WorldWideScience

Sample records for interstellar silicate grains

  1. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  2. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  3. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  4. Interstellar grain surface chemistry

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.

    1989-01-01

    Theoretical calculations, laboratory studies, and observations of interstellar icy grain mantles are reviewed. The emphasis is on recent ground-based observations of the interstellar 2167 cm -1 (4.67μm) band and air-borne studies of the interstellar 1665 and 1460 cm -1 (6.0 and 6.85μm) bands. From a comparison with laboratory studies it is concluded that interstellar icy gain mantles consist mainly of H 2 O, CH 3 OH and CO in an approximate ratio of 100:50:5. Traces of other molecules have also been detected. Evidence for the presence of a separate, more inert, grain mantle component, perhaps consisting mainly of solid CO, will also be presented. Theoretical calculations of the composition of interstellar icy gain mantles are confronted with observational data and the shortcomings of the models are pointed out. Finally, the evolution of icy grain mantles under UV irradiation and their possible interrelationship with an organic grain component observed in the diffuse interstellar medium are discussed

  5. Interstellar grain chemistry

    International Nuclear Information System (INIS)

    Buch, V.

    1990-01-01

    This chapter discusses the chemical evolution and composition of dust in dense interstellar clouds. Studies use observations in the infrared, visible and ultraviolet spectral regions. These grains are thought to be made largely of highly disordered and/or composite materials. Recently acquired data on Halley's comet and on the structure, composition and spectral properties of interplanetary dust particles (IDP) are used to study grain chemistry. These substances are though to be similar to dense cloud dust. Dense clouds are thought to contain minerals, poorly crystallized carbonaceous/organic polymers, coating mineral grains and dirty ice mantles and the chemistry of these substances is considered. (UK)

  6. The Rosseland mean opacity of interstellar grain

    International Nuclear Information System (INIS)

    Ali, A.; El Shalaby, M.A.; El-Nawawy, M.S.

    1990-10-01

    We have calculated the opacity of interstellar grains in the temperature range 10 deg. K - 1500 deg. K. Two composite grain models have been considered. One of them consists of silicate coated with ice mantle and the second has a graphite core coated also with ice mantle. These models are compared with isolated grain models. An exact analytical and computational development of Guettler's formulae for composite grain models has been used to calculate the extinction coefficient. It has been found that the thickness of the mantle affects the opacity of the interstellar grains. The opacity of composite models differs from that of the isolated models. The effect of the different species (ice, silicate and graphite) is also clear. (author). 22 refs, 4 figs, 1 tab

  7. Shock processing of interstellar grains

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1986-01-01

    Shock processing plays an important role in the life of a typical interstellar grain. Shocks of 100 km/s-l or greater can destroy about 50% of the grain material under appropriate preshock conditions of density and magnetic field. The destruction occurs by grain-grain collisions and nonthermal sputtering for steady state radiative shocks and by thermal sputtering for fast adiabatic shocks. The evaluation of the lifetime of grains against shock destruction depends on models of the interstellar medium (ISM) structure and on supernova remnants (SNR) evolution. Results from various authors give lifetimes between 10 to the 8th and 10 to the 9th power years, compared to typical injection times for new grains of a few times 10 to the 9th power years. These numbers require that a major portion of the interstellar silicon bearing grain material must be formed by grain growth in the ISM. At the same time, the presence of isotopic anomalies in some meteorites implies that at least some grains must survive from their formation in SNRs or red giant winds through incorporation into the solar system

  8. Complex Chemistry on Interstellar Grains

    Science.gov (United States)

    Widicus Weaver, Susanna L.; Kelley, Matthew J.; Blake, Geoffrey A.

    Early interstellar chemical models considered complex molecule formation on grains [Allen & Robinson (1977)], but current models assume that simple molecules form on grains and subsequent gas phase ion-molecule reactions produce the more complex species [Ruffle & Herbst (2001), Charnley (2001)]. It has been shown, however, that gas phase ion-molecule reactions are insufficient for the production of such complex organic species as ethanol (CH3CH2OH) and methyl formate (CH3OCHO) [Horn et al. (2004)]. Organics such as acetaldehyde (CH3CHO), ethanol, methyl formate, acetic acid (CH3COOH), and glycolaldehyde (CH2OHCHO) have also been detected in high abundance in regions of grain mantle disruption or evaporation, indicating that these species are formed on grain surfaces [see Chengalur & Kanekar (2003), Bottinelli et al. (2004), Hollis et al. (2001)]. The mechanisms for complex molecule production on grains are clearly much more important, and much more complex, than has been recognized. Recent observational studies of these types of species have offered insight into the mechanisms for their possible grain surface synthesis. The relative hot core abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde (52:2:1, respectively [Hollis et al. (2001)]) indicate that if they form on grains it is not from kinetically-controlled single-atom addition reactions. Likewise, the 3C aldose sugar, glyceraldehyde (CH2OHCHOHCHO), was not detected in Sgr B2(N-LMH) [Hollis et al. (2004)] while the 3C ketose sugar, dihydroxyacetone (CO(CH2OH)2) was detected in this source [Widicus Weaver & Blake (2005)]. Chemical pathways favoring the more stable carbonates over acids and aldehydes are required to explain these results. Interestingly, all of these species can be formed from reactions involving the abundant grain mantle constituents CO, HCOOH, and CH3OH and their radical precursors. A model has been developed to investigate this type of chemical network, and

  9. Interstellar grains - the 75th anniversary

    International Nuclear Information System (INIS)

    Li Aigen

    2005-01-01

    The year of 2005 marks the 75th anniversary since Trumpler (1930) provided the first definitive proof of interstellar grains by demonstrating the existence of general absorption and reddening of starlight in the galactic plane. This article reviews our progressive understanding of the nature of interstellar dust

  10. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    Science.gov (United States)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  11. Molecule production on interstellar oxide grains

    International Nuclear Information System (INIS)

    Duley, W.W.; Millar, T.J.; Williams, D.A.

    1978-01-01

    The microscopic nature of the surface of metal oxides is discussed, and a variety of surface defects are described. The chemical activity of these defects form the basis for the well-known catalytic properties of oxide materials. The types of defects likely to occur on interstellar oxide grains are investigated. Guided by extensive laboratory data on the catalytic properties of oxide materials, a list is given of reactions likely to occur on oxide grains in the interstellar medium. A specific model is proposed for the site which catalyses H 2 formation on interstellar grain surfaces. Sites of importance in the formation of the molecules are proposed to be of the (OH - ) type, as commonly observed on the surface of oxide materials. Under a plausible set of assumptions, molecular formation rates are estimated for low-density clouds, and it is suggested that the mechanisms described here will contribute significantly to interstellar chemistry. (author)

  12. Chemistry and infrared spectroscopy of interstellar grains

    International Nuclear Information System (INIS)

    Hagen, W.

    1982-01-01

    This thesis focuses on three aspects of interstellar grains: the photochemistry of the grain mantles, their infrared spectroscopy and the surface chemistry that takes place during mantle accretion. It provides a combination of pure and applied chemistry and spectroscopy. The experiments described in this thesis have been carried out with low temperature (10 K) solid molecular mixtures representing the mantles of interstellar grains. The samples have been prepared by slowly condensing gaseous mixtures of simple molecules (e.g. CO, H 2 O, NH 3 , CH 4 ) on a cold substrate (mirror or window) cooled by a cryogenic refrigerator mounted in a high vacuum chamber. Fourier transform infrared spectroscopy has been used to study the sample. A laboratory study of the photochemistry in interstellar grain mantles is described. It shows that irradiation of solid binary mixtures of CO with H 2 O, NH 3 or CH 4 with 1600 A vacuum ultraviolet light, which is representative of the interstellar ultraviolet field, gives rise to the formation of a number of large molecules as well as radicals. Moreover, a theoretical study is given of the chemical composition of grain mantles accreted in dense clouds. (Auth.)

  13. Grain growth across protoplanetary discs: 10 μm silicate feature versus millimetre slope

    NARCIS (Netherlands)

    Lommen, D.J.P.; van Dishoeck, E.F.; Wright, C.M.; Min, M.

    2010-01-01

    Context. Young stars are formed with dusty discs around them. The dust grains in the disc are originally of the same size as interstellar dust, i.e., of the order of 0.1 μm. Models predict that these grains will grow in size through coagulation. Observations of the silicate features around 10 and 20

  14. Prebiotic molecules and interstellar grain clumps

    International Nuclear Information System (INIS)

    Hoyle, F.; Wickramasinghe, N.C.

    1977-01-01

    It is stated that interstellar molecules detected by radioastronomical techniques in galactic clouds cover a wide range of types and complexities. Amongst the heaviest recently discovered is cyanodiacetylene. There have also been earlier detections of precursors to the simplest amino-acid, glycine and probably detections of polyoxymethylene polymers and co-polymers. A possible identification of organic molecules of even greater complexity is here discussed, together with implications for the commencement of biological activity. The large departures from thermodynamic equilibrium in the interstellar medium and the co-existence of solid grains, molecules, radicals, ions, and uv photons provide conditions that are ideal for production of 'exotic' molecular species. The effect of clumping of dust grains is discussed. The possible spectral identification of highly complex organic species in the interstellar medium is also discussed and reference is made to a property common to a wide class of such molecules, that is, an absorption band centered at 2,200 A. It is tempting to identify this feature with the well-known 2,200 A band of the interstellar extinction curve. It is thought that it may be tentatively concluded that the data so far obtained could be interpreted as independent new chemical evidence of the existence of composite grain clumps in the interstellar medium and in carbonaceous chondrites, and that these grain clumps probably include a significant mass fraction of highly complex organic pre-biotic molecules that could have led to the start and dispersal of biological activity on the Earth and elsewhere in the Galaxy. Processes of natural selection probably also played an important part, particularly in the production of self-replicable peptide chains. The problem of protection of pre-biotic material against external disruptive agencies, such as u/v light, is also discussed. (U.K.)

  15. Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions

    Science.gov (United States)

    Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare

    2018-04-01

    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.

  16. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  17. Iron or iron oxide grains in the interstellar medium?

    International Nuclear Information System (INIS)

    Jones, A.P.

    1990-01-01

    Iron grains have often been proposed as a component of circumstellar and interstellar grains. It is apparent that 'cosmic abundance' circumstellar shells should condense iron-rich particles such as metallic iron, iron/nickel alloys and iron carbides. It is not, however, clear that these grains can survive in this state in the interstellar medium. In this paper the chemistry of iron particles in the diffuse interstellar medium is examined and it is concluded that these grains cannot survive as pristine metallic iron-rich entities. The reactivity of iron, and in particular its reaction with interstellar gas-phase oxygen and sulphur species, will result in the rapid degradation of the metal to an oxide, sulphide or even sulphate. The lack of metallic phases in the mineralogy of primitive interplanetary dust particles is consistent with the absence of metallic particles in the interstellar medium. (author)

  18. Shock processing of large grains in the interstellar medium

    NARCIS (Netherlands)

    Slavin, JD; Jones, AP; Tielens, AGGM

    2004-01-01

    There is a growing body of evidence for the existence of large (>0.25 mum) dust grains in the interstellar medium (ISM). Large presolar grains have been found in meteors and have been directly detected flowing into the solar system from the ISM by the Ulysses and Galileo spacecraft. While extending

  19. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    Science.gov (United States)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  20. The evolution of grain mantles and silicate dust growth at high redshift

    Science.gov (United States)

    Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney

    2018-05-01

    In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.

  1. Stochastic histories of dust grains in the interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size

  2. Evolution of silicate dust in interstellar, circumstellar and cometary environments: the role of irradiation and temperature

    International Nuclear Information System (INIS)

    Davoisne, Carine

    2006-01-01

    Due to the development of observational and analytical tools, our knowledge of the silicate dust has considerably increased these last years. Dust is formed around evolved stars and injected in the interstellar medium (ISM) in which it travels. Dust is then incorporated in the proto-planetary disks around young stars. During its life cycle, the silicate dust is subjected by numerous processes. The aim of this PhD work is firstly to study the chemical and morphological modifications of silicate dust in supernovae shock waves then to indicate its evolution when it is incorporated around young stars. We have developed low energy ion irradiations in situ in a photoelectron spectrometer (XPS). The chemical and morphological changes have been measured respectively by XPS and atomic force microscopy. We have also carried out thermal annealing under controlled atmosphere of amorphous silicates. The structural and chemical modifications have been observed by analytical transmission electron microscopy. We have shown that ion irradiation induces chemical and morphological changes in silicate. In the ISM, supernovae shock waves are thus a major process which could affect the silicate dust evolution. The microstructure obtained after thermal annealing strongly depends on oxygen fugacity. They often offer a good comparison with those observed in primitive materials present in our solar system. The recrystallization of amorphous interstellar precursors in the inner accretion disk is thus an efficient process to form crystalline silicates which are furthermore incorporated in small parent bodies (asteroids or comets). (author) [fr

  3. VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shu; Jiang, B. W. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2015-09-20

    The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ the ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.

  4. Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates.

    Science.gov (United States)

    Yang, Tao; Thomas, Aaron M; Dangi, Beni B; Kaiser, Ralf I; Mebel, Alexander M; Millar, Tom J

    2018-02-22

    Interstellar silicates play a key role in star formation and in the origin of solar systems, but their synthetic routes have remained largely elusive so far. Here we demonstrate in a combined crossed molecular beam and computational study that silicon dioxide (SiO 2 ) along with silicon monoxide (SiO) can be synthesized via the reaction of the silylidyne radical (SiH) with molecular oxygen (O 2 ) under single collision conditions. This mechanism may provide a low-temperature path-in addition to high-temperature routes to silicon oxides in circumstellar envelopes-possibly enabling the formation and growth of silicates in the interstellar medium necessary to offset the fast silicate destruction.

  5. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D. [Harvard-Smithsonian Center for Astrophysics, MS 83, 60 Garden Street, Cambridge, MA 02138 (United States); Frisch, Priscilla C. [Department of Astronomy and Astrophysics, University of Chicago, 5460 S. Ellis Avenue, Chicago, IL 60637 (United States); Mueller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Heerikhuisen, Jacob; Pogorelov, Nikolai V. [Department of Physics and Center for Space Physics and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Reach, William T. [Universities Space Research Association, MS 211-3, Moffett Field, CA 94035 (United States); Zank, Gary [Department of Physics and Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35805 (United States)

    2012-11-20

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a {sub gr} {approx}< 0.01 {mu}m are completely excluded from the inner heliosphere. Large grains, a {sub gr} {approx}> 1.0 {mu}m, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  6. Interstellar extinction correlations

    International Nuclear Information System (INIS)

    Jones, A.P.; Williams, D.A.; Duley, W.W.

    1987-01-01

    A recently proposed model for interstellar grains in which the extinction arises from small silicate cores with mantles of hydrogenated amorphous carbon (HAC or α-C:H), and large, but thinly coated, silicate grains can successfully explain many of the observed properties of interstellar dust. The small silicate cores give rise to the 2200 A extinction feature. The extinction in the visual is produced by the large silicates and the HAC mantles on the small cores, whilst the far UV extinction arises in the HAC mantles with a small contribution form the silicate grains. The grain model requires that the silicate material is the more resilient component and that variations in the observed extinction from region to region are due to the nature and depletion of the carbon in the HAC mantles. (author)

  7. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States)

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  8. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Hoffman, John; Draine, B. T.

    2016-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition

  9. Tholins - Organic chemistry of interstellar grains and gas

    Science.gov (United States)

    Sagan, C.; Khare, B. N.

    1979-01-01

    The paper discusses tholins, defined as complex organic solids formed by the interaction of energy - for example, UV light or spark discharge - with various mixtures of cosmically abundant gases - CH4, C2H6, NH3, H2O, HCHO, and H2S. It is suggested that tholins occur in the interstellar medium and are responsible for some of the properties of the interstellar grains and gas. Additional occurrences of tholins are considered. Tholins have been produced experimentally; 50 or so pyrolytic fragments of the brown, sometimes sticky substances have been identified by gas chromatography-mass spectrometry, and the incidence of these fragments in tholins produced by different procedures is reported.

  10. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main (Germany)

    2017-02-10

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  11. Interstellar ice grains in the Taurus molecular clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Bode, M.F.; Baines, D.W.T.; Evans, A.

    1983-01-01

    Observations made in November 1981 using the United Kingdom Infrared Telescope (UKIRT) at Mauna Kea of the 3 μm ice absorption feature in the spectra of several obscured stars in the Taurus interstellar clouds are reported. The feature correlated in strength with extinction at visual wavelengths (Asub(v)), and is present in stars with Asub(v) as low as 4-6 mag. Ice may be widespread in the Taurus clouds, vindicating ideas on grain composition and growth first reported nearly 50 yr ago. (author)

  12. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    International Nuclear Information System (INIS)

    Chiar, J. E.; Ricca, A.; Tielens, A. G. G. M.; Adamson, A. J.

    2013-01-01

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 μm) and aliphatic (3.4 μm) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp 2 bonds can be measured in astronomical spectra using the 6.2 μm CC aromatic stretch feature, whereas the 3.4 μm aliphatic feature can be used to quantify the fraction of sp 3 bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp 3 content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  13. Visible and ultraviolet (800--130 nm) extinction of vapor-condensed silicate, carbon, and silicon carbide smokes and the interstellar extinction curve

    International Nuclear Information System (INIS)

    Stephens, J.R.

    1980-01-01

    The extinction curves from 800 to 130 nm (1.25--7.7 μm -1 ) of amorphous silicate smokes nominally of olivine and pyroxene composition, carbon smokes, and crystalline SiC smokes are presented. The SiC smoke occurred in the low-temperature (β) cubic structural form. The mean grain radius ranged from 5 to 13 nm. The extinction profiles of the amorphous olivine smokes were similar in the ultraviolet to the measured extinction curves of crystalline olivine of nearly the same grain size. The SiC smoke showed an absorption edge which occurred at significantly longer wavelengths than the calculated extinction profile of the hexagonal SiC form previously used to calculate the interstellar extinction profile. Neither SiC nor amorphous silicates show an extinction band similar to the observed 6.6 μm -1 astronomical extinction band

  14. Structure in the interstellar polarization curve and the nature of the polarizing grains

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Smith, R.J.

    1984-01-01

    At this workshop the emphasis is on divining the nature of the interstellar grains by using infrared spectral features as the principal diagnostic. Nevertheless other approaches are also contributing to an understanding of the grains and deserve some attention. This paper describes the structure recently found in the interstellar polarization curve, and discusses its relation to the structure seen in the extinction curve and the nature of the grains producing the spectral features. (author)

  15. Ultraviolet extinction properties of grains in the interstellar medium

    International Nuclear Information System (INIS)

    Seab, C.G.

    1982-01-01

    The IUE satellite has been used to derive UV extinction curves for 58 stars, ranging in spectral type from 06 the A5, and with E(B-V) reddenings from 0.09 to 1.59 mag. The average reddening is 0.63 mag. Anomalous extinction curves were particularly sought in the project. The most striking discovery was the near absence of the 2175 Angstrom extinction feature from the line of sight towards HD 29647 in the Taurus dark cloud. The collection of data has been analyzed in several ways. Patterns are sought in the collection as a whole, in homogeneous subsets of the data, and in relation to diffuse band strengths. Apart from some well-known correlations, only a few weak relationships are found, including a quasi-relationship between the 2175 Angstrom bump and the 4430 Angstrom diffuse band that persists after the basic E(B-V) dependencies have been removed. A search for diffuse bands in the UV was done by stacking 48 of the extinction curves to reduce the noise. The stacked curve showed no evidence of new diffuse bands. To help interpret the anomalous extinction curves, a theoretical simulation of grain processing in interstellar shocks was undertaken. Shock processing was found to cause strong 2175 angstorm bumps and high far UV extinction. Comparison to extinction curves associated with supernova remnants confirms the predictions of strong 2175 Angstrom bumps, and partially confirms the prediction of high far UV extinction. The implications of all of these results are considered for the two most prominent grain models

  16. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    International Nuclear Information System (INIS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C n H – (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n H 2 ∼>10 5 cm –3 ). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C 6 H – anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C 6 O, C 7 O, HC 6 O, and HC 7 O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  17. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  18. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    Science.gov (United States)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  19. Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM

    Science.gov (United States)

    Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.

  20. Collisions between grains in a turbulent gas. [in interstellar medium

    Science.gov (United States)

    Voelk, H. J.; Morfill, G. E.; Roeser, S.; Jones, F. C.

    1980-01-01

    Turbulent gas motions will induce random velocities of small dust grains that are imbedded in the gas. Within large eddies the friction forces from the gas lead to strongly correlated velocities for neighboring grains, whereas small eddies cause uncorrelated grain motions. The nonlinear response of a grain to eddy motion is calculated. This leads to a turbulent pressure within the dust component as well as to collisions between pairs of grains. The results are evaluated numerically for a Kolmogoroff spectrum and turbulent collision rates are calculated for molecular clouds and protostellar environments. Whereas grain-grain collisions should not modify the initial size distribution in molecular clouds to a significant extent, they will lead to an entirely different grain population in protostars.

  1. Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation

    NARCIS (Netherlands)

    Abbas, MM; Craven, PD; Spann, JF; Tankosic, D; LeClair, A; Gallagher, DL; West, EA; Weingartner, JC; Witherow, WK; Tielens, AGGM

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and

  2. Effects of particle shape on volume and mass estimates of interstellar grains

    Science.gov (United States)

    Greenberg, J. M.; Hong, S. S.

    1975-01-01

    Mass estimates of interstellar grain materials based on visual extinction characteristics are shown to be insensitive to shape and, so long as the wavelength dependence of extinction is defined well into the infrared, they are also insensitive to size distribution. Spheroidal particles are treated by an approximate analytical method. Spheres and cylinders (core mantle as well as homogeneous) are treated by exact methods.

  3. Recombination efficiency of molecular hydrogen on interstellar grains - II: A numerical study

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Ankan, Das; Kinsuk, Acharyya; Sonali, Chakrabarti

    2006-05-01

    Knowledge of the recombination time on the grain surfaces has been a major obstacle in deciding the production rate of molecular hydrogen and other molecules in the interstellar medium. We present a numerical study to compute this time for molecular hydrogen for various cloud and grain parameters. We also find the time dependence, particularly when a grain is freshly injected into the system. Apart from the fact that the recombination times seem to be functions of the grain parameters such as the activation barrier energy, temperature etc., our result also shows the dependence on the number of sites in the grain S and the effective accretion rate per site a s of atomic hydrogen. To put simply the average time that a pair of atomic hydrogens will take to produce one molecular hydrogen depends on how heavily the grain is already populated by atomic and molecular hydrogens and how fast the hopping and desorption times are. We show that if we write the average recombination time as T r ∼ S α /A H , where, A H is the hopping rate, then α could be much greater than 1 for all astrophysically relevant accretion rates. Thus the average formation rate of H 2 is also dependent on the grain parameters, temperature and the accretion rate. We believe that our results will affect the overall rate of the formation of complex molecules such as methanol which requires successive hydrogenation on the grain surfaces in the interstellar medium. (author)

  4. H2 formation on interstellar dust grains: The viewpoints of theory, experiments, models and observations

    Science.gov (United States)

    Wakelam, Valentine; Bron, Emeric; Cazaux, Stephanie; Dulieu, Francois; Gry, Cécile; Guillard, Pierre; Habart, Emilie; Hornekær, Liv; Morisset, Sabine; Nyman, Gunnar; Pirronello, Valerio; Price, Stephen D.; Valdivia, Valeska; Vidali, Gianfranco; Watanabe, Naoki

    2017-12-01

    Molecular hydrogen is the most abundant molecule in the universe. It is the first one to form and survive photo-dissociation in tenuous environments. Its formation involves catalytic reactions on the surface of interstellar grains. The micro-physics of the formation process has been investigated intensively in the last 20 years, in parallel of new astrophysical observational and modeling progresses. In the perspectives of the probable revolution brought by the future satellite JWST, this article has been written to present what we think we know about the H2 formation in a variety of interstellar environments.

  5. The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition

    Science.gov (United States)

    Potapov, Alexey; Jäger, Cornelia; Henning, Thomas; Jonusas, Mindaugas; Krim, Lahouari

    2017-09-01

    An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H2CO is an indication for a possible methanol formation route in such systems.

  6. Temperature Spectra of Interstellar Dust Grains Heated by Cosmic Rays. I. Translucent Clouds

    Science.gov (United States)

    Kalvāns, Juris

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas-grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f T , s-1, determines how often a certain temperature T CR, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f T and T CR spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μm and such grains covered with ice mantles of thickness 0.1a and 0.3a. Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A V = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T CR spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T CR values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20-30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  7. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem; Martin, P. G. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Lazarian, A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment of small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.

  8. Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains

    Science.gov (United States)

    Garrod, Robin

    2015-08-01

    The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.

  9. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  10. Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyzer.

    Science.gov (United States)

    Altobelli, N; Postberg, F; Fiege, K; Trieloff, M; Kimura, H; Sterken, V J; Hsu, H-W; Hillier, J; Khawaja, N; Moragas-Klostermeyer, G; Blum, J; Burton, M; Srama, R; Kempf, S; Gruen, E

    2016-04-15

    Interstellar dust (ISD) is the condensed phase of the interstellar medium. In situ data from the Cosmic Dust Analyzer on board the Cassini spacecraft reveal that the Saturnian system is passed by ISD grains from our immediate interstellar neighborhood, the local interstellar cloud. We determine the mass distribution of 36 interstellar grains, their elemental composition, and a lower limit for the ISD flux at Saturn. Mass spectra and grain dynamics suggest the presence of magnesium-rich grains of silicate and oxide composition, partly with iron inclusions. Major rock-forming elements (magnesium, silicon, iron, and calcium) are present in cosmic abundances, with only small grain-to-grain variations, but sulfur and carbon are depleted. The ISD grains in the solar neighborhood appear to be homogenized, likely by repeated processing in the interstellar medium. Copyright © 2016, American Association for the Advancement of Science.

  11. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains.

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-03-01

    Experiments designed to reveal the low temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C = CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 K and 100 K. After dosing the reactants onto the surface, temperature programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C = C double bond, rather than involving the cyano (-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K) and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K) respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time scale.

  12. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  13. Photochemical reactions in interstellar grains photolysis of CO, NH3, and H2O

    Science.gov (United States)

    Agarwal, V. K.; Ferris, J. P.; Schutte, W.; Greenberg, J. M.; Briggs, R.

    1985-01-01

    The interstellar grains are currently considered to be the basic building blocks of comets and, possibly, meteorites. To test this theory, a simulation of the organic layer accreted onto interstellar dust particles was prepared by slow deposition of a CO:NH3:H2O gas mixture on an Al block at 10 K, with concomitant irradiation with vacuum UV. The results of the HPLC and IR analyses of the nonvolatile residue formed by photolysis at 10 K are compared with those observed at 77 K and 298 K. Some of the compounds that may be present on the surfaces of interstellar dust particles have been identified, and some specific predictions concerning the types of molecular species present in comets could be drawn. The results also suggest that photochemical reactions may have been important for the formation of meteorite components. The implication of the findings to the questions of the source of organic matter on earth and the origin of life are discussed.

  14. Modelling interstellar extinction: Pt. 1

    International Nuclear Information System (INIS)

    Jones, A.P.

    1988-01-01

    Several methods of calculating the extinction of porous silicate grains are discussed, these include effective medium theories and hollow spherical shells. Porous silicate grains are shown to produce enhanced infrared, ultraviolet and far-ultraviolet extinction and this effect can be used to reduce the abundance of carbon required to match the average interstellar extinction, however, matching the visual extinction is rather more problematical. We have shown that the enhanced extinction at long and short wavelengths have different origins, and have explained why the visual extinction is little affected by porosity. The implications of porous grains in the interstellar medium are discussed with particular reference to surface chemistry, the polarization of starlight, and their dynamical evolution. (author)

  15. The formation of ice mantles on interstellar grains revisited--the effect of exothermicity.

    Science.gov (United States)

    Lamberts, T; de Vries, X; Cuppen, H M

    2014-01-01

    Modelling of grain surface chemistry generally deals with the simulation of rare events. Usually deterministic methods or statistical approaches such as the kinetic Monte Carlo technique are applied for these simulations. All assume that the surface processes are memoryless, the Markov chain assumption, and usually also that their rates are time independent. In this paper we investigate surface reactions for which these assumptions are not valid, and discuss what the effect is on the formation of water on interstellar grains. We will particularly focus on the formation of two OH radicals by the reaction H + HO2. Two reaction products are formed in this exothermic reaction and the resulting momentum gained causes them to move away from each other. What makes this reaction special is that the two products can undergo a follow-up reaction to form H2O2. Experimentally, OH has been observed, which means that the follow-up reaction does not proceed with 100% efficiency, even though the two OH radicals are formed in each other's vicinity in the same reaction. This can be explained by a combined effect of the directionality of the OH radical movement together with energy dissipation. Both effects are constrained by comparison with experiments, and the resulting parametrised mechanism is applied to simulations of the formation of water ice under interstellar conditions.

  16. Efficient ortho-para conversion of H2 on interstellar grain surfaces

    Science.gov (United States)

    Bron, Emeric; Le Petit, Franck; Le Bourlot, Jacques

    2016-04-01

    Context. Fast surface conversion between ortho- and para-H2 has been observed in laboratory studies, and it has been proposed that this mechanism plays a role in the control of the ortho-para ratio in the interstellar medium. Observations of rotational lines of H2 in photo-dissociation regions (PDRs) have indeed found significantly lower ortho-para ratios than expected at equilibrium. The mechanisms controlling the balance of the ortho-para ratio in the interstellar medium thus remain incompletely understood, while this ratio can affect the thermodynamical properties of the gas (equation of state, cooling function). Aims: We aim to build an accurate model of ortho-para conversion on dust surfaces based on the most recent experimental and theoretical results, and to validate it by comparison to observations of H2 rotational lines in PDRs. Methods: We propose a statistical model of ortho-para conversion on dust grains with fluctuating dust temperatures. It is based on a master equation approach. This computation is then coupled to full PDR models and compared to PDR observations. Results: We show that the observations of rotational H2 lines indicate a high conversion efficiency on dust grains and that this high efficiency can be accounted for if taking dust temperature fluctuations into account with our statistical model of surface conversion. Simpler models that neglect the dust temperature fluctuations do not reach the high efficiency deduced from the observations. Moreover, this high efficiency induced by dust temperature fluctuations is very insensitive to the values of the model's microphysical parameters. Conclusions: Ortho-para conversion on grains is thus an efficient mechanism in most astrophysical conditions and can play a significant role in controlling the ortho-para ratio.

  17. Photolysis products of CO, NH3 aND H2O and their significance to reactions on interstellar grains

    Science.gov (United States)

    Ferris, J. P.

    1986-01-01

    With the increase in evidence that interstellar grains are the basic building blocks of comets and with the realization that comet collisions with the earth have probably occured at a much higher frequency than earlier assumed it may be presumed that interstellar dust chemistry played an important role in the early chemistry of the earth. As a part of the study of the photochemical processes taking place on interstellar grains the photolysis of mixtures of CO, NH3 and H2O was performed at 10 K, 77K and 298K. The reaction products were determined by GC/MS and HPLC analysis to be lactic acid, glycolic acid, hydroxyacetamide, urea, biuret, oxamic acid, oxamide, glyceric acid and glyceramide. Ethylene glycol and glycerol were also detected but is is not clear at present whether these are true photoproducts or contaminants. The mechanism of formation of these molecules are discussed as well as their possible significance to the origins of life.

  18. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    Science.gov (United States)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  19. Observations of the interstellar ice grain feature in the Taurus molecular clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Bode, H.F.; Longmore, A.J.; Baines, D.W.T.; Evans, A.

    1983-01-01

    Although water ice was originally proposed as a major constituent of the interstellar grain population (e.g. Oort and van de Hulst, 1946), the advent of infrared astronomy has shown that the expected absorption due to O-H stretching vibrations at 3 μm is illusive. Observations have in fact revealed that the carrier of this feature is apparently restricted to regions deep within dense molecular clouds (Merrill et al., 1976; Willner et al., 1982). However, the exact carrier of this feature is still controversial, and many questions remain as to the conditions required for its appearance. It is also uncertain whether it is restricted to circumstellar shells, rather than the general cloud medium. Detailed discussion of the 3 μm band properties is given elsewhere in this volume. 15 references, 4 figures

  20. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  1. Gas-grain Fluorine and Chlorine Chemistry in the Interstellar Medium

    Science.gov (United States)

    Acharyya, Kinsuk; Herbst, Eric

    2017-11-01

    We have studied the formation of fluorine- and chlorine-bearing species for a variety of dense interstellar conditions using a gas-grain network. Our homogeneous models have been constructed for low-temperature dense clouds, as well as warm-up regions. In addition to the observed species HF, {{CF}}+, HCl, {{HCl}}+, and {{{H}}}2{{Cl}}+, we have included a number of additional halogen-containing molecules, and explored their gas-phase and grain-surface chemistry. These molecules include neutral species such as Cl2, ClO, CCl, and HCCl, as well as the carbon-halogen species CH2Cl and CH3Cl, and ionic species such as {{CCl}}+, {{ClO}}+, CH3ClH+, {{HF}}+, {{SiF}}+, and {{{H}}}2{{{F}}}+. Predictions are made for the abundances of these species as functions of time, and comparisons are made with the observed abundances obtained for halogen species in dense regions, which include HF, HCl, CH3Cl, and CF+. The peak fractional abundance of the newly detected gas-phase CH3Cl is predicted to be ≈ {10}-10{--}5× {10}-8 in our warm-up simulations, depending upon density and the age of the pre-warm-up phase after which warm-up begins. These values can be compared with the observed abundance of methyl chloride in the hot corino IRAS 16293-2422 if the abundance of methanol is known.

  2. Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach

    Science.gov (United States)

    Caselli, Paola; Stantcheva, Tatiana; Shalabiea, Osama; Shematovich, Valery I.; Herbst, Eric

    2002-10-01

    The formation of singly and doubly deuterated isotopomers of formaldehyde and of singly, doubly, and multiply deuterated isotopomers of methanol on interstellar grain surfaces has been studied with a semi-empirical modified rate approach and a Monte Carlo method in the temperature range 10- 20 K. Agreement between the results of the two methods is satisfactory for all major and many minor species throughout this range. If gas-phase fractionation can produce a high abundance of atomic deuterium, which then accretes onto grain surfaces, diffusive surface chemistry can produce large abundances of deuterated species, especially at low temperatures and high gas densities. Warming temperatures will then permit these surface species to evaporate into the gas, where they will remain abundant for a considerable period. We calculate that the doubly deuterated molecules CHD 2OH and CH 2DOD are particularly abundant and should be searched for in the gas phase of protostellar sources. For example, at 10 K and high density, these species can achieve up to 10-20% of the abundance of methanol.

  3. An investigation of the interstellar extinction

    International Nuclear Information System (INIS)

    Roche, P.F.; Aitken, D.K.; Melbourne Univ., Point Cook

    1984-01-01

    The 10 μm extinction towards six WC8 or WC9 Wolf-Rayet stars is investigated. All objects show smooth dust emission suffering silicate absorption with depths well correlated with the extinction in the visible. The de-reddened spectra are well represented by emission from featureless grain components, possibly from iron or carbon grains. The extinction to the stars is found to be dominantly interstellar in origin with little extinction from the circumstellar shell. (author)

  4. Irradiation of FeS: Implications for the Lifecycle of Sulfur in the Interstellar Medium and Presolar FeS Grains

    Science.gov (United States)

    Keller, Lindsay P.; Loeffler, M. J.; Christoffersen, R.; Dukes, C.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Fe(Ni) sulfides are ubiquitous in chondritic meteorites and cometary samples where they are the dominant host of sulfur. Despite their abundance in these early solar system materials, their presence in interstellar and circumstellar environments is poorly understood. Fe-sulfides have been reported from astronomical observations of pre- and post-main sequence stars [1, 2] and occur as inclusions in bonafide circumstellar silicate grains [3, 4]. In cold, dense molecular cloud (MC) environments, sulfur is highly depleted from the gas phase [e.g. 5], yet observations of sulfur-bearing molecules in dense cores find a total abundance that is only a small fraction of the sulfur seen in diffuse regions [6], therefore the bulk of the depletion must reside in an abundant unobserved phase. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium (ISM) [7-9], indicating that little sulfur is incorporated into solid grains in this environment. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. The main destruction mechanism is sputtering due to supernova shocks in the warm, diffuse ISM [10]. This process involves the reduction of Fe-sulfide with the production of Fe metal as a by-product and returning S to the gas phase. In order to test this hypothesis, we irradiated FeS and analyzed the resulting material using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

  5. Interstellar Grains as Amino Acid Factories and the Origin of Life

    Science.gov (United States)

    Sorrell, Wilfred H.

    1997-09-01

    Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010-1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller

  6. Composition, structure and chemistry of interstellar dust

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.; Allamandola, L.J.

    1986-09-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase

  7. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  8. Interstellar Silicon Depletion and the Ultraviolet Extinction

    Science.gov (United States)

    Mishra, Ajay; Li, Aigen

    2018-01-01

    Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 Å interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates [Si/H]dust and the 2175 Å bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance [Si/H]gas is known. We derive [Si/H]dust either from [Si/H]ISM - [Si/H]gas or from the Kramers- Kronig relation which relates the wavelength-integrated extinction to the total dust volume, where [Si/H]ISM is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive [Si/H]dust from fi�tting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We fi�nd that in all three cases [Si/H]dust shows no correlation with the 2175 Å bump, while the carbon depletion [C/H]dust tends to correlate with the 2175 Å bump. This supports carbon grains instead of silicates as the possible carrier of the 2175 Å bump. We also �find that neither [Si/H]dust nor [C/H]dust alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.

  9. A UNIFIED MICROSCOPIC-MACROSCOPIC MONTE CARLO SIMULATION OF GAS-GRAIN CHEMISTRY IN COLD DENSE INTERSTELLAR CLOUDS

    International Nuclear Information System (INIS)

    Chang Qiang; Herbst, Eric

    2012-01-01

    For the first time, we report a unified microscopic-macroscopic Monte Carlo simulation of gas-grain chemistry in cold interstellar clouds in which both the gas-phase and the grain-surface chemistry are simulated by a stochastic technique. The surface chemistry is simulated with a microscopic Monte Carlo method in which the chemistry occurs on an initially flat surface. The surface chemical network consists of 29 reactions initiated by the accreting species H, O, C, and CO. Four different models are run with diverse but homogeneous physical conditions including temperature, gas density, and diffusion-barrier-to-desorption energy ratio. As time increases, icy interstellar mantles begin to grow. Our approach allows us to determine the morphology of the ice, layer by layer, as a function of time, and to ascertain the environment or environments for individual molecules. Our calculated abundances can be compared with observations of ices and gas-phase species, as well as the results of other models.

  10. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  11. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation.

    Science.gov (United States)

    Merino, P; Švec, M; Martinez, J I; Jelinek, P; Lacovig, P; Dalmiglio, M; Lizzit, S; Soukiassian, P; Cernicharo, J; Martin-Gago, J A

    2014-01-01

    Polycyclic aromatic hydrocarbons as well as other organic molecules appear among the most abundant observed species in interstellar space and are key molecules to understanding the prebiotic roots of life. However, their existence and abundance in space remain a puzzle. Here we present a new top-down route to form polycyclic aromatic hydrocarbons in large quantities in space. We show that aromatic species can be efficiently formed on the graphitized surface of the abundant silicon carbide stardust on exposure to atomic hydrogen under pressure and temperature conditions analogous to those of the interstellar medium. To this aim, we mimic the circumstellar environment using ultra-high vacuum chambers and investigate the SiC surface by in situ advanced characterization techniques combined with first-principles molecular dynamics calculations. These results suggest that top-down routes are crucial to astrochemistry to explain the abundance of organic species and to uncover the origin of unidentified infrared emission features from advanced observations.

  12. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  13. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    International Nuclear Information System (INIS)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-01-01

    With a binary ice mixture of benzene (C 6 H 6 ) and carbon dioxide (CO 2 ) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  14. Water formation on bare grains : When the chemistry on dust impacts interstellar gas

    NARCIS (Netherlands)

    Cazaux, S.; Cobut, V.; Marseille, M.; Spaans, M.; Caselli, P.

    2010-01-01

    Context. Water and O(2) are important gas phase ingredients for cooling dense gas when forming stars. On dust grains, H(2)O is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. The formation of water can occur on dust grain

  15. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  16. Extinction and polarization of light by dust in the interstellar medium. Interstellar extinction curves

    International Nuclear Information System (INIS)

    Voshchinnokov, N.V.; Il'in, A.E.; Il'in, V.B.

    1986-01-01

    A model of two-layer cylindrical interstellar dust grains is used to calculate the interstellar extinction curves in the visible and near infrared regions of the spectrum and the ratio R /sub V/ of the total to the selective extinction. It is assumed that the core of the two-layer grains consists of ''astronomical silicate'' and the mantle of dirty ice and that they are completely or partly oriented under the influence of the Davis-Greenstein mechanism. A study is made of the dependence of R /sub V/ on the diameter of the grains and the degree and direction of their orientation. It is shown that to find the total extinction it is best to use the relation A /sub V/ = 1.1E(V - K), which holds to an accuracy ≤ 3% in a wide range of parameters of the problem

  17. 8-13 μm spectrophotometry of V1016 Cyg and the shape of the 'silicate' feature

    International Nuclear Information System (INIS)

    Aitken, D.K.; Roche, P.F.; Spenser, P.M.

    1980-01-01

    8 to 13μm spectrophotometry of V1016 Cyg shows a broad emission feature attributed to radiation from silicate grains. This emission feature more closely resembles that of the circumstellar shells of oxygen-rich supergiants than the more dilute feature, typical of the interstellar medium, which is observed from the Trapezium source in the Orion nebula. It appears to be possible to distinguish the evolutionary status of an object from the form of its silicate excess. (author)

  18. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hiroshi, E-mail: hiroshi_kimura@cps-jp.org [Graduate School of Science, Kobe University, c/o CPS (Center for Planetary Science), Chuo-ku Minatojima Minamimachi 7-1-48, Kobe 650-0047 (Japan)

    2013-09-20

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  19. The Reincarnation of Interstellar Dust: The Importance of Organic Refractory Material in Infrared Spectra of Cometary Comae and Circumstellar Disks

    Science.gov (United States)

    Kimura, Hiroshi

    2013-09-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  20. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    2013-01-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks

  1. Ultraviolet photometry from the orbiting astronomical observatory. XXV. Diffuse galactic light in the 1500--4200 A region and the scattering properties of interstellar dust grains

    International Nuclear Information System (INIS)

    Lillie, C.F.; Witt, A.N.

    1976-01-01

    New measurements of the ultraviolet surface brightness of the night sky in 71 fields in the galactic longitude range 65degree< or =l/sub i//sub i/< or =145degree are presented. The data were obtained with the Orbiting Astronomical Observatory (OAO-2) at nine wavelengths between 1500 A and 4200 A and have been corrected for the contributions due to zodiacal light and integrated starlight. The residual brightnesses were analyzed with radiative transfer models for the diffuse galactic light which incorporate a z-dependent source function. The results qualitatively confirm earlier findings for this wavelength region, yielding a wavelength dependent albedo of the interstellar grains of approximately α=0.7 +- 0.1 longward of lambda3000, α=0.35 +- 0.05 around the pronounced minimum near lambda2200, and α=0.6 +- 0.05 at lambda1550. The true absorption nature of the bump in the interstellar extinction curve near lambda2200, as well as the increase of the albedo shortward of lambda2000 are thus reconfirmed. The phase function asymmetry factor is found to lie between g=0.6 and g=0.9 for the entire wavelength range, indicating the interstellar grains are strongly forward scattering

  2. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  3. The Deep Impact Coma of Comet 9P/Tempel 1 as a Time-of-Flight Experiment Motivates DDSCAT Models for Porous Aggregate Grains with Silicate Crystal Inclusions

    Science.gov (United States)

    Wooden, Diane H.; Lindsay, S. S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Richard, D. T.; Kolokolova, L.; Moreno, F.

    2010-10-01

    Spitzer IRS spectra of short-period Ecliptic Comets (ECs) have silicate features, and many have distinct crystalline silicate peaks. These Spitzer spectra, when fitted with thermal models after subtraction of the relatively strong contribution of the nuclear flux to the IR spectrum (e.g., Harker et al. 2007), demonstrate ECs have weaker silicate features than long-period Nearly-Isotropic Comets (NICs). There are exceptions, however, as some NICs also have weak features like most ECs. Grains with lower porosities (lower fraction of vacuum) can explain weaker silicate features (Kelley and Wooden 2009; Kolokolova et al. 2007). Alternatively, omitting the smallest (submicron) solid grains can reduce the contrast of the silicate feature (Lisse et al. 2006). However, so far, only models for solid submicron crystals fit the crystalline peaks in spectra of comets with weak silicate features. This presents a dilemma: how can the coma be devoid of small grains except for the crystals? The Spitzer spectra of the Deep Impact event with EC 9P/Tempel 1 provides a data set to model larger porous grains with crystal inclusions because the post-impact coma was a time-of-flight experiment: an impulsive release of grains were size-sorted in time by their respective gas velocities so that the smaller grains departed the inner coma quicker than larger grains. A velocity law derived from fitting small beam Gemini spectra (Harker et al. 2007) indicates that at 20 hour post-impact the (pre-impact subtracted) Spitzer IRS spectrum contained grains larger than 10-20 micron radii, moving at 20 m/s, that produced a weak silicate feature with an 11.2 micron crystalline olivine peak. Furthermore, this feature looks like the silicate feature from the nominal coma. We present some results of a computational effort to model discrete crystals and mixed-mineral porous aggregate grains with silicate crystal inclusions using DDSCAT on the NAS Pleiades supercomputer.

  4. Interstellar extinction in the infrared

    International Nuclear Information System (INIS)

    Draine, B.T.

    1989-01-01

    Extinction by insterstellar dust at infrared wavelengths is reviewed. For 0.7 λ proportional to λ -1.75 , although the observational uncertainties remain appreciable. In the 8-30 μ m region interstellar extinction is dominated by the 9.7 μ m and 18 μ m silicate features; the absolute strength (relative to the continuum extinction at shorter wavelengths), the detailed wavelength-dependence of these features, and the possible variation of the profile shape from diffuse clouds to dense clouds, all remain somewhat controversial. In the farinfrared λ > ∼ 30 μ m grain emissivity estimates by different authors vary considerably; future observations of thermal emission from diffuse clouds in the 300 μ m region offer the prospect of substantially reducing uncertainties in far-infrared emissivities

  5. The formation of small grains in shocks in the ISM

    Science.gov (United States)

    Jones, Anthony P.; Tielens, Alexander G. G. M.

    1994-01-01

    Carbonaceous and silicate grains swept up, and betatron accelerated, by supernova-generated shock waves in the interstellar medium are exposed to grain destructive processing. The degree of grain destruction is determined by the differential gas-grain and grain-grain velocities, which lead to sputtering of the grain surface and grain core disruption (deformation, vaporization and shattering), respectively. The threshold pressure for grain shattering in grain-grain collisions (100 k bar) is considerably lower than that for vaporization (approximately 5 M bar). Therefore, collisions between grains shatter large grains into smaller fragments (i.e., small grains and PAH's). Using a new algorithms for the destructive processes, it was possible to model the formation fo small grain fragments in grain-grain collisions in the warm phase of the interstellar medium. It was found that in one cycle through the warm medium (approximately 3 x 10(sup 6) years) of order 1-2% of the total grain mass is shattered into particles with radii of less than 50 A.

  6. Interstellar extinction and interstellar polarization: old and new models

    OpenAIRE

    Voshchinnikov, N. V.

    2012-01-01

    The review contains an analysis of the observed and model curves of the interstellar extinction and polarization. The observations mainly give information on dust in diffuse and translucent interstellar clouds. The features of various dust grain models including spherical/non-spherical, homogeneous/inhomogeneous particles are discussed. A special attention is devoted to the analysis of the grain size distributions, alignment mechanisms and magnetic field structure in interstellar clouds. It i...

  7. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  8. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates.

    Science.gov (United States)

    Congiu, E; Chaabouni, H; Laffon, C; Parent, P; Baouche, S; Dulieu, F

    2012-08-07

    Dust grains in the interstellar medium are known to serve as the first chemical laboratory where the rich inventory of interstellar molecules are synthesized. Here we present a study of the formation of hydroxylamine--NH(2)OH--via the non-energetic route NO + H (D) on crystalline H(2)O and amorphous silicate under conditions relevant to interstellar dense clouds. Formation of nitrous oxide (N(2)O) and water (H(2)O, D(2)O) is also observed and the reaction network is discussed. Hydroxylamine and water results are detected in temperature-programmed desorption (TPD) experiments, while N(2)O is detected by both reflection-absorption IR spectroscopy and TPD techniques. The solid state NO + H reaction channel proves to be a very efficient pathway to NH(2)OH formation in space and may be a potential starting point for prebiotic species in dark interstellar clouds. The present findings are an important step forward in understanding the inclusion of interstellar nitrogen into a non-volatile aminated species since NH(2)OH provides a solid state nitrogen reservoir along the whole evolutionary process of interstellar ices from dark clouds to planetary systems.

  9. Interstellar chemistry

    Science.gov (United States)

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  10. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  11. Interstellar simulations using a unified microscopic-macroscopic Monte Carlo model with a full gas-grain network including bulk diffusion in ice mantles

    International Nuclear Information System (INIS)

    Chang, Qiang; Herbst, Eric

    2014-01-01

    We have designed an improved algorithm that enables us to simulate the chemistry of cold dense interstellar clouds with a full gas-grain reaction network. The chemistry is treated by a unified microscopic-macroscopic Monte Carlo approach that includes photon penetration and bulk diffusion. To determine the significance of these two processes, we simulate the chemistry with three different models. In Model 1, we use an exponential treatment to follow how photons penetrate and photodissociate ice species throughout the grain mantle. Moreover, the products of photodissociation are allowed to diffuse via bulk diffusion and react within the ice mantle. Model 2 is similar to Model 1 but with a slower bulk diffusion rate. A reference Model 0, which only allows photodissociation reactions to occur on the top two layers, is also simulated. Photodesorption is assumed to occur from the top two layers in all three models. We found that the abundances of major stable species in grain mantles do not differ much among these three models, and the results of our simulation for the abundances of these species agree well with observations. Likewise, the abundances of gas-phase species in the three models do not vary. However, the abundances of radicals in grain mantles can differ by up to two orders of magnitude depending upon the degree of photon penetration and the bulk diffusion of photodissociation products. We also found that complex molecules can be formed at temperatures as low as 10 K in all three models.

  12. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    OpenAIRE

    Hensley, Brandon S.; Draine, B. T.

    2016-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of $\\simeq 4.5\\,$\\AA, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar envi...

  13. Interstellar organic chemistry.

    Science.gov (United States)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  14. Composition of interstellar dust

    International Nuclear Information System (INIS)

    Field, G.B.

    1975-01-01

    Direct evidence that interstellar dust is composed partly of silicates, graphite, and water ice is reviewed. Indirect evidence, from recent studies of the chemical composition of interstellar gas, is assessed in terms of two possible models for the formation of the dust: condensation under thermal-equilibrium conditions and accretion under nonequilibrium conditions. It is concluded that probably the more refractory elements condense under equilibrium conditions and that probably the more volatile ones condense under nonequilibrium conditions. Equilibrium condensation may occur either in stellar atmospheres or in circumstellar nebulae, but arguments from stellar evolution favor the latter. If this is correct, all but a tiny fraction of the present interstellar medium has at least once been involved in circumstellar nebulae. This is consistent with the hypothesis that planetary systems are commonplace

  15. Interstellar and Solar Nebula Materials in Cometary Dust

    Science.gov (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon

    2017-01-01

    Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive

  16. Kramers-Kronig relations for interstellar polarization

    International Nuclear Information System (INIS)

    Martin, P.G.

    1975-01-01

    The difficulties encountered in using the Kramers-Kronig relations to predict the behavior of interstellar polarization are pointed out, while at the same time their value in an interpretive role is acknowledged. Observations of interstellar circular polarization lead to restrictions on the interstellar grain composition, and additional constraints should be possible through measurement of linear polarization in the infrared and the ultraviolet

  17. Interstellar Dust - A Review

    Science.gov (United States)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  18. Constraints on interstellar dust models from extinction and spectro-polarimetry

    Science.gov (United States)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.

    2017-12-01

    We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations, and is in agreement with cosmic abundance constraints. Reducing the number of free parameters leads to results that are inconsistent with the cosmic abundances of silicate and carbon. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70-200 nm.

  19. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  20. Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves

    Science.gov (United States)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.

  1. Identification of silicate and carbonaceous presolar grains by SIMS in the type-3 enstatite chondrite ALHA81189

    International Nuclear Information System (INIS)

    Ebata, Shingo; Fagan, Timothy J.; Yurimoto, Hisayoshi

    2008-01-01

    An isotope ratio imaging technique using the HokuDai isotope microscope system has been applied to in situ survey for presolar grains in the type-3 enstatite chondrite ALHA81189. Rastered and static ion beam were used for primary beam. Lateral resolution of the isotope image was achieved to be 0.4 μm for static ion beam mode and to be 0.6 μm for rastered ion beam mode. As a result, the abundances of presolar grains are 150-200% larger under the static ion beam mode than under the rastered ion beam mode. Development of image processing introducing isotopography of 32 S - , 24 Mg 16 O - and 56 Fe - succeeded to increase efficiency of presolar grain characterization. Using the static ion beam and introducing appropriate isotopography were very useful methods of in situ characterization of presolar grains in meteorites

  2. Iron: A Key Element for Understanding the Origin and Evolution of Interstellar Dust

    Science.gov (United States)

    Dwek, Eli

    2016-01-01

    The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of the interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB (Asymptotic Giant Branch) stars. Only the latter two are observed to be sources of interstellar dust, since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65 percent of the iron is injected into the ISM (Inter-Stellar Matter) in gaseous form. Yet, ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase compared to expected solar abundances. The missing iron, comprising about 90 percent of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.

  3. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  4. Interstellar Extinction

    OpenAIRE

    Gontcharov, George

    2017-01-01

    This review describes our current understanding of interstellar extinction. This differ substantially from the ideas of the 20th century. With infrared surveys of hundreds of millions of stars over the entire sky, such as 2MASS, SPITZER-IRAC, and WISE, we have looked at the densest and most rarefied regions of the interstellar medium at distances of a few kpc from the sun. Observations at infrared and microwave wavelengths, where the bulk of the interstellar dust absorbs and radiates, have br...

  5. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  6. Large-scale Interstellar Structure and the Heliosphere

    OpenAIRE

    Frisch, P. C.; Schwadron, N. A.

    2013-01-01

    The properties of interstellar clouds near the Sun are ordered by the Loop I superbubble and by the interstellar radiation field. Comparisons of the kinematics and magnetic field of the interstellar gas flowing past the Sun, including the Local Interstellar Cloud (LIC), indicate a geometric relation between Loop I as defined by radio synchrotron emission, and the interstellar magnetic field that polarizes nearby starlight. Depletion of Fe and Mg onto dust grains in the LIC shows a surprising ...

  7. Presolar silicates in the matrix and fine-grained rims around chondrules in primitive CO3.0 chondrites: Evidence for pre-accretionary aqueous alteration of the rims in the solar nebula

    Science.gov (United States)

    Haenecour, Pierre; Floss, Christine; Zega, Thomas J.; Croat, Thomas K.; Wang, Alian; Jolliff, Bradley L.; Carpenter, Paul

    2018-01-01

    To investigate the origin of fine-grained rims around chondrules (FGRs), we compared presolar grain abundances, elemental compositions and mineralogies in fine-grained interstitial matrix material and individual FGRs in the primitive CO3.0 chondrites Allan Hills A77307, LaPaz Icefield 031117 and Dominion Range 08006. The observation of similar overall O-anomalous (∼155 ppm) and C-anomalous grain abundances (∼40 ppm) in all three CO3.0 chondrites suggests that they all accreted from a nebular reservoir with similar presolar grain abundances. The presence of presolar silicate grains in FGRs combined with the observation of similar estimated porosity between interstitial matrix regions and FGRs in LAP 031117 and ALHA77307, as well as the identification of a composite FGR (a small rimmed chondrule within a larger chondrule rim) in ALHA77307, all provide evidence for a formation of FGRs by accretion of dust grains onto freely-floating chondrules in the solar nebula before their aggregation into their parent body asteroids. Our study also shows systematically lower abundances of presolar silicate grains in the FGRs than in the matrix regions of CO3 chondrites, while the abundances of SiC grains are the same in all areas, within errors. This trend differs from CR2 chondrites in which the presolar silicate abundances are higher in the FGRs than in the matrix, but similar to each other within 2σ errors. This observation combined with the identification of localized (micrometer-scaled) aqueous alteration in a FGR of LAP 031117 suggests that the lower abundance of presolar silicates in FGRs reflects pre-accretionary aqueous alteration of the fine-grained material in the FGRs. This pre-accretionary alteration could be due to either hydration and heating of freely floating rimmed chondrules in icy regions of the solar nebula or melted water ice associated with 26Al-related heating inside precursor planetesimals, followed by aggregation of FGRs into the CO chondrite parent-body.

  8. Comet Grains: Their IR Emission and Their Relation to ISM Grains

    Science.gov (United States)

    Wooden, Diane H.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Comets and the chodritic, porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3 - 40 micron) reveal the presence of a warm (nearIR) featureless emission modeled by amorphous carbon grains. Broad and narrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Fe and 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IR spectra of CP IDPs dominated by GEMS (0.1 micron silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He' ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (ISM Mg-rich crystals leads to the

  9. Interstellar dust in and around the heliosphere

    Science.gov (United States)

    Mann, I.; Czechowski, A.

    The motion of the sun relative to the local interstellar medium causes a stream of interstellar medium dust toward the heliosphere. Small dust particles gain a high charge to mass ratio and are deflected from their original flow direction with the interstellar gas. The majority of interstellar dust particles of sizes below 0.1 micrometer are deflected from entering the heliosphere. A pile-up of interstellar dust similar to that of the hydrogen wall appears around the heliosphere, but is restricted to small grains. We use a simple model of the heliospheric transition region to calculate the velocity distributions of these interstellar grains in the neighborhood of the heliosphere. Different assumptions about the interstellar magnetic field and the structure of the plasma flow are considered. We find that the distributions are sensitive to the structure of the heliospheric transition region, in particular to the presence of a sharp bow shock. Larger interstellar dust particles enter the heliosphere where several deflection mechanisms selectively act on dust particles of certain sizes and properties. When considering the dynamics of small grains that have entered the heliosphere the effects of the heliospheric current sheet (downstream and upstream from the termination shock) and the solar cycle can facilitate the entry of charged grains into the inner solar system, although the unipolar field regions approaching the ecliptic act as an obstacle to it. The dust fluxes in the inner heliosphere also depend on the influence of radiation pressure and solar gravity. The influence of these forces can be seen in the mass distributions of interstellar dust measured in-situ from spacecraft at different locations. The conditions of dust dynamics depend on the initial velocity distribution of grains in the interstellar medium. Small dust particles are coupled to the gas of the interstellar medium while larger dust particles may not be coupled to the local interstellar cloud and

  10. IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Eli, E-mail: eli.dwek@nasa.gov [Observational Cosmology Lab., Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-10

    The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB stars. Only the latter two are observed to be sources of interstellar dust since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65% of the iron is injected into the ISM in gaseous form. Yet ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase as compared to expected solar abundances. The missing iron, comprising about 90% of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by a cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.

  11. Interstellar matter

    International Nuclear Information System (INIS)

    Peimbert, M.; Lequeux, J.; Mebold, U.; Wannier, P.G.; Mathis, J.S.; Elmegreen, B.G.; Shaver, P.A.; D'Odorico, S.; Terzian, Y.

    1985-01-01

    It has become more evident during the last three years that the study of interstellar matter is paramount to understand the evolution of the universe and its constituents. From observations of the present state of the interstellar medium, in our galaxy, in other galaxies, and between galaxies, it is possible to test theories of: evolution of the universe, formation and evolution of galaxies, formation and evolution of stars and of the evolution of the interstellar medium itself. The amount of information on the interstellar medium that has been gathered during the 1982-1984 period has been very large and the theoretical models that have been ellaborated to explain these observations have been very numerous. This report on IAU research on interstellar matter covers the period 1982-1984 and is divided in self-contained sections. For those papers considered, only very brief summaries are presented here. A detailed list of articles on the physics of the interstellar medium and gaseous nebulae carried out in the Soviet Union in the 1981-1984 period was prepared by N.G. Bochkarev and G. Rudnitskij; only a small fraction of these articles are discussed in this report; copies of this list are available from the office of the President of Commission 34. (Auth.)

  12. Spectroscopy and chemistry of interstellar ice analogues

    NARCIS (Netherlands)

    Bouwman, Jordy

    2010-01-01

    Mid-infrared (mid-IR) astronomical observations show that molecules freeze out on interstellar grains to form interstellar ices. These ices play an important role in the chemical evolution of molecules in space. Understanding the physical interactions and chemical reactions that take place in these

  13. Photodissociation of OH in interstellar clouds

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Dalgarno, A.

    1984-01-01

    Calculations are presented of the lifetime of OH against photodissociation by the interstellar radiation field as a function of depth into interstellar clouds containing grains of various scattering properties. The effectiveness of the different photodissociation channels changes with depth into a

  14. A STUDY OF THE CHAMELEON-I DARK CLOUD AND T-ASSOCIATION .6. INTERSTELLAR POLARIZATION, GRAIN ALIGNMENT AND MAGNETIC-FIELD

    NARCIS (Netherlands)

    WHITTET, DCB; GERAKINES, PA; CARKNER, AL; HOUGH, JH; MARTIN, PG; PRUSTI, T; KILKENNY, D

    1994-01-01

    We present new measurements of optical and near-infrared linear polarization towards 39 field stars reddened by dust in the Chamaeleon I dark cloud. New and previously published data are combined in a detailed investigation of the wavelength dependence of interstellar polarization in the cloud. The

  15. Summer school on interstellar processes: Abstracts of contributed papers

    International Nuclear Information System (INIS)

    Hollenbach, D.J.; Thronson, H.A. Jr.

    1986-10-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  16. Grain investigation by the help of satellite observatories

    International Nuclear Information System (INIS)

    Friedemann, C.

    1988-01-01

    Interstellar grains are investigated by the help of satellite observatories taking into account extraterrestrical ultraviolet observations, infrared astronomy by the help of orbiting cooled telescopes, observed ultraviolet properties of interstellar grains, and consequences of infrared astronomy for dust investigation

  17. Measuring the level of interstellar inheritance in the solar protoplanetary disk

    Science.gov (United States)

    Alexander, Conel M. O'd.; Nittler, Larry R.; Davidson, Jemma; Ciesla, Fred J.

    2017-09-01

    The timing and extent to which the initial interstellar material was thermally processed provide fundamental constraints for models of the formation and early evolution of the solar protoplanetary disk. We argue that the nonsolar (solar Δ17O ≈ -29‰) and near-terrestrial (Δ17O ≈ 0‰) O-isotopic compositions of the Earth and most extraterrestrial materials (Moon, Mars, asteroids, and comet dust) were established very early by heating of regions of the disk that were modestly enriched (dust/gas ≥ 5-10 times solar) in primordial silicates (Δ17O ≈ -29‰) and water-dominated ice (Δ17O ≈ 24‰) relative to the gas. Such modest enrichments could be achieved by grain growth and settling of dust to the midplane in regions where the levels of turbulence were modest. The episodic heating of the disk associated with FU Orionis outbursts were the likely causes of this early thermal processing of dust. We also estimate that at the time of accretion the CI chondrite and interplanetary dust particle parent bodies were composed of 5-10% of pristine interstellar material. The matrices of all chondrites included roughly similar interstellar fractions. Whether this interstellar material avoided the thermal processing experienced by most dust during FU Orionis outbursts or was accreted by the disk after the outbursts ceased to be important remains to be established.

  18. Interstellar holography

    NARCIS (Netherlands)

    Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.

    2008-01-01

    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of

  19. Chemistry of interstellar space

    International Nuclear Information System (INIS)

    Gammon, R.H.

    1978-01-01

    Descriptions of the sun and other stars, energy sources in the interstellar clouds, spectroscopy and excitation, the chemistry and chemical abundance of interstellar elements, recent developments in interstellar molecular spectroscopy for a deeper insight into star evolution and other dynamics of the galaxy, and the next ten years of interstellar chemistry are described in an overall picture of the chemistry of interstellar space

  20. Interstellar organic matter in meteorites

    Science.gov (United States)

    Yang, J.; Epstein, S.

    1983-12-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  1. Interstellar dust. Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft.

    Science.gov (United States)

    Westphal, Andrew J; Stroud, Rhonda M; Bechtel, Hans A; Brenker, Frank E; Butterworth, Anna L; Flynn, George J; Frank, David R; Gainsforth, Zack; Hillier, Jon K; Postberg, Frank; Simionovici, Alexandre S; Sterken, Veerle J; Nittler, Larry R; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Saša; Bastien, Ron K; Bassim, Nabil; Bridges, John; Brownlee, Donald E; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M; Doll, Ryan; Floss, Christine; Grün, Eberhard; Heck, Philipp R; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Kearsley, Anton; King, Ashley J; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leonard, Ariel; Leroux, Hugues; Lettieri, Robert; Marchant, William; Ogliore, Ryan; Ong, Wei Jia; Price, Mark C; Sandford, Scott A; Sans Tresseras, Juan-Angel; Schmitz, Sylvia; Schoonjans, Tom; Schreiber, Kate; Silversmit, Geert; Solé, Vicente A; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Stodolna, Julien; Sutton, Stephen; Trieloff, Mario; Tsou, Peter; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E

    2014-08-15

    Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory. Copyright © 2014, American Association for the Advancement of Science.

  2. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  3. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  4. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  5. Influência da escória silicatada na acidez do solo e na produtividade de grãos do arroz de terras altas Influence of calcium silicate slag on soil acidity and upland rice grain yield

    Directory of Open Access Journals (Sweden)

    Morel Pereira Barbosa Filho

    2004-04-01

    this investigation were to evaluate in two consecutive years, soil acidity correction, grain yield and Si uptake in upland rice. Six doses of calcium silicate slag with 20% of total SiO2 (0, 2, 4, 6, 8 and 10 t ha-1 in form of calcium silicate slag, a subproduct of phosphorus processed in electric furnace was applied to oxisoil. The experimental design was a randomized complete block with five repetitions. Application of calcium silicate slag resulted in significant grain yield increase, tissue silicon content and silicon accumulation in straw and the filled grain percentage in the first and in the second year of rice cultivation. The critical Si level in the rice straw required for obtaining satisfactory yield was 2,25 g kg-1 of dry matter. In soil, the application of calcium silicate slag reduced soil acidity and increased available P, Si, exchangeable Ca, and saturation of bases. There was significant correlation between soluble Si extracted in acetic acid extraction 0.5 mol L-1 and water, in relation to soluble Si content found in soil after rice cultivation.

  6. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: Richard.G.Arendt@nasa.gov [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  7. Constraints on astronomical silicate dust

    International Nuclear Information System (INIS)

    Sorrell, W.H.

    1990-01-01

    Numerical radiative-transfer models are used to discuss the properties of circumstellar dust grains around the premain-sequence star AB Aur (HD 31293). It is assumed that the dust consists of a silicate-graphite mixture with Draine and Lee (1984) optical properties. The modeling technique is to match the observed FUV through FIR energy distribution with the spectral energy distribution predicted for a spherical dust shell around a luminous hot star. Special attention is given to matching the observed 10-micron silicate emission feature and the observed circumstellar absorption curve at UV wavelengths, making it possible to strengthen constraints on dust-grain opacity and chemical composition. It is concluded that, although silicate grains can explain the observed 10-micron emission feature, the Draine and Lee silicate-graphite mixture cannot explain the observed FUV circumstellar absorption at the same time. The dust shell around AB Aur contains an additional population of small particles, the most likely candidate being amorphous carbon grains in a nonhydrogenated form. 18 refs

  8. Constraints on astronomical silicate dust

    Science.gov (United States)

    Sorrell, Wilfred H.

    1990-01-01

    Numerical radiative-transfer models are used to discuss the properties of circumstellar dust grains around the premain-sequence star AB Aur (HD 31293). It is assumed that the dust consists of a silicate-graphite mixture with Draine and Lee (1984) optical properties. The modeling technique is to match the observed FUV through FIR energy distribution with the spectral energy distribution predicted for a spherical dust shell around a luminous hot star. Special attention is given to matching the observed 10-micron silicate emission feature and the observed circumstellar absorption curve at UV wavelengths, making it possible to strengthen constraints on dust-grain opacity and chemical composition. It is concluded that, although silicate grains can explain the observed 10-micron emission feature, the Draine and Lee silicate-graphite mixture cannot explain the observed FUV circumstellar absorption at the same time. The dust shell around AB Aur contains an additional population of small particles, the most likely candidate being amorphous carbon grains in a nonhydrogenated form.

  9. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    Science.gov (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  10. Interstellar depletions and the filling factor of the hot interstellar medium

    International Nuclear Information System (INIS)

    Dwek, E.; Scalo, J.M.

    1979-01-01

    We have examined theoretically the evolution of refractory interstellar grain abundances and corresponding metal deplections in the solar neighborhood. The calculations include a self-consistent treatment of red-giant winds, planetary nebulae, protostellar nebulae, and suprnovae as sources of grains and star formation, and of encounters with supernova blast waves as sinks. We find that in the standard two-phase model for the interstellar medium (ISM), grain destruction is very efficient, and the abundance of refractory grains should be negligible, contrary to observations. In a cloudy three-phase ISM most grains reside in the warm and cold phases of the medium. Supernova blast waves expand predominantly in the hot and tenuous phase of the medium and are showed down as they propagate through a cloud. In order to obtain significant (approx.3) depletions of metals presubably locked up in refractory grain cores, the destruction of grains that reside in the clouds must be minimal. This requires that (a) the density contrast between the cloud and intercloud medium be sufficiently high, and (b) the filling factor of the hot and tenuous gas of the interstellar medium, which presumably gives rise to the O VI absorption and soft X-ray emission, be nearly unity. Much larger depletions (> or approx. =10) must reflect accretion of mantles within interstellar clouds

  11. Abundances in the diffuse interstellar medium

    International Nuclear Information System (INIS)

    Harris, A.W.

    1988-04-01

    The wealth of interstellar absorption line data obtained with the Copernicus and IUE satellites has opened up a new era in studies of the interstellar gas. It is now well established that certain elements, generally those with high condensation temperatures, are substantially under-abundant in the gas-phase relative to total solar or cosmic abundances. This depletion of elements is due to the existence of solid material in the form of dust grains in the interstellar medium. Surprisingly, however, recent surveys indicate that even volatile elements such as Zn and S are significantly depleted in many sight lines. Developments in this field which have been made possible by the large base of UV interstellar absorption line data built up over recent years are reviewed and the implications of the results for our understanding of the physical processes governing depletion are discussed. (author)

  12. Nebular and Interstellar Materials in a Giant Cluster IDP of Probable Cometary Origin

    Science.gov (United States)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-01-01

    Comets contain a complex mixture of materials with presolar and Solar System origins. Chondritic porous interplanetary dust particles (CP-IDPs) are associated with comets by their fragile nature, unequilibrated anhydrous mineralogy and high abundances of circumstellar grains and isotopically anomalous organic materials. Comet 81P/Wild 2 samples returned by the Stardust spacecraft contain presolar materials as well as refractory 16O-rich Ca-Al-rich inclusion- (CAI), chondrule-, and AOA-like materials. We are conducting coordinated chemical, mineralogical, and isotopic studies of a giant cluster CP-IDP (U2-20-GCA) to determine the proportions of inner Solar System and interstellar materials. We previously found that this IDP contains abundant presolar silicates (approx. 1,800 ppm) and 15N-rich hotspots [6].

  13. Size distribution of dust grains: A problem of self-similarity

    International Nuclear Information System (INIS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all

  14. Photoelectric heating of interstellar gas

    International Nuclear Information System (INIS)

    Draine, B.T.

    1978-01-01

    Photoelectric emission from interstellar grains is reexamined, and it is argued that some of the assumptions made by other authors lead to an overestimate of the heating rate associated with this process, particularly at temperatures T> or approx. =3000 K. Steady-state solutions for the temperature of diffuse gas (including radiative cooling and recombination, cosmic ray or X-ray heating and ionization, grain photoelectric heating, and other heating mechanisms) are found. Grains do not contribute significantly to the heating of the ''hot'' (Tapprox. =8000 K) phase, although they dominate the heating of the ''cold'' (Tapprox. =100 K) phase. The minimum pressure for which the ''cold'' phase can exist is sensitive to the choice of grain properties and grain abundance, and under some circumstances the coexistence of two distinct phases in pressure equilibrium is forbidden. A steady-state model with intercloud H I heated by soft X-rays and clouds heated by grain photoemission is in accord with some observations but lacks intermediate-temperature H I. The time-dependent cooling of a fossil H II region is calculated; grain photoelectric heating significantly prolongs the time required for the gas to cool. Fossil H II in the wakes of runaway O stars may produce significant amounts of the intermediate temperatue (500> or approx. =T> or approx. =3000 K) H I inferred from 21 cm observations

  15. Physical processes for the formation and destruction of interstellar molecules. Course 5

    International Nuclear Information System (INIS)

    Watson, W.D.

    1975-01-01

    Topics covered include: factors that influence the rate of formation of molecules on interstellar grains; temperatures of interstellar grains; nature of grain surfaces and binding energies of particles to grains; sticking of neutral atoms and molecules onto grain surfaces; mobility of atoms on grain surfaces; processes for ejecting gas atoms and molecules from grains; basic chemical energies; photo-dissociation of interstellar molecules; rates for molecular reactions; molecule formation by radiative association; neutral-neutral reactions; ion-neutral reactions; electron recombination; formation and destruction of molecular hydrogen; comparison with observation in diffuse interstellar clouds; excitation of the rotational states of molecular hydrogen in diffuse interstellar clouds; abundance of the HD molecule and comparison with observation-derived proton density and cosmic ray flux in low-density interstellar clouds; formation of molecules other than H 2 and HD in diffuse interstellar clouds; dense interstellar clouds-fractional ionization; dense clouds--formation of small molecule ions; and dense clouds--deuterium in interstellar molecules. 27 figs, 33 tables, 149 refs

  16. Modern Progress and Modern Problems in High Resolution X-ray Absorption from the Cold Interstellar Medium

    Science.gov (United States)

    Corrales, Lia; Li, Haochuan; Heinz, Sebastian

    2018-01-01

    With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.

  17. Interstellar Molecules Their Laboratory and Interstellar Habitat

    CERN Document Server

    Yamada, Koichi M T

    2011-01-01

    This book deals with the astrophysics and spectroscopy of the interstellar molecules. In the introduction, overview and history of interstellar observations are described in order to help understanding how the modern astrophysics and molecular spectroscopy have been developed interactively. The recent progress in the study of this field, after the 4th Cologne-Bonn-Zermatt symposium 2003 is briefly summarized. Furthermore, the basic knowledge of molecular spectroscopy, which is essential to correctly comprehend the astrophysical observations, is presented in a compact form.

  18. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  19. Model Dust Envelopes Around Silicate Carbon Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-03-01

    Full Text Available We have modeled dust envelopes around silicate carbon stars using optical properties for a mixture of amorphous carbon and silicate dust grains paying close attention to the infrared observations of the stars. The 4 stars show various properties in chemistry and location of the dust shell. We expect that the objects that fit a simple detached silicate dust shell model could be in the transition phase of the stellar chemistry. For binary system objects, we find that a mixed dust chemistry model would be necessary.

  20. Local interstellar medium

    International Nuclear Information System (INIS)

    Crutcher, R.M.; and Radio Astronomy Laboratory, University of California, Berkeley)

    1982-01-01

    Analysis of the velocities of optical interstellar lines shows that the Sun is immersed in a coherently moving local interstellar medium whose velocity vector agrees with that of the interstellar wind observed through backscatter of solar H Lyα and He lambda584 photons. The local interstellar medium consists of both cool clouds and warm intercloud medium gas, has a mass of perhaps approx.30 M/sub sun/, does not have severe depletion of trace elements from the gas phase, and appears to be material which has been shocked and accelerated by stellar winds and supernovae associated with the Sco-Oph OB association

  1. Absorption and emission characteristics of interstellar dust

    International Nuclear Information System (INIS)

    Allamandola, L.J.

    1984-01-01

    Molecular transitions which occur in the middle infrared region of the spectrum correspond with the characteristic frequencies of molecular vibrations. Thus, moderate resolution spectroscopy of the interstellar medium offers unique evidence about the molecules in the condensed and gaseous phases and their distribution. The author discusses the spectral properties of the condensed phase. However, in the astrophysical literature, it is difficult to find a qualitative description of the effects the solid state has on molecular vibrations, and since it is these which largely determine the spectroscopic properties of the interstellar dust, this discussion begins with a general description of these effects and then is directed toward describing the optical characteristics of the molecular ice component of the dust. The properties of this component of the dust are stressed, rather than those expected from more homogeneous components such as silicates, graphite, or amorphous carbon since these have been discussed in considerable detail elsewhere. (Auth.)

  2. Dust in the Diffuse Neutral Interstellar Medium

    Science.gov (United States)

    Sofia, Ulysses J.

    2008-05-01

    Studies of interstellar dust have always relied heavily upon Laboratory Astrophysics for interpretation. Laboratory values, in the broad sense that includes theory, are needed for the most basic act of measuring interstellar abundances, to the more complex determination of what grains are responsible for particular extinction. The symbiotic relationship between astronomical observations and Laboratory Astrophysics has prompted both fields to move forward, especially in the era of high-resolution ultraviolet spectroscopy when new elemental species could be interpreted and observations were able to show the limits of laboratory determinations. Thanks to this synergy, we currently have a good idea of the quantity of the most abundant elements incorporated into dust in diffuse neutral interstellar clouds: carbon, oxygen, iron, silicon and magnesium. Now the task is to figure out how, chemically and physically, those elements are integrated into interstellar grains. We can do this by comparing extinction curves to grain populations in radiative transfer models. The limitation at the present time is the availability of optical constants in the infrared through ultraviolet for species that are likely to exist in dust, i.e., those that are easy to form in the physical environments around stars and in molecular clouds. Extinction in some lines of sight can be fit within current abundance limits and with the optical constants that are available. However the inability to reproduce other extinction curves suggests that optical constants can be improved, either in quality for compounds that have been measured, or quantity in the sense of providing data for more materials. This talk will address the current state and the future of dust studies in the diffuse neutral interstellar medium. This work is supported by the grant HST-AR-10979.01-A from the Space Telescope Science Institute to Whitman College.

  3. Phosphorus in the dense interstellar medium

    International Nuclear Information System (INIS)

    Turner, B.E.; Tsuji, T.; Bally, J.; Guelin, M.; Cernicharo, J.

    1990-01-01

    An observational study was made of interstellar (and circumstellar) phosphorus chemistry by means of (1) a survey of PN in energetic star-forming regions (several new detections); (2) a search for PN in cold cloud cores; and (3) a search for HPO, HCP, and PH3 in interstellar and circumstellar sources. The results are consistent with previously developed ion-molecule models of phosphorus chemistry and imply large depletion factors for P in dense clouds: about 1000 in warm star-forming cores and more than 10,000 in cold cloud cores. Thermochemical equilibrium models have been developed for the P chemistry in C-rich and O-rich environments, and it is found that HCP contains all the phosphorus in the C-rich case. The search for HCP in IRC 10216 yields an upper limit which, taken together with the recent detection of CP, implies significant depletion of HCP onto grains. Depletion factors for first- and second-row elements in diffuse and dense interstellar clouds are summarized, and an overall picture of circumstellar and interstellar grain and gas-phase processes is proposed to explain the depletions of N, O, C, S, Si, P, and in particular the high depletions of Si and P. 101 refs

  4. Elemental nitrogen partitioning in dense interstellar clouds.

    Science.gov (United States)

    Daranlot, Julien; Hincelin, Ugo; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-06-26

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N(2), with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N(2) is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N(2)H(+). Two main formation mechanisms, each involving two radical-radical reactions, are the source of N(2) in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N(2) formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N(2) depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N(2) formation are inefficient, we argue that N(2) does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH(3) should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules.

  5. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    Science.gov (United States)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass

  6. Diatoms on earth, comets, Europa and in interstellar space

    Science.gov (United States)

    Hoover, R. B.; Hoover, M. J.; Hoyle, F.; Wickramasinghe, N. C.; Al-Mufti, S.

    1986-01-01

    There exists a close correspondence between the measured infrared properties of diatoms and the infrared spectrum of interstellar dust as observed in the Trapezium nebula and toward the galactic center source GC-IRS 7. Diatoms and bacteria also exhibit an absorbance peak near 2200 A, which is found to agree with the observed ultraviolet absorbance properties of interstellar grains. The observational data are reviewed, and the known properties of diatoms and bacteria are considered. It is suggested that these characteristics are consistent with the concept of a cosmic microbiological system in which these or similar microorganisms might exist on comets, Europa and in interstellar space.

  7. INTERSTELLAR ANALOGS FROM DEFECTIVE CARBON NANOSTRUCTURES ACCOUNT FOR INTERSTELLAR EXTINCTION

    International Nuclear Information System (INIS)

    Tan, Zhenquan; Abe, Hiroya; Sato, Kazuyoshi; Ohara, Satoshi; Chihara, Hiroki; Koike, Chiyoe; Kaneko, Kenji

    2010-01-01

    Because interstellar dust is closely related to the evolution of matter in the galactic environment and many other astrophysical phenomena, the laboratory synthesis of interstellar dust analogs has received significant attention over the past decade. To simulate the ultraviolet (UV) interstellar extinction feature at 217.5 nm originating from carbonaceous interstellar dust, many reports focused on the UV absorption properties of laboratory-synthesized interstellar dust analogs. However, no general relation has been established between UV interstellar extinction and artificial interstellar dust analogs. Here, we show that defective carbon nanostructures prepared by high-energy collisions exhibit a UV absorption feature at 220 nm which we suggest accounts for the UV interstellar extinction at 217.5 nm. The morphology of some carbon nanostructures is similar to that of nanocarbons discovered in the Allende meteorite. The similarity between the absorption feature of the defective carbon nanostructures and UV interstellar extinction indicates a strong correlation between the defective carbon nanostructures and interstellar dust.

  8. From Interstellar PAHs and Ices to the Origin of Life

    Science.gov (United States)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building

  9. Deuterium enrichment of interstellar dusts

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  10. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Hao, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Aigen, E-mail: haol@shao.ac.cn [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  11. The galactic interstellar medium

    CERN Document Server

    Burton, WB; Genzel, R

    1992-01-01

    This volume contains the papers of three extended lectures addressing advanced topics in astronomy and astrophysics. The topics discussed include the most recent observational data on interstellar matter outside our galaxy and the physics and chemistry of molecular clouds.

  12. Photochemistry of interstellar molecules

    Science.gov (United States)

    Stief, L. J.

    1971-01-01

    The photochemistry of two diatomic and eight polyatomic molecules is discussed quantitatively. For an interstellar molecule, the lifetime against photodecomposition depends upon the absorption cross section, the quantum yield or probability of dissociation following photon absorption, and the interstellar radiation field. The constant energy density of Habing is used for the unobserved regions of interstellar radiation field, and the field in obscuring clouds is estimated by combining the constant flux with the observed interstellar extinction curve covering the visible and ultraviolet regions. Lifetimes against photodecomposition in the unobscured regions and as a function of increasing optical thickness in obscuring clouds are calculated for the ten species. The results show that, except for CO, all the molecules have comparable lifetimes of less than one hundred years. Thus they can exist only in dense clouds and can never have been exposed to the unobscured radiation. The calculations further show that the lifetimes in clouds of moderate opacity are of the order of one million years.

  13. Dynamics of interstellar matter

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1975-01-01

    A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)

  14. Interstellar H3+

    Science.gov (United States)

    Oka, Takeshi

    2006-01-01

    Protonated molecular hydrogen, H3+, is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H2, although its steady state concentration is low because of its extremely high chemical reactivity. H3+ is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H3+ in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region. PMID:16894171

  15. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  16. Surface formation routes of interstellar molecules : a laboratory study

    NARCIS (Netherlands)

    Sergio, Ioppolo

    2010-01-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment as the interstellar medium. In recent years it has become clear that solid state reactions on icy grains play an important role in the formation of both simple and rather complex

  17. Silicate volcanism on Io

    Science.gov (United States)

    Carr, M. H.

    1986-03-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  18. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    Science.gov (United States)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  19. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  20. Matrix isolation as a tool for studying interstellar chemical reactions

    International Nuclear Information System (INIS)

    Ball, D.W.; Ortman, B.J.; Hauge, R.H.; Margrave, J.L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques

  1. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  2. Synthesis of prebiotic glycerol in interstellar ices.

    Science.gov (United States)

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2015-01-02

    Contemporary mechanisms for the spontaneous formation of glycerol have not been able to explain its existence on early Earth. The exogenous origin and delivery of organic molecules to early Earth presents an alternative route to their terrestrial in situ formation since biorelevant molecules like amino acids, carboxylic acids, and alkylphosphonic acids have been recovered from carbonaceous chondrites. Reported herein is the first in situ identification of glycerol, the key building block of all cellular membranes, formed by exposure of methanol-based - interstellar model ices to ionizing radiation in the form of energetic electrons. These results provide compelling evidence that the radiation-induced formation of glycerol in low-temperature interstellar model ices is facile. Synthesized on interstellar grains and eventually incorporated into the "building material" of solar systems, biorelevant molecules such as glycerol could have been dispensed to habitable planets such as early Earth by comets and meteorites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interstellar and Planetary Analogs in the Laboratory

    Science.gov (United States)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  4. Molecular spectroscopy of interstellar medium

    International Nuclear Information System (INIS)

    Varshalovich, D.A.; Khersonskij, V.K.

    1980-01-01

    Experimental data obtained in the investigation into molecules of interstellar medium by molecular-spectroscopic methods are discussed generally. Ion-molecule reactions play a significant part in the formation of multiatom molecules in the interstellar medium as well as reactions proceeding on the surface of interstellar dust. More than 50 types of molecules have been detected in the interstellar medium at present. In a wide range of wave lengths over 500 spectral lines belonging to various molecules and molecular fragments have been recorded. Interstellar molecules permit to investigate interstellar gas from all the sides. They are a suitable indicator of the isotope composition of interstellar gas. Radio observations of interstellar molecules make it possible to effectively investigate kinematics and space structure both separate gas-dust complexes and total gas distribution in Galaxy. It is noted that achievements of molecular spectroscopy of the interstellar medium radically change representations of the chemical composition of interstellar gas, of isotope abundance and organic substance in the Universe

  5. The Abundance of Interstellar Fluorine

    Science.gov (United States)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  6. Stardust Interstellar Preliminary Examination

    Science.gov (United States)

    Westphal, A.; Stardust Interstellar Preliminary Examation Team: http://www. ssl. berkeley. edu/~westphal/ISPE/

    2011-12-01

    A. J. Westphal, C. Allen, A. Ansari, S. Bajt, R. S. Bastien, H. A. Bechtel, J. Borg, F. E. Brenker, J. Bridges, D. E. Brownlee, M. Burchell, M. Burghammer, A. L. Butterworth, A. M. Davis, P. Cloetens, C. Floss, G. Flynn, D. Frank, Z. Gainsforth, E. Grün, P. R. Heck, J. K. Hillier, P. Hoppe, G. Huss, J. Huth, B. Hvide, A. Kearsley, A. J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, R. Lettieri, W. Marchant, L. R. Nittler, R. Ogliore, F. Postberg, M. C. Price, S. A. Sandford, J.-A. Sans Tresseras, T. Schoonjans, S. Schmitz, G. Silversmit, A. Simionovici, V. A. Solé, R. Srama, T. Stephan, V. Sterken, J. Stodolna, R. M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, D. Zevin, M. E. Zolensky, >29,000 Stardust@home dusters ISPE author affiliations are at http://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002, a ~0.1m2 array of aerogel tiles and alumi-num foils onboard the Stardust spacecraft was exposed to the interstellar dust (ISD) stream for an integrated time of 200 days. The exposure took place in interplanetary space, beyond the orbit of Mars, and thus was free of the ubiquitous orbital debris in low-earth orbit that precludes effective searches for interstellar dust there. Despite the long exposure of the Stardust collector, infrared and X-ray microprobes that enable non-destructive analyses of sub-μm particles in situ in aerogel; and (6) the development of focused-ion beam (FIB) milling tech-niques for sample preparation. The Stardust Interstellar PE consists of six related projects: the identification of tracks through automated scanning microscopy and distributed searching by volunteers (Stardust@home); the extraction of tracks from aerogel in "picokeystones"; the analysis of tracks using synchrotron microprobes; the identifica-tion and analysis of impacts in aluminum foils; laboratory investigations of ISD analogs using an electrostatic dust accelerator; and modeling of ISD propagation in the

  7. Chemistry of the interstellar medium

    International Nuclear Information System (INIS)

    Umanskij, S.Ya.

    1979-01-01

    Some aspects of chemistry of interstellar gas-dust clouds are considered. The specific attention is paid to the molecule formation in the interstellar medium. Discussed are the process of hydrogen atom recombination on interstellar specks of dust as well as the formation of double-atom molecules. An ion-molecular mechanism plays the main role in the origination of multiatom molecules. It is noted, that the real progress in chemistry of the interstellar medium will be determined by the development of laboratory investigations at ultralow temperatures and study of the processes proceeding on solid surfaces

  8. Leaf application of silicic acid to upland rice and corn

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2013-12-01

    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  9. The effect of catastrophic collisional fragmentation and diffuse medium accretion on a computational interstellar dust system

    International Nuclear Information System (INIS)

    Liffman, K.

    1990-01-01

    The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion. 42 refs

  10. Three milieux for interstellar chemistry: gas, dust, and ice.

    Science.gov (United States)

    Herbst, Eric

    2014-02-28

    The interdisciplinary science of astrochemistry is 45 years of age, if we pinpoint its origin to have occurred when the first polyatomic molecules were detected in the interstellar gas. Since that time, the field has grown remarkably from an esoteric area of research to one that unites scientists around the globe. Almost 200 different molecules have been detected in the gas-phase of interstellar clouds, mainly by rotational spectroscopy, while dust particles and their icy mantles in colder regions can be probed by vibrational spectroscopy. Astrochemistry is exciting to scientists in a number of different fields. Astronomers are interested in molecular spectra from the heavens because such spectra are excellent probes of the physical conditions where molecules exist, while chemists are interested in the exotic molecules, their spectra, and the unusual chemical processes that produce and destroy them under conditions often very different from those on our home planet. Chemical simulations involving thousands of reactions are now used to calculate concentrations and spectra of interstellar molecules as functions of time. Even biologists share an interest in the subject, because the interstellar clouds of gas and dust, portions of which collapse to form stars and planetary systems, contain organic molecules that may become part of the initial inventory of new planets and may indeed be the precursors of life. An irresistible subject to its practitioners, astrochemistry is proving to be exciting to a much wider audience. In this perspective article, the field is first introduced, and the emphasis is then placed on the three environments in which chemistry occurs in the interstellar medium: the gas phase, the surfaces of bare dust particles, and the ice mantles that cover bare grains in cold dense interstellar clouds. What we do know and what we do not know is distinguished. The status of chemical simulations for a variety of interstellar sources having to do with stellar

  11. Physics, astronomy and astrophysics: interstellar matter and extragalactic light

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1979-01-01

    Analyses of two experimental programs designed to estimate the density of the universe are reported. First, the Copernicus satellite was used to observe hydrogen and deuterium absorption in local interstellar matter. Secondly, two far-ultraviolet spectrometers were used to study galactic plane light scattered off interstellar dust, in order to measure the scattering properties of the dust, and also to detect cosmic background radiation. The interstellar absorption spectra were obtained using bright, close stars as light sources. The density and temperature of interstellar hydrogen and deuterium along the line of sight to each target star were obtained by fitting appropriate models to the data. A set of acceptable densities and temperatures is presented for each star. Generally, the measurements were insufficiently precise to infer spatial variations in the deuterium/hydrogen ratio. A far ultraviolet spectrometer aboard the Apollo 17 lunar mission was used to observe two dusty fields at low galactic latitudes. Virtually all of the observed signal is believed due to emission by field stars. The absence of diffuse galactic light implies the interstellar dust is an extremely poor backscattering medium in the far ultraviolet. If the albedo a of the grains is 0.5, then the scattering parameter g greater than or equal to 0.9

  12. Parameterizing the interstellar dust temperature

    NARCIS (Netherlands)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-01-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form

  13. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  14. Interstellar deuterium chemistry

    International Nuclear Information System (INIS)

    Brown, R.D.; Rice, E.

    1981-01-01

    An interstellar reaction scheme of the type described by E. Iglesias has been extended to include deuterium chemistry and also isomeric forms of some molecules. The role of isomeric forms of the intermediates CNH 2 + and HCNH + in the production of interstellar HCN and HNC is considered. The lowest triplet states of these ions probably play an important part in determining the proportions of HCN and HNC produced. The results of numerical integration of the 108 coupled kinetic equations involved in the extended scheme are presented as time-dependent plots of concentrations of the different chemical species. Calculated concentrations at a molecular cloud age of 10 Ma (1 Ma = 10 6 years) are within the experimental uncertainties for 11 of the 14 species for which suitable observational data are available. Predicted values of HX/DX ratios fall into three broad groups around 10 2 , 10 3 and the accepted cosmic H/D/ ratio, 10 5 , and observations are broadly in agreement. Some reported enrichments that are higher than the predicted figures may arise from the use of data for optically thick molecular lines. Some previously unpublished observations of DNC and HN 13 C illustrate doubts associated with optically thick lines. (author)

  15. JHK photometric study of the variable interstellar extinction in the direction of open star cluster NGC 654

    International Nuclear Information System (INIS)

    Sagar, Ram; Qianzhong Yu

    1989-01-01

    JHK magnitudes have been determined for 18 stars in the field of NGC 654. Study of the interstellar extinction law in the cluster direction indicates an anomalous distribution of interstellar grains causing more extinction in U and B pass-bands compared to that obtained from the colour excesses E(V-J), E(V-H) and E(V-K) using a normal reddening law. This implies a small shift in the grain-size distribution towards smaller than normal sized particles. Patchy distribution of interstellar matter seems to be responsible for the non-uniform extinction in the cluster region. (author)

  16. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  17. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    Science.gov (United States)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early

  18. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    Skeletal remains of siliceous algae form biogenic fine grained highly porous pelagic siliceous ooze sediments that were found above the reservoir of the Ormen Lange gas field which is located in the southern part of the Norwegian Sea (Figure 1a). The Palaeocene sandstone of the “Egga” Formation...... structure is complex and the solids are mechanically fragile and hydrous. Normal petrophysical methods used in formation evaluation might not be suitable for interpreting siliceous ooze. For example, density and neutron logging tools are calibrated to give correct porosity readings in a limestone formation......, but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...

  19. Abundance of interstellar aluminum

    Science.gov (United States)

    Barker, E. S.; Lugger, P. M.; Weiler, E. J.; York, D. G.

    1984-01-01

    New observations of Al II 1670 A, the only line of the dominant ionization stage of interstellar aluminum detected to date, are presented. Observations of ionized silicon are used to define an empirical curve of growth from which aluminum depletions can be derived. The depletion ranges from a factor of 10 in alpha Vir, with E(B-V) of about 0.04, to a factor of 1000 in omicron Per. The depletion is similar to that of iron, but a factor of 2-10 lower than that for silicon in the same stars. The observations of near-UV lines using the Copernicus V1 tubes with removal of a high cosmic-ray-induced fluorescent background are described.

  20. Interstellar scattering and resolution limitations

    Science.gov (United States)

    Dennison, Brian

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources.

  1. Computer simulation of dust grain evolution

    Science.gov (United States)

    Liffman, K.

    1989-01-01

    The latest results are reported from a Monte Carlo code that is being developed at NASA Ames. The goal of this program, is to derive from the observed and presumed properties of the interstellar medium (ISM) the following information: (1) the size spectrum of interstellar dust; (2) the chemical structure of interstellar dust; (3) interstellar abundances; and (4) the lifetime of a dust grain in the ISM. Presently this study is restricted to refractory interstellar material, i.e., the formation and destruction of ices are not included in the program. The program is embedded in an analytic solution for the bulk chemical evolution of a two-phase interstellar medium in which stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary intercloud medium. The well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. Refractory dust is created by thermal condensation as stellar matter flows away from sites of nucleosynthesis such as novae and supernovae and/or from the matter returned from evolved intermediate stars. The history of each particle is traced by standard Monte Carlo techniques as it is sputtered and fragmented by supernova shock waves in the intercloud medium. It also accretes an amorphous mantle of gaseous refractory atoms when its local medium joins with the molecular cloud medium. Finally it encounters the possibility of astration (destruction by star formation) within the molecular clouds.

  2. Computer simulation of dust grain evolution

    International Nuclear Information System (INIS)

    Liffman, K.

    1989-01-01

    The latest results are reported from a Monte Carlo code that is being developed at NASA Ames. The goal of this program, is to derive from the observed and presumed properties of the interstellar medium (ISM) the following information: (1) the size spectrum of interstellar dust; (2) the chemical structure of interstellar dust; (3) interstellar abundances; and (4) the lifetime of a dust grain in the ISM. Presently this study is restricted to refractory interstellar material, i.e., the formation and destruction of ices are not included in the program. The program is embedded in an analytic solution for the bulk chemical evolution of a two-phase interstellar medium in which stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary intercloud medium. The well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. Refractory dust is created by thermal condensation as stellar matter flows away from sites of nucleosynthesis such as novae and supernovae and/or from the matter returned from evolved intermediate stars. The history of each particle is traced by standard Monte Carlo techniques as it is sputtered and fragmented by supernova shock waves in the intercloud medium. It also accretes an amorphous mantle of gaseous refractory atoms when its local medium joins with the molecular cloud medium. Finally it encounters the possibility of astration (destruction by star formation) within the molecular clouds

  3. Capture of interplanetary and interstellar dust by the jovian magnetosphere.

    Science.gov (United States)

    Colwell, J E; Horányi, M; Grün, E

    1998-04-03

    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations.

  4. Dense interstellar cloud chemistry: Basic issues and possible dynamical solution

    International Nuclear Information System (INIS)

    Prasad, S.S.; Heere, K.R.; Tarafdar, S.P.

    1989-01-01

    Standing at crossroad of enthusiasm and frustration, dense intertellar cloud chemistry has a squarely posed fundamental problem: Why do the grains appear to play at best a minor role in the chemistry? Grain surface chemistry creates considerable difficulties when the authors treat dense clouds as static objects and ignore the implications of the processes by which the clouds became dense in the first place. A new generation of models which treat chemical and dynamical evolutions concurrently are therefore presented as possible solution to the current frustrations. The proposed modeling philosophy and agenda could make the next decade quite exciting for interstellar chemistry

  5. Radiation Hazard of Relativistic Interstellar Flight

    OpenAIRE

    Semyonov, Oleg G.

    2006-01-01

    From the point of view of radiation safety, interstellar space is not an empty void. Interstellar gas and cosmic rays, which consist of hydrogen and helium nucleons, present a severe radiation hazard to crew and electronics aboard a relativistic interstellar ship. Of the two, the oncoming relativistic flow of interstellar gas produces the most intence radiation. A protection shield will be needed to block relativistic interstellar gas that can also absorb most of the cosmic rays which, as a r...

  6. Formation of Benzene in the Interstellar Medium

    Science.gov (United States)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  7. Formation of benzene in the interstellar medium

    Science.gov (United States)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.

    2011-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430

  8. Interstellar shock waves with magnetic precursors

    International Nuclear Information System (INIS)

    Draine, B.T.

    1980-01-01

    The structure of steady, radiative, one-dimensional shock waves in partially ionized gas with a transverse magnetic field B 0 is investigated. Under a broad range of conditions applicable to the interstellar medium it is found that such shocks may be preceded by a magnetic precursor which heats and compresses the medium ahead of the front where the neutral gas undergoes a discontinuous change of state; indeed, if B 0 is sufficiently large, a shock can exist with no discontinuities in hydrodynamical variables. Within this magnetic precursor both ions and electrons stream through the neutral fluid with velocities which may be a significant fraction of the shock speed. The physical processes operative in such shocks are examined, including the effects of charged dust grains in dense molecular clouds. Numerical examples are shown for v/sub s/ = 10 km s -1 shocks propagating into diffuse H I or H 2 . Shocks with magnetic precursors may have important consequences for the interstellar medium, some of which are briefly considered

  9. First Detection of Interstellar S2H

    Science.gov (United States)

    Fuente, Asunción; Goicoechea, Javier R.; Pety, Jérôme; Le Gal, Romane; Martín-Doménech, Rafael; Gratier, Pierre; Guzmán, Viviana; Roueff, Evelyne; Loison, Jean Christophe; Muñoz Caro, Guillermo M.; Wakelam, Valentine; Gerin, Maryvonne; Riviere-Marichalar, Pablo; Vidal, Thomas

    2017-12-01

    We present the first detection of gas-phase S2H in the Horsehead, a moderately UV-irradiated nebula. This confirms the presence of doubly sulfuretted species in the interstellar medium and opens a new challenge for sulfur chemistry. The observed S2H abundance is ∼5 × 10‑11, only a factor of 4–6 lower than that of the widespread H2S molecule. H2S and S2H are efficiently formed on the UV-irradiated icy grain mantles. We performed ice irradiation experiments to determine the H2S and S2H photodesorption yields. The obtained values are ∼1.2 × 10‑3 and <1 × 10‑5 molecules per incident photon for H2S and S2H, respectively. Our upper limit to the S2H photodesorption yield suggests that photodesorption is not a competitive mechanism to release the S2H molecules to the gas phase. Other desorption mechanisms such as chemical desorption, cosmic-ray desorption, and grain shattering can increase the gaseous S2H abundance to some extent. Alternatively, S2H can be formed via gas-phase reactions involving gaseous H2S and the abundant ions S+ and SH+. The detection of S2H in this nebula therefore could be the result of the coexistence of an active grain-surface chemistry and gaseous photochemistry.

  10. Riddling bifurcation and interstellar journeys

    International Nuclear Information System (INIS)

    Kapitaniak, Tomasz

    2005-01-01

    We show that riddling bifurcation which is characteristic for low-dimensional attractors embedded in higher-dimensional phase space can give physical mechanism explaining interstellar journeys described in science-fiction literature

  11. The Interstellar Gas Experiment (IGE)

    Science.gov (United States)

    Lind, Don

    1991-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils in order to collect neutral particles from the interstellar gas. These particles were entrapped in the foils along with precipitating magnetospheric and ambient atmospheric particles. Seven of these foils collected particles arriving from seven different directions as seen from the spacecraft for the entire duration of the Long Duration Exposure Facility (LDEF) mission. The authors' mass spectroscopy analysis of the noble gas component of these interstellar particles detected isotopes of helium and neon. These preliminary measurements suggest that the various isotopes are occurring in approximately the expected amounts and that their distribution in direction of arrival is close to what models predict. The analysis to subtract the background fluxes of magnetospheric and atmospheric particles is still in progress. The hope of this experiment is to investigate the noble gas isotopic ratios of this interstellar sample of matter which originated outside the solar system.

  12. Molecular hydrogen in interstellar dark clouds

    Science.gov (United States)

    Allen, M.; Robinson, G. W.

    1976-01-01

    A simplified H2 formation mechanism is proposed in which small interstellar grains furnish the reaction sites. This mechanism results in a maximum value for the rate constant of about 2 by 10 to the -18th power per cu cm/sec for dark clouds at 10 K. Also, the nascent molecules are ejected in excited states, in qualitative agreement with Copernicus observations. A time-dependent treatment of the chemical evolution of a dark cloud with little or no ionizing radiation shows that the clouds require more than 10 million years to achieve chemical equilibrium. The observed residual atomic hydrogen in several dark clouds suggests that the clouds are 1 to 10 million years old. Other consequences of the temporal cloud model are in accord with astronomical observations.

  13. Probing the local interstellar medium

    International Nuclear Information System (INIS)

    Suess, S.T.; Dessler, A.J.

    1985-01-01

    The paper concerns the location of the heliospheric shock, in view of the discrepancy between the theoretical and experimental values. To determine whether the discrepancy may be attributed to parameters used to describe the local interstellar medium [LISM], the authors applied a sophisticated model of solar-wind expansion to deduce a range of parameters for the LISM. Both the interstellar magnetic field and the pressure due to galactic cosmic rays are considered. (U.K.)

  14. The Interstellar Conspiracy

    Science.gov (United States)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to

  15. Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium

    Science.gov (United States)

    McComas, D. J.

    2012-02-01

    absorption (Redfield & Linsky 2008). Bzowski et al. also show evidence for a previously unknown and unanticipated secondary population of helium. Together, the Möbius et al. (2012) and Bzowski et al. (2012) results provide a new interstellar flow direction and a significantly lower velocity of the incoming gas and therefore significantly lower dynamic pressure on the heliosphere, which translates into a heliospheric interaction that is even less dominated by the external dynamic pressure and clearly lies squarely in the middle ground of astrospheres dominated by the external magnetic and dynamic pressures (McComas et al. 2009b). On another topic, Bochsler et al. (2012) report the first direct measurements of interstellar Ne and estimate the interstellar Ne/O abundance ratio, showing a gas-phase Ne/O ratio for the LISM of 0.27 ± 0.10. This value agrees with results obtained from pickup ion observations (Gloeckler & Geiss 2004; Gloeckler & Fisk 2007) and is significantly larger than the solar abundance ratio, indicating that the LISM is different than the Sun's formation region and/or that a substantial portion of the O in the LISM is tied up (and thus "hidden") in grains and/or ices. Finally, Saul et al. (2012) provide the first detailed analysis of the new interstellar H measurements from IBEX. These authors confirm that the arrival direction of interstellar H is offset from that of He. They further show a variation in the strength of the radiation pressure and thus a change in the apparent arrival direction of H penetrating to 1 AU between the first two years of IBEX observations; these results are consistent with solar cycle variations in the radiation pressure, which works opposite to the Sun's gravitational force to effect the penetration of H into the inner heliosphere. Together, these six studies provide the first detailed analyses of the multi-component local interstellar medium—a medium that both effects us by bounding and interacting with our heliosphere, and a

  16. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... silicate nanocomposites and their structure-properties relationship. In the first part of the thesis, thermoplastic layered silicates were obtained by extrusion. Different modification methods were tested to observe the intercalation treatment effect on the silicate-modifier interactions. The silicate...... modification was studied at different silicate/modifier ratios and properties were investigated for obtained nanocomposites with different amounts of modified layered silicate loadings. The obtained nanocomposites presented improved mechanical properties such as toughness, stiffness or a good balance between...

  17. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building., Ann Arbor, MI 48109 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán (Mexico); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sargent, B. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Hernández, J., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: lhartm@umich.edu, E-mail: lingleby@umich.edu, E-mail: p.dalessio@astrosmo.unam.mx, E-mail: cespaillat@cfa.harvard.edu, E-mail: baspci@rit.edu, E-mail: dmw@pas.rochester.edu, E-mail: hernandj@cida.ve [Centro de Investigaciones de Astronomía (CIDA), Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  18. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    International Nuclear Information System (INIS)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J.

    2013-01-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10 –8 to 10 –10 M ☉ yr –1 , the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10 –4 of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system

  19. Silicate fertilizer and irrigation depth in corn production

    Directory of Open Access Journals (Sweden)

    Edvaldo Eloy Dantas Júnior

    2013-08-01

    Full Text Available Calcium-magnesium silicates improve the soil physicochemical properties and provide benefits to plant nutrition, since they are sources of silica, calcium and magnesium. The objective of this study was to evaluate the grain yield of irrigated corn fertilized with calcium-magnesium silicate. The experiment was carried out in a greenhouse in Campina Grande - PB, Brazil, using plastic pots containing 80 kg of soil. The treatments consisted of the combination of four irrigation depths, related to water replacement of 50, 75, 100 and 125% of the crop evapotranspiration, with fertilizer levels of 0, 82, 164 and 246 g of calcium-magnesium silicate, with three replications. The experimental design was in randomized blocks, with the irrigation depths distributed in bands while the silicon levels constituted the subplots. Corn yield was influenced by calcium-magnesium silicate and by irrigation depth, obtaining the greatest grain yield with the dose of 164 g pot-1 irrigated at the highest water level. The water-use efficiency of in corn production tended to decrease when the irrigation depth was increased. The best water-use efficiency was observed when the irrigation level was between 87 and 174 mm, and the dose of silicate was 164 g pot-1.

  20. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  1. Age structure of refractory interstellar dust and isotopic consequences

    Science.gov (United States)

    Clayton, Donald D.; Scowen, Paul; Liffman, Kurt

    1989-01-01

    A sputtering and recycling Monte Carlo model, developed by Liffman and Clayton (1988) is used to calculate the distribution of existence times of the matter in interstellar dust composed of refractory metals. The mean age of each dust particle is defined not as the time it has existed but rather as the mass-weighted existence times of its parts at t = 6 Gyr of the modeled solar system formation. It is shown that Galactic evolution generates a mean correlation, applying to large numbers of particles binned according to size rather than according to individual particles, whose mean ages fluctuate statistically. The cosmochemical consequence is that if interstellar particles can be dynamically sorted into separate size populations during the aggregation history of solar system bodies, the collections of larger grains will constitute matter that is chemically older than collections of smaller grains. The macroscopic age difference generates isotopic anomalies by virtue of the time dependence of the secondary/primary nucleosynthesis yields. Results are compared with three different prescriptions for the sputtering of interstellar dust.

  2. Unreddened stars and the two-phase model of the interstellar medium

    International Nuclear Information System (INIS)

    Joshi, P.; Tarafdar, S.P.

    1977-01-01

    Two phase models have been computed of the interstellar medium, with cosmic rays and X-rays assumed to be the main ionizing agents, heating due to photoelectron ejection from the interstellar grains. It is shown that it is possible to have a hot and tenuous intercloud medium in pressure equilibrium with the interstellar clouds for a wide range of physical conditions, possibly existing in the interstellar space. The atomic and ionic line observations towards lambda Sco are shown to be consistent with the origin of these lines in the intercloud medium for a range of values of the ionizing flux. It is suggested that the intercloud medium may be predominantly neutral, with ionization rates consistent with the limits imposed by molecular observations. The mean fractional ionization of the intercloud medium is approximately 1%. (Auth.)

  3. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    2003-06-01

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  4. A comment on "the far future of exoplanet direct characterization"--the case for interstellar space probes.

    Science.gov (United States)

    Crawford, Ian A

    2010-10-01

    Following on from ideas presented in a recent paper by Schneider et al. on "The Far Future of Exoplanet Direct Characterization," I argue that they have exaggerated the technical obstacles to performing such "direct characterization" by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something that will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of showstopper suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.

  5. Interstellar Initiative Web Page Design

    Science.gov (United States)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  6. Absorption line spectroscopy of the interstellar medium

    International Nuclear Information System (INIS)

    Jura, M.

    1983-01-01

    Absorption line studies of the interstellar medium are described. The discussion is in three parts. The first describes current views of diffuse interstellar clouds, while the second reports the results of recent extensive surveys of interstellar regions. The final part is an outline of possible future observations. (orig.)

  7. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  8. From ice to gas : constraining the desorption processes of interstellar ices

    NARCIS (Netherlands)

    Fayolle, Edith Carine

    2013-01-01

    The presence of icy mantles on interstellar dust grains play a key role in the formation of molecules observed at all stages of star formation. This thesis addresses thermal and UV-induced ice sublimation. Using state of the art laboratory experiments and synchrotron-based UV radiation, the

  9. Stardust Interstellar Preliminary Examination (ISPE)

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  10. Term Projects on Interstellar Comets

    Science.gov (United States)

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  11. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  12. PAHs in Translucent Interstellar Clouds

    Science.gov (United States)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2011-05-01

    We discuss the proposal of relating the origin of some of the diffuse interstellar bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. This comparison provides - for the first time - accurate upper limits for the abundances of specific PAH molecules along specific lines-of-sight. Something that is not attainable from IR observations alone. The comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments. // Reference: F. Salama et al. (2011) ApJ. 728 (1), 154 // Acknowledgements: F.S. acknowledges the support of the NASA's Space Mission Directorate APRA Program. J.K. acknowledges the financial support of the Polish State (grant N203 012 32/1550). The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.

  13. Physical conditions in CaFe interstellar clouds

    OpenAIRE

    Gnacinski, P.; Krogulec, M.

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.

  14. The inventory of interstellar materials available for the formation of the solar system

    Science.gov (United States)

    Sandford, Scott A.

    1996-07-01

    Tremendous progress has been made in the field of interstellar dust in recent years through the use of telescopic observations, theoretical studies, laboratory studies of analogs, and the study of actual interstellar samples found in meteorites. It is increasingly clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This understanding is a far cry from the picture of interstellar materials held as recently as two decades ago, a picture which incorporated only a few generic types of grains and few molecules. In this paper, I attempt to review some of our current knowledge of the more abundant materials thought to exist in the ISM. The review concentrates on matter in interstellar dense molecular clouds since it is the materials in these environments from which new stars and planetary systems are formed. However, some discussion is reserved for materials in circumstellar environments and in the diffuse ISM. The paper also focuses largely on solid materials as opposed to gases since solids contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with a discussion of some of the implications resulting from the recent growth of our knowledge about interstellar materials and also considers a number of areas in which future work might be expected to yield important results.

  15. Synthesis of radium silicate

    International Nuclear Information System (INIS)

    Garibov, A.A; Agayev, T.N; Mansimov, Z.A

    2010-01-01

    Full text :One of the possible ways of implementation of the processes of molecular hydrogen radiologic of the elements in the differential heat of water as a catalyst for the collapse of the creation of a special nuclear reactors. A chemical process in radiation-4-oxide-silicon compounds, which is one of the radium, is of great importance. Research in the silicon-oxide-radiumun different activity-4 has been synthesized. As initial substances for the synthesis of tetra etiolate silicate and radium chloride solutions were used. At the same time to remove reaction products from the reaction intermediate in acetate acid was used. The intermediate product was reacted with ethyl alcohol ethyl acetate ether acetate acid that forms from the reaction of the temperature effect is broken. As a result, 4-oxide was initially pure silicon.

  16. Petrophysical Analysis of Siliceous-Ooze Sediments, More Basin, Norwegian Sea

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2014-01-01

    Pelagic siliceous-ooze sediments occur above the hydrocarbon reservoir of the Ormen Lange gas field in More Basin, Norwegian Sea. A possible hydrocarbon prospect of siliceous ooze was proposed, but siliceous ooze is significantly different in texture from most commonly known reservoir rocks....... Logging and core analysis data were integrated to characterize and evaluate these sediments. "True" density porosity was obtained by taking the number of electrons per unit volume of bulk siliceous ooze into account and it was calibrated to the overburden-corrected core porosity. A grain-density log...... porosity are similar. This indicates that our interpretation is consistent, such that it can be applied elsewhere. The studied sediments apparently do not contain hydrocarbons. The relatively low Biot's coefficient, averaging approximately 0.94, indicates that the siliceous ooze is relatively stiff...

  17. Detection of scattering in the 2175 A interstellar band

    International Nuclear Information System (INIS)

    Witt, A.N.; Bohlin, R.C.; Stecher, T.P.; Space Telescope Science Institute, Baltimore, MD; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1986-01-01

    Spectrophotometric observations of two reflection nebulae and their illuminating stars obtained with the International Ultraviolet Explorer Satellite have provided the first evidence for the presence of a scattering contribution to the 2175 A interstellar extinction band. Lower than normal far-UV extinction for the stars embedded in the nebulae indicates that the nebulae have a dust particle size distribution that is dominated by larger particles. The strength of the 2175 A band is larger than normal in both cases. The scattering is found to dominate the long-wavelength wing of the band, without shifting the central wavelength of the band by more than 20 A toward longer wavelengths. These observations are taken to indicate that the solid particles responsible for the 2175 A band can be considerably larger than the Rayleigh limit in some interstellar locations. The absence of a notable shift in the central wavelength of the band in such large particles presents a new severe constraint for models of interstellar grains. 29 references

  18. Pure iron grains are rare in the universe.

    Science.gov (United States)

    Kimura, Yuki; Tanaka, Kyoko K; Nozawa, Takaya; Takeuchi, Shinsuke; Inatomi, Yuko

    2017-01-01

    The abundant forms in which the major elements in the universe exist have been determined from numerous astronomical observations and meteoritic analyses. Iron (Fe) is an exception, in that only depletion of gaseous Fe has been detected in the interstellar medium, suggesting that Fe is condensed into a solid, possibly the astronomically invisible metal. To determine the primary form of Fe, we replicated the formation of Fe grains in gaseous ejecta of evolved stars by means of microgravity experiments. We found that the sticking probability for the formation of Fe grains is extremely small; only a few atoms will stick per hundred thousand collisions so that homogeneous nucleation of metallic Fe grains is highly ineffective, even in the Fe-rich ejecta of type Ia supernovae. This implies that most Fe is locked up as grains of Fe compounds or as impurities accreted onto other grains in the interstellar medium.

  19. Stardust Interstellar Preliminary Examination IX: High-Speed Interstellar Dust Analog Capture in Stardust Flight-Spare Aerogel

    Science.gov (United States)

    Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.

    2014-01-01

    The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (<10 km/s). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.

  20. Stardust Interstellar Preliminary Examination IX: High-Speed Interstellar Dust Analog Capture in Stardust Flight-Spare Aerogel

    Science.gov (United States)

    Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.

    2014-01-01

    The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (interstellar dust grains returned to Earth by Stardust remain to be found.

  1. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  2. Representing culture in interstellar messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological and cultural models.

  3. Silicon chemistry in interstellar clouds

    International Nuclear Information System (INIS)

    Langer, W.D.; Glassgold, A.E.

    1989-05-01

    Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon

  4. The Abundance of Mg in the Interstellar Medium

    Science.gov (United States)

    Fitzpatrick, Edward L.

    1997-06-01

    An empirical determination of the f-values of the far-UV Mg II λλ1239, 1240 lines is reported. The strong near-UV Mg II λλ2796, 2803 lines are generally highly saturated along most interstellar sight lines outside the local interstellar medium (ISM) and usually yield extremely uncertain estimates of Mg+ column densities in interstellar gas. Since Mg+ is the dominant form of Mg in the neutral ISM, and since Mg is expected to be a significant constituent of interstellar dust grains, the far-UV lines are critical for assessing the role of this important element in the ISM. This study consists of complete component analyses of the absorption along the lines of sight toward HD 93521 in the Galactic halo and ξ Persei and ζ Ophiuchi in the Galactic disk, including all four UV Mg+ lines and numerous other transitions. The three analyses yield consistent determinations of the λλ1239, 1240 f-values, with weighted means of (6.4 +/- 0.4) × 10-4 and (3.2 +/- 0.2) × 10-4, respectively. These results are a factor of ~2.4 larger than a commonly used theoretical estimate, and a factor of ~2 smaller than a recently suggested empirical revision. The effects of this result on gas- and dust-phase abundance measurements of Mg are discussed. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-2655. This Letter is dedicated to the memory of Professor Lyman Spitzer Jr. He was a great guy.

  5. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  6. Interstellar matter in early-type galaxies

    International Nuclear Information System (INIS)

    Kim, D.W.

    1988-01-01

    Multi-wavelength observations were performed in order to investigate various phases of interstellar matter in early type galaxies. The IRAS coadding procedure for a large sample of galaxies, the author found that about half of early type galaxies contain detectable amounts of cold interstellar dust. Selecting galaxies with strong far infrared fluxes, he undertook optical imaging and spectroscopy, HI λ21 cm line observations and CO J = 1-0 line observations. He successfully detected cold dust, HI gas, ionized gas and molecular material; proving that the far infrared flux is indeed a good indicator for the presence of interstellar matter. The infrared emission mechanism and origin and fate of interstellar matter are discussed using the data obtained from various phases of interstellar matter. The interstellar matter is also used as a probe of dynamical structure, nuclear activity and star formation in early type galaxies

  7. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  8. COORDINATED ANALYSES OF PRESOLAR GRAINS IN THE ALLAN HILLS 77307 AND QUEEN ELIZABETH RANGE 99177 METEORITES

    International Nuclear Information System (INIS)

    Nguyen, Ann N.; Nittler, Larry R.; Alexander, Conel M. O'D.; Stadermann, Frank J.; Stroud, Rhonda M.

    2010-01-01

    We report the identification of presolar silicates (∼177 ppm), presolar oxides (∼11 ppm), and one presolar SiO 2 grain in the Allan Hills (ALHA) 77307 chondrite. Three grains having Si-isotopic compositions similar to SiC X and Z grains were also identified, though the mineral phases are unconfirmed. Similar abundances of presolar silicates (∼152 ppm) and oxides (∼8 ppm) were also uncovered in the primitive CR chondrite Queen Elizabeth Range (QUE) 99177, along with 13 presolar SiC grains and one presolar silicon nitride. The O-isotopic compositions of the presolar silicates and oxides indicate that most of the grains condensed in low-mass red giant and asymptotic giant branch stars. Interestingly, unlike presolar oxides, few presolar silicate grains have isotopic compositions pointing to low-metallicity, low-mass stars (Group 3). The 18 O-rich (Group 4) silicates, along with the few Group 3 silicates that were identified, likely have origins in supernova outflows. This is supported by their O- and Si-isotopic compositions. Elemental compositions for 74 presolar silicate grains were determined by scanning Auger spectroscopy. Most of the grains have non-stoichiometric elemental compositions inconsistent with pyroxene or olivine, the phases commonly used to fit astronomical spectra, and have comparable Mg and Fe contents. Non-equilibrium condensation and/or secondary alteration could produce the high Fe contents. Transmission electron microscopic analysis of three silicate grains also reveals non-stoichiometric compositions, attributable to non-equilibrium or multistep condensation, and very fine scale elemental heterogeneity, possibly due to subsequent annealing. The mineralogies of presolar silicates identified in meteorites thus far seem to differ from those in interplanetary dust particles.

  9. Radioanalysis of siliceous materials

    International Nuclear Information System (INIS)

    Das, H.A.

    2003-01-01

    Both natural and induced radioactivity as well as man-made radiotracers may be applied to assess quality and its maintenance a widely varying range of siliceous materials. One example of industrial application is given for each of these three branches. Natural Radioactivity: The measurement of 222-Rn emanation from building material components serves the determination of the internal diffusion and thus of the effective porosity as well as the usual environmental control. Radiotracers: The specific surface area of silica components can be obtained from measurements of the chemisorptions of fluoride and its kinetics, using acid fluoride solutions and carrier-free 18-F, Tl/2 = 110 min, as the radiotracer. This also enables the determination of fluoride in drinking water at the (sub-) ppm level by spiking isotope dilution and substoichiometric adsorption to small glass beads. Neutron activation analysis (NAA): Concentration profiles down to the micro m-range of trace elements in small electronic components of irregular shape are derived from combination of NAA with controlled sequential etching flux in dilute HF-solutions. The cases of Na, Mn, Co and Se by instrumental NAA and that of W by chemical isolation from the reagent solution are considered. (author)

  10. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    Science.gov (United States)

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  11. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2015-01-01

    Using the Planck far-infrared and Arecibo GALFA 21 cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas/dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared with the standard gas/dust ratio. Three hypotheses are considered. First, the apparently low gas/dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H 2 /CO ratio comparable to Galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21 cm lines and find that the optical depth must be ∼3, significantly higher than found from surveys of radio sources. Third, grain properties may change within the clouds: they become more emissive when they are colder, while not utilizing heavy elements that already have their cosmic abundance fully locked into grains. It is possible that all three processes are active, and follow-up studies will be required to disentangle them and measure the true total gas and dust content of interstellar clouds

  12. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    Science.gov (United States)

    2001-10-01

    blocks for vinyl alcohol and other chemicals are able to form the necessary chemical bonds to make larger molecules - those containing as many as six or more atoms. "It has been an ongoing quest to understand exactly how these more complex molecules form and become distributed throughout the interstellar medium," said Turner. Since the 1970s, scientists have speculated that molecules could form on the microscopic dust grains in interstellar clouds. These dust grains are thought to trap the fast-moving molecules. The surface of these grains would then act as a catalyst, similar to a car's catalytic converter, and enable the chemical reactions that form vinyl alcohol and the other complex molecules. The problem with this theory, however, is that the newly formed molecules would remain trapped on the dust grains at the low temperature characteristic of most of interstellar space, and the energy necessary to "knock them off" would also be strong enough to break the chemical bonds that formed them. "This last process has not been well understood," explained Turner. "The current theory explains well how molecules like vinyl alcohol could form, but it doesn't address how these new molecules are liberated from the grains where they are born." To better understand how this might be accomplished, the scientists considered the volatile and highly energetic region of space where these molecules were detected. Turner and others speculate that since this cloud lies near an area of young, energetic star formation, the energy from these stars could evaporate the icy surface layers of the grains. This would liberate the molecules from their chilly nurseries, depositing them into interstellar space where they can be detected by sensitive radio antennas on Earth. Astronomers are able to detect the faint radio signals that these molecules emit as they jump between quantum energy states in the act of rotating or vibrating. Turner cautions, however, that even though this discovery has shed

  13. The heliosphere's interstellar interaction: no bow shock.

    Science.gov (United States)

    McComas, D J; Alexashov, D; Bzowski, M; Fahr, H; Heerikhuisen, J; Izmodenov, V; Lee, M A; Möbius, E; Pogorelov, N; Schwadron, N A; Zank, G P

    2012-06-08

    As the Sun moves through the local interstellar medium, its supersonic, ionized solar wind carves out a cavity called the heliosphere. Recent observations from the Interstellar Boundary Explorer (IBEX) spacecraft show that the relative motion of the Sun with respect to the interstellar medium is slower and in a somewhat different direction than previously thought. Here, we provide combined consensus values for this velocity vector and show that they have important implications for the global interstellar interaction. In particular, the velocity is almost certainly slower than the fast magnetosonic speed, with no bow shock forming ahead of the heliosphere, as was widely expected in the past.

  14. Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T)

    Science.gov (United States)

    Rinehart, Stephen

    2010-01-01

    Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or oxygen-rich (silicate grains). Both astronomical observations and ground-based data show that the optical properties of silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength, temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety of techniques. A combination of both new and established experiments are used to measure the extinction, reflection, and emission properties of amorphous silicates across the infrared (near infrared to millimeter wavelengths), providing a comprehensive data set characterizing the optical parameters of dust samples. We present room temperature measurements and the experimental apparatus to be used to investigate and characterize additional metal-silicate materials.

  15. Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results

    Science.gov (United States)

    Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.

    1997-01-01

    Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.

  16. Reaction between CH2 and HCCN: a theoretical approach to acrylonitrile formation in the interstellar medium.

    Science.gov (United States)

    Shivani; Misra, Alka; Tandon, Poonam

    2014-04-01

    Acrylonitrile (CH2CHCN) was first detected in dense molecular cloud SgrB2. The synthesis of this interstellar molecule is reported to be quite difficult. Therefore, in the present work an attempt has been made to explore the possibility of formation of acrylonitrile from some simple molecules and radicals detected in interstellar space by radical-radical interaction scheme, both in the gas phase and in the icy grains. All calculations are performed using quantum chemical methods with density functional theory (DFT) at the B3LYP/6-311G (d,p) level and Møller-Plesset perturbation theory at the MP2/6-311G (d,p) level. In the discussed chemical pathway, the reaction is found to be totally exothermic and barrier less giving rise to a high probability of acrylonitrile formation in Interstellar space.

  17. Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13

    Science.gov (United States)

    Brenker, Frank E.; Westphal, Andrew J.; Vincze, Laszlo; Burghammer, Manfred; Schmitz, Sylvia; Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, SašA.; Bastien, Ron K.; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David R.; Gainsforth, Zack; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Tresseras, Juan-Angel Sans; Simionovici, Alexandre S.; Solé, Vicente A.; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Sterken, Veerle J.; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E.

    2014-09-01

    Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks—that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.

  18. Stardust Interstellar Preliminary Examination V: XRF Analyses of Interstellar Dust Candidates at ESRF ID13

    Science.gov (United States)

    Brenker, Frank E.; Westphal, Andrew J.; Simionovici, Alexandre S.; Flynn, George J.; Gainsforth, Zack; Allen, Carlton C.; Sanford, Scott; Zolensky, Michael E.; Bastien, Ron K.; Frank, David R.

    2014-01-01

    Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called midnight tracks that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.

  19. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    Science.gov (United States)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  20. High-resolution profiles of the diffuse interstellar feature at 5780 A

    International Nuclear Information System (INIS)

    Savage, B.D.

    1976-01-01

    High-resolution profiles (Δlambdaapprox. =0.2 A) were obtained of the diffuse interstellar feature at 5780 A in 18 heavily reddened stars with the Wisconsin echelle spectrograph at the Cassegrain focus of the Mayall 4 m telescope. This feature is, in all cases, asymmetrical with its steep side being toward the blue. On attempting to match theoretical profiles to the observed lambda5780 profile in HD 183143 we find that theoretical profiles for such processes as autoionization, predissociation, or preionization do not provide acceptable fits to the observational data, while good fits can be obtained for the extinction profiles provided by small (rapprox. =750 A), cold grains containing impurities that produce narrow no-phonon absorption lines. If lambda5780 is in fact due to this latter process, then the asymmetry of the feature provides information on the sizes of interstellar grains, while the width provides information on the internal temperatures of grains. Significant differences in the feature asymmetry were noted for several stars, a result that can readily be explained as being due to small differences in the particle size in different galactic regions. Although changes in the width of the feature at 5780 A were noted, it is difficult to decide if the variations are due to cloud motions, observational errors, or changes in grain temperatures. However, it is possible that the broad weak feature superposed on lambda5780 is due to the same process that produces lambda5780 but in hot (Tapprox. =100-200 K) grains situated near the stars being observed. It is concluded that a careful study of the profiles of the narrow diffuse interstellar features may provide interesting information on the internal temperatures and geometrical characteristics of interstellar particles

  1. Probing the diffuse interstellar medium with diffuse interstellar bands

    Science.gov (United States)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  2. INWARD RADIAL MIXING OF INTERSTELLAR WATER ICES IN THE SOLAR PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, Lionel G.; Marrocchi, Yves; Villeneuve, Johan [CRPG, CNRS, Université de Lorraine, UMR 7358, Vandoeuvre-lés-Nancy, F-54501 (France); Verdier-Paoletti, Maximilien J.; Gounelle, Matthieu, E-mail: lvacher@crpg.cnrs-nancy.fr [IMPMC, MNHN, UPMC, UMR CNRS 7590, 61 rue Buffon, F-75005 Paris (France)

    2016-08-10

    The very wide diversity of asteroid compositions in the main belt suggests significant material transport in the solar protoplanetary disk and hints at the presence of interstellar ices in hydrated bodies. However, only a few quantitative estimations of the contribution of interstellar ice in the inner solar system have been reported, leading to considerable uncertainty about the extent of radial inward mixing in the solar protoplanetary disk 4.56 Ga ago. We show that the pristine CM chondrite Paris contains primary Ca-carbonates whose O-isotopic compositions require an 8%–35% contribution from interstellar water. The presence of interstellar water in Paris is confirmed by its bulk D/H isotopic composition that shows significant D enrichment (D/H = (167 ± 0.2) × 10{sup −6}) relative to the mean D/H of CM chondrites ((145 ± 3) × 10{sup −6}) and the putative D/H of local CM water ((82 ± 1.5) × 10{sup −6}). These results imply that (i) efficient radial mixing of interstellar ices occurred from the outer zone of the solar protoplanetary disk inward and that (ii) chondrites accreted water ice grains from increasing heliocentric distances in the solar protoplanetary disk.

  3. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  4. Porous and Fluffy Grains in the Regions of Anomalous Extinction

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... It has long been established that the ratio of total to selective extinction is anomalously large (≥ 5) in certain regions of the interstellar medium. In these regions of anomalous extinction the dust grains are likely to be irregular in shape and fluffy in structure. Using discrete dipole approximation (DDA) we ...

  5. Interstellar Probe: First Step to the Stars

    Science.gov (United States)

    McNutt, R. L., Jr.

    2017-12-01

    The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such

  6. Elastic properties of silicate melts

    DEFF Research Database (Denmark)

    Clark, Alisha N.; Lesher, Charles E.

    2017-01-01

    Low seismic velocity regions in the mantle and crust are commonly attributed to the presence of silicate melts. Determining melt volume and geometric distribution is fundamental to understanding planetary dynamics. We present a new model for seismic velocity reductions that accounts for the anoma......Low seismic velocity regions in the mantle and crust are commonly attributed to the presence of silicate melts. Determining melt volume and geometric distribution is fundamental to understanding planetary dynamics. We present a new model for seismic velocity reductions that accounts...... for the anomalous compressibility of silicate melt, rendering compressional wave velocities more sensitive to melt fraction and distribution than previous estimates. Forward modeling predicts comparable velocity reductions for compressional and shear waves for partially molten mantle, and for low velocity regions...

  7. INTERSTELLAR ABUNDANCES TOWARD X Per, REVISITED

    International Nuclear Information System (INIS)

    Valencic, Lynne A.; Smith, Randall K.

    2013-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the Chandra X-Ray Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO 3 (enstatite) and Mg 1.6 Fe 0.4 SiO 4 (olivine) provided the best fit to the O K edge, with N(MgSiO 3 )/N(Mg 1.6 Fe 0.4 SiO 4 ) = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

  8. Exploring the Interstellar Medium with SOFIA

    Science.gov (United States)

    Erickson, Edwin F.

    2004-01-01

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is being developed to operate at wavelengths from 0.3 microns to 1.6 mm over a 20 year lifetime. Its 2.5 m effective diameter telescope will be diffraction limited (approximately 8.5 arc seconds FWHM at 100 microns) at wavelengths beyond about 5 microns. Its B747SP aircraft platform will allow coverage of the entire sky and enable observation of ephemeral events. Nine first-generation focal plane instruments are being built, and more will be added later. These attributes assure SOFIA a vital role in future studies of the interstellar medium (ISM), in addition to topics such as the solar system. SOFIA observers will explore the gamut of ISM topics: star formation; the Galactic Center; debris disks; recycling of materials through the stellar life cycle; the origin and evolution of biogenic materials; shock, photodissociation, and photoexcitation physics; gas and grain chemistry. Imaging, spectroscopy, and eventually polarimetry covering much of the infrared spectrum will all be part of SOFIA's arsenal in the attack on these and other important problems. The talk will describe the observatory, its status, its science instruments and anticipated program. SOFIA is a joint program of NASA in the U.S. and DLR in Germany. Broad participation by the international science community in SOFIA observations will be encouraged via annual proposal opportunities and user-friendly tools. Roughly 80% of the observing time will be granted by the U.S. and 20% by Germany. For further information, see http://sofia.arc.nasa.gov.

  9. Investigating the interstellar dust through the Fe K-edge

    Science.gov (United States)

    Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.

    2018-01-01

    Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22

  10. Silicate Phases on the Surfaces of Trojan Asteroids

    Science.gov (United States)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  11. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    International Nuclear Information System (INIS)

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-01-01

    Methanol (CH 3 OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH 3 OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH 3 OH and the other commonly observed C- and O-bearing species, H 2 O, CO, and CO 2 . We use this catalog to investigate the abundance of ice-phase CH 3 OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH 3 OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H 2 O and CO 2 is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH 3 OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH 3 OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH 3 OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  12. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  13. Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX).

    Science.gov (United States)

    McComas, D J; Allegrini, F; Bochsler, P; Bzowski, M; Christian, E R; Crew, G B; DeMajistre, R; Fahr, H; Fichtner, H; Frisch, P C; Funsten, H O; Fuselier, S A; Gloeckler, G; Gruntman, M; Heerikhuisen, J; Izmodenov, V; Janzen, P; Knappenberger, P; Krimigis, S; Kucharek, H; Lee, M; Livadiotis, G; Livi, S; MacDowall, R J; Mitchell, D; Möbius, E; Moore, T; Pogorelov, N V; Reisenfeld, D; Roelof, E; Saul, L; Schwadron, N A; Valek, P W; Vanderspek, R; Wurz, P; Zank, G P

    2009-11-13

    The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere.

  14. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  15. Characterization and Modeling of Alkali-Silica Reaction of Reactive Siliceous Materials in Conducting Model and Mortar Experiments

    OpenAIRE

    Baingam, Lalita

    2016-01-01

    The use of certain aggregate in harden concrete may cause in a particular chemical process in whichvarious silica forms of aggregate react with alkali hydroxides dissolved in the pore solution of concrete,attributing to the alkali silica reaction (ASR). The ASR can produce hydrous calcium-alkali silicate andalkali-silicate gels. This so-called ASR gel adsorbs water and the resulting in swelling expansion, causescracks in the aggregate grains and in the surrounding cement paste matrix leading ...

  16. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    International Nuclear Information System (INIS)

    Wu, C.; York, D.G.; Snow, T.P.

    1981-01-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (lambdalambda4430, 5780, 6284) to the overall extinction curve. Equivalent widths of lambdalambda5780 and 6284 are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in our sample. The central depth of lambda4430 is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. lambda4430 is strongly correlated with the strength of the 2200-A bump. Our data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. lambda4430 may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as we are attempting

  17. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.

    Science.gov (United States)

    Jones, A P

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of 'polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm 'carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  18. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and

  19. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    Science.gov (United States)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  20. Interstellar molecules: guides for new chemistry.

    Science.gov (United States)

    Mandal, Swadhin K; Roesky, Herbert W

    2010-09-07

    Interstellar space is among the most remarkable chemical laboratories in the universe. The existence of many unstable species with low-valent main group elements in the interstellar medium inspired us to investigate the feasibility of laboratory synthesis of such unstable molecules. Particularly the lighter Group 14 element carbon plays a very important role in space astrochemistry. Low-valent carbon as well as silicon were detected in the interstellar environment. This article describes our recent efforts in developing amazing chemistry of heavier low-valent Group 14 elements. This study unravels that the disproportionation pathway of the low-valent Group 14 elements can be arrested by using a sterically protected ligand, then one can artificially generate the situation observed in the interstellar surrounding where the chance of disproportionation is very low as the molecules are extremely dilute.

  1. (New molecular ions in the interstellar medium

    Directory of Open Access Journals (Sweden)

    Roueff Evelyne

    2015-01-01

    Full Text Available We summarize the present knowledge on the molecular ionic content in the interstellar medium and in circumstellar envelopes. Emphasis is given on the most recent detections and the related chemical issues.

  2. Update on an Interstellar Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    Whats the news coming from the research world on the interstellar asteroid visitor, asteroid 1I/Oumuamua? Read on for an update from a few of the latest studies.What is Oumuamua?In lateOctober2017, the discovery of minor planet 1I/Oumuamua was announced. This body which researchers first labeled asa comet and later revised to an asteroid had just zipped around the Sun and was already in the process of speeding away whenwe trained our telescopes on it. Its trajectory, however, marked it as being a visitor from outside our solar system: the first knownvisitorof its kind.Since Oumuamuasdiscovery, scientists have been gathering as many observations of this bodyas possible before it vanishes into the distance. Simultaneously, theorists have leapt at the opportunity to explain its presence and the implications its passage has on our understanding of our surroundings. Here we present just a few of the latest studies that have been published on this first detected interstellar asteroid including several timelystudies published in our new journal, Research Notes of the AAS.The galactic velocity of Oumuamua does not coincide with any of the nearest stars to us. [Mamajek 2018]Where Did Oumuamua Come From?Are we sure Oumuamua didnt originate in our solar system andget scattered into a weird orbit? Jason Wright (The Pennsylvania State University) demonstrates via a series of calculations that no known solar system body could have scattered Oumuamua onto its current orbit nor could any stillunknown object bound to our solar system.Eric Mamajek (Caltech and University of Rochester) showsthat thekinematics of Oumuamua areconsistent with what we might expect of interstellar field objects, though he argues that its kinematics suggest its unlikely to have originated from many of the neareststellar systems.What AreOumuamuas Properties?Oumuamuas light curve. [Bannister et al. 2017]A team of University of Maryland scientists led by Matthew Knight captured a light curve of Oumuamua using

  3. Enabling the First Interstellar Missions

    Science.gov (United States)

    Lubin, P.

    2017-12-01

    All propulsion systems that leave the Earth are based on chemical reactions. Chemical reactions, at best, have an efficiency compared to rest mass of 10-10 (or about 1eV per bond). All the mass in the universe converted to chemical reactions would not propel even a single proton to relativistic speeds. While chemistry will get us to Mars it will not allow interstellar capability in any reasonable mission time. Barring new physics we are left with few realistic solutions. None of our current propulsion systems, including nuclear, are capable of the relativistic speeds needed for exploring the many nearby stellar systems and exo-planets. However recent advances in photonics and directed energy systems now allow us to realize what was only a decade ago, simply science fiction, namely the ability to seriously conceive of and plan for relativistic flight. From fully-functional gram-level wafer-scale spacecraft capable of speeds greater than c/4 that could reach the nearest star in 20 years to spacecraft for large missions capable of supporting human life with masses more than 105 kg (100 tons) for rapid interplanetary transit that could reach speeds of greater than 1000 km/s can be realized. With this technology spacecraft can be propelled to speeds currently unimaginable. Photonics, like electronics, and unlike chemical propulsion is an exponential technology with a current double time of about 20 months. This is the key. The cost of such a system is amortized over the essentially unlimited number of launches. In addition, the same photon driver can be used for many other purposes including beamed energy to power high Isp ion engines, remote asteroid composition analysis and planetary defense. This would be a profound change in human capability with enormous implications. Known as Starlight we are now in a NASA Phase II study. The FY 2017 congressional appropriations request directs NASA to study the feasibility of an interstellar mission to coincide with the 100th

  4. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira [Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Takano, Yoshinori, E-mail: oba@lowtem.hokudai.ac.jp [Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 (Japan)

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  5. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    International Nuclear Information System (INIS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Takano, Yoshinori

    2016-01-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH 2 DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  6. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  7. Recent near-Earth supernovae probed by global deposition of interstellar radioactive (60)Fe.

    Science.gov (United States)

    Wallner, A; Feige, J; Kinoshita, N; Paul, M; Fifield, L K; Golser, R; Honda, M; Linnemann, U; Matsuzaki, H; Merchel, S; Rugel, G; Tims, S G; Steier, P; Yamagata, T; Winkler, S R

    2016-04-07

    The rate of supernovae in our local Galactic neighbourhood within a distance of about 100 parsecs from Earth is estimated to be one every 2-4 million years, based on the total rate in the Milky Way (2.0 ± 0.7 per century). Recent massive-star and supernova activity in Earth's vicinity may be traced by radionuclides with half-lives of up to 100 million years, if trapped in interstellar dust grains that penetrate the Solar System. One such radionuclide is (60)Fe (with a half-life of 2.6 million years), which is ejected in supernova explosions and winds from massive stars. Here we report that the (60)Fe signal observed previously in deep-sea crusts is global, extended in time and of interstellar origin from multiple events. We analysed deep-sea archives from all major oceans for (60)Fe deposition via the accretion of interstellar dust particles. Our results reveal (60)Fe interstellar influxes onto Earth at 1.5-3.2 million years ago and at 6.5-8.7 million years ago. The signal measured implies that a few per cent of fresh (60)Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ten million years at distances of up to 100 parsecs.

  8. Interstellar processes: Ortho/para conversion, radiative association, and dissociative recombination

    Directory of Open Access Journals (Sweden)

    Herbst Eric

    2015-01-01

    Full Text Available The study of the ortho-to-para ratio of assorted gas-phase interstellar molecules such as H2, H2O, NH3, and H2O+ has gained interest in recent years, based partially on new spectral observations of light hydrides by the Herschel Space Observatory. Although these ratios can yield valuable information about the thermal history of the interstellar cloud where the molecules are found, an understanding of how the ratios are determined involves a number of often poorly studied processes, which can include both gas-phase and grain-surface reactions. In this article, we consider the processes that determine the ortho-to-para ratio of the molecular ion H2O+ in diffuse interstellar clouds and attempt to reproduce an unusual observed ratio for this ion. In addition to the study of ortho-to-para ratios, we look carefully at current uncertainties in the gas-phase formation of large neutral molecules in cold dense interstellar clouds via ion-neutral radiative association and dissociative recombination, among other processes.

  9. Structure analysis of interstellar clouds - II. Applying the Delta-variance method to interstellar turbulence

    NARCIS (Netherlands)

    Ossenkopf, V.; Krips, M.; Stutzki, J.

    Context. The Delta-variance analysis is an efficient tool for measuring the structural scaling behaviour of interstellar turbulence in astronomical maps. It has been applied both to simulations of interstellar turbulence and to observed molecular cloud maps. In Paper I we proposed essential

  10. The photoevaporation of interstellar clouds

    International Nuclear Information System (INIS)

    Bertoldi, F.

    1989-01-01

    The dynamics of the photoevaporation of interstellar clouds and its consequences for the structure and evolution of H II regions are studied. An approximate analytical solution for the evolution of photoevaporating clouds is derived under the realistic assumption of axisymmetry. The effects of magnetic fields are taken into account in an approximate way. The evolution of a neutral cloud subjected to the ionizing radiation of an OB star has two distinct stages. When a cloud is first exposed to the radiation, the increase in pressure due to the ionization at the surface of the cloud leads to a radiation-driven implosion: an ionization front drives a shock into the cloud, ionizes part of it and compresses the remaining into a dense globule. The initial implosion is followed by an equilibrium cometary stage, in which the cloud maintains a semistationary comet-shaped configuration; it slowly evaporates while accelerating away from the ionizing star until the cloud has been completely ionized, reaches the edge of the H II region, or dies. Expressions are derived for the cloud mass-loss rate and acceleration. To investigate the effect of the cloud photoevaporation on the structure of H II regions, the evolution of an ensemble of clouds of a given mass distribution is studied. It is shown that the compressive effect of the ionizing radiation can induce star formation in clouds that were initially gravitationally stable, both for thermally and magnetically supported clouds

  11. The interstellar medium in galaxies

    CERN Document Server

    1997-01-01

    It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc­ ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen­ tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...

  12. Characterization of Interstellar Organic Molecules

    International Nuclear Information System (INIS)

    Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.

    2008-01-01

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  13. Detection of solar wind-produced water in irradiated rims on silicate minerals.

    Science.gov (United States)

    Bradley, John P; Ishii, Hope A; Gillis-Davis, Jeffrey J; Ciston, James; Nielsen, Michael H; Bechtel, Hans A; Martin, Michael C

    2014-02-04

    The solar wind (SW), composed of predominantly ∼1-keV H(+) ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system.

  14. Coordinated STEM/FIB/NanoSIMS Analyses of Presolar Silicates in Comet Dust and Primitive Meteorites

    Science.gov (United States)

    Keller, Lindsay; Nguyen, A.; Rahman, Z.; Messenger, S.

    2012-01-01

    Silicate grains were among the most abundant mineralogical building blocks of our Solar System. These grains were the detritus from earlier generations of stars that have been recycled in the early solar nebula. Rare sub-micrometer survivors of this processing have been identified in meteorites, micrometeorites and interplanetary dust particles (IDPs). These silicate grains are recognized as presolar in origin because of their extremely anomalous isotopic compositions that reflect nucleosynthetic processes in their stellar sources (evolved stars, novae and supernovae). We perform coordinated chemical, mineralogical and isotopic studies of these grains to determine their origins and histories. We examine the complex mineralogy and petrography of presolar silicates using imaging, diffraction and chemical data obtained from thin sections with the JSC JEOL 2500 field-emission STEM equipped with a Noran thin window energy dispersive x-ray (EDX) spectrometer and a Gatan Tridiem GIF. Quantitative element x-ray maps (spectrum images) are acquired by rastering a 4 nm incident probe whose dwell time is minimized to avoid beam damage and element diffusion during mapping. Successive image layers are acquired and combined in order to achieve approx 1% counting statistics for major elements. The IDP samples are prepared by ultramicrotomy of particles embedded in epoxy or elemental sulfur. After EDX mapping, the sections are subjected to C, N, and O isotopic imaging with the JSC NanoSIMS 50L ion microprobe. We prepare sections of some meteorite grains using the JSC FEI Quanta 3D focused ion beam (FIB) instrument. The specimen surface is protected from the FIB milling process by layers of electron beam-deposited C and Pt followed by an ion-deposited Pt layer. We also use the FIB to preferentially remove surrounding grains to reduce the background in subsequent NanoSIMS measurements. For mineralogical studies, we again employ the FIB instrument to deposit a protective cap over the

  15. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  16. Lightning and Mass Independent Oxygen Isotopic Fractionation in Nebular Silicates

    Science.gov (United States)

    Nuth, Joseph A.

    2009-01-01

    Lightning has long been postulated as the agent of Chondru|e formation in the solar nebula, but it may have an additional role to play as well. Lightning bolts of almost any scale will both vaporize dust and liberate oxygen atoms that will then interact with both nebular gases as well as the refractory silicate vapor as it re-condenses. Such processes should result in the addition of the heavy oxygen isotopes to the growing silicate grains while the light oxygen-16 becomes part of the gas phase water. This process will proceed to some extent throughout the history of any turbulent nebula and will result in the gradual increase of O-16 in the gas phase and in a much larger relative increase in the O-17 and O-18 content of the nebular dust. Laboratory experiments have demonstrated the production of such "heavy oxygen enriched", non-mass-dependently-fractionated dust grains in a high voltage discharge in a hydrogen rich gas containing small quantities of silane, pentacarbonyl iron and oxygen.

  17. Evolution of interstellar dust in light of Herschel Space Observatory data

    International Nuclear Information System (INIS)

    Arab, Heddy

    2012-01-01

    Interstellar dust grains are nanometer to micrometer sized particles. Although a weak proportion of the total interstellar mass is at solid state, dust plays a fundamental role in the evolution of the interstellar medium (ISM) and of the galaxy itself. Grains can be observed in the UV and visible wavelength through extinction whereas their emission is in the infrared to submillimeter range. Astrophysical observations combined to numerical models and laboratory studies of dust analogs improve our comprehension of the nature and the physics of interstellar grains. For example, evidence of dust evolution in the interstellar medium are now numerous, even if the physical processes responsible of this evolution are still poorly understood. Understanding how grains evolve with physical conditions requires observations of various environments. Photodissociation regions (PDRs) are zones of the ISM where the radiation field and the local density vary on short spatial scales (∼10''- 20''). Moreover the many gas tracers offer the opportunity to constraint efficiently the physical conditions within PDRs. Past missions such as ISO and Spitzer allow to study the evolution of dust in the near-Infrared range. At longer wavelengths, where the emission is dominated by the grains at thermal equilibrium with the radiation, instruments rarely resolved the spatial emission in PDRs. PACS and SPIRE instruments onboard Herschel Space Observatory provide spectro-photometric data between 70 and 500 μm. Their high spatial resolution (from 5 to 35 arcmin) makes these observations ideal for the study of dust evolution in PDRs. We present here an analysis of Herschel observations of three PDRs: the Orion Bar, the Horsehead and NGC 7023 East, characterized by different physical conditions. By combining these data with shorter wavelength observations from Spitzer, we can study the dust emission spectrum from 3.6 to 500 μm at different positions within the PDR. Intensity

  18. Complex processes in simple ices : laboratory and observational studies of gas-grain interactions during star formation

    NARCIS (Netherlands)

    Öberg, Karin Ingegerd

    2009-01-01

    During solar-type star formation, the chemistry evolves towards the formation of complex organic molecules, eventually setting the stage for the origin of life. This astrochemical evolution depends on the interaction between gas and microscopic interstellar grains, producing icy grain mantles. This

  19. Communicating Concepts about Altruism in Interstellar Messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2002-01-01

    This project identifies key principles of altruism that can be translated into interstellar messages for communication with extraterrestrial intelligence. The message contents will focus specifically on the evolution of altruism, drawing on recent insights in evolutionary biology, with particular emphasis on sociobiological accounts of kin selection and reciprocal altruism. This focus on altruism for message contents has several advantages. First, the subject can be translated into interstellar messages both via an existing formal interstellar language and via pictorial messages. For example, aspects of reciprocal altruism can be described through mathematical modeling, such as game theoretic approaches, which in turn can be described readily in the interstellar language Lincos. Second, concentrating on altruism as a message content may facilitate communications with extraterrestrial intelligence. Some scientists have argued that humans may be expected to communicate something about their moral status and development in an exchange with extraterrestrials. One of the most salient ways that terrestrial and extraterrestrial civilizations might be expected to evaluate one another is in terms of ethical motivations. Indeed, current search strategies assume some measure of altruism on the part of transmitting civilizations; with no guarantee of a response, the other civilization would be providing information to us with no direct payoff. Thus, concepts about altruism provide an appropriate content for interstellar messages, because the concepts themselves might be understood by extraterrestrial civilizations.

  20. Organic molecules in translucent interstellar clouds.

    Science.gov (United States)

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars).

  1. Diffuse Interstellar Bands: Successes and Challenges

    Science.gov (United States)

    Sonnentrucker, Paule G.; York, Donald G.; Welty, Daniel E.; Hobbs, Lew M.; Fan, Haoyu; DIB Collaboration

    2018-01-01

    To-date, the spectroscopic signatures of over 170 molecular species have been positively identified in interstellar clouds. However, the number of unidentified features observed either in emission (UIB, ERE, AME) or in absorption (Diffuse Interstellar Bands, DIBs) points to the existence of a substantial reservoir of species in interstellar space that are unaccounted for in theories of interstellar clouds and of star and planet formation. The DIBs are a set of about 600 weak absorption features detected mostly in the optical/NIR (4400 to 12000 Å) that appear to be ubiquitous in the diffuse interstellar medium (ISM). The carriers of the DIBs are potentially the champion contributors, by number, to this pool of unidentified species. While the nature of the DIB carriers remains elusive to this day, our understanding of the DIB behavior has matured to a point at which some DIBs can be used as ISM diagnostics regardless of their true nature. I will briefly review progress made in understanding the DIB dependence on the local ISM physical conditions. I will also present recent results - and the challenges that emerged- from an optical survey tailored to characterize a subset of the DIB spectrum: the broadest (FWHM >6 Å) DIB features.

  2. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  3. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  4. Radiosynoviorthesis with yttrium-90 silicate

    International Nuclear Information System (INIS)

    Reichel, H.; Bergmann, H.; Kolarz, G.; Thumb, N.; Vienna Univ.

    1979-01-01

    The results of the radiosynoviorthesis with yttrium-90 silicate in 36 joints, are reported. In comparison to the radiogold therapy in 64 joints, yttrium-90 was a little more effective. Additionally, the body distribution of radioactive yttrium after radiosynoviorthesis of knee joints, was measured in 6 patients. It could be shown that the uptake of the regional lymphnodes was between 4 and 5% of the yttrium administered. The radiation dose of the regional lymphnodes certainly exceeds 1000 rad. These results point to the importance of a careful selection of patients for radiosynoviorthesis. (author)

  5. The interstellar lithium abundance and the 7Li/6Li ratio

    International Nuclear Information System (INIS)

    Ferlet, R.; Dennefeld, M.

    1985-01-01

    The λ 6708 doublet of interstellar Li I has been observed at high spectral resolution (3.km s -1 ) and very good signal to noise ratio (∼ 4000) towards δ Sco and ζ Oph. Using a profile fitting method, we derive for the first time outside the solar system a 7 Li/ 6 Li ratio of 38 for a diffuse cloud in front of ζ Oph. Even the lower limit of the error bar is incompatible with the ratio measured in meteorites and is not explained by recent models of galactic evolution. The existence of a local inhomogeneity is suggested. Finally, as for other alkalis, lithium is depleted on to dust grains in the diffuse interstellar medium [fr

  6. Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH)

    Science.gov (United States)

    Dickens, J. E.; Irvine, W. M.; DeVries, C. H.; Ohishi, M.

    1997-01-01

    Methylenimine (CH2NH) has been convincingly detected for the first time outside the Galactic center as part of a study of the hydrogenation of interstellar molecules. We have observed transitions from energy levels up to about 100 K above the ground state in the giant molecular clouds W51, Orion KL and G34.3 + 0.15. In addition, CH2NH was found at the " radical-ion peak" on the quiescent ridge of material in the Orion molecular cloud. The abundance ratio CH2NH/HCN at the radical-ion peak agrees with the predictions of recent gas-phase chemical models. This ratio is an order of magnitude higher in the warmer cloud cores, suggesting additional production pathways for CH2NH, probably on interstellar grains.

  7. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  8. Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide.

    Science.gov (United States)

    Belloche, Arnaud; Garrod, Robin T; Müller, Holger S P; Menten, Karl M

    2014-09-26

    The largest noncyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a nonterminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic. Copyright © 2014, American Association for the Advancement of Science.

  9. Changes in interstellar atomic abundances from the galactic plane to the halo

    Science.gov (United States)

    Jenkins, E. B.

    1983-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron. Previously announced in STAR as N82-33310

  10. On the nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.I.

    1981-01-01

    Possible reasons of interstellar medium turbulence manifested in pulsar scintillation and radio-frequency emission scattering of extragalactic sources near by the Galaxy plane, are discussed. Sources and conditions of turbulence emergence in HII region shells, supernova, residue and in stellar wind giving observed scattering effects are considered. It is shown that in the formation of the interstellar scintillation pattern of discrete radio-frequency emission sources a certain role can be played by magnetosound turbulence, which arises due to shock-waves propagating in the interstellar medium at a velocity Vsub(sh) approximately 20-100 km/s as well as by stellar-wind inhomogeneity of OB classes stars [ru

  11. Observational astrochemistry: The quest for interstellar molecules

    Directory of Open Access Journals (Sweden)

    Guélin M.

    2012-01-01

    Full Text Available Over 160 molecular species, not counting isotopologues, have been identified in circumstellar envelopes and interstellar clouds. These species have revealed a wealth of familiar, as much as exotic molecules and in complex organic (and silicon compounds, that was fully unexpected in view of the harshness of surrounding conditions: vanishingly low densities, extreme temperatures and intense embedding UV radiation. They illustrate the diversity of astrochemistry and show robust prebiotic molecules may be. In this lecture, we review the quest for interstellar molecules and show how tributary it is from theoretical ideas and technology developments. A. A. Penzias, who discovered interstellar CO and the 2.7 K Cosmic Background radiation, used to joke that astronomical research is easy: the great questions have largely been formulated; one only has to wait until technological progress makes it possible to answer.

  12. PAH in the laboratory and interstellar space

    International Nuclear Information System (INIS)

    Wdowiak, T.J.; Flickinger, G.C.; Boyd, D.A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium

  13. Positron annihilation in the interstellar medium

    Science.gov (United States)

    Guessoum, Nidhal; Ramaty, Reuven; Lingenfelter, Richard E.

    1991-01-01

    Positronium formation and annihilation are studied in a model for the interstellar medium consisting of cold cloud cores, warm partially ionized cloud envelopes, and hot intercloud gas. The gamma-ray spectra resulting from positron annihilation in these components of the interstellar medium are calculated. The spectra from the individual components are then combined, using two limiting assumptions for the propagation of the positrons, namely, that the positrons propagate freely throughout the interstellar medium, and that the positrons are excluded from the cold cloud cores. In the first case, the bulk of the positrons annihilate in the cloud cores and the annihilation line exhibits broad wings resulting from the annihilation of positronium formed by charge exchange in flight. In the second case, the positrons annihilate mainly in the warm envelopes, and the line wings are suppressed.

  14. Tracing magnetic fields with aligned grains

    International Nuclear Information System (INIS)

    Lazarian, A.

    2007-01-01

    Magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g., transport of heat), and cosmic rays. One of the easiest ways to determine the magnetic field direction is via polarization of radiation resulting from extinction or/and emission by aligned dust grains. Reliability of interpretation of the polarization maps in terms of magnetic fields depends on how well we understand the grain-alignment theory. Explaining what makes grains aligned has been one of the big issues of the modern astronomy. Numerous exciting physical effects have been discovered in the course of research undertaken in this field. As both the theory and observations matured, it became clear that the grain-alignment phenomenon is inherent not only in diffuse interstellar medium or molecular clouds but also is a generic property of the dust in circumstellar regions, interplanetary space and cometary comae. Currently the grain-alignment theory is a predictive one, and its results nicely match observations. Among its predictions is a subtle phenomenon of radiative torques. This phenomenon, after having stayed in oblivion for many years after its discovery, is currently viewed as the most powerful means of alignment. In this article, I shall review the basic physical processes involved in grain alignment, and the currently known mechanisms of alignment. I shall also discuss possible niches for different alignment mechanisms. I shall dwell on the importance of the concept of grain helicity for understanding of many properties of grain alignment, and shall demonstrate that rather arbitrarily shaped grains exhibit helicity when they interact with gaseous and radiative flows

  15. Identification of Presolar Spinel Grains from a Murray Residue by Multi-Detection Raster Imaging

    Science.gov (United States)

    Nguyen, A.; Zinner, E.; Lewis, R. S.

    2003-01-01

    Grain size separate CG from the Murray CM2 carbonaceous chondrite contains mostly spinel grains of average diameter 0.5 m. Zinner et al. found that approximately 1% of these spinel grains are of presolar origin as determined by their large O isotopic anomalies. These O isotopic measurements were made with the NanoSIMS on individual grains that were well separated from one another on a gold foil. The grains were selected for analysis from secondary electron and secondary O-16(-) images. The primary beam was then successively deflected onto these single grains for O isotopic analysis. While single grain analysis on dispersed samples is effective for finding relatively abundant anomalous grains, ion imaging in a raster mode on tightly packed grains might be more efficient for locating few anomalous grains among predominantly isotopically normal grains. In fact, this was the analysis mode used by Messenger et al. to discover presolar silicates in interplanetary dust particles. In an exploratory effort that is also geared toward establishing the optimum isotopic imaging technique in the search for presolar silicate grains in primitive meteorites, we measured O isotopic ratios in spinel grains from the Murray CG separate by raster imaging of areas with more or less tightly packed grains.

  16. Stardust Interstellar Preliminary Examination IV: Scanning Transmission X-Ray Microscopy Analyses of Impact Features in the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Butterworth, Anna L.; Westphal, Andrew J.; Frank, David R.; Allen, Carlton C.; Bechtel, Hans A.; Sandford, Scott A.; Tsou, Peter; Zolensky, Michael E.

    2014-01-01

    We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34.

  17. Spatial distributions and interstellar reaction processes.

    Science.gov (United States)

    Neill, Justin L; Steber, Amanda L; Muckle, Matt T; Zaleski, Daniel P; Lattanzi, Valerio; Spezzano, Silvia; McCarthy, Michael C; Remijan, Anthony J; Friedel, Douglas N; Widicus Weaver, Susanna L; Pate, Brooks H

    2011-06-23

    Methyl formate presents a challenge for the conventional chemical mechanisms assumed to guide interstellar organic chemistry. Previous studies of potential formation pathways for methyl formate in interstellar clouds ruled out gas-phase chemistry as a major production route, and more recent chemical kinetics models indicate that it may form efficiently from radical-radical chemistry on ice surfaces. Yet, recent chemical imaging studies of methyl formate and molecules potentially related to its formation suggest that it may form through previously unexplored gas-phase chemistry. Motivated by these findings, two new gas-phase ion-molecule formation routes are proposed and characterized using electronic structure theory with conformational specificity. The proposed reactions, acid-catalyzed Fisher esterification and methyl cation transfer, both produce the less stable trans-conformational isomer of protonated methyl formate in relatively high abundance under the kinetically controlled conditions relevant to interstellar chemistry. Gas-phase neutral methyl formate can be produced from its protonated counterpart through either a dissociative electron recombination reaction or a proton transfer reaction to a molecule with larger proton affinity. Retention (or partial retention) of the conformation in these neutralization reactions would yield trans-methyl formate in an abundance that exceeds predictions under thermodynamic equilibrium at typical interstellar temperatures of ≤100 K. For this reason, this conformer may prove to be an excellent probe of gas-phase chemistry in interstellar clouds. Motivated by new theoretical predictions, the rotational spectrum of trans-methyl formate has been measured for the first time in the laboratory, and seven lines have now been detected in the interstellar medium using the publicly available PRIMOS survey from the NRAO Green Bank Telescope.

  18. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  19. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  20. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, P. C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Andersson, B-G [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, M.S. N232-12 Moffett Field, CA 94035 (United States); Berdyugin, A.; Piirola, V. [Finnish Centre for Astronomy with ESO, University of Turku (Finland); DeMajistre, R. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM (United States); Magalhaes, A. M.; Seriacopi, D. B. [Inst. de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo (Brazil); McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Schwadron, N. A. [Space Science Center, University of New Hampshire, Durham, NH (United States); Slavin, J. D. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Wiktorowicz, S. J. [Department of Astronomy, University of California at Santa Cruz, Santa Cruz, CA (United States)

    2012-12-01

    ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.

  1. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    International Nuclear Information System (INIS)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-01-01

    by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at ∼975 Å does not appear to play a role in grain alignment for the low-density ISM studied here.

  2. The chemistry of interstellar HnO+: Beyond the galaxy

    NARCIS (Netherlands)

    van der Tak, Floris

    The astrochemistry of the HnO+ (n=1..3) ions is important as the main gas-phase formation route for water, and as tracer of the interstellar ionization rate by cosmic rays and other processes. While interstellar H3O+ has been known since the early 1990's, interstellar OH+ and H2O+ have only recently

  3. Disparities in the estimation of the interstellar electron spectrum

    International Nuclear Information System (INIS)

    Tan, L.C.; Ng, L.K.

    1981-01-01

    Two disparities have been observed: 1. Careful analysis of the interstellar electron data shows that anomalous modulation has happened in the years 1972 - 75, which has caused some confusion in the estimation of the interstellar electron spectrum. 2. At low-energy region, the local effect on the interstellar electron spectrum is significant if one compares the measured electron data with the radio data

  4. A possible causal relation of the source composition of cosmic rays with the elemental depletion in the interstellar space

    International Nuclear Information System (INIS)

    Sakurai, Kunitomo

    2003-01-01

    Based on the observed results on the source composition of cosmic rays, a possible mechanism for the formation of this composition is considered by taking into account the fractionation of the elements in the interstellar molecular clouds, in which there may exist dusts and grains enriched with the elements whose condensation temperature is higher than about 1000K. Most of these nuclei enhanced in the source composition are identified as heavy and ultra-heavy ones, which must have been synthesized in the r-process initiated with the explosions of type II supernovae and/or supergiant stars. It seems that these nuclei in atomic states may have been relatively efficiently condensed into dusts and grains in the interstellar clouds, which are formed in supernova ejectae while being cooled off

  5. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  6. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    Science.gov (United States)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  7. Dust in the small Magellanic Cloud. 2: Dust models from interstellar polarization and extinction data

    Science.gov (United States)

    Rodrigues, C. V.; Magalhaes, A. M.; Coyne, G. V.

    1995-01-01

    We study the dust in the Small Magellanic Cloud using our polarization and extinction data (Paper 1) and existing dust models. The data suggest that the monotonic SMC extinction curve is related to values of lambda(sub max), the wavelength of maximum polarization, which are on the average smaller than the mean for the Galaxy. On the other hand, AZV 456, a star with an extinction similar to that for the Galaxy, shows a value of lambda(sub max) similar to the mean for the Galaxy. We discuss simultaneous dust model fits to extinction and polarization. Fits to the wavelength dependent polarization data are possible for stars with small lambda(sub max). In general, they imply dust size distributions which are narrower and have smaller mean sizes compared to typical size distributions for the Galaxy. However, stars with lambda(sub max) close to the Galactic norm, which also have a narrower polarization curve, cannot be fit adequately. This holds true for all of the dust models considered. The best fits to the extinction curves are obtained with a power law size distribution by assuming that the cylindrical and spherical silicate grains have a volume distribution which is continuous from the smaller spheres to the larger cylinders. The size distribution for the cylinders is taken from the fit to the polarization. The 'typical', monotonic SMC extinction curve can be fit well with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grain. However, amorphous carbon and silicate grains also fit the data well. AZV456, which has an extinction curve similar to that for the Galaxy, has a UV bump which is too blue to be fit by spherical graphite grains.

  8. Instability of interaction network for interstellar gas and interstellar diffusive energy in the shear field

    International Nuclear Information System (INIS)

    Fujimoto, Mitsuaki; Mizuno, Takao.

    1987-01-01

    A model network for interaction between interstellar gas and interstellar diffusive energy is considered in the shear field. Local linearized equations are derived around the equilibrium states which are realized when no shear field exists. A wavy perturbation is followed by employing the WKB method. It is concluded that the shear field brings about various unstable waves depending on their configuration. A great variety of observed dark and luminous pattern in spiral galaxies could be understood as related to these waves. (author)

  9. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types

  10. REVISITING ULYSSES OBSERVATIONS OF INTERSTELLAR HELIUM

    International Nuclear Information System (INIS)

    Wood, Brian E.; Müller, Hans-Reinhard; Witte, Manfred

    2015-01-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ∼0.°3 and the speed by no more than ∼0.3 km s –1 . A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V ISM = 26.08 ± 0.21 km s –1 , λ = 75.54 ± 0.°19, β = –5.44 ± 0.°24, and T = 7260 ± 270 K; where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n He = 0.0196 ± 0.0033 cm –3 in the interstellar medium

  11. REVISITING ULYSSES OBSERVATIONS OF INTERSTELLAR HELIUM

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Müller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Witte, Manfred, E-mail: brian.wood@nrl.navy.mil [Max-Planck-Institute for Solar System Research, Katlenburg-Lindau D-37191 (Germany)

    2015-03-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ∼0.°3 and the speed by no more than ∼0.3 km s{sup –1}. A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V {sub ISM} = 26.08 ± 0.21 km s{sup –1}, λ = 75.54 ± 0.°19, β = –5.44 ± 0.°24, and T = 7260 ± 270 K; where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n {sub He} = 0.0196 ± 0.0033 cm{sup –3} in the interstellar medium.

  12. Fluorescent excitation of interstellar H2

    NARCIS (Netherlands)

    Black, J.H.; Dishoeck, van E.F.

    1987-01-01

    The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature,

  13. Infrared spectroscopy of interstellar apolar ice analogs

    NARCIS (Netherlands)

    Ehrenfreund, P; Boogert, ACA; Gerakines, PA; Tielens, AGGM; van Dishoeck, EF

    1997-01-01

    Apolar ices have been observed in several regions in dense clouds and are likely dominated by molecules such as CO, CO(2) and the infrared inactive molecules O(2) and N(2). Interstellar solid CO has been well characterized by ground-based high resolution measurements. Recent ISO results showed the

  14. Water in the interstellar medium of galaxies

    NARCIS (Netherlands)

    van der Tak, Floris

    Water is a key constituent of interstellar matter, with a great influence on the formation of stars, planets, and life.The rotational and vibrational transitions of H2O are useful tracers of physical and chemical conditions in a broad range of astrophysical objects.This talk reviews recent

  15. The photodissociation and chemistry of interstellar CO

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Black, J.H.

    1988-01-01

    Recent work on the vacuum UV absorption spectrum of CO to the description of the photodissociation of interstellar CO and its principal isotopic varieties is discussed. The effects of line broadening, self-shielding, shielding by H and H2, and isotope-selective shielding are examined as functions of

  16. The influence of the interstellar medium on climate and life

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.

    1980-01-01

    Recent studies of the gas and dust between the stars, the interstellar medium, reveal a complex chemistry which indicates that prebiotic organic chemistry is ubiquitous. The relationship between this interstellar chemistry and the organic chemistry of the early solar system and the Earth is explored. The interstellar medium is also considered as likely to have a continuing influence upon the climate of the Earth and other planets. Life forms as known are not only descendants of the organic evolution begun in the interstellar medium, but their continuing evolution is also molded through occasional interactions between the interstellar medium, the Sun and the climate on Earth. (author)

  17. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  18. Dielectric Property of Silicate-Doped CaBi4Ti4O15 Thin Films

    Science.gov (United States)

    Ogawa, Shota; Kondoh, Yohta; Kimura, Junichi; Funakubo, Hiroshi; Uchida, Hiroshi

    2012-09-01

    Thin films of silicate-doped CaBi4Ti4O15 were fabricated to enhance the insulating property of one-axis-oriented CaBi4Ti4O15 films under an applied electric field. The crystalline phase of CaBi4Ti4O15, a type of bismuth layer-structured dielectric (BLSD) compound, was successfully grown on (100)LaNiO3/(111)Pt/TiO2/(100)Si with the preferential orientation of the (001) plane by the addition of bismuth silicate with a nominal composition of Bi12SiO20 up to 1.00%. The crystallographic orientation of the (001)BLSD plane normal to the substrate surface was degraded by excessive bismuth silicate addition above 1.50%. The breakdown electric field was increased by bismuth silicate addition up to 2.00% without the degraded relative dielectric permittivity (ɛr) of approximately 230. The bismuth silicate could precipitate between the grain boundaries in the CaBi4Ti4O15 films without an interface reaction or a solid solution that enhances the insulating behavior of the BLSD films.

  19. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  20. The loop I superbubble and the local interstellar magnetic field

    International Nuclear Information System (INIS)

    Frisch, Priscilla Chapman

    2014-01-01

    Recent data on the interstellar magnetic field in the low density nearby interstellar medium suggest a new perspective for understanding interstellar clouds within 40 pc. The directions of the local interstellar magnetic field found from measurements of optically polarized starlight and the very local field found from the Ribbon of energetic neutral atoms discovered by IBEX nearly agree. The geometrical relation between the local magnetic field, the positions and kinematics of local interstellar clouds, and the Loop I S1 superbubble, suggest that the Sun is located in the boundary of this evolved superbubble. The quasiperpendicular angle between the bulk kinematics and magnetic field of the local ISM indicates that a complete picture of low density interstellar clouds needs to include information on the interstellar magnetic field.

  1. The formation of molecular hydrogen on silicate dust analogs: The rotational distribution

    International Nuclear Information System (INIS)

    Gavilan, L.; Lemaire, J. L.; Vidali, G.; Sabri, T.; Jæger, C.

    2014-01-01

    Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ∼5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 ≤ J'' ≤ 5) of v'' = 0 of the ground electronic state of H 2 . The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T rot ∼ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ∼310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the 'cartwheel' rotation mode. A search for hot hydrogen, predicted as a result of H 2 formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.

  2. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.

    Science.gov (United States)

    Camilleri, Josette; Sorrentino, François; Damidot, Denis

    2013-05-01

    Novel root-end filling materials are composed of tricalcium silicate (TCS) and radiopacifier as opposed to the traditional mineral trioxide aggregate (MTA) which is made up of clinker derived from Portland cement and bismuth oxide. The aim of this research was to characterize and investigate the hydration of a tricalcium silicate-based proprietary brand cement (Biodentine™) and a laboratory manufactured cement made with a mixture of tricalcium silicate and zirconium oxide (TCS-20-Z) and compare their properties to MTA Angelus™. The materials investigated included a cement containing 80% of TCS and 20% zirconium oxide (TCS-20-Z), Biodentine™ and MTA Angelus™. The specific surface area and the particle size distribution of the un-hydrated cements and zirconium oxide were investigated using a gas adsorption method and scanning electron microscopy. Un-hydrated cements and set materials were tested for mineralogy and microstructure, assessment of bioactivity and hydration. Scanning electron microscopy, X-ray energy dispersive analysis, X-ray fluorescence spectroscopy, X-ray diffraction, Rietveld refined X-ray diffraction and calorimetry were employed. The radiopacity of the materials was investigated using ISO 6876 methods. The un-hydrated cements were composed of tricalcium silicate and a radiopacifier phase; zirconium oxide for both Biodentine™ and TCS-20-Z whereas bismuth oxide for MTA Angelus™. In addition Biodentine™ contained calcium carbonate particles and MTA Angelus™ exhibited the presence of dicalcium silicate, tricalcium aluminate, calcium, aluminum and silicon oxides. TCS and MTA Angelus™ exhibited similar specific surface area while Biodentine™ had a greater specific surface area. The cements hydrated and produced some hydrates located either as reaction rim around the tricalcium silicate grain or in between the grains at the expense of volume containing the water initially present in the mixture. The rate of reaction of tricalcium

  3. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    Science.gov (United States)

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique.

  4. SILICATES ON IAPETUS FROM CASSINI’S COMPOSITE INFRARED SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Young, Cindy L.; Wray, James J. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Clark, Roger N. [Planetary Science Institute, Tucson, AZ (United States); Spencer, John R. [Southwest Research Institute, Boulder, CO (United States); Jennings, Donald E. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Hand, Kevin P.; Carlson, Robert W. [Jet Propulsion Laboratory, Pasadena, CA (United States); Poston, Michael J. [Caltech, Pasadena, CA (United States)

    2015-10-01

    We present the first spectral features obtained from Cassini’s Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal-to-noise ratios (S/Ns) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/N and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at ∼855 cm{sup −1} and a possible doublet at 660 and 690 cm{sup −1} that do not correspond to any known instrument artifacts. We attribute the 855 cm{sup −1} feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn’s icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure have features near 855 and 660 cm{sup −1}. However, peaks can shift depending on temperature and pressure, so measurements at Iapetus-like conditions are necessary for more positive feature identifications. As a first investigation, we measured muscovite at 125 K in a vacuum and found that this spectrum does match the emissivity feature near 855 cm{sup −1} and the location of the doublet. Further measurements are needed to robustly identify a specific silicate, which would provide clues regarding the origin and implications of the dark material.

  5. PRODUCTION AND RECOIL LOSS OF COSMOGENIC NUCLIDES IN PRESOLAR GRAINS

    International Nuclear Information System (INIS)

    Trappitsch, Reto; Leya, Ingo

    2016-01-01

    Presolar grains are small particles that condensed in the vicinity of dying stars. Some of these grains survived the voyage through the interstellar medium (ISM) and were incorporated into meteorite parent bodies at the formation of the Solar System. An important question is when these stellar processes happened, i.e., how long presolar grains were drifting through the ISM. While conventional radiometric dating of such small grains is very difficult, presolar grains are irradiated with galactic cosmic rays (GCRs) in the ISM, which induce the production of cosmogenic nuclides. This opens the possibility to determine cosmic-ray exposure (CRE) ages, i.e., how long presolar grains were irradiated in the ISM. Here, we present a new model for the production and loss of cosmogenic 3 He, 6,7 Li, and 21,22 Ne in presolar SiC grains. The cosmogenic production rates are calculated using a state-of-the-art nuclear cross-section database and a GCR spectrum in the ISM consistent with recent Voyager data. Our findings are that previously measured 3 He and 21 Ne CRE ages agree within the (sometimes large) 2 σ uncertainties and that the CRE ages for most presolar grains are smaller than the predicted survival times. The obtained results are relatively robust since interferences from implanted low-energy GCRs into the presolar SiC grains and/or from cosmogenic production within the meteoroid can be neglected.

  6. Interstellar Probe: The Next Step To Flight

    Science.gov (United States)

    McNutt, Ralph; Zurbuchen, Thomas H.

    2016-07-01

    In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The

  7. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues

    Science.gov (United States)

    Bernstein, Max P.; Dworkin, Jason P.; Sandford, Scott A.; Cooper, George W.; Allamandola, Louis J.

    2002-01-01

    The delivery of extraterrestrial organic molecules to Earth by meteorites may have been important for the origin and early evolution of life. Indigenous amino acids have been found in meteorites-over 70 in the Murchison meteorite alone. Although it has been generally accepted that the meteoritic amino acids formed in liquid water on a parent body, the water in the Murchison meteorite is depleted in deuterium relative to the indigenous organic acids. Moreover, the meteoritical evidence for an excess of laevo-rotatory amino acids is hard to understand in the context of liquid-water reactions on meteorite parent bodies. Here we report a laboratory demonstration that glycine, alanine and serine naturally form from ultraviolet photolysis of the analogues of icy interstellar grains. Such amino acids would naturally have a deuterium excess similar to that seen in interstellar molecular clouds, and the formation process could also result in enantiomeric excesses if the incident radiation is circularly polarized. These results suggest that at least some meteoritic amino acids are the result of interstellar photochemistry, rather than formation in liquid water on an early Solar System body.

  8. Intergranular area microalloyed aluminium-silicate ceramics fractal analysis

    Directory of Open Access Journals (Sweden)

    Purenović J.

    2013-01-01

    Full Text Available Porous aluminium-silicate ceramics, modified by alloying with magnesium and microalloying with alluminium belongs to a group of advanced multifunctional ceramics materials. This multiphase solid-solid system has predominantly amorphous microstructure and micro morphology. Intergranular and interphase areas are very complex, because they represent areas, where numbered processes and interactions take place, making new boundaries and regions with fractal nature. Fractal analysis of intergranular microstructure has included determination of ceramic grain fractal dimension by using Richardson method. Considering the fractal nature of intergranular contacts, it is possible to establish correlation between material electrical properties and fractal analysis, as a tool for future correlation with microstructure characterization. [Projekat Ministarstva nauke Republike Srbije, br. ON 172057 i br. III 45012

  9. Stellar evolution - Motivation for mass interstellar migrations

    Science.gov (United States)

    Zuckerman, B.

    1985-03-01

    The ease and likelihood of interstellar rocket travel is a much-debated issue which is relevant to another controversial topic - the value of 'N' - the number of technological civilizations in our Galaxy. It is argued that even if N is as small as 10 - 100, at least one of these will already have been forced, by the termination of the main-sequence evolutionary phase of their home 'Sun', to carry out a massive interstellar migration. If, as is often argued, N ≡ 105, then as many as 104 such migrations may well have taken place. Since each such migration could easily populate the space around more than 106 stars, such large values for N imply that our Galaxy is nearly saturated with extraterrestrial creatures.

  10. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  11. Galactic civilizations: Population dynamics and interstellar diffusion

    Science.gov (United States)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  12. Polarization of submillimetre lines from interstellar medium

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  13. Interstellar Anions: The Role of Quantum Chemistry.

    Science.gov (United States)

    Fortenberry, Ryan C

    2015-10-01

    Six anions have been conclusively detected in the interstellar medium (ISM). They all arrived within a five-year window ending five years ago. Why have no new anions been detected? It is likely a lack of laboratory data for novel anions. This work reviews the role that valence and dipole-bound excited states may play in the formation, detection, and lifetime of anions that may yet be observed in the ISM and how quantum chemistry enhances this understanding. The list of interstellar anions has certainly not been exhausted by any means, but electronic, spectroscopic, and structural data must be provided to aid in any future detections. Quantum chemistry has the flexibility and completeness to provide a full picture of these systems and has shown exceptional accuracies of late. The work reviewed herein gives an overview of what quantum chemical computations have produced and will continue to provide related to anions and how this will enhance both laboratory experiment and astronomical observation.

  14. Isotope Fractionation in the Interstellar Medium

    Science.gov (United States)

    Charnley, Steven

    2011-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  15. Highly silicic compositions on the Moon.

    Science.gov (United States)

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.

  16. Carbon Monoxide Silicate Reduction System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  17. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  18. Carbon Monoxide Silicate Reduction System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  19. Siliceous microfossil extraction from altered Monterey rocks

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.O.; Casey, R.E.

    1986-04-01

    Samples of altered Monterey rocks of differing lithologies were processed by various methods to develop new techniques for extracting siliceous microfossils. The preliminary use of thin sections made from the same rocks reduced the number of probable samples (samples worth further processing) by about one-third. Most of the siliceous microfossils contained in altered Monterey rocks appear to be highly recrystallized and are extremely fragile; however, some contained silicified and silica-infilled radiolarians and planktonic and benthonic foraminifera, which are very tough. In general the most useful techniques were gently hydrochloric acid, hydrogen peroxide, formic acid, monosodium glutamate, and regular siliceous microfossil extraction techniques. Unsuccessful techniques and a new siliceous microfossil flotation technique are also documented.

  20. Magnetic properties of sheet silicates

    International Nuclear Information System (INIS)

    Ballet, O.; Coey, J.M.D.

    1982-01-01

    Susceptibility, magnetisation and Moessbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe 2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe 2+ -Fe 2+ exchange interactions are ferromagnetic with Gapprox. equal to2 K, whereas Fe 3+ -Fe 3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe 2+ → Fe 3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1-7 K. One biotite sample showed an antiferromagnetic transition at Tsub(N) = 7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite. (orig.)

  1. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  2. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (< 75 μm) silicates on Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  3. Silicate calculi, a rare cause of kidney stones in children.

    Science.gov (United States)

    Taşdemir, Mehmet; Fuçucuoğlu, Dilara; Özman, Oktay; Sever, Lale; Önal, Bülent; Bilge, Ilmay

    2017-02-01

    Urinary silicate calculi in humans are extremely rare. Reported cases of silicate calculi are mostly documented in adults and are commonly related to an excessive intake of magnesium trisilicate in food or drugs. Published studies on the presence of silicate calculi in children are scarce. Three cases of silicate kidney stones without prior silicate intake are reported. Two patients underwent surgical treatment, and the third patient was treated using conservative methods. Urinalysis revealed no underlying metabolic abnormalities. Analyses revealed that silicate was the major component of the stones. Siliceous deposits in urinary stones may be more common than anticipated, and the underlying pathophysiology remains to be clarified.

  4. Intrinsic luminescence of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, V.I.; Grabovskis, V.Y.; Tolstoi, M.N.; Vitol, I.K.

    1986-09-01

    This study obtains additional information on L centers and their role in electron excitation and intrinsic luminescence of a whole series. (Li, Na, K, Rb, and Cs) of alkali silicate glasses. The authors compare the features of the interaction with radiation of specimens of glass and crystal of a similar chemical composition, since silicates of alkali metals can be obtained in both the glassy and crystalline states.

  5. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  6. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  7. Heating of the local interstellar medium

    International Nuclear Information System (INIS)

    Arnaud, M.; Rothenflug, R.

    1986-07-01

    From soft X ray measurements evidence emerges that a large volume of the local interstellar medium is filled with hot gas. The sky has now been almost entirely scanned in the soft X ray bands. Although the very contribution of a halo or/and large scale galactic components is still debated, it appears that an important part of this soft X ray emission has a local origin. Its thermal nature was strongly supported after X ray lines of some highly stripped ions were observed. This local interstellar medium is likely to have been heated by the energy released in Supernova(e) explosion(s). We review such models and discuss whether they may account for both the observed fluxes in soft X ray bands and the X ray spectral data. Special emphasis is put on the intricacy of the data, which presently makes hopeless a detailed understanding of the hot local interstellar medium. Consistency of such models with key parameters (such as OVI column density) is also studied

  8. Hydrogen/deuterium exchange in interstellar ice analogs

    Science.gov (United States)

    Ratajczak, A.; Quirico, E.; Faure, A.; Schmitt, B.; Ceccarelli, C.

    2009-03-01

    Context: For several reasons, methanol is believed to be formed on grain surfaces and, in warm environments, released in the gas phase. In the past, multiply deuterated isotopologues of methanol have been detected in gas phase around several low-mass protostars. In all these sources, there is significantly more CH2DOH than CH3OD. Various hypotheses have been suggested to explain this anomaly, but none is fully convincing. Aims: In this work, we test a new hypothesis experimentally: the spontaneous exchange between hydrogen and deuterium atoms in water ice as responsible for the deficiency of CH3OD with respect to CH2DOH. Methods: We follow the temperature dependence of the composition of interstellar ice analogs initially composed of CD3OD and H2O. To this aim, thin films of intimate H2O:CD3OD ice mixtures, condensed at low temperature (hydrogen/deuterium (H/D) exchange is observed, at 120 K and above, through the growth of the ν_OD stretching mode of HDO at ~2425 cm-1. It is also shown that H/D exchange occurs i) on the hydroxyl functional group of methanol, i.e through hydrogen bonds, and ii) before the completion of crystallization. Conclusions: The present results suggest that the much lower abundance of CH3OD compared to CH2DOH in low-mass protostars could reflect H/D exchanges in water ice either prior to or definitely during the grain mantle sublimation. This solid-state depletion mechanism, so far neglected in the astronomical literature, might affect other deuterated molecules with hydrogen bonds.

  9. Interstellar Extinction and its Variation in the Galaxy

    Science.gov (United States)

    Ford Schlafly, Edward; Rix, Hans-Walter; Finkbeiner, Douglas P.; Green, Gregory; Lee, Albert; Meisner, Aaron M.

    2016-01-01

    Dust reddening is an important diagnostic of the interstellar medium and the dust grain size distribution, as well as a pervasive observational nuisance. Detailed studies of the dust extinction curve and its variation have hithertofore been largely limited to samples of hundreds of specially chosen stars. We use spectroscopy from APOGEE in combination with photometry from Pan-STARRS1, 2MASS, and WISE to characterize the dust extinction curve throughout much of the nearest few kiloparsecs of the Galactic plane using tens of thousands of stars. We make new measurements of the dust extinction curve and its variation, finding that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves, described, for instance, by R(V). Our data show little evidence of any need for further parameters. The local curvature of the extinction curve increases with decreasing R(V) throughout most of the optical and infrared: the extinction curve in the infrared is not more ``universal'' than in the optical, in contrast to several widely-used extinction curve parameterizations. We find that the shape of the dust extinction curve is rather uniform, with σ(R(V)) = 0.2, and with less than two percent of sight lines having R(V) > 4. However, significant spatially coherent variations in R(V) do exist. The primary variations are on scales much larger than individual molecular clouds, indicating that grain growth in dense molecular cloud environments is not the primary driver of R(V) variations in dust at large. Indeed, we find no correlation between R(V) and dust column density out to E(B-V) ≈ 2.

  10. Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe

    Science.gov (United States)

    Wallner, A.; Feige, J.; Kinoshita, N.; Paul, M.; Fifield, L.K.; Golser, R.; Honda, M.; Linnemann, U.; Matsuzaki, H.; Merchel, S.; Rugel, G.; Tims, S.G.; Steier, P.; Yamagata, T.; Winkler, S.R.

    2016-01-01

    The rate of supernovae (SNe) in our local galactic neighborhood within a distance of ~100 parsec from Earth (1 parsec (pc)=3.26 light years) is estimated at 1 SN every 2-4 million years (Myr), based on the total SN-rate in the Milky Way (2.0±0.7 per century1,2). Recent massive-star and SN activity in Earth’s vicinity may be evidenced by traces of radionuclides with half-lives t1/2 ≤100 Myr3-6, if trapped in interstellar dust grains that penetrate the Solar System (SS). One such radionuclide is 60Fe (t1/2=2.6 Myr)7,8 which is ejected in supernova explosions and winds from massive stars1,2,9. Here we report that the 60Fe signal observed previously in deep-sea crusts10,11, is global, extended in time and of interstellar origin from multiple events. Deep-sea archives from all major oceans were analyzed for 60Fe deposition via accretion of interstellar dust particles. Our results, based on 60Fe atom-counting at state-of-the-art sensitivity8, reveal 60Fe interstellar influxes onto Earth 1.7–3.2 Myr and 6.5–8.7 Myr ago. The measured signal implies that a few percent of fresh 60Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ~10 Myr at nearby distances ≤100 pc. PMID:27078565

  11. Formation of unsaturated hydrocarbons by cosmic ray analogs in interstellar ices

    Science.gov (United States)

    Pilling, S.; Andrade, D. P. P.; da Silveira, E. F.; Rothard, H.; Domaracka, A.; Boduch, P.

    2011-05-01

    The presence of large unsaturated carbon chain species, such as polyacetylenes, cyanopolyes and PAHs, in interstellar regions has been detected in the last 30 years. During the years, several mechanism have been proposed to explain the presence of these compounds in space including, gas-phase ion-molecule reactions and neutral-neutral reactions. Although no direct detection of large saturated carbon chains in interstellar medium such as cyclohexane (c-C_6H12) has been achieved, the presence of this compound as well as others large saturated hydrocarbons, have been suggested in these regions. These compounds form easily in grain surface by direct hydrogenation. We present an experimental study concerning the formation of C=C and C≡C bonds from the processing of pure c-C_6H12 and mixed H_2O:NH_3:c-C_6H12 ices by heavy, highly-charged, and energetic ions (219 MeV 16O7+ ; 46 MeV 58Ni13+). The experiments simulate the physical chemistry induced by heavy-ion cosmic rays at interstellar ices. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different ion fluences. The results suggest an alternative scenario for the production of unsaturated carbon chain species (and dehydrogenation) in interstellar ices induced by cosmic rays bombardment.

  12. NEW ULTRAVIOLET EXTINCTION CURVES FOR INTERSTELLAR DUST IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gordon, Karl D.; Bohlin, R. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Massa, Derck L.; Wolff, Michael J. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Fitzpatrick, Edward L., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: bohlin@stsci.edu, E-mail: kgordon@stsci.edu, E-mail: bianchi@jhu.edu, E-mail: mjwolff@spacescience.org, E-mail: edward.fitzpatrick@villanova.edu [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States)

    2015-12-10

    New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with the Hubble Space Telescope/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher signal-to-noise ratio than previous studies. Direct measurements of N(H i) were made using the Lyα absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5–14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from solar to 1.5 solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program, finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-solar.

  13. Astrochem: Abundances of chemical species in the interstellar medium

    Science.gov (United States)

    Maret, Sébastien; Bergin, Edwin A.

    2015-07-01

    Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

  14. CHEMICAL SIMULATIONS OF PREBIOTIC MOLECULES: INTERSTELLAR ETHANIMINE ISOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Donghui; Durr, Allison [Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475 (United States); Herbst, Eric [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Corby, Joanna F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Hassel, George [Physics and Astronomy Department, Siena College, Loudonville, NY 12211 (United States)

    2016-06-20

    The E- and Z- isomers of ethanimine (CH{sub 3}CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s{sup −1} in the foreground of continuum emission generated by H ii regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

  15. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  16. Kelvin-Helmholtz interface instability in the interstellar environment. II. Interstellar cloud rotation

    International Nuclear Information System (INIS)

    Fleck, R.C. Jr.

    1989-01-01

    It is suggested that interstellar clouds may derive their rotation from the vortex flow associated with the nonlinear Kelvin-Helmholtz 'rollup' accompanying shear flows in the interstellar medium. The predicted maximum angular velocity, expressed as a ratio with respect to the galactic background, is 100 R(pc) exp -1/2 for a cloud radius R(pc), and the corresponding specific angular momentum is 3 x 10 to the 23rd R(pc) exp 3/2 sq cm/sec. These predictions nicely match the upper envelope of values reported for rotating clouds. It is concluded that, for those clouds that are rotating, the Kelvin-Helmholtz instability is a viable candidate for providing angular momentum to interstellar material. 28 references

  17. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  18. Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices

    Science.gov (United States)

    Abplanalp, Matthew J.; Förstel, Marko; Kaiser, Ralf I.

    2016-01-01

    Complex organic molecules (COM) such as aldehydes, ketones, carboxylic acids, esters, and amides are ubiquitous in the interstellar medium, but traditional gas phase astrochemical models cannot explain their formation routes. By systematically exploiting on line and in situ vacuum ultraviolet photoionization coupled with reflectron time of flight mass spectrometry (PI-ReTOF-MS) and combining these data with infrared spectroscopy (FTIR), we reveal that complex organic molecules can be synthesized within interstellar ices that are condensed on interstellar grains via non-equilibrium reactions involving suprathermal hydrogen atoms at temperatures as low as 5 K. By probing for the first time specific structural isomers without their degradation (fragment-free), the incorporation of tunable vacuum ultraviolet photoionization allows for a much greater understanding of reaction mechanisms that exist in interstellar ices compared to traditional methods, thus eliminating the significant gap between observational and laboratory data that existed for the last decades. With the commission of the Atacama Large Millimeter/Submillimeter Array (ALMA), the number of detections of more complex organic molecules in space will continue to grow ⿿ including biorelevant molecules connected to the Origins of Life theme ⿿ and an understanding of these data will rely on future advances in sophisticated physical chemistry laboratory experiments.

  19. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  20. The Heliosphere---Blowing in the Interstellar Wind

    OpenAIRE

    Frisch, P. C.

    2012-01-01

    Measurements of the velocity of interstellar HeI inside of the heliosphere have been conducted over the past forty years. These historical data suggest that the ecliptic longitude of the direction of the interstellar flow has increased at an average rate of about 0.19 degrees per year over time. Possible astronomical explanations for these short-term variations in the interstellar gas entering the heliosphere are presented.

  1. Interstellar propulsion using a pellet stream for momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan.

  2. Synthesis of molecules in interstellar clouds and star formation

    International Nuclear Information System (INIS)

    Ghosh, K.K.; Ghosh, S.N.

    1981-01-01

    Study of the formation and destruction processes of interstellar molecules may throw certain light on interstellar medium. Formation and destruction processes of some interstellar molecules are proposed on the basis of laboratory data. The abundances of these molecules are calculated under steady-state condition. The calculated values are then compared with the observed values, obtained by different investigators. It appears that gas phase ion-neutral reactions are capable of synthesizing most interstellar molecules. The role of ion-neutral reactions to star formation has also been discussed. (author)

  3. An introduction to the physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2007-01-01

    Streamlining the extensive information from the original, highly acclaimed monograph, this new An Introduction to the Physics of Interstellar Dust provides a concise reference and overview of interstellar dust and the interstellar medium. Drawn from a graduate course taught by the author, a highly regarded figure in the field, this all-in-one book emphasizes astronomical formulae and astronomical problems to give a solid foundation for the further study of interstellar medium. Covering all phenomena associated with cosmic dust, this inclusive text eliminates the need to consult special physica

  4. LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY IBEX

    International Nuclear Information System (INIS)

    McComas, D. J.; Fuselier, S. A.; Schwadron, N. A.

    2015-01-01

    The Interstellar Boundary Explorer (IBEX) has been directly observing neutral atoms from the local interstellar medium for the last six years (2009–2014). This paper ties together the 14 studies in this Astrophysical Journal Supplement Series Special Issue, which collectively describe the IBEX interstellar neutral results from this epoch and provide a number of other relevant theoretical and observational results. Interstellar neutrals interact with each other and with the ionized portion of the interstellar population in the “pristine” interstellar medium ahead of the heliosphere. Then, in the heliosphere's close vicinity, the interstellar medium begins to interact with escaping heliospheric neutrals. In this study, we compare the results from two major analysis approaches led by IBEX groups in New Hampshire and Warsaw. We also directly address the question of the distance upstream to the pristine interstellar medium and adjust both sets of results to a common distance of ∼1000 AU. The two analysis approaches are quite different, but yield fully consistent measurements of the interstellar He flow properties, further validating our findings. While detailed error bars are given for both approaches, we recommend that for most purposes, the community use “working values” of ∼25.4 km s −1 , ∼75.°7 ecliptic inflow longitude, ∼ −5.°1 ecliptic inflow latitude, and ∼7500 K temperature at ∼1000 AU upstream. Finally, we briefly address future opportunities for even better interstellar neutral observations to be provided by the Interstellar Mapping and Acceleration Probe mission, which was recommended as the next major Heliophysics mission by the NRC's 2013 Decadal Survey

  5. Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites

    Science.gov (United States)

    Fedkin, Alexei V.; Grossman, Lawrence; Humayun, Munir; Simon, Steven B.; Campbell, Andrew J.

    2015-09-01

    The impact hypothesis for the origin of CB chondrites was tested by performing equilibrium condensation calculations in systems composed of vaporized mixtures of projectile and target materials. When one of the impacting bodies is composed of the metal from CR chondrites and the other is an H chondrite, good agreement can be found between calculated and observed compositions of unzoned metal grains in CB chondrites but the path of composition variation of the silicate condensate computed for the same conditions that reproduce the metal grain compositions does not pass through the measured compositions of barred olivine (BO) or cryptocrystalline (CC) chondrules in the CBs. The discrepancy between measured chondrule compositions and those of calculated silicates is not reduced when diogenite, eucrite or howardite compositions are substituted for H chondrite as the silicate-rich impacting body. If, however, a CR chondrite body is differentiated into core, a relatively CaO-, Al2O3-poor mantle and a CaO-, Al2O3-rich crust, and later accretes significant amounts of water, a collision between it and an identical body can produce the necessary chemical conditions for condensation of CB chondrules. If the resulting impact plume is spatially heterogeneous in its proportions of crust and mantle components, the composition paths calculated for silicate condensates at the same Ptot, Ni/H and Si/H ratios and water abundance that produce good matches to the unzoned metal grain compositions pass through the fields of BO and CC chondrules, especially if high-temperature condensates are fractionated in the case of the CCs. While equilibrium evaporation of an alloy containing solar proportions of siderophiles into a dense impact plume is an equally plausible hypothesis for explaining the compositions of the unzoned metal grains, equilibrium evaporation can explain CB chondrule compositions only if an implausibly large number of starting compositions is postulated. Kinetic models

  6. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  7. A SEED OF SOLAR FORSTERITE AND POSSIBLE NEW EVOLUTIONAL SCENARIO OF COSMIC SILICATES

    International Nuclear Information System (INIS)

    Kimura, Yuki; Nuth, Joseph A.

    2009-01-01

    Laboratory experiments suggest that magnesium silicide (Mg 2 Si) grains could be produced in the hydrogen dominant gas outflow from evolved stars in addition to amorphous oxide minerals. If the magnesium silicide grains were incorporated into the primitive solar nebula, the magnesium silicide would easily become forsterite (Mg 2 SiO 4 ) by oxidation as it reacted with the relatively oxygen-rich, solar composition gas. This hypothesis can explain the existence of abundant forsterite grains with solar oxygen composition in meteorites, i.e., magnesium silicide could be the precursor of much of the forsterite found in our solar system. In addition, if a significant fraction of the solar forsterite is derived from magnesium silicide, it could explain the apparent low abundance of presolar forsterite. Furthermore, the lower degree of crystallinity observed in silicates formed in outflows of lower mass-loss-rate stars might be caused by the formation of magnesium silicide in this relatively hydrogen-rich environment.

  8. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  9. Long Term Perspective On Interstellar Flight

    Science.gov (United States)

    Millis, M. G.

    2017-12-01

    The process and interim findings of a broad interstellar flight assessment is presented. In contrast to precursor mission studies, this assessment takes a longer view and also considers factors that have been underrepresented in prior studies. The goal is to chart a conceptual roadmap for interstellar flight development that takes all the factors into account and ultimately identifies which research options, today, might have the greatest overall impact on future progress. Three envisioned flight eras are examined, the "era of precursors," the "era of infrastructure," and the "unforeseeable future." Several influential factors have typically been missing from prior studies that will now be assessed; a) the impact of different, often implicit, motivations, b) the interdependency of infrastructure with vehicle design, c) the pace of different developments, and d) the enormous energy required for any interstellar mission. Regarding motivations for example, if the driving motivation is to launch soon, then the emphasis is on existing technologies. In contrast, if the motivation is the survival of humanity, then the emphasis would be on 'world ships.' Infrastructure considerations are included in a broader system-level context. Future infrastructure will support multiple in-space activities, not just one mission-vehicle development. Though it may be too difficult to successfully assess, the study will attempt to compare the rates of different developments, such as the pace of Earth-based astronomy, miniaturization, artificial intelligence, infrastructure development, transhumanism, and others. For example, what new information could be acquired after 30 years of further advances in astronomy compared to a space probe with current technology and a 30 year flight time? The final factor of the study is to assess the pace and risks of the enormous energy levels required for interstellar flight. To compare disparate methods, a set of 'meta measures' will be defined and

  10. Interstellar extinction in the Taurus dark clouds

    International Nuclear Information System (INIS)

    Meistas, E.; Straizys, V.

    1981-01-01

    The results of photoelectric photometry of 89 stars in the Vilnius seven-color system in the area of the Taurus dark clouds with corrdinates (1950) 4sup(h)16sup(m)-4sup(h)33sup(m), +16 0 -+20 0 are presented. Photometric spectral types, absolute magnitude, color excesses, interstellar extinctions and distances of the stars are determined. The distance of the dark nebula is found to be 140 pc and is in a good agreement with the distance determined for the dark nebula Khavtassi 286, 278. The average extinction Asub(v) in the investigated area is of the order of 1.4. (author)

  11. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  12. THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Wakelam, V.; Loison, J. -C.; Herbst, E.; Pavone, B.; Bergeat, A.; Béroff, K.; Chabot, M.; Faure, A.; Galli, D.; Geppert, W. D.; Gerlich, D.; Gratier, P.; Harada, N.; Hickson, K. M.; Honvault, P.; Klippenstein, S. J.; Picard, S. D. Le; Nyman, G.; Ruaud, M.; Schlemmer, S.; Sims, I. R.; Talbi, D.; Tennyson, J.; Wester, R.

    2015-03-25

    Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.

  13. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  14. Interstellar extinction in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nandy, K.; Morgan, D.H.; Willis, A.J.; Wilson, R.; Gondhalekar, P.M.; Houziaux, L.

    1980-01-01

    Recent UV observations together with complementary visible data of several reddened and comparison stars of similar spectral types in the Large Magellanic Cloud have been used to study the interstellar extinction in that galaxy. Most of the reddened stars studied here are located within 2 0 of 30 Doradus and show remarkably high extinction in the far UV, suggesting a large abundance of small particles. From the optical wavelength to 2,600 A the normalised extinction curves of the LMC stars are similar to the mean galactic extinction law. (author)

  15. The use of Bacillus genus to dressing of silicate raw materials

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2000-09-01

    Full Text Available Bacteria of Bacillus genus from Banská Hodruša ore deposit and from Horná Prievrana kaolin deposit caused a more intensive destruction of silicate minerals by their activity, especially by the metabolites production. Their activity resulted to the development of corrosive and enantiomorphic holes on silicate minerals surface when sulphidic minerals were released and the metals were extracted into solution.The monitoring of Bacillus spp. occurrence in various deposits with silicate minerals composition suggested that these bacteria can be found in several deposits and waste dumps with silicate minerals at Slovakia. The widest species representation was detected in samples from the Horná Prievrana kaolin deposit.The experiments with primary silicates showed either a more intensive destruction of silicate minerals accompanied by sulphides releasing from these minerals or a more intensive metals extraction from sulphidic minerals after ore dressing. The important percentage of precious metals extraction (30% of gold and 30% of argentine from silicate minerals can suggest a possibility of the regulation of cyanides use in precious metals winning. A process for biological removal of elements from the samples was the result of the cultivation of organic acids - producing strains of the genus Bacillus. Hovewer, these bacteria synthesized also polysaccharides during bioleaching. Extensive acidic mucopolysaccharide films, which entrapped mineral particles, were identified by the ruthenium red staining. Ore bioleaching can not compete with physical and chemical methods in the rapidity of metal extraction from rich ores without ecological criterion. However, biotechnology becomes an alternative way in metals extraction from poor ores or wastes from the economical as well as the ecological view.The laboratory experiments with secondary silicates confirmed various forms of iron binding in kaolins and an important influence of the iron binding form on the

  16. Dynamic model of the genesis of calcretes replacing silicate rocks in semi-arid regions

    Science.gov (United States)

    Wang, Yifeng; Nahon, Daniel; Merino, Enrique

    1994-12-01

    In both pedogenic and groundwater calcretes, calcium carbonate precipitates in voids, or displacing other grains, or replacing underlying parent silicates. Replacement textures are widespread in pedogenic calcrete. Many calcretes also contain magnesium layer silicates and minor chert. We present a reaction-transport model that accounts for the genesis of replacement in calcretes and for their mineralogy. Replacement is difficult to account for geochemically because it requires simultaneous removal of large amounts of silicates and import of also large amounts of CaCO 3. In the model the genesis of replacement is directly related to seasonally alternating dry-wet climates and to appropriate groundwater (or circulating soil water) compositions. In a dry season, water evaporation causes CaCO 3 and sepiolite (or attapulgite) to precipitate. If groundwater contains enough Mg 2+, sepiolite precipitation by the chemical-divide mechanism depletes SiO 2(aq), resulting in the dissolution of parent silicates. In the following wet season, sepiolite dissolves fast, and silica and cations are flushed away by rainwater, making room for CaCO 3 precipitation in the next dry season. As climate cycles repeat, CaCO 3 is accumulated and silicates are removed. The sepiolite (or attapulgite, or Mg-smectite) serves as a temporary storage of silica between seasons. If the groundwater contains too little aqueous Mg then the model predicts growth of calcium carbonate without removing silicates, thus producing void filling and or displacive textures instead of replacement. The model consists of a set of nonlinear partial differential equations taking account of mass conservation, dispersion, advection, rainwater infiltration, evaporation, and the kinetics of mineral reactions. The hydrodynamics of unsaturated media is applied in determining water flow in calcrete profiles. Wet/dry seasonal changes are incorporated by alternating the upper boundary conditions. The model successfully produces

  17. GAS PHASE SYNTHESIS OF (ISO)QUINOLINE AND ITS ROLE IN THE FORMATION OF NUCLEOBASES IN THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Dorian S. N.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mebel, Alexander M. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Tielens, Alexander G. G. M. [Leiden Observatory, University of Leiden, Leiden (Netherlands)

    2015-04-20

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellar shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.

  18. PROPERTIES OF DIFFUSE INTERSTELLAR BANDS AT DIFFERENT PHYSICAL CONDITIONS OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Kos, J.; Zwitter, T.

    2013-01-01

    Diffuse interstellar bands (DIBs) can trace different conditions of the interstellar medium (ISM) along the sightline toward the observed stars. A small survey was made in optical wavelengths, producing high-resolution and high signal-to-noise spectra. We present measurements of 19 DIBs' properties in 50 sightlines toward hot stars, distributed at a variety of galactic coordinates and interstellar reddening. Equivalent widths were obtained by fitting asymmetric Gaussian and variable continua to DIBs. Conditions of the ISM were calculated from eight atomic and molecular interstellar lines. Two distinctly different types of DIBs were identified by carefully comparing correlation coefficients between DIBs and reddening and by different behavior in UV-shielded (ζ) and nonshielded (σ) sightlines. A ratio of DIBs at 5780 Å and 5797 Å proved to be reliable enough to distinguish between two different sightline types. Based on the linear relations between DIB equivalent width and reddening for σ and ζ sightlines, we divide DIBs into type I (where both linear relations are similar) and type II (where they are significantly different). The linear relation for ζ type sightlines always shows a higher slope and larger x-intercept parameter than the relation for σ sightlines. Scatter around the linear relation is reduced after the separation, but it does not vanish completely. This means that UV shielding is the dominant factor of the DIB equivalent width versus reddening relation shape for ζ sightlines, but in σ sightlines other physical parameters play a major role. No similar dependency on gas density, electron density, or turbulence was observed. A catalog of all observed interstellar lines is made public

  19. LOCAL INTERSTELLAR MAGNETIC FIELD DETERMINED FROM THE INTERSTELLAR BOUNDARY EXPLORER RIBBON

    International Nuclear Information System (INIS)

    Zirnstein, E. J.; Livadiotis, G.; McComas, D. J.; Heerikhuisen, J.; Pogorelov, N. V.; Funsten, H. O.

    2016-01-01

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquely coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample

  20. Three-Component Dust Models for Interstellar Extinction C ...

    Indian Academy of Sciences (India)

    Abstract. Interstellar extinction curves obtained from the 'extinction without standard' method were used to constrain the dust characteristics in the mean ISM (RV = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (RV = 2.1) and in a dense interstellar environment towards the ...

  1. Distribution of Interstellar Reddening Material in the Galactic Plane

    Directory of Open Access Journals (Sweden)

    Chulhee Kim

    1987-12-01

    Full Text Available By using the recently determined color excess and distance data of classical cepheids by Kim(1985, the distribution of interstellar reddening material was studied to see the general picture of the average rate of interstellar absorption out to about 7-8kpc in the Galactic plane in various directions from the sun.

  2. Catalog of open clusters and associated interstellar matter

    International Nuclear Information System (INIS)

    Leisawitz, D.

    1988-06-01

    The Catalog of Open Clusters and Associated Interstellar Matter summarizes observations of 128 open clusters and their associated ionized, atomic, and molecular iinterstellar matter. Cluster sizes, distances, radial velocities, ages, and masses, and the radial velocities and masses of associated interstellar medium components, are given. The database contains information from approximately 400 references published in the scientific literature before 1988

  3. The ribose and glycine Maillard reaction in the interstellar medium ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 120; Issue 3. The ribose and glycine Maillard reaction in the interstellar medium (ISM): A theoretical study. Abraham F Jalbout Md Abul Haider ... Keywords. Density functional computational study; ribose; glycine; Maillard reaction; gaseous phase interstellar medium.

  4. One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO2-C2H6 films at 11 K. A FTIR study

    International Nuclear Information System (INIS)

    Schriver, A.; Schriver-Mazzuoli, L.; Ehrenfreund, P.; D'Hendecourt, L.

    2007-01-01

    It has been predicted by theoretical models that ethane and ethanol are present in icy mantles covering dust particles in dense interstellar clouds. Laboratory spectra of ethanol embedded in astrophysically relevant ice matrices were compared to the Infrared Space Observatory and ground-based astronomical spectra of high mass protostars. From this comparison strict upper-limits of ethanol (compared to solid water) on interstellar grains could be derived that are below 1.2%. In dense star forming regions ethanol is observed in gas phase with an abundance which is many orders of magnitude in excess of predictions based on pure gas-phase chemistry. Ethane has not been observed in the interstellar gas or on grains. In contrast, ethane has been detected in several comets with a percentage of 2 + C 2 H 6 , of CH 3 CH 2 OH and CH 3 CHO in addition to photoproducts of CO 2 or C 2 H 6 and their implications for interstellar/cometary chemistry

  5. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    Science.gov (United States)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  6. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.

    Science.gov (United States)

    Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R

    2014-01-01

    In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously thought to form exclusively via UV photons.

  7. LOCAL INTERSTELLAR NEUTRAL HYDROGEN SAMPLED IN SITU BY IBEX

    International Nuclear Information System (INIS)

    Saul, Lukas; Wurz, Peter; Rodriguez, Diego; Scheer, Jürgen; Möbius, Eberhard; Schwadron, Nathan; Kucharek, Harald; Leonard, Trevor; Bzowski, Maciej; Fuselier, Stephen; Crew, Geoff; McComas, Dave

    2012-01-01

    Hydrogen gas is the dominant component of the local interstellar medium. However, owing to ionization and interaction with the heliosphere, direct sampling of neutral hydrogen in the inner heliosphere is more difficult than sampling the local interstellar neutral helium, which penetrates deep into the heliosphere. In this paper, we report on the first detailed analysis of the direct sampling of neutral hydrogen from the local interstellar medium. We confirm that the arrival direction of hydrogen is offset from that of the local helium component. We further report the discovery of a variation of the penetrating hydrogen over the first two years of Interstellar Boundary Explorer observations. Observations are consistent with hydrogen experiencing an effective ratio of outward solar radiation pressure to inward gravitational force greater than unity (μ > 1); the temporal change observed in the local interstellar hydrogen flux can be explained with solar variability.

  8. Photoluminescent layered Y/Er silicates

    International Nuclear Information System (INIS)

    Kostova, Mariya H.; Ananias, Duarte; Carlos, Luis D.; Rocha, Joao

    2008-01-01

    The synthesis of new layered rare-earth silicates K 3 [Y 1-a Er a Si 3 O 8 (OH) 2 ] (AV-22 materials) has been reported. The photoluminescence properties of Y/Er-AV-22 and the material resulting from its thermal degradation, K 3 [Y 1-a Er a Si 3 O 9 ] (Y/Er-AV-23), have been studied and compared. Both materials have a similar chemical makeup and structures sharing analogous building blocks, hence providing a unique opportunity for rationalising the evolution of the photoluminescence properties of lanthanide silicates across dimensionality

  9. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  10. Laboratory Studies of the Formation of Interstellar Dust from Molecular Precursors

    Science.gov (United States)

    Contreras, Cesar S.; Salama, Farid

    2009-06-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the carbonaceous dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains and all are expected to exhibit FIR spectral signatures. Space observations from the UV (HST) to the IR (ISO, Spitzer) help place size constraints on the molecular component of carbonaceous IS dust and its contribution to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic

  11. Radiogenic Xenon-129 in Silicate Inclusions in the Campo Del Cielo Iron Meteorite

    Science.gov (United States)

    Meshik, A.; Kurat, G.; Pravdivtseva, O.; Hohenberg, C. M.

    2004-01-01

    Iron meteorites present a challenge for the I-Xe dating technique because it is usually the inclusions, not metal, that contain radiogenic xenon and iodine. Silicate inclusions are frequent in only types IAB and IIE, and earlier studies of irons have demonstrated that I-Xe system can survive intact in these inclusions preserving valuable age information. Our previous studies of the I-Xe record in pyroxene grains from Toluca iron suggested an intriguing relationship between apparent I-Xe ages and (Mg+Fe)/Fe ratios. The I-Xe system in K-feldspar inclusions from Colomera (IIE) had the fingerprint of slow cooling, with an indicated cooling rate of 2-4 C/Ma. Here we present studies of the iodine-xenon system in a silicate-graphite-metal (SiGrMet) inclusion of the IA Campo del Cielo iron meteorite from the collection of the Museum of Natural History in Vienna.

  12. A Search for Interstellar Monohydric Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Chakrabarti, Sandip K. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Rd., Kolkata, 700084 (India); Sivaraman, Bhalamurugan [Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, 380009 (India); Etim, Emmanuel E., E-mail: ankan.das@gmail.com [Indian Institute of Science Bangalore, 560012 (India)

    2017-02-10

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  13. Galactic civilizations - Population dynamics and interstellar diffusion

    Science.gov (United States)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  14. UV observations of local interstellar medium.

    Science.gov (United States)

    Kurt, V.; Mironova, E.; Fadeev, E.

    2008-12-01

    The methods of the interstellar matter study are described. The brief information of space missions aimed at observations in the unreachable for ground based telescopes UV spectral range (IUE, As- tron, HST and GALEX.) is presented. The history of discovery of H and He atoms entering the Solar System from the local interstellar medium (LISM) is given in brief. The results of observations performed by the group from Stern- berg Astronomical Institute (SAI MSU) and Space Research Institute (IKI RAS) performed with the help of the missions Prognoz-5, Prognoz-6 and the stations Zond-1, Venera and Mars and aimed at estimation of all basic LISM parameters (the velocity of the Sun in relation to LISM, directions of movement, densities of H and He atoms, LISM temperature) are presented. We also describe the present-day investigations of LISM performed with SOHO and ULYSSES mis- sions including the direct registration of He atoms entering the Solar System. The problem of interaction between the incoming flow of the ISM atoms ("in- terstellar wind") and the area of two shocks at the heliopause border (100-200 AU) is discussed. The LISM parameters obtained using the available data are presented in two tables.

  15. Nitrogen Chemistry in the Interstellar Medium

    Science.gov (United States)

    McGonagle, D.

    1995-01-01

    We have carried out radio observations for the interstellar molecules NO, NS, and HCCN in order to investigate the role of nitrogen in the chemistry of the interstellar medium (ISM). Abundances of these species and implications for chemistry models are discussed. In addition, we have conducted a spectral line survey towards the star forming region Orion(KL) over the frequency range 160-170 GHz, which revealed a large number of spectral features arising from such nitrogen-bearing molecules as NS, HNCO, HCCCN, CHCN, CHCHCN, and CHCHCN. The first detection of interstellar nitric oxide (NO) in the cold dark cloud L134N is reported, and we also confirm the subsequent detection towards TMC-1. The inferred NO fractional abundance relative to molecular hydrogen for L134N is f ~ 5 W 10 towards the position of peak SO emission in that cloud. The inferred fractional abundance for TMC-1 is f ~ 2 W 10 towards the position of peak NH emission. These fractional abundances are in good agreement with predictions of quiescent cloud ion-molecule chemistry. We estimate f(N)/f(NO) ~ 140, which suggests that the bulk of the gas-phase nitrogen in quiescent clouds is in the form of N , as the ion-molecule chemistry models suggest. The first detection of interstellar nitrogen sulfide (NS) in cold dark clouds is reported. Several components of the , J = 3/2 --> 1/2 and J = 5/2 --> 3/2 rotational transitions were observed towards TMC-1 and L134N. The inferred column density for TMC-1 is f ~ 8 W 10 towards the NH peak in that cloud, and in L134N is f ~ 6 W 10 towards the position of peak NH emission. We have found that NS emission is extended in both clouds. The inferred NS fractional abundances are significantly higher than those predicted by some recent gas-phase ion-molecule models. Our astronomical observations of NS have led to new laboratory spectroscopy which has resulted in more accurate NS transition frequencies, and a corresponding determination of the NS molecular constants to a

  16. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  17. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  18. Silicate reduces cadmium uptake into cells of wheat

    International Nuclear Information System (INIS)

    Greger, Maria; Kabir, Ahmad H.; Landberg, Tommy; Maity, Pooja J.; Lindberg, Sylvia

    2016-01-01

    Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level. - Highlights: • Si decreases accumulation and translocation of Cd in plants at tissue level. • This work is the first to show how Si influences Cd uptake. • Si decreases Cd uptake into cell and downregulates heavy metal transporter LCT1. • Si downregulates HMA2 transporter, which regulates Cd transport from root to shoot. • Si increases phytochelatin formation

  19. Marketing Farm Grain Crops.

    Science.gov (United States)

    Ridenour, Harlan E.

    This vocational agriculture curriculum on grain marketing contains three parts: teacher guide, student manual, and student workbook. All three are coordinated and cross-referenced. The course is designed to give students of grain marketing a thorough background in the subject and provide practical help in developing grain marketing strategies for…

  20. Stardust: Comet and interstellar dust sample return mission

    Science.gov (United States)

    Brownlee, D. E.; Tsou, P.; Anderson, J. D.; Hanner, M. S.; Newburn, R. L.; Sekanina, Z.; Clark, B. C.; Hörz, F.; Zolensky, M. E.; Kissel, J.; McDonnell, J. A. M.; Sandford, S. A.; Tuzzolino, A. J.

    2003-10-01

    Stardust, the 4th Discovery mission launched in February 1999, will collect coma samples from the recently deflected comet 81P/Wild 2 on 2 January 2004 and return them to Earth on 15 January 2006 for detailed laboratory analyses. Stardust will be the first mission to bring samples back to Earth from a known comet and also the first to bring back contemporary interstellar particles recently discovered. These samples should provide important insights into the nature and amount of dust released by comets, the roles of comets in planetary systems, clues to the importance of comets in producing dust in our zodiacal cloud as well as circumstellar dust around other stars, and the links between collected meteoritic samples with a known cometary body. Samples are collected in newly invented continuous gradient density silica aerogel. Stardust is facilitated by a magnificent trajectory designed to accomplish a complex and ambitious flyby sample return mission within the Discovery program restrictions. The remaining science payload, which provides important context for the captured samples, includes a time-of-flight spectrometer measuring the chemical and isotopic composition of dust grains; a polyvinylidene fluoride dust flux monitor determining dust flux profiles; a CCD camera for imaging Wild 2 coma and its nucleus; a shared X band transponder providing two-way Doppler shifts to estimate limits to Wild 2 mass and integrated dust fluence; and tracking of the spacecraft's attitude sensing for the detection of large particle impacts. The graphite composite spacecraft brings the collected sample back to Earth by a direct reentry in a capsule.

  1. Thermal conductivity of silicic tuffs: predictive formalism and comparison with preliminary experimental results

    International Nuclear Information System (INIS)

    Lappin, A. R.

    1980-07-01

    Performance of both near- and far-field thermomechanical calculations to assess the feasibility of waste disposal in silicic tuffs requires a formalism for predicting thermal conductivity of a broad range of tuffs. This report summarizes the available thermal conductivity data for silicate phases that occur in tuffs and describes several grain-density and conductivity trends which may be expected to result from post-emplacement alteration. A bounding curve is drawn that predicts the minimum theoretical matrix (zero-porosity) conductivity for most tuffs as a function of grain density. Comparison of experimental results with this curve shows that experimental conductivities are consistently lower at any given grain density. Use of the lowered bounding curve and an effective gas conductivity of 0.12 W/m 0 C allows conservative prediction of conductivity for a broad range of tuff types. For the samples measured here, use of the predictive curve allows estimation of conductivity to within 15% or better, with one exception. Application and possible improvement of the formalism are also discussed

  2. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking... agent in food in an amount not in excess of that reasonably required to produce its intended effect. (b... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and...

  3. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  4. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...

  5. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  6. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Eu2+. Keywords. Biomaterials; silicates; akermanite; combustion synthesis; photoluminescence. 1. Introduction. It is essential to develop biocompatible, bioactive, biore- sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress and loads, and that invoke positive cellular and ...

  7. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Tsutsumi 1999; Xu et al 2008; Huang et al 2009). In vitro and in vivo investigations of a calcium magnesium silicate ... as a preparation process to produce homogeneous, very fine crystalline, unagglomerated, multicomponent oxide ... ing the oxides from sintering (Ekambaram and Patil 1995,. 1997; Chandrappa et al 1999).

  8. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  9. Thermoset polymer-layered silicic acid nanocomposites

    Science.gov (United States)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  10. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    International Nuclear Information System (INIS)

    Guessoum, N.; Jean, P.; Gillard, W.

    2006-01-01

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM

  11. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  12. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  13. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  15. Modelling dust processing and the evolution of grain sizes in the ISM using the method of moments

    Science.gov (United States)

    Mattsson, Lars

    2016-11-01

    Interstellar dust grains do not have a single well-defined origin. Stars are demonstrably dust producers, but also efficient destroyers of cosmic dust. Dust destruction in the ISM is believed to be the result of SN shocks hitting the ambient ISM gas (and dust) and lead to an increased rate of ion sputtering, which reduces the dust mass. Grains located in cold molecular clouds can on the other hand grow by condensation, thus providing a replenishment mechanism or even a dominant channel of dust formation. In dense environments grains may coagulate and form large composite grains and aggregates and if grains collide with large enough energies they may be shattered, forming a range of smaller debris grains. The present paper presents a statistical modelling approach using the method of moments, which is computationally very inexpensive and may therefore be an attractive option when combining dust processing with, e.g., detailed simulations of interstellar gas dynamics. A solar-neighbourhood-like toy model of interstellar dust evolution is presented as an example.

  16. Interstellar Mapping and Acceleration Probe (IMAP)

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Moebius, E.; Spence, H. E.; Opher, M.; Kasper, J.; Zurbuchen, T. H.; Mewaldt, R.

    2016-01-01

    Our piece of cosmic real estate, the heliosphere, is the domain of all human existence – an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (∼5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion

  17. COMPARISONS OF THE INTERSTELLAR MAGNETIC FIELD DIRECTIONS OBTAINED FROM THE IBEX RIBBON AND INTERSTELLAR POLARIZATIONS

    International Nuclear Information System (INIS)

    Frisch, Priscilla C.; Andersson, B-G; Berdyugin, Andrei; Piirola, Vilppu; Funsten, Herbert O.; Magalhaes, Antonio M.; McComas, David J.; Schwadron, Nathan A.; Slavin, Jonathan D.; Wiktorowicz, Sloane J.

    2010-01-01

    Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a 'Ribbon' of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within ∼40 pc. Using interstellar polarization observations toward ∼30 nearby stars within ∼90 0 of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of λ, β ∼ 263 0 , 37 0 (or galactic coordinates of l, b ∼ 38 0 , 23 0 ), with uncertainties of ±35 0 based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 0 from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.

  18. On the Efficiency of Grain Alignment in Dark Clouds

    Science.gov (United States)

    Lazarian, A.; Goodman, Alyssa A.; Myers, Philip C.

    1997-11-01

    A quantitative analysis of grain alignment in the filamentary dark cloud L1755 in Ophiuchus is presented. We show that the observed decrease of the polarization-to-extinction ratio for the inner parts of this quiescent dark cloud can be explained as a result of the decrease of the efficiency of grain alignment. We make quantitative estimates of grain alignment efficiency for six mechanisms involving grains with either thermal or suprathermal rotation, interacting with either magnetic field or gaseous flow. We also make semiquantitative estimates of grain alignment by radiative torques. We show that in conditions typical of dark cloud interiors, all known major mechanisms of grain alignment fail. All the studied mechanisms predict polarization at least an order of magnitude below the currently detectable levels of ~1%. On the contrary, in the dark cloud environments where Av sight, including the interiors of dark quiescent clouds, where no alignment is possible. We dedicate this paper to the memory of Edward M. Purcell and Lyman Spitzer, Jr., two pioneers in the quantitative study of the interstellar medium.

  19. Interstellar medium. Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm.

    Science.gov (United States)

    Kos, Janez; Zwitter, Tomaž; Wyse, Rosemary; Bienaymé, Olivier; Binney, James; Bland-Hawthorn, Joss; Freeman, Kenneth; Gibson, Brad K; Gilmore, Gerry; Grebel, Eva K; Helmi, Amina; Kordopatis, Georges; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren A; Seabroke, George; Sharma, Sanjib; Siebert, Arnaud; Siviero, Alessandro; Steinmetz, Matthias; Watson, Fred G; Williams, Mary E K

    2014-08-15

    The diffuse interstellar bands (DIBs) are absorption lines observed in visual and near-infrared spectra of stars. Understanding their origin in the interstellar medium is one of the oldest problems in astronomical spectroscopy, as DIBs have been known since 1922. In a completely new approach to understanding DIBs, we combined information from nearly 500,000 stellar spectra obtained by the massive spectroscopic survey RAVE (Radial Velocity Experiment) to produce the first pseudo-three-dimensional map of the strength of the DIB at 8620 angstroms covering the nearest 3 kiloparsecs from the Sun, and show that it follows our independently constructed spatial distribution of extinction by interstellar dust along the Galactic plane. Despite having a similar distribution in the Galactic plane, the DIB 8620 carrier has a significantly larger vertical scale height than the dust. Even if one DIB may not represent the general DIB population, our observations outline the future direction of DIB research. Copyright © 2014, American Association for the Advancement of Science.

  20. INTERSTELLAR ENVIRONMENTS AND DUST PROPERTIES TOWARD CYGNUS OB2 NO. 12: A REASSESSMENT

    International Nuclear Information System (INIS)

    Whittet, D. C. B.

    2015-01-01

    The B-type hypergiant Cygnus OB2 no. 12 is a popular target for studies of interstellar phenomena at visible-infrared wavelengths because of its exceptional brightness for a star dimmed by some 10 mag of visual extinction. A lack of detectable ice absorption has led investigators to regard the line of sight as a standard for studies of the “diffuse” interstellar medium (ISM), an assumption challenged both by observations of molecular gas toward the star and by uncertainties concerning the degree to which such a luminous object may affect its local environment. This paper presents a reassessment of the nature of the material responsible for extinction toward Cyg OB2 no. 12. The excess relative to other cluster members appears to occur in translucent clumps within an extensive network of clouds in the region. Attenuation of the ambient radiation field is sufficient in the cores of the clumps to support the presence of gas-phase molecules, but not to sustain detectable ice formation. In general, the optical properties of dust in the clumps are closely similar to those observed in typical diffuse interstellar material, with the notable exception of an unusually low value for the wavelength of maximum polarization. The implied enhancement of polarization by small grains is attributed to increased alignment efficiency in an enhanced magnetic field. This caveat apart, the results of the current paper provide reassurance that Cyg OB2 no. 12 is, indeed, an appropriate choice for studies that target diffuse and translucent phases of the ISM

  1. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    Science.gov (United States)

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  2. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  3. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  4. Thermal instability in the interstellar medium

    Directory of Open Access Journals (Sweden)

    J. Ghanbari

    2000-06-01

    Full Text Available   This study demonstrates how thermal structures in the interstellar medium can emerge as a result of thermal instability. For a two-dimensional case, the steady state thermal structures was investigeted and it was shown that a large class of solutions exist. For a one –dimensional case the conductivity was found to be negligible. The effects of to cal cooling on the thermal instability were explored in some depth. In this case analytical results for time-dependent cooling function were presented, too. We studied nonlinear wave phenomena in thermal fluid systems, with a particular emphasis on presenting analytical results. When conductivity is proportional to temperature, the beliavior of thermal waves is soliton like. For slow thermal waves, approximate analytical results were presented. Extensions of this work are discussed briefly, together with possible astrophysical applications.

  5. The mass spectrum of interstellar clouds

    International Nuclear Information System (INIS)

    Dickey, J.M.; Garwood, R.W.

    1989-01-01

    The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal. 36 refs

  6. Structure and characteristics of diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Arshutkin, L.N.; Kolesnik, I.G.

    1978-01-01

    The results of model calculations for spherically symmetrical interstellar clouds being under external pressure are given. Thermal balance of gas clouds is considered. Ultraviolet radiation fields in clouds and equilibrium for chemical elements are calculated for this purpose. Calculations were carried out in the case when cooling is under way mainly by carbon atoms and ions. The clouds with mass up to 700 Msub(sun) under external pressure from 800 to 3000 K cm -3 are considered. In typical for Galactic disk conditions, clouds have dense n > or approximately 200 cm -3 , and cold T approximately 20-30 K state clouds depending on external pressure is given. The critical mass for clouds at the Galactic disk is approximately 500-600 Msub(sun). It is less than the isothermal solution by a factor of approximately 1.5. The massive gas-dust cloud formation problem is discussed

  7. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    Science.gov (United States)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  8. Gas density gradient for three dark interstellar clouds

    International Nuclear Information System (INIS)

    Fulkerson, S.A.; Clark, F.O.

    1984-01-01

    A grid of models has been constructed of the surface brightness of selected transitions of interstellar formal-dehyde for three interstellar clouds. The grid included radial gas density gradients over a considerable range from uniform to very steep. The model results were then compared to observations of the interstellar dark clouds B361, L183, and L134. In all three cases, the comparison indicates that the gas is centrally condensed and follows a gradient in density which closely approximates an inverse square law. This result offers a hint that the dust may be more centrally condensed than the gas in B361

  9. Turbulent interstellar medium and pressure-bounded molecular clouds

    International Nuclear Information System (INIS)

    Maloney, P.

    1988-01-01

    The existence of turbulence throughout the interstellar medium suggests that an appropriate value for the average pressure may be P/K larger than about 10,000. Negative-index polytropic models of interstellar clouds in equilibrium with an external medium at these pressures are predicted to have sizes, line widths, masses, and size-line width and size-density relations in good agreement with those observed and inferred for dark clouds. Thus these observed features of interstellar clouds do not require that they be completely self-gravitating or 'virialized' in the commonly used sense. 41 references

  10. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  11. Frequency of hyperbolic and interstellar meteoroids

    Science.gov (United States)

    Hajduková, Maria; Kornoš, Leonard; Tóth, Juraj

    2014-01-01

    Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10-2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers.

  12. The evolution of immiscible silicate and fluoride melts: Implications for REE ore-genesis

    Science.gov (United States)

    Vasyukova, O.; Williams-Jones, A. E.

    2016-01-01

    The Mid-Proterozoic peralkaline Strange Lake pluton (Québec-Labrador, Canada) exhibits extreme enrichment in high field strength elements (HFSE), including the rare earth elements (REE), particularly in pegmatites. On the basis of a study of melt inclusions, we proposed recently that fluoride-silicate melt immiscibility played an important and perhaps dominant role in concentrating the REE within the pluton. Here we present further evidence for silicate-fluoride immiscibility at Strange Lake from a sample of the hypersolvus granite, which contains an inclusion composed largely of REE and HFSE minerals. The inclusion (∼5 cm in diameter) comprises a narrow rim containing chevkinite-(Ce) and zircon in a fluorite matrix, a core of fluorbritholite-(Ce) and bastnäsite-(Ce) and a transition zone between the rim and the core consisting of a fine-grained intergrowth of bastnäsite-(Ce), gagarinite-(Y) and fluorite. We propose that the inclusion formed as a result of silicate-fluoride immiscibility, which occurred early in the emplacement history of the Strange Lake pluton, and that it represents the fluoride melt. After separation of the two melts, the boundary between them acted as a locus of crystallisation, where crystals formed repeatedly due to heterogeneous (surface catalysed) nucleation. Zircon crystallised shortly after melt phase separation, and was followed by the growth of perthite together with arfvedsonite and quartz. As a result, the silicate melt surrounding the fluoride inclusion became enriched in volatiles that facilitated crystallisation of progressively larger crystals in the inclusion; large crystals of arfvedsonite and perthite were succeeded by even larger crystals of quartz. Massive crystallisation of chevkinite-(Ce) followed, forming the rim of the inclusion. The fluoride melt, which constituted the matrix to the silicate minerals and chevkinite-(Ce), crystallised after chevkinite-(Ce), forming fluorbritholite-(Ce) and fluorite. Aqueous fluid

  13. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials.

    Science.gov (United States)

    Grech, L; Mallia, B; Camilleri, J

    2013-07-01

    To investigate the composition of materials and leachate of a hydrated prototype cement composed of tricalcium silicate and radiopacifier and compare this to other tricalcium silicate-based cements (Biodentine and Bioaggregate) to assess whether the additives in the proprietary brand cements affect the hydration of the materials, using Intermediate Restorative Material (IRM), a standard root-end filling material as a control. The materials investigated included a prototype-radiopacified tricalcium silicate cement, Biodentine, Bioaggregate and Intermediate Restorative Material (IRM). The pH and calcium ion concentration of the leachate were investigated. The hydrated cements were characterized using scanning electron microscopy (SEM) and X-ray energy dispersive analysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). All the cements tested were alkaline. The tricalcium silicate-based cements leached calcium in solution. Scanning electron microscopy of the prototype-radiopacified tricalcium silicate cement, Biodentine and Bioaggregate displayed hydrating cement grains, surrounded by a matrix composed of calcium silicate hydrate and calcium hydroxide. The presence of calcium hydroxide was evident from the XRD plots. FT-IR indicated the occurrence of a poorly crystalline calcium silicate hydrate. Biodentine displayed the presence of calcium carbonate. Bioaggregate incorporated a phosphate-containing phase. IRM consisted of zinc oxide interspersed in an organic matrix. The hydration of prototype-radiopacified tricalcium silicate cement, Biodentine and Bioaggregate resulted in the formation of calcium silicate hydrate and calcium hydroxide, which was leached in solution. The hydrated materials were composed of a cementitous phase that was rich in calcium and silicon and a radiopacifying material. Biodentine included calcium carbonate, and Bioaggregate included silica and calcium phosphate in the powders. IRM was composed of zinc oxide

  14. Circumstellar grain extinction properties of recently discovered post AGB stars

    International Nuclear Information System (INIS)

    Buss, R.H. Jr.; Lamers, H.J.G.L.M.; Snow, T.P. Jr.

    1989-01-01

    The circumstellar grains of two hot evolved post asymptotic giant branch (post AGB) stars, HD 89353 and HD 213985 were examined. From ultraviolet spectra, energy balance of the flux, and Kurucz models, the extinction around 2175 A was derived. With visual spectra, an attempt was made to detect 6614 A diffuse band absorption arising from the circumstellar grains so that we could examine the relationship of these features to the infrared features. For both stars, we did not detect any diffuse band absorption at 6614 A, implying the carrier of this diffuse band is not the carrier of the unidentified infrared features not of the 2175 A bump. The linear ultraviolet extinction of the carbon-rich star HD 89353 was determined to continue across the 2175 A region with no sign of the bump; for HD 213985 it was found to be the reverse: a strong, wide bump in the mid-ultraviolet. The 213985 bump was found to be positioned at 2340 A, longward of its usual position in the interstellar medium. Since HD 213985 was determined to have excess carbon, the bump probably arises from a carbonaceous grain. Thus, in view of the ultraviolet and infrared properties of the two post AGB stars, ubiquitous interstellar infrared emission features do not seem to be associated with the 2175 A bump. Instead, the infrared features seem related to the linear ultraviolet extinction component: hydrocarbon grains of radius less than 300 A are present with the linear HD 89353 extinction; amorphous anhydrous carbonaceous grains of radius less than 50 A might cause the shifted ultraviolet extinction bump of HD 213985

  15. The influence of Oort clouds on the mass and chemical balance of the interstellar medium

    International Nuclear Information System (INIS)

    Stern, S.A.; Shull, J.M.

    1990-01-01

    The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common. 50 refs

  16. LABORATORY FORMATION OF FULLERENES FROM PAHS: TOP-DOWN INTERSTELLAR CHEMISTRY

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castellanos, Pablo; Tielens, Alexander G. G. M.; Paardekooper, Daniel M.; Linnartz, Harold

    2014-01-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C 60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C 60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C 2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C 60 . These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space

  17. Constraining the Origin of Impact Craters on Al Foils from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; hide

    2012-01-01

    Preliminary examination (PE) of the aerogel tiles and Al foils from the Stardust Interstellar Dust Collector has revealed multiple impact features. Some are most likely due to primary impacts of interstellar dust (ISD) grains, and others are associated with secondary impacts of spacecraft debris, and possibly primary impacts of interplanetary dust particles (IDPs) [1, 2]. The current focus of the PE effort is on constraining the origin of the individual impact features so that definitive results from the first direct laboratory analysis of contemporary ISD can be reported. Because crater morphology depends on impacting particle shape and composition, in addition to the angle and direction of impact, unique particle trajectories are not easily determined. However, elemental analysis of the crater residues can distinguish real cosmic dust from the spacecraft debris, due to the low cosmic abundance of many of the elements in the spacecraft materials. We present here results from the elemental analysis of 24 craters and discuss the possible origins of 4 that are identified as candidate ISD impacts

  18. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    Science.gov (United States)

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  19. One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO 2-C 2H 6 films at 11 K. A FTIR study

    Science.gov (United States)

    Schriver, A.; Schriver-Mazzuoli, L.; Ehrenfreund, P.; d'Hendecourt, L.

    2007-04-01

    It has been predicted by theoretical models that ethane and ethanol are present in icy mantles covering dust particles in dense interstellar clouds. Laboratory spectra of ethanol embedded in astrophysically relevant ice matrices were compared to the Infrared Space Observatory and ground-based astronomical spectra of high mass protostars. From this comparison strict upper-limits of ethanol (compared to solid water) on interstellar grains could be derived that are below 1.2%. In dense star forming regions ethanol is observed in gas phase with an abundance which is many orders of magnitude in excess of predictions based on pure gas-phase chemistry. Ethane has not been observed in the interstellar gas or on grains. In contrast, ethane has been detected in several comets with a percentage of water ice. Only upper limit could be obtained for cometary ethanol. In order to investigate a possible pathway leading to icy ethanol, we have studied the reaction of atomic oxygen with condensed ethane films by insertion of an oxygen atom in a CH bond. We generated oxygen atoms in situ by photolysis of ozone and carbon dioxide. Carbon dioxide is an abundant ice in the interstellar medium and comets. We recorded a set of IR spectra of ethane ice (mixed with carbon dioxide or with ethanol) at 11 K and studied the photolysis of ethane with ultraviolet photons below 200 nm. We discuss our experimental results, production from irradiation of CO 2 + C 2H 6, of CH 3CH 2OH and CH 3CHO in addition to photoproducts of CO 2 or C 2H 6 and their implications for interstellar/cometary chemistry.

  20. Tracing the ingredients for a habitable earth from interstellar space through planet formation.

    Science.gov (United States)

    Bergin, Edwin A; Blake, Geoffrey A; Ciesla, Fred; Hirschmann, Marc M; Li, Jie

    2015-07-21

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.

  1. Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L.

    Science.gov (United States)

    Lu, Huanping; Li, Zhian; Wu, Jingtao; Shen, Yong; Li, Yingwen; Zou, Bi; Tang, Yetao; Zhuang, Ping

    2017-01-01

    A pot experiment was conducted to investigate the effects of calcium silicate (CS) on the subcellular distribution and chemical forms of cadmium (Cd) in grain amaranths (Amaranthus hypochondriacus L. Cv. ‘K112’) grown in a Cd contaminated soil. Results showed that the dry weight and the photosynthetic pigments contents in grain amaranths increased significantly with the increasing doses of CS treatments, with the highest value found for the treatment of CS3 (1.65 g/kg). Compared with the control, application of CS4 (3.31 g/kg) significantly reduced Cd concentrations in the roots, stems and leaves of grain amaranths by 68%, 87% and 89%, respectively. At subcellular level, CS treatment resulted in redistribution of Cd, higher percentages of Cd in the chloroplast and soluble fractions in leaves of grain amaranths were found, while lower proportions of Cd were located at the cell wall of the leaves. The application of CS enhanced the proportions of pectate and protein integrated forms of Cd and decreased the percentages of water soluble Cd potentially associated with toxicity in grain amaranths. Changes of free Cd ions into inactive forms sequestered in subcellular compartments may indicate an important mechanism of CS for alleviating Cd toxicity and accumulation in plants.

  2. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  3. ULY JUPITER INTERSTELLAR NEUTRAL-GAS EXPERIMENT - NO DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — No data were provided by the Interstellar Neutral-Gas Experiment (GAS) instrument team in connection with this volume. For data made available to the PDS subsequent...

  4. In situ observations of interstellar plasma with Voyager 1.

    Science.gov (United States)

    Gurnett, D A; Kurth, W S; Burlaga, L F; Ness, N F

    2013-09-27

    Launched over 35 years ago, Voyagers 1 and 2 are on an epic journey outward from the Sun to reach the boundary between the solar plasma and the much cooler interstellar medium. The boundary, called the heliopause, is expected to be marked by a large increase in plasma density, from about 0.002 per cubic centimeter (cm(-3)) in the outer heliosphere, to about 0.1 cm(-3) in the interstellar medium. On 9 April 2013, the Voyager 1 plasma wave instrument began detecting locally generated electron plasma oscillations at a frequency of about 2.6 kilohertz. This oscillation frequency corresponds to an electron density of about 0.08 cm(-3), very close to the value expected in the interstellar medium. These and other observations provide strong evidence that Voyager 1 has crossed the heliopause into the nearby interstellar plasma.

  5. DEEP IN Directed Energy Propulsion for Interstellar Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — We will examine a system that will allow us to take a significant step towards interstellar exploration using directed energy propulsion combined with wafer scale...

  6. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Science.gov (United States)

    Hoang, Thiem; Loeb, Abraham

    2017-10-01

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ˜0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  7. Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1

    Science.gov (United States)

    Blake, G. A.; Keene, J.; Phillips, T. G.

    1985-01-01

    The first detection of a chlorine-bearing molecular species in the interstellar medium via emission from the J = 1-0 transition of HCl at 625.9 GHz toward OMC-1 is reported. The relative strengths, widths, and velocities of the resolved hyperfine components are consistent with moderate optical depth emission originating from dense, quiescent molecular cloud material. The overall emission strength implies a fractional abundance of f(HCl/H2) of about (0.5-5.0) x 10 to the -8th, depending on the density of the emitting region. This is approximately an order of magnitude below previous theoretical estimates and a factor of 3-30 below the cosmic abundance of Cl. Recent laboratory work suggests that the lowered fractional abundance of HCl is caused by a combination of depletion onto grains with gas-phase loss processes such as the reaction of HCl with C(+).

  8. WORLD GRAIN TRADE

    Directory of Open Access Journals (Sweden)

    Emilia Mary Bălan

    2017-04-01

    Full Text Available Grain is part of agricultural commodities and is of utmost importance for world agriculture,since it is the essential element of food and animal feed. Against this background, grain trade among countries of the world is dynamic and represents about 10% of global trade in food products.This article examines global grain trade both in terms of quantitative and qualitative developments, and highlights the most important competitor countries in this sector. It also details the patterns of grain trade for the world's main exporters and importers of such commodities.Two distinct sections of the research relate to the evolution of the primary grain quotations(wheat, corn, barley, rice and sorghum at the most representative international agricultural commodities markets (Chicago Board of Trade, based on a comprehensive statistical analysis, and the short-term forecasts for global grain trade, respectively.

  9. Effect of size distribution and grain growth on the formation of molecules in star forming regions

    Science.gov (United States)

    Acharyya, Kinsuk

    2013-06-01

    We investigate the effects of grain size distribution and grain growth on molecular abundances during the chemical evolution of a cold dense interstellar cloud using a gas-grain numerical code. Dense interstellar clouds are the birth place of stellar systems like ours. Most models with grain surface chemistry have used so-called classical grains with canonical dust to gas ratio as 1:100, characterized by a radius of 0.1 μm and number density of 1.33 × 10-12 ηH, where ηH is the number density of hydrogen in all forms. We considered two different size distributions based on earliermodels and compared our findingswith classical grains. To incorporate different granular sizes, we divided the distribution of grain sizes into numbers of logarithmically equally-spaced ranges, integrated over each range to find its total granular number density, and assigned that number density to an average size in that range. Then we calculated rate coefficients for accretion, surface reactions and desorption as a function of grain size. We then followed the chemical evolution of the surface populations of these grains along with the gas phase chemistry for 10 Million years. We found that the effective surface area of a grain size (product of number density and grain cross section) is an important parameter. The fractional abundances of surface species on grains within a given distribution scale with the effective surface areas of the grain distribution components in the absence of grain growth. We found that the grain growth increases the grain size considerably which in turn increases the rate of depletion of molecules (due to higher accretion rate), such as CO, produced in the gas phase, which results in lower gas-phase abundances and higher surface abundances. For the first time, these results helps to verify the quality of the classical grain approximation for cold cloud models. Further, it also provides an important basis for future study that may require size distributions.

  10. Silicon isotope fractionation by marine siliceous sponges

    Science.gov (United States)

    Hendry, K. R.; Maldonado, M.

    2016-02-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotope composition of spicules has been shown to relate to the silicic acid concentration of ambient water. However, existing calibrations do exhibit a degree of scatter in the relationship, and there are many open questions surrounding the mechanism behind isotopic fractionation during biosilicification. Here, we present a new study of silicon isotopes in siliceous sponges, covering a range of ancestral lineages, marine environments and geographical locations, and the impact of cleaning methods of silicon isotope compositions. We show that the cleaning method has minimal impact on silicon isotope composition of sponge spicules. Our results highlight the importance of environmental and biological factors on silicon isotope fractionation, and we discuss the implications of these results on the use of palaeoceanographic applications of sponge spicules.

  11. Cooling rate calculations for silicate glasses.

    Science.gov (United States)

    Birnie, D. P., III; Dyar, M. D.

    1986-03-01

    Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.

  12. Tailored Nanocomposites of Polypropylene with Layered Silicates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Nakajima, H; Manias, E; Krishnamoorti, R

    2009-01-01

    The melt rheological properties of layered silicate nanocomposites with maleic anhydride (MA) functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the MA functionalized PP based nanocomposites exhibit solid-like linear viscoelastic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized PP based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interactions in MA functionalized nanocomposites. Further, the transient shear stress of the MA functionalized nanocomposites in start-up of steady shear is a function of the shear strain alone, and the steady shear response is consistent with that of non-Brownian systems. The weak dependence of the steady first normal stress difference on the steady shear stress suggests that the polymer chain mediated silicate network contributes to such unique flow behavior.

  13. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...

  14. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  15. The Turbulent Interstellar Medium: Insights and Questions from Numerical Models

    OpenAIRE

    Mac Low, Mordecai-Mark; de Avillez, Miguel A.; Korpi, Maarit J.

    2003-01-01

    "The purpose of numerical models is not numbers but insight." (Hamming) In the spirit of this adage, and of Don Cox's approach to scientific speaking, we discuss the questions that the latest generation of numerical models of the interstellar medium raise, at least for us. The energy source for the interstellar turbulence is still under discussion. We review the argument for supernovae dominating in star forming regions. Magnetorotational instability has been suggested as a way of coupling di...

  16. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.

    1982-05-01

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation [fr

  17. Neutron diffraction studies of silicate glasses

    International Nuclear Information System (INIS)

    Urnes, S.; Herstad, O.

    1978-01-01

    The different ratios between the scattering amplitudes of X-rays and neutrons for various atomic constituents of glasses have been utilized to study the atomic ordering in silicate glasses. A comparison of corresponding atomic radial distribution curves obtained from neutron diffraction and electron radial distribution curves obtained with X-rays is made. The interatomic distances derived from the two methods are discussed. (Auth.)

  18. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    and these are supported by several experimental studies (Annen et al., 2006). A silicic calc-alkalic magma can form by differentiation from a more mafic parent magma and by crustal anatexis. Several evidences show the origin of some rhyolitic and andesitic magma... to be related due to similar tectonic settings. Fractional crystallisation: This process produces a series of residual liquids of variable compositions as compared to their parental magmas and is best explained by the Bowen’s reaction principle (Bowen, 1922...

  19. Dust in the small Magellanic cloud. 1: Interstellar polarization and extinction data

    Science.gov (United States)

    Magalhaes, A. M.; Rodrigues, C. V.; Coyne, C. V.; Piirola, V.

    1996-01-01

    The typical extinction curve for the Small Magellanic Cloud (SMC), in contrast to that for the Galaxy, has no bump at 2175 A and has a steeper rise into the far ultraviolet. For the Galaxy the interpretation of the extinction and, therefore, the dust content of the interstellar medium has been greatly assisted by measurements of the wavelength dependence of the polarization. For the SMC no such measurements existed. Therefore, to further elucidate the dust properties in the SMC we have for the first time measured linear polarization with five colors in the optical region of the spectrum for a sample of reddened stars. For two of these stars, for which there were no existing UV spectrophotometric measurements, but for which we measured a relatively large polarization, we have also obtained data from the International Ultraviolet Explorer (IUE) in order to study the extinction. We also attempt to correlate the SMC extinction and polarization data. The main results are: the wavelength of maximum polarization, lambda(sub max), in the SMC is typically smaller than that in the Galaxy; however, AZC 456, which shows the UV extinction bump, has a lambda(sub max) typical of that in the Galaxy, but its polarization curve is narrower and its bump is shifted to shorter wavelengths as compared to the Galaxy; and from an analysis of both the extinction and polarization data it appears that the SMC has typically smaller grains than those in the Galaxy. The absence of the extinction bump in the SMC has generally been thought to imply a lower carbon abundance in the SMC compared to the Galaxy. We interpret our results to mean that te size distribution of the interstellar grains, and not only the carbon abundance, is different in the SMC as compared to the Galaxy. In Paper 2 we present dust model fits to these observations.

  20. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  1. The boron geochemistry of siliceous sponges

    Science.gov (United States)

    de Leon, A.; Wille, M.; Eggins, S. M.; Ellwood, M. J.

    2009-12-01

    The boron content and isotopic composition (δ11B) of marine carbonate organisms can be linked to the pH of the seawater in which they have grown, making carbonates a useful tool for palaeo-seawater pH reconstruction. A study by Furst (1981) documented unusually high boron concentrations in siliceous sponge spicules, in range from hundreds to a thousand ppm. This observation and the potential for preferential incorporation of the tetrahedral borate species into biogenic silica raises the question as to whether the boron chemistry of biogenic silica might also be influenced by seawater pH. We have measured the boron concentration and isotopic composition of siliceous sponges from the Southern Ocean region, with a view to (1) confirming the observations of Furst (1981), (2) assessing the factors that control boron incorporation and isotopic compositions of sponge silica, and (3) investigating the potentially significant role of siliceous sponges in the marine boron cycle. The measured boron concentrations in a diverse range of both demosponge and hexactinellid sponges confirm the high boron concentrations previously reported. The boron isotope compositions of these sponges vary from around +2‰ to +25‰ and greatly exceed the range in marine carbonates. This isotopic variation is inconsistent with seawater pH control but is correlated with ambient seawater silicon concentration, in a manner that suggests a link to silicon uptake kinetics and demand by sponges.

  2. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  3. Gas-surface interactions and heterogeneous chemistry on interstellar grains analogues

    NARCIS (Netherlands)

    Fillion, J. H.; Dulieu, F.; Romanzin, C.; Cazaux, S.

    Detailed laboratory studies and progress in surface science technique, have allowed in recent years the first experimental confirmation of surface reaction schemes, as introduced by Tielens, Hagen and Charnley [1,2]. In this paper, we review few heterogeneous processes which give routes to form

  4. Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains

    Science.gov (United States)

    Papoular, Robert J.; Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.; Papoular, Renaud

    2013-07-01

    The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the ultraviolet extinction of nanoparticles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 Å features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 μm-1, while its peak position shifts from 4.65 to 4.75 μm-1. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 μm-1). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial sp2 bondings into sp3 or sp1, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals, etc. The present treatment thus bridges gaps between physically different model materials.

  5. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbonsformation

    Czech Academy of Sciences Publication Activity Database

    Merino, P.; Švec, Martin; Martinez, J. I.; Jelínek, Pavel; Lacovig, P.; Dalmiglio, M.; Lizzit, S.; Soukiassian, P.; Cernicharo, J.; Martin-Gago, J. A.

    2014-01-01

    Roč. 5, JAN (2014), s. 1-9 ISSN 2041-1723 Grant - others:AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : STM * DFT * astronomy * graphene * PAH Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014 http://www.nature.com/ncomms/2014/140121/ncomms4054/full/ncomms4054.html

  6. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    Science.gov (United States)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  7. INFLUENCE OF SILICEOUS AND CALCAREOUS FLY-ASHES ON PROPERTIES OF CEMENT MORTARS

    Directory of Open Access Journals (Sweden)

    Gabriela Monika Rutkowska

    2016-09-01

    Full Text Available Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. Construction and building industries have the greatest potential for reuse of waste. The article presents the results of investigations of cement mortars – tests of compressive and tensile strength after 28 and 56 days of curing – for normative mortars and mortars containing fly ashes – calcareous and siliceous ash – in their composition. To make the samples, the Portland cement CEM I 32,5 R, 42,5R and natural aggregate with graining of 0–2 mm were used. Concrete with siliceous and calcareous admixtures was made in six lots where the ash was added in the quantity of 2%, 5%, 10% of the cement mass or the 2%, 5%, 10% of cement was replaced by ashes. After the tests, it was stated that the siliceous fly-ash admixture increases the compressive and bending strength in comparison to the mortars with the calcareous ash admixtures.

  8. Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics.

    Science.gov (United States)

    Michoulier, Eric; Noble, Jennifer A; Simon, Aude; Mascetti, Joëlle; Toubin, Céline

    2018-03-28

    Polycyclic Aromatic Hydrocarbons (PAHs) are a family of molecules which represent the best candidates to explain the observation of one set of features in the Interstellar Medium (ISM): the Aromatic Interstellar Bands (AIBs). They could also contribute to the Diffuse Interstellar Bands (DIBs). In dense molecular clouds, PAHs may condense onto interstellar grains, contributing to the complex chemistry occurring in their icy mantles, composed essentially of water. In this context, the adsorption of various aromatic molecules, from benzene to ovalene, on different ices - both amorphous and crystalline - is investigated by means of classical molecular dynamics simulations. Initially, a systematic parametrization of the electronic charges on the chosen PAHs in these environments is carried out, and benchmarked with reference to free energies of solvation in liquid water. Then we propose a new, rigorous methodology, transferable to any other PAH or molecular species, to evaluate the charges to be applied to the molecule in the gas phase, at interfaces, or in liquid water. Ultimately, the adsorption energies calculated for the various PAHs are used to derive a function predicting the adsorption energy of any PAH on a given ice surface as a function of the number of C and H atoms it contains. For all PAHs studied, the largest adsorption energies are found on the crystalline hexagonal ice surface (Ih). Binding energy maps constructed for each PAH-ice pair give valuable insight into adsorption site densities and the barriers to surface diffusion. One key result is that the amorphous surface offers a smaller number of adsorption sites compared to that of hexagonal ice. A direct correlation between the location of energetically favourable adsorption sites and the presence of dangling H-bonds is also demonstrated using these maps, showing that PAHs adsorb preferentially on sites offering dangling H-bonds. The present work represents a complete description of PAH-ice interaction

  9. Distinctive microstructural features of aged sodium silicate-activated slag concretes

    Energy Technology Data Exchange (ETDEWEB)

    San Nicolas, Rackel [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Bernal, Susan A. [Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD (United Kingdom); School of Materials Engineering, Composite Materials Group, Universidad del Valle, Cali (Colombia); Mejía de Gutiérrez, Ruby [School of Materials Engineering, Composite Materials Group, Universidad del Valle, Cali (Colombia); Deventer, Jannie S.J. van [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD (United Kingdom)

    2014-11-15

    Electron microscopic characterisation of 7-year old alkali-activated blast-furnace slag concretes enabled the identification of distinct microstructural features, providing insight into the mechanisms by which these materials evolve over time. Backscattered electron images show the formation of Liesegang-type ring formations, suggesting that the reaction at advanced age is likely to follow an Oswald supersaturation–nucleation–depletion cycle. Segregation of Ca-rich veins, related to the formation of Ca(OH){sub 2}, is observed in microcracked regions due to the ongoing reaction between the pore solution and available calcium from remnant slag grains. A highly dense and uniform interfacial transition zone is identified between siliceous aggregate particles and the alkali activated slag binders, across the concretes assessed. Alkali-activated slag concretes retain a highly dense and stable microstructure at advanced ages, where any microcracks induced at early ages seem to be partially closing, and the remnant slag grains continue reacting.

  10. Silicate emission feature in the spectrum of comet Mueller 1993a

    Science.gov (United States)

    Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

    1994-01-01

    An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

  11. Starry messages: Searching for signatures of interstellar archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  12. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

    Science.gov (United States)

    Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.

    2018-03-01

    The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.

  13. The chemical imprint of silicate dust on the most metal-poor stars

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Bromm, Volker

    2014-01-01

    We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1 M ☉ ) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming that the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H] crit ). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H] crit = –4.5 ± 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H] crit = –5.3 ± 0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < -4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine-structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].

  14. VARIATIONS OF THE 10 μm SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    International Nuclear Information System (INIS)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F.

    2009-01-01

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 μm silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.

  15. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    Science.gov (United States)

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  16. Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; hide

    2012-01-01

    Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.

  17. Presolar Grains in Indarch

    Science.gov (United States)

    Gao, X.; Nittler, L. R.; Swan, P. D.; Walker, R. M.

    1995-09-01

    We report results for the EH(4) Indarch. Earlier work [1] found 20 micrometers clumps of sub-micron SiC whose presolar nature was inferred from step-wise combustion, noble gas [2], and ion probe isotopic measurements. Our results indicate that the clumps were an artifact of sample preparation. Our sample was first cleaned using 6N HCl, and water and isopropanol rinses, then powdered and reacted with HCl-HF/HCl, KOH, and H3BO3-HCl/HCl giving a C-rich residue 1.14 wt.% of the original. X-ray mapping showed SiC grains and 5x as many Si3N4 grains, but no fine-grained clumps. Large (6 micrometers to 20 micrometers) C-rich spheroids were also present. The sample was further treated with KOH/HNO3 and NH3H2O; attempts to do density-separates were unsuccessful. An aliquot was treated with perchloric acid and separated into 1 micrometer fractions. SEM-EDS measurements of 73 (1 micrometer) grains with the addition of 2 spinel and one Al2O3 grains. The whole rock concentration of SiC was 5.8 ppm, higher than previous determinations [1,3,9]. Confirming earlier suggestions [1,2], we find that SiC in Indarch is much finer-grained than in Murchison; about 2/3 of the mass is in grains size-sorting in the nebula or selective destruction of fine-grained material. Ion probe measurements of 22 (1-3 micrometers) grains gave isotopic results in the range previously measured for Murchison SiCs [4]. Several normal Si3N4 grains (>1 micron) were measured; probably exsolution products similar to those in Qingzhen [7]. Ion mapping was used to search for presolar oxide grains using previously developed techniques [5]. Seven candidate grains out of ~1000 were found. Multiple imaging confirmed an ^(16)O/^(18)O anomaly in one spinel grain - the first presolar oxide found in an E chondrite. Although the proportion of oxide grains relative to SiC is smaller, the fraction of anomalous oxide grains is not strikingly different in Indarch than in Murchison (1/1000) or Tieschitz (1/300). Prior ion probe

  18. Is life the rule or the exception? The answer may be in the interstellar clouds

    Science.gov (United States)

    2002-05-01

    Credits: ESA 2002. Illustration by Medialab Did the main ingredients for life come from outer space? In addition to forming in comets and asteroids, amino acids, the 'building blocks' of life, may form in dust grains in the space between the stars Rosetta artist view hi-res Size hi-res: 397 kb Credits: ESA Rosetta’s mission to a comet An artist's impression of the Rosetta spacecraft, its target Comet 67P/Churyumov-Gerasimenko, and the Philae lander being delivered onto its surface. Rosetta’s 11-year expedition began in March 2004, with an Ariane 5 launch from Kourou in French Guiana, and the spacecraft was then sent towards the outer Solar System. The long journey includes three gravity assists at Earth (2004, 2007, 2009), one at Mars (2007), and two asteroid encounters: (2867) Steins (2008) and (21) Lutetia (2010). Rosetta will reach Comet 67/P Churyumov-Gerasimenko in 2014, and will be the first mission ever to orbit a comet’s nucleus and to deliver a lander, called Philae, on its surface. Artist's Impression of the Herschel Spacecraft hi-res Size hi-res: 138 Kb Artist's Impression of the Herschel Spacecraft Herschel is the only space facility dedicated to the submillimetre and far infrared part of the spectrum. Its vantage point in space provides several decisive advantages, including a low and stable background and full access to this part of the spectrum. Herschel has the potential of discovering the earliest epoch proto-galaxies, revealing the cosmologically evolving AGN-starburst symbiosis, and unraveling the mechanisms involved in the formation of stars and planetary system bodies. The key science objectives emphasise specifically the formation of stars and galaxies, and the interrelation between the two, but also includes the physics of the interstellar medium, astrochemistry, and solar system studies. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers

  19. Grains and Starchy Vegetables

    Science.gov (United States)

    ... Every time you choose to eat a starchy food, make it count! Leave the processed white flour-based products, especially the ones with added ... wheat grain is ground up. "Refined" flours like white and enriched wheat flour include only ... whole grain foods can be a challenge. Some foods only contain ...

  20. Detection of interstellar vibrationally excited HCN

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Turner, B.E.

    1986-01-01

    Vibrationally excited HCN has been observed for the first time in the interstellar medium. The J = 3-2 rotational transitions of the l-doubled (0,1/sup 1d/,1c, 0) bending mode of HCN have been detected toward Orion-KL and IRC +10216. In Orion, the overall column density in the (0,1,0) mode, which exclusively samples the ''hot core,'' is 1.7-10 16 cm -2 and can be understood in terms of the ''doughnut'' model for Orion. The ground-state HCN column density implied by the excited-state observations is 2.3 x 10 18 cm -2 in the hot core, at least one order of magnitude greater than the column densities derived for HCN in its spike and plateau/doughnut components. Radiative excitation by 14 μm flux from IRc2 accounts for the (0,1,0) population provided the hot core is approx.6-7 x 10 16 cm distant from IRc2, in agreement with the ''cavity'' model for KL. Toward IRC +10216 we have detected J = 3-2 transitions of both (0,1/sup 1c/,/sup 1d/,0) and (0,2 0 ,0) excited states. The spectral profiles have been modeled to yield abundances and excitation conditions throughout the expanding envelope

  1. Interstellar extinction in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nandy, K.; Morgan, D.H.; Willis, A.J.; Wilson, R.; Gondhalekar, P.M.

    1981-01-01

    A systematic investigation of interstellar extinction in the ultraviolet as a function of position in the Large Magellanic Cloud has been made from an enlarged sample of reddened and comparison stars distributed throughout the cloud. Except for one star SK-69-108, the most reddened star of our sample, the shape of the extinction curves for the LMC stars do not show significant variations. All curves show an increase in extinction towards 2200 A, but some have maxima near 2200 A, some near 1900 A. It has been shown that the feature of the extinction curve near 1900 A is caused by the mismatch of the stellar F III 1920 A feature. The strength of this 1920 A feature as a function of luminosity and spectral type has been determined. The extinction curves have been corrected for the mismatch of the 1920 feature and a single mean extinction curve for the LMC normalized to Asub(V) = 0 and Esub(B-V) = 1 is presented. For the same value of Esub(B-V) the LMC stars show the 2200 A feature weaker by a factor 2 as compared with the galactic stars. Higher extinction shortward of 2000 A in the LMC extinction curves than that in our Galaxy, as reported in earlier papers, is confirmed. (author)

  2. Interstellar Extinction in 20 Open Star Clusters

    Science.gov (United States)

    Rangwal, Geeta; Yadav, R. K. S.; Durgapal, Alok K.; Bisht, D.

    2017-12-01

    The interstellar extinction law in 20 open star clusters namely, Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B - V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362, and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69, and IC 4996. We have found that the differential colour-excess ΔE(B - V), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of colour excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. For the clusters Berkeley 7, NGC 7380, and NGC 6871, a dependence of colour excess E(B - V) with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530, and one star in NGC 6231 have excess flux in near-IR. This indicates that these stars may have circumstellar material around them.

  3. Modelling interstellar structures around Vela X-1

    Science.gov (United States)

    Gvaramadze, V. V.; Alexashov, D. B.; Katushkina, O. A.; Kniazev, A. Y.

    2018-03-01

    We report the discovery of filamentary structures stretched behind the bow-shock-producing high-mass X-ray binary Vela X-1 using the SuperCOSMOS H-alpha Survey and present the results of optical spectroscopy of the bow shock carried out with the Southern African Large Telescope. The geometry of the detected structures suggests that Vela X-1 has encountered a wedge-like layer of enhanced density on its way and that the shocked material of the layer partially outlines a wake downstream of Vela X-1. To substantiate this suggestion, we carried out 3D magnetohydrodynamic simulations of interaction between Vela X-1 and the layer for three limiting cases. Namely, we run simulations in which (i) the stellar wind and the interstellar medium (ISM) were treated as pure hydrodynamic flows, (ii) a homogeneous magnetic field was added to the ISM, while the stellar wind was assumed to be unmagnetized, and (iii) the stellar wind was assumed to possess a helical magnetic field, while there was no magnetic field in the ISM. We found that although the first two simulations can provide a rough agreement with the observations, only the third one allowed us to reproduce not only the wake behind Vela X-1, but also the general geometry of the bow shock ahead of it.

  4. Interstellar clouds and the formation of stars

    International Nuclear Information System (INIS)

    Alfen, H.; Carlqvist, P.

    1977-12-01

    The 'pseudo-plasma formalism' which up to now has almost completely dominated theoretical astrophysics must be replaced by an experimentally based approach, involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. The revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud, they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instablility. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems

  5. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  6. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  7. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    OpenAIRE

    Cruz,Maria Fernanda; Rodrigues,Fabrício Ávila; Diniz,Ana Paula Cardoso; Moreira,Maurilio Alves; Barros,Everaldo Gonçalves

    2013-01-01

    The control of Asian Soybean Rust (ASR), caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS) and soil amendment with calcium silicate (CS) on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection ...

  8. Is the solar system entering a nearby interstellar cloud

    International Nuclear Information System (INIS)

    Vidal-Madjar, A.; Laurent, C.; Bruston, P.; Audouze, J.

    1978-01-01

    A model, based on different observations of the local interstellar medium, indicates the presence of a very close interstellar cloud in front of the Scorpius-Ophiuchus association (almost in the direction of the galactic center) approaching the solar system from a distance of about 0.03 pc at a velocity of about 15--20 km s -1 . These observations are as follows:1. The strong gradient of the hydrogen density in the interstellar medium deduced from current observations of this gas inside the solar system (n/sub H/approx.0.1 cm -3 ) and in front of many nearby stars in the anticenter direction (n/sub H/approx.0.01 cm -3 ).2. The anisotropy of the UV flux (around 950 A) from the brightest and closest O and B stars.3. The important variation of the deuterium to hydrogen ratio, which ranges from 2 x 10 -6 in the α Cen A direction to 4 x 10 -5 in the Aga Aur direction.A mechanism based on a selective radiation pressure effect that acts on deuterium atoms and not on hydrogen atoms explains satisfactorily the large spread in the deuterium abundance in the local interstellar medium. The operation of this mechanism requires that the geometrical configuration remain stable for approximately 10 7 years. This requirement implies the existence of a nearby interstellar cloud.Possible candidates do exist in the proper sky direction. One candidate, extensively discussed, presents a persistent interstellar absorption pattern over an angle of 40 0 related to a high column density, although covering only a few degrees in the sky, would lead to the same consequence. The presence of such condidates is not all contradicted by the interstellar reddening and absorption line observations.Other implications of the presence of such a close cloud are presented

  9. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  10. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    Science.gov (United States)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} is the dominant gas in the dense clouds of the interstellar medium (ISM). At densities of 10 (5) cm (-3) , an H _{2} molecule arrives at the surface of a 0.1 mum-sized, ice-covered dust grain once every few seconds [1]. At 10 K, H _{2} can diffuse into the pores of the ice mantle and adsorb at high-energy binding sites, loading the ice with hydrogen over the lifetime of the cloud. These icy grains are also impacted by galactic cosmic rays and stellar winds (in clouds with embedded protostar). Based on the available cosmic proton flux spectrum [2], we estimate a small impact rate of nearly 1 hit per year on a 0.1 μm sized grain, or 10 (-7) times the impact frequency of the neutral H _{2}. The energy deposited by such impacts can release the adsorbed H _{2} into the gas phase (impact desorption or sputtering). Recently, we have reported on a new process of ion-induced enhanced adsorption, where molecules from the gas phase are incorporated into the film when irradiation is performed in the presence of ambient gas [3]. The interplay between ion-induced ejection and adsorption can be important in determining the gas-solid balance in the ISM. To understand the effects of cosmic rays/stellar winds impacts on interstellar ice immersed in H _{2} gas, we have performed irradiation of porous amorphous ice films loaded with H _{2} through co-deposition or adsorption following growth. The irradiations were performed with 100 keV H (+) using fluxes of 10 (10) -10 (12) H (+) cm (-2) s (-1) at 7 K, in presence of ambient H _{2} at pressures ranging from 10 (-5) to 10 (-8) Torr. Our initial results show a net loss in adsorbed H _{2} during irradiation, from competing ion-induced ejection and adsorption. The H _{2} loss per ion decreases exponentially with fluence, with a cross-section of 10 (-13) cm (2) . In addition to hydrogen removal, irradiation also leads to trapping of H _{2} in the ice film, from closing of the pores during irradiation [4]. As a result, 2.6 percent

  11. All About the Grains Group

    Science.gov (United States)

    ... Grains All about the Grains Group Print Share What foods are in the Grains Group? Any food made ... Whole Grains Food Gallery Take the Grains Quiz What Is MyPlate? Food Guide History MyPlate, MyWins Fruits All About the ...

  12. Natural Weathering Rates of Silicate Minerals

    Science.gov (United States)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  13. CO2 sequestration by magnesium silicate mineral carbonation in Finland

    International Nuclear Information System (INIS)

    Zevenhoven, R.; Kohlmann, J.

    2001-01-01

    Fixation Of CO 2 from fossil fuel combustion in the form of solid carbonates appears to be a realistic option for the capture and storage of this greenhouse gas. Vast amounts of magnesium silicate minerals exist worldwide that may be carbonated, with magnesium carbonate as stable and environmentally harmless product. Also in Finland magnesium silicate resources exist that could support Finnish commitments under the Kyoto Protocol. This paper describes the option Of CO 2 sequestration with magnesium silicates in Finland. Addressed are mineral resources, mineral quality and the mineral carbonation process, including some experimental results on magnesium silicate carbonation kinetics

  14. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  15. Preparation of reactive beta-dicalcium silicate

    Science.gov (United States)

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  16. Pozzolanic activity of various siliceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, S.K. [Central Building Research Institute, Roorkee (India)

    2006-09-15

    The accelerated pozzolanic activity of various siliceous materials, like silica fume, fly ash (as received and fine ground), quartz, precipitated silica, metakaolin and rice husk ash (RHA; various fineness and carbon content), has been determined. The compressive strength of accelerated tests has been compared with cubes cured in water at 7 and 28 days. Maximum activity has been observed in case of RHA ({lt}45 g), followed by quartz and silica fume. The 10% replacement of cement by sand has shown accelerated pozzolanic index of 92% compared with 85% required in ASTM for silica fume as mineral admixture.

  17. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 10(12) mol Si per year, which makes them...... the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  18. NMR study of hydrated calcium silicates

    International Nuclear Information System (INIS)

    Klur, I.

    1996-01-01

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.)

  19. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  20. Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt

    Science.gov (United States)

    Arató, Róbert; Audétat, Andreas

    2017-07-01

    Partition coefficients of vanadium between magnetite and rhyolitic silicate melt, DVmgt/melt, were experimentally determined as a function of oxygen fugacity (0.7-4.0 log units above the fayalite-magnetite-quartz buffer), temperature (800-1000 °C), melt alumina saturation index (ASI = 0.74-1.14), magnetite composition (0.2-14 wt% TiO2) and pressure (1-5 kbar; at H2O saturation). Experiments were performed by equilibrating small (≤20 μm), V-free magnetite grains in V-doped silicate melts (∼100 ppm V) and then analyzing both phases by LA-ICP-MS. Attainment of equilibrium was demonstrated by several reversal experiments. The results suggest that DVmgt/melt depends strongly on fO2, increasing by 1.5-1.7 log units from the MnO-Mn3O4 buffer to the Ni-NiO buffer, and to lesser (but still considerable) extents on melt alumina saturation index (ASI; increasing by 0.3-0.7 log units over 0.4 ASI units) and temperature (increasing by 0.3-0.7 log units over a 200 °C interval at a fixed fO2 buffer). Magnetite composition and melt water content seem to have negligible effects. The data were fitted by the following linear regression equation: in which temperature is given in K, ASI refers to molar Al2O3/(CaO + Na2O + K2O) and ΔFMQ refers to the deviation of fO2 (in log units) from the fayalite-magnetite-quartz buffer. This equation reproduces all of our data within 0.3 log units, and 89% of them within 0.15 log units. The main advantages of this new oxybarometer over classical magnetite-ilmenite oxybarometry are (1) that it can be applied to rocks that do not contain ilmenite, and (2) that it is easier to apply to slowly-cooled rocks such as granites.