nowotny, B.; Maetz, J.

    1999-01-01

    Measurements of an experiment in a pipe system with pump shutdown and valve closing have been performed in the nuclear power plant KRB II (Gundremmingen, Germany). Comparative calculations of fluid and structure including interaction show an excellent agreement with the measured results. Theory and implementation of the fluid structure interaction (FSI) and the results of the comparison are described. The following measurements have been compared with calculations: (1) experiments in Delft, Netherlands to analyse the FSI; and (2) experiment with pump shutdown and valve closing in the nuclear power plant KRB II has been performed. It turns out, that the consideration of the FSI is necessary for an exact calculation of 'soft' piping systems. It has significant application in current waterhammer problems. For example, water column closure, vapour collapse, check valve slamming continues to create waterhammers in the energy industry. An important consequence of the FSI is mostly a significant increase of the effective structural damping. This mitigates - so far in all KED's calculations the FSI has taken into account - an amplification of pipe movements due to pressure waves in resonance with structural eigenvalues. To investigate the integrity of pipe systems pipe stresses are calculated. Taking FSI into account they are reduced by 10-40% in the actual case. (orig.)

  3. An evaluation of fluid immersion therapy for the prevention of pressure ulcers.

    Science.gov (United States)

    Worsley, P R; Parsons, B; Bader, D L

    2016-12-01

    Individuals with impaired mobility can spend prolonged periods on support surfaces, increasing their risk of developing pressure ulcers. Manufacturers have developed mattresses to maximise contact area. The present study evaluated both the biomechanical and physiological responses to lying postures on a Fluid Immersion Simulation mattress. Seventeen healthy participants were recruited to evaluate the mattress during three prescribed settings of immersion (high, medium and low). Parameters reflecting biomechanical and physiological responses, and the microclimate were monitored during three postures (supine, lateral and high-sitting) over a 90minute test session. Transcutaneous oxygen and carbon dioxide gas responses were categorised according to three criteria and data were compared between each condition. Results indicated that interface pressures remained consistent, with peak sacral values ranging from 21 to 27mmHg across all immersion settings and postures. The majority of participants (82%) exhibited minimal changes in gas tensions at the sacrum during all test conditions. By contrast, three participants exhibited decreased oxygen with increased carbon dioxide tensions for all three immersion settings. Supine and high sitting sacral microclimate values ranged between 30.1-30.6°C and 42.3-44.5% for temperature and relative humidity respectively. During lateral tilt there was a reduction of 1.7-2.5°C and 3.3-5.3% in these values. The majority of participants reported high comfort scores, although a few experienced bottoming out during the high-sitting posture at the high immersion setting. Fluid Immersion Simulation provides an intelligent approach to increase the support area. Further research is required to provide evidence based guidance on the use of personalised support surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Automated pressure-controlled cerebrospinal fluid drainage during open thoracoabdominal aortic aneurysm repair.

    Science.gov (United States)

    Tshomba, Yamume; Leopardi, Marco; Mascia, Daniele; Kahlberg, Andrea; Carozzo, Andrea; Magrin, Silvio; Melissano, Germano; Chiesa, Roberto

    2017-07-01

    Perioperative cerebrospinal fluid (CSF) drainage is a well-established technique for spinal cord protection during thoracoabdominal aortic aneurysm (TAAA) open repair and is usually performed using dripping chamber-based systems. A new automated device for controlled and continuous CSF drainage, designed to maintain CSF pressure around the desired set values, thus avoiding unnecessary drainage, is currently available. The aim of our study was to determine whether the use of the new LiquoGuard automated device (Möller Medical GmbH, Fulda, Germany) during TAAA open repair was safe and effective in maintaining the desired CSF pressure values and whether the incidence of complications was reduced compared with a standard catheter connected to a dripping chamber. Data of patients who underwent surgical TAAA open repair using perioperative CSF drainage at our institution between October 2012 and October 2014 were recorded. The difference in CSF pressure values between patients who underwent CSF drainage with a conventional dripping chamber-based system (manual group) and patients who underwent CSF drainage with the LiquoGuard (automated group) was measured at the beginning of the intervention (T1), 15 minutes after aortic cross-clamping (T2), just before unclamping (T3), at the end of surgery (T4), and 4 hours after the end of surgery (T5). The choice of the draining systems was randomly alternated with one-to-one rate until the last six patients consecutively treated with LiquoGuard were enrolled. Primary outcomes were occurrence of spinal cord ischemia, intracranial hemorrhage, postdural puncture headache, and in-hospital mortality. The study included 152 patients who underwent open surgical TAAA repair during the study period: 73 patients underwent CSF drainage with the traditional system and 79 with LiquoGuard. The CSF pressure values at T1 and T5 were not considerably different in the two groups. By repeated-measures analysis of variance, a significant upward

  5. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  6. Aluminum speciation in aqueous fluids at deep crustal pressure and temperature

    Science.gov (United States)

    Mookherjee, Mainak; Keppler, Hans; Manning, Craig E.

    2014-05-01

    We investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 °C. We have studied aluminum species in (a) pure H2O, (b) 5.3 m KOH solution, and (c) 1 m KOH solution. In order to better understand the spectral features of the aqueous fluids, we used ab initio simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with 5.3 m and 1 m KOH solution in equilibrium with Al2O3 show a sharp band at ˜620 cm-1 which could be attributed to the [ species. The band grows in intensity with temperature along an isochore. A shoulder on the high-frequency side of this band may be due to a hydrated, charge neutral Al(OH)3·H2O species. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [ species to dimers [(OH)2-Al-(OH)2-Al(OH)2] or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. Upon cooling of Al-bearing solutions to room temperatures, Raman bands indicating the precipitation of diaspore (AlOOH) were observed in some experiments. The Raman spectra of the KOH solutions (with or without dissolved alumina) showed a sharp OH stretching band at ˜3614 cm-1 and an in-plane OH bending vibration at ˜1068 cm-1, likely related to an OH- ion with the oxygen atom attached to a water molecule by hydrogen bonding. A weak feature at ˜935 cm-1 may be related to the out-of-plane bending vibration of the same species or to an OH species with a different environment.

  7. Density functional study of pressure profile for hard-sphere fluids confined in a nano-cavity

    Directory of Open Access Journals (Sweden)

    Zongli Sun

    2014-02-01

    Full Text Available To gain a deeper understanding and to master the mechanical properties of classical fluids confined in nano-geometry, the pressure tensor applicable to confined fluids is derived by taking into account more correlation among the particles. First, based on classical statistical theory, the expression for the pressure tensor is calculated by expanding the stress tensor and considering further the correlation effect among the particles. Our numerical result is compared with that of molecular dynamics simulation and the agreement between them is quite good. Then, the dependence of the bulk density and the dimension of the cavity on the pressure profile is computed and studied. The curvature dependence of contact pressure and net pressure on the cavity wall is also studied. Finally, the solid–fluid interfacial tension is calculated and compared with Monte Carlo results. The results derived in this work indicate the importance and necessity of correlation among particles in the prediction of the mechanical properties of confined fluids.

  8. Application of pressurized fluid extraction to determine cadmium and zinc in plants.

    Science.gov (United States)

    Maurí-Aucejo, A R; Arnandis-Chover, T; Marín-Sáez, R; Llobat-Estellés, M

    2007-01-02

    A procedure for the determination of Cd and Zn in plants is proposed. The metals are extracted by pressurized fluid extraction (PFE). Operational conditions are: pressure 1500 psi, temperature 75 degrees C, static time 5 min, flush volume 35%, purge time 60s, cycles 1 and 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) 0.01M at pH 4.5 as extracting solution. Determination of Zn is carried out by flame atomic absorption spectroscopy and depending on the concentration level, Cd content is determined by flame or electrothermal atomic absorption spectroscopy. Certified samples of Virginia tobacco leaves, tea leaves, spinach leaves, poplar leaves, a commercial spinach sample (Spinacea oleracea) and genetically modified Arabidopsis thaliana were analysed by the proposed procedure and also by microwave acid digestion and extraction with HCl-Triton X-100. Confidence intervals for Cd and Zn content obtained by the proposed procedure overlap with the certified values. The other procedures, however, provide inaccurate results for Cd. Recoveries obtained for a confidence level of 95% are 96+/-6% and 95+/-5% for Zn and Cd, respectively. Reproducibility of Zn by the proposed procedure is 7% (n=8), similar to the other tests and the detection limit is 2.6 microg. For Cd reproducibility is 8.5% (n=8), better than with HCl-Triton X-100 and similar to acid digestion, the detection limit is 3.5 ng of Cd.

  9. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  10. Study and modeling of fluctuating fluid forces exerted on fuel rods in pressurized water reactors

    International Nuclear Information System (INIS)

    Bhattacharjee, Saptarshi

    2016-01-01

    Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in the fuel rods. Due to friction, wear occurs at the contact locations between the spacer grid and the fuel rod. This could compromise the first safety barrier of the nuclear reactor by damaging the fuel rod cladding. In order to ensure the integrity of the cladding, it is necessary to know the random fluctuating forces acting on the rods. However, the spectra for these fluid forces are not well known. The goal of this PhD thesis was to use simple geometrical elements to check the reproducibility of realistic pressurized water reactor spacer grids. As a first step, large eddy simulations were performed on a concentric annular pipe for different mesh refinements using the CFD code Trio CFD (previously Trio U) developed by CEA. A mesh sensitivity study was performed to obtain an acceptable mesh for reproducing standard literature results. This information on mesh resolution was used when carrying out simulations using various geometric obstacles inside the pipe, namely, mixing vanes, circular spacer grid and a combination of square spacer grid with mixing vanes. The last of the three configurations is the closest to a realistic PWR fuel assembly. Structured mesh was generated for the annular pipe case and circular grid case. An innovative hybrid mesh was used for the two remaining cases of the mixing vanes and the square grid: keeping unstructured mesh around the obstacles and structured mesh in the rest of the domain. The inner wall of the domain was representative of the fuel rod cladding. Both hydraulic and wall pressure characteristics were analyzed for each case. The results for the square grid case were found to be an approximate combination of the mixing vane case and circular grid case. Simulation results were compared with experiments performed at CEA Cadarache. Some preliminary comparisons were also made with classical semi-empirical models. (author) [fr

  11. Model of pulmonary fluid traffic homeostasis based on respiratory cycle pressure, bidirectional bronchiolo-pulmonar shunting and water evaporation.

    Science.gov (United States)

    Kurbel, Sven; Kurbel, Beatrica; Gulam, Danijela; Spajić, Borislav

    2010-06-01

    The main puzzle of the pulmonary circulation is how the alveolar spaces remain dry over a wide range of pulmonary vascular pressures and blood flows. Although normal hydrostatic pressure in pulmonary capillaries is probably always below 10 mmHg, well bellow plasma colloid pressure of 25 mmHg, most textbooks state that some fluid filtration through capillary walls does occur, while the increased lymph drainage prevents alveolar fluid accumulation. The lack of a measurable pressure drop along pulmonary capillaries makes the classic description of Starling forces unsuitable to the low pressure, low resistance pulmonary circulation. Here presented model of pulmonary fluid traffic describes lungs as a matrix of small vascular units, each consisting of alveoli whose capillaries are anastomotically linked to the bronchiolar capillaries perfused by a single bronchiolar arteriole. It proposes that filtration and absorption in pulmonary and in bronchiolar capillaries happen as alternating periods of low and of increased perfusion pressures. The model is based on three levels of filtration control: short filtration phases due to respiratory cycle of the whole lung are modulated by bidirectional bronchiolo-pulmonar shunting independently in each small vascular unit, while fluid evaporation from alveolar groups further tunes local filtration. These mechanisms are used to describe a self-sustaining regulator that allows optimal fluid traffic in different settings. The proposed concept is used to describe development of pulmonary edema in several clinical entities (exercise in wet or dry climate, left heart failure, people who rapidly move to high altitudes, acute cyanide and carbon monoxide poisoning, large pulmonary embolisms). .

  12. Pressure-temperature-fluid constraints for the Emmaville-Torrington emerald deposit, New South Wales, Australia: Fluid inclusion and stable isotope studies

    Science.gov (United States)

    Loughrey, Lara; Marshall, Dan; Jones, Peter; Millsteed, Paul; Main, Arthur

    2012-06-01

    The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich `striped' colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.

  13. Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation

    DEFF Research Database (Denmark)

    Perner, A; Faber, T

    2006-01-01

    Stroke volume variation (SVV)--as measured by the pulse contour cardiac output (PiCCO) system--predicts the cardiac output response to a fluid challenge in patients on controlled ventilation. Whether this applies to patients on pressure support ventilation is unknown....

  14. High-pressure behavior and crystal–fluid interaction under extreme conditions in paulingite [PAU-topology

    Czech Academy of Sciences Publication Activity Database

    Gatta, G. D.; Scheidl, K. S.; Pippinger, T.; Skála, Roman; Lee, J.; Miletich, R.

    2015-01-01

    Roč. 206, April (2015), s. 34-41 ISSN 1387-1811 Institutional support: RVO:67985831 Keywords : paulingite * high pressure * X-ray diffraction * compressibility * crystal–fluid interaction Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.349, year: 2015

  15. Fluid Shifts Before, During and After Prolonged Space Flight and Their Association with Intracranial Pressure and Visual Impairment

    Science.gov (United States)

    Stenger, Michael; Hargens, Alan; Dulchavsky, Scott

    2014-01-01

    Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids. Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.

  16. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    Science.gov (United States)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from

  17. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study.

    Science.gov (United States)

    Dahl, Michael K; Vistisen, Simon T; Koefoed-Nielsen, Jacob; Larsson, Anders

    2009-01-01

    Fluid responsiveness prediction is difficult in spontaneously breathing patients. Because the swings in intrathoracic pressure are minor during spontaneous breathing, dynamic parameters like pulse pressure variation (PPV) and systolic pressure variation (SPV) are usually small. We hypothesized that during spontaneous breathing, inspiratory and/or expiratory resistors could induce high arterial pressure variations at hypovolemia and low variations at normovolemia and hypervolemia. Furthermore, we hypothesized that SPV and PPV could predict fluid responsiveness under these conditions. Eight prone, anesthetized and spontaneously breathing pigs (20 to 25 kg) were subjected to a sequence of 30% hypovolemia, normovolemia, and 20% and 40% hypervolemia. At each volemic level, the pigs breathed in a randomized order either through an inspiratory and/or an expiratory threshold resistor (7.5 cmH2O) or only through the tracheal tube without any resistor. Hemodynamic and respiratory variables were measured during the breathing modes. Fluid responsiveness was defined as a 15% increase in stroke volume (DeltaSV) following fluid loading. Stroke volume was significantly lower at hypovolemia compared with normovolemia, but no differences were found between normovolemia and 20% or 40% hypervolemia. Compared with breathing through no resistor, SPV was magnified by all resistors at hypovolemia whereas there were no changes at normovolemia and hypervolemia. PPV was magnified by the inspiratory resistor and the combined inspiratory and expiratory resistor. Regression analysis of SPV or PPV versus DeltaSV showed the highest R2 (0.83 for SPV and 0.52 for PPV) when the expiratory resistor was applied. The corresponding sensitivity and specificity for prediction of fluid responsiveness were 100% and 100%, respectively, for SPV and 100% and 81%, respectively, for PPV. Inspiratory and/or expiratory threshold resistors magnified SPV and PPV in spontaneously breathing pigs during hypovolemia

  18. Effect of ventilation pressure on alveolar fluid clearance and beta-agonist responses in mice.

    Science.gov (United States)

    Yu, Erin N Z; Traylor, Zachary P; Davis, Ian C

    2009-10-01

    High tidal volume ventilation is detrimental to alveolar fluid clearance (AFC), but effects of ventilation pressure (P) on AFC are unknown. In anesthetized BALB/c mice ventilated at constant tidal volume (8 ml/kg), mean AFC rate was 12.8% at 6 cmH(2)O P, but increased to 37.3% at 18 cmH(2)O P. AFC rate declined at 22 cmH(2)O P, which also induced lung damage. Increased AFC at 18 cmH(2)O P did not result from elevated plasma catecholamines, hypercapnia, or hypocapnia, but was due to augmented Na(+) and Cl(-) absorption. PKA agonists and beta-agonists stimulated AFC at 10 cmH(2)O P by upregulating amiloride-sensitive Na(+) transport. However, at 18 cmH(2)O P, PKA agonists and beta-agonists reduced AFC. At 15 cmH(2)O P, the AFC rate was intermediate (mean 26.6%), and forskolin and beta-agonists had no effect. Comparable P dependency of AFC and beta-agonist responsiveness was found in C57BL/6 mice. The effect on AFC of increasing P to 18 cmH(2)O was blocked by adenosine deaminase or an A(2b)-adenosine receptor antagonist, and could be mimicked by adenosine in mice ventilated at 10 cmH(2)O P. Modulation of adenosine signaling also resulted in altered responsiveness to beta-agonists. These findings indicate that, in the normal mouse lung, basal AFC rates and responses to beta-agonists are impacted by ventilation pressure in an adenosine-dependent manner.

  19. Investigation of the effects of time periodic pressure and engpotential gradients on viscoelastic fluid flow in circular narrow confinements

    DEFF Research Database (Denmark)

    Nguyen, Trieu; van der Meer, Devaraj; van den Berg, Albert

    2017-01-01

    -Boltzmann equation, together with the incompressible Cauchy momentum equation under no-slip boundary conditions for viscoelastic fluid in the case of a combination of time periodic pressure-driven and electro-osmotic flow. The resulting solutions allow us to predict the electrical current and solution flow rate...... conversion applications. We also found that time periodic electro-osmotic flow in many cases is much stronger enhanced than time periodic pressure-driven flow when comparing the flow profiles of oscillating PDF and EOF in micro-and nanochannels. The findings advance our understanding of time periodic......In this paper we present an in-depth analysis and analytical solution for time periodic hydrodynamic flow (driven by a time-dependent pressure gradient and electric field) of viscoelastic fluid through cylindrical micro-and nanochannels. Particularly, we solve the linearized Poisson...

  20. Carotid Atherosclerosis, Cerebrospinal Fluid Pressure, and Retinal Vessel Diameters: The Asymptomatic Polyvascular Abnormalities in Community Study.

    Directory of Open Access Journals (Sweden)

    Jing Yan Yang

    Full Text Available To assess relationships between carotid artery atherosclerosis and retinal arteriolar and venular diameters.The community-based longitudinal Asymptomatic Polyvascular Abnormalities Community Study (APAC included a sub-population of the Kailuan study which consisted of 101,510 employees and retirees of a coal mining industry. Based on the Chinese National Census 2010 and excluding individuals with history of cerebrovascular ischemic events, 4004 individuals were included into the APAC. All participants underwent a detailed clinical examination including blood laboratory tests and carotid artery duplex ultrasound examination. The cerebrospinal fluid pressure (CSFP was estimated using the formula: CSFP[mmHg] = 0.44xBody Mass Index[kg/m2]+0.16xDiastolic Blood Pressure[mmHg]-0.18 x Age[Years]-1.91.In multivariable analysis (goodness of fit r2:0.12, thicker retinal arteries were associated with a thinner common carotid artery intima-media thickness (IMT (P = 0.002; standardized regression coefficient beta:-0.06; non-standardized regression coefficient B:-6.92;95% confidence interval (CI:-11.2,-2.61 after adjusting for thicker retinal nerve fiber layer (P<0.001;beta:0.18;B:0.35;95%CI:0.28,0.42, lower diastolic blood pressure (P<0.001;beta:-0.16;B:-0.17;95%CI:-0.21,-0.3, younger age (P<0.001;beta:-0.08; B:-0.16;95%;CI:-0.25,-0.08, and less abdominal circumference (P = 0.003;beta:-0.06;B:-0.11;95%CI:-0.18,-0.03. Thicker retinal vein diameter was associated (r = 0.40 with higher estimated CSFP (P<0.001;beta:0.09;B:0.78;95%CI:0.47,1.08 after adjusting for wider retinal arteries (P<0.001;beta:0.27;B:0.36;95%CI:0.31,0.41, thicker retinal nerve fiber layer thickness (P = 0.03;beta:0.22;B:0.56;95%CI:0.46,0.65 and male gender (P<0.001;beta:-0.08;B:-3.98;95%CI:-5.88,2.09.Thinner retinal artery diameter was significantly, however weakly, associated with increased common carotid artery IMT. It suggests that retinal microvascular changes were only week indicators

  1. Pressure transduction and fluid evacuation during conventional negative pressure wound therapy of the open abdomen and NPWT using a protective disc over the intestines

    Directory of Open Access Journals (Sweden)

    Lindstedt Sandra

    2012-03-01

    Full Text Available Abstract Background Negative pressure wound therapy (NPWT has gained acceptance among surgeons, for the treatment of open abdomen, since very high closure rates have been reported with this method, compared to other kinds of wound management for the open abdomen. However, the method has occasionally been associated with increased development of fistulae. We have previously shown that NPWT induces ischemia in the underlying small intestines close to the vacuum source, and that a protective disc placed between the intestines and the vacuum source prevents the induction of ischemia. In this study we compare pressure transduction and fluid evacuation of the open abdomen with conventional NPWT and NPWT with a protective disc. Methods Six pigs underwent midline incision and the application of conventional NPWT and NPWT with a protective disc between the intestines and the vacuum source. The pressure transduction was measured centrally beneath the dressing, and at the anterior abdominal wall, before and after the application of topical negative pressures of -50, -70 and -120 mmHg. The drainage of fluid from the abdomen was measured, with and without the protective disc. Results Abdominal drainage was significantly better (p Conclusions The drainage of the open abdomen was significantly more effective when using NWPT with the protective disc than with conventional NWPT. This is believed to be due to the more even and effective pressure transduction in the open abdomen using a protective disc in combination with NPWT.

  2. Acute interstitial pneumonia

    International Nuclear Information System (INIS)

    Cuervo M, Francisco; Carrillo Bayona, Jorge; Ojeda, Paulina

    2004-01-01

    The paper refers to a 71 year-old patient, to who is diagnosed acute interstitial pneumonia; with square of 20 days of evolution of cough dry emetizant, fever, general uneasiness, migraine, progressive dyspnoea and lost of weight

  3. Interstitial Lung Disease

    Science.gov (United States)

    ... grouped together under the label of idiopathic interstitial pneumonias, the most common and deadly of which is idiopathic pulmonary fibrosis. Risk factors Factors that may make you more susceptible to ...

  4. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    Science.gov (United States)

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  5. Development of a practical animal model of photodynamic therapy using a high concentration of extracellular talaporfin sodium in interstitial fluid: influence of albumin animal species on myocardial cell photocytotoxicity in vitro.

    Science.gov (United States)

    Ogawa, Emiyu; Arai, Tsunenori

    2017-12-01

    Photodynamic reaction-induced photocytotoxicity using talaporfin sodium is inhibited by serum proteins binding to talaporfin sodium. The serum albumin binding site for talaporfin sodium differs among animal species. To identify a practical animal therapeutic model, we studied the ability of human, canine, bovine, and porcine albumin to influence talaporfin sodium-induced photocytotoxicity in rat myocardial cells in vitro. Human, canine, bovine, and porcine serum albumins were used. The ratio of talaporfin sodium binding, which is strongly associated with photocytotoxicity, was measured by ultrafiltration with an albumin concentration of 0.5-20 mg/ml and 20 μg/ml talaporfin sodium to mimic interstitial fluid. Rat myocardial cell lethality was measured by the WST assay 2 h after samples were exposed to a radiant exposure of 20 J/cm 2 by a red diode laser (Optical Fuel™, Sony, Tokyo, Japan) with a wavelength of 663 nm. The binding ratio dependence on albumin concentration differed among the animal species. Bovine albumin exhibited the largest difference from human albumin, with a maximum difference of 31% at 2 mg/ml albumin. The cell lethality characteristic was similar between human and canine albumin. The cell lethality dependence on albumin was not in the same order as the binding ratio. Cell lethality was lowest for human albumin with higher albumin concentrations between 5 and 20 mg/ml. There were no significant differences in cell lethality between bovine and porcine albumin and between human and canine albumin. We suggest that the canine model may be a useful animal therapeutic model for evaluating photodynamic therapy using a high concentration of the photosensitizer in the extracellular space.

  6. Unsteady MHD flow of visco-elastic Oldroydian fluid with transient pressure gradient through a rectangular channel: with a possible generalisation

    International Nuclear Information System (INIS)

    Sengupta, P.R.; Kundu, Shyamal Kumar

    2001-01-01

    In this paper, we have determined the unsteady MHD flow of visco-elastic fluid with transient pressure gradient through a rectangular channel. Here we have calculated the velocity profile of a fluid element of the titled problem theoretically and numerically. Then an empirical model of generalisation has been made as proposed by the senior author Dr P.K. Sengupta to cover a wide range of visco-elastic fluids admitting new class of generalised visco-elastic fluids. The problem of unsteady MHD flow of such visco-elastic fluids with transient pressure gradient through a rectangular channel has been calculated. From this generalisation the corresponding flow of Oldroydian first order, second order and n-th order, Maxwell first order, second order and n-th order, Rivlen-Ericksen first order, second order and n-th order fluid and first order special type of Walters fluid as well as ordinary fluids have been derived. (author)

  7. A Mathematical Model for the Analysis of the Pressure Transient Response of Fluid Flow in Fractal Reservoir

    Directory of Open Access Journals (Sweden)

    Jin-Zhou Zhao

    2015-01-01

    Full Text Available This study uses similar construction method of solution (SCMS to solve mathematical models of fluid spherical flow in a fractal reservoir which can avoid the complicated mathematical deduction. The models are presented in three kinds of outer boundary conditions (infinite, constant pressure, and closed. The influence of wellbore storage effect, skin factor, and variable flow rate production is also involved in the inner boundary conditions. The analytical solutions are constructed in the Laplace space and presented in a pattern with one continued fraction—the similar structure of solution. The pattern can bring convenience to well test analysis programming. The mathematical beauty of fractal is that the infinite complexity is formed with relatively simple equations. So the relation of reservoir parameters (wellbore storage effect, the skin factor, fractal dimension, and conductivity index, the formation pressure, and the wellbore pressure can be learnt easily. Type curves of the wellbore pressure and pressure derivative are plotted and analyzed in real domain using the Stehfest numerical invention algorithm. The SCMS and type curves can interpret intuitively transient pressure response of fractal spherical flow reservoir. The results obtained in this study have both theoretical and practical significance in evaluating fluid flow in such a fractal reservoir and embody the convenience of the SCMS.

  8. Direct measurement of cerebrospinal fluid pressure through the cochlea in a congenitally deaf child with Mondini dysplasia undergoing cochlear implantation.

    Science.gov (United States)

    Graham, J M; Ashcroft, P

    1999-03-01

    Perilymph/cerebrospinal fluid (CSF) "gushers" may occur at cochleostomy during cochlear implant surgery, particularly in patients with congenital cochlear duct malformation in which CSF in the internal auditory meatus is in direct communication with the perilymphatic space in the cochlea. The object of the study was to measure the pressure and flow of a CSF gusher at cochleostomy. The design was a preoperative pressure measurement. The setting was a multidisciplinary cochlear implant program. A 4-year-old girl with bilateral Mondini deformity undergoing cochlear implantation was studied. A size 23 FG intravenous cannula was inserted into the cochlea and connected to a pediatric drip set to form an improvised manometer. Intracochlear fluid pressure was measured at 14 cm H2O, equivalent to the normal CSF pressure that would be recorded in a child of this age at lumbar puncture. An indirect measurement of the likely size of the CSF/perilymph defect was made. This technique may allow better assessment of the risk of postoperative CSF leakage and meningitis. This simple technique of measuring the pressure in a perilymph gusher can be used to assess the need for careful sealing of the cochleostomy, to measure the reduction in pressure produced by head elevation or a spinal drain, and to assess the probable size of a defect in the lamina cribrosa.

  9. Radionuclide diagnosis of interstitial lung edema

    International Nuclear Information System (INIS)

    Khodzhibekov, M.Kh.

    1991-01-01

    Perfusion scintigraphy of the lungs has shown that a reverse direction of postural reactions of the pulmonary blood flow is observed in patients with mitral valvular disease. It is accounted for by the action of gravitation on capillary hydrostatic pressure resulting in the localization of interstitial edema in pulmonary venous hypertension mainly in the lower lung, its microcirculatory bed being compressed and the blood flow redistributed to the opposite upper lung. Therefore successive perfusion scintigraphy of the lungs in the vertical position and in the lateral position with a RP administered twice, can serve as a sensitive test for diagnosis of interstitial lung edema

  10. Dependence of dynamic fluid pressure on input acceleration of a cylindrical water storage tank under seismic excitation

    International Nuclear Information System (INIS)

    Maekawa, Akira; Shimizu, Yasutaka; Suzuki, Michiaki; Fujita, Katsuhisa

    2007-01-01

    The seismic-proof design of a large-scale cylindrical water storage tank has been an important issue for enormous earthquake. For enhancing its reliability, it is necessary to study the vibration behavior of the tank in more detail. This paper describes the results of a vibration test with a 1/10 reduced scale model of a large-scale cylindrical water storage tank, and also refers to the dynamic fluid pressure distribution and its influence on the seismic-proof design. Considering the differences between the experimental values and numerical design ones, it becomes obvious that there is a discrepancy between the positive and the negative pressures of the dynamic fluid pressure and that the dynamic fluid pressure depends on the acceleration magnitude. And it is suggested that such phenomena are caused by oval-type vibrations. They, however, have little effect on the seismic-proof design of the tank in the range of acceleration used in this study. (author)

  11. Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation.

    Science.gov (United States)

    Lesellier, E; Latos, A; de Oliveira, A Lopes

    2014-01-31

    This paper reports the development of the separation of vegetable oil triglycerides (TG) in supercritical chromatography (SFC), using superficially porous particles (SPPs). The SPP, having a small diameter (2-3μm), provide a higher theoretical plate number (N), which allows to improve separation of critical pairs of compounds. However, compared to fully porous particles of larger diameter (5μm), the pressure drop is also increased. Fortunately, supercritical fluids have a low viscosity, which allows coupling several columns to achieve high N values, while maintaining flow rate above 1ml/min, ensuring a ultra high efficiency (UHE) at low pressure (LP) (below 40MPa), with regards to the one reached with liquid and sub-two micron particles (around 100MPa). The use of two detector systems (UV and ELSD) connected in series to the UHE-LP-SFC system provides complementary responses, due to their specific detection principles. Working in a first part with three coupled Kinetex C18 columns (45cm total length), the effect of modifier nature and percentage were studied with two reference oils, argan and rapeseed, chosen for their different and well-known TG composition. The analytical method was developed from previous studies performed with fully porous particles (FPP). Optimized conditions with three Kinetex were as follows: 17°C, 12% of ACN/MeOH (90/10; v/v). With these conditions, and by using an increased length of Kinetex C18 column (60cm), another additional column was selected from ten different commercial SPP C18 bonded phases, by applying a Derringer function on varied parameters: theoretical plate number (TPN), separation index (SI) for critical pairs of peaks (the peaks of compounds difficult to separate due to subtle structural differences), the analysis duration, and the total peak number. This function normalizes the values of any parameters, between 0 and 1, from the worst value to the better, allowing to take account of various parameters in the final

  12. [Investigation of high pore fluid pressure in the Uinta Basin, Utah]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    High pore fluid pressures, approaching lithostatic, are observed in the deepest sections of the Uinta basin, Utah. The authors analyzed the cause of the anomalous overpressures with a 3-dimensional, numerical model of the evolution of the basin, including compaction disequilibrium and hydrocarbon generation as possible mechanisms. The numerical model builds the basin through time, coupling the structural, thermal and hydrodynamic evolution, and includes in situ hydrocarbon generation and migration. They used the evolution model to evaluate overpressure mechanisms and oil migration patterns for different possible conceptual models of the geologic history. Model results suggest that observed overpressures in the Uinta basin are probably caused by ongoing oil generation in strata with specific conditions of permeability, relative permeability, TOC content, and oil viscosity. They conducted a sensitivity analysis that suggests for oil generation to cause overpressures, the necessary conditions are: oil viscosity is {approximately}0.05 cP or higher, intrinsic permeability is {approximately}5 {times} 10{sup {minus}18} m{sup 2} or lower, and source rock TOC values are {approximately}0.5% or higher. The authors also analyzed hydrocarbon migration patterns in the basin and how they are affected by the basin`s structural history. Oil migration patterns produced by the model are consistent with published oil production maps: oil moves from the deep Altamont source rocks toward Redwash, the eastern Douglas Creek Arch area, and southward towards the Sunnyside tar-sands and Book Cliffs. Peak oil generation occurs from the time of maximum burial in the mid-Tertiary ({approximately}35 to {approximately}30 Ma). Most differential uplift of the basin`s flanks probably occurs well after this time, and most oil migration to the basin`s southern and eastern flanks occurs prior to uplift of these flanks. Model results show that if the basin`s flanks are uplifted too soon, reduced

  13. Comparison of Viscous and Pressure Energy Exchange in Fluid Flow Induction

    Science.gov (United States)

    1981-06-01

    that it compares energy added to the secondary fluid to total energy added to the system by the primary fluid. Eva - luation of the fluids total head...found in Reference [10]. 61 - it C. INTERACTION CHAMBER LOSSES Losses in the interaction chamber are difficult to eva - luate. Different approaches should...Lockwood, R. M., Sargent, E. R., and Beckett, J. F., "Thrust Augmented Intermittent Jet Lift-Propulsion System Pulse Reactor", Hiller Aircraft Corp

  14. Fluid Pressure Increases in Hydrothermal Systems Induced by Seismic Waves: Possible Triggers of Earthquakes and Volcanic Eruptions

    Science.gov (United States)

    Roeloffs, E.

    2002-12-01

    That seismic waves trigger microseismicity in hydrothermal settings hundreds of km from the epicenter is plausibly linked to seismic-wave-induced fluid pressure changes at these distances. Although fluid pressure decreases have been observed in diverse settings, in the hydrothermal system at Long Valley, California, that seismic waves from earthquakes increase fluid pressure or discharge. Other published data, from thermal springs in Japan, Yellowstone, and Klamath Falls, Oregon, support the idea that seismic waves have induced pressure and discharge changes and that, in hydrothermal systems, these changes are usually increases. Temperature increases in seafloor hydrothermal vents within days after earthquakes as distant as 220 km imply, moreover, that seismic waves enhance conductance of vertical fluid flow pathways. The influence of seismic waves (wavelengths of km), on hot, fluid-filled subsurface fractures (apertures of mm to cm) could proceed by several mechanisms. Local fluid flow induced at crack walls could remove mineral seals. Spatially uniform acceleration can move gas bubbles relative to denser liquid and solid phases. Thermal expansion can elevate pressure around hot fluid that has penetrated upward. By lowering effective stress and directly weakening faults that are themselves flow paths, seismic waves could initiate processes leading to volcanic eruptions or other earthquakes where sufficient subsurface magma or elastic strain energy have previously accumulated. This type of earthquake-volcano linkage could explain why volcanos statistically erupt more frequently up to 5 years after M>7 earthquakes hundreds of km distant. For example, 11 months elapsed after the Ms 7.8 Luzon (Phillipines) earthquake before Mount Pinatubo erupted on June 15, 1991, 100 km away. Steam emission and 3 M4+ earthquakes in the Pinatubo area followed within days of the Luzon event, however, and a hydrothermal explosion on April 2 started the continuous unrest that built to

  15. The effect of ascitic fluid hydrostatic pressure on albumin extravasation rate in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Parving, H H; Lassen, N A

    1981-01-01

    Overall transvascular escape rate of albumin [TERalb, i.e. the fraction of intravascular mass of albumin (IVMalb) passing to the extravascular space per unit time] was determined from the disappearance of i.v. injected radioiodinated serum albumin. Patients with tense ascites due to liver cirrhosis...... and pigs with posthepatic portal hypertension and intraperitoneally instilled fluid were studied before and after abdominal paracentesis in order to evaluate the effect of ascitic fluid hydrostatic pressure on the transvascular escape rate of albumin. TERalb of the ascitic patients (n = 6) were on average...... 7.8% IVMalb.h-1, which is somewhat higher but not significantly above normal (mean 5.6% IVMalb.h-1). After paracentesis and removal of the ascitic fluid, TERalb rose significantly to an average of 11.9% IVMalb.h-1 (P less than 0.05). The fraction of IVMalb passing into the peritoneal cavity...

  16. The Fluid Mechanics of Cancer and Its Therapy

    OpenAIRE

    Koumoutsakos Petros; Pivkin Igor; Milde Florian

    2012-01-01

    Fluid mechanics is involved in the growth progression metastasis and therapy of cancer. Blood vessels transport oxygen and nutrients to cancerous tissues provide a route for metastasizing cancer cells to distant organs and deliver drugs to tumors. The irregular and leaky tumor vasculature is responsible for increased interstitial pressure in the tumor microenvironment whereas multiscale flow structure interaction processes control tumor growth metastasis and nanoparticle mediated drug deliver...

  17. The effect of rapid maxillary expansion on pharyngeal airway pressure during inspiration evaluated using computational fluid dynamics.

    Science.gov (United States)

    Iwasaki, Tomonori; Takemoto, Yoshihiko; Inada, Emi; Sato, Hideo; Suga, Hokuto; Saitoh, Issei; Kakuno, Eriko; Kanomi, Ryuzo; Yamasaki, Youichi

    2014-08-01

    Recent evidence suggests that rapid maxillary expansion (RME) is an effective treatment of obstructive sleep apnea syndrome (OSAS) in children with maxillary constriction. Nonetheless, the effect of RME on pharyngeal airway pressure during inspiration is not clear. The purpose of this retrospective study was to evaluate changes induced by the RME in ventilation conditions using computational fluid dynamics. Twenty-five subjects (14 boys, 11 girls; mean age 9.7 years) who required RME had cone-beam computed tomography (CBCT) images taken before and after the RME. The CBCT data were used to reconstruct 3-dimensional shapes of nasal and pharyngeal airways. Measurement of airflow pressure was simulated using computational fluid dynamics for calculating nasal resistance during exhalation. This value was used to assess maximal negative pressure in the pharyngeal airway during inspiration. Nasal resistance after RME, 0.137 Pa/(cm(3)/s), was significantly lower than that before RME, 0.496 Pa/(cm(3)/s), and the maximal negative pressure in the pharyngeal airway during inspiration was smaller after RME (-48.66 Pa) than before (-124.96 Pa). Pharyngeal airway pressure during inspiration is decreased with the reduction of nasal resistance by the RME. This mechanism may contribute to the alleviation of OSAS in children. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of oxidation on base liquids of oil and synthetic-based drilling fluids at high pressure and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, K.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [Calgary Univ., AB (Canada)

    2005-07-01

    Diesels and distillates are used as a base liquid for most oil-based drilling fluids in conventional drilling and as the liquid phase in gasified liquids in some underbalanced drilling operations. They are also used as friction reducing agents to free stuck pipes. It is important to understand the true downhole rheological properties because they affect equivalent circulating density, hole cleaning, barite sag, surge/swab pressures during tripping, pump pressure and bit hydraulics. Also, gelation and high viscosity are major concerns, particularly at high temperatures. An experimental study was conducted to evaluate the effect of oxidation on some base liquids for oil-based and synthetic-based drilling fluids at high pressures and high temperatures. Gas and liquid phases were characterized and the solid phase was measured along with viscosity measurements at temperatures and pressures ranging from 20 to 152 degrees C at atmospheric pressures to 103.4 MPa. The viscosity of the liquid samples after aging was compared with that of corresponding fresh samples. The results indicate that the degree of oxidation plays an important role in increasing the sample viscosity. The increase in viscosity depends on temperature, and is more significant at low temperatures. Agitation of samples during aging with air resulted in increased amounts of solid precipitation while lowering the viscosity of the liquid phase. This study demonstrated that oxidation has an important influence on rheological properties of the oil, because it affects the mobility of the oil and therefore the recovery factor. 11 refs., 7 tabs., 22 figs.

  19. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment

    Czech Academy of Sciences Publication Activity Database

    Polovka, M.; Šťavíková, Lenka; Hohnová, Barbora; Karásek, Pavel; Roth, Michal

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 7990-8000 ISSN 0021-9673 R&D Projects: GA ČR GA203/08/1536; GA MŠk LC06023 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized fluid extraction * electron paramagnetic resonance spectroscopy * antioxidant activity Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.194, year: 2010

  20. Analytical analysis of slow and fast pressure waves in a two-dimensional cellular solid with fluid-filled cells.

    Science.gov (United States)

    Dorodnitsyn, Vladimir; Van Damme, Bart

    2016-06-01

    Wave propagation in cellular and porous media is widely studied due to its abundance in nature and industrial applications. Biot's theory for open-cell media predicts the existence of two simultaneous pressure waves, distinguished by its velocity. A fast wave travels through the solid matrix, whereas a much slower wave is carried by fluid channels. In closed-cell materials, the slow wave disappears due to a lack of a continuous fluid path. However, recent finite element (FE) simulations done by the authors of this paper also predict the presence of slow pressure waves in saturated closed-cell materials. The nature of the slow wave is not clear. In this paper, an equivalent unit cell of a medium with square cells is proposed to permit an analytical description of the dynamics of such a material. A simplified FE model suggests that the fluid-structure interaction can be fully captured using a wavenumber-dependent spring support of the vibrating cell walls. Using this approach, the pressure wave behavior can be calculated with high accuracy, but with less numerical effort. Finally, Rayleigh's energy method is used to investigate the coexistence of two waves with different velocities.

  1. Development and application of the added fluid mass and substructure techniques for integrated pressurized water reactor assembly

    International Nuclear Information System (INIS)

    Kim, Jong-Sung; Oh, Kyoung-Hoon; Lee, Kwang-Woo; Jhung, Myung-Jo

    2012-01-01

    Highlights: ► Dynamic and seismic analysis was performed about the SMART reactor assembly. ► Use of the fluid element is realistic and rational on dynamic fluid behavior. ► Substructure technique using super-elements reduces analysis time and storage volume. ► By using two methods, natural frequency reduces and is equal to the normal element. ► The assembly was designed with sufficient safety margin by the elementary techniques. - Abstract: The SMART (system-integrated advanced modular reactor), one of iPWRs (integrated pressurized water reactors), has been on the process of design in Republic of Korea. For the structural integrity of the 330MWt SMART reactor assembly against earthquake, this paper presents FE (finite element) models, and dynamic and seismic analysis results. Prior to the dynamic and seismic analysis for the iPWR assembly, elementary techniques such as added fluid mass and substructure techniques were developed for simplified models used in this work. For the added fluid mass techniques, it is found that the use of the fluid element is more realistic and rational for the fluid effect on dynamic behavior than the addition of the lumped mass. For the substructure techniques using super-elements, it is found that these techniques can avoid a long calculation time and reduce the data storage volume. The dynamic analysis was implemented for the iPWR assembly using the aforementioned elementary techniques. As a result of the dynamic analysis, natural frequency at each mode is reduced with the consideration of the fluid mass and the super-element generates the very same natural frequencies as the normal element model generates. The response spectrum and time history-based seismic analyses were performed for the iPWR assembly using the elementary techniques. It is concluded that the iPWR assembly was designed with sufficient seismic safety margins.

  2. Microstructures Indicate Large Influence of Temperature and Fluid Pressure on the Reactivation of the Alpine Fault, New Zealand

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting

  3. The suitability of discretized fluid equations to describe breakdown at atmospheric pressure

    International Nuclear Information System (INIS)

    Hitchon, W N G; Wichaidit, C

    2005-01-01

    Discretized solutions of fluid equations can fail to accurately predict breakdown of a plasma for several reasons. During breakdown, the initial density can grow very rapidly indeed. As a consequence, small errors, such as those produced by 'numerical diffusion', can be greatly magnified. We present results which demonstrate the effect of numerical diffusion in the presence of strong growth in density over time, and we propose a criterion which indicates when a discretized solution of fluid equations can be expected to describe breakdown accurately. We further discuss how fluid schemes which employ energy conservation should be limited in the size of the discreteness parameters, i.e. mesh size and time step (Δz, Δt), which can be employed. Unless (Δz, Δt) are very small, the energy is not typically calculated accurately. (Schemes which do not conserve energy exhibit dramatic failures in accuracy, however.) Throughout this work, we compare the results of the various fluid models to a semi-analytic 'capacitor' model of breakdown. The time-dependent capacitor model (TDCM) avoids the major sources of error which can occur in fluid models. The TDCM agrees well with energy-conserving schemes, when those schemes employ very small (Δz, Δt), whereas the TDCM can employ larger (Δz, Δt), well beyond values at which most fluid models fail. Finally, we investigate a class of fluid models which attempts to capture the same physics as the TDCM, to study whether the TDCM is distinct from standard fluid models, and we suggest a fluid model which overcomes some of the limitations of a standard energy-conserving scheme

  4. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Okko T Pyykkö

    Full Text Available BACKGROUND: The significance of amyloid precursor protein (APP and neuroinflammation in idiopathic normal pressure hydrocephalus (iNPH and Alzheimer's disease (AD is unknown. OBJECTIVE: To investigate the role of soluble APP (sAPP and amyloid beta (Aβ isoforms, proinflammatory cytokines, and biomarkers of neuronal damage in the cerebrospinal fluid (CSF in relation to brain biopsy Aβ and hyperphosphorylated tau (HPτ findings. METHODS: The study population comprised 102 patients with possible NPH with cortical brain biopsies, ventricular and lumbar CSF samples, and DNA available. The final clinical diagnoses were: 53 iNPH (91% shunt-responders, 26 AD (10 mixed iNPH+AD, and 23 others. Biopsy samples were immunostained against Aβ and HPτ. CSF levels of AD-related biomarkers (Aβ42, p-tau, total tau, non-AD-related Aβ isoforms (Aβ38, Aβ40, sAPP isoforms (sAPPα, sAPPβ, proinflammatory cytokines (several interleukins (IL, interferon-gamma, monocyte chemoattractant protein-1, tumor necrosis factor-alpha and biomarkers of neuronal damage (neurofilament light and myelin basic protein were measured. All patients were genotyped for APOE. RESULTS: Lumbar CSF levels of sAPPα were lower (p<0.05 in patients with shunt-responsive iNPH compared to non-iNPH patients. sAPPβ showed a similar trend (p = 0.06. CSF sAPP isoform levels showed no association to Aβ or HPτ in the brain biopsy. Quantified Aβ load in the brain biopsy showed a negative correlation with CSF levels of Aβ42 in ventricular (r = -0.295, p = 0.003 and lumbar (r = -0.356, p = 0.01 samples, while the levels of Aβ38 and Aβ40 showed no correlation. CSF levels of proinflammatory cytokines and biomarkers of neuronal damage did not associate to the brain biopsy findings, diagnosis, or shunt response. Higher lumbar/ventricular CSF IL-8 ratios (p<0.001 were seen in lumbar samples collected after ventriculostomy compared to the samples collected before the procedure

  5. Diagenesis, compaction, and fluid chemistry modeling of a sandstone near a pressure seal: Lower Tuscaloosa Formation, Gulf Coast

    Science.gov (United States)

    Weedman, S.D.; Brantley, S.L.; Shiraki, R.; Poulson, S.R.

    1996-01-01

    Petrographic, isotopic, and fluid-inclusion evidence from normally and overpressured sandstones of the lower Tuscaloosa Formation (Upper Cretaceous) in the Gulf Coast documents quartz-overgrowth precipitation at 90??C or less, calcite cement precipitation at approximately 100?? and 135??C, and prismatic quartz cement precipitation at about 125??C. Textural evidence suggests that carbonate cement dissolution occurred before the second phases of calcite and quartz precipitation, and was followed by precipitation of grain-rimming chlorite and pore-filling kaolinite. Geochemical calculations demonstrate that present-day lower Tuscaloosa Formation water from 5500 m depth could either dissolve or precipitate calcite cements in model simulations of upward water flow. Calcite dissolution or precipitation depends on PCO2 variability with depth (i.e., whether there is one or two-phase flow) or on the rate of generation of CO2 with depth. Calculations suggest that 105-106 rock volumes of water are required to flow through the section to precipitate 1-10% calcite cement. Compaction analysis suggests that late-stage compaction occurred in normally pressured sandstones after dissolution of carbonate cements, but was hindered in overpressured sandstones despite the presence of high porosity. These results document the inhibition of compaction by overpressured fluids and constrain the timing of pressure seal formation. Modeling results demonstrate that the proposed paragenesis used to constrain timing of pressure seal formation is feasible, and that most of the cement diagenesis occurred before the pressure seal became effective as a permeability barrier.

  6. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  7. Hydrostatic fluid pressure in the vestibular organ of the guinea pig

    NARCIS (Netherlands)

    Park, Jonas J. -H.; Boeven, Jahn J.; Vogel, Stefan; Leonhardt, Steffen; Wit, Hero P.; Westhofen, Martin

    Since inner ear hair cells are mechano-electric transducers the control of hydrostatic pressure in the inner ear is crucial. Most studies analyzing dynamics and regulation of inner ear hydrostatic pressure performed pressure measurements in the cochlea. The present study is the first one reporting

  8. Interstitial Cystitis / Painful Bladder Syndrome

    Science.gov (United States)

    ... Vesicoureteral Reflux The Urinary Tract & How It Works Interstitial Cystitis (Painful Bladder Syndrome) View or Print All Sections Definition & Facts Interstitial cystitis (IC) is a chronic, or long-lasting, condition ...

  9. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel

    2017-02-01

    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  10. Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network

    Science.gov (United States)

    Majumdar, Alok K. (Inventor)

    2009-01-01

    A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.

  11. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors

    International Nuclear Information System (INIS)

    Ozturk, Deniz; Yonucu, Sirin; Yilmaz, Defne; Unlu, Mehmet Burcin

    2015-01-01

    Elevated interstitial fluid pressure is one of the barriers of drug delivery in solid tumors. Recent studies have shown that normalization of tumor vasculature by anti-angiogenic factors may improve the delivery of conventional cytotoxic drugs, possibly by increasing blood flow, decreasing interstitial fluid pressure, and enhancing the convective transvascular transport of drug molecules. Delivery of large therapeutic agents such as nanoparticles and liposomes might also benefit from normalization therapy since their transport depends primarily on convection. In this study, a mathematical model is presented to provide supporting evidence that normalization therapy may improve the delivery of 100 nm liposomes into solid tumors, by both increasing the total drug extravasation and providing a more homogeneous drug distribution within the tumor. However these beneficial effects largely depend on tumor size and are stronger for tumors within a certain size range. It is shown that this size effect may persist under different microenvironmental conditions and for tumors with irregular margins or heterogeneous blood supply. (paper)

  12. Fluid Pressure and Temperature Response at the Nankai Trough Megasplay Fault: Initial Results of the SmartPlug Borehole Observatory

    Science.gov (United States)

    Hammerschmidt, S.; Kopf, A.; Expedition 332 Scientists, T.

    2011-12-01

    The SmartPlug is the first borehole observatory in the IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). It was installed at Site C0010 where it penetrates one of the shallow branches of the Megasplay fault to obtain pressure and temperature data from the fault and from a hydrostatic reference section. Here, a 15 months-lasting pore pressure and temperature record collected by the SmartPlug was evaluated. The main objective was to clarify the origin of transients in the data and its possible relationship to natural processes such as earthquakes, tectonic deformation or splay fault activity, as well as storms or low-pressure weather systems. After pressure and temperature data were processed properly, comparisons were made using seismic data from the Japanese F-Net and Hi-Net, theoretical travel time calculations provided by the USGS as well as earthquake lists from the ISC. Additionally, meteorological data provided by the JMA and the U.S. COAPS as well as theoretical travel time calculations for tsunamis from the U.S. NGDC were used. It can be shown that pulse-like pressure transients are related to regional/teleseismic earthquakes, originating mainly from the "Pacific Ring of Fire", from various depths and with diverse focal mechanisms. Approaching seismic waves of at least one regional earthquake led to a significant drop in the formation pressure, which is interpreted as a seismic wave-induced increase in permeability. The arrival of Rayleigh waves caused amplification of the borehole pressure, probably due to induced fluid flow. Tremor-like pressure transients are interpreted to be microseism, which is, based on pressure transient characteristics, triggered by storms or low-pressure weather systems on the open ocean. Approaching tsunamis look similar but caused longer period oscillations in the pressure record. Mainly in the seafloor pressure data distinct peaks are visible, some of which look similar to distinct peaks in the temperature data

  13. Interstitial granulomatous dermatitis (IGD)

    NARCIS (Netherlands)

    Tebeica, Tiberiu; Voicu, Cristiana; Patterson, James W.; Mangarov, Hristo; Lotti, T.; Wollina, Uwe; Lotti, Jacopo; França, Katlein; Batashki, Atanas; Tchernev, Georgi

    2017-01-01

    We report the case of a 42 years old male patient suffering from skin changes, which appeared in the last 7-8 years. Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of

  14. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within

  15. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    Science.gov (United States)

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  16. Study of intraocular pressure after 23-gauge and 25-gauge pars plana vitrectomy randomized to fluid versus air fill.

    Science.gov (United States)

    Ho, Lawrence Y; Garretson, Bruce R; Ranchod, Tushar M; Balasubramaniam, Mamtha; Ruby, Alan J; Capone, Antonio; Drenser, Kimberly A; Williams, George A; Hassan, Tarek S

    2011-06-01

    To determine if a difference in intraocular pressure (IOP) exists after small-gauge pars plana vitrectomy randomized to fluid versus 80% sterile air fill. Ninety-two eyes undergoing 23-gauge and 25-gauge transconjunctival pars plana vitrectomy were randomized to fluid versus air fill, and IOP was measured at 5 different time points. There is no difference in the mean IOP for eyes undergoing small-gauge pars plana vitrectomy randomized to fluid versus air fill after vitrectomy. Using 23-gauge instrumentation, the mean immediate and 2-hour postoperative IOPs were statistically lower than the mean preoperative IOP. The mean Postoperative Day 1 and Week 1 IOPs were statistically higher than the mean immediate postoperative IOP. Using 25-gauge instrumentation, the mean IOP was not statistically different at any time points in the 2 groups. When comparing 23-gauge with 25-gauge instrumentation, the immediate postoperative IOP was statistically lower and the rate of suture closure for sclerotomies was higher for 23-gauge vitrectomy. When performing 23-gauge or 25-gauge pars plana vitrectomy, there was no difference in mean IOP for fluid- versus air-filled eyes. However, the mean IOP in the immediate postoperative period was statistically lower, and there was a higher rate of suture closure for 23-gauge compared with 25-gauge instrumentation.

  17. Long-term Response of Cerebrospinal Fluid Pressure in Patients with Idiopathic Intracranial Hypertension - A Prospective Observational Study.

    Science.gov (United States)

    Gafoor, V Abdul; Smita, B; Jose, James

    2017-01-01

    Idiopathic intracranial hypertension (IIH) is increased intracranial pressure (ICP) with normal cerebrospinal fluid (CSF) contents, in the absence of an intracranial mass, hydrocephalus, or other identifiable causes. The current knowledge of the treatment outcome of IIH is limited, and the data on the natural history of this entity are scant. The objective of the study is to study the treatment response of IIH by serially measuring the CSF opening pressure and to delineate the factors influencing the same. A prospective observational study in a cohort of fifty patients with IIH in whom CSF opening pressure was serially measured at pre-specified intervals. The mean CSF opening pressure at baseline was 302.4 ± 51.69 mm of H 2 O (range: 220-410). Even though a higher body mass index (BMI) showed a trend toward a higher CSF opening pressure, the association was not significant ( P = 0.168). However, the age of the patient had a significant negative correlation with the CSF pressure ( P = 0.006). The maximum reduction in CSF pressure occurred in the first 3 months of treatment, and thereafter it plateaued. Remission was attained in 12 (24%) patients. BMI had the strongest association with remission ( P = 0.001). In patients with IIH, treatment response is strongly related to BMI. However, patients with normal BMI are also shown to relapse and hence should have continuous, long-term follow-up. The reduction in CSF pressure attained in the first 3 months could reflect the long-term response to treatment.

  18. A Review of the Application of Rate Theory to Simulate Vacancy Cluster Formation and Interstitial Defect Formation in Reactor Pressure Vessel Steel

    Directory of Open Access Journals (Sweden)

    Fallon Laliberte

    2015-10-01

    Full Text Available The beltline region of the reactor pressure vessel (RPV is subject to an extreme radiation, temperature, and pressure environment over several decades of operation; therefore it is necessary to understand the mechanisms through which radiation damage occurs and how it affects the mechanical and chemical properties of the RPV steel. Chemical rate theory is a mean field rate theory simulation model which applies chemistry to the evaluation of irradiation-induced embrittlement. It presents one method of analysis that may be coupled to other distinct methods, in order to analyze defect formation, ultimately providing useful information on strength, ductility, toughness and dimensional stability changes for effects such as embrittlement, reduction in ductility and toughness, void swelling, hardening, irradiation creep, stress corrosion cracking, etc. over time as materials are subjected to reactor operational irradiation. This paper serves as a brief review of rate theory fundamentals and presents several examples of research that exemplify the application and importance of rate theory in examining the effects of radiation damage on RPV steel.

  19. Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile

    Science.gov (United States)

    Gokhale, Shripad J.; Plawsky, Joel L.; Wayner, Peter C.; DasGupta, Sunando

    2004-06-01

    The thickness and curvature profiles of partially wetting condensing drops of 2-propanol on a quartz surface were measured using image analyzing interferometry and a new data analysis procedure. The profiles give fundamental insight into the phenomena of phase change, pressure gradient, fluid flow and spreading in a condensing drop, and the physics of interfacial phenomena in the contact line region of a polar fluid. The precursor adsorbed film and interfacial slope (a measure of the contact angle) and curvature profiles are consistent with previous concepts based on interfacial models. The curvature profiles, which were obtained using a new data reduction procedure, clearly demonstrate the convex nature of the drop near the thicker part (negative value of curvature), whereas, in the thinner region, the drop is concave (positive curvature) where the partially wetting liquid merges with a flat adsorbed film. The pressure profiles inside the drop are calculated from the augmented Young-Laplace equation showing that the pressure gradient increases with an increase in the spreading velocity (rates of condensation) to support the higher liquid flow rates associated with the growth of the drop. Internal flow is towards the point of maximum positive curvature from both the thin film and convex regions. Apolar and polar components of the spreading coefficient help describe the interfacial phenomena occurring. The experimental techniques are relatively simple but very revealing.

  20. Linearized formulation for fluid-structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface

    Science.gov (United States)

    Schotté, J.-S.; Ohayon, R.

    2013-05-01

    To control the linear vibrations of structures partially filled with liquids is of prime importance in various industries such as aerospace, naval, civil and nuclear engineering. It is proposed here to investigate a linearized formulation adapted to a rational computation of the vibrations of such coupled systems. Its particularity is to be fully Lagrangian since it considers the fluid displacement field with respect to a static equilibrium configuration as the natural variable describing the fluid motion, as classically done in structural dynamics. As the coupled system considered here is weakly damped in the low frequency domain (low modal density), the analysis of the vibrations of the associated undamped conservative system constitutes the main objective of this paper. One originality of the present formulation is to take into account the effect of the pressurization of the tank on the dynamics of the system, particularly in the case of a compressible liquid. We propose here a new way of deriving the linearized equations of the coupled problem involving a deformable structure and an inner inviscid liquid with a free surface. A review of the classical case considering a heavy incompressible liquid is followed by an application to the new case involving a light compressible liquid. A solution procedure in the frequency domain is proposed and a numerical discretization using the finite element method is discussed. In order to reduce the computational costs, an appropriate reduced order matrix model using modal synthesis approach is also presented.

  1. Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Hu, Wei; Lin, Chang-Wen; Liu, Bing-Wei; Hu, Wei-Hang; Zhu, Ying

    2014-01-16

    Extravascular lung water (EVLW) is a sensitive prognostic indicator of pulmonary edema. Thus, EVLW may be an advantageous method of fluid management. This study aims to evaluate the outcomes of using EVLW and pulmonary artery wedge pressure (PAWP) as strategies for fluid management in patients with acute respiratory distress syndrome (ARDS). Twenty-nine patients were randomly divided into the EVLW and PAWP groups. The survival rate, ICU (Intensive Care Unit) length of stay, duration of mechanical ventilation, acute lung injury scores, and oxygenation index of the EVLW and PAWP groups were compared. No significant difference in the survival rates at 28 and 60 days (d) after treatment was found between the two groups (p = 0.542). The duration of mechanical ventilation and ICU length of stay were significantly lower (p management improved clinical results in patients with ARDS better than PAWP.

  2. Interstitial lung diseases in children

    Directory of Open Access Journals (Sweden)

    N. S. Lev

    2014-01-01

    Full Text Available The paper deals with interstitial lung diseases in children. It gives an update and the results of the authors’ observations of different forms of interstitial lung diseases. Particular emphasis is placed on hypersensitive pneumonitis as the most common nosological entity among childhood interstitial lung diseases. The authors followed up 186 children with hypersensitive pneumonitis. They present the most important clinical, functional, radiological, and immunological diagnostic signs of this disease and consider its prognosis. In addition, there is evidence for other rare forms of interstitial lung diseases (idiopathic interstitial pneumonia, idiopathic pulmonary hemosiderosis, etc. in children. 

  3. Effects of 10 days 6 degrees head-down tilt on the responses to fluid loading and lower body negative pressure

    Science.gov (United States)

    Baisch, F.; Heer, M.; Beck, L.; Blomqvist, C. G.; Kropp, J.; Schulz, H.; Hillebrecht, A.; Meyer, M.

    1991-01-01

    In an international collaborative project six normal male subjects were studied before, during and after 10 days 6 degrees HDT. Fluid intake was controlled at 40 ml/(kgbw day). Urine volume and body weight were determined daily. Fluid loading and LBNP were performed in all three phases of the study. Body weight diminished by 2.6% because of fluid loss. Blood volume diminished by 13%. The responses to fluid loading were similar in the three phases of the study. Sixty minutes after end of infusion only 5.5% of the infused saline remained in the intravascular compartment. Excess interstitial fluid was eliminated in the next 24 hs but a negative balance was recorded also in the following day. The compliance of the lower limbs expressed as the rate of limb volume change/unit LBNP change was increased at the end of the HDT phase and during the post HDT phase. The set point of intravascular volume was defended, as shown by the response to FL. HDT increased the compliance of the lower limbs.

  4. The scaling of burnout data for a single fluid at a fixed pressure

    International Nuclear Information System (INIS)

    Kirby, G.J.

    1966-12-01

    The success of the scaling factor concept in linking burnout measurements made in two different fluids has been amply demonstrated. This memorandum investigates the possibility of linking measurements made on two different systems in the same fluid. It seems that good accuracy may be obtained for systems whose linear dimensions differ by as much as a factor of two; this offers the possibility of saving very substantial amounts of power in testing reactor fuel element. A novel conclusion is that systems do not need to be geometrically similar in order to be linked by scaling factors. (author)

  5. The role of fluid pressure on frictional behavior at the base of the seismogenic zone

    Science.gov (United States)

    Hirth, Greg; Beeler, Nicholas M.

    2015-01-01

    To characterize stress and deformation style at the base of the seismogenic zone, we investigate how the mechanical properties of fluid-rock systems respond to variations in temperature and strain rate. The role of fluids on the processes responsible for the brittle-ductile transition in quartz-rich rocks has not been explored at experimental conditions where the kinetic competition between microcracking and viscous flow is similar to that expected in the Earth. Our initial analysis of this competition suggests that the effective stress law for sliding friction should not work as efficiently near the brittle-ductile transition as it does at shallow conditions

  6. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    Science.gov (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  7. Lumbar drainage for control of raised cerebrospinal fluid pressure in cryptococcal meningitis: case report and review.

    NARCIS (Netherlands)

    Macsween, K.F.; Bicanic, T.; Brouwer, A.E.; Marsh, H.; Macallan, D.C.; Harrison, T.S.

    2005-01-01

    Raised intracranial pressure in the absence of ventricular dilatation is common in cryptococcal meningitis and associated with increased mortality. We report the case of a patient with HIV-associated cryptococcal meningitis, who developed increasing CSF pressure and visual impairment on therapy

  8. High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids.

    Science.gov (United States)

    Im, Junhyuck; Yim, Narae; Kim, Jaheon; Vogt, Thomas; Lee, Yongjae

    2016-09-14

    Pressure-dependent structural and chemical changes of the zeolitic imidazolate framework compound ZIF-8 have been investigated using different pressure transmitting media (PTM) up to 4 GPa. The unit cell of ZIF-8 expands and contracts under hydrostatic pressure depending on the solvent molecules used as PTM. When pressurized in water up to 2.2(1) GPa, the unit cell of ZIF-8 reveals a gradual contraction. In contrast, when alcohols are used as PTM, the ZIF-8 unit cell volume initially expands by 1.2% up to 0.3(1) GPa in methanol, and by 1.7% up to 0.6(1) GPa in ethanol. Further pressure increase then leads to a discontinuous second volume expansion by 1.9% at 1.4(1) GPa in methanol and by 0.3% at 2.3(1) GPa in ethanol. The continuous uptake of molecules under pressure, modeled by the residual electron density derived from Rietveld refinements of X-ray powder diffraction, reveals a saturation pressure near 2 GPa. In non-penetrating PTM (silicone oil), ZIF-8 becomes amorphous at 0.9(1) GPa. The structural changes observed in the ZIF-8-PTM system under pressure point to distinct molecular interactions within the pores.

  9. Ab initio molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2017-11-01

    Full Text Available Properties of H2O and CO2 fluid and their mixtures under extreme pressures and temperatures are poorly known yet critically important in a number of applications. Several hundreds of first-principles molecular dynamics (FPMD runs have been performed to obtain the pressure-volume-temperature (P-V-T data on supercritical H2O, CO2, and H2O-CO2 mixtures. The pressure-temperature (P-T range are from 0.5 GPa to 104 GPa (48.5 GPa for CO2 and from 600 K to 4000 K. Based on these data, we evaluate several existing equations of state (EOS for the fluid H2O, CO2, and H2O-CO2 mixture. The results show that the EOS for H2O from Belonoshko et al. [Geochim. Cosmochim. Acta 55, 381–387; Geochim. Cosmochim. Acta 55, 3191–3208; Geochim. Cosmochim. Acta 56, 3611–3626; Comput. Geosci. 18, 1267–1269] not only can be used in the studied P-T range but also is accurate enough to be used for prediction of P-V-T data. In addition, IAPWS-95 EOS for H2O shows excellent extrapolation behavior beyond 1.0 GPa and 1273 K. However, for the case of CO2, none of the existing EOS produces data in agreement with the FPMD results. We created new EOS for CO2. The precision of the new EOS is tested by comparison to the calculated P-V-T data, fugacity coefficient of the CO2 fluid derived from high P-T experimental data as well as to the (very scarce experimental volumetric data in the high P-T range. On the basis of our FPMD data we created a new EOS for H2O-CO2 mixture. The new EOS for the mixture is in reasonable agreement with experimental data.

  10. Ab initio molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range

    Science.gov (United States)

    Fu, Jie; Zhao, Jijun; Plyasunov, Andrey V.; Belonoshko, Anatoly B.

    2017-11-01

    Properties of H2O and CO2 fluid and their mixtures under extreme pressures and temperatures are poorly known yet critically important in a number of applications. Several hundreds of first-principles molecular dynamics (FPMD) runs have been performed to obtain the pressure-volume-temperature (P-V-T) data on supercritical H2O, CO2, and H2O-CO2 mixtures. The pressure-temperature (P-T) range are from 0.5 GPa to 104 GPa (48.5 GPa for CO2) and from 600 K to 4000 K. Based on these data, we evaluate several existing equations of state (EOS) for the fluid H2O, CO2, and H2O-CO2 mixture. The results show that the EOS for H2O from Belonoshko et al. [Geochim. Cosmochim. Acta 55, 381-387; Geochim. Cosmochim. Acta 55, 3191-3208; Geochim. Cosmochim. Acta 56, 3611-3626; Comput. Geosci. 18, 1267-1269] not only can be used in the studied P-T range but also is accurate enough to be used for prediction of P-V-T data. In addition, IAPWS-95 EOS for H2O shows excellent extrapolation behavior beyond 1.0 GPa and 1273 K. However, for the case of CO2, none of the existing EOS produces data in agreement with the FPMD results. We created new EOS for CO2. The precision of the new EOS is tested by comparison to the calculated P-V-T data, fugacity coefficient of the CO2 fluid derived from high P-T experimental data as well as to the (very scarce) experimental volumetric data in the high P-T range. On the basis of our FPMD data we created a new EOS for H2O-CO2 mixture. The new EOS for the mixture is in reasonable agreement with experimental data.

  11. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available In this paper, we study the influence of heat sink (or source on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  12. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    Science.gov (United States)

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  13. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    Science.gov (United States)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  14. Pressure Feedback in Fluid Power Systems--Active Damping Explained and Exemplified

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.

    2018-01-01

    Fluid power systems are inherently nonlinear and typically suffer from very poor damping. Despite these characteristics, it is not uncommon that traditional linear type controllers are applied. This typically results in conservative adjustment of the controllers, or when more advanced controllers...

  15. Respiratory muscle function in interstitial lung disease.

    Science.gov (United States)

    Walterspacher, Stephan; Schlager, Daniel; Walker, David J; Müller-Quernheim, Joachim; Windisch, Wolfram; Kabitz, Hans-Joachim

    2013-07-01

    Interstitial lung diseases limit daily activities, impair quality of life and result in (exertional) dyspnoea. This has mainly been attributed to a decline in lung function and impaired gas exchange. However, the contribution of respiratory muscle dysfunction to these limitations remains to be conclusively investigated. Interstitial lung disease patients and matched controls performed body plethysmography, a standardised 6-min walk test, volitional tests (respiratory drive (P0.1), global maximal inspiratory mouth occlusion pressure (PImax), sniff nasal pressure (SnPna) and inspiratory muscle load) and nonvolitional tests on respiratory muscle function and strength (twitch mouth and transdiaphragmatic pressure during bilateral magnetic phrenic nerve stimulation (TwPmo and TwPdi)). 25 patients and 24 controls were included in the study. PImax and SnPna remained unaltered (both p>0.05), whereas P0.1 and the load on the inspiratory muscles were higher (both prespiratory muscle strength remains preserved. Central respiratory drive and the load imposed on the inspiratory muscles are increased. Whether impaired respiratory muscle function impacts morbidity and mortality in interstitial lung disease patients needs to be investigated in future studies.

  16. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    Science.gov (United States)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the

  17. Sudden cerebral depression detected by bispectral index monitoring in cryptococcal meningitis with elevated near-fatal cerebrospinal fluid pressure.

    Science.gov (United States)

    Matsumoto, Hironori; Annen, Suguru; Umakoshi, Kensuke; Takeba, Jun; Kikuchi, Satoshi; Nakabayashi, Yuki; Moriyama, Naoki; Ohshita, Muneaki; Aibiki, Mayuki

    2017-07-01

    An increase in cerebrospinal fluid pressure (CSFP) is usually prominent in cryptococcal meningitis, which has a high mortality rate, so aggressive management to control CSFP is crucial. In this case, a 40-year-old-man survived cryptococcal meningitis treated with continuous spinal drainage under bispectral index (BIS) monitoring. He unexpectedly showed hypertension, went into a coma, and even loss his light reflexes due to CSFP elevation. His BIS values had abruptly dropped before developing these symptoms, but dramatically recovered after lumbar puncture drainage, suggesting that BIS monitoring could reflect cerebral function changes due to CSFP alternations. Inducing continuous spinal drainage to control CSFP provided stable control of blood pressure and brain activity, which was continuously monitored by BIS, enabling us to provide prompt treatment. Cerebral depressions due to elevated CSFP may suddenly develop, so continuous spinal drainage is needed for preventing catastrophic events. Bispectral index could be useful for detecting early changes from CSFP elevation in meningitis cases with intracranial hypertension.

  18. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi

    2015-12-01

    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  19. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    International Nuclear Information System (INIS)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan; Xu, Hongwu; Zhu, Jinlong; Page, Katharine

    2014-01-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage

  20. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Science.gov (United States)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    Science.gov (United States)

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  2. Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength

    Science.gov (United States)

    Colgate, Stirling A.

    1983-01-01

    A finite region of overpressure can be created in solid underground formations by the periodic injection of a fluid that has finite gel strength that subsequently, after each injection, partially sets--i.e., equivalently becomes a very much stronger gel. A region of overpressure is a region in which the static, locked in pressure is larger than what was there before. A region of overpressure can be used to prevent a roof of a tunnel from caving by adding compressive stresses in the roof. A sequence of regions of overpressure can be used to lift an arch or dome underground, squeeze off water or gas flows, stabilize dams, foundations, large underground rooms, etc. In general, the stress or pressure distribution in rock can be altered and engineered in a fashion that is more advantageous than what would have been the case without overstressing.

  3. Interventional MR: interstitial therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Mack, M.G.; Straub, R.; Engelmann, K.; Eichler, K. [Dept. of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Frankfurt am Main (Germany); Mueller, P.K. [Department of Radiology, Virchow, Humboldt Univ. of Berlin (Germany)

    1999-10-01

    The rationale and results for interstitial therapies via interventional MRI in the treatment of tumors in various regions are presented. Different interstitial treatment techniques are presented based on varying technologies both for tumor ablation and treatment monitoring. Data are presented based on 335 patients, 29-84 years of age (mean age 59 years, 196 men and 139 women) with a total of 932 liver tumors, 16 head and neck tumors and 14 abdominal recurrent pelvic and lymphatic tumors. All lesions had been treated with MR-guided laser-induced interstitial thermotherapy (LITT) via 2516 laser applications and 1856 cannulations. Data in the literature are extremely varying depending on author experience, treatment technique, and the included patient material. In our patient material we were able to achieve a local tumor control of 96.7 % depending on the size of the tumorous lesion, the topographical relationship, and the applied laser parameters. The overall cumulative survival rate of patients with liver metastases was 45.74 months (median 40.97 months, 95 % confidence interval 31.42-50.52). The cumulative survival rate of the patient group with hepatic metastases of colorectal carcinoma was 42.71 months (median 39.33 months, 95 % confidence interval 33.26-45.37). In patients with head and neck tumors a relevant reduction in clinically relevant symptoms such as pain, swallowing disorders, or nervous compression was achieved in 11 of 15 patients treated with LITT. In 14 soft tissue tumors, such as pelvic tumor recurrence and lymph node metastases, a local tumor control was obtained in 68 % of lesions. Interstitial therapies under interventional MRI guidance, such as LITT, results in a high local tumor control with an improved survival rate. (orig.) With 7 figs., 28 refs.

  4. Cerebrospinal fluid pulse pressure and craniospinal dynamics : a theoretical, clinical and experimental study

    NARCIS (Netherlands)

    C.J.J. Avezaat (Cees); J.H.M. van Eijndhoven (Johannes Hubertus Marcellianus)

    1984-01-01

    textabstractSince the introduction of continuous recording of intracranial pressure (ICP) in neurosurgical practice (Guillaume and Janny, 1951; Lundberg, 1960) this method has greatly contributed to clinical research in the field of intracranial hypertension. Numerous publications have enriched the

  5. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  6. Interstitial Granulomatous Dermatitis (IGD

    Directory of Open Access Journals (Sweden)

    Tiberiu Tebeica

    2017-07-01

    Full Text Available We report the case of a 42 years old male patient suffering from skin changes , which appeared in the last 7-8 years.  Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of lymphocytes and histiocytes dispersed among collagen bundles, with variable numbers of neutrophils scattered throughout. Some histiocytes were clustered in poorly formed granuloma that included rare giant cells, with discrete Palisades and piecemeal collagen degeneration, but without mucin deposition or frank necrobiosis of collagen. The clinical and histologic findings were supportive for interstitial granulomatous dermatitis. Interstitial granulomatous dermatitis (IGD is a poorly understood entity that was regarded by many as belonging to the same spectrum of disease or even synonym with palisaded and neutrophilic granulomatous dermatitis (PNGD. Although IGD and PNGD were usually related to connective tissue disease, mostly rheumatoid arthritis, some patients with typical histologic findings of IGD never develop autoimmune disorders, but they have different underlying conditions, such as metabolic diseases, lymphoproliferative disorders or other malignant tumours. These observations indicate that IGD and PNGD are different disorders with similar manifestations.

  7. Fluid pressure, sediment compressibility, and secular and transient strain in subduction prisms: Results from ODP CORK borehole hydrologic observatories

    Science.gov (United States)

    Davis, E. E.; Becker, K.

    2005-12-01

    Instruments for long-term hydrogeological monitoring in Ocean Drilling Program boreholes have been installed in five subduction zone settings, including Cascadia, Barbados, Mariana, Costa Rica, and Nankai. Pressure records reveal a wide range of average formation states that are consistent with formation permeability and proximity to sources of formation fluid. For example, near-hydrostatic pressures (excess pore-pressure ratio λ* ~ 0) are observed in the silty parts of the Nankai accretionary prism and in the upper oceanic crust beneath the Costa Rica prism, where well-drained conditions are inferred to be present, and elevated pressures (λ* up to 0.5) have been recorded in finer-grained sedimentary sections near the toe of prisms (e.g., at the level of the decollement in the fine-grained part of the Barbados accretionary prism). In no instances have high pressures (approaching lithostatic, λ* = 1) been observed, although operational difficulties have thus far precluded installations in underthrust sediment sequences where the highest average pressures are expected to be maintained. Records often reveal non-steady behavior, with variations occurring over a broad frequency range. Tidal-frequency variations present in all records are the consequence of oceanographic loading at the seafloor. The amplitude of these signals provide constraints on formation compressibility. Estimated values vary with depth and consolidation state, and range from 5 x 10-9 to 3.5 x 10-10 Pa-1. Once these signals are removed, other transients can be observed, including ones correlated with both seismic and aseismic deformation. Secular strain has been seen in hydrologically isolated parts of the formations at several sites. At the Mariana forearc site, seismic-frequency pressure variations and persistent positive pressure changes were observed at the time of two large (Mb ~ 7.0) deep (~ 70 km) earthquakes located roughly 200 km away; these signals are inferred to reflect local formation

  8. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method.

    Science.gov (United States)

    Misiulis, Edgaras; Džiugys, Algis; Navakas, Robertas; Striūgas, Nerijus

    2017-05-01

    Accurate and clinically safe measurements of intracranial pressure (ICP) are crucial for secondary brain damage prevention. There are two methods of ICP measurement: invasive and noninvasive. Invasive methods are clinically unsafe; therefore, safer noninvasive methods are being developed. One of the noninvasive ICP measurement methods implements the balance principle, which assumes that if the velocity of blood flow in both ophthalmic artery segments - the intracranial (IOA) and extracranial (EOA) - is equal, then the acting ICP on the IOA and the external pressure (Pe) on the EOA are also equal. To investigate the assumption of the balance principle, a generalized computational model incorporating a fluid-structure interaction (FSI) module was created and used to simulate noninvasive ICP measurement by accounting for the time-dependent behavior of the elastic internal carotid (ICA) and ophthalmic (OA) arteries and their interaction with pulsatile blood flow. It was found that the extra balance pressure term, which incorporates the hydrodynamic pressure drop between measurement points, must be added into the balance equation, and the corrections on a difference between the velocity of blood flow in the IOA and EOA must be made, due to a difference in the blood flow rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    International Nuclear Information System (INIS)

    Liu, Q Z; Yang, K; Li, D Y; Gong, R Z

    2013-01-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow

  10. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    Science.gov (United States)

    Liu, Q. Z.; Yang, K.; Y Li, D.; Gong, R. Z.

    2013-12-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow.

  11. Numerical analysis of fluid resistance exerted on vibrating micro-sphere controlled by optical radiation pressure

    Science.gov (United States)

    Tanaka, Shimpei; Takaya, Yasuhiro; Hayashi, Terutake

    2008-08-01

    With the recent development of microfabrication technology, the measurement technology to evaluate geometric quantities is demanded to assure their accuracy. In order to measure the 3D shape of these microcomponents, a novel nano-CMM system has been developed based on an oscillated probing technique, which uses an optically trapped particle. The particle as a probe is trapped by focused laser light using an objective in the air. The trapped particle is laterally oscillated or circularly at the focal plane of the objective using AOD (acousto-optical deflector). The motion of the trapped particle is induced by a trapping force toward a focal spot and damped by the viscosity of the surrounding atmosphere. The frequency response of the oscillated particle typically agrees with the spring-mass-damper model. On the other hand the response disagrees with the theoretical curve of the model at high frequency range, i.e. 4.6% at 4000 Hz. It is considered the difference is caused from the numerical error for the fluid effect, which is given by the stokes formula 6πηr In this report, we construct a fluid simulation using SMAC method that calculates fluid resistance against an oscillating sphere in noninertial frame of reference. The fluid effect is investigated in order to improve the model of the sphere motion. 2D simulation indicates the same tendency in frequency response of the oscillating sphere with amplitudes of 500 nm in 100-4000 Hz frequency range. 3D simulation could improve the measurement accuracy of nano-CMM system as compared with 2D simulation.

  12. Beneficial effect of combined aspiration and interstitial laser therapy in patients with benign cystic thyroid nodules

    DEFF Research Database (Denmark)

    Døssing, H; Bennedbaek, F N; Hegedüs, L

    2006-01-01

    of the amount of aspirated cyst fluid, thereby calculating the volume of the solid part. Follow-up included ultrasound and determination of thyroid function. Pressure and cosmetic complaints were evaluated on a visual analogue scale. The median initial volume of the cystic nodule decreased from 9.6 ml [6......The aim of this study was to evaluate the effect of combined cyst aspiration and ultrasound-guided interstitial laser photocoagulation (ILP) on recurrence rate and the volume of benign cystic thyroid nodules. 10 euthyroid outpatients with a solitary and cytologically benign partially cystic thyroid...... part. Both pressure symptoms and cosmetic complaints were significantly reduced. The only side effect was mild pain or tenderness for a few days. Our study suggests that complete cyst aspiration and subsequent ultrasound-guided ILP of benign cystic thyroid nodules is a feasible and safe technique...

  13. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    Science.gov (United States)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  14. A Novel Dynamic Model for Predicting Pressure Wave Velocity in Four-Phase Fluid Flowing along the Drilling Annulus

    Directory of Open Access Journals (Sweden)

    Xiangwei Kong

    2015-01-01

    Full Text Available A dynamic pressure wave velocity model is presented based on momentum equation, mass-balance equation, equation of state, and small perturbation theory. Simultaneously, the drift model was used to analyze the flow characteristics of oil, gas, water, and drilling fluid multiphase flow. In addition, the dynamic model considers the gas dissolution, virtual mass force, drag force, and relative motion of the interphase as well. Finite difference and Newton-Raphson iterative are introduced to the numerical simulation of the dynamic model. The calculation results indicate that the wave velocity is more sensitive to the increase of gas influx rate than the increase of oil/water influx rate. Wave velocity decreases significantly with the increase of gas influx. Influenced by the pressure drop of four-phase fluid flowing along the annulus, wave velocity tends to increase with respect to well depth, contrary to the gradual reduction of gas void fraction at different depths with the increase of backpressure (BP. Analysis also found that the growth of angular frequency will lead to an increase of wave velocity at low range. Comparison with the calculation results without considering virtual mass force demonstrates that the calculated wave velocity is relatively bigger by using the presented model.

  15. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  16. Development and validation of spectroscopic methods for monitoring density changes in pressurized gaseous and supercritical fluid systems.

    Science.gov (United States)

    Blatchford, Marc A; Wallen, Scott L

    2002-04-15

    The further development of new processes utilizing liquid or supercritical CO2 as a solvent will benefit from the rational design of new CO2-philes. Understanding solvation structures and mechanisms of these molecules is an important part of this process. In such studies, determining the change in density as a function of the measured thermodynamic conditions (pressure and temperature) provides an excellent means of directly monitoring the solution conditions in the detection volume for a given technique. By integrating spectroscopic peaks, changes in area can be used to determine changes in analyte concentration in the detection volume, and thus, it should be possible to monitor the system density in situ. In the present study, we examine the utility of Raman and NMR spectroscopy as a means of following changes in solution density conditions and validate this approach in pure fluids and gases (N2 and CO2) and supercritical fluid mixtures (acetaldehyde vapor in N2). In addition, we present the design of a simple, inexpensive cell for conducting Raman and NMR measurements under moderate pressure conditions.

  17. Hydrostatic pressure and fluid-density distribution of the Culebra Dolomite member of the Rustler Formation near the Waste Isolation Pilot Plant, southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, M.E.

    1988-05-01

    The primary objectives of the Pressure - Density Survey were to obtain the middle-of-formation pressures, determine well-bore fluid densities, define well-bore fluid density stratification, and to provide, where possible, formation water density values for wells where little or no information on densities exists. The survey collected ground-water pressure and density data during three field testing periods during the years 1986 and 1987. Data were collected from 33 individual wells located in the vicinity of the WIPP Site. 18 refs., 10 figs., 10 tabs.

  18. Effect of Interstitial Media on Segregation in Vertically Vibrated Granular Mixtures

    International Nuclear Information System (INIS)

    Yuan Xiao-Xian; Wen Ping-Ping; Shi Qing-Fan; Zheng Ning; Li Liang-Sheng

    2013-01-01

    Vertically vibrated segregation behaviors of binary granular mixtures with different interstitial media are experimentally investigated. To study the role of interstitial media on the segregation, two types of interstitial fluids are adopted and the resulting phase diagrams are compared. The water-immersed granular mixture exhibits two kinds of complete segregation behaviors: Brazil nut effect and sandwich patterns, at least the latter is absent in the same air-immersed mixture. Additionally, the segregation extent is improved remarkably for the water-immersed mixture. The experimental observation further confirms that the effect of interstitial media on the relative motion of grains is one of the predominant mechanisms for granular segregation

  19. Interstitial line: sonographic finding in interstitial (cornual) ectopic pregnancy.

    Science.gov (United States)

    Ackerman, T E; Levi, C S; Dashefsky, S M; Holt, S C; Lindsay, D J

    1993-10-01

    To evaluate the relationship of the endometrial canal and decidua vera to the interstitial gestational sac and to determine if this relationship can be used to increase the predictive value of ultrasound (US) in the diagnosis of interstitial ectopic pregnancy. The US findings in 12 patients with interstitial ectopic pregnancy were reviewed. Radiologists also reviewed the cases of 40 patients with various diagnoses to assess the accuracy of the interstitial line sign. US showed a definite gestational sac in four of the 12 patients (33%); the rest had a heterogeneous mass in the cornual region. Thinning of the myometrial mantle was seen in these four patients. The gestational sac appeared eccentric in three of these but in only three of 12 (25%) overall. The endometrial canal or interstitial portion of the tube was identified in 11 of 12 patients (92%). The interstitial line had better sensitivity (80%) and specificity (98%) than eccentric gestational sac location (sensitivity, 40%; specificity, 88%) and myometrial thinning (sensitivity, 40%; specificity, 93%) for the diagnosis of interstitial ectopic pregnancy. The interstitial line sign is a useful diagnostic sign of interstitial ectopic pregnancy.

  20. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees,...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. Two types of pressure fluctuations can be considered. - 'Local ' fluctuations: They are associated to the unsteadiness downstream from the singularity. These fluctuations may be characterized by frequency spectra, correlation length and phase lags. These parameters are used to calculate forces on the walls of the circuit. - 'Acoustic' fluctuations: The singularity acts as an acoustical source; its frequency spectrum and the acoustical transfer function of the circuit are needed to evaluate the acoustical level at any point. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T.: - On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic idea initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. - On the other hand, characteristics of several singularities have been measured: (i) Intercorrelation spectra of local pressure fluctuations. (ii) Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit). (Auth.)

  1. A new role for reduction in pressure drop in cyclones using computational fluid dynamics techniques

    Directory of Open Access Journals (Sweden)

    D. Noriler

    2004-01-01

    Full Text Available In this work a new mechanical device to improve the gas flow in cyclones by pressure drop reduction is presented and discussed. This behavior occurs due to the effects of introducing swirling breakdown phenomenon at the inlet of the vortex finder tube. The device consists of a tube with two gas inlets in an appositive spiral flux that produces a sudden reduction in the tangential velocity peak responsible for practically 80 % of the pressure drop in cyclones. In turn, peak reduction causes a decrease in pressure drop by a breakdown of the swirling, and because of this the solid particles tend to move faster toward the wall , increasing collection efficiency. As a result of this phenomenon the overall performance of cyclones is improved. Numerical simulations with 3-D, transient, asymmetric and anisotropic turbulence closure by differential Reynolds stress for Lapple and Stairmand standard geometries of 0.3 m in diameter, show a reduction in pressure drop of 20 % and a shift of the tangential velocity peak toward the wall. All numerical experiments were carried out with a commercial CFD code showing numerical stability and good convergence rates with high-order interpolation schemes, SIMPLEC pressure-velocity coupling and other numerical features.

  2. Passive object detection from pressure sensing using a 2-D viscous fluid model

    Science.gov (United States)

    Clark, Jack; Park, Jeongyong; Dahl, Jason

    2017-11-01

    Embedded pressure sensors have the ability to inform an object about the surrounding flow environment. Fish demonstrate this ability through the use of their lateral line system, which enables complex behaviors (feeding, schooling, etc.) based on measures of pressure on the surface of the body. Previous work has shown that inviscid models may be used for identifying object shapes or local flow structures based on several measurements of pressure, though these models fail to capture flow structures with large viscous effects or complex object shapes. In the present study, 2-D simulations are performed for a NACA 0012 foil passing by an object on a wall. The simulations vary object shape and size, demonstrating distinct wake behavior through pressure. A classifier is developed based on the pressure time histories in order to classify object shape and size, and demonstrated to work well using under-resolved simulated data. Experiments are also performed for a subset of object shapes and sizes. The experiments include physical sources of noise such as free surface disturbances and electrical noise to demonstrate the feasibility of this object recognition process. The classifier is tested against the physical measurements and compared with the simulated results. Office of Naval Research (Grant No: N00014-16-1-2968).

  3. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005-2008)

    DEFF Research Database (Denmark)

    Fonseca, José; Dohrn, Ralf; Peper, Stephanie

    2011-01-01

    A review of systems is given, for which experimental high-pressure phase-equilibrium data were published in the period between 2005 and 2008, continuing a series of reviews. To find candidates for articles that are of interest for this survey a three-stage search strategy was used including...... a systematic search of the contents of the 17 most important journals of the field. Experimental methods for the investigation of high-pressure phase equilibria were classified, described and illustrated using examples from articles of the period between 2005 and 2008. For the systems investigated......, the reference, the temperature and pressure range of the data, and the experimental method used for the measurements is given in 54 tables. Vapor–liquid equilibria, liquid–liquid equilibria, vapor–liquid–liquid equilibria, solid–liquid equilibria, solid–vapor equilibria, solid–vapor–liquid equilibria, critical...

  4. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight

    DEFF Research Database (Denmark)

    Norsk, Peter; Asmar, Ali; Damgaard, Morten

    2015-01-01

    KEY POINTS: Weightlessness in space induces initially an increase in stroke volume and cardiac output, accompanied by unchanged or slightly reduced blood pressure.It is unclear whether these changes persist throughout months of flight.Here, we show that cardiac output and stroke volume increase...... by 35–41% between 3 and 6 months on the International Space Station, which is more than during shorter flights.Twenty-four hour ambulatory brachial blood pressure is reduced by 8–10 mmHg by a decrease in systemic vascular resistance of 39%, which is not a result of the suppression of sympathetic nervous...... activity, and the nightly dip is maintained in space.It remains a challenge to explore what causes the systemic vasodilatation leading to a reduction in blood pressure in space, and whether the unexpectedly high stroke volume and cardiac output can explain some vision acuity problems encountered...

  5. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    Science.gov (United States)

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  6. Carbonation by fluid-rock interactions at High-Pressure conditions: implications for Carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-04-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon regulating its fluxes between shallow and deep reservoirs. In subduction zones, most works have focused on subtractive processes responsible for carbon release from subducting slabs. As an example, several recent works have stressed on the importance of carbonate dissolution as a mean to mobilize large amounts of carbon in subduction zones. By contrast, little is known on additive processes such as rock carbonation at high-pressure (HP) conditions. At shallow depths (e.g. ocean floor and shallow subduction zones, i.e. geo-biosphere and the atmosphere. We report the occurrence of eclogite-facies marbles associated with metasomatic systems in HP metamorphic unit in Alpine Corsica (France). We performed a field-based study on metasomatic marbles. We will present the petrology and geochemistry that characterize carbonate metasomatism together with fluid inclusions study and pseudosection modeling. Altogether, we bring strong evidences for the precipitation of these carbonate-rich assemblages from carbonic fluids during HP metamorphism. We propose that rock carbonation can occur at HP conditions by either vein-injection or chemical replacement mechanisms. Rock carbonation indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but may have a preferential and complex pathway within the slab and along slab/mantle interface. Rock carbonation by fluid-rock interactions has a potentially great impact on the residence time of carbon and oxygen and on carbonates isotopic signature in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  7. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    Science.gov (United States)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  8. Fine sand in motion: the influence of interstitial air

    NARCIS (Netherlands)

    Homan, T.A.M.

    2013-01-01

    Sand is a granular material, and therefore it consists of individual grains arranged in a packing. The pores in-between the grains are usually filled with a fluid, in this case air. Now, is this interstitial air able to influence the behavior of the sand bed as a whole? When a ball impacts on fine,

  9. Deformation, Stress, and Pore Fluid Pressure in an Evolving Supra-salt Basin: A Finite-element Modeling

    Science.gov (United States)

    Luo, G.; Flemings, P. B.; Hudec, M. R.; Nikolinakou, M. A.

    2015-12-01

    Many driving mechanisms have been proposed to explain rise of a salt structure and formation of a minibasin. However, these studies mainly focus on qualitative discussion and analog modeling on these mechanisms. Quantitative studies such as numerical modeling are much needed. In this study, we apply a commercial finite-element software package, ELFEN, to develop two-dimensional plane-strain large-deformation coupled poromechanical finite-element models. We simulate initiation and rise of a salt wall from a flat salt body driven by differential topographic loading during sedimentation processes. We run drained and transient analyses, and investigate deformation, stress and pore fluid overpressure in the evolving supra-salt basin. Our model results show that 1) horizontal stress increases even higher than vertical stress at the flank of the salt wall and in the minibasin due to horizontal pushing out of the rising salt wall; 2) orientations of principal stresses in the minibasin rotate relative to far-field stress field; 3) overpressure varies much through different vertical profiles across the minibasin: relative to far-field overpressure, the overpressure near the salt wall and within the minibasin is largely perturbed by the rising salt wall. Through comparing our finite-element model overpressure with that predicted by traditional pore pressure prediction methods such as normal compaction trend approach and mean stress model, we find that the perturbations of pore pressure near the salt wall and within the minibasin, can not be resolved by these traditional prediction methods. Hence we propose to develop and apply a general Modified Cam Clay soil model to predict pore pressure. These results in this study help geoscientists understand near-salt deformation, stress, and pore fluid overpressure, provide insights into near-salt overpressure prediction, and provide implications for near-salt wellbore drilling programs.

  10. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees, ...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T. On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic ideas initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. On other hand, characteristics of several singularities have been measured: intercorrelation spectra of local pressure fluctuations. Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit. Experimental atmospheric air and water loops have been used. The Reynolds number has been changed between about 10 5 and 10 6 ; the Mach number between about 0,01 and 0,5. Simple laws with dimensionless parameters are formulated and can be used for the estimation of the acoustical and mechanical vibration level of a circuit with given singularities

  11. the effect of well-bore reverse flow of fluid on pressure ...

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... ABSTRACT. Well-bore storage may dominate the bottom-hole pressure profile of a well particularly for the short time situation, The dominance may be strongly accentuated in cases where reverse flow into a passive sand or casing leakage down-hole cannot be isolated from the test zone. This analysis ...

  12. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  13. Interstitial pregnancy: role of MRI

    International Nuclear Information System (INIS)

    Filhastre, M.; Lesnik, A.; Dechaud, H.; Taourel, P.

    2005-01-01

    We report the MRI features of two cases of interstitial pregnancy. In both cases, MRI was able to localize the ectopic pregnancy by showing a gestational structure surrounded by a thick wall in the upper part of the uterine wall separated from the endometrium by an uninterrupted junctional zone. Because US may confuse angular and interstitial pregnancies and because interstitial pregnancy has a particular evolutive course, MR imaging may play a key role in the diagnosis and management of women with interstitial pregnancy. (orig.)

  14. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  15. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Kempka Thomas

    2015-04-01

    Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.

  16. The role of vascular and interstitial compliance and vascular volume in the regulation of blood volume in two species of anuran.

    Science.gov (United States)

    Hillman, Stanley S; Degrauw, Edward A; Hoagland, Todd; Hancock, Thomas; Withers, Philip

    2010-01-01

    The objectives of this study were (1) to measure plasma (V(p)), blood (V(b)), extracellular (V(e)), and interstitial fluid (V(ist)) volumes using the same techniques; (2) to measure the rate of plasma turnover; and (3) to characterize the three important variables required to interpret transvascular flux at an organismal level (vascular compliance [C(vas)], interstitial compliance [C(ist)], and the whole-body transvascular filtration coefficient [F(c)]) in two species of anurans that differ in their capacity to regulate blood volume during dehydrational and hemorrhagic stress. The disappearance curve of Evans blue-labeled native plasma protein fitted a two-component exponential decay model for both species, indicating that plasma proteins exchanged quickly between two kinetically distinct compartments, V(p) and V(e). V(p) calculated using serial sampling times change data). Functionally, these circulatory/interstitial exchange variables of both anuran species exemplify a circulatory system with high rates of filtration (lymph formation) and with no capacity for transcapillary fluid uptake, hence requiring substantial lymphatic return to maintain vascular volume. The large C(ist) of both species provides a capacity to store extravascular volume with little perturbation of vascular pressure, but the resulting low interstitial pressures would create difficulties for extravascular fluid return to the dorsally located lymph hearts. The principal interspecific differences of greater V(b), V(p), V(ist), and C(vas) for the more terrestrial species, C. marinus, would stabilize cardiac function during hypovolemia (e.g., hemorrhage) and increase resistance to dehydration. This is consistent with this species' enhanced capacity to manage dehydrational and hemorrhagic challenges to blood volume regulation compared to L. catesbeiana.

  17. Morphological evaluation of heterogeneous oolitic limestone under pressure and fluid flow using X-ray microtomography

    Science.gov (United States)

    Zhang, Yihuai; Lebedev, Maxim; Al-Yaseri, Ahmed; Yu, Hongyan; Nwidee, Lezorgia N.; Sarmadivaleh, Mohammad; Barifcani, Ahmed; Iglauer, Stefan

    2018-03-01

    Pore-scale analysis of carbonate rock is of great relevance to the oil and gas industry owing to their vast application potentials. Although, efficient fluid flow at pore scale is often disrupted owing to the tight rock matrix and complex heterogeneity of limestone microstructures, factors such as porosity, permeability and effective stress greatly impact the rock microstructures; as such an understanding of the effect of these variables is vital for various natural and engineered processes. In this study, the Savonnières limestone as a carbonate mineral was evaluated at micro scales using X-ray micro-computed tomography at high resolutions (3.43 μm and 1.25 μm voxel size) under different effective stress (0 MPa, 20 MPa) to ascertain limestone microstructure and gas permeability and porosity effect. The waterflooding (5 wt% NaCl) test was conducted using microCT in-situ scanning and nanoindentation test was also performed to evaluate microscale geomechanical heterogeneity of the rock. The nanoindentation test results showed that the nano/micro scale geomechanical properties are quite heterogeneous where the indentation modulus for the weak consolidated area was as low as 1 GPa. We observed that the fluid flow easily broke some less-consolidated areas (low indentation modulus) area, coupled with increase in porosity; and consistent with fines/particles migration and re-sedimentation were identified, although the effective stress showed only a minor effect on the rock microstructure.

  18. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    International Nuclear Information System (INIS)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T.

    2017-01-01

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.

  19. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    Science.gov (United States)

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  20. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  2. Evaluation of seismic characteristic of cylindrical water storage tank by vibration test. Dependence of dynamic fluid pressure distribution on input acceleration

    International Nuclear Information System (INIS)

    Maekawa, Akira; Shimizu, Yasutaka; Suzuki, Michiaki; Fujita, Katsuhisa

    2004-01-01

    Large-scale cylindrical water storage tanks with a large ratio of radius to thickness, which means they have thin walls, cause the coupling vibration with the fluid stored in a tank and the tank structure itself. It is important for the seismic-proof design of the water storage tanks to investigate the mechanism and the influence of this coupling vibration. This paper describes the results of a vibration test with a 1/10th scale reduced model of a large scale industrial cylindrical water storage tank, and also refers to the dependence of the dynamic fluid pressure distribution on input acceleration and its influence on the seismic-proof design. First, a seismic excitation experiment was performed for the scale model tank. Secondly, a large amplitude excitation experiment was conducted using sinusoidal wave of the input excitation by various magnitude. Finally, the dynamic fluid pressure distribution, shear force and bending moment measured by the test were compared with the calculation results of the present methods of the seismic-proof design. The results of the vibration test showed the dependence of the dynamic fluid pressure distribution on the input acceleration which meant that the magnitude and the distribution of the measured pressure fluctuate non-linearly. Taking the influence of the varying pressure of the ovaling vibration on the dynamic fluid pressure distribution into consideration, it was found that the measured values of the dynamic fluid pressure distribution were approximately equaled to the calculated ones. The shearing and bending moment of the tanks, which were important on the seismic-proof design evaluation, were in approximate accordance with the results of the present methods regardless of the magnitude of the input acceleration. (author)

  3. Sphere based fluid systems

    Science.gov (United States)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  4. Computational fluid dynamic analysis of a closure head penetration in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D.R.; Schwirian, R.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-09-01

    ALLOY 600 has been used typically for penetrations through the closure head in pressurized water reactors because of its thermal compatibility with carbon steel, superior resistance to chloride attack and higher strength than the austenitic stainless steels. Recent plant operating experience with this alloy has indicated that this material may be susceptible to degradation. One of the major parameters relating to degradation of the head penetrations are the operational temperatures and stress levels in the penetration.

  5. A meshless scheme for incompressible fluid flow using a velocity-pressure correction method

    KAUST Repository

    Bourantas, Georgios

    2013-12-01

    A meshless point collocation method is proposed for the numerical solution of the steady state, incompressible Navier-Stokes (NS) equations in their primitive u-v-p formulation. The flow equations are solved in their strong form using either a collocated or a semi-staggered "grid" configuration. The developed numerical scheme approximates the unknown field functions using the Moving Least Squares approximation. A velocity, along with a pressure correction scheme is applied in the context of the meshless point collocation method. The proposed meshless point collocation (MPC) scheme has the following characteristics: (i) it is a truly meshless method, (ii) there is no need for pressure boundary conditions since no pressure constitutive equation is solved, (iii) it incorporates simplicity and accuracy, (iv) results can be obtained using collocated or semi-staggered "grids", (v) there is no need for the usage of a curvilinear system of coordinates and (vi) it can solve steady and unsteady flows. The lid-driven cavity flow problem, for Reynolds numbers up to 5000, has been considered, by using both staggered and collocated grid configurations. Following, the Backward-Facing Step (BFS) flow problem was considered for Reynolds numbers up to 800 using a staggered grid. As a final example, the case of a laminar flow in a two-dimensional tube with an obstacle was examined. © 2013 Elsevier Ltd.

  6. A FLUID PRESSURE-LOADED SINGLE CRACK LOCATED IN A ROCK MASSIF PROPAGATION TRAJECTORY CALCULATION

    Directory of Open Access Journals (Sweden)

    Cherdantsev N.V.

    2017-12-01

    Full Text Available The task solving results of a single crack filled with liquid under pressure propagation in a rock mass are presented. The rock mass is loaded with an unequal component gravitational field of stresses and represents a homogeneous elastic medium. The causes of the crack occurrence and its loading by internal pressure are not considered. In the task set, the rock mass is under conditions of a flat deformed state. In this paper, the effect of the opening on the stressed state of the rock mass and on crack propagation trajectory is not considered. The task is solved within the framework of classical concepts of the state of a crack, its stable and unstable growth in an infinite plate of brittle material, based on the theories of Griffiths - Irwin. Based on the results of the studies carried out, crack propagation trajectories are constructed for a number of the crack to the horizon inclination angle values, the characteristics associated with the strength of the enclosing rocks. An analysis is given of the critical pressures change during the crack intergrowth

  7. Calc-silicate assemblages from the Kerala Khondalite Belt, southern India: implications for pressure-temperature-fluid histories

    Science.gov (United States)

    Satish-Kumar, M.; Santosh, M.; Harley, S. L.; Yoshida, M.

    This paper reports several new localities of wollastonite- and scapolite-bearing calc-silicate assemblages from the granulite-facies supracrustal Kerala Khondalite Belt (KKB), southern India. Based on mineralogy, these calc-silicate rocks are classified into four types: Type I, lacking wollastonite and grossular; Type II, wollastonite-bearing but grossular-absent; Type III, wollastonite- and grossular-bearing; and Type IV, dolomitic marbles. Detailed petrographic studies reveal a variety of reaction textures overprinting the polygonal granoblastic peak metamorphic assemblages in these rocks. The Type II calc-silicate rocks preserve reaction textures, including meionite breaking down to anorthite-calcite-quartz, wollastonite breaking down to calcite-quartz and meionite-quartz symplectites after K-feldspar and wollastonite. Type III calc-silicate rocks have porphyroblastic and coronal grossular. Grossular-quartz coronas separating wollastonite and anorthite and the development of grossular within the anorthite-calcite-quartz pseudomorphs of meionite form important retrograde reaction textures in this type. In Type IV dolomitic marble assemblages, meionite forming in grain boundaries of calcite and feldspars, forsterite rimmed by diopside-dolomite and the formation of grossular in feldspar-rich zones are the important textures. Calculated partial petrogenetic grids in the CaOAl 2O 3SiO 2CO 2 system are used to deduce the pressure-temperature-fluid evolution of the calc-silicate rocks. The Type II assemblages provide CO 2 activity estimates of > 0.5, with a peak metamorphic temperature of about 790°C. Initial cooling followed by later CO 2 influx can be deduced from reaction modelling in these calc-silicate rocks. Type III assemblages are characterized by internal fluid buffering throughout their tectonic history. The formation of coronal grossular indicates an initial cooling from peak metamorphic temperatures of about 830°C deduced from vapour

  8. Seal assembly with anti-rotation pin for high pressure supercritical fluids

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2014-08-05

    A seal assembly for sealing a machine with a first chamber and a second chamber is provided. A rotating shaft extends through the first and second chambers, and rotates therein. The seal assembly has a seal housing, a seal ring and a seal pin. The seal housing is positionable in the machine housing. The seal housing has a seal pocket extending into a fluid side thereof, and a housing receptacle extending into an inner diameter thereof at the seal pocket. The seal ring is positionable in the seal pocket of the seal housing for forming a seal therewith. The seal ring has a ring receptacle extending into an outer diameter thereof. The ring receptacle is positionable adjacent to the housing receptacle for defining a pin hole therebetween. The seal pin is loosely positionable in the pin hole whereby movement about the seal ring is accommodated while preventing rotation thereof.

  9. Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh

    Science.gov (United States)

    Ross, Z. E.; Rollins, C.; Cochran, E. S.; Hauksson, E.; Avouac, J. P.; Ben-Zion, Y.

    2017-12-01

    A variety of physical mechanisms are thought to be responsible for the triggering and spatiotemporal evolution of aftershocks. Here we analyze a vigorous aftershock sequence and postseismic geodetic strain that occurred in the Yuha Desert following the 2010 Mw 7.2 El Mayor-Cucapah earthquake. About 155,000 detected aftershocks occurred in a network of orthogonal faults and exhibit features of two distinct mechanisms for aftershock triggering. The earliest aftershocks were likely driven by afterslip that spread away from the mainshock with the logarithm of time. A later pulse of aftershocks swept again across the Yuha Desert with square-root time dependence and swarm-like behavior; together with local geological evidence for hydrothermalism, these features suggest the events were driven by fluid diffusion. The observations illustrate how multiple driving mechanisms and the underlying fault structure jointly control the evolution of an aftershock sequence.

  10. Colloid osmotic pressure in decompensated cirrhosis. A 'mirror image' of portal venous hypertension

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1985-01-01

    Colloid osmotic pressure in plasma (IIP) and ascitic fluid (IIA) and hydrostatic pressures in the hepatoportal system were measured simultaneously in 20 patients with decompensated cirrhosis. IIP was significantly decreased (mean, 21 mm Hg, versus normal, 30 mm Hg; P less than 0.01), and IIA....../IIP (r = -0.77, P less than 0.001). WHV--IVCP was in most patients in the same order as and closely correlated to effective colloid osmotic pressure (IIP--IIA) (r = 0.88, P less than 0.001). No relationship was found between WHV--IVCP and IIP. The results indicate that a fall in colloid osmotic pressure...... in the interstitial space and ascitic fluid is related to and most likely secondary to the elevated portal pressure in decompensated cirrhosis. Effective colloid osmotic pressure may therefore be regarded as a 'mirror image' of transmural portal pressure. The role of colloid osmotic pressure in the genesis...

  11. A new approach for evaluating water hammer including the initial state of pressurization of the installation and fluid

    Directory of Open Access Journals (Sweden)

    G. Kaless

    2016-04-01

    Full Text Available The water hammer phenomenon is well known since the 19th century, while its mathematical formulation, by means of differential equations, is due to works of researchers such us Allievi (1903 and others from the beginning of the 20th century. The equations found in the technical publications produce a strange water hammer when the initial condition is defined assuming an incompressible fluid and a rigid pipe. The correct solution requires solving the water hammer equations for the initial state. When the finite difference method is applied, the initial state is solved by means of a set of non-linear equations. A novel approach is proposed including the initial state of pressurization into the governing equations and hence simplifying the calculus of the initial conditions. Furthermore, a critical reading of the deduction of the equations is done pointing out conceptual inconsistencies and proposing corrections.

  12. Design and Computational Fluid Dynamics Optimization of the Tube End Effector for Reactor Pressure Vessel Head Type VVER-1000

    International Nuclear Information System (INIS)

    Novosel, D.

    2006-01-01

    In this paper is presented development and optimization of the tube end effector design which should consist of 4 ultrasonic transducers, 4 Eddy Current's transducers and Radiation Proof Dot Camera. Basically, designing was conducted by main input requests, such as: inner diameter of a tested reactor pressure vessel head penetration tube, dimensions of a transducers and maximum allowable vertical movement of a manipulator connection rod in order to cover all inner tube surface. As is obvious, for ultrasonic testing should be provided the thin layer of liquid material (in our case water was chosen) which is necessary to make physical contact between transducer surface and investigated inner tube surface. By help of Computational Fluid Dynamics, determined were parameters of geometry, as the most important factor of transducer housing, hydraulically parameters for water supply and primary drain together implemented into this housing, movement of the end effectors (vertical and cylindrical) and finally, necessary equipment which has to provide all hydraulically and pneumatic requirements. As the cylindrical surface of the inner tube diameter was liquefied and contact between transducer housing and tested tube wasn't ideally covered, water leakage could occur in downstream direction. To reduce water leakage, which is highly contaminated, developed was second water drain by diffuser assembly which is driven by Venturi pipe, commercially called vacuum generator. Using the Computational Fluid Dynamic, obtained was optimized geometry of diffuser control volume with the highest efficiency, in other words, unobstructed fluid flux. Afterwards, the end effectors system was synchronized to the existing operable system for NDT methods all invented and designed by INETEC. (author)

  13. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004)

    DEFF Research Database (Denmark)

    Dohrn, Ralf; Peper, Stephanie; Fonseca, José

    2010-01-01

    , and the experimental method used for the measurements are given in 54 tables. Most of experimental data in the literature have been given for binary systems. Of the 1204 binary systems, 681 (57%) have carbon dioxide as one of the components. Information on 156 pure components, 451 ternary systems of which 267 (62......%) contain carbon dioxide, 150 multicomponent and complex systems, and 129 systems with hydrates is given. Experimental methods for the investigation of high-pressure phase equilibria are classified and described. Work on the continuation of the review series is under way, covering the period between 2005...

  14. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoquan, E-mail: zqchen@aust.edu.cn [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Yin, Zhixiang, E-mail: zxyin66@163.com; Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Xia, Guangqing; Liu, Minghai [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Kudryavtsev, A. A. [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation)

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  15. Correlation of inferior vena cava (ivc) diameter and central venous pressure (cvp) for fluid monitoring in icu

    International Nuclear Information System (INIS)

    Khalil, A.; Hayat, A.

    2015-01-01

    To determine intravascular fluid status in critically ill patients using inferior vena cava diameter and correlating it with central venous pressure. Study Design: Cross sectional study. Place and Duration of Study: Intensive care department, Military Hospital Rawalpindi from Jan 2013 to Aug 2013. Material and Methods: We included 115 adult patients of both genders in age range of 18 to 87 years by consecutive sampling admitted in intensive care unit. Ultrasound guided IVC diameter was assessed in supine patients. Data was simultaneously collected from the CVP catheter. Variables included in study were age, gender, CVP, IVC diameter. Results: CVP ranged from -4 to 26 cm H/sub 2/O with mean of 8 cm H/sub 2/O (SD = 6.24). Mean IVC diameters increased with increase in CVP. Correlation between CVP and max IVC diameter was moderate and significant (r = 0.53, p < 0.001). Correlation between CVP and min IVC diameter was also moderate and significant (r = 0.58, p < 0.001). Conclusion: A simple bedside sonography of inferior vena cava diameter correlates well with extremes of CVP values and can be helpful in assessing intravascular fluid status in these patients. (author)

  16. Elastic Constants of Solids and Fluids with Initial Pressure via a Unified Approach Based on Equations-of-State

    Science.gov (United States)

    Cantrell, John H.

    2014-01-01

    The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p(sub 1). For liquids the second-order elastic constants are C(sub 11) = A + p(sub 1), C(sub 12) = A -- p(sub 1), and the third-order constants are C(sub 111) = --(B + 5A + 3p(sub 1)), C(sub 112) = --(B + A -- p(sub 1)), and C(sub 123) = A -- B -- p1, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second order constants are C(sub 11) = p(sub 1)gamma + p9sub 1), C(sub 12) = p(sub 1)gamma -- p(sub 1), and the third-order constants are C(sub 111) = p(sub 1)(gamma(2) + 4gamma + 3), C(sub 112) = --p(sub 1)(gamma(2) -- 1), and C(sub 123) = --p(sub 1) (gamma(2) -- 2gamma + 1), where gamma is the ratio of specific heats. The inequality of C(sub 11) and C(sub 12) results in a nonzero shear constant C(sub 44) = (1/2)(C(sub 11) C(sub 12)) = p(sub 1) for both liquids and gases. For water at standard temperature and pressure the ratio of terms p1/A contributing to the second-order constants is approximately 4.3 x 10(-5). For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material 'nonlinearity parameters' associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids.

  17. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    Directory of Open Access Journals (Sweden)

    Diego Tresinari SANTOS

    2015-01-01

    Full Text Available AbstractIn this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions. Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.

  18. Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer

    Science.gov (United States)

    Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya.; Senyukov, S. L.; Gusev, A. A.; Gordeev, E. I.

    2017-06-01

    Volcanic long-period earthquakes are attributed to pressure fluctuations that result from unsteady mass transport in the plumbing system of volcanoes. Whereas most of the long-period seismicity is located close to the surface, the volcanic deep long-period earthquakes that occur in the lower crust and uppermost mantle reflect the activity in the deep parts of magmatic systems. Here, we present observations of long-period earthquakes that occurred in 2011-2012 within the Klyuchevskoy volcano group in Kamchatka, Russia. We show two distinct groups of long-period sources: events that occurred just below the active volcanoes, and deep long-period events at depths of ~30 km in the vicinity of a deep magmatic reservoir. We report systematic increases of the long-period seismicity levels prior to volcanic eruptions with the initial activation of the deep long-period sources that reflects pressurization of the deep reservoir and consequent transfer of the activity towards the surface. The relatively fast migration of the long-period activity suggests that a hydraulic connection is maintained between deep and shallow magmatic reservoirs. The reported observations provide evidence for the pre-eruptive reload of the shallow magmatic reservoirs from depth, and suggest that the deep long-period earthquakes could be used as a reliable early precursor of eruptions.

  19. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Science.gov (United States)

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  20. Rheological behaviour of the commercial fluid mass modified by starch to be used in pressure casting

    International Nuclear Information System (INIS)

    Weng, L.Y.; Araujo, M.S. de; Cerri, J.A.

    2011-01-01

    In this paper was studied the adjust of two commercial ceramic masses (A and B) with silicate of sodium, starch and NaOH for pressure casting. The distribution and size of particles and the chemical composition of the masses had been characterized. In a first stage, the silicate of sodium concentrations in A (1%) and B (0.6%) had been determined by deflocculating curves of suspensions with 65% of solids. In one second stage was analyzed the rheological behavior after remaining in rest for 10 and 120 minutes. The starch as the sodium hydroxy can serve as reducing of viscosity, however above of a relation starch/sodium hydroxy is possible to observe the gelling effect. The maximum value of starch / NaOH, in order not to modify in significant way the rheological behavior for the Mass A and the B were 0.75% / 0.75% and 0.50% / 0.50%. (author)

  1. Interstitial cystitis intravesical therapy.

    Science.gov (United States)

    Ha, Tanya; Xu, Jie Hua

    2017-07-01

    Interstitial cystitis (IC) is a progressive bladder disorder that presents with symptoms of bladder urgency, frequency and pain. The aetiology of the disease remains uncertain, but it is postulated that there is an initial infective insult which damages the glycosaminoglycan (GAG) layer of the bladder urothelium. This defect allows an influx of ions, particularly potassium, which initiates an inflammatory reaction in the bladder wall, which incites the symptoms described above. Treatment initially involves behavioural and oral medication, with second line being intravesical instillation therapy. Treatment strategies focus on restoring lower urinary tract epithelial function, inhibiting neural activation, controlling allergies and relieving symptoms. In this review, current intravesical therapy will be discussed, as well as what lies on the horizon for intravesical therapy in IC.

  2. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    using visual feedback method led to an increase in UTS of 16% in XYZ, 7% in XZY, and 22% in ZXY. The FDM fabricated parts using PC were tested under thermal cycling of -30° C to 85° C. A series of experiments were performed (e.g., tensile test, deformation of fabricated part, glass transition measurement) to evaluate the possibility of FDM fabricated parts in the harsh environment (embedded electronics, wiring in automotive industry, etc.). The UTS results showed that the results were not significantly different using statistical analysis after 150 thermal cycles while average Young's modulus increased from 1389 MPa to 1469 MPa after 150 thermal cycles. The highest warping of the specimen was found to be 78 microm which was the result of continuous thermal expansion and contraction. A sealing algorithm was developed using LabVIEW and MATLAB programming. The LabVIEW program was developed to obtain the edge information of each layer of a 3D model part. The MATLAB programming was used to gather the output information from LabVIEW and calculate the suggested RW providing least amount of gap in between rasters and contours. As a result, each layer became sealed and was able to withstand air pressure within a pressure vessel. A test specimen was fabricated according to the developed sealing algorithm parameters and used to show entirely sealed walls capable of withstanding up to 138 kPa air pressure.

  3. Examining the Effect of Temperature, Pressure, Seismicity and Diffuse Fluid Flow on Floc Events at Axial Seamount

    Science.gov (United States)

    Rahman, M.; Crone, T. J.; Knuth, F.; Garcia, C.; Soule, D. C.; Fatland, R.

    2017-12-01

    Flocculation (floc) events are characterized by the ejection of bacterial material, possibly associated with thermophiles originating from warmer sub-seafloor habitats, into the water column. These events are anecdotally linked to magmatic and tectonic processes common in mid-ocean ridge seafloor environments. However, little is known about the relationship between flocculation events and other potentially triggering processes. The Cabled Array at Axial Seamount provides a suite of interdisciplinary real-time datasets to examine system-level processes governing the volcanic marine environment. The eruption at Axial Seamount in 2015 creates an opportunity to study this volcanic system as it evolves post eruption and identify the relationships between the temperature, pressure, seismicity and the biological response. The Diffuse Vent Fluid 3-D Temperature Array (TMPSF), located within the ASHES hydrothermal vent field at Axial Seamount, uses 24 separate sensors to provide a 3-dimensional distribution of diffuse flow temperatures near the Mushroom hydrothermal vent. Preliminary analysis suggests that the temperature signal is strongly influenced by tides observed using the ocean bottom pressure sensors, which may be related to either gradual shifts in tidal currents above the seafloor, or related to subsurface flux. CamHD, also located within the ASHES field, produces high definition video data, which we analyze to identify changes in water column floc concentration. These data streams allow us to examine the controls on the temperature signal and the associated correlations with microbial seafloor processes. We are currently examining the flocculation event identified in Crone (2016) to determine its relationship to changes in seawater temperatures near the seafloor, seismic activity and seafloor pressure. We will use this proxy to examine other CamHD data and determine if subsequent flocculation events have occurred and if they have a similar relationship to local

  4. Methodology to predict friction pressure drop in drilling fluid flows; Metodologia para previsao de perdas de carga em escoamentos de fluidos de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, Claudia Miriam; Calcada, Luis Americo [Universidade Federal Rural do Rio de Janeiro (UFRRJ). Departamento de Engenharia Quimica (Brazil)], e-mails: scheid@ufrrj.br, calcada@ufrrj.br; Rocha, Daniele Cristine [Centro de Pesquisas da Petrobras (CENPES). Engenharia Basica de Abastecimento - Gas e Energia (Brazil)], e-mail: drocha@petrobras.com.br; Aranha, Pedro Esteves [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Perfuracao e Completacao de Pocos (Brazil)], e-mail: pearanha@petrobras.com.br; Aragao, Atila Fernando Lima [E and P Construcao de Pocos Maritimos. Gerencia de Tecnologia de Fluidos (Brazil)], e-mail: atila_aragao@petrobras.com.br

    2009-12-15

    An extensive experimental study is detailed to evaluate the friction pressure drop resulting from the flow through pipe and annular sections, accessories such as tool joints, bit jets and stabilizers of four different drilling fluids used in deep water operations. After a data analysis process, it was possible to compile a set of equations to predict relevant hydraulic friction pressure loss calculations, such as: hydraulic diameter for annular flows, friction factors for pipe and annular turbulent flows and discharge coefficients for accessories. (author)

  5. Determining the Presence of Thin-Walled Regions at High-Pressure Areas in Unruptured Cerebral Aneurysms by Using Computational Fluid Dynamics.

    Science.gov (United States)

    Suzuki, Tomoaki; Takao, Hiroyuki; Suzuki, Takashi; Kambayashi, Yukinao; Watanabe, Mitsuyoshi; Sakamoto, Hiroki; Kan, Issei; Nishimura, Kengo; Kaku, Shogo; Ishibashi, Toshihiro; Ikeuchi, Satoshi; Yamamoto, Makoto; Fujii, Yukihiko; Murayama, Yuichi

    2016-10-01

    Thin-walled regions (TWRs) of cerebral aneurysms are at high risk of rupture, and careful attention should be paid during surgical procedures. Despite this, an optimal imaging technique to estimate TWRs has not been established. Previously, pressure elevation at TWRs was reported with computational fluid dynamics (CFD) but not fully evaluated. To investigate the possibility of predicting aneurysmal TWRs at high-pressure areas with CFD. Fifty unruptured middle cerebral artery aneurysms were analyzed. Spatial and temporal maximum pressure (Pmax) areas were determined with a fluid-flow formula under pulsatile blood flow conditions. Intraoperatively, TWRs of aneurysm domes were identified as reddish areas relative to the healthy normal middle cerebral arteries; 5 neurosurgeons evaluated and divided these regions according to Pmax area and TWR correspondence. Pressure difference (PD) was defined as the degree of pressure elevation on the aneurysmal wall at Pmax and was calculated by subtracting the average pressure from the Pmax and dividing by the dynamic pressure at the aneurysm inlet side for normalization. In 41 of the 50 cases (82.0%), the Pmax areas and TWRs corresponded. PD values were significantly higher in the correspondence group than in the noncorrespondence group (P = .008). A receiver-operating characteristic curve demonstrated that PD accurately predicted TWRs at Pmax areas (area under the curve, 0.764; 95% confidence interval, 0.574-0.955; cutoff value, 0.607; sensitivity, 66.7%; specificity, 82.9%). A high PD may be a key parameter for predicting TWRs in unruptured cerebral aneurysms. CFD, computational fluid dynamicsMCA, middle cerebral arteryPave, average pressurePD, pressure differencePmax, maximum pressureTWR, thin-walled regionWSS, wall shear stress.

  6. Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation

    Science.gov (United States)

    De Barros, Louis; Daniel, Guillaume; Guglielmi, Yves; Rivet, Diane; Caron, Hervé; Payre, Xavier; Bergery, Guillaume; Henry, Pierre; Castilla, Raymi; Dick, Pierre; Barbieri, Ernesto; Gourlay, Maxime

    2016-06-01

    Clay formations are present in reservoirs and earthquake faults, but questions remain on their mechanical behavior, as they can vary from ductile (aseismic) to brittle (seismic). An experiment, at a scale of 10 m, aims to reactivate a natural fault by fluid pressure in shale materials. The injection area was surrounded by a dense monitoring network comprising pressure, deformation, and seismicity sensors, in a well-characterized geological setting. Thirty-two microseismic events were recorded during several injection phases in five different locations within the fault zone. Their computed magnitude ranged between -4.3 and -3.7. Their spatiotemporal distribution, compared with the measured displacement at the injection points, shows that most of the deformation induced by the injection is aseismic. Whether the seismicity is controlled by the fault architecture, mineralogy of fracture filling, fluid, and/or stress state is then discussed. The fault damage zone architecture and mineralogy are of crucial importance, as seismic slip mainly localizes on the sealed-with-calcite fractures which predominate in the fault damage zone. As no seismicity is observed in the close vicinity of the injection areas, the presence of fluid seems to prevent seismic slips. The fault core acts as an impermeable hydraulic barrier that favors fluid confinement and pressurization. Therefore, the seismic behavior seems to be strongly sensitive to the structural heterogeneity (including permeability) of the fault zone, which leads to a heterogeneous stress response to the pressurized volume.

  7. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  8. Negative-Pressure Pulmonary Edema.

    Science.gov (United States)

    Bhattacharya, Mallar; Kallet, Richard H; Ware, Lorraine B; Matthay, Michael A

    2016-10-01

    Negative-pressure pulmonary edema (NPPE) or postobstructive pulmonary edema is a well-described cause of acute respiratory failure that occurs after intense inspiratory effort against an obstructed airway, usually from upper airway infection, tumor, or laryngospasm. Patients with NPPE generate very negative airway pressures, which augment transvascular fluid filtration and precipitate interstitial and alveolar edema. Pulmonary edema fluid collected from most patients with NPPE has a low protein concentration, suggesting hydrostatic forces as the primary mechanism for the pathogenesis of NPPE. Supportive care should be directed at relieving the upper airway obstruction by endotracheal intubation or cricothyroidotomy, institution of lung-protective positive-pressure ventilation, and diuresis unless the patient is in shock. Resolution of the pulmonary edema is usually rapid, in part because alveolar fluid clearance mechanisms are intact. In this review, we discuss the clinical presentation, pathophysiology, and management of negative-pressure or postobstructive pulmonary edema. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    International Nuclear Information System (INIS)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J

    2015-01-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)

  10. Dynamic Rupture Models Suggest High Fluid Pressures and Low Differential Stresses for the M 9.2 2004 Sumatra-Andaman Earthquake

    Science.gov (United States)

    Madden, Elizabeth; van Zelst, Iris; Ulrich, Thomas; van Dinther, Ylona; Gabriel, Alice-Agnes

    2017-04-01

    A major challenge in understanding the physics of megathrust earthquakes is constraining the initial stress field. The close relationship between initial stress and friction and any variations in fault geometry make unique determination of these parameters difficult. In addition, evidence for low effective stresses (e.g. Hardebeck, 2015; Husen and Kissling, 2001) seem incompatible with the occurrence of large megathrust events. Here, we present a series of 3D dynamic ruptures along the plate interface that hosted the 2004 M 9.1-9.3 Sumatra-Andaman earthquake. The dynamic rupture models are performed with SeisSol, which solves for dynamic fault rupture and seismic wave propagation. Use of an unstructured tetrahedral mesh allows for a realistic representation of both the non-planar slab interface and the bathymetry. First, we compare earthquake models under conditions of high versus low fluid pressure. The model with a low fluid pressure (hydrostatic) produces rupture velocities and slip magnitudes that are much too high. The model with a high fluid pressure (near lithostatic) produces the observed average 2.5 km/s rupture speed and slip magnitudes that match the observed GPS surface displacements. This suggests that earthquakes along the Sumatra-Andaman subduction zone operate under the conditions of low effective principal and differential stresses that result from high fluid pressures. For a third model, we use conditions from a 2D seismo-thermo-mechanical earthquake cycle model representing long term deformation at the latitude of the 2004 earthquake's hypocenter. Slip instabilities that approximate earthquakes arise spontaneously along the subduction zone interface in this model. We use the stress and material properties at the time of nucleation for a single earthquake as initial conditions for the dynamic rupture model. In order to produce a reasonable earthquake, fluid pressure must exceed lithostatic near the hypocenter. Because the effective principal

  11. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  12. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  13. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis

    International Nuclear Information System (INIS)

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2007-01-01

    This paper demonstrates the use of coupled fluid flow and geomechanical fault slip (fault reactivation) analysis to estimate the maximum sustainable injection pressure during geological sequestration of CO 2 . Two numerical modeling approaches for analyzing fault-slip are applied, one using continuum stress-strain analysis and the other using discrete fault analysis. The results of these two approaches to numerical fault-slip analyses are compared to the results of a more conventional analytical fault-slip analysis that assumes simplified reservoir geometry. It is shown that the simplified analytical fault-slip analysis may lead to either overestimation or underestimation of the maximum sustainable injection pressure because it cannot resolve important geometrical factors associated with the injection-induced spatial evolution of fluid pressure and stress. We conclude that a fully coupled numerical analysis can more accurately account for the spatial evolution of both in situ stresses and fluid pressure, and therefore results in a more accurate estimation of the maximum sustainable CO 2 injection pressure

  14. Interstitial cystitis: painful bladder syndrome

    OpenAIRE

    R F Sholan; G Sh Garaev; G M Nasrullaeva

    2018-01-01

    Interstitial cystitis, or painful bladder syndrome, is a chronic inflammatory disease of a bladder of unknown etiology. It negatively affects the quality of life, causes depressive disorders, anxiety, and sexual dysfunction. Despite numerous studies, the etiology of interstitial cystitis is still unclear and it’s considered as painful bladder syndrome with multifactorial origin. According to the US National Health and Nutrition Examination Survey, 470/100 000 people (60/100 000 men, 850/100 0...

  15. Simultaneous measurement of fluoroquinolones in eggs by a combination of supercritical fluid extraction and high pressure liquid chromatography.

    Science.gov (United States)

    Shim, Jae Han; Lee, Mi Hyun; Kim, Mi Ra; Lee, Chang Joo; Kim, In Seon

    2003-06-01

    Simultaneous detection of the fluoroquinolone antibiotics ciprofloxacin, enrofloxacin, ofloxacin, and norfloxacin in eggs by a combination of supercritical fluid extraction (SFE) and high pressure liquid chromatography (HPLC) was studied. Lipid matrices that have been considered to result in poor extraction and isolation of fluoroquinolones in eggs were removed first by SFE with supercritical CO(2) alone, and then the fluoroquinolones were extracted by SFE with supercritical CO(2) containing 20% (v/v) methanol for HPLC analysis. A time-course study of the extraction of lipid matrices of eggs suggested that the SFE method successfully removed the matrices within 20 min. When the fluoroquinolones added to control eggs were extracted by SFE, the extraction efficiency was similar to that by the solvent extraction method, giving the recovery percentages from 83 to 96% in a 40 min-extraction time. The fluoroquinolones extracted from eggs by SFE were analyzed simultaneously by HPLC equipped with a fluorescence detector with detection sensitivity at about 10 ppb for the detection limit. The standard calibration profiles of fluoroquinolones showed linear responses to HPLC, showing more than 0.995 for the mean r(2) value. This is the first report of the simultaneous measurement of fluoroquinolones in eggs by a combination of SFE and HPLC. Using the SFE method allowed us to avoid extensive sample preparation such as solvent extraction and chromatographic cleanup that are basically required in extraction of fluoroquinolones.

  16. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  17. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    Science.gov (United States)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  18. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study.

    Science.gov (United States)

    Eide, Per K; Ringstad, Geir

    2018-01-01

    The glymphatic system plays a key role for clearance of waste solutes from the rodent brain. We recently found evidence of glymphatic circulation in the human brain when using magnetic resonance imaging (MRI) contrast agent as cerebrospinal fluid (CSF) tracer in conjunction with multiple MRI acquisitions (gMRI). The present study explored the hypothesis that reduced glymphatic clearance in entorhinal cortex (ERC) may be instrumental in idiopathic normal pressure hydrocephalus (iNPH) dementia. gMRI acquisitions were obtained over a 24-48 h time span in cognitively affected iNPH patients and non-cognitively affected patients with suspected CSF leaks. The CSF tracer enrichment was determined as changes in normalized MRI T1 signal units. The study included 30 patients with iNPH and 8 individuals with suspected CSF leaks (i.e. reference individuals). Compared to reference individuals, iNPH patients presented with higher medial temporal lobe atrophy score and Evan's index and inferior ERC thickness. We found delayed clearance of the intrathecal CSF tracer gadobutrol from CSF, the ERC and adjacent white matter, suggesting impaired glymphatic circulation. Reduced clearance and accumulation of toxic waste product such as amyloid-β may be a mechanism behind dementia in iNPH. Glymphatic MRI (gMRI) may become a tool for assessment of early dementia.

  19. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lichtenberg, A J; Lieberman, M A; Marakhtanov, A M

    2016-01-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths. (paper)

  20. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2017-01-01

    Intraocular Pressure (IOP) is defined as the pressure of aqueous in the eye. It has been reported that the normal range of IOP should be within the 10-20 mmHg with an average of 15.50 mmHg among the ophthalmologists. Keratoconus is an anti-inflammatory eye disorder that debilitated cornea unable to reserve the normal structure contrary to the IOP in the eye. Consequently, the cornea would bulge outward and invoke a conical shape following by distorted vision. In addition, it is known that any alterations in the structure and composition of the lens and cornea would exceed a change of the eye ball as well as the mechanical and optical properties of the eye. Understanding the precise alteration of the eye components' stresses and deformations due to different IOPs could help elucidate etiology and pathogenesis to develop treatments not only for keratoconus but also for other diseases of the eye. In this study, at three different IOPs, including 10, 20, and 30 mmHg the stresses and deformations of the human eye components were quantified using a Three-Dimensional (3D) computational Fluid-Structure Interaction (FSI) model of the human eye. The results revealed the highest amount of von Mises stress in the bulged region of the cornea with 245 kPa at the IOP of 30 mmHg. The lens was also showed the von Mises stress of 19.38 kPa at the IOPs of 30 mmHg. In addition, by increasing the IOP from 10 to 30 mmHg, the radius of curvature in the cornea and lens was increased accordingly. In contrast, the sclera indicated its highest stress at the IOP of 10 mmHg due to over pressure phenomenon. The variation of IOP illustrated a little influence in the amount of stress as well as the resultant displacement of the optic nerve. These results can be used for understanding the amount of stresses and deformations in the human eye components due to different IOPs as well as for clarifying significant role of IOP on the radius of curvature of the cornea and the lens.

  1. MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparticles in the living brain.

    Directory of Open Access Journals (Sweden)

    David S Hersh

    Full Text Available Generating spatially controlled, non-destructive changes in the interstitial spaces of the brain has a host of potential clinical applications, including enhancing the delivery of therapeutics, modulating biological features within the tissue microenvironment, altering fluid and pressure dynamics, and increasing the clearance of toxins, such as plaques found in Alzheimer's disease. Recently we demonstrated that ultrasound can non-destructively enlarge the interstitial spaces of the brain ex vivo. The goal of the current study was to determine whether these effects could be reproduced in the living brain using non-invasive, transcranial MRI-guided focused ultrasound (MRgFUS. The left striatum of healthy rats was treated using MRgFUS. Computer simulations facilitated treatment planning, and targeting was validated using MRI acoustic radiation force impulse imaging. Following MRgFUS treatments, Evans blue dye or nanoparticle probes were infused to assess changes in the interstitial space. In MRgFUS-treated animals, enhanced dispersion was observed compared to controls for 70 nm (12.8 ± 0.9 mm3 vs. 10.6 ± 1.0 mm3, p = 0.01, 200 nm (10.9 ± 1.4 mm3 vs. 7.4 ± 0.7 mm3, p = 0.01 and 700 nm (7.5 ± 0.4 mm3 vs. 5.4 ± 1.2 mm3, p = 0.02 nanoparticles, indicating enlargement of the interstitial spaces. No evidence of significant histological or electrophysiological injury was identified. These findings suggest that transcranial ultrasound can safely and effectively modulate the brain interstitium and increase the dispersion of large therapeutic entities such as particulate drug carriers or modified viruses. This has the potential to expand the therapeutic uses of MRgFUS.

  2. Is the diet of patients with interstitial cystitis related to their disease?

    NARCIS (Netherlands)

    Bade, JJ; Peeters, JMC; Mensink, HJA

    1997-01-01

    Objective: The dietary habits of interstitial cystitis (IC) patients compared to the average food and fluid consumption of the general population were evaluated and any spontaneous preference or avoidance of specific foodstuffs and fluids of IC patients was investigated. Methods: A verbal interview

  3. The influence of permeability anisotropy on the distribution of pore fluid pressure around fault zones: Insights for fault stability and reactivation

    Science.gov (United States)

    Healy, D.; Harland, S. R.; Cappa, F.; Gan, Q.; Mitchell, T. M.; Meredith, P. G.; Browning, J.

    2016-12-01

    Changes in pore fluid pressure can trigger the reactivation of a fault. In order to understand the process of reactivation, discerning how pore fluid pressure is distributed, spatially and temporally, within a fault zone is necessary. Imperative to this is an accurate quantification of the permeability - and any anisotropy of permeability - of the rocks comprising the fault zone. New experimental data have provided insight into the distribution of permeability anisotropy surrounding a normal fault in a porous sandstone (Farrell et al. 2014). In the study performed here, we use this new data to populate a model of a normal fault in order to investigate the impact of permeability anisotropy on normal fault stability and the potential for reactivation. Fault zone permeability can evolve through deformation due to reactivation, and therefore our longer term aim is to understand how permeability anisotropy evolves with fault growth, slip and reactivation. A coupled hydrological-mechanical simulator (Tough2-FLAC3D) is employed to simulate changes in pore fluid pressure in the area surrounding the modelled normal fault. To increase the pore pressure in the model and reduce effective stress along the fault zone, two scenarios are examined; firstly, through regional stress and secondly, through fluid injection at a well. Systematic variations in the model parameters are explored in order to assess the sensitivity of fault reactivation to the various properties. Such variations include the regional stress setting, well to fault separation distance, degree of permeability anisotropy and fault core and damage zone dimensions. All variations are guided by experimental and field observations. The results can be used to understand how permeability anisotropy and fluid flow affect fault slip and to guide more robust assessments of fault stability and earthquake hazard. Farrell, N., Healy, D. and Taylor, C., 2014. Anisotropy of permeability in faulted porous sandstones. Journal of

  4. Fluid Distribution Pattern in Adult-Onset Congenital, Idiopathic, and Secondary Normal-Pressure Hydrocephalus: Implications for Clinical Care.

    Science.gov (United States)

    Yamada, Shigeki; Ishikawa, Masatsune; Yamamoto, Kazuo

    2017-01-01

    In spite of growing evidence of idiopathic normal-pressure hydrocephalus (NPH), a viewpoint about clinical care for idiopathic NPH is still controversial. A continuous divergence of viewpoints might be due to confusing classifications of idiopathic and adult-onset congenital NPH. To elucidate the classification of NPH, we propose that adult-onset congenital NPH should be explicitly distinguished from idiopathic and secondary NPH. On the basis of conventional CT scan or MRI, idiopathic NPH was defined as narrow sulci at the high convexity in concurrent with enlargement of the ventricles, basal cistern and Sylvian fissure, whereas adult-onset congenital NPH was defined as huge ventricles without high-convexity tightness. We compared clinical characteristics and cerebrospinal fluid distribution among 85 patients diagnosed with idiopathic NPH, 17 patients with secondary NPH, and 7 patients with adult-onset congenital NPH. All patients underwent 3-T MRI examinations and tap-tests. The volumes of ventricles and subarachnoid spaces were measured using a 3D workstation based on T2-weighted 3D sequences. The mean intracranial volume for the patients with adult-onset congenital NPH was almost 100 mL larger than the volumes for patients with idiopathic and secondary NPH. Compared with the patients with idiopathic or secondary NPH, patients with adult-onset congenital NPH exhibited larger ventricles but normal sized subarachnoid spaces. The mean volume ratio of the high-convexity subarachnoid space was significantly less in idiopathic NPH than in adult-onset congenital NPH, whereas the mean volume ratio of the basal cistern and Sylvian fissure in idiopathic NPH was >2 times larger than that in adult-onset congenital NPH. The symptoms of gait disturbance, cognitive impairment, and urinary incontinence in patients with adult-onset congenital NPH tended to progress more slowly compared to their progress in patients with idiopathic NPH. Cerebrospinal fluid distributions and

  5. Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite

    Science.gov (United States)

    Tiraboschi, Carla; Tumiati, Simone; Sverjensky, Dimitri; Pettke, Thomas; Ulmer, Peter; Poli, Stefano

    2018-01-01

    We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni-NiO-H2O (ΔFMQ = - 0.21 to - 1.01), employing a double-capsule setting. Fluids, binary H2O-CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite + enstatite solubility in H2O-CO2 fluids is higher compared to pure water, both in terms of dissolved silica ( mSiO2 = 1.24 mol/kgH2O versus mSiO2 = 0.22 mol/kgH2O at P = 1 GPa, T = 800 °C) and magnesia ( mMgO = 1.08 mol/kgH2O versus mMgO = 0.28 mol/kgH2O) probably due to the formation of organic C-Mg-Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O-CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P- T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest

  6. Interstitial cystitis: painful bladder syndrome

    Directory of Open Access Journals (Sweden)

    R F Sholan

    2018-02-01

    Full Text Available Interstitial cystitis, or painful bladder syndrome, is a chronic inflammatory disease of a bladder of unknown etiology. It negatively affects the quality of life, causes depressive disorders, anxiety, and sexual dysfunction. Despite numerous studies, the etiology of interstitial cystitis is still unclear and it’s considered as painful bladder syndrome with multifactorial origin. According to the US National Health and Nutrition Examination Survey, 470/100 000 people (60/100 000 men, 850/100 000 women are diagnosed with interstitial cystitis. Diagnosis of the disease is difficult and is substantially based on clinical symptoms. Pelvic pain, urinary urgency, frequency and nocturia are the basic complaints in this pathology. The diagnosis requires exclusion of diseases with similar manifestations. So interstitial cystitis is frequently misdiagnosed as urinary tract infection, overactive bladder, urethral obstruction or diverticulosis, chronic prostatitis, bladder cancer, vulvodynia, endometriosis, and chronic pelvic pain. Etiopathogenesis of the disease is uncertain, which makes etiologic treatment impossible. Currently scientific discussions on the causes of disease continue as well as different treatment regimens are offered, but are often ineffective, palliative and temporary. The treatment for intersticial cystitis should focus on restoring normal bladder function, prevention of relapse of symptoms and improvement of patients’ quality of life. The literature review presents current view on the terminology, epidemiology, diagnosis and treatment of interstitial cystitis.

  7. Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Fumio; Asada, Takashi [University of Tsukuba, Clinical Neuroscience, Medical Sciences for Control of Pathological Process, Graduate School of Comprehensive Human Sciences, Tsukuba-shi, Ibaraki-ken (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Takahashi, Satoshi; Narumi, Shinsuke; Terayama, Yasuo [Iwate Medical University, Department of Neurology, Morioka (Japan); Matsuda, Hiroshi [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Saitama (Japan)

    2010-05-15

    We attempted to detect alterations in the cerebrospinal fluid (CSF) space in patients with idiopathic normal pressure hydrocephalus (iNPH) using voxel-based morphometry (VBM). We obtained sagittal volume images of the entire head by three-dimensional T1-weighted magnetic resonance imaging and compared the regional distribution of CSF in 12 patients with iNPH, 14 patients with Alzheimer's disease (AD), and 17 healthy individuals using VBM with automatically extracted CSF objects. VBM demonstrated significant widening at the lateral ventricles and Sylvian fissures and narrowing of the CSF space at the high convexity/midline areas in iNPH patients, compared to the AD patients and healthy controls (p<0.05, after correction with a false-discovery rate). In addition, the ratio of the CSF volume in the lateral ventricle/Sylvian fissure area to that in the high convexity/midline area in iNPH patients (3.9{+-}1.2) was remarkably greater than that in AD patients (1.2{+-}0.3) and controls (0.9{+-}0.3; one-way ANOVA, p <0.001; post hoc Tukey's test, p < 0.001); we could discriminate iNPH patients from those in the other two groups without any overlap, when using a cutoff level of 1.9. VBM using CSF objects can be used to delineate the characteristic alteration of the CSF space in iNPH patients, which has been evaluated by visual interpretation. (orig.)

  8. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNγ in cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Schaller Carlo

    2008-12-01

    Full Text Available Abstract Background In human neonatal high pressure hydrocephalus (HPHC, diffuse white matter injury and gliosis predispose to poor neuro-developmental outcome. The underlying mechanism for diffuse white matter damage in neonatal HPHC is still unclear. Analogous to inflammatory white matter damage after neonatal hypoxemia/ischemia, we hypothesized that pro-inflammatory cytokines could be involved in neonatal HPHC. If so, early anti-inflammatory therapy could ameliorate white matter damage in HPHC, before irreversible apoptosis has occurred. In HPHC and control neonates, we therefore aimed to compare cerebrospinal fluid (CSF concentrations of IL18, IFNγ and sFasL (interleukin 18, interferon gamma and apoptosis marker soluble-Fas ligand, respectively. Methods In neonatal HPHC (n = 30 and controls (n = 15, we compared CSF concentrations of IL18, IFNγ and sFasL using sandwich ELISA. HPHC was grouped according to etiology: spina bifida aperta (n = 20, aqueduct stenosis (n = 4, and fetal intra-cerebral haemorrhage (n = 6. Neonatal control CSF was derived from otherwise healthy neonates (n = 15, who underwent lumbar puncture for exclusion of meningitis. Results In all three HPHC groups, CSF IL18 concentrations were significantly higher than control values, and the fetal intracranial haemorrhage group was significantly higher than SBA group. Similarly, in all HPHC groups CSF-IFNγ concentrations significantly exceeded the control group. In both HPHC and control neonates, CSF FasL concentrations remained within the range of reference values. Conclusion Independent of the pathogenesis, neonatal HPHC is associated with the activation of the pro-inflammatory cytokines (IL-18 and IFNγ in the CSF, whereas CSF apoptosis biomarkers (sFasL were unchanged. This suggests that anti-inflammatory treatment (in addition to shunting could be helpful to preserve cerebral white matter.

  9. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    Science.gov (United States)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  10. Influence of Wall Porosity and Surfaces Roughness on the Steady Performance of an Externally Pressurized Hydrostatic Conical Bearing Lubricated by a Rabinowitsch Fluid

    Science.gov (United States)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2017-08-01

    In the paper, the influence of both the bearing surfaces roughness as well as porosity of one bearing surface on the pressure distribution and load-carrying capacity of a curvilinear, externally pressurized, thrust bearing is discussed. The equations of motion of a pseudo-plastic Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication with rough bearing surfaces the modified Reynolds equation is obtained. The analytical solution is presented; as a result one obtains the formulae expressing the pressure distribution and load-carrying capacity. Thrust radial and conical bearings, externally pressurized, are considered as numerical examples.

  11. Influence of Wall Porosity and Surfaces Roughness on the Steady Performance of an Externally Pressurized Hydrostatic Conical Bearing Lubricated by a Rabinowitsch Fluid

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2017-08-01

    Full Text Available In the paper, the influence of both the bearing surfaces roughness as well as porosity of one bearing surface on the pressure distribution and load-carrying capacity of a curvilinear, externally pressurized, thrust bearing is discussed. The equations of motion of a pseudo-plastic Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication with rough bearing surfaces the modified Reynolds equation is obtained. The analytical solution is presented; as a result one obtains the formulae expressing the pressure distribution and load-carrying capacity. Thrust radial and conical bearings, externally pressurized, are considered as numerical examples.

  12. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness

    DEFF Research Database (Denmark)

    Eskesen, T G; Wetterslev, M; Perner, A

    2016-01-01

    PURPOSE: Central venous pressure (CVP) has been shown to have poor predictive value for fluid responsiveness in critically ill patients. We aimed to re-evaluate this in a larger sample subgrouped by baseline CVP values. METHODS: In April 2015, we systematically searched and included all clinical...... studies evaluating the value of CVP in predicting fluid responsiveness. We contacted investigators for patient data sets. We subgrouped data as lower (12 mmHg) baseline CVP. RESULTS: We included 51 studies; in the majority, mean/median CVP values were...... the lower 95% CI crossed 0.50. We identified some positive and negative predictive value for fluid responsiveness for specific low and high values of CVP, respectively, but none of the predictive values were above 66% for any CVPs from 0 to 20 mmHg. There were less data on higher CVPs, in particular >15 mm...

  13. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    Science.gov (United States)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung; Parks, II, James E.

    2017-12-26

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  14. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids.

    Science.gov (United States)

    Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir

    2017-06-01

    The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.

  15. Comparison of pressurized fluid extraction, Soxhlet extraction and sonication for the determination of polycyclic aromatic hydrocarbons in urban air and diesel exhaust particulate matter.

    Science.gov (United States)

    Rynö, M; Rantanen, L; Papaioannou, E; Konstandopoulos, A G; Koskentalo, T; Savela, K

    2006-04-01

    In order to characterize and compare the chemical composition of diesel particulate matter and ambient air samples collected on filters, different extraction procedures were tested and their extraction efficiencies and recoveries determined. This study is an evaluation of extraction methods using the standard 16 EPA PAHs with HPLC fluorescence analysis. Including LC analysis also GC and MS methods for the determination of PAHs can be used. Soxhlet extraction was compared with ultrasonic agitation and pressurized fluid extraction (PFE) using three solvents to extract PAHs from diesel exhaust and urban air particulates. The selected PAH compounds of soluble organic fractions were analyzed by HPLC with a multiple wavelength shift fluorescence detector. The EPA standard mixture of 16 PAH compounds was used as a standard to identify and quantify diesel exhaust-derived PAHs. The most effective extraction method of those tested was pressurized fluid extraction using dichloromethane as a solvent.

  16. Body fluids, circadian blood pressure and plasma renin during growth hormone administration: a placebo-controlled study with two growth hormone doses in healthy adults

    DEFF Research Database (Denmark)

    Møller, Jens; Jørgensen, Jens Otto Lunde; Frandsen, Erik

    1995-01-01

    Abstract Side effects that can be related to fluid retention are common during the initial phases of growth hormone (GH) administration. The aim of this study was to examine the changes in body fluid compartments, diurnal blood pressure and plasma renin concentration during GH administration......-2, 20.65 +/- 0.94; pbody water (l) increased significantly during GH administration (placebo, 50.8 +/- 2.6; 3 IU m-2, 52.6 +/- 2.3; 6 IU m-2, 53.9 +/- 1.8, p... of treatment a significant increase in renin (p = 0.03) was observed. Mean diurnal blood pressure levels remained unchanged, whereas mean diurnal heart rate (min-1) increased significantly (placebo, 75 +/- 3.6; 3 IU m-2, 79 +/- 3.2; 6 IU m-2, 79 +/- 3.7; p

  17. Evaluation of Computational Fluids Dynamics (CFD) code Open FOAM in the study of the pressurized thermal stress of PWR reactors. Comparison with the commercial code Ansys-CFX

    International Nuclear Information System (INIS)

    Martinez, M.; Barrachina, T.; Miro, R.; Verdu Martin, G.; Chiva, S.

    2012-01-01

    In this work is proposed to evaluate the potential of the OpenFOAM code for the simulation of typical fluid flows in reactors PWR, in particular for the study of pressurized thermal stress. Test T1-1 has been simulated , within the OECD ROSA project, with the objective of evaluating the performance of the code OpenFOAM and models of turbulence that has implemented to capture the effect of the thrust forces in the case study.

  18. Fluid transport properties of rock fractures at high pressure and temperature. Progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Engelder, T.; Scholz, C.

    1980-04-01

    Flow rates and thus permeability were measured for a variety of effective pressures on artificially prepared joints in Cheshire quartzite. Permeabilities calculated from constant head tests compare with permeabilities calculated from pulse decay tests. Measurement of the change in aperture with effective pressure shows that at effective pressures of less than 20 MPa changes in confining pressure have a larger influence on the aperture than changes in pore pressure. Joint permeability changes with aperture; thus changes in confining pressure are more influential on permeability than changes in pore pressure. Although a cubic law model for flow along a joint gives a rough estimate of joint permeability, measurements of the changes in flow rate with aperture suggest that the cubic law is inadequate for smooth joints at high pressure. This is so because the effective cross section available for flow changes with pressure in a nonlinear manner.

  19. Double-layer optical fiber coating analysis using viscoelastic Sisko fluid as a coating material in a pressure-type coating die

    Science.gov (United States)

    Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Siddiqui, Nasir; Ullah, Murad; Khan, Wahab

    2017-11-01

    Double-layer optical fiber coating is performed using a melt polymer satisfying a Sisko fluid model in a pressure-type die. For this purpose, wet-on-wet coating process is applied. The assumption of fully developed flow of a Sisko fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die of length L, where the bare glass fiber is dragged at a higher speed. The nonlinear governing equations are modeled and then solved by utilizing optimal homotopy asymptotic method (OHAM). The convergence of series solution is established. The convergence of OHAM is also verified by the Adomian decomposition method. In addition, the shear-thinning and shear-thickening characteristics of the non-Newtonian Sisko fluid are examined, and a comparison is made with the Newtonian fluid. At the end, the present work is also compared with the experimental results already available in the literature by taking the non-Newtonian parameter that tends to zero.

  20. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    Science.gov (United States)

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  1. Ultrasound in Rheumatologic Interstitial Lung Disease: A Case Report of Nonspecific Interstitial Pneumonia in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    A. Laria

    2015-01-01

    Full Text Available According to the American Thoracic Society (ATS/European Respiratory Society consensus classification, idiopathic interstitial pneumonias (IIPs include several clinic-radiologic-pathologic entities: idiopathic pulmonary fibrosis (IPF, usual interstitial pneumonia (UIP, nonspecific interstitial pneumonia (NSIP, cryptogenic organizing pneumonia, acute interstitial pneumonia, respiratory bronchiolitis-associated ILD, desquamative interstitial pneumonia, and lymphoid interstitial pneumonia. Ultrasound Lung Comets (ULCs are an echographic chest-sonography hallmark of pulmonary interstitial fibrosis. We describe the ultrasound (US findings in the follow-up of a NSIP’s case in rheumatoid arthritis (RA.

  2. Epidemiologic issues in interstitial cystitis

    NARCIS (Netherlands)

    Parsons, J. Kellogg; Kurth, Karlheinz; Sant, Grannum R.

    2007-01-01

    As a result of variations in disease definition and diagnostic criteria for interstitial cystitis (IC), the performance of epidemiologic studies has been challenging. Initial prevalence studies used physician-confirmed diagnoses of IC; more recent studies, which have incorporated the use of patient

  3. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  4. Epimorphin expression in interstitial pneumonia

    Directory of Open Access Journals (Sweden)

    Suga Moritaka

    2005-01-01

    Full Text Available Abstract Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP, and lungs with usual interstitial pneumonia (UIP; we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling.

  5. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 2: Orifice plates

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    ISO 5167-2:2003 specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow-rate of the fluid flowing in the conduit. It also provides background information for calculating the flow-rate and is applicable in conjunction with the requirements given in ISO 5167-1. ISO 5167-2:2003 is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as vena contracta and pipe tappings have been used with orifice plates but are not covered by ISO 5167-2:2003. ISO 5167-2:2003 is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or for pipe Reynol...

  6. How Pore-Fluid Pressure due to Heavy Rainfall Influences Volcanic Eruptions, Example of 1998 and 2008 Eruptions of Cerro Azul (Galapagos)

    Science.gov (United States)

    Albino, F.; Amelung, F.; Gregg, P. M.

    2016-12-01

    About 30 worldwide seismic studies have shown a strong correlation between rainfall and earthquakes in the past 22 years (e.g. Costain and Bollinger, 2010). Such correlation has been explained by the phenomenon of hydro-seismicity via pore pressure diffusion: an increase of pore-fluid in the upper crust reduces the normal stress on faults, which can trigger shear failure. Although this pore pressure effect is widely known for earthquakes, this phenomenon and more broadly poro-elasticity process are not widely studied on volcanoes. However, we know from our previous works that tensile failures that open to propagate magma through the surface are also pore pressure dependent. We have demonstrated that an increase of pore pressure largely reduces the overpressure required to rupture the magma reservoir. We have shown that the pore pressure has more influence on reservoir stability than other parameters such as the reservoir depth or the edifice loading. Here, we investigate how small pore-fluid changes due to hydrothermal or aquifer refill during heavy rainfall may perturb the conditions of failure around magma reservoirs and, what is more, if these perturbations are enough to trigger magma intrusions. We quantify the pore pressure effect on magmatic system by combining 1) 1D pore pressure diffusion model to quantify how pore pressure changes from surface to depth after heavy rainfall events and 2) 2D poro-elastic numerical model to provide the evolution of failure conditions of the reservoir as a consequence of these pore pressure changes. Sensitivity analysis is also performed to characterize the influence on our results of the poro-elastic parameters (hydraulic diffusivity, permeability and porosity) and the geometry of the magma reservoir and the aquifer (depth, size, shape). Finally, we apply our methodology to Cerro Azul volcano (Galapagos) where both last eruptions (1998 and 2008) occurred just after heavy rainfall events, without any pre-eruptive inflation. In

  7. Influence of pharyngeal airway respiration pressure on Class II mandibular retrusion in children: A computational fluid dynamics study of inspiration and expiration.

    Science.gov (United States)

    Iwasaki, T; Sato, H; Suga, H; Takemoto, Y; Inada, E; Saitoh, I; Kakuno, K; Kanomi, R; Yamasaki, Y

    2017-05-01

    To examine the influence of negative pressure of the pharyngeal airway on mandibular retraction during inspiration in children with nasal obstruction using the computational fluid dynamics (CFD) method. Sixty-two children were divided into Classes I, II (mandibular retrusion) and III (mandibular protrusion) malocclusion groups. Cone-beam computed tomography data were used to reconstruct three-dimensional shapes of the nasal and pharyngeal airways. Airflow pressure was simulated using CFD to calculate nasal resistance and pharyngeal airway pressure during inspiration and expiration. Nasal resistance of the Class II group was significantly higher than that of the other two groups, and oropharyngeal airway inspiration pressure in the Class II (-247.64 Pa) group was larger than that in the Class I (-43.51 Pa) and Class III (-31.81 Pa) groups (P<.001). The oropharyngeal airway inspiration-expiration pressure difference in the Class II (-27.38 Pa) group was larger than that in the Class I (-5.17 Pa) and Class III (0.68 Pa) groups (P=.006). Large negative inspiratory pharyngeal airway pressure due to nasal obstruction in children with Class II malocclusion may be related to their retrognathia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)

    Science.gov (United States)

    Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.

    2009-01-01

    Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the

  9. Clinical Management of Acute Interstitial Pneumonia: A Case Report

    Directory of Open Access Journals (Sweden)

    Yang Xia

    2012-01-01

    Full Text Available We describe a 51-year-old woman who was admitted to hospital because of cough and expectoration accompanied with general fatigue and progressive dyspnea. Chest HRCT scan showed areas of ground glass attenuation, consolidation, and traction bronchiectasis in bilateral bases of lungs. BAL fluid test and transbronchial lung biopsy failed to offer insightful evidence for diagnosis. She was clinically diagnosed with acute interstitial pneumonia (AIP. Treatment with mechanical ventilation and intravenous application of methylprednisolone (80 mg/day showed poor clinical response and thus was followed by steroid pulse therapy (500 mg/day, 3 days. However, she died of respiratory dysfunction eventually. Autopsy showed diffuse alveolar damage associated with hyaline membrane formation, pulmonary interstitial, immature collagen edema, and focal type II pneumocyte hyperplasia.

  10. Segmental hyperalgesia to mechanical stimulus in interstitial cystitis/bladder pain syndrome: evidence of central sensitization.

    Science.gov (United States)

    Lai, H Henry; Gardner, Vivien; Ness, Timothy J; Gereau, Robert W

    2014-05-01

    We investigate if subjects with interstitial cystitis/bladder pain syndrome demonstrate mechanical or thermal hyperalgesia, and whether the hyperalgesia is segmental or generalized (global). Ten female subjects with interstitial cystitis/bladder pain syndrome and 10 age matched female controls without comorbid fibromyalgia or narcotic use were recruited for quantitative sensory testing. Using the method of limits, pressure pain and heat pain thresholds were measured. Using the method of fixed stimulus, the visual analog scale pain experienced was recorded when a fixed pressure/temperature was applied. The visual analog scale pain rated by female subjects with interstitial cystitis/bladder pain syndrome was significantly higher than that rated by female control subjects when a fixed mechanical pressure (2 or 4 kg) was applied to the suprapubic (T11) area (p = 0.028). There was an up shift of the stimulus-response curve, which corresponded to the presence of mechanical hyperalgesia in the suprapubic area in interstitial cystitis/bladder pain syndrome. However, the visual analog scale pain rated by subjects with interstitial cystitis/bladder pain syndrome was not different from that rated by controls when a fixed pressure was applied at the other body sites (T1 arm, L4 leg, S2-3 sacral). No difference in visual analog scale pain rating was noted when a fixed heat stimulus (35C or 37C) was applied to any of the body sites tested (T1, T11, L4, S2). There was no difference in pressure pain thresholds or thermal pain thresholds between subjects with interstitial cystitis/bladder pain syndrome and controls. Female subjects with interstitial cystitis/bladder pain syndrome showed segmental hyperalgesia to mechanical pressure stimulation in the suprapubic area (T10-T12). This segmental hyperalgesia may be explained in part by spinal central sensitization. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights

  11. Critical heat flux near the critical pressure in heater rod bundle cooled by R-134A fluid: Effects of unheated rods and spacer grid

    International Nuclear Information System (INIS)

    Chun, Se-Y.; Shin, C.W.; Hong, S. D.; Moon, S. K.

    2007-01-01

    A supercritical-pressure light water reactor (SCWR) is currently investigated as the next generation nuclear reactors. The SCWR, which is operated above the thermodynamic critical point of water (647 K, 22.1 MPa), have advantages over conventional light water reactors in terms of thermal efficiency as well as in compactness and simplicity. Many experimental studies have been performed on heat transfer in the boiler tubes of supercritical fossil fire power plants (FPPs). However, the thermal-hydraulic conditions of the SCWR core are different from those of the FPP boiler. In the SCWR core, the heat transfer to the cooling water occurs on the outside surface of fuel rods in rod bundle with spacers. In addition, the experimental studies in which the critical heat flux (CHF) has been carefully measured near the critical pressure have never yet been carried out, as far as we know. Therefore, we have recently conducted the CHF experiments with a vertical 5x5 heater rod bundle cooled by R- 134a fluid. The purpose of this work is to find out some novel knowledge for the CHF near the critical pressure, based on more careful experiments. The outer diameter, heated length and rod pitch of the heater rods are 9.5, 2000 and 12.85 mm, respectively. The critical power has been measured in a range of the pressure of 2.474.03 MPa (the critical pressure of R-134a is 4.059 MPa), the mass flux 502000 kg/m 2 s, and the inlet subcooling 4084 kJ/kg. For the mass fluxes of not less than 550 kg/m 2 s, the critical power decreases monotonously up to the pressure of about 3.63.8 MPa with increasing pressure, and then fall sharply at about 3.83.9 MPa as if the values of the critical power converge on zero at the critical pressure. For the low mass fluxes of 50 to 250 kg/m 2 , the sharp decreasing trend of the critical power near the critical pressure is not observed. The CHF phenomenon near the critical pressure no longer leads to an inordinate increase in the heated wall temperature such as

  12. Thermodynamics of aqueous solutes at high temperatures and pressures: Application of the hydration theory and implications for fluid-mediated mass transfer

    Science.gov (United States)

    Sulak, M.; Dolejs, D.

    2012-04-01

    Magmatic activity and prograde devolatilization of subducting or underplating lithologies release large quantities of aqueous fluids that act as mass and heat transfer agents in the planetary interiors. Understanding of mineral-melt-fluid interactions is essential for evaluating the effects of fluid-mediated mass transport in subduction zones, collisional orogens as well as in igneous provinces. The thermodynamic properties of aqueous species were frequently described by the Helgeson-Kirkham-Flowers equation of state [1] but its utility is limited by inavailability of the solvent dielectric properties at high pressures and temperatures, and by decoupling of species-solvent mechanical and electrostatic interactions that cannot be separated within the Born theory. Systematic description of the hydration process in a Born-Haber cycle leads to the following thermochemical contributions: (i) thermodynamic properties of an unhydrated species, (ii) the pressure-volume work required to create a cavity within the solvent to accommodate the species, described by the scaled particle theory, (iii) entropic contribution related to changes in the solute's and the solvent's kinetic degrees of freedom, and (iv) contribution from the solute-solvent molecular interactions and corresponding rearrangement of the solvent molecules to form the hydration shell. Application of the spatial correlation functions [2, 3] results in apparent Gibbs energy of aqueous species, ΔaGi = a + bT + cTlnT + dP + eTlnρ + fTρlnρ, where athrough f represent constants related to standard thermodynamic properties of aqueous species (ΔfH, S, V, cP) and to solvent volumetric properties at 298.15 K and 1 bar (ρ, α, β etc.). In phase equilibrium calculations, the number of required parameters often reduces to four (c = f = 0) while noting that H2O density as the only solvent-related property is accurately known to extreme temperatures and pressures. The equation of state parameters were calibrated for 30

  13. Thermo-chemical controls on diagenetic processes: impact on geologic models for geo pressure, fluid migration, biodegradation, and operational safety

    International Nuclear Information System (INIS)

    Nadeau, P.H.

    2004-01-01

    Proposed models for the effect of clay diagenesis on shale/clay-stone permeability based on precipitation of clay minerals in pore networks and exponential decreases in permeability have been confirmed by subsurface studies. These results have important implication for modelling fluid flow at the basin and field scale, including: 1. overpressure development; 2. hydrocarbon migration; 3. fluid flow through oil columns, shale top seals, and possible controls on biodegradation. This communication further develops the proposed model, and evaluates the implications for petroleum systems analysis, including models for biodegradation, as well as drilling/operational safety. (author)

  14. Interstitial microwave hyperthermia treatment investigations

    International Nuclear Information System (INIS)

    Siauve, N; Lormel, C

    2012-01-01

    Microwave ablation also called interstitial hyperthermia is a medical procedure used in the treatment of many cancers, cardiac arrhythmias and other medical conditions. With this medical therapy, an electromagnetic source (antenna) is directly positioned in the target tissue and a sufficient power is injected to necrosis the tissue. The aim of this study is to propose a design procedure and develop the associated tools, for determining the optimal shape, dimensions, type and operating frequency of antenna according to the target volume. In this context, a 3D numerical predictive model of temperature elevation induced by the electric fields and two benches for thermal and electrical tissues properties characterization have been developed. To validate the procedure and the different tools, an experimental bench test which includes interstitial antenna, external microwave generator, phantom that represents the target tissue and measurement system of temperature and electric field has been elaborated.

  15. Validation of noninvasive pulse contour cardiac output using finger arterial pressure in cardiac surgery patients requiring fluid therapy

    NARCIS (Netherlands)

    Hofhuizen, Charlotte; Lansdorp, Benno; van der Hoeven, Johannes G.; Scheffer, Gert-Jan; Lemson, Joris

    2014-01-01

    Introduction Nexfin (Edwards Lifesciences, Irvine, CA) allows for noninvasive continuous monitoring of blood pressure (ABPNI) and cardiac output (CONI) by measuring finger arterial pressure (FAP). To evaluate the accuracy of FAP in measuring ABPNI and CONI as well as the adequacy of detecting

  16. Validation of noninvasive pulse contour cardiac output using finger arterial pressure in cardiac surgery patients requiring fluid therapy

    NARCIS (Netherlands)

    Hofhuizen, C.M.; Lansdorp, B.; Hoeven, J.G. van der; Scheffer, G.J.; Lemson, J.

    2014-01-01

    INTRODUCTION: Nexfin (Edwards Lifesciences, Irvine, CA) allows for noninvasive continuous monitoring of blood pressure (ABPNI) and cardiac output (CONI) by measuring finger arterial pressure (FAP). To evaluate the accuracy of FAP in measuring ABPNI and CONI as well as the adequacy of detecting

  17. Interstitial guidance of cancer invasion.

    Science.gov (United States)

    Gritsenko, Pavlo G; Ilina, Olga; Friedl, Peter

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations

    Science.gov (United States)

    Wang, X.; Chou, I-Ming; Hu, W.; Burruss, Robert; Sun, Q.; Song, Y.

    2011-01-01

    Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3(r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.

  19. A new perturbation theory of solids and fluids and its applications to high-pressure melting problems

    International Nuclear Information System (INIS)

    Ree, F.H.

    1990-05-01

    A statistical mechanical theory that can describe both solids and fluids in a self-consistent way is described. This theory utilizes a optimized reference potential whose repulsive range shrinks with density. A unique feature of the new theory is that solid- and fluid-phase thermodynamic properties are both computed within a single theoretical framework. Hence, it allows us to study melting phenomena in a self-consistent manner. For solids, the new theory treats both harmonic and anharmonic effects in thermodynamic properties on equal footing. Applications to several model and rare gas systems show that the new theory can accurately predict fluid, solid, and fluid-solid transition properties. Effective pair potentials inferred from the analysis of krypton and xenon isotherms contain short- and long-range modifications to the Aziz-Slaman pair potential. The long-range correction is repulsive and originates from the Axilrod-Teller three-body force, while the short-range correction probably originates from many-body forces. Using the computed melting curves of krypton and neon, we discuss the range of validity of the corresponding states principle for rare gas systems. 68 refs., 8 figs., 6 tabs

  20. Clinical guidelines for interstitial cystitis and hypersensitive bladder updated in 2015.

    Science.gov (United States)

    Homma, Yukio; Ueda, Tomohiro; Tomoe, Hikaru; Lin, Alex Tl; Kuo, Hann-Chorng; Lee, Ming-Huei; Oh, Seung-June; Kim, Joon Chul; Lee, Kyu-Sung

    2016-07-01

    Clinical guidelines for interstitial cystitis and hypersensitive bladder have been updated as of 2015. The guidelines define interstitial cystitis by the presence of hypersensitive bladder symptoms (discomfort, pressure or pain in the bladder usually associated with urinary frequency and nocturia) and bladder pathology, after excluding other diseases explaining symptoms. Interstitial cystitis is further classified by bladder pathology; either Hunner type interstitial cystitis with Hunner lesions or non-Hunner type interstitial cystitis with mucosal bleeding after distension in the absence of Hunner lesions. Hypersensitive bladder refers to a condition, where hypersensitive bladder symptoms are present, but bladder pathology or other explainable diseases are unproven. Interstitial cystitis and hypersensitive bladder severely affect patients' quality of life as a result of disabling symptoms and/or comorbidities. Reported prevalence suggestive of these disorders varies greatly from 0.01% to >6%. Pathophysiology would be an interaction of multiple factors including urothelial dysfunction, inflammation, neural hyperactivity, exogenous substances and extrabladder disorders. Definite diagnosis of interstitial cystitis and hypersensitive bladder requires cystoscopy with or without hydrodistension. Most of the therapeutic options lack a high level of evidence, leaving a few as recommended therapeutic options. © 2016 The Japanese Urological Association.

  1. Normal Pressure Hydrocephalus (NPH)

    Science.gov (United States)

    ... local chapter Join our online community Normal Pressure Hydrocephalus (NPH) Normal pressure hydrocephalus is a brain disorder ... Symptoms Diagnosis Causes & risks Treatments About Normal Pressure Hydrocephalus Normal pressure hydrocephalus occurs when excess cerebrospinal fluid ...

  2. Limitations of the effective field approximation for fluid modeling of high frequency discharges in atmospheric pressure air: Application in resonant structures

    Science.gov (United States)

    Kourtzanidis, Konstantinos; Raja, Laxminarayan

    2017-11-01

    We study analytically and demonstrate numerically that the local effective field approximation (LEFA) for plasma fluid modeling of high-frequency (GHz-THz) discharges in atmospheric pressure air is not valid in regions where the time scale for electron energy transfer to heavy particles is less than the time-period of the electromagnetic (EM) wave. Greater than 50% modulation of the electron temperature around its mean value is found for frequencies around and under 10 GHz for atmospheric pressure air discharges. This modulation decreases significantly as the EM wave frequency increases. Fully coupled numerical simulation of a resonant metallic cut-array illuminated by high frequency EM waves demonstrates that the LEFA can lead to significant errors on both temporal and spatial evolution of the plasma, in cases where this modulation is significant. The LEFA for high pressure air discharges is found to be valid when the EM wave frequency is around or higher than 100 GHz. For lower frequencies or when the reduced electric fields are high enough, the Local Energy Approximation should be used for an accurate description of the plasma development. For low gas pressures, the modulation is very low rendering the LEFA valid over a large EM wave frequency range.

  3. On the use of continuous spectrum and discrete-mode differential models to predict contraction-flow pressure drops for Boger fluids

    Science.gov (United States)

    López-Aguilar, J. E.; Webster, M. F.; Tamaddon-Jahromi, H. R.; Manero, O.; Binding, D. M.; Walters, K.

    2017-12-01

    Over recent years, there has been slow but steady progress towards the qualitative numerical prediction of observed behaviour when highly elastic Boger fluids flow in contraction geometries. This has led to an obvious desire to seek quantitative agreement between prediction and experiment, a subject which is addressed in the current paper. We conclude that constitutive models of non-trivial complexity are required to make headway in this regard. However, we suggest that the desire to move from qualitative to quantitative agreement between theory and experiment is making real progress. In the present case with differential models, this has involved the introduction of a generalized continuous spectrum model. This is based on direct data input from material functions and rheometrical measurements. The class of such models assumes functional separability across shear and extensional deformation, through two master functions, governing independently material-time and viscous-response. The consequences of such a continuous spectrum representation are compared and contrasted against discrete-mode alternatives, via an averaged single-mode approximation and a multi-modal approximation. The effectiveness of each chosen form is gauged by the quality of match to complex flow response and experimental measurement. Here, this is interpreted in circular contraction-type flows with Boger fluids, where large experimental pressure-drop data are available and wide disparity between different fluid responses has been recorded in the past. Findings are then back-correlated to base-material response from ideal viscometric flow.

  4. Smoking-related interstitial lung diseases

    International Nuclear Information System (INIS)

    Marten, K.

    2007-01-01

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis

  5. Brief Report: Flow Rate of Cerebrospinal Fluid Through a Spinal Needle Can Accurately Predict Intracranial Pressure in Cryptococcal Meningitis.

    Science.gov (United States)

    Boyles, Tom H; Gatley, Elizabeth; Wasserman, Sean; Meintjes, Graeme

    2017-03-01

    Patients with HIV-associated cryptococcal meningitis (CM) commonly present with raised intracranial pressure (ICP). Aggressive management of raised ICP reduces mortality but requires manometers, which are unavailable in most resource-limited settings. The law of Poiseuille states that the rate of flow of liquid through a tube is directly proportional to the difference in pressure between each end, and it may be possible to indirectly determine ICP by measuring flow of CSF through a spinal needle rather than using a manometer. A convenience sample of CM patients requiring lumbar puncture (LP) (with 22-G spinal needle) for ICP measurement and control were enrolled. ICP was first measured using a narrow bore manometer. After removing the manometer, the number of drops of CSF flowing from the spinal needle in 15 seconds was counted. Thirty-two patients had 89 LPs performed (range, 1-23). Fifty-four had high opening pressure with a CSF flow rate of 16-200 drops/min, and 35 had normal pressure with a CSF flow rate of 8-140 drops/min. Area under the fitted receiver operator character curve was 0.89. A flow rate cutoff to define high pressure of ≥40 drops/min correctly classified 75 of 89 LPs (accuracy 84%). It is technically feasible to indirectly estimate CSF pressure to an accuracy that is clinically useful by counting drops of CSF flowing from a spinal needle. The optimal cutoff value for defining high pressure using a standard 22-G spinal needle is ≥40 drops/min. These findings have the potential to improve CM management in resource-limited settings.

  6. Measuring interstitial pH and pO2 in mouse tumors.

    Science.gov (United States)

    Jain, Rakesh K; Munn, Lance L; Fukumura, Dai

    2013-07-01

    This protocol outlines methods to measure two extravascular parameters, interstitial pH and partial pressure of oxygen (pO2), in mouse tumors. The method for measuring interstitial pH uses fluorescence ratio imaging microscopy (FRIM) of the pH-sensitive fluorescent dye 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). The method for measuring interstitial pO2 is based on the oxygen-dependent quenching of the phosphorescence of albumin-bound palladium meso-tetra(4-carboxyphenyl)porphyrin, and can be used to measure microvascular as well as interstitial pO2. In addition, the two methods can be used sequentially to measure both pH and pO2 in the same tissues.

  7. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  8. Impact of Compression Stockings vs. Continuous Positive Airway Pressure on Overnight Fluid Shift and Obstructive Sleep Apnea among Patients on Hemodialysis

    Directory of Open Access Journals (Sweden)

    Bruno C. Silva

    2017-05-01

    Full Text Available IntroductionObstructive sleep apnea (OSA is common in edematous states, notably in hemodialysis patients. In this population, overnight fluid shift can play an important role on the pathogenesis of OSA. The effect of compression stockings (CS and continuous positive airway pressure (CPAP on fluid shift is barely known. We compared the effects of CS and CPAP on fluid dynamics in a sample of patients with OSA in hemodialysis, through a randomized crossover study.MethodsEach participant performed polysomnography (PSG at baseline, during CPAP titration, and after 1 week of wearing CS. Neck circumference (NC and segmental bioelectrical impedance were done before and after PSG.ResultsFourteen patients were studied (53 ± 9 years; 57% men; body mass index 29.7 ± 6.8 kg/m2. Apnea–hypopnea index (AHI decreased from 20.8 (14.2; 39.6 at baseline to 7.9 (2.8; 25.4 during CPAP titration and to 16.7 (3.5; 28.9 events/h after wearing CS (CPAP vs. baseline, p = 0.004; CS vs. baseline, p = 0.017; and CPAP vs. CS, p = 0.017. Nocturnal intracellular trunk water was higher after wearing CS in comparison to baseline and CPAP (p = 0.03. CS reduced the fluid accumulated in lower limbs during the day, although not significantly. Overnight fluid shift at baseline, CPAP, and CS was −183 ± 72, −343 ± 220, and −290 ± 213 ml, respectively (p = 0.006. Overnight NC increased at baseline (0.7 ± 0.4 cm, decreased after CPAP (−1.0 ± 0.4 cm, and while wearing CS (−0.4 ± 0.8 cm (CPAP vs. baseline, p < 0.0001; CS vs. baseline, p = 0.001; CPAP vs. CS, p = 0.01.ConclusionCS reduced AHI by avoiding fluid retention in the legs, favoring accumulation of water in the intracellular component of the trunk, thus avoiding fluid shift to reach the neck. CPAP improved OSA by exerting local pressure on upper airway, with no impact on fluid redistribution. CPAP performed significantly better than CS

  9. Optical In-Situ Measurement of the pH-Value During High Pressure Treatment of Fluid Food

    OpenAIRE

    Stippl, Volker Michael

    2006-01-01

    In addition to heat treatment of food used to enhance shelf life, the relevance of the application of hydrostatic pressures is increasing. With treatment of several 100 MPa many food-spoiling microorganisms can be completely eliminated, while valuable properties such as vitamins, colouring, smell and taste are mostly preserved. Equilibrium constants change with pressure. Consequently, both the pH-value of a solution and the behaviour of pH-sensitive reactions change, e.g. the pH-optimum of an...

  10. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2005-01-01

    Vapor pressure p of LiNO 3 + CH 3 OH solutions at T = (298.15 to 323.15) K was reported, osmotic φ and activity coefficients γ; and activity of solvent a s have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg -1 . The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients

  11. A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis.

    Science.gov (United States)

    Bertram, C D; Heil, M

    2017-01-01

    An existing axisymmetric fluid/structure-interaction (FSI) model of the spinal cord, pia mater, subarachnoid space, and dura mater in the presence of syringomyelia and subarachnoid-space stenosis was modified to include porous solids. This allowed investigation of a hypothesis for syrinx fluid ingress from cerebrospinal fluid (CSF). Gross model deformation was unchanged by the addition of porosity, but pressure oscillated more in the syrinx and the subarachnoid space below the stenosis. The poroelastic model still exhibited elevated mean pressure in the subarachnoid space below the stenosis and in the syrinx. With realistic cord permeability, there was slight oscillatory shunt flow bypassing the stenosis via the porous tissue over the syrinx. Weak steady streaming flow occurred in a circuit involving craniocaudal flow through the stenosis and back via the syrinx. Mean syrinx volume was scarcely altered when the adjacent stenosis bisected the syrinx, but increased slightly when the syrinx was predominantly located caudal to the stenosis. The fluid content of the tissues over the syrinx oscillated, absorbing most of the radial flow seeping from the subarachnoid space so that it did not reach the syrinx. To a lesser extent, this cyclic swelling in a boundary layer of cord tissue just below the pia occurred all along the cord, representing a mechanism for exchange of interstitial fluid (ISF) and cerebrospinal fluid which could explain recent tracer findings without invoking perivascular conduits. The model demonstrates that syrinx volume increase is possible when there is subarachnoid-space stenosis and the cord and pia are permeable.

  12. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    Science.gov (United States)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  13. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid

    NARCIS (Netherlands)

    Sival, Deborah A; Felderhoff-Müser, Ursula; Schmitz, Thomas; Hoving, Eelco W; Schaller, Carlo; Heep, Axel

    2008-01-01

    BACKGROUND: In human neonatal high pressure hydrocephalus (HPHC), diffuse white matter injury and gliosis predispose to poor neuro-developmental outcome. The underlying mechanism for diffuse white matter damage in neonatal HPHC is still unclear. Analogous to inflammatory white matter damage after

  14. Relationship Between Far Field Stresses, Fluid Flow and High-Pressure Deserpentinization in Subducting Slabs: a Case Study From the Almirez Ultramafic Massif

    Science.gov (United States)

    Dilissen, Nicole; Hidas, Károly; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Kahl, Wolf-Achim; Padrón-Navarta, José Alberto; Jesús Román-Alpiste, Manuel

    2017-04-01

    Serpentinite dehydration during prograde metamorphism plays a crucial role in subduction dynamics. Observations from exhumed paleo-subduction metamorphic terranes suggest that the discharge of deserpentinization fluids from the subducting slab takes place along different pathways and mechanisms [e.g. 1-3]. Analysis of intermediate-depth focal solutions in active subduction zones indicates that slabs are subjected to different principal stress fields characterized primarily by downdip compression and downdip tension [4]. Although it is well known that far field stresses play a crucial role on fluid flow channeling, their potential impact on the kinetics of serpentinite dehydration and subsequent fluid escape in subducting slabs is still poorly understood. Here, we present a detailed structural and microstructural study to investigate the relationships between far field stresses, fluid flow and high-pressure deserpentinization in the Almirez ultramafic massif (Betic Cordillera, SE Spain) [1, 2]. This massif preserves the high-pressure breakdown of antigorite (Atg-) serpentinite to prograde chlorite (Chl-) harzburgite, which are separated by a sharp isograd [2, 5]. The Chl-harzburgite reaction products show either a granofels or spinifex-like texture indicating crystallization under different overstepping of the Atg-out reaction. The two different textural types of Chl-harzburgite occur below the Atg-out isograd as alternating, meter-wide lenses with either a granofels or spinifex texture. From field measurements, we infer that during antigorite dehydration the minimum compressive stress was subnormal to the dehydration front and the paleo-slab surface. This stress field is consistent with subduction zones with slabs under downdip compression at intermediate depths [4]. The detailed microstructural study —combining µ-CT and EBSD-SEM [6]— of Chl-harzburgite across a c. 15 m wide lens reveals that the SPO and CPO of olivines with contrasting textures are strongly

  15. Sexual Dysfunction in Interstitial Cystitis.

    Science.gov (United States)

    Tonyali, Senol; Yilmaz, Mehmet

    2017-11-01

    Interstitial cystitis (IC)/bladder pain syndrome (BPS) is a debilitating disease characterized with urgency, frequency, and pelvic pain affecting especially women. Sexual dysfunction in female patients with IC/BPS consists of dyspareunia, altered sexual desire and orgasm frequency and insufficient lubrication is reported to negatively affect the patient's quality of life. In the present study, we aimed to determine the association between IC/BPS and sexual dysfunction and improvement in sexual dysfunction related to given treatments. A PubMed/Medline and EMBASE search was conducted using keywords: "interstitial cystitis", "sexual dysfunction", and "bladder pain syndrome". Several studies have been conducted to determine the relation between IC/BPS and sexual dysfunction. And also limited studies focusing on IC/BPS specific treatments reported significant improvements in sexual function after either oral or intravesical treatment. However, given the used different questionnaires, study protocols, patient characteristics, previous treatments and follow-up period, it is not possible to make a head-to-head comparison of the treatment effects on sexual function. Further, randomized controlled studies are needed to confirm these results and make a comparison between effects of various treatment modalities on sexual functioning in IC/BPS.

  16. Modification of Sako-Wu-Prausnitz equation of state for fluid phase equilibria in polyethylene-ethylene systems at high pressures

    Directory of Open Access Journals (Sweden)

    F. Gharagheizi

    2006-09-01

    Full Text Available In order to model phase equilibria at all pressures, it is necessary to have an equation of state. We have chosen the Sako-Wu-Prausnitz cubic equation of state, which had shown some promising results. However, in order to satisfy our demands, we had to modify it slightly and fit new pure component parameters. New pure component parameters have been determined for ethylene and the n-alkane series, using vapor pressure data, saturated liquid volume and one-phase PVT-data. For higher n-alkanes, where vapor pressure data are poor or not available, determination of the pure component parameters was made in part by extrapolation and in part by fitting to one-phase PVT-data. Using one-fluid van der Waals mixing rules, with one adjustable interaction parameter, good correlation of binary hydrocarbon system was obtained, except for the critical region. The extension of the equation of state to polyethylene systems is covered in this work. Using the determined parameters, flash and cloud point calculations were performed, and treating the polymer as polydisperse. The results fit data well.

  17. Optimizing the shape of ultrasound transducers for interstitial thermal ablation

    International Nuclear Information System (INIS)

    Lafon, Cyril; Melo de Lima, David; Theillere, Yves; Prat, Frederic; Chapelon, Jean-Yves; Cathignol, Dominique

    2002-01-01

    Heat deposition by interstitial routes, especially with ultrasound-based instruments, is becoming a valuable therapeutic option for the treatments of sites, which are difficult to access from outside of the body. The active part of most interstitial ultrasound applicators described in the literature is logically tubular to induce cylindrical volumes of coagulation necrosis. Because the pressure generated by such tubular transducers falls off rapidly with radial distance, we previously proposed using a rotating plane transducer. For a plane wave, the pressure fall-off is only due to attenuation, which makes deeper lesions and shorter treatment times possible. This work represents an advance in the development of ultrasound applicators designed for interstitial applications. This new applicator used a rotating slightly focused transducer. A brief theoretical analysis resulted in the choice of a long focal distance of 22 mm to obtain a nearly constant pressure all along the therapeutic depth. To experimentally validate this focal distance, pressure measurements were made in a tissue mimicking liquid phantom and the results were compared with those obtained with a plane transducer. In vitro experiments showed that necrosis could be induced at a depth of 15 mm. In the same conditions, the grea