WorldWideScience

Sample records for interstellar matter galaxy

  1. Interstellar matter within elliptical galaxies

    Science.gov (United States)

    Jura, Michael

    1988-01-01

    Multiwavelength observations of elliptical galaxies are reviewed, with an emphasis on their implications for theoretical models proposed to explain the origin and evolution of the interstellar matter. Particular attention is given to interstellar matter at T less than 100 K (atomic and molecular gas and dust), gas at T = about 10,000 K, and gas at T = 10 to the 6th K or greater. The data are shown to confirm the occurrence of mass loss from evolved stars, significant accretion from companion galaxies, and cooling inflows; no evidence is found for large mass outflow from elliptical galaxies.

  2. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  3. Physics of the galaxy and interstellar matter

    International Nuclear Information System (INIS)

    Scheffler, H.; Elsasser, H.

    1988-01-01

    This book is based on the authors' long standing experience in teaching astronomy courses. It presents in a modern and complete way our present picture of the physics of the Milky Way system. The first part of the book deals with topics of more empirical character, such as the positions and motions of stars, the structure and kinetics of the stellar systems and interstellar phenomena. The more advanced second part is devoted to the interpretation of observational results, i.e. to the physics of interstellar gas and dust, to stellar dynamics, to the theory of spiral structures and the dynamics of interstellar gas

  4. Interstellar matter

    International Nuclear Information System (INIS)

    Mezger, P.G.

    1978-01-01

    An overview of the formation of our galaxy is presented followed by a summary of recent work in star formation and related topics. Selected discussions are given on interstellar matter including absorption characteristics of dust, the fully ionised component of the ISM and the energy density of lyc-photons in the solar neighbourhood and the diffuse galactic IR radiation

  5. The hot and cold interstellar matter of early type galaxies and their radio emission

    International Nuclear Information System (INIS)

    Kim, Dongwoo; Fabbiano, G.

    1990-01-01

    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

  6. Dynamics of interstellar matter

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1975-01-01

    A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)

  7. The interstellar medium in galaxies

    CERN Document Server

    1997-01-01

    It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc­ ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen­ tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...

  8. Interstellar scattering in the inner parts of the galaxy

    International Nuclear Information System (INIS)

    Rao, A.P.; Ananthakrishnan, S.

    1984-01-01

    A new survey of the galactic plane for sources with size less than 1 arc s at 327 MHz shows that towards the inner parts of the galaxy for galactic latitudes less than 5deg, interstellar scattering is much larger than expected from data at higher latitudes. The enhanced scattering varies both with galactic latitude and longitude. A two-component model for the distribution of scattering matter in the Galaxy is proposed to interpret the observations. (author)

  9. The interstellar medium in galaxies - An overview

    Science.gov (United States)

    Knapp, G. R.

    1990-01-01

    Recent observational developments on the subject of the interstellar medium in galaxies are summarized, with emphasis placed on global properties. The properties and distribution of the ISM in the solar neighborhood and in the Galactic plane are examined and a number of results from the most important observational probes (HI, CO, and infrared) are described. A recent development is the observation of the ISM in galaxies of all morphological types, early to late. These developments are summarized and the properties of different types of galaxies are compared to one another. The origin of radio galaxies, the effect of environment, and the prospects for direct observations of ISM evolution in galaxies are discussed.

  10. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  11. Ratio of extinction to reddening for interstellar matter using galaxies. I. A limit on the neutral extinction from photometry of the 3C 129 group

    International Nuclear Information System (INIS)

    Sandage, A.

    1975-01-01

    The ratio of total extinction to reddening of interstellar matter has been determined by a new method applied to galaxies in the highly obscured 3C 129 and 3C 129.1 group (l = 160 0 , b = 0 0 ). The difference between the observed magnitude of the first-ranked group member and the magnitude calculated from the redshift-apparent magnitude (Hubble) diagram (at the known redshift of the group) is the total extinction A/sub v/ to within the sigma(M/sub v/) that applies to the first-ranked cluster member. Comparison of the observed color with the known intrinsic color of giant E galaxies gives E(B--V), and therefore R. Photometry of the 3C 129 group gives R identical with A/sub v//E(B--V) = 3.72 +- 0.32(sigma). Correction for the finite bandwidth of the BV system gives R (O star base) = 3.35 +- 0.29 (sigma). Comparison with R determined from the color-difference method gives a limit for the fraction of neutral-to-selective extinction of f = A/sub v/ (neutral)/A/sub v/ (selective) = 0.10 +- 0.15(sigma) which is a null result (f = 0) to within the statistics. Hence, no neutral extinction has been detected at the 1 sigma level of the experiment. Use of the method on many additional groups of galaxies is expected to substantially reduce the error of this limit

  12. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  13. Diffuse interstellar gas in disk galaxies

    International Nuclear Information System (INIS)

    Vladilo, G.

    1989-01-01

    The physical properties of the diffuse gas in our Galaxy are reviewed and considered as a starting point for interstellar (IS) studies of disk galaxies. Attention is focussed on the atomic and ionic component, detected through radio, optical, ultraviolet (UV) and X-ray observations. The cooling and heating processes in the IS gas are briefly recalled in order to introduce current models of disk and halo gas. Observations of nearby galaxies critical to test IS models are considered, including 21-cm surveys, optical and UV absorptions of bright, extragalactic sources, and X-ray emission from hot halos. Finally, further steps necessary to develop a global model for the structure and evolution of the interstellar medium are indicated. (author)

  14. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    Science.gov (United States)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of

  15. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  16. Dark matter properties implied by gamma ray interstellar emission models

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong, E-mail: csaba.balazs@monash.edu, E-mail: tong.li@monash.edu [ARC Centre of Excellence for Particle Physics at the Tera-scale, School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2017-02-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. To trivially respect flavor constraints, we only couple the mediator to third generation fermions. Using this theoretical hypothesis, and the Fermi residuals, we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our evidence ratios single out one of the Fermi scenarios as most compatible with the simplified dark matter model. In this scenario the dark matter (mediator) mass is in the 25-200 (1-1000) GeV range and its annihilation is dominated by bottom quark final state. Our conclusion is that the properties of dark matter extracted from gamma ray data are highly sensitive to the modeling of the interstellar emission.

  17. Detection of organic matter in interstellar grains.

    Science.gov (United States)

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  18. A chemical model for the interstellar medium in galaxies

    OpenAIRE

    Bovino, S.; Grassi, Tommaso; Capelo, P. R.; Schleicher, D. R. G.; Banerjee, R.

    2016-01-01

    Aims: We present and test chemical models for three-dimensional hydrodynamical simulations of galaxies. We explore the effect of changing key parameters such as metallicity, radiation, and non-equilibrium versus equilibrium metal cooling approximations on the transition between the gas phases in the interstellar medium. Methods: The microphysics was modelled by employing the public chemistry package KROME, and the chemical networks were tested to work in a wide range of densities and temp...

  19. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  20. Mechanisms of heating the interstellar matter

    International Nuclear Information System (INIS)

    Lequeux, J.

    1975-01-01

    The knowledge of the interstellar medium has been considerably improved in the recent years, thanks in particular to Radioastronomy and Ultraviolet Space Astronomy. This medium is a natural laboratory where the conditions and various and very different to what can be realised in terrestrial laboratories. To illustrate its interest for physicists here one of the most interesting but controversial points of interstellar astronomy is discussed: the mechanisms for heating and cooling the interstellar medium [fr

  1. Dark matter in elliptical galaxies

    Science.gov (United States)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  2. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  3. A galaxy lacking dark matter.

    Science.gov (United States)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  4. A galaxy lacking dark matter

    Science.gov (United States)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  5. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  6. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  7. Aspects of the interstellar medium in starburst galaxies

    International Nuclear Information System (INIS)

    Fanelli, M.N.

    1990-01-01

    Researchers are engaged in a multifaceted program to investigate the stellar content and star formation history of actively star-forming galaxies. A large body of stellar spectra have been examined to identify spectral features characteristic of specific stellar types. These spectral diagnostics are then calibrated in terms of temperature (spectral type), gravity (luminosity class) and metallicity. The spectral data is compiled into a stellar library whose members represent specific locations in the HR diagram. Through the use of population synthesis techniques, both optimizing and evolutionary approaches, the stellar luminosity function in composite populations can be determined. Researchers have concentrated on the ultraviolet wavelength region (lambda lambda 1200 to 3200). In the optical, virtually all stars will contribute to the integrated light. In the ultraviolet however, cool stars will produce negligible flux due to their steep ultraviolet-to-visual continua, greatly simplifying the investigation of the hot component in a composite population. The researchers' initial stellar library has been applied to several blue compact galaxies, (BCGs), a class of starburst galaxy which is UV luminous. BCGs possess a complex interstellar medium which affects the emergent stellar continuum in several ways. This presents a challenge to the stellar analysis but affords insight into the properties of the gas and dust from which the massive OB stars have formed. The optimizing synthesis method solves for the stellar luminosity function and extinction simultaneously. This therefore provides an independent measure of the extinction affecting the hot population component. Despite the rise of the reddening law towards the ultraviolet, BCGs are found to be brighter in the ultraviolet than expected

  8. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    Science.gov (United States)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  9. The galactic interstellar medium

    CERN Document Server

    Burton, WB; Genzel, R

    1992-01-01

    This volume contains the papers of three extended lectures addressing advanced topics in astronomy and astrophysics. The topics discussed include the most recent observational data on interstellar matter outside our galaxy and the physics and chemistry of molecular clouds.

  10. Thermoluminescence of Simulated Interstellar Matter after Gamma-ray Irradiation

    OpenAIRE

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-01-01

    Interstellar matter is known to be strongly irradiated by radiation and several types of cosmic ray particles. Simulated interstellar matter, such as forsterite $\\rm Mg_{2}SiO_{4}$, enstatite $\\rm MgSiO_{3}$ and magnesite $\\rm MgCO_{3}$ has been irradiated with the $\\rm ^{60}Co$ gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is $10^{...

  11. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice

    2013-01-01

    The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89deg 2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric

  12. The Interstellar Medium

    CERN Document Server

    Lequeux, James

    2005-01-01

    Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, "The Interstellar Medium" is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.

  13. Structural, chemical and isotopic examinations of interstellar organic matter extracted from meteorites and interstellar dust particles

    Science.gov (United States)

    Busemann, Henner; Alexander, Conel M. O'D.; Nittler, Larry R.; Stroud, Rhonda M.; Zega, Tom J.; Cody, George D.; Yabuta, Hikaru; Kilcoyne, A. L. David

    2008-10-01

    Meteorites and Interplanetary Dust Particles (IDPs) are supposed to originate from asteroids and comets, sampling the most primitive bodies in the Solar System. They contain abundant carbonaceous material. Some of this, mostly insoluble organic matter (IOM), likely originated in the protosolar molecular cloud, based on spectral properties and H and N isotope characteristics. Together with cometary material returned with the Stardust mission, these samples provide a benchmark for models aiming to understand organic chemistry in the interstellar medium, as well as for mechanisms that secured the survival of these fragile molecules during Solar System formation. The carrier molecules of the isotope anomalies are largely unknown, although amorphous carbonaceous spheres, so-called nanoglobules, have been identified as carriers. We are using Secondary Ion Mass Spectrometry to identify isotopically anomalous material in meteoritic IOM and IDPs at a ~100-200 nm scale. Organics of most likely interstellar origin are then extracted with the Focused-Ion-Beam technique and prepared for synchrotron X-ray and Transmission Electron Microscopy. These experiments yield information on the character of the H- and N-bearing interstellar molecules: While the association of H and N isotope anomalies with nanoglobules could be confirmed, we have also identified amorphous, micron-sized monolithic grains. D-enrichments in meteoritic IOM appear not to be systematically associated with any specific functional groups, whereas 15N-rich material can be related to imine and nitrile functionality. The large 15N- enrichments observed here (δ15N > 1000 ‰) cannot be reconciled with models using interstellar ammonia ice reactions, and hence, provide new constraints for understanding the chemistry in cold interstellar clouds.

  14. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  15. Tiny galaxies help unravel dark matter mystery

    CERN Multimedia

    O'Hanlon, Larry

    2007-01-01

    "The 70-year effort to unravel the mysteries of dark matter just got a big boost from some very puny galaxies. In the pas few years, a score of dwarf galaxies have been discovered hanging about the fringes of the Milky way. Now new measurements of the few stars int hese dwarfs reveal them to be dark mater distilleries, with upwards of 1'000 times more dark than normal matter." (3 pages)

  16. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  17. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies

    Science.gov (United States)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom

    2018-01-01

    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall

  18. A self-consistent model of the three-phase interstellar medium in disk galaxies

    International Nuclear Information System (INIS)

    Wang, Z.

    1989-01-01

    In the present study the author analyzes a number of physical processes concerning velocity and spatial distributions, ionization structure, pressure variation, mass and energy balance, and equation of state of the diffuse interstellar gas in a three phase model. He also considers the effects of this model on the formation of molecular clouds and the evolution of disk galaxies. The primary purpose is to incorporate self-consistently the interstellar conditions in a typical late-type galaxy, and to relate these to various observed large-scale phenomena. He models idealized situations both analytically and numerically, and compares the results with observational data of the Milky Way Galaxy and other nearby disk galaxies. Several main conclusions of this study are: (1) the highly ionized gas found in the lower Galactic halo is shown to be consistent with a model in which the gas is photoionized by the diffuse ultraviolet radiation; (2) in a quasi-static and self-regulatory configuration, the photoelectric effects of interstellar grains are primarily responsible for heating the cold (T ≅ 100K) gas; the warm (T ≅ 8,000K) gas may be heated by supernova remnants and other mechanisms; (3) the large-scale atomic and molecular gas distributions in a sample of 15 disk galaxies can be well explained if molecular cloud formation and star formation follow a modified Schmidt Law; a scaling law for the radial gas profiles is proposed based on this model, and it is shown to be applicable to the nearby late-type galaxies where radio mapping data is available; for disk galaxies of earlier type, the effect of their massive central bulges may have to be taken into account

  19. Circumgalactic Matter Matters in Galaxy Evolution

    Science.gov (United States)

    Werk, Jessica

    2018-01-01

    The circumgalactic medium (CGM; non-ISM gas within a galaxy virial radius) regulates the gas flows that shape the assembly and evolution of galaxies. Owing to the vastly improved capabilities in space-based UV spectroscopy with the installation of HST/COS, observations and simulations of the CGM have emerged as the new frontier of galaxy evolution studies. In the last decade, we have learned that the CGM of Milky Way mass galaxies likely contains enough material to harbor most of the metals lost in galaxy winds and to sustain star-formation for billions of years. Remarkably, this implies that most of the heavy elements on earth cycled back and forth multiple times through the Milky Way’s own CGM before the formation of the solar system. In this talk, I will describe constraints we have placed on the origin and fate of this material by studying the gas kinematics, metallicity and ionization state. I will conclude by posing several unanswered questions about the CGM that will be addressed with future survey data and hydrodynamic simulations in a cosmological context.

  20. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  1. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    Science.gov (United States)

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  2. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    Science.gov (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  3. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    Science.gov (United States)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (MB greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 107-108 yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  4. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  5. Solar neutrinos and solar accretion of interstellar matter

    International Nuclear Information System (INIS)

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  6. Hunting for Dark Matter in Spheroidal Galaxies

    Science.gov (United States)

    Steele, Rebecca; Holwerda, Benne; Kielkopf, John F.

    2018-06-01

    Searches for blended spectra have been highly successful in identifying strongly lensing galaxies: these spectra show a low-redshift passive galaxy with much stronger emission lines from the source being lensed. We have recently identified 112 strong lensing candidates in the Galaxy and Mass Assembly Survey (GAMA). The improved sensitivity and redshift determination makes this a very clean sample of two-galaxy spectra, spanning both lower-mass galaxy strong lenses as well as a higher redshiftregime (z > 0.4). As a first step of a PhD project, we will vet the 112 candidate strong gravitational lenses using the new Kilo Degree Survey (KiDS), which is both deeper and sharper than existing Sloan images. Once confirmed, these lower mass gravitational lenses can be targeted with the soon-to-launch James Webb Space Telescope or the Hubble Space Telescope for follow-up observations. Models of the gravitational lenses give us direct measures of the dark matter content of these low-mass galaxies, thought to be dominated by dark matter.

  7. Mapping Dark Matter in Simulated Galaxy Clusters

    Science.gov (United States)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  8. Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium

    Science.gov (United States)

    Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.

  9. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    Science.gov (United States)

    2002-01-01

    This visible-light picture, taken by NASA's Hubble Space Telescope, reveals an intergalactic 'pipeline' of material flowing between two battered galaxies that bumped into each other about 100 million years ago. The pipeline [the dark string of matter] begins in NGC 1410 [the galaxy at left], crosses over 20,000 light-years of intergalactic space, and wraps around NGC 1409 [the companion galaxy at right] like a ribbon around a package. Although astronomers have taken many stunning pictures of galaxies slamming into each other, this image represents the clearest view of how some interacting galaxies dump material onto their companions. These results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. Astronomers used the Space Telescope Imaging Spectrograph to confirm that the pipeline is a continuous string of material linking both galaxies. Scientists believe that the tussle between these compact galaxies somehow created the pipeline, but they're not certain why NGC 1409 was the one to begin gravitationally siphoning material from its partner. And they don't know where the pipeline begins in NGC 1410. More perplexing to astronomers is that NGC 1409 is seemingly unaware that it is gobbling up a steady flow of material. A stream of matter funneling into the galaxy should have fueled a spate of star birth. But astronomers don't see it. They speculate that the gas flowing into NGC 1409 is too hot to gravitationally collapse and form stars. Astronomers also believe that the pipeline itself may contribute to the star-forming draught. The pipeline, a pencil-thin, 500 light-year-wide string of material, is moving a mere 0.02 solar masses of matter a year. Astronomers estimate that NGC 1409 has consumed only about a million solar masses of gas and dust, which is not enough material to spawn some of the star-forming regions seen in our Milky Way. The low amount means that there may not be enough material to ignite star birth

  10. The distribution of interstellar dust in CALIFA edge-on galaxies via oligochromatic radiative transfer fitting

    Science.gov (United States)

    De Geyter, Gert; Baes, Maarten; Camps, Peter; Fritz, Jacopo; De Looze, Ilse; Hughes, Thomas M.; Viaene, Sébastien; Gentile, Gianfranco

    2014-06-01

    We investigate the amount and spatial distribution of interstellar dust in edge-on spiral galaxies, using detailed radiative transfer modelling of a homogeneous sample of 12 galaxies selected from the Calar Alto Legacy Integral Field Area survey. Our automated fitting routine, FITSKIRT, was first validated against artificial data. This is done by simultaneously reproducing the Sloan Digital Sky Survey g-, r-, i- and z-band observations of a toy model in order to combine the information present in the different bands. We show that this combined, oligochromatic fitting has clear advantages over standard monochromatic fitting especially regarding constraints on the dust properties. We model all galaxies in our sample using a three-component model, consisting of a double-exponential disc to describe the stellar and dust discs and using a Sérsic profile to describe the central bulge. The full model contains 19 free parameters, and we are able to constrain all these parameters to a satisfactory level of accuracy without human intervention or strong boundary conditions. Apart from two galaxies, the entire sample can be accurately reproduced by our model. We find that the dust disc is about 75 per cent more extended but only half as high as the stellar disc. The average face-on optical depth in the V band is 0.76 and the spread of 0.60 within our sample is quite substantial, which indicates that some spiral galaxies are relatively opaque even when seen face-on.

  11. The physical properties in the interstellar medium of low-metallicity dwarf galaxies

    International Nuclear Information System (INIS)

    Cormier, Diane

    2012-01-01

    In the framework of galaxy evolution, local star-forming dwarf galaxies are ideal laboratories to study star formation processes at low metallicity and the role of metal enrichment on the physical conditions. My thesis has focused on the study of the gas properties of the dwarf galaxies from 'The Herschel Dwarf Galaxy Survey', combining observations and modeling efforts. I have investigated the role of the most important tracers of the multi-phase the interstellar medium (ISM), in the mid-infrared to submillimeter range. Particular attention was paid to the ionized and neutral gas coolants observed with Herschel Space Observatory (e.g. [OIII] 88, [OI] 63, [CII] 157 micron lines), and to the CO molecule, probing the molecular phase, with complementary ground-based observations. The data are interpreted in physical terms (density, radiation field, filling factors) with radiative transfer models. This work has helped elucidate the structure and conditions of the low-metallicity ISM. It highlights the porosity of the ISM of dwarf galaxies, with ultraviolet photons from the massive star-forming regions exciting the gas out to large distances. This results in the presence of large volume filling factor diffuse ionized/neutral gas, clumpy photodissociation regions, and little observed molecular gas due to large-scale photodissociation. (author) [fr

  12. CONNECTION BETWEEN THE CIRCUMGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM OF GALAXIES: RESULTS FROM THE COS-GASS SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Borthakur, Sanchayeeta; Heckman, Timothy [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tumlinson, Jason; Bordoloi, Rongmon; Thom, Christopher [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Catinella, Barbara [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Kauffmann, Guinevere [Max-Planck Institut für Astrophysik, D-85741 Garching (Germany); Moran, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Saintonge, Amelie, E-mail: sanch@pha.jhu.edu [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom)

    2015-11-01

    We present a study exploring the nature and properties of the circumgalactic medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the H i 21 cm line. Our sample includes 45 low-z (0.026–0.049) galaxies from the GALEX Arecibo SDSS Survey (Galaxy Evolution Explorer/Arecibo/Sloan Digital Sky Survey). Their CGM was probed via absorption in the spectra of background quasi-stellar objects at impact parameters of 63–231 kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Lyα absorption lines) in the CGM of 92% of the galaxies. We find that the radial profile of the CGM as traced by the Lyα equivalent width can be fit as an exponential with a scale length of roughly the virial radius of the dark matter halo. We found no correlation between the orientation of the sightline relative to the galaxy’s major axis and the Lyα equivalent width. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the ISM. We find a strong correlation (99.8% confidence) between the gas fraction (M(H i)/M{sub ⋆}) and the impact-parameter-corrected Lyα equivalent width. This is stronger than the analogous correlation between corrected Lyα equivalent width and specific star formation rate (SFR)/M{sub ⋆} (97.5% confidence). These results imply a physical connection between the H i disk and the CGM, which is on scales an order of magnitude larger. This is consistent with the picture in which the H i disk is nourished by accretion of gas from the CGM.

  13. Neutrino dark matter in clusters of galaxies

    International Nuclear Information System (INIS)

    Treumann, R.A.

    2000-01-01

    We present a model calculation for the radial matter density and mass distribution in two clusters of galaxies (Coma and A119) including cold dark matter, massive though light (approx. 2 eV) neutrino dark matter and collisional intra-cluster gas which emits x-ray radiation. The calculation uses an extension of the Lynden-Bell statistics to the choice of constant masses instead of constant volume. This allows proper inclusion of mixtures of particles of various masses in the gravitational interaction. When it is applied to the matter in the galaxy cluster the radial ROSAT x-ray luminosity profiles can be nicely accounted for. The result is that the statistics identifies the neutrino dark matter in the cluster centre as being degenerate in the sense of Lynden-Bell's spatial degeneracy. This implies that it is distributed in a way different from the classical assumption. The best fits are obtained for the approx. 2 eV neutrinos. The fraction of these and their spatial distribution are of interest for understanding cluster dynamics and may have cosmological implications. (author)

  14. Neutrino dark matter in clusters of galaxies

    International Nuclear Information System (INIS)

    Treumann, R A; Kull, A; Boehringer, H

    2000-01-01

    We present a model calculation for the radial matter density and mass distribution in two clusters of galaxies (Coma and A119) including cold dark matter, massive though light (≅2 eV) neutrino dark matter and collisional intra-cluster gas which emits x-ray radiation. The calculation uses an extension of the Lynden-Bell statistics to the choice of constant masses instead of constant volume. This allows proper inclusion of mixtures of particles of various masses in the gravitational interaction. When it is applied to the matter in the galaxy cluster the radial ROSAT x-ray luminosity profiles can be nicely accounted for. The result is that the statistics identifies the neutrino dark matter in the cluster centre as being degenerate in the sense of Lynden-Bell's spatial degeneracy. This implies that it is distributed in a way different from the classical assumption. The best fits are obtained for the ≅2 eV neutrinos. The fraction of these and their spatial distribution are of interest for understanding cluster dynamics and may have cosmological implications

  15. Three-dimensional simulations of supernovae dominated interstellar media in disk galaxies

    International Nuclear Information System (INIS)

    Cioffi, D.F.

    1985-01-01

    Evolution of the interstellar media of spiral galaxies was studied, assuming that their dynamical and thermal properties are dominated by supernova remnants (SNRs). To do this, a computer simulation was developed that uses standard SNR evolutionary solutions (Sedov-Taylor, pressure-modified snowplow) to redistribute mass and energy throughout a rectangular, three-level grid which models the interstellar medium (ISM). This comprehensive treatment includes bremsstrahlung or metal cooling, the creation and evaporation of clouds, mass injection and return from a galactic halo, multiple SNRs, and internally determined SNR lifetimes. The importance of spatially correlating supernovae sites, which can increase the global evolution rate of the (ISM), is confirmed. The simulations of primeval (zero metal abundance) galaxies revealed that the enhancement ability of bremsstrahlung-cooled SNR to transport mass can continually agitate the ISM, preventing the establishment of long-lived tunnel networks (i.e., hot rarefied volumes). This demonstrated the inadequacy of porosity theory for predicting the topology of the ISM, because it does not account for mass transport

  16. Toward the comprehension of the infrared to submillimeter view of the interstellar medium of nearby galaxies

    International Nuclear Information System (INIS)

    Galametz, Maud

    2010-01-01

    This thesis aims to study the interstellar medium (ISM) of nearby galaxies to characterize the physical properties of the gas and dust. We especially focused our study on low-metallicity galaxies of the Local Universe, ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies. Previous studies have shown that the Spectral Energy Distributions (SEDs) of low metallicity galaxies differ significantly from those of massive galaxies and that the dust-to-gas mass ratio (D/G) of the galaxy could be dependent of the metallicity. Observations of low-metallicity galaxies also often led to the detection of an excess at submillimeter (sub-mm) wavelengths not always accounted for in usual SED models. Further studies and observations had to be performed to better cover the far-IR to sub-mm range and probe the coldest phase of dust. We adopt a multi-wavelength approach to model and analyse the SEDs of 4 low-metallicity galaxies observed with LABOCA at 870 μm. We estimated the fraction of cool dust to be significant compared to the total dust mass of the galaxies. Some D/Gs are incoherent compared to what is expected from the current chemical evolution model, revealing possible reservoirs of gas not detected by current HI or CO observations. I enlarged the first sample to a wider range of metallicities and showed that sub-mm measurements significantly affect the dust mass estimates of galaxies. For dustier galaxies for which the SED usually peaks at longer wavelengths, sub-mm fluxes are crucial to position the peak and the Rayleigh-Jeans slope of their SED. For low-metallicity galaxies, the sub-mm wavelength domain harbours an excess that may imply a large amount of very cold dust. Our results confirm that low-metallicity galaxies can exhibit a sub-mm excess when observed at longer wavelengths. Obtaining a more precise inventory of the cold dust and resolve the main actors of dust evolution in massive star forming regions and molecular clouds

  17. A new component of the interstellar matter - Small grains and large aromatic molecules

    International Nuclear Information System (INIS)

    Puget, J.L.

    1989-01-01

    Predictions from dust models constructed to account for the interstellar extinction curve are in conflict with emission data. This paper shows that the introduction of small grains and large aromatic molecules as a new component of the interstellar matter can resolve this conflict. Observational evidence for the existence of very small grains is also reviewed, along with the physics of IR emission by thermal fluctuations and its relation to very small particles. 99 refs

  18. Exploring dark matter microphysics with galaxy surveys

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Vincent, Aaron C.; Wilkinson, Ryan J.; Boehm, Céline, E-mail: miguel.Escudero@uv.es, E-mail: omena@ific.uv.es, E-mail: aaron.vincent@durham.ac.uk, E-mail: ryan.wilkinson@durham.ac.uk, E-mail: c.m.boehm@durham.ac.uk [Institute for Particle Physics Phenomenology (IPPP), Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-09-01

    We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ΛCDM scenario. To quantify this statement, we focus on an extension of ΛCDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.

  19. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  20. Dark matter phenomenology of high-speed galaxy cluster collisions

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-01-01

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 "c"i"r"c"l"e. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  1. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    Science.gov (United States)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  2. Galaxy Formation by Cosmic Strings and Cooling of Baryonic Matter

    OpenAIRE

    Mizuo, IZAWA; Humitaka, SATO; Department of Physics, University of Tokyo; Department of Physics, Kyoto University

    1987-01-01

    Cooling and contraction of baryonic matter are investigated ina galaxy formation scenario by string loops. It is found that ~3% of virialized baryonic matter has cooled down and contracted. This virialized object may have a disk-halo structure and be considered a galaxy.

  3. Secular evolution of galaxies and galaxy clusters in decaying dark matter cosmology

    International Nuclear Information System (INIS)

    Ferrer, Francesc; Nipoti, Carlo; Ettori, Stefano

    2009-01-01

    If the dark matter sector in the Universe is composed by metastable particles, galaxies and galaxy clusters are expected to undergo significant secular evolution from high to low redshift. We show that the decay of dark matter, with a lifetime compatible with cosmological constraints, can be at the origin of the observed evolution of the Tully-Fisher relation of disk galaxies and alleviate the problem of the size evolution of elliptical galaxies, while being consistent with the current observational constraints on the gas fraction of clusters of galaxies.

  4. Abundance patterns in the interstellar medium of early-type galaxies observed with Suzaku

    International Nuclear Information System (INIS)

    Konami, Saori; Matsushita, Kyoko; Tamagawa, Toru; Nagino, Ryo

    2014-01-01

    We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0 galaxies, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-source region, which is four times the effective radius, r e , is reproduced with one-temperature (1T) or two-temperature (2T) thermal plasma models as well as a multi-temperature model, using APEC plasma code version 2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83 ± 0.04, 0.93 ± 0.03, 0.80 ± 0.02, and 0.80 ± 0.02 solar, respectively, in solar units according to the solar abundance table by Lodders in 2003. These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between versions 2.0.1 and 1.3.1 of the APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within an aperture with a radius of one r e derived from optical spectroscopy. From these results, we discuss the past and present Type Ia supernova rates and star formation histories in early-type galaxies.

  5. THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Tundo, Elena [INAF, Osservatorio Astrofisico di Firenze, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Mobasher, Bahram; Nayyeri, Hooshang [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Trump, Jonathan R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Cassata, Paolo [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso (Chile); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Guo, Yicheng [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Pentericci, Laura; Castellano, Marco; Fontana, Adriano; Grazian, Andrea [INAF - Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone (Italy); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Finkelstein, Steven L., E-mail: ccwilliams@email.arizona.edu [Department of Astronomy, University of Texas, Austin (United States); and others

    2015-02-10

    Quenched galaxies at z > 2 are nearly all very compact relative to z ∼ 0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z ∼ 3 selected to be candidate progenitors of the quenched galaxies at z ∼ 2 based on their compact rest-frame-optical sizes and high Σ{sub SFR}. We compare their UV properties to those of more extended LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster bulk interstellar medium (ISM) gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyα and interstellar absorption lines in that their Lyα emission remains strong despite high interstellar absorption, possibly indicating that the neutral H I fraction is patchy, such that Lyα photons can escape. We detect stronger C IV P-Cygni features (emission and absorption) and He II emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyα properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z ∼ 2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally sized LBGs at these (early) epochs.

  6. THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z ∼ 2

    International Nuclear Information System (INIS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Tundo, Elena; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman; Trump, Jonathan R.; Cassata, Paolo; Dekel, Avishai; Guo, Yicheng; Lee, Kyoung-Soo; Pentericci, Laura; Castellano, Marco; Fontana, Adriano; Grazian, Andrea; Bell, Eric F.; Finkelstein, Steven L.

    2015-01-01

    Quenched galaxies at z > 2 are nearly all very compact relative to z ∼ 0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z ∼ 3 selected to be candidate progenitors of the quenched galaxies at z ∼ 2 based on their compact rest-frame-optical sizes and high Σ SFR . We compare their UV properties to those of more extended LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster bulk interstellar medium (ISM) gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyα and interstellar absorption lines in that their Lyα emission remains strong despite high interstellar absorption, possibly indicating that the neutral H I fraction is patchy, such that Lyα photons can escape. We detect stronger C IV P-Cygni features (emission and absorption) and He II emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyα properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z ∼ 2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally sized LBGs at these (early) epochs

  7. Observing Primeval Galaxies and Dark Matter with LAIRTS

    Science.gov (United States)

    1988-12-05

    in the form of black holes. Previously, we had argued that the dark matter in the halo of spiral galaxies is not baryonic . Now we have extended those...consider each type of barvonic matter and show the contradictions that would exist if the dark matter were made up of each form of baryonic matter . A topic...Classification) Observing Primeval Galaxies and Dark Matter with LAIRTS 12. PERSONAL AUTHOR(S) 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year

  8. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    Science.gov (United States)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  9. Dragging force on galaxies due to streaming dark matter

    Science.gov (United States)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  10. The Evolution of Galaxies by the Incompatibility between Dark Matter and Baryonic Matter

    OpenAIRE

    Chung, Ding-Yu

    2001-01-01

    In this paper, the evolution of galaxies is by the incompatibility between dark matter and baryonic matter. Due to the structural difference, baryonic matter and dark matter are incompatible to each other as oil droplet and water in emulsion. In the interfacial zone between dark matter and baryonic matter, this incompatibility generates the modification of Newtonian dynamics to keep dark matter and baryonic matter apart. The five periods of baryonic structure development in the order of incre...

  11. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  12. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  13. Baryonic distributions in galaxy dark matter haloes - II. Final results

    Science.gov (United States)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  14. Galaxies and gas in a cold dark matter universe

    Science.gov (United States)

    Katz, Neal; Hernquist, Lars; Weinberg, David H.

    1992-01-01

    We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.

  15. Do satellite galaxies trace matter in galaxy clusters?

    Science.gov (United States)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  16. Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, Frances H.; Kulkarni, Varsha P. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 (United States); Kisielius, Romas; Bogdanovich, Pavel [Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, LT-10222 Vilnius (Lithuania); Ferland, Gary J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2017-05-01

    Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic medium (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.

  17. Dissipative dark matter and the rotation curves of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R., E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  18. Dissipative dark matter and the rotation curves of dwarf galaxies

    International Nuclear Information System (INIS)

    Foot, R.

    2016-01-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  19. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  20. The search for Dark Matter in our galaxy; Suche nach Dunkler Materie in unserer Galaxie

    Energy Technology Data Exchange (ETDEWEB)

    Eitel, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kernphysik; Boer, W. de [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Experimentelle Kernphysik

    2007-07-01

    The matter content in galaxies like the Milky Way as well as in the entire Universe is dominated by Dark Matter (DM). The nature of this DM is one of the great enigmas of modern astroparticle physics. A promising candidate for this DM is a weakly interacting massive particle (WIMP). DM can then be detected directly via rare elastic collisions of WIMPs with atomic nuclei in a well shielded underground detector or via the decay products from the annihilation of two WIMPs. Energetic gamma rays in cosmic radiation might therefore indicate an indirect signal of DM particles in our galaxy. We present two experimental approaches to search for WIMP Dark Matter. (orig.)

  1. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  2. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    Science.gov (United States)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  3. EVOLUTION OF THE GALAXY-DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaohu; Zhang Youcai; Han Jiaxin [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: xhyang@shao.ac.cn [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2012-06-10

    We present a new model to describe the galaxy-dark matter connection across cosmic time, which unlike the popular subhalo abundance-matching technique is self-consistent in that it takes account of the facts that (1) subhalos are accreted at different times and (2) the properties of satellite galaxies may evolve after accretion. Using observations of galaxy stellar mass functions (SMFs) out to z {approx} 4, the conditional SMF at z {approx} 0.1 obtained from Sloan Digital Sky Survey galaxy group catalogs, and the two-point correlation function (2PCF) of galaxies at z {approx} 0.1 as a function of stellar mass, we constrain the relation between galaxies and dark matter halos over the entire cosmic history from z {approx} 4 to the present. This relation is then used to predict the median assembly histories of different stellar mass components within dark matter halos (central galaxies, satellite galaxies, and halo stars). We also make predictions for the 2PCFs of high-z galaxies as function of stellar mass. Our main findings are the following: (1) Our model reasonably fits all data within the observational uncertainties, indicating that the {Lambda}CDM concordance cosmology is consistent with a wide variety of data regarding the galaxy population across cosmic time. (2) At low-z, the stellar mass of central galaxies increases with halo mass as M{sup 0.3} and M{sup {approx}>4.0} at the massive and low-mass ends, respectively. The ratio M{sub *,c}/M reveals a maximum of {approx}0.03 at a halo mass M {approx} 10{sup 11.8} h{sup -1} M{sub Sun }, much lower than the universal baryon fraction ({approx}0.17). At higher redshifts the maximum in M{sub *,c}/M remains close to {approx}0.03, but shifts to higher halo mass. (3) The inferred timescale for the disruption of satellite galaxies is about the same as the dynamical friction timescale of their subhalos. (4) The stellar mass assembly history of central galaxies is completely decoupled from the assembly history of its host

  4. Physics of antimatter-matter reactions for interstellar propulsion

    International Nuclear Information System (INIS)

    Morgan, D.L. Jr.

    1986-01-01

    At the stage of the antiproton-nucleon annihilation chain of events relevant to propulsion the annihilation produces energetic charged pions and gamma rays. If annihilation occurs in a complex nucleus, protons, neutrons, and other nuclear fragments are also produced. The charge, number, and energy of the annihilation products are such that annihilation rocket engine concepts involving relatively low specific impulse (I/sub sp/ ≅ 1000 to 2000 s) and very high I/sub sp/ (3 x 10 7 s) appear feasible and have efficiencies on the order of 50% for annihilation energy to propulsion energy conversion. At I/sub sp/'s of around 15,000 s, however, it may be that only the kinetic energy of the charged nuclear fragments can be utilized for propulsion in engines of ordinary size. An estimate of this kinetic energy was made from known pieces of experimental and theoretical information. Its value is about 10% of the annihilation energy. Control over the mean penetration depth of protons into matter prior to annihilation is necessary so that annihilation occurs in the proper region within the engine. Control is possible by varying the antiproton kinetic energy to obtain a suitable annihilation cross section. The annihilation cross section at low energies is on the order of or larger than atomic areas due to a rearrangement reaction, but it is very low at high energy where its value is closer to nuclear areas

  5. Physical conditions of the interstellar medium in high-redshift submillimetre bright galaxies

    Science.gov (United States)

    Yang, Chentao

    2017-12-01

    The discovery of a population of high- redshift dust-obscured submillimeter galaxies (SMGs) from ground-based submm cameras has revolutionised our understanding of galaxy evolution and star formation in extreme conditions. They are the strongest starbursts in the Universe approaching the Eddington limit and are believed to be the progenitors of the most massive galaxies today. However, theoretical models of galaxy evolution have even been challenged by a large number of detections of high-redshift SMGs. A very few among them are gravitationally lensed by an intervening galaxy. Recent wide-area extragalactic surveys have discovered hundreds of such strongly lensed SMGs, opening new exciting opportunities for observing the interstellar medium in these exceptional objects. We have thus carefully selected a sample of strongly gravitational lensed SMGs based on the submillimeter flux limit from the Herschel-ATLAS sample. Using IRAM telescopes, we have built a rich H2O-line-detected sample of 16 SMGs. We found a close-to-linear tight correlation between the H2O line and total infrared luminosity. This indicates the importance of far-IR pumping to the excitation of the H2O lines. Using a far-IR pumping model, we have derived the physical properties of the H2O gas and the dust. We showed that H2O lines trace a warm dense gas that may be closely related to the active star formation. Along with the H2O lines, several H2O+ lines have also been detected in three of our SMGs. We also find a tight correlation between the luminosity of the lines of H2O and H2O+ from local ULIRGs to high-redshift SMGs. The flux ratio between H2O+ and H2O suggests that cosmic rays from strong star forming activities are possibly driving the related oxygen chemistry. Another important common molecular gas tracer is the CO line. We have observed multiple transitions of the CO lines in each of our SMGs with IRAM 30m telescope. By analysing the CO line profile, we discovered a significant differential

  6. Search for Dark Matter Annihilation in Galaxy Groups.

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L; Safdi, Benjamin R

    2018-03-09

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z≲0.03. We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O(1) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ∼30  GeV to 95% confidence in the bb[over ¯] annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  7. A filament of dark matter between two clusters of galaxies.

    Science.gov (United States)

    Dietrich, Jörg P; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2012-07-12

    It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

  8. Search for Dark Matter Annihilation in Galaxy Groups

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-03-01

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z ≲0.03 . We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O (1 ) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ˜30 GeV to 95% confidence in the b b ¯ annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  9. Dark matter in our Galaxy. I

    International Nuclear Information System (INIS)

    Tucker, W.; Tucker, K.

    1989-01-01

    Research concerned with the existence and nature of dark matter is examined. The first evidence of dark matter discovered by Oort in 1932 during the study of galactic rotation and observations by Bahcall in 1984 using tracer stars are discussed. Stars, gas, dust, rocks, white dwarfs, neutron stars, black holes, and red and brown dwarfs are investigated as possible forms of dark matter. The date reveal that gas, dust, neutron stars, black holes, rocks, and comets can not be dark matter; however, brown, red, or white dwarfs could be possible forms of dark matter

  10. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  11. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  12. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  13. Redshift space clustering of galaxies and cold dark matter model

    Science.gov (United States)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  14. Dark matter annihilations search in dwarf spheroidal galaxies with fermi

    International Nuclear Information System (INIS)

    Farnier, C.; Nuss, E.; Cohen-Tanugi, J.

    2011-01-01

    Launched in June 2008, the Fermi Gamma-ray Telescope includes a pair conversion detector designed for the 20 MeV to ∼300GeV gamma-ray sky study, the Large Area Telescope (LAT). Operating in all-sky survey mode, its excellent sensitivity and angular resolution will allow either to discover or constrain a signal coming through the annihilation of dark matter particles. Predicted by cold dark matter scenarios as the largest clumps, dwarf spheroidal galaxies are amongst the most attractive targets for indirect search of dark matter by gamma-ray experiments. We present here an overview of the Fermi LAT Dark Matter and New Physics Working Group efforts in the searches of gamma-ray fluxes coming from WIMP pair annihilations in dwarf spheroidal galaxies.

  15. A new model of dark matter distribution in galaxies

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2014-01-01

    In the absence of the physical understanding of the phenomenon, different empirical laws have been used as approximation for distribution of dark matter in galaxies and clusters of galaxies. We suggest a new profile which is not empirical in nature, but motivated with the physical idea that what we call dark matter is essentially the gravitational polarization of the quantum vacuum (containing virtual gravitational dipoles) by the immersed baryonic matter. It is very important to include this new profile in forthcoming studies of dark matter halos and to reveal how well it performs in comparison with empirical profiles. A good agreement of the profile with observational findings would be the first sign of unexpected gravitational properties of the quantum vacuum.

  16. Dark matter deprivation in the field elliptical galaxy NGC 7507

    Science.gov (United States)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  17. Dark matter and rotation curves of spiral galaxies

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip; Somer, L.

    2016-01-01

    Roč. 25, April (2016), s. 64-77 ISSN 1313-2709 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:67985840 ; RVO:61389005 Keywords : red dwarf * dark matter * spiral galaxy Subject RIV: BA - General Mathematics http://www.astro.bas.bg/AIJ/issues/n25/MKrizek.pdf

  18. Testing Lorentz invariance of dark matter with satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Dario [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Nusser, Adi [Physics Department and the Asher Space Science Institute—Technion, Haifa 32000 (Israel); Blas, Diego; Sibiryakov, Sergey, E-mail: d.bettoni@thphys.uni-heidelberg.de, E-mail: adi@physics.technion.ac.il, E-mail: diego.blas@cern.ch, E-mail: sergey.sibiryakov@cern.ch [Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2017-05-01

    We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.

  19. Bars in dark-matter-dominated dwarf galaxy discs

    Science.gov (United States)

    Marasco, A.; Oman, K. A.; Navarro, J. F.; Frenk, C. S.; Oosterloo, T.

    2018-05-01

    We study the shape and kinematics of simulated dwarf galaxy discs in the APOSTLE suite of Λ cold dark matter (ΛCDM) cosmological hydrodynamical simulations. We find that a large fraction of these gas-rich, star-forming discs show weak bars in their stellar component, despite being dark-matter-dominated systems. The bar pattern shape and orientation reflect the ellipticity of the dark matter potential, and its rotation is locked to the slow figure rotation of the triaxial dark halo. The bar-like nature of the potential induces non-circular motions in the gas component, including strong bisymmetric flows that can be readily seen as m = 3 harmonic perturbations in the H I line-of-sight velocity fields. Similar bisymmetric flows are seen in many galaxies of The HI Nearby Galaxy Survey (THINGS) and Local Irregulars That Trace Luminosity Extremes THINGS (LITTLE THINGS), although on average their amplitudes are a factor of ˜2 weaker than in our simulated discs. Our results indicate that bar-like patterns may arise even when baryons are not dominant, and that they are common enough to warrant careful consideration when analysing the gas kinematics of dwarf galaxy discs.

  20. MAGNIFICATION BY GALAXY GROUP DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Jes; Hildebrandt, Hendrik; Van Waerbeke, Ludovic [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Leauthaud, Alexie; Tanaka, Masayuki [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Chiba 277-8582 (Japan); Capak, Peter [NASA Spitzer Science Center, California Institute of Technology, 220-6 Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Finoguenov, Alexis [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); George, Matthew R. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-08-01

    We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9{sigma}. Using X-ray-selected groups in the COSMOS 1.64 deg{sup 2} field, and high-redshift Lyman break galaxies as sources, we measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best-fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.

  1. Thermoluminescence of simulated interstellar matter after gamma-ray irradiation. Forsterite, enstatite and carbonates

    Science.gov (United States)

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-08-01

    Interstellar matter is known to be strongly irradiated by cosmic radiation and several types of cosmic ray particles. Simulated interstellar matter, such as synthesized forsterite (Mg2SiO4), enstatite (MgSiO3) and magnesite (MgCO3), has been irradiated with 60Co gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of the Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is 1017nf /cm2). After irradiation, samples are stored in liquid nitrogen for several months to allow the decay of induced radioactivity. We measured the luminescence spectra of the gamma ray irradiated samples during warming to 370 K using a spectrophotometer. For the forsterite and magnesite, the spectra exhibit a rather intense peak at about 645-655 nm and 660 nm respectively, whereas luminescence scarcely appeared in the natural olivine sample. The spectra of forsterite is very similar to the ERE of the Red Rectangle.

  2. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code

  3. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  4. 3D distribution of interstellar medium in the Galaxy: Preparation for analysis of Gaia observations

    Energy Technology Data Exchange (ETDEWEB)

    Puspitarini, Lucky, E-mail: rosine.lallement@obspm.fr [GEPI Observatoire de Paris, CNRS, Paris Diderot University, 5 Place Jules Janssen, 92190, Meudon (France); Bosscha Observatory and Department of Astronomy, FMIPA, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Lallement, Rosine, E-mail: rosine.lallement@obspm.fr [GEPI Observatoire de Paris, CNRS, Paris Diderot University, 5 Place Jules Janssen, 92190, Meudon (France)

    2015-09-30

    Accurate and detailed three-dimensional (3D) maps of Galactic interstellar medium (ISM) are still lacking. One way to obtain such 3D descriptions is to record a large set of individual absorption or reddening measurements toward target stars located at various known distances and directions. The inversion of these measurements using a tomographic method can produce spatial distribution of the ISM. Until recently absorption data were very limited and distances to the target stars are still uncertain, but the situation will greatly improve thanks to current and future massive stellar surveys from ground, and to Gaia mission. To prepare absorption data for inversion from a huge number of stellar spectra, automated tools are needed. We have developed various spectral analysis tools adapted to different type of spectra, early- or late- type star. We also have used diffuse interstellar bands (DIBs) to trace IS structures and kinematics. Although we do not know yet their carriers, they can be a promising tool to trace distant interstellar clouds or Galactic arms. We present some examples of the interstellar fitting and show the potentiality of DIBs in tracing the ISM. We will also briefly show and comment the latest 3D map of the local ISM which reveal nearby cloud complexes and cavities.

  5. 3D distribution of interstellar medium in the Galaxy: Preparation for analysis of Gaia observations

    International Nuclear Information System (INIS)

    Puspitarini, Lucky; Lallement, Rosine

    2015-01-01

    Accurate and detailed three-dimensional (3D) maps of Galactic interstellar medium (ISM) are still lacking. One way to obtain such 3D descriptions is to record a large set of individual absorption or reddening measurements toward target stars located at various known distances and directions. The inversion of these measurements using a tomographic method can produce spatial distribution of the ISM. Until recently absorption data were very limited and distances to the target stars are still uncertain, but the situation will greatly improve thanks to current and future massive stellar surveys from ground, and to Gaia mission. To prepare absorption data for inversion from a huge number of stellar spectra, automated tools are needed. We have developed various spectral analysis tools adapted to different type of spectra, early- or late- type star. We also have used diffuse interstellar bands (DIBs) to trace IS structures and kinematics. Although we do not know yet their carriers, they can be a promising tool to trace distant interstellar clouds or Galactic arms. We present some examples of the interstellar fitting and show the potentiality of DIBs in tracing the ISM. We will also briefly show and comment the latest 3D map of the local ISM which reveal nearby cloud complexes and cavities

  6. Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback

    Science.gov (United States)

    Merlin, E.; Chiosi, C.

    2007-10-01

    Context: Modelling the gaseous component of the interstellar medium (ISM) by Smoothed Particles Hydrodynamics in N-Body simulations (NB-TSPH) is still very crude when compared to the complex real situation. In the real ISM, many different and almost physically decoupled components (phases) coexist for long periods of time, and since they spread over wide ranges of density and temperature, they cannot be correctly represented by a unique continuous fluid. This would influence star formation which is thought to take place in clumps of cold, dense, molecular clouds, embedded in a warmer, neutral medium, that are almost freely moving throughout the tenuous hot ISM. Therefore, assuming that star formation is simply related to the gas content without specifying the component in which this is both observed and expected to occur may not be physically sound. Aims: We consider a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Methods: Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Results: Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate agree with recent observational data on early-type galaxies. Conclusions: These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.

  7. Stellar Velocity Dispersion: Linking Quiescent Galaxies to their Dark Matter Halos

    OpenAIRE

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-01-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This prop...

  8. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old

  9. Studying the Interstellar Medium of H II/BCD Galaxies Using IFU Spectroscopy

    Directory of Open Access Journals (Sweden)

    Patricio Lagos

    2013-01-01

    Full Text Available We review the results from our studies, and previous published work, on the spatially resolved physical properties of a sample of H ii/BCD galaxies, as obtained mainly from integral-field unit spectroscopy with Gemini/GMOS and VLT/VIMOS. We confirm that, within observational uncertainties, our sample galaxies show nearly spatially constant chemical abundances similar to other low-mass starburst galaxies. They also show He ii  λ4686 emission with the properties being suggestive of a mix of excitation sources and with Wolf-Rayet stars being excluded as the primary ones. Finally, in this contribution, we include a list of all H ii/BCD galaxies studied thus far with integral-field unit spectroscopy.

  10. Dying Stars Indicate Lots of Dark Matter in Giant Galaxy

    Science.gov (United States)

    1994-04-01

    Very difficult and time-consuming observations performed with the ESO 3.5-metre New Technology Telescope (NTT) in November 1993 by an international team of astronomers [1], indicate that up to 90 percent of the matter in a distant giant galaxy may be of a kind that cannot be seen by normal telescopes. The astronomers were able to observe the individual motions of 37 extremely faint Planetary Nebulae [2] in the outskirts of the giant elliptical galaxy NGC 1399 that is located at the centre of the southern Fornax cluster of galaxies, at a distance of about 50 million light-years. The mass of the galaxy can be inferred from these motions: the faster they are, the more massive is the galaxy. Surprisingly, the total mass of NGC 1399 found from these new measurements is about ten times as large as the combined mass of the stars and nebulae seen in this galaxy. These new results also have important implications for the current ideas about the formation of giant galaxies. GIANT GALAXIES Galaxies are the basic building blocks of the Universe. Some look like spinning spirals, like our own Milky Way galaxy, with its several hundreds of billions of stars in a flat, rotating disk. Some galaxies lead a comparatively quiet life, others are violent and explosive. But perhaps the most enigmatic of them all are the largest ones, the giant elliptical galaxies. They are huge collections of stars and hot gas, 100 times brighter than the Milky Way and in many of them, the hot gas is a powerful emitter of radio waves and X-rays. The giant galaxies are mostly found at the centres of vast clusters of hundreds or thousands of smaller galaxies, like swarms of bees about the central hive. How did these great galaxies form at the centres of their clusters? Astronomers who make computer simulations of the early Universe believe they know the answer. In their simulations, they see these giant galaxies forming by gradual aggregation of small clumps of matter falling towards the centre, thereby

  11. Galaxy Formation in Sterile Neutrino Dark Matter Models

    Science.gov (United States)

    Menci, N.; Grazian, A.; Lamastra, A.; Calura, F.; Castellano, M.; Santini, P.

    2018-02-01

    We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) with active neutrinos, we focus on models with {m}ν =7 {keV}, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider (1) two resonant production models with {\\sin }2(2θ )=5 × {10}-11 and {\\sin }2(2θ )=2 × {10}-10, to cover the range of mixing parameters consistent with the 3.5 keV line; (2) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal warm DM with particle mass {m}X=3 {keV}. Using a semianalytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way–like galaxies, and the global star formation history of galaxies with observations does not allow us to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at z≳ 6, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the DM scenarios considered. We discuss how future observations with upcoming facilities will enable us to rule out or to strongly support DM models based on sterile neutrinos.

  12. Painting galaxies into dark matter halos using machine learning

    Science.gov (United States)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  13. WIDE-FIELD VLBI OBSERVATIONS OF M31: A UNIQUE PROBE OF THE IONIZED INTERSTELLAR MEDIUM OF A NEARBY GALAXY

    International Nuclear Information System (INIS)

    Morgan, John S.; Argo, Megan K.; Trott, Cathryn M.; Macquart, Jean-Pierre; Miller-Jones, James; Tingay, Steven J.; Deller, Adam; Middelberg, Enno

    2013-01-01

    The Very Long Baseline Array was used at 1.6 GHz to observe a target field 50' in diameter including the core of M31. Novel very long baseline interferometry correlation techniques were used to observe 200 sources simultaneously, of which 16 were detected. We classify all 16 as background active galactic nuclei based on their X-ray properties and arcsecond- and mas-scale morphology. The detected sources were then analyzed for evidence of scatter-broadening due to the ionized interstellar medium (ISM) of M31. The detection of a compact background source only 0.25 kpc projected distance from M31* places a constraint on the extent of any extreme scattering region associated with the center of M31. However, the two sources closest to the core show evidence of scatter broadening consistent with that which would be seen for a compact source if it were observed through the inner disk of our Galaxy, at the inclination of M31. We interpret this as a detection of the ionized ISM of M31 along two lines of sight. With the increases in bandwidth and sensitivity envisaged for future long-baseline interferometers, this should prove to be a remarkably powerful technique for understanding the ionized ISM in external galaxies.

  14. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Berger, Edo; Bagley, Megan M.

    2010-01-01

    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission-line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons, we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. Despite the limitations inherent in our small sample, we find strong evidence that LGRB host galaxies generally have low-metallicity interstellar medium (ISM) environments out to z ∼ 1. The ISM properties of our GRB hosts, including metallicity and ionization parameter, are significantly different from the general galaxy population and host galaxies of nearby broad-lined Type Ic supernovae. However, these properties show better agreement with a sample of nearby metal-poor galaxies.

  15. Symposium “Mapping the Galaxy and Nearby Galaxies”

    CERN Document Server

    Wada, Keiichi; ASTROPHYSICS AND SPACE SCIENCE PROCEEDINGS

    2008-01-01

    This is a proceedings book of the symposium "Mapping the Galaxy and Nearby Galaxies" held on Ishigaki Island, Okinawa, Japan, on June 25 – 30, 2006. The symposium focused on mapping the interstellar media and other components in galaxies. Latest results of the following main topics are presented in the volume: Our Galaxy -- mass distribution, local ISM, supermassive black holes and their environments Central part of nearby galaxies -- ISM around starbursts, fueling mechanisms Nearby Galaxies -- molecular gas and star formation, gas dynamics Galactic environment and evolution -- formation of our Galaxy, origin of supermassive black holes The nature of the Dark Matter component -- effects on the internal structures of galaxies

  16. WHEELS OF FIRE. IV. STAR FORMATION AND THE NEUTRAL INTERSTELLAR MEDIUM IN THE RING GALAXY AM0644-741

    International Nuclear Information System (INIS)

    Higdon, James L.; Higdon, Sarah J. U.; Rand, Richard J.

    2011-01-01

    We combine data from the Australia Telescope National Facility and Swedish ESO Submillimeter Telescope to investigate the neutral interstellar medium (ISM) in AM0644-741, a large and robustly star-forming ring galaxy. The galaxy's ISM is concentrated in the 42 kpc diameter starburst ring, but appears dominated by atomic gas, with a global molecular fraction (f mol ) of only 0.062 ± 0.005. Apart from the starburst peak, the gas ring appears stable against the growth of gravitational instabilities (Q gas = 3-11). Including the stellar component lowers Q overall, but not enough to make Q 2 content. AM0644-741's star formation law is highly peculiar: H I obeys a Schmidt law while H 2 is uncorrelated with star formation rate density. Photodissociation models yield low volume densities in the ring, especially in the starburst quadrant (n ∼ 2 cm -3 ), implying a warm neutral medium dominated ISM. At the same time, the ring's pressure and ambient far-ultraviolet radiation field lead to the expectation of a predominantly molecular ISM. We argue that the ring's high SFE, low f mol and n, and peculiar star formation law follow from the ISM's ∼> 100 Myr confinement time in the starburst ring, which amplifies the destructive effects of embedded massive stars and supernovae. As a result, the ring's molecular ISM becomes dominated by small clouds, causing M H 2 to be significantly underestimated by 12 CO line fluxes: in effect, X CO >> X Gal despite the ring's ≥solar metallicity. The observed H I is primarily a low-density photodissociation product, i.e., a tracer rather than a precursor of massive star formation. Such an 'over-cooked' ISM may be a general characteristic of evolved starburst ring galaxies.

  17. The nongravitational interactions of dark matter in colliding galaxy clusters.

    Science.gov (United States)

    Harvey, David; Massey, Richard; Kitching, Thomas; Taylor, Andy; Tittley, Eric

    2015-03-27

    Collisions between galaxy clusters provide a test of the nongravitational forces acting on dark matter. Dark matter's lack of deceleration in the "bullet cluster" collision constrained its self-interaction cross section σ(DM)/m dark matter) for long-ranged forces. Using the Chandra and Hubble Space Telescopes, we have now observed 72 collisions, including both major and minor mergers. Combining these measurements statistically, we detect the existence of dark mass at 7.6σ significance. The position of the dark mass has remained closely aligned within 5.8 ± 8.2 kiloparsecs of associated stars, implying a self-interaction cross section σ(DM)/m < 0.47 cm(2)/g (95% CL) and disfavoring some proposed extensions to the standard model. Copyright © 2015, American Association for the Advancement of Science.

  18. Constraining particle dark matter using local galaxy distribution

    International Nuclear Information System (INIS)

    Ando, Shin’ichiro; Ishiwata, Koji

    2016-01-01

    It has been long discussed that cosmic rays may contain signals of dark matter. In the last couple of years an anomaly of cosmic-ray positrons has drawn a lot of attentions, and recently an excess in cosmic-ray anti-proton has been reported by AMS-02 collaboration. Both excesses may indicate towards decaying or annihilating dark matter with a mass of around 1–10 TeV. In this article we study the gamma rays from dark matter and constraints from cross correlations with distribution of galaxies, particularly in a local volume. We find that gamma rays due to inverse-Compton process have large intensity, and hence they give stringent constraints on dark matter scenarios in the TeV scale mass regime. Taking the recent developments in modeling astrophysical gamma-ray sources as well as comprehensive possibilities of the final state products of dark matter decay or annihilation into account, we show that the parameter regions of decaying dark matter that are suggested to explain the excesses are excluded. We also discuss the constrains on annihilating scenarios.

  19. The prolate dark matter halo of the Andromeda galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  20. The prolate dark matter halo of the Andromeda galaxy

    International Nuclear Information System (INIS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  1. Galaxy Collisions, Gas Stripping and Star Formation in the Evolution of Galaxies

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan

    2006-01-01

    Roč. 18, - (2006), s. 125-146 ISSN 0941-1445. [From Cosmological Structures to the Milky Way. Praha, 20.09.2004-25.09.2004] Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxies * evolution of galaxies * interstellar matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. The cored distribution of dark matter in spiral galaxies

    OpenAIRE

    Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P.

    2004-01-01

    We present the HI data for 5 spiral galaxies that, along with their Halpha rotation curves, are used to derive the distribution of dark matter within these objects. A new method for extracting rotation curves from HI data cubes is presented; this takes into account the existence of a warp and minimises projection effects. The rotation curves obtained are tested by taking them as input to construct model data cubes that are compared to the observed ones: the agreement is excellent. On the cont...

  3. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ on ρtot/. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity correlation function

  4. Interaction of Supernova Remnants with Interstellar Clouds: From the Nova Laser to the Galaxy

    International Nuclear Information System (INIS)

    Klein, Richard I.; Budil, Kimberly S.; Perry, Theodore S.; Bach, David R.

    2000-01-01

    The interaction of strong shock waves, such as those generated by the explosion of supernovae with interstellar clouds, is a problem of fundamental importance in understanding the evolution and the dynamics of the interstellar medium (ISM) as it is disrupted by shock waves. The physics of this essential interaction sheds light on several key questions: (1) What is the rate and total amount of gas stripped from the cloud, and what are the mechanisms responsible? (2) What is the rate of momentum transfer to the cloud? (3) What is the appearance of the shocked cloud, its morphology and velocity dispersion? (4) What is the role of vortex dynamics on the evolution of the cloud? (5) Can the interaction result in the formation of a new generation of stars? To address these questions, one of us has embarked on a comprehensive multidimensional numerical study of the shock cloud problem using high-resolution adaptive mesh refinement (AMR) hydrodynamics. Here we present the results of a series of Nova laser experiments investigating the evolution of a high-density sphere embedded in a low-density medium after the passage of a strong shock wave, thereby emulating the supernova shock-cloud interaction. The Nova laser was utilized to generate a strong (∼Mach 10) shock wave which traveled along a miniature beryllium shock tube, 750 μm in diameter, filled with a low-density plastic emulating the ISM. Embedded in the plastic was a copper microsphere (100 μm in diameter) emulating the interstellar cloud. Its morphology and evolution as well as the shock wave trajectory were diagnosed via side-on radiography. We describe here experimental results of this interaction for the first time out to several cloud crushing times and compare them to detailed two- and three-dimensional radiation hydrodynamic simulations using both arbitrary Lagrangian and Eulerian hydrodynamics (ALE) as well as high-resolution AMR hydrodynamics. We briefly discuss the key hydrodynamic instabilities

  5. On the apparent coupling of neutral hydrogen and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Hoekstra, H; van Albada, TS; Sancisi, R

    2001-01-01

    We have studied a mass model for spiral galaxies in which the dark matter surface density is a scaled version of the observed H I surface density. Applying this mass model to a sample of 24 spiral galaxies with reliable rotation curves, one obtains good fits for most galaxies. The scaling factors

  6. Dark matter identification with gamma rays from dwarf galaxies

    International Nuclear Information System (INIS)

    Perelstein, Maxim; Shakya, Bibhushan

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, Fermi and HESS are due to dark matter annihilation into lepton-rich final states, the accompanying final state radiation (FSR) photons may be detected by ground-based atmospheric Cherenkov telescopes (ACTs). Satellite dwarf galaxies in the vicinity of the Milky Way are particularly promising targets for this search. We find that current and near-future ACTs have an excellent potential for discovering the FSR photons from dwarfs, although a discovery cannot be guaranteed due to large uncertainties in the fluxes resulting from lack of precise knowledge of dark matter distribution within the dwarfs. We also investigate the possibility of discriminating between different dark matter models based on the measured FSR photon spectrum. For typical parameters, we find that the ACTs can reliably distinguish models predicting dark matter annihilation into two-lepton final states from those favoring four-lepton final states (as in, for example, ''axion portal'' models). In addition, we find that the dark matter particle mass can also be determined from the FSR spectrum

  7. Dark Matter in γ lines: Galactic Center vs. dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lefranc, Valentin; Moulin, Emmanuel [DRF/Irfu, Service de Physique des Particules, CEA Saclay, F-91191 Gif-Sur-Yvette Cedex (France); Panci, Paolo; Silk, Joseph [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France); Sala, Filippo, E-mail: valentin.lefranc@cea.fr, E-mail: emmanuel.moulin@cea.fr, E-mail: panci@iap.fr, E-mail: fsala@lpthe.jussieu.fr, E-mail: silk@iap.fr [LPTHE, UMR 7589 CNRS, 4 Place Jussieu, F-75252, Paris (France)

    2016-09-01

    We provide CTA sensitivities to Dark Matter (DM) annihilation in γ-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.

  8. Modeling the distribution of dark matter and its connection to galaxies

    OpenAIRE

    Mao, Yao-Yuan

    2016-01-01

    Despite the mysterious nature of dark matter and dark energy, the Lambda-Cold Dark Matter (LCDM) model provides a reasonably accurate description of the evolution of the cosmos and the distribution of galaxies. Today, we are set to tackle more specific and quantitative questions about the galaxy formation physics, the nature of dark matter, and the connection between the dark and the visible components. The answers to these questions are however elusive, because dark matter is not directly ob...

  9. Glaciations and dense interstellar clouds; and reply

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK); Dennison, B; Mansfield, V N

    1976-09-16

    Reference is made to Dennison and Mansfield (Nature 261:32 (1976)) who offered comments on a previous paper by the author (Nature 255:607 (1975)), in which he suggested that a possible cause of an ice age on the Earth was the passage of the solar system through an interstellar matter compression region bordering a spiral arm of the Galaxy. Dennison and Mansfield criticised this suggestion because it led them to expect to find a dense cloud of interstellar matter still very close to the Earth, whereas no such cloud is known. It is stated here that this criticism ignores the structure of the Galaxy, that provided the basis of the suggestion. A reply by Dennison and Mansfield is appended.

  10. Dark Matter in Galaxy Clusters: Shape, Projection, and Environment

    Science.gov (United States)

    Groener, Austen M.

    We explore the intrinsic distribution of dark matter within galaxy clusters, by combining insights from the largest N-body simulations as well as the largest observational dataset of its kind. Firstly, we study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimate of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of 3D concentrations (c200) and isodensity shape on weak and strong lensing scales. We find this difference to be ˜ 18% (˜ 9%) for low (medium) mass cluster halos with intrinsically low concentrations (c200=1- 3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well-aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ˜ 30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download. Following that, we then turn to observational measurements galaxy clusters. Scaling relations of clusters have made them particularly important cosmological probes of structure formation. In this work, we present a comprehensive study of the relation between two profile observables, concentration (cvir ) and mass (Mvir). We have collected the largest known sample of measurements from the literature which make use of one or more of the following reconstruction techniques: Weak gravitational lensing (WL), strong gravitational lensing (SL), Weak+Strong Lensing (WL+SL), the Caustic Method (CM), Line-of-sight Velocity Dispersion (LOSVD), and X-ray. We find that the concentration-mass (c-M) relation

  11. Particle dark matter constraints from the Draco dwarf galaxy

    International Nuclear Information System (INIS)

    Tyler, Craig

    2002-01-01

    It is widely thought that neutralinos, the lightest supersymmetric particles, could comprise most of the dark matter. If so, then dark halos will emit radio and gamma ray signals initiated by neutralino annihilation. A particularly promising place to look for these indicators is at the center of the local group dwarf spheroidal galaxy Draco, and recent measurements of the motion of its stars have revealed it to be an even better target for dark matter detection than previously thought. We compute limits on WIMP properties for various models of Draco's dark matter halo. We find that if the halo is nearly isothermal, as the new measurements indicate, then current gamma ray flux limits prohibit much of the neutralino parameter space. If Draco has a moderate magnetic field, then current radio limits can rule out more of it. These results are appreciably stronger than other current constraints, and so acquiring more detailed data on Draco's density profile may become one of the most promising avenues for identifying dark matter

  12. THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Behroozi, Peter S.; Tinker, Jeremy L.

    2013-01-01

    We provide new constraints on the connection between galaxies in the local universe, identified by the Sloan Digital Sky Survey, and dark matter halos and their constituent substructures in the Λ-cold dark matter model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (1) which halo property is most closely associated with galaxy stellar masses and luminosities, (2) how much scatter is in this relationship, and (3) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 ± 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy-halo connection can be modeled with sufficient fidelity for future precision studies of the dark universe.

  13. Relative amounts of stars and interstellar matter in the local Milky Way

    International Nuclear Information System (INIS)

    Jura, M.

    1987-01-01

    This paper considers the balance between star formation and mass loss from evolved stars in the region within 1 kpc of the sun. There is considerably more mass in stars than in the interstellar medium, and more material is being incorporated into new stars than is being returned by evolved stars. In the simplest interpretation of the data, it appears that unless there is some infall of new interstellar gas, the era of substantial star formation out of interstellar gas will be over in a few (perhaps 3) billion years. 34 references

  14. The Enigmatic (Almost) Dark Galaxy Coma P: The Atomic Interstellar Medium

    Science.gov (United States)

    Ball, Catherine; Cannon, John M.; Leisman, Lukas; Adams, Elizabeth A. K.; Haynes, Martha P.; Józsa, Gyula I. G.; McQuinn, Kristen B. W.; Salzer, John J.; Brunker, Samantha; Giovanelli, Riccardo; Hallenbeck, Gregory; Janesh, William; Janowiecki, Steven; Jones, Michael G.; Rhode, Katherine L.

    2018-02-01

    We present new high-resolution H I spectral line imaging of Coma P, the brightest H I source in the system HI 1232+20. This galaxy with extremely low surface brightness was first identified in the ALFALFA survey as an “(Almost) Dark” object: a clearly extragalactic H I source with no obvious optical counterpart in existing optical survey data (although faint ultraviolet emission was detected in archival GALEX imaging). Using a combination of data from the Westerbork Synthesis Radio Telescope and the Karl G. Jansky Very Large Array, we investigate the H I morphology and kinematics at a variety of physical scales. The H I morphology is irregular, reaching only moderate maxima in mass surface density (peak {σ }{{H}{{I}}}∼ 10 {M}ȯ pc‑2). Gas of lower surface brightness extends to large radial distances, with the H I diameter measured at 4.0 ± 0.2 kpc inside the 1 {M}ȯ pc‑2 level. We quantify the relationships between mass surface density of H I gas and star formation on timescales of ∼100–200 Myr as traced by GALEX far-ultraviolet emission. While Coma P has regions of dense H I gas reaching the {N}{{H}{{I}}}={10}21 cm‑2 level typically associated with ongoing star formation, it lacks massive star formation as traced by Hα emission. The H I kinematics are extremely complex: a simple model of a rotating disk cannot describe the H I gas in Coma P. Using spatially resolved position–velocity analysis we identify two nearly perpendicular axes of projected rotation that we interpret as either the collision of two H I disks or a significant infall event. Similarly, three-dimensional modeling of the H I dynamics provides a best fit with two H I components. Coma P is just consistent (within 3σ) with the known {M}{{H}{{I}}}{--}{D}{{H}{{I}}} scaling relation. It is either too large for its H I mass, has too low an H I mass for its H I size, or the two H I components artificially extend its H I size. Coma P lies within the empirical scatter at the faint end

  15. Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos.

    Science.gov (United States)

    Ludlow, Aaron D; Benítez-Llambay, Alejandro; Schaller, Matthieu; Theuns, Tom; Frenk, Carlos S; Bower, Richard; Schaye, Joop; Crain, Robert A; Navarro, Julio F; Fattahi, Azadeh; Oman, Kyle A

    2017-04-21

    We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the eagle suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved stellar and active galactic nuclei feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: Different feedback implementations-which produce different galaxy populations-mainly shift galaxies along the relation rather than perpendicular to it. Furthermore, galaxies exhibit a characteristic acceleration g_{†}, above which baryons dominate the mass budget, as observed. These observations, consistent with simple modified Newtonian dynamics, can be accommodated within the standard cold dark matter paradigm.

  16. Model-independent constraints on dark matter annihilation in dwarf spheroidal galaxies

    OpenAIRE

    Boddy, Kimberly K.; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.

  17. The interstellar medium and star formation in local galaxies: Variations of the star formation law in simulations

    International Nuclear Information System (INIS)

    Becerra, Fernando; Escala, Andrés

    2014-01-01

    We use the adaptive mesh refinement code Enzo to model the interstellar medium (ISM) in isolated local disk galaxies. The simulation includes a treatment for star formation and stellar feedback. We get a highly supersonic turbulent disk, which is fragmented at multiple scales and characterized by a multi-phase ISM. We show that a Kennicutt-Schmidt relation only holds when averaging over large scales. However, values of star formation rates and gas surface densities lie close in the plot for any averaging size. This suggests an intrinsic relation between stars and gas at cell-size scales, which dominates over the global dynamical evolution. To investigate this effect, we develop a method to simulate the creation of stars based on the density field from the snapshots, without running the code again. We also investigate how the star formation law is affected by the characteristic star formation timescale, the density threshold, and the efficiency considered in the recipe. We find that the slope of the law varies from ∼1.4 for a free-fall timescale, to ∼1.0 for a constant depletion timescale. We further demonstrate that a power law is recovered just by assuming that the mass of the new stars is a fraction of the mass of the cell m * = ερ gas Δx 3 , with no other physical criteria required. We show that both efficiency and density threshold do not affect the slope, but the right combination of them can adjust the normalization of the relation, which in turn could explain a possible bi-modality in the law.

  18. CAN DUST EMISSION BE USED TO ESTIMATE THE MASS OF THE INTERSTELLAR MEDIUM IN GALAXIES-A PILOT PROJECT WITH THE HERSCHEL REFERENCE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Eales, Stephen; Smith, Matthew W. L.; Auld, Robbie; Davies, Jon; Gear, Walter; Gomez, Haley [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, Maarten; De Looze, Ilse; Gentile, Gianfranco; Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, George J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bianchi, Simone [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Boselli, Alessandro; Ciesla, Laure [Laboratoire d' Astrophysique de Marseilles, UMR6110 CNRS, 38 rue F. Joliot-Curie, F-1338 Marseilles (France); Clements, David [Astrophysics Group, Imperial College, Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Cortese, Luca [European Southern Observatory, Karl-Schwarzschild-Strasse 2 D-85748, Garching bei Munchen (Germany); Galametz, Maud [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hughes, Tom [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Madden, Suzanne [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, F-91191 Gif sur Yvette (France); and others

    2012-12-20

    The standard method for estimating the mass of the interstellar medium (ISM) in a galaxy is to use the 21 cm line to trace the atomic gas and the CO 1-0 line to trace the molecular gas. In this paper, we investigate the alternative technique of using the continuum dust emission to estimate the mass of gas in all phases of the ISM. Using Herschel observations of 10 galaxies from the Herschel Reference Survey and the Herschel Virgo Cluster Survey, we show that the emission detected by Herschel is mostly from dust that has a temperature and emissivity index similar to that of dust in the local ISM in our galaxy, with the temperature generally increasing toward the center of each galaxy. We calibrate the dust method using the CO and 21 cm observations to provide an independent estimate of the mass of hydrogen in each galaxy, solving the problem of the uncertain ''X-factor'' for the CO observations by minimizing the dispersion in the ratio of the masses estimated using the two methods. With the calibration for the dust method and the estimate of the X-factor produced in this way, the dispersion in the ratio of the two gas masses is 25%. The calibration we obtain for the dust method is similar to those obtained from Herschel observations of M31 and from Planck observations of the Milky Way. We discuss the practical problems in using this method.

  19. Dark Matter in the Universe and in the Galaxy

    Science.gov (United States)

    Kamionkowski, Marc

    1999-01-01

    During the past four years, Prof. Kamionkowski and collaborators have made progress in research on the nature and distribution of dark-matter in the Universe and in the Galaxy, and on related topics in astrophysics and cosmology. We have made progress on research on the cosmic microwave background, large-scale structure, issues related to particle dark matter, and the gamma-ray-burst enigma. A significant fraction of the research supported by this ATP has been on the cosmic microwave background (CMB). Prof. Kamionkowski and collaborators showed how the polarization of the CMB could be used to detect long-wavelength gravitational waves, such as those produced by inflation. With Kosowsky, Prof. Kamionkowski calculated the amplitude of a stochastic gravitational-wave background that could be detected for a satellite experiment of a given sensitivity and angular resolution. They showed that polarization should improve the sensitivity oa MAP to these gravity waves, and that the Planck Surveyor should do even better. Prof. Kamionkowski, Caldwell, and a student calculated and illustrated the CMB temperature/polarization pattern produced by a single plane-wave gravitational wave. They calculated the amplitude of such a wave that would be detectable with MAP and Planck, and compared that with the sensitivity of traditional gravitational-wave detectors like LIGO and LISA. With Lue and Wang, the PI showed how parity violation from new high-energy physics could conceivably give rise to an observable signature in the CMB polarization. With Loeb, Prof. Kamionkowski showed how measurement of the polarization of CMB photons scattered by hot gas in a cluster could be used to determine the quadrupole moment of the CMB incident on that cluster. Prof. Kamionkowski and Jaffe calculated the amplitude of secondary anisotropies produced by scattering of CMB photons from reionized regions. Research has also been carried out on probing the large-scale distribution of mass in the Universe

  20. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    Science.gov (United States)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  1. DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Madau, Piero; Shen, Sijing; Governato, Fabio

    2014-01-01

    We present more results from a fully cosmological ΛCDM simulation of a group of isolated dwarf galaxies that has been shown to reproduce the observed stellar mass and cold gas content, resolved star formation histories, and metallicities of dwarfs in the Local Volume. Here we investigate the energetics and timetable of the cusp-core transformation. As suggested by previous work, supernova-driven gas outflows remove dark matter (DM) cusps and create kiloparsec-size cores in all systems having a stellar mass M * > 10 6 M ☉ . The D M core mass removal efficiency — dark mass ejected per unit stellar mass—ranges today from a few to a dozen, and increases with decreasing host mass. Because dwarfs form the bulk of their stars prior to redshift 1 and the amount of work required for DM heating and core formation scales approximately as M vir 5/3 , the unbinding of the DM cusp starts early and the formation of cored profiles is not as energetically onerous as previously claimed. DM particles in the cusp typically migrate to 2-3 core radii after absorbing a few percent of the energy released by supernovae. The present-day slopes of the inner DM mass profiles, Γ ≡ dlog M/dlog R ≅ 2.5-3, of the simulated ''Bashful'' and ''Doc'' dwarfs are similar to those measured in the luminous Fornax and Sculptor dwarf spheroidals. None of the simulated galaxies has a circular velocity profile exceeding 20 km s –1 in the inner 1 kpc, implying that supernova feedback is key to solve the ''too-big-to-fail'' problem for Milky Way subhalos

  2. Interstellar chemistry.

    Science.gov (United States)

    Klemperer, William

    2006-08-15

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature.

  3. Dark-Matter in Galaxies from Gravitational Lensing and Stellar Dynamics Studies

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Corbett, IF

    2010-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary methods in the study of the mass distribution of dark matter in galaxies out to redshift of unity. They are particularly powerful in the determination of the total mass and the density profile of mass early-type galaxies on

  4. Mapping dark matter in the gamma-ray sky with galaxy catalogs

    NARCIS (Netherlands)

    Ando, S.; Benoit-Lévy, A.; Komatsu, E.

    2014-01-01

    Cross correlating gamma-ray maps with locations of galaxies in the low-redshift Universe vastly increases sensitivity to signatures of annihilation of dark matter particles. Low-redshift galaxies are ideal targets, as the largest contribution to anisotropy in the gamma-ray sky from annihilation

  5. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1989-01-01

    Until now, most studies on the cold dark matter (CDM) universe have considered only the distribution of the dark matter and compared that with the observed distribution of galaxies. Even though the dark matter determines the overall dynamics of the large-scale structure, galaxies form out of the baryonic matter whose density and velocity distributions can be different from those of the dark matter, depending on the thermal history of the universe. In this paper, the authors study both the dark matter component and the baryonic component, that is, galaxies and the IGM, with several simplifying assumptions, by explicitly following the evolution. The dark matter, galaxies, and IGM are coupled through gravity; galaxies form out of the IGM by taking mass and momentum, whereas the IGM responds to the energy input from the galaxies

  6. Quark nugget dark matter: Comparison with radio observations of nearby galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, K., E-mail: klawson@phas.ubc.ca; Zhitnitsky, A.R.

    2016-06-10

    It has been recently claimed that radio observations of nearby spiral galaxies essentially rule out a dark matter source for the galactic haze [1]. Here we consider the low energy thermal emission from a quark nugget dark matter model in the context of microwave emission from the galactic centre and radio observations of nearby Milky Way like galaxies. We demonstrate that observed emission levels do not strongly constrain this specific dark matter candidate across a broad range of the allowed parameter space in drastic contrast with conventional dark matter models based on the WIMP paradigm.

  7. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  8. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  9. Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weikang; Ishak, Mustapha, E-mail: wxl123830@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2016-10-01

    The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of −0.688 which drops to −0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  10. Supermassive black holes do not correlate with dark matter haloes of galaxies.

    Science.gov (United States)

    Kormendy, John; Bender, Ralf

    2011-01-20

    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.

  11. Antiprotons from dark matter annihilation in the Galaxy. Astrophysical uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Cholis, Ilias; Ullio, Piero [SISSA, Sezione di Trieste (Italy); INFN, Sezione di Trieste (Italy); Grasso, Dario [INFN, Sezione di Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-08-15

    The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date anti p measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different assumptions for the propagation of CRs and for the DM distribution in the Galaxy. We find that the impact of the astrophysical uncertainties on constraining the DM properties can be much stronger, up to a factor of {proportional_to}50, than the one due to uncertainties on the DM distribution ({proportional_to}2-6). Remarkably, even reducing the uncertainties on the propagation parameters derived by local observables, non-local effects can still change DM model constraints even by 50%. Nevertheless, current anti p data place tight constraints on DM models, excluding some of those suggested in connection with indirect and direct searches. Finally we discuss the power of upcoming CR spectral data from the AMS-02 observatory to drastically reduce the uncertainties discussed in this paper and estimate the expected sensitivity of this instrument to some sets of DM models. (orig.)

  12. Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model

    Directory of Open Access Journals (Sweden)

    Jae-Weon Lee

    2016-05-01

    Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.

  13. Galaxy masses in large surveys: Connecting luminous and dark matter with weak lensing and kinematics

    Science.gov (United States)

    Reyes, Reinabelle

    2011-01-01

    Galaxy masses are difficult to determine because light traces stars and gas in a non-trivial way, and does not trace dark matter, which extends well beyond the luminous regions of galaxies. In this thesis, I use the most direct probes of dark matter available---weak gravitational lensing and galaxy kinematics---to trace the total mass in galaxies (and galaxy clusters) in large surveys. In particular, I use the large, homogeneous dataset from the Sloan Digital Sky Survey (SDSS), which provides spectroscopic redshifts for a large sample of galaxies at z ≲ 0.2 and imaging data to a depth of r < 22. By combining complementary probes, I am able to obtain robust observational constraints that cannot be obtained from any single technique alone. First, I use weak lensing of galaxy clusters to derive an optimal optical tracer of cluster mass, which was found to be a combination of cluster richness and the luminosity of the brightest cluster galaxy. Next, I combine weak lensing of luminous red galaxies with redshift distortions and clustering measurements to derive a robust probe of gravity on cosmological scales. Finally, I combine weak lensing with the kinematics of disk galaxies to constrain the total mass profile over several orders of magnitude. I derive a minimal-scatter relation between disk velocity and stellar mass (also known as the Tully-Fisher relation) that can be used, by construction, on a similarly-selected lens sample. Then, I combine this relation with halo mass measurements from weak lensing to place constraints on the ratio of the optical to virial velocities, as well as the ratio of halo to stellar masses, both as a function of stellar mass. These results will serve as inputs to and constraints on disk galaxy formation models, which will be explored in future work.

  14. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    Science.gov (United States)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  15. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  16. Diffuse γ-ray emission observed by the Fermi large area telescope: massive stars, cosmic rays and the census of the interstellar medium in the galaxy

    International Nuclear Information System (INIS)

    Tibaldo, L.

    2011-01-01

    Galactic diffuse γ-ray emission is produced by interactions of cosmic rays (CRs) with interstellar gas and low-energy radiation fields. This is the brightest component of the high-energy γ-ray sky, surveyed since 2008 with unprecedented sensitivity and angular resolution by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Galactic diffuse emission constitutes not only a bright and structured background which needs to be modeled in order to study individual sources and fainter diffuse components, but it can be used also as a probe of the interstellar environment of the Milky Way. We present in-depth studies of LAT γ-ray observations of selected regions in the local and outer Galaxy. LAT data are compared with multiwavelength tracers of the interstellar medium (ISM), including radio/mm-wave lines of gas and infrared emission/extinction from dust. The impact of the HI optical depth, often overlooked in the past, is carefully examined and recognized currently as the dominant source of uncertainty in the interpretation of observations. On one hand, we discuss the constraints provided by the γ-ray data on the census of the interstellar gas. We determine the X C O = N(H 2 )/W C O ratio for several clouds, finding no significant gradients in the Galactic disc over a range of ∼ 3.5 kpc in Galactocentric radius, and variations of a factor ≤ 2 in nearby local clouds. We also find evidence for an ubiquitous dark phase of interstellar gas which does not shine at radio/mm wavelengths and which provides a mass ∼ 50% of that traced by CO. For the first time we determine its γ-ray spectrum which is found to be well correlated with that of HI, thus further confirming that the emission originates from interstellar gas. On the other hand, we use the emissivity per hydrogen atom to infer the distribution of CRs in distant locations not accessible by direct measurements. While the local HI emissivity is consistent with the CR spectra measured near

  17. The interstellar carbonaceous aromatic matter as a trap for molecular hydrogen

    Science.gov (United States)

    Pauzat, F.; Lattelais, M.; Ellinger, Y.; Minot, C.

    2011-04-01

    We report a theoretical study of the physisorption of molecular hydrogen, H2, on a major component of the interstellar dust, namely, the polyaromatic carbonaceous grains. Going beyond the model of the polycyclic aromatic hydrocarbon freeflyers and its theoretical treatment within the super molecule approach, we consider the graphene surface in a Density Functional Theory periodic approach using plane-wave expansions. The physisorption energy of isolated H2 on that flat and rigid support is determined to be attractive by ˜0.75 kcal mol-1 and practically independent of the orientation with respect to the infinite surface. Since this energy is also not affected by the position (over a ring centre, a carbon atom or the middle of a carbon-carbon bond), we can conclude that H2 is able to move freely like a ball rolling on the graphene support. We also investigate the conditions for multiple physisorption. It leads to a monolayer of H2 molecules where the corresponding interaction energy per H2 amounts to a potential depth of ˜1 kcal mol-1, close to the available experimental estimates ranging from 1.1 to 1.2 kcal mol-1. We show that the most energetically favourable coverage, which corresponds to an arrangement of the H2 molecules, the closest possible to the dimer configuration, leads to a surface density of ˜0.8 × 1015 molecule cm-2. Finally, assuming that 15-20 per cent of the interstellar carbon is locked in aromatic systems, one obtains ˜10-5 of the interstellar hydrogen trapped as H2 on such types of surfaces.

  18. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  19. Phonon-mediated distributed transition-edge-sensor X-ray detectors for surveys of galaxy clusters and the warm-hot interstellar medium

    International Nuclear Information System (INIS)

    Leman, Steven W.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Chakraborty, Sudeepto; Deiker, Steve; Kahn, Steve; Martinez-Galarce, Dennis S.; Stern, Robert A.; Tomada, Astrid

    2006-01-01

    We are developing a novel phonon-mediated distributed-TES X-ray detector in which X-rays are absorbed in a large germanium or silicon crystal, and the energy is read out by four distributed TESs. This design takes advantage of existing TES technology while overcoming the difficulties of designing spatially large arrays. The sum of the four TES signals will yield energy resolution of E/δE∼1000 and the partitioning of energy between the four will yield position resolution of X/δX and Y/δY∼100. These macropixels, with advances in multiplexing, could be close-packed into 30x30 arrays equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to galaxy cluster searches and studies of the Warm-Hot Interstellar Medium

  20. Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Fall, S. Michael; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van der Wel, Arjen [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Pérez-González, Pablo G. [Departamento de Astrofísica, Facultad de CC. Física, Universidad Complutense de Madrid, E-28040, Madrid (Spain); Wuyts, Stijn, E-mail: khhuang@ucdavis.edu [Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2017-03-20

    We derive relations between the effective radii R {sub eff} of galaxies and the virial radii R {sub 200} {sub c} of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions as for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R {sub eff}–R {sub 200} {sub c} relations for three independent SMHM relations from the literature. We find that galaxy R {sub eff} is proportional on average to halo R {sub 200} {sub c}, confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R {sub eff}– R {sub 200} {sub c} relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R {sub eff}– R {sub 200} {sub c} relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.

  1. Investigating nearby star-forming galaxies in the ultraviolet with HST/COS spectroscopy. I. Spectral analysis and interstellar abundance determinations

    International Nuclear Information System (INIS)

    James, B. L.; Aloisi, A.; Sohn, S. T.; Wolfe, M. A.; Heckman, T.

    2014-01-01

    This is the first in a series of three papers describing a project with the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure abundances of the neutral interstellar medium (ISM) in a sample of nine nearby star-forming galaxies. The goal is to assess the (in)homogeneities of the multiphase ISM in galaxies where the bulk of metals can be hidden in the neutral phase, yet the metallicity is inferred from the ionized gas in the H II regions. The sample, spanning a wide range in physical properties, is to date the best suited to investigate the metallicity behavior of the neutral gas at redshift z = 0. ISM absorption lines were detected against the far-ultraviolet spectra of the brightest star-forming region(s) within each galaxy. Here we report on the observations, data reduction, and analysis of these spectra. Column densities were measured by a multicomponent line-profile fitting technique, and neutral-gas abundances were obtained for a wide range of elements. Several caveats were considered, including line saturation, ionization corrections, and dust depletion. Ionization effects were quantified with ad hoc CLOUDY models reproducing the complex photoionization structure of the ionized and neutral gas surrounding the UV-bright sources. An 'average spectrum of a redshift z = 0 star-forming galaxy' was obtained from the average column densities of unsaturated profiles of neutral-gas species. This template can be used as a powerful tool for studies of the neutral ISM at both low and high redshift.

  2. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    International Nuclear Information System (INIS)

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  3. Power spectrum tomography of dark matter annihilation with local galaxy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Shin' ichiro, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2014-10-01

    Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.

  4. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  5. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.

    Science.gov (United States)

    Koushiappas, Savvas M; Loeb, Abraham

    2017-07-28

    We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.

  6. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    International Nuclear Information System (INIS)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; Jay GaBany, R.

    2011-01-01

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  7. The Formation of Shell Galaxies Similar to NGC 7600 in the Cold Dark Matter Cosmogony

    Science.gov (United States)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay

    2011-12-01

    We present new deep observations of "shell" structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  8. Galaxy clusters as probes for cosmology and dark matter

    DEFF Research Database (Denmark)

    Battistelli, Elia S.; Burigana, Carlo; De Bernardis, Paolo

    2016-01-01

    In recent years, significant progress has been made in building new galaxy clusters samples, at low and high redshifts, from wide-area surveys, particularly exploiting the Sunyaev-Zel'dovich (SZ) effect. A large effort is underway to identify and characterize these new systems with optical/NIR an...

  9. Reionization and Galaxy Formation in Warm Dark Matter Cosmologies

    NARCIS (Netherlands)

    Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.

    2017-01-01

    We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization

  10. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Conde, Miguel A. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cannoni, Mirco; Gómez, Mario E. [Dpto. Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Zandanel, Fabio; Prada, Francisco, E-mail: masc@stanford.edu, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: fabio@iaa.es, E-mail: mario.gomez@dfa.uhu.es, E-mail: fprada@iaa.es [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain)

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  11. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  12. Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Dumas, Alexis

    2014-01-01

    The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model γCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed: missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained: NFW, Burkert and Einasto and fifteen dwarf galaxies. Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c 2 100 TeV/c 2 . Five self-annihilation channels are selected for analysis: b - b, W + W - T + T - μ + μ - νμ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed: AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined. (author)

  13. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L ∼> fL * galaxies follows the simple relation dN/dt ≅ 0.03(1+f)Gyr -1 (1+z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L * high-redshift galaxies (∼ 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the last 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman Break Galaxies (LBGs)

  14. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons

    Science.gov (United States)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop

    2018-05-01

    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  15. Quark nugget dark matter: no contradiction with 511 keV line emission from dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Kyle; Zhitnitsky, Ariel, E-mail: klawson@phas.ubc.ca, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-02-01

    The observed galactic 511 keV line has been interpreted in a number of papers as a possible signal of dark matter annihilation within the galactic bulge. If this is the case then it is possible that a similar spectral feature may be observed in association with nearby dwarf galaxies. These objects are believed to be strongly dark matter dominated and present a relatively clean observational target. Recently INTEGRAL observations have provided new constraints on the 511 keV flux from nearby dwarf galaxies [1] motivating further investigation into the mechanism by which this radiation may arise. In the model presented here dark matter in the form of heavy quark nuggets produces the galactic 511 keV emission line through interactions with the visible matter. It is argued that this type of interaction is not strongly constrained by the flux limits reported in [2].

  16. Gamma rays, tracers of the interstellar medium and messengers of pulsars and other energetic objects

    International Nuclear Information System (INIS)

    Grenier, I.

    1988-03-01

    Gamma radiation observed in our Galaxy by the COS-B satellite was studied. The interstellar medium was studied at large scale using the fact that diffuse gamma rays are created by the interaction of cosmic rays with any interstellar matter and comparisons with different tracers and star and galaxy counts. Ground-based maps of molecular clouds were also used. Bright compact gamma sources were also analyzed. Results include the detection in Co of a distant spiral arm of the Galaxy (15kpc) and an important molecular complex nearby (300pc); the first Co survey of the Galaxy; measurement of the NH2/WCo ratio and week galactic gradients of cosmic rays; the high energy behavior of the Vela pulsar; the detection of a gamma source; and the discovery of a large supernova remnant which exploded 300pc from the Sun 40,000 years ago [fr

  17. First results from the IllustrisTNG simulations: matter and galaxy clustering

    Science.gov (United States)

    Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill

    2018-03-01

    Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.

  18. A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER

    International Nuclear Information System (INIS)

    Leauthaud, Alexie; Tinker, Jeremy; Behroozi, Peter S.; Busha, Michael T.; Wechsler, Risa H.

    2011-01-01

    We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, 'plateau', knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed 'plateau' feature in the stellar mass function at M * ∼ 2 x 10 10 M sun is due to the transition that occurs in the stellar-to-halo mass relation at M h ∼ 10 12 M sun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

  19. Low dark matter content of the nearby early-type galaxy NGC 821

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2014-01-01

    Full Text Available In this paper we analyze the kinematics and dynamics of the nearby early-type galaxy NGC 821 based on its globular clusters (GCs and planetary nebulae (PNe. We use PNe and GCs to extract the kinematics of NGC 821 which is then used for the dynamical modelling based on the Jeans equation. We apply the Jeans equation using the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and find that using such an approach we can successfully fit the kinematic data. The inferred constant mass-to-light ratio, 4:2 < M=LB < 12:4 present throughout the whole galaxy, implies the lack of significant amount of dark matter. We also used three different MOND approaches and found that we can fit the kinematic data without the need for additional, dark, component. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: theory and observations

  20. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    Science.gov (United States)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  1. Dark Matter Cores in the Fornax and Sculptor Dwarf Galaxies

    DEFF Research Database (Denmark)

    C. Amorisco, Nicola; Zavala Franco, Jesus; J. L. de Boer, Thomas

    2014-01-01

    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the mass assembly history of their dark matter halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial dark matter core. Assuming...... the efficiency of energy injection of the SNeII into dark matter particles is \\epsilon=0.05, we find that a single early episode, z...

  2. The production of anti-matter in our galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chardonnet, P.; Orloff, J.; Salati, P. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique Theorique

    1997-12-31

    A coalescence model is applied to assess the amount of anti-deuterium and anti-helium {sup 3}He present in cosmic rays together with anti-protons. The propagation of cosmic rays in the galaxy is described through a two-zone diffusion model which correctly describes the observed abundances. The {sup 3}He/p abundance does not exceed {approx} 4 x 10{sup -13}. Heavier anti-nuclei are even further suppressed. (author). 12 refs.

  3. The production of anti-matter in our galaxy

    International Nuclear Information System (INIS)

    Chardonnet, P.; Orloff, J.; Salati, P.

    1997-01-01

    A coalescence model is applied to assess the amount of anti-deuterium and anti-helium 3 He present in cosmic rays together with anti-protons. The propagation of cosmic rays in the galaxy is described through a two-zone diffusion model which correctly describes the observed abundances. The 3 He/p abundance does not exceed ∼ 4 x 10 -13 . Heavier anti-nuclei are even further suppressed. (author)

  4. Dark-Matter Content of Early-Type Galaxies with Planetary Nebulae

    NARCIS (Netherlands)

    Napolitano, N.R.; Romanowsky, A.J.; Coccato, L; Capaccioli, M.; Douglas, N.G.; Noordermeer, E.; Merrifield, M.R.; Kuijken, K.; Arnaboldi, M.; Gerhard, O.; Freeman, K.C.; De Lorenzi, F.; Das, P.

    2007-01-01

    Abstract. We examine the dark matter properties of nearby early-type galaxies using plane- tary nebulae (PNe) as mass probes. We have designed a specialised instrument, the Planetary Nebula Spectrograph (PN.S) operating at the William Herschel telescope, with the purpose of measuring PN velocities

  5. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Andersen, D.; Swaters, R.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  6. Addressing the missing matter problem in galaxies through a new fundamental gravitational radius

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, S. [Dipartimento di Fisica ' ' E. Pancini' ' , Università di Napoli ' ' Federico II' ' , Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Jovanović, P. [Astronomical Observatory, Volgina 7, P.O. Box 74, 11060 Belgrade (Serbia); Jovanović, V. Borka; Borka, D., E-mail: capozziello@na.infn.it, E-mail: pjovanovic@aob.rs, E-mail: vborka@vin.bg.ac.rs, E-mail: dusborka@vin.bg.ac.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2017-06-01

    We demonstrate that the existence of a Noether symmetry in f ( R ) theories of gravity gives rise to a further gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the dark matter hypothesis.

  7. The DiskMass Survey : IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    2011-01-01

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (h(R)) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2h(R). Assuming a constant scale height (h(z); calculated

  8. The DiskMass Survey. IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (hR ) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2hR . Assuming a constant scale height (hz ; calculated

  9. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  10. The DiskMass Survey : VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically- determined rotation- curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum- disk hypothesis and to quantify properties of their dark- matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical

  11. Dark matter distributions in early-type galaxies from strong gravitational lensing

    International Nuclear Information System (INIS)

    Eichner, Thomas Martin

    2013-01-01

    Dark matter constitutes a large fraction of the mass of early-type galaxies. However, the exact amount and spatial distribution of the dark matter, especially in the galaxies' center is still unclear. Furthermore, galaxies in dense environments such as the centers of galaxy clusters shrink in size, since parts of their outer dark matter halo is stripped away. The aim of this thesis is to measure the dark matter content in the centers and outskirts of elliptical galaxies by analyzing the strong gravitational lensing effect they produce. Gravitational lensing is well-suited for investigating dark matter, since it is sensitive to all forms of matter, regardless of its dynamical or evolutionary state. We present gravitational lensing studies of the exceptional strong lensing systems SDSS J1538+5817 and SDSS J1430+4105, identified by the Sloan Lens ACS survey. The lenses are elliptical galaxies at z l =0.143 and z l =0.285, respectively. For SDSS J1538+5817 we show that both multiple imaged sources are located at the same redshift z s =0.531. Its multiple images span a range from 1 to 4 kpc in the plane of the lens. For SDSS J1430+4105, the source at redshift z s =0.575 is imaged into a broad Einstein ring, covering radii from 4 kpc to 10 kpc in the plane of the lens. In both cases, the lensed images can be accurately and consistently reproduced with different modeling approaches. We get projected total masses of 8.11 +0.27 -0.59 x 10 10 M s un within the Einstein radius of 2.5 kpc for SDSS J1538+5817 and 5.37±0.06 x 10 11 M s un within 6.5 kpc for SDSS J1430+4105. The luminous and dark matter were traced separately, resulting in dark matter fractions within the Einstein radius of 0.1 +0.2 -0.1 and 0.40 +0.14 -0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively. We assume a de Vaucouleurs profile to trace the light distribution of both galaxies. From the stellar mass associated with this light, we can explicitly derive a stellar mass-to-light ratio of (M de

  12. CENTRAL DARK MATTER TRENDS IN EARLY-TYPE GALAXIES FROM STRONG LENSING, DYNAMICS, AND STELLAR POPULATIONS

    International Nuclear Information System (INIS)

    Tortora, C.; Jetzer, P.; Napolitano, N. R.; Romanowsky, A. J.

    2010-01-01

    We analyze the correlations between central dark matter (DM) content of early-type galaxies and their sizes and ages, using a sample of intermediate-redshift (z ∼ 0.2) gravitational lenses from the SLACS survey, and by comparing them to a larger sample of z ∼ 0 galaxies. We decompose the deprojected galaxy masses into DM and stellar components using combinations of strong lensing, stellar dynamics, and stellar populations modeling. For a given stellar mass, we find that for galaxies with larger sizes, the DM fraction increases and the mean DM density decreases, consistently with the cuspy halos expected in cosmological formation scenarios. The DM fraction also decreases with stellar age, which can be partially explained by the inverse correlation between size and age. The residual trend may point to systematic dependencies on formation epoch of halo contraction or stellar initial mass functions. These results are in agreement with recent findings based on local galaxies by Napolitano et al. and suggest negligible evidence of galaxy evolution over the last ∼2.5 Gyr other than passive stellar aging.

  13. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    Science.gov (United States)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  14. Are Wolf-Rayet Stars Able to Pollute the Interstellar Medium of Galaxies? Results from Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Enrique Pérez-Montero

    2013-01-01

    Full Text Available We investigate the spatial distribution of chemical abundances in a sample of low metallicity Wolf-Rayet (WR galaxies selected from the SDSS. We used the integral field spectroscopy technique in the optical spectral range (3700 Å–6850 Å with PMAS attached to the CAHA 3.5 m telescope. Our statistical analysis of the spatial distributions of O/H and N/O, as derived using the direct method or strong-line parameters consistent with it, indicates that metallicity is homogeneous in five out of the six analysed objects in scales of the order of several kpc. Only in the object WR404 is a gradient of metallicity found in the direction of the low surface brightness tail. In contrast, we found an overabundance of N/O in spatial scales of the order of hundreds of pc associated with or close to the positions of the WR stars in 4 out of the 6 galaxies. We exclude possible hydrodynamical causes, such as the metal-poor gas inflow, for this local pollution by means of the analysis of the mass-metallicity relation (MZR and mass-nitrogen-to-oxygen relation (MNOR for the WR galaxies catalogued in the SDSS.

  15. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    Science.gov (United States)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  16. The formation of galaxies and quasars in a texture-seeded cold dark matter cosmogony

    International Nuclear Information System (INIS)

    Gooding, A.K.; Turok, N.; Spergel, D.N.

    1991-01-01

    The nonGaussian perturbations produced by global texture lead to the early formation of stars, quasars, and galaxies. Growth of the density fluctuation in cold dark matter induced by the unwinding of a texture 'knot' is calculated and the evolution of the mass multiplicity function in this galaxy formation model is determined. By z of about 50, about 3 percent of the mass of the universe has formed nonlinear objects of mass greater than 10 to the 6th solar masses - these objects may have reionized the universe. Most objects larger than 10 to the 12th solar masses form by z about 2-3, consistent with the observed epoch of QSO formation. Today, about 35 percent of the mass of the universe is in bound objects of mass greater than 10 to the 12th solar masses. It is found that the slope and the amplitude of the multiplicity function is consistent with the observed galaxy luminosity function. 24 refs

  17. Star cluster evolution in dark matter dominated galaxies

    NARCIS (Netherlands)

    Praagman, Anneke; Hurley, Jarrod; Power, Chris

    We investigate the influence of the external tidal field of a dark matter halo on the dynamical evolution of star clusters using direct N-body simulations, where we assume that the halo is described by a Navarro, Frenk and White mass profile which has an inner density cusp. We assess how varying the

  18. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  19. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; et al.

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.

  20. Measurement of the dark matter velocity anisotropy profile in galaxy clusters

    International Nuclear Information System (INIS)

    Host, Ole

    2009-01-01

    Dark matter halos contribute the major part of the mass of galaxy clusters and the formation of these cosmological structures have been investigated in numerical simulations. Observations have been found to be in good agreement with the numerical predictions regarding the spatial distribution of dark matter, i.e. the mass profile. However, the dynamics of dark matter in halos has so far proved a greater challenge to probe observationally. We have used observations of 16 relaxed galaxy clusters to show that the dark matter velocity dispersion is larger along the radial direction than along the tangential, and that the magnitude of this velocity anisotropy β varies with radius. This measurement implies that the collective behaviour of dark matter particles is fundamentally different from that of baryonic particles and constrains the self-interaction per unit mass. The radial variation of the anisotropy velocity agrees with the predictions so that, on cluster scales, there is now excellent agreement between numerical predictions and observations regarding the phase space of dark matter.

  1. Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies

    Science.gov (United States)

    Kun, E.; Keresztes, Z.; Simkó, A.; Szűcs, G.; Gergely, L. Á.

    2017-12-01

    Context. We assemble a database of 15 high surface brightness (HSB) and 15 low surface brightness (LSB) galaxies, for which surface brightness density and spectroscopic rotation curve data are both available and representative for various morphologies. We use this dataset to test the Navarro-Frenk-White, the Einasto, and the pseudo-isothermal sphere dark matter models. Aims: We investigate the compatibility of the pure baryonic model and baryonic plus one of the three dark matter models with observations on the assembled galaxy database. When a dark matter component improves the fit with the spectroscopic rotational curve, we rank the models according to the goodness of fit to the datasets. Methods: We constructed the spatial luminosity density of the baryonic component based on the surface brightness profile of the galaxies. We estimated the mass-to-light (M/L) ratio of the stellar component through a previously proposed color-mass-to-light ratio relation (CMLR), which yields stellar masses independent of the photometric band. We assumed an axissymetric baryonic mass model with variable axis ratios together with one of the three dark matter models to provide the theoretical rotational velocity curves, and we compared them with the dataset. In a second attempt, we addressed the question whether the dark component could be replaced by a pure baryonic model with fitted M/L ratios, varied over ranges consistent with CMLR relations derived from the available stellar population models. We employed the Akaike information criterion to establish the performance of the best-fit models. Results: For 7 galaxies (2 HSB and 5 LSB), neither model fits the dataset within the 1σ confidence level. For the other 23 cases, one of the models with dark matter explains the rotation curve data best. According to the Akaike information criterion, the pseudo-isothermal sphere emerges as most favored in 14 cases, followed by the Navarro-Frenk-White (6 cases) and the Einasto (3 cases) dark

  2. ELLIPTICAL GALAXY MASSES OUT TO FIVE EFFECTIVE RADII: THE REALM OF DARK MATTER

    International Nuclear Information System (INIS)

    Deason, A. J; Belokurov, V.; Evans, N. W.; McCarthy, I. G.

    2012-01-01

    We estimate the masses of elliptical galaxies out to five effective radii using planetary nebulae and globular clusters as tracers. A sample of 15 elliptical galaxies with a broad variation in mass is compiled from the literature. A distribution function-maximum likelihood analysis is used to estimate the overall potential slope, normalization, and velocity anisotropy of the tracers. We assume power-law profiles for the potential and tracer density and a constant velocity anisotropy. The derived potential power-law indices lie in between the isothermal and Keplerian regime and vary with mass: there is tentative evidence that the less massive galaxies have steeper potential profiles than the more massive galaxies. We use stellar mass-to-light ratios appropriate for either a Chabrier/KTG (Kroupa, Tout and Gilmore) or Salpeter initial mass function to disentangle the stellar and dark matter components. The fraction of dark matter within five effective radii increases with mass, in agreement with several other studies. We employ simple models to show that a combination of star formation efficiency and baryon extent are able to account for this trend. These models are in good agreement with both our measurements out to five effective radii and recent Sloan Lens ACS Survey measurements within one effective radii when a universal Chabrier/KTG initial mass function is adopted.

  3. Equilibrium Figures inside the Dark-Matter Ring and the Shapes of Elliptical Galaxies

    Directory of Open Access Journals (Sweden)

    Kondratyev B. P.

    2015-12-01

    Full Text Available We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 < α ≤ αmax each new sequence of axisymmetric equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(πGρ = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity ecr ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7. We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7 of elliptical galaxies.

  4. Equilibrium figures inside the dark-matter ring and the shapes of elliptical galaxies

    Science.gov (United States)

    Kondratyev, B. P.; Trubitsyna, N. G.; Kireeva, E. N.

    We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(π Gρ ) = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity {e cr} ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7). We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7) of elliptical galaxies.

  5. Dark matter annihilation in the milky way galaxy: effects of baryonic compression.

    Science.gov (United States)

    Prada, F; Klypin, A; Flix, J; Martínez, M; Simonneau, E

    2004-12-10

    If the dark matter (DM), which is considered to constitute most of the mass of galaxies, is made of supersymmetric particles, the central region of our Galaxy should emit gamma rays produced by their annihilation. We use detailed models of the Milky Way to make accurate estimates of continuum gamma-ray fluxes. We argue that the most important effect, which was previously neglected, is the compression of the dark matter due to the infall of baryons to the galactic center: it boosts the expected signal by a factor 1000. To illustrate this effect, we computed the expected gamma fluxes in the minimal supergravity scenario. Our models predict that the signal could be detected at high confidence levels by imaging atmospheric C erenkov telescopes assuming that neutralinos make up most of the DM in the Universe.

  6. Signature of the interaction between dark energy and dark matter in galaxy clusters

    International Nuclear Information System (INIS)

    Abdalla, Elcio; Abramo, L. Raul; Sodre, Laerte; Wang Bin

    2009-01-01

    We investigate the influence of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain the general Layser-Irvine equation in the presence of interactions, and find how, in that case, the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions on the magnitude and significance of this coupling could be established

  7. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  8. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    International Nuclear Information System (INIS)

    Hezaveh, Yashar; Holder, Gilbert; Dalal, Neal; Kuhlen, Michael; Marrone, Daniel; Murray, Norman; Vieira, Joaquin

    2013-01-01

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of ∼10 8 M ☉ with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a ∼55% probability of detecting a substructure with M > 10 8 M ☉ with more than 5σ detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of ∼100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  9. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hezaveh, Yashar; Holder, Gilbert [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Dalal, Neal [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Kuhlen, Michael [Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Marrone, Daniel [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Murray, Norman [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Vieira, Joaquin [California Institute of Technology, 1200 East California Blvd, MC 249-17, Pasadena, CA 91125 (United States)

    2013-04-10

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of {approx}10{sup 8} M{sub Sun} with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a {approx}55% probability of detecting a substructure with M > 10{sup 8} M{sub Sun} with more than 5{sigma} detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of {approx}100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  10. Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric; Linden, Tim; Profumo, Stefano [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 (United States); Hooper, Dan, E-mail: erccarls@ucsc.edu, E-mail: dhooper@fnal.gov, E-mail: tlinden@ucsc.edu, E-mail: profumo@ucsc.edu [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-07-01

    If the Galactic WMAP radio haze, as recently confirmed by Planck, is produced by dark matter annihilation or decay, similar diffuse radio halos should exist around other galaxies with physical properties comparable to the Milky Way. If instead the haze is due to an astrophysical mechanism peculiar to the Milky Way or to a transient event, a similar halo need not exist around all Milky Way ''twins''. We use radio observations of 66 spiral galaxies to test the dark matter origin of the haze. We select galaxies based on morphological type and maximal rotational velocity, and obtain their luminosities from a 1.49 GHz catalog and additional radio observations at other frequencies. We find many instances of galaxies with radio emission that is less than 5% as bright as naively expected from dark matter models that could produce the Milky Way haze, and at least 3 galaxies that are less than 1% as bright as expected, assuming dark matter distributions, magnetic fields, and cosmic ray propagation parameters equal to those of the Milky Way. For reasonable ranges for the variation of these parameters, we estimate the fraction of galaxies that should be expected to be significantly less bright in radio, and argue that this is marginally compatible with the observed distribution. While our findings therefore cannot rule out a dark matter origin for the radio haze at this time, we find numerous examples (including the Andromeda Galaxy) where, if dark matter is indeed the origin of the Milky Way haze, some mechanism must be in place to suppress the corresponding haze of the external galaxy. We point out that Planck data will offer opportunities to improve this type of constraint in a highly relevant frequency range and for a potentially larger set of candidate galaxies.

  11. Dark matter in dwarf spheroidal galaxies and indirect detection: a review.

    Science.gov (United States)

    Strigari, Louis E

    2018-05-01

    Indirect dark matter searches targeting dwarf spheroidal galaxies (dSphs) have matured rapidly during the past decade. This has been because of the substantial increase in kinematic data sets from the dSphs, the new dSphs that have been discovered, and the operation of the Fermi-LAT and many ground-based gamma-ray experiments. Here we review the analysis methods that have been used to determine the dSph dark matter distributions, in particular the 'J-factors', comparing and contrasting them, and detailing the underlying systematics that still affect the analysis. We discuss prospects for improving measurements of dark matter distributions, and how these interplay with future indirect dark matter searches.

  12. Dark matter in dwarf spheroidal galaxies and indirect detection: a review

    Science.gov (United States)

    Strigari, Louis E.

    2018-05-01

    Indirect dark matter searches targeting dwarf spheroidal galaxies (dSphs) have matured rapidly during the past decade. This has been because of the substantial increase in kinematic data sets from the dSphs, the new dSphs that have been discovered, and the operation of the Fermi-LAT and many ground-based gamma-ray experiments. Here we review the analysis methods that have been used to determine the dSph dark matter distributions, in particular the ‘J-factors’, comparing and contrasting them, and detailing the underlying systematics that still affect the analysis. We discuss prospects for improving measurements of dark matter distributions, and how these interplay with future indirect dark matter searches.

  13. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael, E-mail: cuoco@physik.rwth-aachen.de, E-mail: heisig@physik.rwth-aachen.de, E-mail: korsmeier@physik.rwth-aachen.de, E-mail: mkraemer@physik.rwth-aachen.de [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056 Aachen (Germany)

    2017-10-01

    A possible hint of dark matter annihilation has been found in Cuoco, Korsmeier and Krämer (2017) from an analysis of recent cosmic-ray antiproton data from AMS-02 and taking into account cosmic-ray propagation uncertainties by fitting at the same time dark matter and propagation parameters. Here, we extend this analysis to a wider class of annihilation channels. We find consistent hints of a dark matter signal with an annihilation cross-section close to the thermal value and with masses in range between 40 and 130 GeV depending on the annihilation channel. Furthermore, we investigate in how far the possible signal is compatible with the Galactic center gamma-ray excess and recent observation of dwarf satellite galaxies by performing a joint global fit including uncertainties in the dark matter density profile. As an example, we interpret our results in the framework of the Higgs portal model.

  14. The Milky Way galaxy

    International Nuclear Information System (INIS)

    Woerden, H. van; Allen, R.J.; Burton, W.B.

    1985-01-01

    IAU Symposium 106, held at the Kapteyn Institute in Groningen, presents an overview of all major aspects of galactic astronomy. The vast subject is covered in 20 authoritative review papers and 22 invited papers, each with discussion, plus 81 shorter contributions. The book opens with 4 reviews by historians of science, outlining the history of galactic research. Part 2 deals with (i) galactic rotation, (ii) the large-scale distributions of matter, of both old and young stellar populations, and of the atomic, molecular and high-energy components of the interstellar medium, (iii) small-scale structure in the gas, (iv) the galactic nucleus, (v) the high-velocity clouds. Part 3 discusses the dynamics of the local group of Galaxies and of the Milky Way-Magellanic clouds system, the dynamical and chemical evolution of the Galaxy and of its disk and halo components and the formation of the Galaxy. The controversial subject of spiral structure and star formation is analyzed in several extensive reviews and lively discussions, featuring both observational and theoretical developments. Results of extragalactic research are blended with studies of our Galaxy throughout the book, and there is a separate comparison between Andromeda and Milky Way Galaxies. The Symposium featured the first maps produced by IRAS, and results from most major telescopes in a variety of wavebands. Many review papers present material not published elsewhere. The book closes with a lecture on life in the Galaxy and with an imaginative symposium summary. (orig.)

  15. GHASP: an Hα kinematical survey of spiral galaxies - XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry.

    Science.gov (United States)

    Korsaga, M.; Carignan, C.; Amram, P.; Epinat, B.; Jarrett, T. H.

    2018-04-01

    We present the mass distribution of a sample of 121 nearby galaxies with high quality optical velocity fields and available infra-red WISE 3.4 μm data. Contrary to previous studies, this sample covers all morphological types and is not biased toward late-type galaxies. These galaxies are part of the Fabry-Perot kinematical GHASP survey of spirals and irregular nearby galaxies. Combining the kinematical data to the WISE surface brightness data probing the emission from the old stellar population, we derive mass models allowing us to compare the luminous to the dark matter halo mass distribution in the optical regions of those galaxies. Dark matter (DM) models are constructed using the isothermal core profile and the Navarro-Frenk-White cuspy profile. We allow the M/L of the baryonic disc to vary or we keep it fixed, constrained by stellar evolutionary models (WISE W1-W2 color) and we carry out best fit (BFM) and pseudo-isothermal maximum disc (MDM) models. We found that the MDM provides M/L values four times higher than the BFM, suggesting that disc components, on average, tend to be maximal. The main results are: (i) the rotation curves of most galaxies are better fitted with core rather than cuspy profiles; (ii) the relation between the parameters of the DM and of the luminous matter components mostly depends on morphological types. More precisely, the distribution of the DM inside galaxies depends on whether or not the galaxy has a bulge.

  16. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  17. Interstellar Extinction

    OpenAIRE

    Gontcharov, George

    2017-01-01

    This review describes our current understanding of interstellar extinction. This differ substantially from the ideas of the 20th century. With infrared surveys of hundreds of millions of stars over the entire sky, such as 2MASS, SPITZER-IRAC, and WISE, we have looked at the densest and most rarefied regions of the interstellar medium at distances of a few kpc from the sun. Observations at infrared and microwave wavelengths, where the bulk of the interstellar dust absorbs and radiates, have br...

  18. The dark-matter world: Are there dark-matter galaxies?

    OpenAIRE

    Hwang, W-Y. Pauchy

    2011-01-01

    We attempt to answer whether neutrinos and antineutrinos, such as those in the cosmic neutrino background, would clusterize among themselves or even with other dark-matter particles, under certain time span, say 1 Gyr. With neutrino masses in place, the similarity with the ordinary matter increases and so is our confidence for neutrino clustering if time is long enough. In particular, the clusterings could happen with some seeds (cf. see the text for definition), the chance in the dark-matter...

  19. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blanford, R.D.; Bloom, E.D.; Borgland, A.W.; Bouvier, A.; Buehler, R.; Cameron, R.A.; Charles, E.; Chiang, J.; Claus, R.; Do Couto E Silva, E.; Drell, P.S.; Drlica-Wagner, A.; Dubois, R.; Edmonds, Y.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Lande, J.; Lee, S.H.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Omodei, N.; Panetta, J.H.; Porter, T.A.; Tanaka, T.; Thayer, J.B.; Thayer, J.G.; Waite, A.P.; Wang, P.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Starck, J.L.; Tibaldo, L.

    2010-01-01

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than similar to 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of similar to 5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming. (authors)

  20. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0-8

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-01-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 10 12 M ☉ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ∼ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ∼ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  1. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    Science.gov (United States)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  2. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.J. de [Sorbonne Universites, Universite Pierre et Marie Curie UPMC Paris VI, LPTHE CNRS UMR 7589, Paris Cedex 05 (France); Sanchez, N.G. [Observatoire de Paris PSL Research University, Sorbonne Universites UPMC Paris VI, Observatoire de Paris, LERMA CNRS UMR 8112, Paris (France)

    2017-02-15

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r{sub h}, mass M{sub h}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M{sub h} >or similar 2.3 x 10{sup 6} M {sub CircleDot} and effective temperatures T{sub 0} > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 x 10{sup 6} M {sub CircleDot} >or similar M{sub h} >or similar M{sub h,min} ≅ 3.10 x 10{sup 4} (2 keV/m){sup (16)/(5)} M {sub CircleDot}, T{sub 0} < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T{sub 0} = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r{sub h}, the squared velocity v{sup 2}(r{sub h}) and the temperature T{sub 0} turn to exhibit square-root of M{sub h} scaling laws. The normalized density profiles ρ(r)/ρ(0) and the normalized velocity profiles v{sup 2}(r)/v{sup 2}(0) are universal functions of r/r{sub h} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For

  3. The distribution of interstellar dust

    International Nuclear Information System (INIS)

    Clocchiatti, A.; Marraco, H.G.

    1986-01-01

    We propose the interstellar matter structural function as a tool to derive the features of the interstellar dust distribution. We study that function resolving some ideal dust distribution models. Later we describe the method used to find a reliable computing algorithm for the observational case. Finally, we describe the steps to build a model for the interstellar matter composed by spherically symmetrical clouds. The density distribution for each of these clouds is D(r) = D 0 .esup(-r/r 0 ) 2 . The preliminary results obtained are summarised. (author)

  4. Structure in radio galaxies

    International Nuclear Information System (INIS)

    Breugel, W. van.

    1980-01-01

    It is shown that radio jets are a rather common phenomenon in radio galaxies. Jets can be disguised as trails in head-tail sources, bridges in double sources or simply remain undetected because of lack of resolution and sensitivity. It is natural to associate these jets with the channels which had previously been suggested to supply energy to the extended radio lobes. The observations of optical emission suggest that a continuous non-thermal spectrum extending from 10 9 to 10 15 Hz is a common property of jets. Because significant amounts of interstellar matter are also observed in each of the galaxies surveyed it seems that models for jets which involve an interaction with this medium may be most appropriate. New information about the overall structure of extended radio sources has been obtained from the detailed multifrequency study with the WSRT. (Auth.)

  5. Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoyuan [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Max-Planck-Institut fuer Physik, Muenchen (Germany); Vertongen, Gilles [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institut d' Astrophysique de Paris, 75 - Paris (France); Weniger, Christoph [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2011-09-15

    Galaxy clusters are promising targets for indirect dark matter searches. Gamma-ray signatures from the decay or annihilation of dark matter particles inside these clusters could be observable with the Fermi Large Area Telescope (LAT). Based on three years of Fermi LAT gamma-ray data, we analyze the flux coming from eight nearby clusters individually as well as in a combined likelihood analysis. Concentrating mostly on signals from dark matter decay, we take into account uncertainties of the cluster masses as determined by X-ray observations and model the cluster emission with extended sources. We do not find significant emission from any of the considered clusters and present limits on the dark matter lifetime and annihilation cross-section. We compare our lifetime limits derived from cluster observations with the limits that can be obtained from the extragalactic gamma-ray background, and find that in case of hadronic decay the cluster limits become competitive at dark matter masses below a few hundred GeV. Finally, we show that in presence of dark matter substructures down to 10{sup -6} solar masses the limits on the dark matter annihilation cross-section could improve by a factor of a few hundred, possibly going down to the thermal cross-section of 3 x 10{sup -26} cm{sup 3}s{sup -1} for dark matter masses matter in scenarios with R-parity violation. Implications of these limits for the possible observation of long-lived superparticles at the LHC are discussed. (orig.)

  6. Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters

    International Nuclear Information System (INIS)

    Huang, Xiaoyuan; Vertongen, Gilles; Weniger, Christoph

    2011-09-01

    Galaxy clusters are promising targets for indirect dark matter searches. Gamma-ray signatures from the decay or annihilation of dark matter particles inside these clusters could be observable with the Fermi Large Area Telescope (LAT). Based on three years of Fermi LAT gamma-ray data, we analyze the flux coming from eight nearby clusters individually as well as in a combined likelihood analysis. Concentrating mostly on signals from dark matter decay, we take into account uncertainties of the cluster masses as determined by X-ray observations and model the cluster emission with extended sources. We do not find significant emission from any of the considered clusters and present limits on the dark matter lifetime and annihilation cross-section. We compare our lifetime limits derived from cluster observations with the limits that can be obtained from the extragalactic gamma-ray background, and find that in case of hadronic decay the cluster limits become competitive at dark matter masses below a few hundred GeV. Finally, we show that in presence of dark matter substructures down to 10 -6 solar masses the limits on the dark matter annihilation cross-section could improve by a factor of a few hundred, possibly going down to the thermal cross-section of 3 x 10 -26 cm 3 s -1 for dark matter masses < or similar 150 GeV and annihilation into b anti b. As a direct application of our results, we derive limits on the lifetime of gravitino dark matter in scenarios with R-parity violation. Implications of these limits for the possible observation of long-lived superparticles at the LHC are discussed. (orig.)

  7. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    Science.gov (United States)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  8. Island universes structure and evolution of disk galaxies

    CERN Document Server

    DE JONG, R. S

    2007-01-01

    This book contains an up-to-date review of the structure and evolution of disk galaxies from both the observational and theoretical point of view. The book is the proceedings of the "Island Universes" conference held at the island of Terschelling, The Netherlands in July 2005, which attracted about 130 experts and students in the field. The conference was organized as a tribute to Dr. Piet C. van der Kruit for receiving the honorary Jacobus C. Kapteyn Professorship in Astronomy. The eight topical themes discussed at the meeting are reflected in these proceedings: 1) Properties of Stellar Disks, 2) Kinematics and Dynamics of Disk Galaxies, 3) Bars, Spiral Structure, and Secular Evolution in Disk Galaxies, 4) The Outskirts and Environment of Disk Galaxies, 5) Interstellar Matter, 6) (Evolution of) Star Formation in Galactic Disks, 7) Disk Galaxies through Cosmic Time, and 8) Formation Models of Disk Galaxies. These proceedings are concluded with a conference summary reflecting on the most significant recent pro...

  9. High-resolution simulations of galaxy formation in a cold dark matter scenario

    International Nuclear Information System (INIS)

    Kates, R.E.; Klypin, A.A.

    1990-01-01

    We present the results of our numerical simulations of galaxy clustering in a two-dimensional model. Our simulations allowed better resolution than could be obtained in three-dimensional simulations. We used a spectrum of initial perturbations corresponding to a cold dark matter (CDM) model and followed the history of each particle by modelling the shocking and subsequent cooling of matter. We took into account cooling processes in a hot plasma with primeval cosmic abundances of H and He as well as Compton cooling. (However, the influence of these processes on the trajectories of ordinary matter particles was not simulated in the present code.) As a result of the high resolution, we were able to observe a network of chains on all scales down to the limits of resolution. This network extends out from dense clusters and superclusters and penetrates into voids (with decreasing density). In addition to the dark matter network structure, a definite prediction of our simulations is the existence of a connected filamentary structure consisting of hot gas with a temperature of 10 6 K and extending over 100-150 Mpc. (Throughout this paper, we assume the Hubble constant H 0 =50 km/sec/Mpc.) These structures trace high-density filaments of the dark matter distribution and should be searched for in soft X-ray observations. In contrast to common assumptions, we found that peaks of the linearized density distribution were not reliable tracers of the eventual galaxy distribution. We were also able to demonstrate that the influence of small-scale fluctuations on the structure at larger scales is always small, even at the late nonlinear stage. (orig.)

  10. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenfeld, Alessandro; Treu, Tommaso [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Marshall, Philip J. [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Suyu, Sherry H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Gavazzi, Raphaël [Institut d' Astrophysique de Paris, UMR7095 CNRS-Université Pierre et Marie Curie, 98bis bd Arago, F-75014 Paris (France); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Nipoti, Carlo, E-mail: sonnen@physics.ucsb.edu [Department of Physics and Astronomy, Bologna University, viale Berti-Pichat 6/2, I-40127 Bologna (Italy)

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  11. The Halo Dynamics of NGC 3379: A Normal Elliptical Galaxy with No Dark Matter

    Science.gov (United States)

    Ciardullo, R.; Jacoby, G. H.

    1993-05-01

    We present the results of a radial velocity survey of planetary nebulae in the normal, non-interacting, elliptical galaxy NGC 3379. In two half-nights with the Kitt Peak 4-m telescope and the NESSIE multifiber spectrograph, we measured the velocities of 29 PNe with projected galactocentric distances between 0.4 and 3.8 effective radii (1 kpc < R < 10 kpc). These data, which have an observational uncertainty of ~ 7 km s(-1) , extend 3 times further into the halo than any previous absorption line study, and allow us for the first time, to examine the kinematics of halo stars in a normal E0 galaxy. The observed velocity dispersion and photometric profile of NGC 3379 agrees extremely well with that expected from a constant mass-to-light, isotropic orbit Jaffe model with a mass-to-light ratio M/L_B ~ 7. A simple c = 2.33 King model with M/L_B ~ 7 also fits the data reasonably well, but models with purely radial or circular orbits are ruled out. The data strongly suggest that NGC 3379 is a galaxy with little or no dark matter within 3.5 effective radii of its nucleus.

  12. Study of the boxlike dark matter signals from dwarf spheroidal galaxies with Fermi-LAT data

    Science.gov (United States)

    Li, Shang; Liang, Yun-Feng; Xia, Zi-Qing; Zu, Lei; Duan, Kai-Kai; Shen, Zhao-Qiang; Feng, Lei; Yuan, Qiang; Fan, Yi-Zhong

    2018-04-01

    The observation of a special spectral feature in the gamma-ray data would be one of the best ways to identify dark matter (DM). The box-shaped gamma-ray spectra could be generated by the decay of intermediate particles produced by DM annihilation or decay. It provides another kind of signal that can be relatively easily distinguished from astrophysical backgrounds besides the linelike signals. Dwarf spheroidal galaxies are expected to be dominated by DM and may be one of the most promising targets for indirect DM searches. In this paper, we study the box-shaped DM signals with Fermi-LAT observations of dwarf spheroidal galaxies. We analyze 106 months of Fermi-LAT data to derive the upper limits on the annihilation cross section or the decay timescale of DM. In addition, we compare the results for different sample selections and DM density distributions. We expect that more dwarf spheroidal galaxies will be found and the sensitivity of box-shaped gamma-ray signal searches will be significantly improved in the future.

  13. Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berse, R. Ch.; Berti, A.; Bhattacharyya, W.; Biland, A.; Blanch, O.; Bonnoli, G.; Carosi, R.; Carosi, A.; Ceribella, G.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Delfino, M.; Delgado, J.; Di Pierro, F.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Masuda, S.; Mazin, D.; Mielke, K.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Nagayoshi, T.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nigro, C.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takahashi, M.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Torres-Albà, N.; Treves, A.; Tsujimoto, S.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2018-03-01

    The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E gtrsim 50 GeV) in search for signatures of DM annihilation in the wide mass range between ~100 GeV and ~100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored DM models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.

  14. Galaxy and cluster formation in a universe dominated by cold dark matter

    International Nuclear Information System (INIS)

    Primack, J.R.

    1984-07-01

    The dark matter (DM) that appears to be gravitationally dominant on all astronomical scales larger than the cores of galaxies can be classified, on the basis of its characteristic free-streaming damping mass M/sub D/, as hot (M/sub D/ approx. 10 15 M/sub mass/), warm (M/sub D/ approx. 10 11 M/sub mass/), or cold (M/sub D 8 M/sub mass/). For the case of cold DM, the shape of the DM fluctuation spectrum is determined by (a) the primordial spectrum (on scales larger than the horizon), and (b) stagspansion, the stagnation of the growth of DM fluctuations that enter the horizon while the universe is still radiation-dominated. An attractive feature of the cold dark matter hypothesis is its considerable predictive power: the post-recombination fluctuation spectrum is calculable, and it in turn governs the formation of galaxies and clusters. Good agreement with the data is obtained for a Zeldovich spectrum of primordial fluctuations

  15. Galaxy and cluster formation in a universe dominated by cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Primack, J.R.

    1984-07-01

    The dark matter (DM) that appears to be gravitationally dominant on all astronomical scales larger than the cores of galaxies can be classified, on the basis of its characteristic free-streaming damping mass M/sub D/, as hot (M/sub D/ approx. 10/sup 15/ M/sub mass/), warm (M/sub D/ approx. 10/sup 11/ M/sub mass/), or cold (M/sub D < 10/sup 8/ M/sub mass/). For the case of cold DM, the shape of the DM fluctuation spectrum is determined by (a) the primordial spectrum (on scales larger than the horizon), and (b) stagspansion, the stagnation of the growth of DM fluctuations that enter the horizon while the universe is still radiation-dominated. An attractive feature of the cold dark matter hypothesis is its considerable predictive power: the post-recombination fluctuation spectrum is calculable, and it in turn governs the formation of galaxies and clusters. Good agreement with the data is obtained for a Zeldovich spectrum of primordial fluctuations.

  16. Searches for dark matter self-annihilation signals from dwarf spheroidal galaxies and the Fornax galaxy cluster with imaging air Cherenkov telescopes

    International Nuclear Information System (INIS)

    Opitz, Bjoern Helmut Bastian

    2014-06-01

    Many astronomical observations indicate that dark matter pervades the universe and dominates the formation and dynamics of cosmic structures. Weakly interacting massive particles (WIMPs) with masses in the GeV to TeV range form a popular class of dark matter candidates. WIMP self-annihilation may lead to the production of γ-rays in the very high energy regime above 100 GeV, which is observable with imaging air Cherenkov telescopes (IACTs). For this thesis, observations of dwarf spheroidal galaxies (dSph) and the Fornax galaxy cluster with the Cherenkov telescope systems H.E.S.S., MAGIC and VERITAS were used to search for γ-ray signals of dark matter annihilations. The work consists of two parts: First, a likelihood-based statistical technique was introduced to combine published results of dSph observations with the different IACTs. The technique also accounts for uncertainties on the ''J factors'', which quantify the dark matter content of the dwarf galaxies. Secondly, H.E.S.S. observations of the Fornax cluster were analyzed. In this case, a collection of dark matter halo models was used for the J factor computation. In addition, possible signal enhancements from halo substructures were considered. None of the searches yielded a significant γ-ray signal. Therefore, the results were used to place upper limits on the thermally averaged dark matter self-annihilation cross-section left angle σν right angle. Different models for the final state of the annihilation process were considered. The cross-section limits range from left angle σν right angle UL ∝10 -19 cm 3 s -1 to left angle σν right angle UL ∝10 -25 cm 3 s -1 for dark matter particles masses between 100 GeV and 100 TeV. Some of the diverse model uncertainties causing this wide range of left angle σν right angle UL values were analyzed.

  17. ON THE AVERAGE DENSITY PROFILE OF DARK-MATTER HALOS IN THE INNER REGIONS OF MASSIVE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Grillo, C.

    2012-01-01

    We study a sample of 39 massive early-type lens galaxies at redshift z ∼< 0.3 to determine the slope of the average dark-matter density profile in the innermost regions. We keep the strong-lensing and stellar population synthesis modeling as simple as possible to measure the galaxy total and luminous masses. By rescaling the values of the Einstein radius and dark-matter projected mass with the values of the luminous effective radius and mass, we combine all the data of the galaxies in the sample. We find that between 0.3 and 0.9 times the value of the effective radius the average logarithmic slope of the dark-matter projected density profile is –1.0 ± 0.2 (i.e., approximately isothermal) or –0.7 ± 0.5 (i.e., shallower than isothermal), if, respectively, a constant Chabrier or heavier, Salpeter-like stellar initial mass function is adopted. These results provide positive evidence of the influence of the baryonic component on the contraction of the galaxy dark-matter halos, compared to the predictions of dark-matter-only cosmological simulations, and open a new way to test models of structure formation and evolution within the standard ΛCDM cosmological scenario.

  18. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  19. THE CASE AGAINST WARM OR SELF-INTERACTING DARK MATTER AS EXPLANATIONS FOR CORES IN LOW SURFACE BRIGHTNESS GALAXIES

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj

    2010-01-01

    Warm dark matter (WDM) and self-interacting dark matter (SIDM) are often motivated by the inferred cores in the dark matter halos of low surface brightness (LSB) galaxies. We test thermal WDM, non-thermal WDM, and SIDM using high-resolution rotation curves of nine LSB galaxies. We fit these dark matter models to the data and determine the halo core radii and central densities. While the minimum core size in WDM models is predicted to decrease with halo mass, we find that the inferred core radii increase with halo mass and also cannot be explained with a single value of the primordial phase-space density. Moreover, if the core size is set by WDM particle properties, then even the smallest cores we infer would require primordial phase-space density values that are orders of magnitude smaller than lower limits obtained from the Lyα forest power spectra. We also find that the dark matter halo core densities vary by a factor of about 30 from system to system while showing no systematic trend with the maximum rotation velocity of the galaxy. This strongly argues against the core size being directly set by large self-interactions (scattering or annihilation) of dark matter. We therefore conclude that the inferred cores do not provide motivation to prefer WDM or SIDM over other dark matter models.

  20. Dark matter statistics for large galaxy catalogs: power spectra and covariance matrices

    Science.gov (United States)

    Klypin, Anatoly; Prada, Francisco

    2018-06-01

    Large-scale surveys of galaxies require accurate theoretical predictions of the dark matter clustering for thousands of mock galaxy catalogs. We demonstrate that this goal can be achieve with the new Parallel Particle-Mesh (PM) N-body code GLAM at a very low computational cost. We run ˜22, 000 simulations with ˜2 billion particles that provide ˜1% accuracy of the dark matter power spectra P(k) for wave-numbers up to k ˜ 1hMpc-1. Using this large data-set we study the power spectrum covariance matrix. In contrast to many previous analytical and numerical results, we find that the covariance matrix normalised to the power spectrum C(k, k΄)/P(k)P(k΄) has a complex structure of non-diagonal components: an upturn at small k, followed by a minimum at k ≈ 0.1 - 0.2 hMpc-1, and a maximum at k ≈ 0.5 - 0.6 hMpc-1. The normalised covariance matrix strongly evolves with redshift: C(k, k΄)∝δα(t)P(k)P(k΄), where δ is the linear growth factor and α ≈ 1 - 1.25, which indicates that the covariance matrix depends on cosmological parameters. We also show that waves longer than 1h-1Gpc have very little impact on the power spectrum and covariance matrix. This significantly reduces the computational costs and complexity of theoretical predictions: relatively small volume ˜(1h-1Gpc)3 simulations capture the necessary properties of dark matter clustering statistics. As our results also indicate, achieving ˜1% errors in the covariance matrix for k < 0.50 hMpc-1 requires a resolution better than ɛ ˜ 0.5h-1Mpc.

  1. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  2. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Shahram; Mollazadeh, Amir [Department of Astronomy and High Energy Physics, Faculty of Physics, Kharazmi University, Mofateh Ave., Tehran (Iran, Islamic Republic of); Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM model will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.

  3. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  4. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies

    Science.gov (United States)

    Clesse, Sébastien; García-Bellido, Juan

    2015-07-01

    In this paper we present a new scenario where massive primordial black holes (PBHs) are produced from the collapse of large curvature perturbations generated during a mild-waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetarylike masses at matter-radiation equality and producing abundances comparable to those of dark matter today, while the matter power spectrum on scales probed by cosmic microwave background (CMB) anisotropies agrees with Planck data. These PBHs could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and microlensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultraluminous x-ray sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-Planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a Swiss-cheese-like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.

  5. On the coherent rotation of diffuse matter in numerical simulations of clusters of galaxies

    Science.gov (United States)

    Baldi, Anna Silvia; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Lamagna, Luca; Rasia, Elena

    2017-03-01

    We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: (I) non-radiative, (II) radiative without active galactic nuclei (AGN) feedback and (III) radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.

  6. Kinematic properties and dark matter fraction of Virgo dwarf early-type galaxies

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Peletier, R.; Gorgas, J.

    2012-01-01

    What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand

  7. IRAS bright galaxy sample. II. The sample and luminosity function

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Neugebauer, G.; Madore, B.F.; Danielson, G.E.; David Dunlap Observatory, Richmond Hill, Canada; Palomar Observatory; California Institute of Technology, Pasadena)

    1987-01-01

    A statistically complete sample of 324 of the brightest infrared galaxies discovered at 60 microns in the IRAS all-sky survey is described. The results show that far-infrared emission is a significant luminosity component in the local universe, representing 25 percent of the luminosity emitted by stars in the same volume. Above 10 to the 11th solar luminosities, the infrared luminous galaxies are the dominant population of objects in the universe, being as numerous as the Seyfert galaxies and more numerous than quasars at higher luminosities. The infrared luminosity appears to be independent of the optical luminosity of galaxies. Most infrared bright galaxies appear to require much of the interstellar matter to be contributing to the observed infrared luminosity. Approximately 60-80 percent of the far-infrared luminosity of the local universe can be attributed, directly or indirectly, to recent or ongoing star formation. 67 references

  8. ISM stripping from cluster galaxies and inhomogeneities in cooling flows

    Science.gov (United States)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1990-01-01

    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide

  9. On the density within the dark-matter core in our galaxy

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2007-01-01

    Full Text Available Assuming that the disc of our Galaxy, the Milky Way, obeys the classical exponential law, that it is maximal and the Sun is rather far from the maximum of its circular velocity, one finds that, most likely, the galactic corona (subsystem containing the dark matter has a nearly constant density within its core which contains the position of the Sun. The approach applied in the present paper is local, i.e. quantities characterizing the solar neighbourhood are treated. The assumptions and the result could explain why the ratio of the moduli of the Oort constants is expected to exceed the value of 1.0 which corresponds to the locally flat rotation curve of the Milky Way.

  10. Interstellar ammonia

    International Nuclear Information System (INIS)

    Ho, P.T.P.; Townes, C.H.

    1983-01-01

    Investigations and results on interstellar NH3 are discussed. The physics of the molecule, its interstellar excitation, and its formation and dissociation mechanisms are reviewed. The observing techniques and instruments, including single-antenna facilities, infrared and submillimeter techniques, and interferometric studies using the Very Large Array are briefly considered. Spectral data analysis is discussed, including the derivation of optical depths, excitation measurements, ortho-para measurements, and cross sections. Progress achieved in understanding the properties and evolution of the interstellar medium through NH3 studies is reviewed, including observations of nearby dark clouds and of clumping effects in molecular clouds, as well as interferometric observations of hot molecular cores in Orion, W51, and Sagittarius A. Research results on extragalactic NH3, far-infrared, submillimeter, and midinfrared NH3 observations are described. 101 references

  11. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    International Nuclear Information System (INIS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens; Van den Bosch, Remco C. E.; Van de Ven, Glenn; Barentine, John C.; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.

    2014-01-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these

  12. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    International Nuclear Information System (INIS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-01-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  13. Interstellar holography

    NARCIS (Netherlands)

    Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.

    2008-01-01

    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of

  14. Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours

    Science.gov (United States)

    Zu, Ying; Mandelbaum, Rachel

    2018-05-01

    Recent studies suggest that the quenching properties of galaxies are correlated over several megaparsecs. The large-scale `galactic conformity' phenomenon around central galaxies has been regarded as a potential signature of `galaxy assembly bias' or `pre-heating', both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu and Mandelbaum, we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in Sloan Digital Sky Survey, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more versus less red galaxy subsamples, split by the red-sequence ridge line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of (1) halo quenching and (2) the variation of halo mass function with environment - an indirect environmental effect mediated by two separate physical processes.

  15. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    International Nuclear Information System (INIS)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O.; Colín, P.

    2014-01-01

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M v ≈ 2.5 × 10 10 M ☉ ) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f g , are episodic, showing that the supernova-driven outflows play an important role in regulating f g —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  16. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    Energy Technology Data Exchange (ETDEWEB)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F. (Mexico); Colín, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089 (Mexico)

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  17. Galaxy clusters in simulations of the local Universe: a matter of constraints

    Science.gov (United States)

    Sorce, Jenny G.; Tempel, Elmo

    2018-06-01

    To study the full formation and evolution history of galaxy clusters and their population, high-resolution simulations of the latter are flourishing. However, comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non-trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large-scale environment. Comparing random and local Universe-like simulations obtained with differently grouped observational catalogues of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogues that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling on to clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter haloes, simulacra for five local clusters - Virgo, Centaurus, Coma, Hydra, and Perseus - is increased by 39 per cent closing the gap with observational mass estimates. Simulacra are found on average in 89 per cent of the simulations, an increase of 5 per cent with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalogue, the latest release lets us foresee a better simulacrum for Perseus in a near future.

  18. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  19. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  20. Ruling out dark matter interpretation of the galactic GeV excess by gamma-ray data of galaxy clusters.

    Science.gov (United States)

    Chan, Man Ho; Leung, Chung Hei

    2017-11-02

    Recently, some very tight constraints of annihilating dark matter have been obtained from gamma-ray data of the Milky Way and Milky Way dwarf spheroidal satellite galaxies. In this article, we report that there are two excellent galaxy clusters (A2877 and Fornax) which can provide interesting constraints for annihilating dark matter. The lower limits of the dark matter mass for the thermal relic annihilation cross section are 25 GeV, 6 GeV, 130 GeV and 100 GeV respectively for the e + e - , μ + μ - , τ + τ - and [Formula: see text] channels. For some configuration of our working assumptions, our results improve the Fermi-LAT upper limits of annihilation cross sections by a factor of 1.3 - 1.8 for wide ranges of dark matter mass for e + e - , μ + μ - and [Formula: see text] channels, and a factor of 1.2-1.8 for τ + τ - channel with dark matter mass ≤100 GeV. These limits basically rule out most of the existing popular dark matter interpretation of the GeV excess in the Milky Way.

  1. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  2. The FMOS-COSMOS Survey of Star-forming Galaxies at Z ˜ 1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies

    Science.gov (United States)

    Kashino, Daichi; More, Surhud; Silverman, John D.; Daddi, Emanuele; Renzini, Alvio; Sanders, David B.; Rodighiero, Giulia; Puglisi, Annagrazia; Kajisawa, Masaru; Valentino, Francesco; Kartaltepe, Jeyhan S.; Le Fèvre, Olivier; Nagao, Tohru; Arimoto, Nobuo; Sugiyama, Naoshi

    2017-07-01

    We study the properties of dark matter halos that contain star-forming galaxies at 1.43 ≤ z ≤ 1.74, using the FMOS-COSMOS survey. The sample consists of 516 objects with a detection of the Hα emission line, which represent the star forming population at this epoch, having a stellar mass range of 109.57 ≤ M */M ⊙ ≲ 1011.4 and a star-formation rate range of 15 ≲ SFR/(M ⊙ yr-1) ≲ 600. We measure the projected two-point correlation function while carefully taking into account observational biases, and find a significant clustering amplitude at scales of 0.04-10 h -1 cMpc, with a correlation length {r}0={5.26}-0.62+0.75 {h}-1 {cMpc} and a bias b={2.44}-0.32+0.38. We interpret our clustering measurement using a halo occupation distribution model. The sample galaxies appear to reside in halos with mass {M}{{h}}={4.71}-1.62+1.19× {10}12 {h}-1 {M}⊙ on average, which will likely become present-day halos of mass M h (z = 0) ˜ 2 × 1013 h -1 M ⊙, equivalent to the typical halo mass scale of galaxy groups. We then confirm the decline of the stellar-to-halo mass ratio at M h 1.

  3. Searching for dwarf spheroidal galaxies and other galactic dark matter substructures with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Stanford Univ., CA (United States). Dept. of Physics

    2013-08-01

    Over the past century, it has become clear that about a quarter of the known universe is composed of an invisible, massive component termed ''dark matter''. Some of the most popular theories of physics beyond the Standard Model suggest that dark matter may be a new fundamental particle that could self-annihilate to produce γ rays. Nearby over-densities in the dark matter halo of our Milky Way present some of the most promising targets for detecting the annihilation of dark matter. We used the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope to search for γ rays produced by dark matter annihilation in Galactic dark matter substructures. We searched for γ-ray emission coincident with Milky Way dwarf spheroidal satellite galaxies, which trace the most massive Galactic dark matter substructures. We also sought to identify nearby dark matter substructures that lack all astrophysical tracers and would be detectable only through γ-ray emission from dark matter annihilation. We found no conclusive evidence for γ-ray emission from dark matter annihilation, and we set stringent and robust constraints on the dark matter annihilation cross section. While γ-ray searches for dark matter substructure are currently the most sensitive and robust probes of dark matter annihilation, they are just beginning to intersect the theoretically preferred region of dark matter parameter space. Thus, we consider future prospects for increasing the sensitivity of γ-ray searches through improvements to the LAT instrument performance and through upcoming wide- field optical surveys.

  4. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /Royal Inst. Tech., Stockholm /Stockholm U., OKC /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  5. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  6. Is the vast polar structure of dwarf galaxies a serious problem for Λ cold dark matter?

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya

    2017-06-01

    The dwarf galaxies around the Milky Way are distributed in a so-called vast polar structure (VPOS) that may be in conflict with Λ cold dark matter (ΛCDM) simulations. Here, we seek to determine if the VPOS poses a serious challenge to the ΛCDM paradigm on galactic scales. Specifically, we investigate if the VPOS remains coherent as a function of time. Using the measured Hubble Space Telescope (HST) proper motions and associated uncertainties, we integrate the orbits of the classical Milky Way satellites backwards in time and find that the structure disperses well before a dynamical time. We also examine, in particular, Leo I and Leo II using their most recent proper motion data, both of which have extreme kinematic properties, but these satellites do not appear to drive the polar fit that is seen at the present day. We have studied the effect of the uncertainties on the HST proper motions on the coherence of the VPOS as a function of time. We find that 8 of the 11 classical dwarfs have reliable proper motions; for these eight, the VPOS also loses significance in less than a dynamical time, indicating that the VPOS is not a dynamically stable structure. Obtaining more accurate proper motion measurements of Ursa Minor, Sculptor and Carina would bolster these conclusions.

  7. The local interstellar medium and gamma-ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.; Paul, J.

    1985-08-01

    The recent improvement of the calibration of the galaxy counts used as an interstellar-absorption tracer modifies significantly the picture of the local interstellar medium (ISM). Consequently, previous analyses of the γ-ray emission from the local ISM involving galaxy counts have to be revised. In this paper, we consider the implications regarding the cosmic-ray (CR) density in the local ISM, and in particular within Loop I, a nearby supernova remnant (SNR)

  8. DARK MATTER SEARCHES IN THE GAMMA-RAY EXTRAGALACTIC BACKGROUND VIA CROSS-CORRELATIONS WITH GALAXY CATALOGS

    International Nuclear Information System (INIS)

    Cuoco, Alessandro; Regis, Marco; Fornengo, Nicolao; Xia, Jun-Qing; Branchini, Enzo; Viel, Matteo

    2015-01-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM

  9. Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations with Galaxy Catalogs

    Science.gov (United States)

    Cuoco, Alessandro; Xia, Jun-Qing; Regis, Marco; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-12-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  10. DARK MATTER SEARCHES IN THE GAMMA-RAY EXTRAGALACTIC BACKGROUND VIA CROSS-CORRELATIONS WITH GALAXY CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Cuoco, Alessandro; Regis, Marco; Fornengo, Nicolao [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Xia, Jun-Qing [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Branchini, Enzo [Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre,” via della Vasca Navale 84, I-00146 Roma (Italy); Viel, Matteo, E-mail: cuoco@to.infn.it, E-mail: regis@to.infn.it, E-mail: fornengo@to.infn.it, E-mail: xiajq@bnu.edu.cn, E-mail: branchin@fis.uniroma3.it, E-mail: viel@oats.inaf.it [INAF Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34141, Trieste (Italy)

    2015-12-15

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  11. GALAXY MERGERS AND DARK MATTER HALO MERGERS IN ΛCDM: MASS, REDSHIFT, AND MASS-RATIO DEPENDENCE

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We employ a high-resolution ΛCDM N-body simulation to present merger rate predictions for dark matter (DM) halos and investigate how common merger-related observables for galaxies-such as close pair counts, starburst counts, and the morphologically disturbed fraction-likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We investigate both rate at which subhalos first enter the virial radius of a larger halo (the 'infall rate'), and the rate at which subhalos become destroyed, losing 90% of the mass they had at infall (the d estruction rate ) . For both merger rate definitions, we provide a simple 'universal' fitting formula that describes our derived merger rates for DM halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density matching to associate halos with galaxies. For example, we find that the instantaneous (destruction) merger rate of m/M > 0.3 mass-ratio events into typical L ∼> f L * galaxies follows the simple relation dN/dt ≅ 0.03(1 + f) Gyr -1 (1 + z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of >0.4 L * high-redshift galaxies (∼3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the previous 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman break galaxies (LBGs).

  12. Current star formation in S0 galaxies: NGC 4710

    International Nuclear Information System (INIS)

    Wrobel, J.M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data

  13. Interstellar grains

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, F.; Wickramasinghe, N.C.

    1980-11-01

    Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.

  14. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    Science.gov (United States)

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 motivated framework additional or alternative to the FDM profile.

  15. The shape of dark matter haloes - V. Analysis of observations of edge-on galaxies

    NARCIS (Netherlands)

    Peters, S. P. C.; van der Kruit, P. C.; Allen, R. J.; Freeman, K. C.

    In previous papers in this series, we measured the stellar and H I content in a sample of edge-on galaxies. In the present paper, we perform a simultaneous rotation curve and vertical force field gradient decomposition for five of these edge-on galaxies. The rotation curve decomposition provides a

  16. Evolution of the atomic and molecular gas content of galaxies in dark matter haloes

    NARCIS (Netherlands)

    Popping, Gergö; Behroozi, Peter S.; Peeples, Molly S.

    We present a semi-empirical model to infer the atomic and molecular hydrogen content of galaxies as a function of halo mass and time. Our model combines the star formation rate (SFR)-halo mass-redshift relation (constrained by galaxy abundances) with inverted SFR-surface density relations to infer

  17. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y

    2008-01-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency

  18. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.

    2008-07-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.

  19. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology.

    Science.gov (United States)

    Müller, Oliver; Pawlowski, Marcel S; Jerjen, Helmut; Lelli, Federico

    2018-02-02

    The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, cosmological paradigm. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Physics of the interstellar and intergalactic medium

    CERN Document Server

    Draine, Bruce T

    2010-01-01

    This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resourc...

  1. Projected alignment of non-sphericities of stellar, gas, and dark matter distributions in galaxy clusters: analysis of the Horizon-AGN simulation

    Science.gov (United States)

    Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2018-04-01

    While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.

  2. Interstellar colonization and the zoo hypothesis

    International Nuclear Information System (INIS)

    Jones, E.M.

    1978-01-01

    Michael Hart and others have pointed out that current estimates of the number of technological civilizations arisen in the Galaxy since its formation is in fundamental conflict with the expectation that such a civilization could colonize and utilize the entire Galaxy in 10 to 20 million years. This dilemma can be called Hart's paradox. Resolution of the paradox requires that one or more of the following are true: we are the Galaxy's first technical civilization; interstellar travel is immensely impractical or simply impossible; technological civilizations are very short-lived; or we inhabit a wildnerness preserve. The latter is the zoo hypothesis

  3. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  4. Tackling the Saturation of Oxygen: The Use of Phosphorus and Sulfur as Proxies within the Neutral Interstellar Medium of Star-forming Galaxies

    Science.gov (United States)

    James, B.; Aloisi, A.

    2018-02-01

    The abundance of oxygen in galaxies is widely used in furthering our understanding of galaxy formation and evolution. Unfortunately, direct measurements of O/H in the neutral gas are extremely difficult to obtain, as the only O I line available within the Hubble Space Telescope (HST) UV wavelength range (1150–3200 Å) is often saturated. As such, proxies for oxygen are needed to indirectly derive O/H via the assumption that solar ratios based on local Milky Way sight lines hold in different environments. In this paper we assess the validity of using two such proxies, P II and S II, within more typical star-forming environments. Using HST-Cosmic Origins Spectrograph (COS) far-UV (FUV) spectra of a sample of nearby star-forming galaxies (SFGs) and the oxygen abundances in their ionized gas, we demonstrate that both P and S are mildly depleted with respect to O and follow a trend, log(P II/S II) = -1.73 +/- 0.18, in excellent agreement with the solar ratio of {log}{({{P}}/{{S}})}ȯ =-1.71 +/- 0.04 over the large range of metallicities (0.03–3.2 Z ⊙) and H I column densities ({log}[N(H I)/cm‑2] =18.44–21.28) spanned by the sample. From literature data we show evidence that both elements individually trace oxygen according to their respective solar ratios across a wide range of environments. Our findings demonst-rate that the solar ratios of {log}{({{P}}/{{O}})}ȯ =-3.28+/- 0.06 and {log}{({{S}}/{{O}})}ȯ =-1.57+/- 0.06 can both be used to derive reliable O/H abundances in the neutral gas of local and high-redshift SFGs. The difference between O/H in the ionized- and neutral gas phases is studied with respect to metallicity and H I content. The observed trends are consistent with galactic outflows and/or star formation inefficiency affecting the most metal-poor galaxies, with the possibility of primordial gas accretion at all metallicities.

  5. Why the dark matter of galaxies is clumps of micro­ brown­dwarfs and not Cold Dark Matter

    Science.gov (United States)

    Gibson, Carl H.

    Observations of quasar microlensing by Schild 1996 show the baryonic dark matter BDM of galaxies is micro-brown-dwarfs, primordial hydrogen-helium planets formed at the plasma to gas transition 10^13 seconds, in trillion-planet clumps termed proto-globular-star-clusters PGCs. Large photon-viscosity {nu} of the plasma permits supercluster-mass gravitational fragmentation at 10^12 seconds when the horizon scale L_H = ct is matched by the Schwarz viscous scale L_SV of Gibson 1996. Voids begin expansion at sonic speeds c/ 3^1/2, where c is light speed and t is time, explaining 10^25 meter size regions observed to be devoid of all matter, either BDM or non-baryonic NBDM. Most of the NBDM is weakly-collisional, strongly-diffusive, neutrino-like particles. If cold NBDM (CDM) is assumed, it must soon become warm and diffuse because it is weakly-collisional. It cannot clump and its clumps cannot clump. CDM is ruled out with 99% confidence by local-group satellite observations of Kroupa et al. 2010. The satellites are clusters of PGCs. PGCs are recaptured by the Galaxy on an accretion disk as they freeze and diffuse from its core to form its BDM halo. Stars form by viscous mergers of primordial gas planets within PGCs. Stars die by overeating mBDs, making the first chemicals, oceans and life at 2-8 Myr.

  6. Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations

    Science.gov (United States)

    Vincenzo, Fiorenzo; Kobayashi, Chiaki

    2018-04-01

    We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter halos with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.

  7. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    International Nuclear Information System (INIS)

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy; Fox, Derek B.; Roth, Katherine C.

    2013-01-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z ≈ 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 Å due to absorption from Lyα at redshift z ≈ 5.91, with some flux transmitted through the Lyα forest between 7000 and 7800 Å. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] ∼> –1.7 and an upper limit of [S/H] ∼ GP eff (Lyα) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Lyβ and Lyγ transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2σ upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Lyα red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization

  8. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  9. The PdBI arcsecond whirlpool survey (PAWS). I. A cloud-scale/multi-wavelength view of the interstellar medium in a grand-design spiral galaxy

    International Nuclear Information System (INIS)

    Schinnerer, Eva; Meidt, Sharon E.; Hughes, Annie; Colombo, Dario; Pety, Jérôme; Schuster, Karl F.; Dumas, Gaëlle; García-Burillo, Santiago; Dobbs, Clare L.; Leroy, Adam K.; Kramer, Carsten; Thompson, Todd A.; Regan, Michael W.

    2013-01-01

    The Plateau de Bure Interferometer Arcsecond Whirlpool Survey has mapped the molecular gas in the central ∼9 kpc of M51 in its 12 CO(1-0) line emission at a cloud-scale resolution of ∼40 pc using both IRAM telescopes. We utilize this data set to quantitatively characterize the relation of molecular gas (or CO emission) to other tracers of the interstellar medium, star formation, and stellar populations of varying ages. Using two-dimensional maps, a polar cross-correlation technique and pixel-by-pixel diagrams, we find: (1) that (as expected) the distribution of the molecular gas can be linked to different components of the gravitational potential; (2) evidence for a physical link between CO line emission and radio continuum that seems not to be caused by massive stars, but rather depends on the gas density; (3) a close spatial relation between polycyclic aromatic hydrocarbon (PAH) and molecular gas emission, but no predictive power of PAH emission for the molecular gas mass; (4) that the I – H color map is an excellent predictor of the distribution (and to a lesser degree, the brightness) of CO emission; and (5) that the impact of massive (UV-intense) young star-forming regions on the bulk of the molecular gas in central ∼9 kpc cannot be significant due to a complex spatial relation between molecular gas and star-forming regions that ranges from cospatial to spatially offset to absent. The last point, in particular, highlights the importance of galactic environment—and thus the underlying gravitational potential—for the distribution of molecular gas and star formation.

  10. The cosmic web of the Local Universe: cosmic variance, matter content and its relation to galaxy morphology

    Science.gov (United States)

    Nuza, Sebastián E.; Kitaura, Francisco-Shu; Heß, Steffen; Libeskind, Noam I.; Müller, Volker

    2014-11-01

    We present, for the first time, a Local Universe (LU) characterization using high-precision constrained N-body simulations based on self-consistent phase-space reconstructions of the large-scale structure in the Two-Micron All-Sky Galaxy Redshift Survey. We analyse whether we live in a special cosmic web environment by estimating cosmic variance from a set of unconstrained ΛCDM simulations as a function of distance to random observers. By computing volume and mass filling fractions for voids, sheets, filaments and knots, we find that the LU displays a typical scatter of about 1σ at scales r ≳ 15 h-1 Mpc, in agreement with ΛCDM, converging to a fair unbiased sample when considering spheres of about 60 h-1 Mpc radius. Additionally, we compute the matter density profile of the LU and we have found a reasonable agreement with the estimates of Karachentsev only when considering the contribution of dark haloes. This indicates that observational estimates might be biased towards low-density values. As a first application of our reconstruction, we investigate the likelihood that different galaxy morphological types inhabit certain cosmic web environments. In particular, we find that, irrespective of the method used to define the web, either based on the density or the peculiar velocity field, elliptical galaxies show a clear tendency to preferentially reside in clusters as opposed to voids (up to levels of 5.3σ and 9.8σ, respectively) and conversely for spiral galaxies (up to levels of 5.6σ and 5.4σ, respectively). These findings are compatible with previous works, albeit at higher confidence levels.

  11. Dark matter contraction and stellar-mass-to-light ratio gradients in massive early-type galaxies

    Science.gov (United States)

    Oldham, Lindsay J.; Auger, Matthew W.

    2018-05-01

    We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies. We combine pixel-based modelling of multiband Hubble Space Telescope imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a generalised NFW (gNFW) profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio ϒ⋆ for the baryonic mass, we infer distributions for ϒ⋆ consistent with initial mass functions (IMFs) that are heavier than the Milky Way's (with a global mean mismatch parameter relative to a Chabrier IMF μαc = 1.80 ± 0.14) and halo inner density slopes that span a large range but are generally cuspier than the dark-matter-only prediction (μ _{γ ^' }} = 2.01_{-0.22}^{+0.19}). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mass-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.

  12. CONSTRAINING THE DISTRIBUTION OF DARK MATTER IN THE INNER GALAXY WITH AN INDIRECT DETECTION SIGNAL: THE CASE OF A TENTATIVE 130 GeV γ-RAY LINE

    International Nuclear Information System (INIS)

    Yang Ruizhi; Feng Lei; Li Xiang; Fan Yizhong

    2013-01-01

    Dark matter distribution in the very inner region of our Galaxy is still debated. In N-body simulations, a cuspy dark matter halo density profile is favored. Several dissipative baryonic processes, however, are found to be able to significantly flatten dark matter distribution, and a cored dark matter halo density profile is possible. Baryons dominate the gravitational potential in the inner Galaxy, hence a direct constraint on the abundance of dark matter particles is rather challenging. Recently, a few groups have identified a tentative 130 GeV line signal in the Galactic center, which could be interpreted as the signal of dark matter annihilation. Using current 130 GeV line data and adopting the generalized Navarro-Frenk-White profile of the dark matter halo—local dark matter density ρ 0 = 0.4 GeV cm –3 and r s = 20 kpc—we obtain a 95% confidence level lower (upper) limit on the inner slope of dark matter density distribution, α = 1.06 (the cross section of dark matter annihilation into γ-rays (σv) χχ →γ γ = 1.3 × 10 –27 cm 3 s –1 ). Such a slope is consistent with the results of some N-body simulations and, if the signal is due to dark matter, suggests that baryonic processes may be unimportant.

  13. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    Energy Technology Data Exchange (ETDEWEB)

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Roth, Katherine C., E-mail: rchornock@cfa.harvard.edu [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-09-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z Almost-Equal-To 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 A due to absorption from Ly{alpha} at redshift z Almost-Equal-To 5.91, with some flux transmitted through the Ly{alpha} forest between 7000 and 7800 A. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] {approx}> -1.7 and an upper limit of [S/H] {approx}< -0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Ly{alpha} seen in this spectrum over the redshift range z = 4.9-5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of {Delta}z = 0.12 in the Ly{alpha} forest at z = 5.77 with no detected transmission, leading to a 3{sigma} upper limit on the mean Ly{alpha} transmission fraction of {approx}<0.2% (or {tau}{sub GP}{sup eff} (Ly{alpha}) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Ly{beta} and Ly{gamma} transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2{sigma} upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Ly{alpha} red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.

  14. The Cool ISM in Galaxies

    NARCIS (Netherlands)

    van der Hulst, J. M.; Blok, W. J. G. de; Oswalt, Terry D.; Keel, William C.

    2013-01-01

    This chapter describes the different constituents of the observable interstellar medium (ISM) in galaxies and reviews the relationships between the ISM and the star formation in galaxies. The emphasis is on the component which is most widespread and most easily observable, the neutral atomic

  15. Galaxies and their Masks A Conference in Honour of K.C. Freeman, FRS

    CERN Document Server

    Block, David L; Puerari, Ivânio

    2010-01-01

    Various kinds of masks obscure our view of our galaxy, the Milky Way, as well as of other galaxies. Masks of interstellar dust affect our measurements within galaxies, on scales ranging from individual supernovae to the galaxies themselves. The “mass mask” (our inability to image mass rather than light) gives astronomers a very incomplete picture of the size and structure of galaxies themselves, because we cannot image the dark matter which provides most of the galactic mass. Another mass is the “dynamical mask”: as galaxies form, much dynamical information is lost in the birthing process. A new thrust in research is to retrieve such information by means of chemical tagging. About 50 astronomers flew into Namibia in April 2010, to celebrate the 70th birthday of Professor K.C. Freeman, Fellow of the Royal Society. At age 70, Freeman, a father of dark matter in galaxies, continues to be one of planet’s most highly cited astronomers. The current volume affords readers a unique perspective on galaxies b...

  16. The Ursa Major Cluster of galaxies : Tully-Fisher relations and dark matter in spirals.

    NARCIS (Netherlands)

    Verheijen, MAW; Persic, M; Salucci, P

    1997-01-01

    A brief overview is presented of some results from ongoing research on the properties of a complete sample of spiral galaxies in the Ursa Major cluster. Optical and near infrared photometric imaging is combined with HI 21cm-line synthesis mapping. These observations allow to study in great detail

  17. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  18. Diffuse X-ray emission from the NGC 2300 group of galaxies - Implications for dark matter and galaxy evolution in small groups

    Science.gov (United States)

    Mulchaey, John S.; Davis, David S.; Mushotzky, Richard F.; Burstein, David

    1993-01-01

    The discovery of diffuse X-ray emission from the NGC 2300 group of galaxies using the ROSAT Position Sensitive Proportional Counter is reported. The gas distributions is roughly symmetric and extends to a radius of at least 0.2/h(50) Mpc. A Raymond-Smith hot plasma model provides an excellent fit the X-ray spectrum with a best-fit value temperature of 0.9 + -/15 or - 0.14 keV and abundance 0.06 + 0/.12 or - 0.05 solar. The assumption of gravitational confinement leads to a total mass of the group of 3.0 + 0.4 or - 0.5 x 10 exp 13 solar. Baryons can reasonably account for 4 percent of this mass, and errors could push this number not higher than 10-15 percent. This is one of the strongest pieces of evidence that dark matter dominates small groups such as this one. The intragroup medium in this system has the lowest metal abundance yet found in diffuse gas in a group or cluster.

  19. Testing dark energy and dark matter cosmological models with clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Hans [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)

    2008-07-01

    Galaxy clusters are, as the largest building blocks of our Universe, ideal probes to study the large-scale structure and to test cosmological models. The principle approach und the status of this research is reviewed. Clusters lend themselves for tests in serveral ways: the cluster mass function, the spatial clustering, the evolution of both functions with reshift, and the internal composition can be used to constrain cosmological parameters. X-ray observations are currently the best means of obtaining the relevant data on the galaxy cluster population. We illustrate in particular all the above mentioned methods with our ROSAT based cluster surveys. The mass calibration of clusters is an important issue, that is currently solved with XMM-Newton and Chandra studies. Based on the current experience we provide an outlook for future research, especially with eROSITA.

  20. Observations of High Dispersion Clusters of Galaxies: Constraints on Cold Dark Matter

    Science.gov (United States)

    Oegerle, William R.; Hill, John M.; Fitchett, Michael J.

    1995-07-01

    We have studied the dynamics of several Abell clusters of galaxies, which were previously reported to have large velocity dispersions, and hence very large masses. In particular, we have investigated the assertion of Frenk et al. (1990) that clusters with intrinsic velocity dispersions ~> 1200 km s^-1^ are extremely rare in the universe, and that large observed dispersions are due to projection effects. We report redshifts for 303 galaxies in the fields of A1775, A2029, A2142, and A2319, obtained with the Nessie multifiber spectrograph at the Mayall 4 m telescope. A1775 appears to be two poor, interacting clusters, separated in velocity space by ~3075 km s^-1^ (in the cluster rest frame). A2029 has a velocity dispersion of 1436 km s^-1^, based on 85 cluster member redshifts. There is evidence that a group or poor cluster of galaxies of slightly different redshift is projected onto (or is merging with) the core of A2029. However, the combined kinematic and x-ray data for A2029 argue for an intrinsically large dispersion for this cluster. Based on redshifts for 103 members of A2142, we find a dispersion of 1280 km s^-1^, and evidence for subclustering. With 130 redshifts in the A2319 field, we have isolated a subcluster ~10' NW of the cD galaxy. After its removal, A2319 has a velocity dispersion of 1324 km s^-1^. The data obtained here have been combined with recent optical and X-ray data for other supposedly high-mass clusters to study the cluster velocity dispersion distribution in a sample of Abell clusters. We find that clusters with true velocity dispersions ~> 1200 km s^-1^ are not extremely rare, but account for ~5% of all Abell clusters with R >= 0. If these clusters are in virial equilibrium, then our results are inconsistent with a high-bias (b~>22), high-density CDM model.

  1. nIFTy galaxy cluster simulations I: dark matter & non-radiative models

    CSIR Research Space (South Africa)

    Sembolini, F

    2016-02-01

    Full Text Available replenished by the infall of galaxies from the field. Computer simulations are now well established as a powerful and indispensable tool in the interpretation of astronomical obser- vations (see for instance Borgani & Kravtsov 2011). Early N -body simulations..., Cape Town 7535, South Africa 15South African Astronomical Observatory, PO Box 9, Observatory, Cape Town 7935, South Africa 16 African Institute of Mathematical Sciences, Muizenberg, Cape Town 7945, South Africa 17Sydney Institute for Astronomy, A28...

  2. Diffuse Matter from Star Forming Regions to Active Galaxies A Volume Honouring John Dyson

    CERN Document Server

    Hartquist, T W

    2006-01-01

    John Dyson has contributed to the study of the hydrodynamic processes that govern a wide variety of astrophysical sources which he has helped explain. In this volume dedicated to him, introductory reviews to a number of the key processes and to the sources themselves are given by leading experts. The mechanisms in which the multi-component natures of media affect their dynamics receive particular attention, but the roles of hydromagnetic effects are also highlighted. The importance of cosmic ray moderation and mass transfer between different thermal phases for cosmic ray moderation and mass transfer between different thermal phases for the evolution of flows are amongst the topics treated. The main types of regions considered include those where stars form, the circumstellar environments of evolved stars, the larger scale interstellar structures caused by the mass loss of stars, and those where the lines of AGNs form. The reviews complement one another and together provide a coherent introduction to the astro...

  3. The formation of spiral galaxies: adiabatic compression with Young's algorithm and the relation of dark matter haloes to their primordial antecedents

    NARCIS (Netherlands)

    Katz, Harley; McGaugh, Stacy S.; Sellwood, J. A.; de Blok, W. J. G.

    We utilize Young's algorithm to model the adiabatic compression of the dark matter haloes of galaxies in the THINGS survey to determine the relationship between the halo fit to the rotation curve and the corresponding primordial halo prior to compression. Young's algorithm conserves radial action

  4. On the nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.I.

    1981-01-01

    Possible reasons of interstellar medium turbulence manifested in pulsar scintillation and radio-frequency emission scattering of extragalactic sources near by the Galaxy plane, are discussed. Sources and conditions of turbulence emergence in HII region shells, supernova, residue and in stellar wind giving observed scattering effects are considered. It is shown that in the formation of the interstellar scintillation pattern of discrete radio-frequency emission sources a certain role can be played by magnetosound turbulence, which arises due to shock-waves propagating in the interstellar medium at a velocity Vsub(sh) approximately 20-100 km/s as well as by stellar-wind inhomogeneity of OB classes stars [ru

  5. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  6. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  7. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.

    Science.gov (United States)

    Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2015-12-04

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100  GeV annihilating via quark and τ-lepton channels.

  8. Exponential Potential versus Dark Matter

    Science.gov (United States)

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  9. Studying dark matter using weak gravitational lensing : from galaxies to the cosmic web

    NARCIS (Netherlands)

    Brouwer, M.M.

    2017-01-01

    Of all the mass in our Universe, 80% is thought to consist of a hypothetical and invisible substance called dark matter (DM). So far, all observations of DM are based on its gravitational interaction, either through the dynamics of normal (baryonic) matter or through the deflection of light.

  10. Organic compounds in circumstellar and interstellar environments.

    Science.gov (United States)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  11. High dark matter densities and the formation of extreme dwarf galaxies

    International Nuclear Information System (INIS)

    Lake, G.

    1990-01-01

    The extreme dwarfs of the Local Group, GR 8, Draco, and Ursa Minor have high densities of dark matter. If the dark matter is dissipationless, then there is a simple relation between the redshift of turnaround z(turn) and its current mean density. Three alternatives for the dSphs are discussed. If the dark matter follows the light, then z(turn) is greater than 30. If a density profile is adopted so that the mean density becomes low enough to be barely consistent with the standard density fluctuation spectrum of cold dark matter, then the mass-to-light ratios are greater than 1000 solar mass/solar luminosity. The last alternative is dissipational dark matter. In this case, the additional collapse factor owing to dissipation allows a later epoch of formation. 39 refs

  12. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    International Nuclear Information System (INIS)

    Chau, Alice; Mayer, Lucio; Governato, Fabio

    2017-01-01

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  13. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Alice; Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Governato, Fabio [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

    2017-08-10

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  14. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    Science.gov (United States)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  15. Diffuse infrared emission from the galaxy. I. Solar neighborhood

    International Nuclear Information System (INIS)

    Boulanger, F.; Perault, M.

    1988-01-01

    A large-scale study of the infrared emission originating in the solar neighborhood based on IRAS data is presented. Away from heating sources and outside molecular clouds, the infrared emission from the ISM is well-correlated with the column density of H I gas. The interstellar radiation field and the dust abundance are roughly uniform on scales of the order of 100 pc. The extinction in the polar caps is discussed, and the origin of the infrared emission from the solar neighborhood is investigated. It is shown that stars younger than a few 100 million yr are responsible for two-thirds of the infrared emission from the solar neighborhood, but that most of this emission comes from interstellar matter not associated with current star formation. The correlation between infrared and radio-continuum fluxes of galaxies breaks down on the scale of a few hundred pc around regions of star formation. 81 references

  16. A dirty window diffuse and translucent molecular gas in the interstellar medium

    CERN Document Server

    Magnani, Loris

    2017-01-01

    This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds...

  17. Planck Intermediate Results. XI: The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo ......We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar...... range extending from rich clusters down to $M_{500}\\sim 2\\times 10^{13} \\Msolar$, and there is a clear indication of signal down to $M_{500}\\sim 4\\times 10^{12} \\Msolar$. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo...... gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects...

  18. Rarefied, rotational gas flows in spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Hausman, M.A.

    1983-01-01

    We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

  19. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    Science.gov (United States)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  20. Imaging of SDSS z > 6 Quasar Fields: Gravitational Lensing, Companion Galaxies, and the Host Dark Matter Halos

    Science.gov (United States)

    Willott, Chris J.; Percival, Will J.; McLure, Ross J.; Crampton, David; Hutchings, John B.; Jarvis, Matt J.; Sawicki, Marcin; Simard, Luc

    2005-06-01

    We have undertaken deep optical imaging observations of three 6.2dropouts is consistent with that found in random fields. We consider the expected dark matter halo masses that host these quasars under the assumption that a correlation between black hole mass and dark matter halo mass exists. We show that the steepness of the high-mass tail of the halo mass function at this redshift, combined with realistic amounts of scatter in this correlation, leads to expected halo masses substantially lower than previously believed. This analysis can explain the lack of companion galaxies found here and the low dynamical mass recently published for one of the quasars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  1. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  2. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    International Nuclear Information System (INIS)

    Harwit, Martin; Brisbin, Drew

    2015-01-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10 9 to 6 × 10 10 M ☉ . This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established

  3. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Harwit, Martin; Brisbin, Drew, E-mail: harwit@verizon.net [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-02-20

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10{sup 9} to 6 × 10{sup 10} M {sub ☉}. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  4. Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720

    Science.gov (United States)

    Buote, David A.; Canizares, Claude R.

    1994-01-01

    We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three

  5. The cosmic large-scale structure, dark matter and the origin of galaxies

    CERN Document Server

    Frenk, Carlos S

    1998-01-01

    In this series of lectures, I will review the main events and processes which are thought to have led to the build of structure in the Universe. First, I will provide an overview of some basic ideas such as inflation, Big Bang nucleosynthesis, the microwave background radiation and gravitanional instability. I will then dicuss the evidence for dark matter in the universe and current ideas on the nature and amount of this dark matter, including their consequences for the values of the fundamental cosmological parameters. Next, I will review the processes that give rise to the cosmic large-scale structure, starting with a discussion of the main fluctuation damping mechanisms at early times and finishing with a description of the non-linear phases of evolution. I will discuss how these calculations compare with observations and present the current status of competing cosmological models. Finally I will summarize the most recent and very exciting developments in observational and theoretical studies of gala...

  6. Which effects of galaxy clusters can reduce the amount of dark matter

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip; Somer, L.

    -, č. 21 (2014), s. 43-65 ISSN 1313-2709 R&D Projects: GA ČR GA14-02067S; GA MŠk EE2.3.20.0207 Institutional support: RVO:67985840 ; RVO:61389005 Keywords : dark matter * gravitational lensing * Virial Theorem Subject RIV: BA - General Mathematics; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) http://www.astro.bas.bg/AIJ/issues/n21/MKrizek.pdf

  7. Dark matter searches from the galaxy to the LHC - recent hints and coming progress

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    We discuss the possible galactic positron excess and constraints on interpreting it as dark matter annihilation. We consider wino and higgsino wimps that provide the local relic density and a positron excess (which implies the relic density is non-thermal in origin and important consequences for cosmological history and underlying theories), comment on how to confirm and study these issues at LHC, and on the relation to direct detection experiments.

  8. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    Science.gov (United States)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  9. Nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.

    1981-01-01

    A significant role in producing the pattern of interstellar scintillation observed in discrete radio sources may be played by the magnetoacoustic turbulence that will be generated as shock waves are propagated at velocity V/sub sh/roughly-equal 20--100 km/sec through the interstellar medium, as well as by irregularities in stellar wind emanating from type OB stars

  10. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  11. DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING 'LIGHT' INITIAL MASS FUNCTIONS

    International Nuclear Information System (INIS)

    Auger, M. W.; Treu, T.; Gavazzi, R.; Bolton, A. S.; Koopmans, L. V. E.; Marshall, P. J.

    2010-01-01

    We use stellar dynamics, strong lensing, stellar population synthesis models, and weak lensing shear measurements to constrain the dark matter (DM) profile and stellar mass in a sample of 53 massive early-type galaxies. We explore three DM halo models (unperturbed Navarro, Frenk, and White (NFW) halos and the adiabatic contraction models of Blumenthal and Gnedin) and impose a model for the relationship between the stellar and virial mass (i.e., a relationship for the star formation efficiency as a function of halo mass). We show that, given our model assumptions, the data clearly prefer a Salpeter-like initial mass function (IMF) over a lighter IMF (e.g., Chabrier or Kroupa), irrespective of the choice of DM halo. In addition, we find that the data prefer at most a moderate amount of adiabatic contraction (Blumenthal adiabatic contraction is strongly disfavored) and are only consistent with no adiabatic contraction (i.e., an NFW halo) if a mass-dependent IMF is assumed, in the sense of a more massive normalization of the IMF for more massive halos.

  12. X-ray reflection from cold matter in the nuclei of active galaxies

    International Nuclear Information System (INIS)

    Pounds, K.A.; Nandra, K.; Stewart, G.C.; George, I.M.; Fabian, A.C.

    1990-01-01

    The evidence accumulated over the past few years for strong soft X-ray emission from active galactic nuclei has been interpreted as black body emission from the innermost stable region of an accretion disk feeding the putative black hole at the centre of the active nucleus, a view given strong support by the rapid variability of some soft X-ray components. More recently, new X-ray data from the Exosat and Ginga satellites have revealed a second indicator of optically thick matter in the vicinity of the active nucleus, in the form of an iron K-fluorescence line at ≅ 6.4 keV. We report the discovery of two further common features of continuum absorption and reflection, revealed in a composite spectrum from twelve Ginga observations of Seyfert-type active galactic nuclei. Most of these spectral features are shown to be well modelled by reprocessing of the hard X-ray power-law continuum in a slab (or perhaps a disk) of cold matter. There is also evidence for a substantial line-of-sight column of photoionized material. (author)

  13. Nuclear interactions between cosmic radiation and interstellar gas, and nucleosynthesis of lithium, beryllium, and boron

    International Nuclear Information System (INIS)

    Meneguzzi, Maurice.

    1975-01-01

    The effects of nuclear interactions between the nuclei of cosmic radiation and those of interstellar gas were studied. The variation in the chemical composition of cosmic radiation with energy shows that the quantity of matter it passes through decreases between 1 and 100GeV/nucleon from 6 to 1g/cm 2 approximately. The chemical and isotopic composition for C, N and O suggests that the relative abundances of these nuclei at the source are much the same as the universal abundances except for the ratio C/O, higher by about a factor 1.5 in cosmic radiation sources. The enrichment of interstellar gas in light elements Li, Be and B was calculated. The value obtained accounts well for the universal abundances of the four isotopes 6 Li, 9 Be, 10 B, 11 B independently of the model used. It may be assumed that large fluxes of low-energy cosmic rays exist in the remains of supernovae and that 7 Li is produced in these objects and then spread out in the galaxy. These objects could be extended sources of nuclear γ's, which are observable, but the same process proves unable to produce sufficient quantities of the very heavy proton-rich elements of dubious origin. Inelastic collisions or spallation reactions between cosmic and interstellar gas nuclei induce a quantity of nuclear γ ray emission not necessarily undetectable. The position flux of a few MeV from the β + disintegration of unstable spallation products is too low on the other hand to give an estimate of the low-energy cosmic radiation flux in the interstellar medium [fr

  14. Influence of baryonic physics in simulations of spiral galaxies

    International Nuclear Information System (INIS)

    Halle, A.

    2013-01-01

    The modelling of baryonic physics in numerical simulations of disc galaxies allows us to study the evolution of the different components, the physical state of the gas and the star formation. The present work aims at investigating in particular the role of the cold and dense molecular phase, which could play a role of gas reservoir in the outer galaxy discs, with low star formation efficiency. After a presentation of galaxies with a focus on spiral galaxies, their interstellar medium and dynamical evolution, we review the current state of hydrodynamical numerical simulations and the implementation of baryonic physics. We then present the simulations we performed. These include the cooling to low temperatures, and a molecular hydrogen component. The cooling functions we use include cooling by metals, for temperatures as low as 100 K, and cooling by H 2 due to collisions with H, He and other H 2 molecules. We use a TreeSPH type code that considers the stellar and gaseous components and black matter as particles. We especially test the impact of the presence of molecular hydrogen in simulations with several feedback efficiencies, and find that the molecular hydrogen allows in all cases some slow stellar formation to occur in the outer disc, with an effect on the vertical structure of the disc that is sensitive to the feedback efficiency. Molecular hydrogen is therefore able to play the role of gas reservoir in external parts of spiral galaxies, which accrete gas from cosmic filaments all along their lives

  15. Origin, structure and evolution of galaxies

    International Nuclear Information System (INIS)

    Zhi, F.L.

    1988-01-01

    Recent developments of the origin, structure and evolution of galaxies have been reviewed. The contents of this book are: Inflationary Universe; Cosmic String; Active Galaxies; Intergalactic Medium; Waves in Disk Galaxies; Dark Matter; Gas Dynamics in Disk Galaxies; Equilibrium and Stability of Spiral Galaxies

  16. NASA's interstellar probe mission

    International Nuclear Information System (INIS)

    Liewer, P.C.; Ayon, J.A.; Wallace, R.A.; Mewaldt, R.A.

    2000-01-01

    NASA's Interstellar Probe will be the first spacecraft designed to explore the nearby interstellar medium and its interaction with our solar system. As envisioned by NASA's Interstellar Probe Science and Technology Definition Team, the spacecraft will be propelled by a solar sail to reach >200 AU in 15 years. Interstellar Probe will investigate how the Sun interacts with its environment and will directly measure the properties and composition of the dust, neutrals and plasma of the local interstellar material which surrounds the solar system. In the mission concept developed in the spring of 1999, a 400-m diameter solar sail accelerates the spacecraft to ∼15 AU/year, roughly 5 times the speed of Voyager 1 and 2. The sail is used to first bring the spacecraft to ∼0.25 AU to increase the radiation pressure before heading out in the interstellar upwind direction. After jettisoning the sail at ∼5 AU, the spacecraft coasts to 200-400 AU, exploring the Kuiper Belt, the boundaries of the heliosphere, and the nearby interstellar medium

  17. HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES

    International Nuclear Information System (INIS)

    Łokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio

    2012-01-01

    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) whose origin remains a puzzle in the vicinity of the Milky Way (MW). Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10 9 M ☉ dark matter (DM) halos. We explore a variety of inner density slopes ρ∝r –α for the dwarf DM halos, ranging from core-like (α = 0.2) to cuspy (α = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z ∼ 1, and with intermediate values for the halo inner density slopes (ρ∝r –0.6 ). The inferred slopes are in excellent agreement with those resulting from both the modeling of the rotation curves of dwarf galaxies and recent cosmological simulations of dwarf galaxy formation. Comparing the properties of observed UFDs with those of their simulated counterparts, we find remarkable similarities in terms of basic observational parameters. We conclude that tidal stirring of rotationally supported dwarfs represents a viable mechanism for the formation of UFDs in the LG environment.

  18. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg (South Africa)

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution in Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM

  19. The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses

    Science.gov (United States)

    Gomer, Matthew R.; Williams, Liliya L. R.

    2018-04-01

    The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.

  20. THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCE z = 2

    International Nuclear Information System (INIS)

    Watson, Douglas F.; Conroy, Charlie

    2013-01-01

    Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of altering their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass-halo mass (M * -M h ) relation for these two populations over the redshift interval 0 peak . At z ∼ 0 the satellites, on average, have ∼10% larger stellar masses at fixed M peak compared to central galaxies of the same halo mass (although the two relations are consistent at 2σ-3σ for M peak ∼> 10 13 M ☉ ). This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at ∼1 Mpc scales. At z ∼ 1 the satellite and central galaxy M * -M h relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z ∼ 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M * -M h relation is able to reproduce the extant z ∼ 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M * -M h relations since z ∼ 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. The reason for this last point is not yet entirely clear, but it is likely related to the fact that the typical ∼L* satellite galaxy resides in a poor group where transformation processes are weak and lifetimes are short

  1. MC 2: Constraining the Dark Matter Distribution of the Violent Merging Galaxy Cluster CIZA J2242.8+5301 by Piercing through the Milky Way

    Science.gov (United States)

    Jee, M. James; Stroe, Andra; Dawson, William; Wittman, David; Hoekstra, Henk; Brüggen, Marcus; Röttgering, Huub; Sobral, David; van Weeren, Reinout J.

    2015-03-01

    The galaxy cluster CIZA J2242.8+5301 at z = 0.19 is a merging system with a prominent (~2 Mpc long) radio relic, which together with the morphology of the X-ray emission provides strong evidence for a violent collision along the north-south axis. We present our constraints on the dark matter distribution of this unusual system using Subaru and Canada-France-Hawaii Telescope imaging data. Measuring a high signal-to-noise ratio lensing signal from this cluster is potentially a challenging task because of its proximity to the Milky Way plane (|b| ~ 5°). We overcome this challenge with careful observation planning and systematics control, which enables us to successfully map the dark matter distribution of the cluster with high fidelity. The resulting mass map shows that the mass distribution of CIZA J2242.8+5301 is highly elongated along the north-south merger axis inferred from the orientation of the radio relics. Based on our mass reconstruction, we identify two sub-clusters, which coincide with the cluster galaxy distributions. We determine their masses using Markov Chain Monte Carlo analysis by simultaneously fitting two Navarro-Frenk-White halos without fixing their centroids. The resulting masses of the northern and southern systems are M200=11.0-3.2+3.7× 1014 M⊙ and 9.8-2.5+3.8× 1014 M⊙ , respectively, indicating that we are witnessing a post-collision of two giant systems of nearly equal mass. When the mass and galaxy centroids are compared in detail, we detect ~1' (~190 kpc) offsets in both northern and southern sub-clusters. After investigating the statistical significance of the offsets by bootstrapping both mass and galaxy centroids, we find that the galaxy luminosity-mass offset for the northern clump is statistically significant at the >~ 2σ level whereas the detection is only marginal for the southern sub-cluster in part because of a relatively large mass centroid error. We conclude that it is yet premature to uniquely attribute the galaxy

  2. Neutrinos from the Sun, pollution of the Galaxy by the products of stellar nucleosynthesis and the terrestrial ice ages

    International Nuclear Information System (INIS)

    Kuchowicz, B.

    1978-01-01

    One of the possible explanations of Davis' observational results on solar neutrinos is the hypothesis stating that the metal abundance Z is extremely low throughout the whole Sun, with the exception of its surface layers. Accretion of interstellar matter during the voyage of the Sun in the Galaxy should be responsible for the higher abundance of the heavy elements of the solar surface. The matter which was accreted by the Sun might have contained a higher percentage of the heavy elements than the matter out of which the Sun was born. Periods of enhanced accretion during the passage of the Sun through the spiral arms of the Galaxy can be ralated to the successive ages in the history of the Earth. (author)

  3. AGAPE: the gravitational micro-lensing effect for the search for black matter under the form of MACHOs in direction of the M31 galaxy

    International Nuclear Information System (INIS)

    Le Du, Yann

    2000-01-01

    After a presentation of the physical framework and notions of observational cosmology, the author of this research thesis presents the phenomenon of gravitational micro-lensing on which AGAPE (Andromeda Galaxy Amplified Pixel Experiment) is based to detect the possible presence of baryonic black matter under the form of MACHOs (Massive compact halo objects, one of the possible candidates for black matter) within the halo of our galaxy and in that of a far galaxy, M31. He gives a precise description of observations performed by AGAPE at the Pic du Midi between 1994 and 1996. In order to observe M31, a new method has been developed (the pixel method) which is based on the light curve of each pixel of the M31 image. The author then reports the processing of light curves which notably aimed at reducing the discrepancy of points on these curves and at allowing a selection of interesting curves to be performed. He reports the characterisation of the searched signal from these curves, and then discusses the obtained results

  4. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    Science.gov (United States)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  5. On the Sunyaev-Zel'dovich effect from dark matter annihilation or decay in galaxy clusters

    International Nuclear Information System (INIS)

    Lavalle, Julien; Boehm, Céline; Barthès, Julien

    2010-01-01

    We revisit the prospects for detecting the Sunyaev Zel'dovich (SZ) effect induced by dark matter (DM) annihilation or decay. We show that with standard (or even extreme) assumptions for DM properties, the optical depth associated with relativistic electrons injected from DM annihilation or decay is much smaller than that associated with thermal electrons, when averaged over the angular resolution of current and future experiments. For example, we find: τ DM ∼ 10 −9 −10 −5 (depending on the assumptions) for m χ = 1 GeV and a density profile ρ∝r −1 for a template cluster located at 50 Mpc and observed within an angular resolution of 10'', compared to τ th ∼ 10 −3 −10 −2 . This, together with a full spectral analysis, enables us to demonstrate that, for a template cluster with generic properties, the SZ effect due to DM annihilation or decay is far below the sensitivity of the Planck satellite. This is at variance with previous claims regarding heavier annihilating DM particles. Should DM be made of lighter particles, the current constraints from 511 keV observations on the annihilation cross section or decay rate still prevent a detectable SZ effect. Finally, we show that spatial diffusion sets a core of a few kpc in the electron distribution, even for very cuspy DM profiles, such that improving the angular resolution of the instrument, eg with ALMA, does not necessarily improve the detection potential. We provide useful analytical formulæ parameterized in terms of the DM mass, decay rate or annihilation cross section and DM halo features, that allow quick estimates of the SZ effect induced by any given candidate and any DM halo profile

  6. Interstellar organic chemistry.

    Science.gov (United States)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  7. SEARCH FOR DARK MATTER ANNIHILATION SIGNALS FROM THE FORNAX GALAXY CLUSTER WITH H.E.S.S

    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D 22761 Hamburg (Germany); Acero, F. [Laboratoire de Physique Theorique et Astroparticules, Universite Montpellier 2, CNRS/IN2P3, CC 70, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D 69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, Yerevan (Armenia); Anton, G.; Balzer, A.; Brucker, J. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D 91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Barres de Almeida, U. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Becherini, Y. [Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D 44780 Bochum (Germany); Behera, B. [Landessternwarte, Universitaet Heidelberg, Koenigstuhl, D 69117 Heidelberg (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D 12489 Berlin (Germany); Biteau, J.; Brun, F. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P., E-mail: bjoern.opitz@desy.de [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D 72076 Tuebingen (Germany); Collaboration: H.E.S.S. Collaboration; and others

    2012-05-10

    The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) {gamma}-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section ({sigma}v) as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation {gamma}-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional {gamma}-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of ({sigma}v){sup 95%C.L.} {approx} 10{sup -23} cm{sup 3} s{sup -1}, depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on ({sigma}v) by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of ({sigma}v){sup 95%C.L.} {approx}10{sup -26} cm{sup 3} s{sup -1}.

  8. SEARCH FOR DARK MATTER ANNIHILATION SIGNALS FROM THE FORNAX GALAXY CLUSTER WITH H.E.S.S

    International Nuclear Information System (INIS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Bernlöhr, K.; Bochow, A.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Brucker, J.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Birsin, E.; Biteau, J.; Brun, F.; Boisson, C.; Bolmont, J.; Bordas, P.

    2012-01-01

    The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) γ-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section (σv) as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation γ-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional γ-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of (σv) 95%C.L. ∼ 10 –23 cm 3 s –1 , depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on (σv) by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of (σv) 95%C.L. ∼10 –26 cm 3 s –1 .

  9. DISSECTING GALAXY FORMATION. II. COMPARING SUBSTRUCTURE IN PURE DARK MATTER AND BARYONIC MODELS

    International Nuclear Information System (INIS)

    Romano-Diaz, Emilio; Shlosman, Isaac; Heller, Clayton; Hoffman, Yehuda

    2010-01-01

    We compare the substructure evolution in pure dark matter (DM) halos with those in the presence of baryons, hereafter PDM and BDM models, respectively. The prime halos have been analyzed in the previous work. Models have been evolved from identical initial conditions which have been constructed by means of the constrained realization method. The BDM model includes star formation and feedback from stellar evolution onto the gas. A comprehensive catalog of subhalo populations has been compiled and individual and statistical properties of subhalos analyzed, including their orbital differences. We find that subhalo population mass functions in PDM and BDM are consistent with a single power law, M α sbh , for each of the models in the mass range of ∼2 x 10 8 M sun -2 x 10 11 M sun . However, we detect a nonnegligible shift between these functions, the time-averaged α ∼ -0.86 for the PDM and -0.98 for the BDM models. Overall, α appears to be a nearly constant in time, with variations of ±15%. Second, we find that the radial mass distribution of subhalo populations can be approximated by a power law, R γ sbh with a steepening that occurs at the radius of a maximal circular velocity, R vmax , in the prime halos. Here we find that γ sbh ∼ -1.5 for the PDM and -1 for the BDM models, when averaged over time inside R vmax . The slope is steeper outside this region and approaches -3. We detect little spatial bias (less than 10%) between the subhalo populations and the DM distribution of the main halos. Also, the subhalo population exhibits much less triaxiality in the presence of baryons, in tandem with the shape of the prime halo. Finally, we find that, counter-intuitively, the BDM population is depleted at a faster rate than the PDM one within the central 30 kpc of the prime halo. The reason for this is that although the baryons provide a substantial glue to the subhalos, the main halo exhibits the same trend. This assures a more efficient tidal disruption of the

  10. Structure of the Galaxy and its subsystems

    International Nuclear Information System (INIS)

    Ruprecht, J.

    1979-01-01

    Current knowledge is summed up of the structure of our galaxy consisting of more than 100 thousand million stars of an overal mass of 10 44 g, and of interstellar dust and gas. The galaxy comprises several subsystems, the oldest of which being of a spherical shape while the younger ones are more-or-less oblate rotational ellipsoids. It is considered on the basis of visual and radio observations that the galaxy has a spiral structure with many arms, similar to other galaxies. The structure of the galaxy nucleus has not yet been fully explained. (Ha)

  11. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  12. Interstellar extinction in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nandy, K.; Morgan, D.H.; Willis, A.J.; Wilson, R.; Gondhalekar, P.M.; Houziaux, L.

    1980-01-01

    Recent UV observations together with complementary visible data of several reddened and comparison stars of similar spectral types in the Large Magellanic Cloud have been used to study the interstellar extinction in that galaxy. Most of the reddened stars studied here are located within 2 0 of 30 Doradus and show remarkably high extinction in the far UV, suggesting a large abundance of small particles. From the optical wavelength to 2,600 A the normalised extinction curves of the LMC stars are similar to the mean galactic extinction law. (author)

  13. The X-Shooter Lens Survey - I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy

    Science.gov (United States)

    Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.; Czoske, O.; Treu, T.

    2011-11-01

    We present the first results from the X-Shooter Lens Survey: an analysis of the massive early-type galaxy SDSS J1148+1930 at redshift z= 0.444. We combine its extended kinematic profile - derived from spectra obtained with X-Shooter on the European Southern Observatory Very Large Telescope - with strong gravitational lensing and multicolour information derived from Sloan Digital Sky Survey (SDSS) images. Our main results are as follows. (i) The luminosity-weighted stellar velocity dispersion is (≲Reff) = 352 ± 10 ± 16 km s-1, extracted from a rectangular aperture of 1.8 × 1.6 arcsec2 centred on the galaxy, more accurate and considerably lower than a previously published value of ˜450 km s-1. (ii) A single-component (stellar plus dark) mass model of the lens galaxy yields a logarithmic total-density slope of γ'= 1.72+0.05- 0.06 (68 per cent confidence level, CL; ?) within a projected radius of ˜2.16 arcsec. (iii) The projected stellar mass fraction, derived solely from the lensing and dynamical data, is f*(Salp(90 per cent CL and in some cases violate the total lensing-derived mass limit. We conclude that this very massive early-type galaxy is dark-matter-dominated inside one effective radius, consistent with the trend recently found from massive Sloan Lens ACS (SLACS) galaxies, with a total density slope shallower than isothermal and an IMF normalization consistent with Salpeter.

  14. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845.

    Science.gov (United States)

    Dennett-Thorpe, J; de Bruyn, A G

    2002-01-03

    The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths. The origin of this rapid variability has been extensively debated, but a correlation between optical and radio variations in some sources suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System.

  15. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    Science.gov (United States)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  16. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  17. The Interstellar Ethics of Self-Replicating Probes

    Science.gov (United States)

    Cooper, K.

    Robotic spacecraft have been our primary means of exploring the Universe for over 50 years. Should interstellar travel become reality it seems unlikely that humankind will stop using robotic probes. These probes will be able to replicate themselves ad infinitum by extracting raw materials from the space resources around them and reconfiguring them into replicas of themselves, using technology such as 3D printing. This will create a colonising wave of probes across the Galaxy. However, such probes could have negative as well as positive consequences and it is incumbent upon us to factor self-replicating probes into our interstellar philosophies and to take responsibility for their actions.

  18. Interstellar Scintillation and Scattering of Micro-arc-second AGN

    Directory of Open Access Journals (Sweden)

    David L. Jauncey

    2016-11-01

    Full Text Available The discovery of the first quasar 3C 273 led directly to the discovery of their variability at optical and radio wavelengths. We review the radio variability observations, in particular the variability found at frequencies below 1 GHz, as well as those exhibiting intra-day variability (IDV at cm wavelengths. Observations have shown that IDV arises principally from scintillation caused by scattering in the ionized interstellar medium of our Galaxy. The sensitivity of interstellar scintillation towards source angular sizes has provided a powerful tool for studying the most compact components of radio-loud AGN at microarcsecond and milliarcsecond scale resolution.

  19. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  20. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

    Science.gov (United States)

    Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.

    2018-03-01

    The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.

  1. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  2. Dust formation in a galaxy with primitive abundances.

    Science.gov (United States)

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  3. Distribution function of faint galaxy numbers

    International Nuclear Information System (INIS)

    Fesenko, L.M.

    1981-01-01

    The Lick observatory counts of galaxies are considered. The distribution of number of galaxies in elementary regions (ER) of 1 degx1 deg is investigated. Each field of 6 degx6 deg was treated separately At b>40 deg the probab+lity to observe of n galaxies in ER is an exponential decreasing function of n, if unequality n> were fulfilled. The mean apparent multiplicity of a galaxy (2.8+-0.9) was derived. The galaxy number distribution was simple model for the number of various systems of galaxies. The supperclustering of galaxies was not introduced. Based on that model the approximate expression for galaxy number distribution was considered and was compared with observed distributions. The agreement between these distributions become better with reducing of the interstellar absorption of light

  4. Constraint on the velocity dependent dark matter annihilation cross section from gamma-ray and kinematic observations of ultrafaint dwarf galaxies

    Science.gov (United States)

    Zhao, Yi; Bi, Xiao-Jun; Yin, Peng-Fei; Zhang, Xinmin

    2018-03-01

    Searching for γ rays from dwarf spheroidal galaxies (dSphs) is a promising approach to detect dark matter (DM) due to the high DM densities and low baryon components in dSphs. The Fermi-LAT observations from dSphs have set stringent constraints on the velocity independent annihilation cross section. However, the constraints from dSphs may change in velocity dependent annihilation scenarios because of the different velocity dispersions in galaxies. In this work, we study how to set constraints on the velocity dependent annihilation cross section from the combined Fermi-LAT observations of dSphs with the kinematic data. In order to calculate the γ ray flux from the dSph, the correlation between the DM density profile and velocity dispersion at each position should be taken into account. We study such correlation and the relevant uncertainty from kinematic observations by performing a Jeans analysis. Using the observational results of three ultrafaint dSphs with large J-factors, including Willman 1, Reticulum II, and Triangulum II, we set constraints on the p-wave annihilation cross section in the Galaxy as an example.

  5. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    Science.gov (United States)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  6. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  7. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  8. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  9. Update on an Interstellar Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    Lowell Observatorys 4.3-m Discovery Channel Telescope. The data indicate that the asteroids period is at least 3 hours in length,and most likely more than 5 hours. Assuming the light curves variation is caused by the tumbling asteroids changing cross-section, Oumuamuamust be a minimum of3 times as long as it is wide. Knight and collaborators seeno signs in their images of a coma or tail emitted from Oumuamua, suggesting there isno volatile material sublimating from its surface under the heat of the Sun.No coma is visible around Oumuamua. [Knight et al. 2017]A study of the asteroids photometry, led by Michele Bannister (Queens University Belfast, UK), usedthe Gemini-North telescope in Hawaii and the William Herschel Telescope in Spainto explore the asteroids shape and color. Bannister and collaborators refined the estimate of the asteroids shape to be at least 5.3 times as long as it is wide, which requiresthis body to have significant internal cohesion to hold together as it tumbles. Their measured color for Oumuamua is largely neutral.What Does This Visitor Imply?Masses and semimajor axes of known exoplanets. Colors correspond to the ratio of escape velocity to circular velocity. The presence of Oumuamua implies a vast and cool, stillundetected population of planets. [Laughlin Batygin, 2017]Gregory Laughlinof Yale University and Konstantin Batyginof Caltech(andPlanet Nine fame) explore some of the consequences of Oumuamuas parameters. They arguethat its current passage, if its not a fluke, suggests the presence ofan enormous number (1027) ofsuch objects in our galaxy alone enough to account for two Earth-masses of material for every star in the galaxy. Flinging asteroids like Oumuamuaout into interstellar space isnteasy, though; the necessary multi-body interaction requires the system to containa giant and long-period planet like our Neptune or Jupiter. Taken together, this information suggests that every star in the galaxy may host a Neptune-like planet at a Neptune

  10. Ionization of Interstellar Hydrogen

    Science.gov (United States)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  11. Superclusters and galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Einasto, J; Joeveer, M; Saar, E [Tartu Astrophysical Observatory, Toravere, Estonia (USSR)

    1980-01-03

    A study of the structure of superclusters in the Southern galactic hemisphere using Zwicky clusters as principal tracers of the large-scale structure of the Universe is reported. The data presented suggest that the formation of galaxies was a two stage process involving larger spatial dimensions than earlier workers have postulated. In the first stage proto-superclusters and big holes had to form from the non-dissipative dark matter while in the second hot gas, by cooling and settling down into the potential wells caused by dark matter, will form galaxies and clusters of galaxies.

  12. A New, Large-scale Map of Interstellar Reddening Derived from H I Emission

    Science.gov (United States)

    Lenz, Daniel; Hensley, Brandon S.; Doré, Olivier

    2017-09-01

    We present a new map of interstellar reddening, covering the 39% of the sky with low H I column densities ({N}{{H}{{I}}}Peek and Graves based on observed reddening toward passive galaxies. We therefore argue that our H I-based map provides the most accurate interstellar reddening estimates in the low-column-density regime to date. Our reddening map is made publicly available at doi.org/10.7910/DVN/AFJNWJ.

  13. Computational astrophysics relating to the interstellar medium: problems and prospects for the 1980's

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1980-05-01

    The general goal of research on the interstellar medium is to understand the structure and dynamics of the interstellar gas. This subject is important for three reasons. First, the classic tracers of the spiral structure of galaxies are related directly to the gaseous component of galactic disks. Therefore an understanding of the dynamics of the gas is essential in interpreting observations of spiral galaxies. Second, radio continuum observations relate to the magnetic field, which is frozen into the gas under most circumstances. Hence these observations must be interpreted using magnetohydrodynamic models. Third, the initial conditions for star formation are determined by the structure and dynamics of the interstellar gas. In this way gas dynamics plays an essential role in understanding the relative numbers of binary and single stars, the formation of planetary systems, and even the evolution of the stellar content of galaxies

  14. The SWELLS survey - IV. Precision measurements of the stellar and dark matter distributions in a spiral lens galaxy

    NARCIS (Netherlands)

    Barnabè, Matteo; Dutton, Aaron A.; Marshall, Philip J.; Auger, Matthew W.; Brewer, Brendon J.; Treu, Tommaso; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We construct a fully self-consistent mass model for the lens galaxy SDSS J2141 at redshift 0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model

  15. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  16. Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park

    2009-06-19

    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.

  17. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  18. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  19. Interstellar extinction correlations

    International Nuclear Information System (INIS)

    Jones, A.P.; Williams, D.A.; Duley, W.W.

    1987-01-01

    A recently proposed model for interstellar grains in which the extinction arises from small silicate cores with mantles of hydrogenated amorphous carbon (HAC or α-C:H), and large, but thinly coated, silicate grains can successfully explain many of the observed properties of interstellar dust. The small silicate cores give rise to the 2200 A extinction feature. The extinction in the visual is produced by the large silicates and the HAC mantles on the small cores, whilst the far UV extinction arises in the HAC mantles with a small contribution form the silicate grains. The grain model requires that the silicate material is the more resilient component and that variations in the observed extinction from region to region are due to the nature and depletion of the carbon in the HAC mantles. (author)

  20. The evolution of organic matter in space.

    Science.gov (United States)

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  1. Evolution of interstellar grains

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  2. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    Science.gov (United States)

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  3. SAGE-SMC: Surveying the Agents of Galaxy Evolution in the Tidally-Disrupted, Low-Metallicity Small Magellanic Cloud

    Science.gov (United States)

    Gordon, Karl; Babler, Brian; Bernard, Jean-Philippe; Block, Miwa; Blum, Robert; Bolatto, Alberto; Bot, Caroline; Bracker, Steve; Carlson, Lynn; Churchwell, Ed; Clayton, Geoffrey; Cohen, Martin; Engelbracht, Charles; Fukui, Yasuo; Gorjian, Varoujan; Harris, Jason; Hony, Sacha; Hora, Joseph; Indebetouw, Remy; Israel, Frank; Kawamura, Akiko; Leroy, Adam; Li, Aigen; Madden, Suzanne; Markwick-Kemper, Ciska; Meade, Marilyn; Meixner, Margaret; Misselt, Karl; Mizuno, Norikazu; Mizuno, Akira; Muller, Erik; Oliveira, Joana; Olsen, Knut; Onishi, Toshikazu; Paladini, Roberta; Points, Sean; Reach, William; Robitaille, Thomas; Rubin, Douglas; Sandstrom, Karin; Sato, Shuji; Sewilo, Marta; Shibai, Hiroshi; Simon, Josh; Smith, Linda; Srinivasan, Sundar; Tielens, Xander; van Dyk, Schuyler; van Loon, Jacco; Vijh, Uma; Volk, Kevin; Whitney, Barbara; Zaritsky, Dennis

    2007-05-01

    The observable properties of galaxy evolution are largely driven by the life-cycle of baryonic matter: stars precipitate out of a complex, multi-phase interstellar medium; and eventually, evolved stellar populations return enriched material back to the ISM via stellar winds or supernova explosions. As demonstrated by the SAGE-LMC survey, comprehensive Spitzer imaging of a nearby galaxy provides an incredibly rich view of this baryonic lifecycle, allowing for an unprecedented understanding of the physical processes which drive galaxy evolution. This proposal will extend the SAGE analysis to the whole SMC (Bar, Wing, and high-density portion of the Magellanic Bridge), a galaxy whose properties are uniquely similar to those of star-forming galaxies at high redshift. Specifically, the SMC's metallicity is below the critical threshold (1/3-1/4 Z_sun) where interstellar medium properties are observed to change dramatically (sharp reduction in the PAH dust mass fraction, reduced dust-to-gas ratio, and extreme ultraviolet extinction curve variations). In addition, the SMC has been profoundly influenced by past interactions with the LMC and Milky Way, allowing us to study the impact of periodic interactions on the structure of the ISM and the physical processes of star formation. We will gain crucial insight into the ISM and star formation in a known tidal debris structure (Bridge portion of SMC), which has a metallicity 4 times lower than the rest of the SMC. When combined with observations of the Milky Way (GLIMPSE, MIPSGAL) and the LMC (SAGE-LMC), our survey of the SMC (SAGE-SMC) will provide a complete and detailed picture of the life-cycle of baryons in galactic environments spanning orders of magnitude in metallicity, and wide ranges in star formation history. This understanding will equip us to properly interpret the infrared properties of more distant galaxies, both in the local (e.g., SINGS) and high-redshift (e.g., GOODS and SWIRE) universe.

  4. Determining mass-to-light ratios in elliptical galaxies

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1988-01-01

    If the endstate of cooling hot gas in elliptical galaxies is a population of optically dark, low-mass stars near the galactic cores, the mass-to-light ratio could be expected to vary significantly with projected radius. No strong variation in M/L is observed. To investigate the sensitivity and reliability of observational mass-to-light determinations for a variety of galactic parameters, model galaxies having de Vaucouleurs profiles (but with central cores and outer cutoffs), variable velocity ellipsoid structure, and extended dark halos are constructed. Spurious radial variations in M/L can occur when none are present if the properties of the galactic models are processed similar to observational data. Conversely, when a population of diffuse dark stellar matter is added near the galactic cores, large gradients in M/L can escape detection. However, the magnitude of the central velocity dispersion and its variation with projected radius within the effective radius both suggest that a component of dark stars is unlikely to be more massive than about 30 times the core mass of luminous stars. This restriction is important in establishing the initial mass function of stars in elliptical galaxies and the history of winds and cooling inflows in the interstellar medium. 35 references

  5. Production, Processing, and Consumption of Dust in the Galaxy

    Science.gov (United States)

    Gontcharov, G.

    2017-06-01

    The recent results obtained by the modern telescopes and spacecrafts allow us for the first time to compare directly the mass, spatial density and size distribution of the dust grains in the regions of their production, processing and consumption in our Galaxy. The ALMA and VLT/SPHERE telescopes allow us to estimate the production of the dust by supergiants and collapsing core supernovae. The 2MASS, WISE, SDSS, Planck and other telescopes allow us to estimate the processing of the dust in the interstellar medium. After renewed Besançon Galaxy model the medium appears to contain about half the local mass of matter (both baryonic and dark) in the Galactic neighborhood of the Sun. The Helios, Ulysses, Galileo, Cassini and New Horizons spacecrafts allow us to estimate the consumption of the dust by large solid bodies. The results are consistent assuming the local mean spatial density of the dust is about of 3.5×10-26 g/cm3, mean density of the grain is about 1 g/cm3, and the dust production rate is about of 0.015 Solar mass per year for whole the Galaxy.

  6. The systematic effect in catalogues of galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Rudnicki, K.; Obryk, B.; Raczka, J.

    1989-01-01

    The systematic effects in observation of galaxies and clusters of galaxies related to zenith distance, galactic latitude, distance from the galactic centre and supergalactic latitude are investigated. These effects are defined in terms of relative number of objects catalogued in various regions of the celestial sphere. A special calculation algorithm is developed for this purpose. The effect of zenith distance and that of galactic latitude are the most distinct and clear in interpretation. It is shown that the atmospheric extinction as well as the interstellar one manifest themselves in a somewhat different way in counts of stars than in counts of galaxies and galaxy clusters. 10 refs., 8 figs., 5 tabs. (author)

  7. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P.; Aleksić, J.; Annis, J.; Diehl, H. T.; Hartley, W. G.; Jeltema, T.; Romer, A. K.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Suchyta, E.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Vikram, V.

    2016-08-20

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.

  8. Interstellar scattering of pulsar radiation. Pt. 1

    International Nuclear Information System (INIS)

    Backer, D.C.

    1975-01-01

    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that spectra of interstellar scintillation are consistent with a gaussian shape, that scintillation indices are near unity, and that scintillation bandwidth depends linearly on dispersion measure. Observations at cm wavelengths show that the observer is in the near field of the scattering medium for objects with the lowest dispersion measures, and confirm the step dependence of correlation bandwidth on dispersion measure found by Sutton (1971). The variation of scattering parameters with dispersion measure may indicate that the rms deviation of thermal electron density on the scale of 10 11 cm grows with path length through the galaxy. (orig.) [de

  9. The mass spectrum of interstellar clouds

    International Nuclear Information System (INIS)

    Dickey, J.M.; Garwood, R.W.

    1989-01-01

    The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal. 36 refs

  10. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  11. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  12. Interaction of a pulsar with interstellar matter

    Science.gov (United States)

    Istomin, Ya. N.

    1994-03-01

    An increase of the rate of spin-down dot-P and emergence of a Magnus force acting on the star is connected with the appearance of a dense hydrogen plasma in the region of light surface. These effects are proportional to the permittivity epsilon = 1 + c2/(VA)2, where vA is the Alfven velocity in the vicinity of the light cylinder. During its lifetime, a pulsar can change the direction of its proper velocity and leave the Galactic plane. For the pulsar PSR 1757-24 located in the nebula G5.4-1.2, it is shown that due to the changing value of dot-P its characteristic age increases up to 7.5 x 104 years and the proper velocity decreases in magnitude to the order of 400km/s.

  13. Molecular diagnostics of interstellar shocks

    International Nuclear Information System (INIS)

    Hartquist, T.W.; Oppenheimer, M.; Dalgarno, A.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km s -1 Substantial enhancements are predicted in the concentrations of the molecules H 2 S, SO, and SiO compared to those anticipated in cold interstellar clouds

  14. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-02-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  15. Observational constraints on interstellar chemistry

    International Nuclear Information System (INIS)

    Winnewisser, G.

    1984-01-01

    The author points out presently existing observational constraints in the detection of interstellar molecular species and the limits they may cast on our knowledge of interstellar chemistry. The constraints which arise from the molecular side are summarised and some technical difficulties encountered in detecting new species are discussed. Some implications for our understanding of molecular formation processes are considered. (Auth.)

  16. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  17. Explanation of Rotation Curves in Galaxies and Clusters of them, by Generalization of Schwarzschild Metric and Combination with MOND, eliminating Dark Matter

    Science.gov (United States)

    Vossos, Spyridon; Vossos, Elias

    2017-12-01

    Schwarzschild Metric is the first and the most important solution of Einstein vacuum field equations. This is associated with Lorentz metric of flat spacetime and produces the relativistic potential (Φ) and the field strength (g) outside a spherically symmetric mass or a non-rotating black hole. It has many applications such as gravitational red shift, the precession of Mercury’s orbit, Shapiro time delay etc. However, it is inefficient to explain the rotation curves in large galaxies and clusters of them, causing the necessity for dark matter. On the other hand, Modified Newtonian Dynamics (MOND) has already explained these rotation curves in many cases, using suitable interpolating function (μ) in Milgrom’s Law. In this presentation, we initially produce a Generalized Schwarzschild potential and the corresponding Metric of spacetime, in order to be in accordance with any isotropic metric of flat spacetime (including Galilean Metric of spacetime which is associated with Galilean Transformation of spacetime). From this Generalized Schwarzschild potential (Φ), we calculate the corresponding field strength (g), which is associated with the interpolating function (μ). In this way, a new relativistic potential is obtained (let us call 2nd Generalized Schwarzschild potential) which describes the gravitational interaction at any distance and for any metric of flat spacetime. Thus, not only the necessity for Dark Matter is eliminated, but also MOND becomes a pure Relativistic Theory of Gravitational Interaction. Then, we pass to the case of flat spacetime with Lorentz metric (Minkowski space), because the experimental data have been extracted using the Relativistic Doppler Shift and the gravitational red shift of Classic Relativity (CR). Thus, we Explain the Rotation Curves in Galaxies (e.g. NGC 3198) and Clusters of them as well as the Solar system, eliminating Dark Matter. This relativistic potential and the corresponding metric of spacetime have been obtained

  18. Wanted! Nuclear Data for Dark Matter Astrophysics

    International Nuclear Information System (INIS)

    Gondolo, P.

    2014-01-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei

  19. Gas in Galaxies

    OpenAIRE

    Bland-Hawthorn, J.; Reynolds, R. J.

    2000-01-01

    The interstellar medium (ISM) can be thought of as the galactic atmosphere which fills the space between stars. When clouds within the ISM collapse, stars are born. When the stars die, they return their matter to the surrounding gas. Therefore the ISM plays a vital role in galactic evolution. The medium includes starlight, gas, dust, planets, comets, asteroids, fast moving charged particles (cosmic rays) and magnetic fields. The gas can be further divided into hot, warm and cold components, e...

  20. Visualizing Interstellar's Wormhole

    Science.gov (United States)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-06-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres; (iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole; (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole; (vi) Using the student's implementation, exploring the wormhole's Einstein ring and particularly the peculiar motions of star images near the ring, and exploring what it looks like to travel through a wormhole.

  1. Interstellar molecules and masers

    International Nuclear Information System (INIS)

    Nguyen-Q-Rieu; Guibert, J.

    1978-01-01

    The study of dense and dark clouds, in which hydrogen is mostly in molecular form, became possible since the discovery of interstellar molecules, emitting in the centimeter and millimeter wavelengths. The molecular lines are generally not in local thermal equilibrium (LTE). Their intensity can often be explained by invoking a population inversion mechanism. Maser emission lines due to OH, H 2 O and SiO molecules are among the most intense molecular lines. The H 2 CO molecule, detected in absorption in front of the cold cosmic background radiation of 2.7 K, illustrates the inverse phenomenon, the antimaser absorption. For a radio transition of frequency v, the inversion rate Δn (relative population difference between the upper and lower level) as well as the maser gain can be determined from the radio observations. In the case of the OH lines in the 2 PIsub(3/2), J=3/2 state, the inversion rates approximately 1 to 2% derived from the observations, are comparable with those obtained in the laboratory. The determination of the excitation mechanisms of the masers, through the statistical equilibrium and radiative transfer equations, implies the knowledge of collisional and radiative transition probabilities. A pumping model, which can satisfactorily explain the radio observations of some interstellar OH clouds, will be discussed [fr

  2. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    Science.gov (United States)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  3. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buch, Jatan [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA,F-91191 Gif-sur-Yvette (France); Department of Physics, Indian Institute of Technology,Kharagpur, West Bengal - 721302 (India); Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA,F-91191 Gif-sur-Yvette (France)

    2015-09-11

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field.

  4. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buch, Jatan; Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco, E-mail: jbuch.iitkgp@gmail.com, E-mail: marco.cirelli@cea.fr, E-mail: gaelle.giesen@cea.fr, E-mail: marco.taoso@cea.fr [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette (France)

    2015-09-01

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field.

  5. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    International Nuclear Information System (INIS)

    Buch, Jatan; Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco

    2015-01-01

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field

  6. Nearby Galaxies: Templates for Galaxies Across Cosmic Time

    OpenAIRE

    Lockman, F. J.; Ott, J.

    2009-01-01

    Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star formation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute ...

  7. XMM-NEWTON/SLOAN DIGITAL SKY SURVEY: STAR FORMATION EFFICIENCY IN GALAXY CLUSTERS AND CONSTRAINTS ON THE MATTER-DENSITY PARAMETER

    Energy Technology Data Exchange (ETDEWEB)

    Lagana, Tatiana F. [Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Departamento de Astronomia, Cidade Universitaria, CEP:05508-090, Sao Paulo, SP (Brazil); Zhang Yuying; Reiprich, Thomas H.; Schneider, Peter [Argelander-Institut fuer Astronomie, Universitaet Bonn, 53121 Bonn (Germany)

    2011-12-10

    It is believed that the global baryon content of clusters of galaxies is representative of the matter distribution of the universe, and can, therefore, be used to reliably determine the matter-density parameter {Omega}{sub m}. This assumption is challenged by the growing evidence from optical and X-ray observations that the total baryon mass fraction increases toward rich clusters. In this context, we investigate the dependence of stellar and total baryon mass fractions as a function of mass. To do so, we used a subsample of 19 clusters extracted from the X-ray flux-limited sample HIFLUGCS that have available Sloan Digital Sky Survey Data Release 7 data. From the optical analysis we derived the stellar masses. Using XMM-Newton we derived the gas masses. Then, adopting a scaling relation we estimate the total masses. Adding the gas and the stellar mass fractions we obtain the total baryonic content that we find to increase with cluster mass, reaching seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) prediction for clusters with M{sub 500} = 1.6 Multiplication-Sign 10{sup 15} M{sub Sun }. We observe a decrease of the stellar mass fraction (from 4.5% to {approx}1.0%) with increasing total mass where our findings for the stellar mass fraction agree with previous studies. This result suggests a difference in the number of stars formed per unit of halo mass, though with a large scatter for low-mass systems. That is, the efficiency of star formation varies on a cluster scale that lower mass systems are likely to have higher star formation efficiencies. It follows immediately that the dependence of the stellar mass fraction on total mass results in an increase of the mass-to-light ratio from lower to higher mass systems. We also discuss the consequences of these results in the context of determining the cosmic matter-density parameter {Omega}{sub m}.

  8. Probing the possibility of a 12C13C abundance gradient from observations of interstellar CH+

    International Nuclear Information System (INIS)

    Hawkins, I.

    1987-01-01

    I have performed high signal-to-noise (SN /equals/ 300 to 500) observations of interstellar CH/sup /plus// at Lick Observatory and at CTIO of the reddened, early-type stars HD 183143, HD 24432, and HD 157038 in an effort to probe the existence of a 12 C 13 C abundance gradient in our Galaxy

  9. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  10. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-ray Observations of the Coma Cluster of Galaxies with VERITAS and FERMI

    Science.gov (United States)

    Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; hide

    2012-01-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark

  11. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  12. History of gas in sprial galaxies

    International Nuclear Information System (INIS)

    Maloney, P.

    1987-01-01

    The general association of luminous young stars with spiral arms in galaxies has led to widespread acceptance of the idea that the formation of massive stars, at least, is somehow triggered by the interaction of interstellar gas clouds with a spiral density wave. A very simple model for the gas in a spiral galaxy, with a specified initial surface density and angular velocity is examined. Typical results from this simple model, with parameters appropriate to NGC 6946, are shown. The accuracy of the presumption that the molecular gas distributions in galaxies is based upon observations of CO J = 1-0 emission, is discussed

  13. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  14. Attenuation of VHE Gamma Rays by the Milky Way Interstellar Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.; /Louisiana State U.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2006-04-19

    The attenuation of very high energy gamma rays by pair production on the Galactic interstellar radiation field has long been thought of as negligible. However, a new calculation of the interstellar radiation field consistent with multi-wavelength observations by DIRBE and FIRAS indicates that the energy density of the Galactic interstellar radiation field is higher, particularly in the Galactic center, than previously thought. We have made a calculation of the attenuation of very high energy gamma rays in the Galaxy using this new interstellar radiation field which takes into account its nonuniform spatial and angular distributions. We find that the maximum attenuation occurs around 100 TeV at the level of about 25% for sources located at the Galactic center, and is important for both Galactic and extragalactic sources.

  15. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  16. The diffuse interstellar medium

    Science.gov (United States)

    Cox, Donald P.

    1990-01-01

    The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.

  17. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  18. Interstellar scattering and resolution limitations

    International Nuclear Information System (INIS)

    Dennison, B.

    1987-01-01

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources. 14 references

  19. Recent interstellar molecular line work

    International Nuclear Information System (INIS)

    Winnewisser, G.

    1975-01-01

    A summary of recent interstellar molecular line work is presented. Transitions of the following molecules have been detected in Sgr B2: Vinylcyanide, H 2 C 2 HCN, formic acid, HCOOH, dimethyl ether (CH 3 ) 2 O and isotopically labelled cyanoacetylene- 13 C,HC 13 CCN and HCC 13 CN. The data on cyanoacetylene give an upper limit to the abundance ratio 12 C/ 13 C of 36 +- 5. A short discussion of the interstellar chemistry leads to the conclusion that hydrocarbons such as acetylene, HCCH, ethylen, H 2 CCH 2 and ethane H 3 CCH 3 should be present in interstellar clouds. 13 refs

  20. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  1. The gas content in starburst galaxies

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Sanders, D.B.

    1987-01-01

    The results from two large and homogeneous surveys, one in HI, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal far-infrared radiation and non-thermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher far-infrared luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, we conclude that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties

  2. Constraining decaying dark matter with Fermi LAT gamma-rays

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Günter; Weniger, Christoph; Maccione, Luca; Redondo, Javier

    2010-01-01

    High energy electrons and positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton off low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. The aim of this paper is providing a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the Fermi LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV. We provide a set of universal response functions that, once convolved with a specific dark matter model produce the desired constraints. Our response functions contain all the astrophysical inputs such as the electron propagation in the galaxy, the dark matter profile, the gamma-ray fluxes of known origin, and the Fermi LAT data. We study the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and Fermi LAT. To this end we also take into account prompt radiation from the dark matter decay. We find that with the available data decaying dark matter cannot be excluded as source of the PAMELA positron excess

  3. Interstellar dust within the life cycle of the interstellar medium

    OpenAIRE

    Demyk K.

    2012-01-01

    Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium.

  4. The nature of interstellar dust as revealed by light scattering

    Directory of Open Access Journals (Sweden)

    D. A. Williams

    2011-09-01

    Full Text Available Interstellar dust was first identified through the extinction that it causes of optical starlight. Initially, observational and theoretical studies of extinction were made to identify simple ways of removing the effect of extinction. Over the last few decades it has become clear that dust has a number of very important roles in interstellar physics and chemistry, and that through these roles dust affects quite fundamentally the evolution of the Milky Way and other galaxies. However, our detailed knowledge of the actual material of dust remains relatively poor. The use of accurate models for the interaction of electromagnetic radiation with particles of arbitrary shape and composition remains vital, if our description of dust is to improve.

  5. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    Science.gov (United States)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  6. Spiral arms and a supernova-dominated interstellar medium

    International Nuclear Information System (INIS)

    Brand, P.W.J.L.; Heathcote, S.R.

    1982-01-01

    Models of the interstellar medium (ISM) utilizing the large energy output of supernovae to determine the average kinematical properties of the gas, are subjected to an imposed (spiral) density wave. The consequent appearance of the ISM is considered. In particular the McKee-Ostriker model with cloud evaporation is used, but it is shown that the overall appearance of the galaxy model does not change significantly if a modification of Cox's mechanism, with no cloud evaporation, is incorporated. It is found that a spiral density wave shock can only be self-sustaining if quite restrictive conditions are imposed on the values of the galactic supernova rate and the mean interstellar gas density. (author)

  7. Origin and annihilation physics of positrons in the Galaxy

    International Nuclear Information System (INIS)

    Alexis, Anthony

    2014-01-01

    A gamma radiation at 511 keV is observed since the early 1970's toward the Galactic bulge region. This emission is the signature of a large number of electron-positron annihilations, the positron being the electron's antiparticle. Unfortunately, the origin of the positrons responsible for this emission is still a mystery. Many positron-source candidates have been suggested but none of them can account for the galactic annihilation emission. The spatial distribution of this emission is indeed very atypical. Since 2002, the SPI spectrometer onboard the INTEGRAL space laboratory revealed an emission strongly concentrated toward the galactic bulge and a weaker emission from the galactic disk. This morphology is unusual because it does not correspond to any of the known galactic astrophysical-object or interstellar-matter distributions. The assumption that positrons annihilate close to their sources (i.e. the spatial distribution of the annihilation emission reflects the spatial distribution of the sources) has consequently been called into question. Recent studies suggest that positrons could propagate far away from their sources before annihilating. This physical aspect could be the key point to solve the riddle of the galactic positron origin. This thesis is devoted to the modelling of the propagation and annihilation of positrons in the Galaxy, in order to compare simulated spatial models of the annihilation emission with recent measurements provided by SPI/INTEGRAL. This method allows to put constraints on the origin of galactic positrons. We therefore developed a propagation Monte-Carlo code of positrons within the Galaxy in which we implemented all the theoretical and observational knowledge about positron physics (sources, transport modes, energy losses, annihilation modes) and the interstellar medium of our Galaxy (interstellar gas distributions, galactic magnetic fields, structures of the gaseous phases). Due to uncertainties in several physical parameters

  8. A MINUET OF GALAXIES

    Science.gov (United States)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  9. Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The evolution course of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies. 26 refs

  10. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  11. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  12. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  13. Fermi/LAT observations of dwarf galaxies highly constrain a dark matter interpretation of excess positrons seen in AMS-02, HEAT, and PAMELA

    Energy Technology Data Exchange (ETDEWEB)

    López, Alejandro [Michigan Center for Theoretical Physics, University of Michigan – Ann Arbor, 450 Church St., Ann Arbor (United States); Savage, Christopher [Nordita (Nordic Institute for Theoretical Physics), KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm (Sweden); Spolyar, Douglas; Adams, Douglas Q., E-mail: aolopez@umich.edu, E-mail: chris@savage.name, E-mail: dspolyar@gmail.com, E-mail: doug.q.adams@gmail.com [Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, Roslagstullsbacken 23, Roslagstullsbacken 21, Stockholm (Sweden)

    2016-03-01

    It is shown that a Weakly Interacting Massive dark matter Particle (WIMP) interpretation for the positron excess observed in a variety of experiments, HEAT, PAMELA, and AMS-02, is highly constrained by the Fermi/LAT observations of dwarf galaxies. In particular, this paper examines the annihilation channels that best fit the current AMS-02 data (Boudaud et al., 2014), specifically focusing on channels and parameter space not previously explored by the Fermi/LAT collaboration. The Fermi satellite has surveyed the γ-ray sky, and its observations of dwarf satellites are used to place strong bounds on the annihilation of WIMPs into a variety of channels. For the single channel case, we find that dark matter annihilation into (b b-bar ,e{sup +}e{sup -}, μ{sup +}μ{sup -}, τ{sup +}τ{sup -},4-e or 4-τ ) is ruled out as an explanation of the AMS positron excess (here b quarks are a proxy for all quarks, gauge and Higgs bosons). In addition, we find that the Fermi/LAT 2σ upper limits, assuming the best-fit AMS-02 branching ratios, exclude multichannel combinations into b b-bar and leptons. The tension between the results might relax if the branching ratios are allowed to deviate from their best-fit values, though a substantial change would be required. Of all the channels we considered, the only viable channel that survives the Fermi/LAT constraint and produces a good fit to the AMS-02 data is annihilation (via a mediator) to 4-μ, or mainly to 4-μ in the case of multichannel combinations.

  14. Riddling bifurcation and interstellar journeys

    International Nuclear Information System (INIS)

    Kapitaniak, Tomasz

    2005-01-01

    We show that riddling bifurcation which is characteristic for low-dimensional attractors embedded in higher-dimensional phase space can give physical mechanism explaining interstellar journeys described in science-fiction literature

  15. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  16. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Conroy, Charlie; Goldbaum, Nathan J.; Krumholz, Mark R.; Abel, Tom; Agertz, Oscar; Gnedin, Nickolay Y.; Kravtsov, Andrey V.; Bryan, Greg L.; Ceverino, Daniel; Christensen, Charlotte; Hummels, Cameron B.; Dekel, Avishai; Guedes, Javiera; Hahn, Oliver; Hobbs, Alexander; Hopkins, Philip F.; Iannuzzi, Francesca; Keres, Dusan; Klypin, Anatoly

    2014-01-01

    We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ∼100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M vir ≅ 10 10 , 10 11 , 10 12 , and 10 13 M ☉ at z = 0 and two different ('violent' and 'quiescent') assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust—i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy 'metabolism'. The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M

  17. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  18. DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES

    International Nuclear Information System (INIS)

    Amorisco, N. C.; Zavala, J.; De Boer, T. J. L.

    2014-01-01

    We combine the detailed star formation histories of the Fornax and Sculptor dwarf spheroidals with the mass assembly history of their dark matter (DM) halo progenitors to estimate if the energy deposited by Type II supernovae (SNe II) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNe II into DM particles is ε gc = 0.05, we find that a single early episode, z ≳ z infall , that combines the energy of all SNe II due to explode over 0.5 Gyr is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in cold dark matter (CDM) halos via early episodic gas outflows triggered by SNe II. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size halos

  19. The Interstellar Conspiracy

    Science.gov (United States)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to

  20. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  1. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    Science.gov (United States)

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  2. Search for interstellar methane

    International Nuclear Information System (INIS)

    Knacke, R.F.; Kim, Y.H.; Noll, K.S.; Geballe, T.R.

    1990-01-01

    Researchers searched for interstellar methane in the spectra of infrared sources embedded in molecular clouds. New observations of several lines of the P and R branches of the nu 3 band of CH4 near 3.3 microns give column densities in the range N less than 1(-2) times 10 to the minus 16th power cm(-2). Resulting abundance ratios are (CH4)/(CO) less than 3.3 times 10 to the minus 2nd power toward GL961 in NGC 2244 and less than 2.4 times 10 to the minus 3rd power toward GL989 in the NGC 2264 molecular cloud. The limits, and those determined in earlier observations of BN in Orion and GL490, suggest that there is little methane in molecular clouds. The result agrees with predictions of chemical models. Exceptions could occur in clouds where oxygen may be depleted, for example by H2O freezing on grains. The present observations probably did not sample such regions

  3. Detection of interstellar methylcyanoacetylene

    International Nuclear Information System (INIS)

    Broten, N.W.; MacLeod, J.M.; Avery, L.W.; Irvine, W.M.; Hoeglund, B.; Friberg, P.; Hjalmarson

    1984-01-01

    A new interstellar molecule, methylcyanoacetylene (CH 3 C 3 N), has been detected in the molecular cloud TMC-1. The J = 8 → 7, J = 7 → 6, J = 6 → 5, and J = 5 → 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 → 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity V/sub lSR/ = 5.8 km s -1 for TMC-1, typical of other molecules in the cloud. All Observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al., so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 → 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined from these observations is quite low, with 2.7 K 12 cm -2

  4. Galaxy Masses : A Review

    NARCIS (Netherlands)

    Courteau, Stephane; Cappellari, Michele; Jong, Roelof S. de; Dutton, Aaron A.; Koopmans, L.V.E.

    2013-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The dierent sections on masses from stellar populations, dynamical masses of gas-rich and

  5. Mid-infrared emission from the local and extragalactic interstellar medium: the Isocam view

    International Nuclear Information System (INIS)

    Tran, Quang-Dan

    1998-01-01

    This research thesis is an attempt to identify the properties of different physical components (UIB, VSG, and so on) which can be observed by the camera embarked in the ISO satellite (ISOCAM), and to use these properties to understand the emission of galaxies in the middle infrared. In the first part, the author addresses dusts as they can be seen in the Galaxy interstellar medium. The objective is to obtain some elements of understanding on the different contributions in the middle infrared. This comprised the study of the impulse mechanism, the study of properties of non-identified infrared bands, and the discussion of very small grains visible in the H II regions. The second part reports the interpretation of the emission of galaxies in the middle infrared. This comprises the interpretation of the infrared emission of starburst galaxies, and the discussion of the emission of spiral galaxies and of the way this emission can be understood [fr

  6. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  7. UV observations of local interstellar medium.

    Science.gov (United States)

    Kurt, V.; Mironova, E.; Fadeev, E.

    2008-12-01

    The methods of the interstellar matter study are described. The brief information of space missions aimed at observations in the unreachable for ground based telescopes UV spectral range (IUE, As- tron, HST and GALEX.) is presented. The history of discovery of H and He atoms entering the Solar System from the local interstellar medium (LISM) is given in brief. The results of observations performed by the group from Stern- berg Astronomical Institute (SAI MSU) and Space Research Institute (IKI RAS) performed with the help of the missions Prognoz-5, Prognoz-6 and the stations Zond-1, Venera and Mars and aimed at estimation of all basic LISM parameters (the velocity of the Sun in relation to LISM, directions of movement, densities of H and He atoms, LISM temperature) are presented. We also describe the present-day investigations of LISM performed with SOHO and ULYSSES mis- sions including the direct registration of He atoms entering the Solar System. The problem of interaction between the incoming flow of the ISM atoms ("in- terstellar wind") and the area of two shocks at the heliopause border (100-200 AU) is discussed. The LISM parameters obtained using the available data are presented in two tables.

  8. The Far-Infrared Properties of the Most Isolated Galaxies

    Science.gov (United States)

    Lisenfeld, U.; Verdes-Montenegro, L.; Sulentic, J.; Leon, S.; Espada, D.; Bergond, G.; García, E.; Sabater, J.; Santander-Vela, J. D.; Verley, S.

    2007-05-01

    A long-standing question in galaxy evolution involves the role of nature (self-regulation) vs. nurture (environment) on the observed properties (and evolution) of galaxies. A collaboration centreed at the Instituto de Astrofisica de Andalucia (Granada, Spain) is trying to address this question by producing a observational database for a sample of 1050 isolated galaxies from the catalogue of Karachentseva (1973) with the overarching goal being the generation of a "zero-point" sample against which effects of environment on galaxies can be assessed. The AMIGA (Analysis of the Interstellar Medium of Isolated Galaxies) database (see www.iaa.es/AMIGA.html) will include optical, IR and radio line and continuum measures. The galaxies in the sample represent the most isolated galaxies in the local universe. In the present contribution, we will present the project, as well as the results of an analysis of the far-infrared (FIR) and molecular gas properties of this sample.

  9. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  10. Interstellar Sweat Equity

    Science.gov (United States)

    Cohen, M. H.; Becker, R. E.; O'Donnell, D. J.; Brody, A. R.

    So, you have just launched aboard the Starship, headed to an exoplanet light years from Earth. You will spend the rest of your natural life on this journey in the expectation and hope that your grandchildren will arrive safely, land, and build a new settlement. You will need to govern the community onboard the Starship. This system of governance must meet unique requirements for participation, representation, and decision-making. On a spaceship that can fly and operate by itself, what will the crewmembers do for their generations in transit? Certainly, they will train and train again to practice the skills they will need upon arrival at a new world. However, this vicarious practice neither suffices to prepare the future pioneers for their destiny at a new star nor will it provide them with the satisfaction in their own work. To hone the crewmembers' inventive and technical skills, to challenge and prepare them for pioneering, the crew would build and expand the interstellar ship in transit. This transstellar ``sweat equity'' gives a stake in the enterprise to all the people, providing meaningful and useful activity to the new generations of crewmembers. They build all the new segments of the vessel from raw materials - including atmosphere - stored on board. Construction of new pressure shell modules would be one option, but they also reconstruct or fill-in existing pressurized volumes. The crew makes new life support system components and develops new agricultural modules in anticipation of their future needs. Upon arrival at the new star or planet, the crew shall apply these robustly developed skills and self-sufficient spirit to their new home.

  11. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. [Ludwig Maximilian Univ., Munich (Germany); Max Planck Inst. for Extraterrestrial Physics, Garching (Germany). et al.

    2015-09-29

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  12. Minkowski Tensors in Two Dimensions: Probing the Morphology and Isotropy of the Matter and Galaxy Density Fields

    Science.gov (United States)

    Appleby, Stephen; Chingangbam, Pravabati; Park, Changbom; Hong, Sungwook E.; Kim, Juhan; Ganesan, Vidhya

    2018-05-01

    We apply the Minkowski tensor statistics to two-dimensional slices of the three-dimensional matter density field. The Minkowski tensors are a set of functions that are sensitive to directionally dependent signals in the data and, furthermore, can be used to quantify the mean shape of density fields. We begin by reviewing the definition of Minkowski tensors and introducing a method of calculating them from a discretely sampled field. Focusing on the statistic {W}21,1—a 2 × 2 matrix—we calculate its value for both the entire excursion set and individual connected regions and holes within the set. To study the morphology of structures within the excursion set, we calculate the eigenvalues λ 1, λ 2 for the matrix {W}21,1 of each distinct connected region and hole and measure their mean shape using the ratio β \\equiv . We compare both {W}21,1 and β for a Gaussian field and a smoothed density field generated from the latest Horizon Run 4 cosmological simulation to study the effect of gravitational collapse on these functions. The global statistic {W}21,1 is essentially independent of gravitational collapse, as the process maintains statistical isotropy. However, β is modified significantly, with overdensities becoming relatively more circular compared to underdensities at low redshifts. When applying the statistics to a redshift-space distorted density field, the matrix {W}21,1 is no longer proportional to the identity matrix, and measurements of its diagonal elements can be used to probe the large-scale velocity field.

  13. Interaction of Interstellar Shocks with Dense Obstacles: Formation of ``Bullets''

    Science.gov (United States)

    Gvaramadze, V. V.

    The so-called cumulative effect take place in converging conical shock waves arising behind dense obstacles overtaken by incident interstellar shock. A significant part of energy of converging flow of matter swept-up by a radiative conical shock can be transferred to a dense jet-like ejection (``bullet'') directed along the cone axis. Possible applications of this effect for star-forming regions (e.g., OMC-1) and supernova remnants (e.g., Vela SNR) are discussed.

  14. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  15. A "Genetic Study" of the Galaxy

    Science.gov (United States)

    2006-09-01

    Looking in detail at the composition of stars with ESO's VLT, astronomers are providing a fresh look at the history of our home galaxy, the Milky Way. They reveal that the central part of our Galaxy formed not only very quickly but also independently of the rest. "For the first time, we have clearly established a 'genetic difference' between stars in the disc and the bulge of our Galaxy," said Manuela Zoccali, lead author of the paper presenting the results in the journal Astronomy and Astrophysics [1]. "We infer from this that the bulge must have formed more rapidly than the disc, probably in less than a billion years and when the Universe was still very young." ESO PR Photo 34a/06 ESO PR Photo 34a/06 The Field around Baade's Window The Milky Way is a spiral galaxy, having pinwheel-shaped arms of gas, dust, and stars lying in a flattened disc, and extending directly out from a spherical nucleus of stars in the central region. The spherical nucleus is called a bulge, because it bulges out from the disc. While the disc of our Galaxy is made up of stars of all ages, the bulge contains old stars dating from the time the galaxy formed, more than 10 billion years ago. Thus, studying the bulge allows astronomers to know more about how our Galaxy formed. To do this, an international team of astronomers [2] analysed in detail the chemical composition of 50 giant stars in four different areas of the sky towards the Galactic bulge. They made use of the FLAMES/UVES spectrograph on ESO's Very Large Telescope to obtain high-resolution spectra. The chemical composition of stars carries the signature of the enrichment processes undergone by the interstellar matter up to the moment of their formation. It depends on the previous history of star formation and can thus be used to infer whether there is a 'genetic link' between different stellar groups. In particular, comparison between the abundance of oxygen and iron in stars is very illustrative. Oxygen is predominantly produced in

  16. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  17. Large-scale galaxy bias

    Science.gov (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  18. Large-scale galaxy bias

    Science.gov (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  19. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  20. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  1. Interstellar Initiative Web Page Design

    Science.gov (United States)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  2. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    OpenAIRE

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; Bosch, Frank C. van den

    2014-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy ...

  3. Extragalactic interstellar extinction curves: Indicators of local physical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Palermo, P.zza Parlamento 1, I-90134 Palermo (Italy); Viti, Serena; Williams, David A., E-mail: cecchi-pestellini@astropa.unipa.it, E-mail: sv@star.ucl.ac.uk, E-mail: daw@star.ucl.ac.uk [Department of Physics and Astronomy, University College London Gower Street, London WC1E 6BT (United Kingdom)

    2014-06-20

    Normalized interstellar extinction curves (ISECs) in the Milky Way and other galaxies show a variety of shapes. This variety is attributed to differences along different sight lines in the abundances of the several dust and gas components contributing to extinction. In this paper we propose that these abundance differences are not arbitrary but are a specific consequence of the physical conditions on those sight lines. If this proposal is correct, then it implies that ISECs contain information about physical conditions in the regions generating extinction. This may be particularly important for high redshift galaxies where information on the conditions may be difficult to obtain. We adopt a model of extinction carriers in which the solid and gaseous components are not immutable but respond time-dependently to the local physics. We validate this model by fitting extinction curves measured on sight lines in the Magellanic Clouds and obtained for the gamma-ray burst afterglow GRB 080605. We present results for this model as follows: (1) we show that computed ISECs are controlled by a small number of physical parameters, (2) we demonstrate the sensitivity of computed ISECs to these parameters, (3) we compute as examples ISECs for particular galaxy types, and (4) we note that different galaxy types have different shapes of ISEC.

  4. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  5. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  6. Cosmic strings and galaxy formation: Current status

    International Nuclear Information System (INIS)

    Stebbins, A.

    1987-04-01

    Successes and remaining problems with cosmic string theories of galaxy formation are outlined. Successes of the theory include predictions for the correct amplitude of initial inhomogeneities leading to galaxy formation, the distribution of observed inhomogeneities, the observed correlation function of clusters, and the density profiles of dark matter halos. Potentially serious problems which have been raised are the biased galaxy production (why do galaxies occur in clusters?), the core radius problem (density profiles of galactic halos do not match predictions), the maximal rotation velocity problem (why is there a sharp cutoff in observed rotational velocity of galaxies?), the small galaxy problem (why are all the galaxies relatively small structures?), the angular momentum problem (where do baryons acquire their angular momentum in order to form spirals), and the large-scale structure problem (why do most galaxies appear to lie on surfaces surrounding voids?). Possible approaches to each of these problems are suggested and the future of cosmic string theory is discussed. 25 refs

  7. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    Science.gov (United States)

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  8. Interstellar extinction in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nandy, K.; Morgan, D.H.; Willis, A.J.; Wilson, R.; Gondhalekar, P.M.

    1981-01-01

    A systematic investigation of interstellar extinction in the ultraviolet as a function of position in the Large Magellanic Cloud has been made from an enlarged sample of reddened and comparison stars distributed throughout the cloud. Except for one star SK-69-108, the most reddened star of our sample, the shape of the extinction curves for the LMC stars do not show significant variations. All curves show an increase in extinction towards 2200 A, but some have maxima near 2200 A, some near 1900 A. It has been shown that the feature of the extinction curve near 1900 A is caused by the mismatch of the stellar F III 1920 A feature. The strength of this 1920 A feature as a function of luminosity and spectral type has been determined. The extinction curves have been corrected for the mismatch of the 1920 feature and a single mean extinction curve for the LMC normalized to Asub(V) = 0 and Esub(B-V) = 1 is presented. For the same value of Esub(B-V) the LMC stars show the 2200 A feature weaker by a factor 2 as compared with the galactic stars. Higher extinction shortward of 2000 A in the LMC extinction curves than that in our Galaxy, as reported in earlier papers, is confirmed. (author)

  9. High-resolution molecular line observations of active galaxies

    Science.gov (United States)

    García-Burillo, S.; Combes, F.; Usero, A.; Graciá-Carpio, J.

    2008-10-01

    The study of the content, distribution and kinematics of interstellar gas is a key to understand the origin and maintenance of both starburst and nuclear (AGN) activity in galaxies. The processes involved in AGN fueling encompass a wide range of scales, both spatial and temporal, which have to be studied. Probing the gas flow from the outer disk down to the central engine of an AGN host, requires the use of specific tracers of the interstellar medium adapted to follow the change of phase of the gas as a function of radius. Current mm-interferometers can provide a sharp view of the distribution and kinematics of molecular gas in the circumnuclear disks of galaxies through extensive CO line mapping. As such, CO maps are an essential tool to study AGN feeding mechanisms in the local universe. This is the scientific driver of the NUclei of GAlaxies (NUGA) survey, whose latest results are here reviewed. On the other hand, the use of specific molecular tracers of the dense gas phase can probe the feedback influence of activity on the chemistry and energy balance/redistribution in the interstellar medium of nearby galaxies. Millimeter interferometers are able to unveil the strong chemical differentiation present in the molecular gas disks of nearby starbursts and AGNs. Nearby active galaxies can be used as local templates to address the study of more distant galaxies where both star formation and AGN activity are deeply embedded.

  10. Interstellar turbulence and shock waves

    International Nuclear Information System (INIS)

    Bykov, A.M.

    1982-01-01

    Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed

  11. Stardust Interstellar Preliminary Examination (ISPE)

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  12. Magnetite and the interstellar medium

    International Nuclear Information System (INIS)

    Landaberry, S.C.; Magalhaes, A.M.

    1976-01-01

    Recent observations concerning interstellar circular polarization are explained by a simple two-cloud model using magnetite (Fe 3 O 4 ) grains as polarizing agents. Three stars covering a wide range of linear polarization spectral shapes were selected. Reasonably low column densities are required in order to interpret polarization data [pt

  13. Origin of stars and structure of galaxies

    International Nuclear Information System (INIS)

    Palous, J.

    1988-01-01

    The substance is described of molecular clouds from interstellar mass and the origin, process and termination of the gravitational collapse are described which lead to the creation of stars. The probability is described of the origin of high-mass and lower-mass stars. The connection is discussed between the creation of stars, molecular clouds and the structure of galaxies. (E.S.). 7 figs

  14. Ram pressure stripping of tilted galaxies

    Czech Academy of Sciences Publication Activity Database

    Jáchym, Pavel; Köppen, J.; Palouš, Jan; Combes, F.

    2009-01-01

    Roč. 500, č. 2 (2009), s. 693-703 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA ČR GP205/08/P556 Institutional research plan: CEZ:AV0Z10030501 Keywords : interstellar medium * clusters of galaxies * gas stripping Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  15. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  16. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    Science.gov (United States)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  17. PAHs in Translucent Interstellar Clouds

    Science.gov (United States)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2011-05-01

    We discuss the proposal of relating the origin of some of the diffuse interstellar bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. This comparison provides - for the first time - accurate upper limits for the abundances of specific PAH molecules along specific lines-of-sight. Something that is not attainable from IR observations alone. The comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments. // Reference: F. Salama et al. (2011) ApJ. 728 (1), 154 // Acknowledgements: F.S. acknowledges the support of the NASA's Space Mission Directorate APRA Program. J.K. acknowledges the financial support of the Polish State (grant N203 012 32/1550). The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.

  18. Groups and clusters of galaxies

    International Nuclear Information System (INIS)

    Bijleveld, W.

    1984-01-01

    In this thesis, a correlative study is performed with respect to the radio and X-ray parameters of galaxy clusters and groups of galaxies (Msub(v)-Psub(1.4); Msub(v)-Lsub(x); Lsub(x)-Psub(1.4); R-Msub(v) correlations). Special attention is paid to correlations with cD and elliptical galaxies. It is concluded that in rich clusters massive cD galaxies form; massive galaxies are able to bind a large X-ray halo; strong X-ray emitters fuel their central radio sources at a high rate; the total gas content of groups is low, which implies that the contribution of groups to the total matter density in the universe is small. (Auth.)

  19. Mixing processes in galaxy mergers

    International Nuclear Information System (INIS)

    White, S.D.M.

    1980-01-01

    Previously published simulations of mergers between galaxies are used to examine the degree to which population gradients are weakened during the coalescence of two or more stellar systems. Although substantial mixing occurs during a merger, its effect on such gradients is quite moderate and can be overwhelmed by the effect of changes in structure. Experiment suggests that the centre-to-edge population difference in a merger remnant will be 20 per cent smaller than that in its progenitor galaxies if these are identical centrally concentrated systems. A sequence of three binary mergers is thus required to reduce such differences by a factor of 2. Because of changes in radial structure, population gradients are, in general, reduced more rapidly than is suggested by these numbers. Mixing is more efficient in mergers between less concentrated systems. In real merger remnants any weakening of gradients may often be masked by star-formation in residual interstellar gas. (author)

  20. The formation and evolution of galaxies in an expanding universe

    Science.gov (United States)

    Ceverino-Rodriguez, Daniel

    This PhD thesis is part of an ongoing effort in improving the theory of galaxy formation in a LCDM Universe. We include more realistic models of radiative cooling, star formation, and stellar feedback. A special attention has been given to the role of supernova explosions and stellar winds in the galaxy assembly. These processes happen at very small scales (parsecs), but they affect the inter-stellar medium (ISM) at Kpc-scales and regulate the formation of a whole galaxy. Previous attempts of mimicking these effects in simulations of galaxy formation use very simplified assumptions. We develop a much more realistic prescription for modeling the feedback, which minimizes any ad hoc sub-grid physics. We start with developing high resolution models of the ISM and formulate the conditions required for its realistic functionality: formation of a multi-phase medium with hot chimneys, super-bubbles, cold molecular phase, and very slow consumption of gas. We find that this can be achieved only by doing what the real Universe does: formation of dense (> 10 H atoms cm -3 ), cold ( T [approximate] 100 K) molecular phase, where star formation happens, and which young stars disrupt. Another important ingredient is the effect of runaway stars: massive binary stars ejected from molecular clouds when one of the companions becomes a supernova. These stars can move to 10-100 parsecs away from molecular clouds before exploding themselves as supernovae. This greatly facilitates the feedback. Once those effects are implemented into cosmological simulations, galaxy formation proceeds more realistically. For example, we do not have the overcooling problem. The angular momentum problem (resulting in a too massive bulge) is also reduced substantially: the rotation curves are nearly flat. The galaxy formation also becomes more violent. Just as often observed in absorption lines studies, there are substantial outflows from forming and active galaxies. At high redshifts we routinely find gas

  1. Radio recombination lines from diffuse interstellar gas in the Galaxy

    International Nuclear Information System (INIS)

    Cersosimo, J.C.; Onello, J.S.

    1991-01-01

    The paper reports the detection of the H159-alpha and H200-beta radio recombination lines at 1.62 GHz at l = 30.5 deg and 31.0 deg in the Galactic plane. Using the new observations obtained with the NRAO 43 m telescope a non-LTE analysis is presented to show that the observed LTE intensity ratio for these lines can arise from an inhomogeneous ionized nebula with a low-density component. 16 refs

  2. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  3. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  4. Protogalaxy interactions in newly formed clusters: Galaxy luminosities, colors, and intergalactic gas

    International Nuclear Information System (INIS)

    Silk, J.

    1978-01-01

    The role of protogalaxy interactions in galactic evolution is studied during the formation of galaxy clusters. In the early stages of the collapse, coalescent encounters of protogalaxies lead to the development of a galactic luminosity function. Once galaxies acquire appreciable random motions, mutual collisions between galaxies in rich clusters will trigger the collapse of interstellar clouds to form stars. This provides both a source for enriched intracluster gas and an interpretation of the correlation between luminosity and color for cluster elliptical galaxies. Other observational consequences that are considered include optical, X-ray, and diffuse nonthermal radio emission from newly formed clusters of galaxies

  5. Dust in the small Magellanic cloud. 1: Interstellar polarization and extinction data

    Science.gov (United States)

    Magalhaes, A. M.; Rodrigues, C. V.; Coyne, C. V.; Piirola, V.

    1996-01-01

    The typical extinction curve for the Small Magellanic Cloud (SMC), in contrast to that for the Galaxy, has no bump at 2175 A and has a steeper rise into the far ultraviolet. For the Galaxy the interpretation of the extinction and, therefore, the dust content of the interstellar medium has been greatly assisted by measurements of the wavelength dependence of the polarization. For the SMC no such measurements existed. Therefore, to further elucidate the dust properties in the SMC we have for the first time measured linear polarization with five colors in the optical region of the spectrum for a sample of reddened stars. For two of these stars, for which there were no existing UV spectrophotometric measurements, but for which we measured a relatively large polarization, we have also obtained data from the International Ultraviolet Explorer (IUE) in order to study the extinction. We also attempt to correlate the SMC extinction and polarization data. The main results are: the wavelength of maximum polarization, lambda(sub max), in the SMC is typically smaller than that in the Galaxy; however, AZC 456, which shows the UV extinction bump, has a lambda(sub max) typical of that in the Galaxy, but its polarization curve is narrower and its bump is shifted to shorter wavelengths as compared to the Galaxy; and from an analysis of both the extinction and polarization data it appears that the SMC has typically smaller grains than those in the Galaxy. The absence of the extinction bump in the SMC has generally been thought to imply a lower carbon abundance in the SMC compared to the Galaxy. We interpret our results to mean that te size distribution of the interstellar grains, and not only the carbon abundance, is different in the SMC as compared to the Galaxy. In Paper 2 we present dust model fits to these observations.

  6. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  7. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  8. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  9. Effects of grain size distribution on the interstellar dust mass growth

    OpenAIRE

    Hirashita, Hiroyuki; Kuo, Tzu-Ming

    2011-01-01

    Grain growth by the accretion of metals in interstellar clouds (called `grain growth') could be one of the dominant processes that determine the dust content in galaxies. The importance of grain size distribution for the grain growth is demonstrated in this paper. First, we derive an analytical formula that gives the grain size distribution after the grain growth in individual clouds for any initial grain size distribution. The time-scale of the grain growth is very sensitive to grain size di...

  10. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  11. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  12. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  13. Infrared spectra of interstellar deuteronated PAHs

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  14. All-Sky Cataloging and Analysis of Interstellar Clouds

    Science.gov (United States)

    Hojaev, Alisher S.

    2015-08-01

    Recent quick instrumental progress provides possibilities to careful study the interstellar medium (ISM) in the Galaxy and in the nearest galaxies (M31, LMC, SMC, etc.). Significant enough baryon mass of the galactic and extragalactic ISM is concentrated in the clouds with molecular content in the densest parts. The molecular clouds (MoC) are closely related to cold dust-gas clouds, particularly HI ones and should play a key-role in the star forming processes as well as in the dynamics of the Galaxy. These arguments show the importance of counting and surveying of the MoC populations. In order to attempt to solve at least some problems of the physics and evolution of the MoC system in the Galaxy (as well as in other galaxies), its impact on the dynamics and evolution of the Galaxy itself, and to extend the results to the MoC systems in other galaxies we drafted a consolidated composite catalog of molecular and dust-gas clouds based on the recent data. Online data banks and services such as VizieR, SIMBAD at CDS as well as original publications were used. In our Galaxy there are about 200 large molecular clouds, more than 2500 smaller cold dark clouds (including clumps and cores this value exceeds approximately 5000 objects) observed in 11 kpc Solar neighborhood. The general catalog has been divided into 3 sub-catalogs: 1)large and giant MoC; 2) MoC with moderate masses and sizes; 3) small MoC including the clumps and cores. All main catalogs and subcatalogs contain the coordinates, sizes, distances, masses and other physical parameters (density, temperature, radial velocity, etc.) that are available for the different clouds. Statistical and correlation analyses of the data has been performed, the spatial distribution is drawn and the total number is estimated, the dynamic model of formation and evolution of MoC system is proposed. Our results are compared and discussed with data of other investigations as well as the ways to complete and improve the catalog data

  15. Galaxy formation and physical bias

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiati