WorldWideScience

Sample records for interstellar grains

  1. Interstellar grains

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, F.; Wickramasinghe, N.C.

    1980-11-01

    Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.

  2. Evolution of interstellar grains

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  3. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  4. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  5. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  6. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  7. Interstellar Grains: 50 Years On

    OpenAIRE

    Wickramasinghe, N. Chandra

    2011-01-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work tha...

  8. Interstellar Grains: 50 Years on

    Science.gov (United States)

    Wickramasinghe, N. C.

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance -- a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  9. Interstellar grains - the 75th anniversary

    International Nuclear Information System (INIS)

    Li Aigen

    2005-01-01

    The year of 2005 marks the 75th anniversary since Trumpler (1930) provided the first definitive proof of interstellar grains by demonstrating the existence of general absorption and reddening of starlight in the galactic plane. This article reviews our progressive understanding of the nature of interstellar dust

  10. The composition of interstellar grain mantles

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.

    1984-01-01

    The molecular composition of interstellar grain mantles employing gas phase as well as grain surface reactions has been calculated. The calculated mixtures consist mainly of the molecules H 2 O H 2 CO, N 2 , CO, O 2 , CO 2 , H 2 O 2 , NH 3 , and their deuterated counterparts in varying ratios. The exact compositions depend strongly on the physical conditions in the gas phase. The calculated mixtures are compared to the observations by using laboratory spectra of grain mantle analogs. (author)

  11. The Rosseland mean opacity of interstellar grain

    International Nuclear Information System (INIS)

    Ali, A.; El Shalaby, M.A.; El-Nawawy, M.S.

    1990-10-01

    We have calculated the opacity of interstellar grains in the temperature range 10 deg. K - 1500 deg. K. Two composite grain models have been considered. One of them consists of silicate coated with ice mantle and the second has a graphite core coated also with ice mantle. These models are compared with isolated grain models. An exact analytical and computational development of Guettler's formulae for composite grain models has been used to calculate the extinction coefficient. It has been found that the thickness of the mantle affects the opacity of the interstellar grains. The opacity of composite models differs from that of the isolated models. The effect of the different species (ice, silicate and graphite) is also clear. (author). 22 refs, 4 figs, 1 tab

  12. Surface chemistry on interstellar oxide grains

    International Nuclear Information System (INIS)

    Denison, P.; Williams, D.A.

    1981-01-01

    Detailed calculations are made to test the predictions of Duley, Millar and Williams (1978) concerning the chemical reactivity of interstellar oxide grains. A method is established for calculating interaction energies between atoms and the perfect crystal with or without surface vacancy sites. The possibility of reactions between incident atoms and absorbed atoms is investigated. It is concluded that H 2 formation can occur on the perfect crystal surfaces, and that for other diatomic molecules the important formation sites are the Fsub(s)- and V 2- sub(s)-centres. The outline by Duley, Millar and Williams (1979) of interstellar oxide grain growth and destruction is justified by these calculations. (author)

  13. Detection of organic matter in interstellar grains.

    Science.gov (United States)

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  14. Experiments on chemical and physical evolution of interstellar grain mantles

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The Astrophysical Laboratory at the University of Leiden is the first to succeed in simulating the essential conditions in interstellar space as they affect the evolution of interstellar grains. (author)

  15. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  16. Impact fracture experiments simulating interstellar grain-grain collisions

    Science.gov (United States)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    , plus metal vapor. This points: (1) at complex reaction mechanisms between dissolved H2O, CO/CO2 (and N2) components within the mineral structure or during fracture, and (2) at the possibility that similar emission processes occur following grain-grain collisions in interstellar dust clouds.

  17. Quenched carbonaceous composite (QCC): a likely candidate for interstellar grains

    International Nuclear Information System (INIS)

    Sakata, A.; Wada, S.; Tanabe, T.; Onaka, T.

    1984-01-01

    The authors have recently reported that a carbonaceous composite synthesized from a hydrocarbon plasma shows an extinction property quite resembling the observed average interstellar extinction curve around the 220 nm hump. This composite is synthesized by quenching the excited gas ejecting from a plasma of methane gas, so it is called 'quenched carbonaceous composite' or 'QCC'. A recent study of QCC in the infrared region has shown that QCC can also account for some of the unidentified bands in the infrared region detected in several celestial objects. These results suggest that most of the pronounced features of the interstellar grains originate from substances whose major constituent is carbon. (author)

  18. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Reach, William T.; Zank, Gary

    2012-01-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a gr ∼ gr ∼> 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  19. Stochastic histories of dust grains in the interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size

  20. Stochastic histories of dust grains in the interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.

    1988-01-01

    The purpose of this thesis is to study an evolving system of SU-perNOva CONdensateS (SUNOCONS) within the Interstellar Medium (ISM). This is done via a Monte Carlo process where refractory dust grains formed within supernova remnants are subjected to the processes of sputtering and collisional fragmentation in the diffuse phase and accretion within the cold molecular cloud phase. In order to record chemical detail, we take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and from between the different phases of the ISM until either the particles are destroyed or the program finishes. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results: (1) after six thousand million years roughly 10 to 20% by mass of the most refractory material (Al 2 O 3 ) survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. (2) structured or layered refractory dust grains within our model cannot explain the observed interstellar depletions of refractory material. (3) fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a biomodal distribution in grain size

  1. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D. [Harvard-Smithsonian Center for Astrophysics, MS 83, 60 Garden Street, Cambridge, MA 02138 (United States); Frisch, Priscilla C. [Department of Astronomy and Astrophysics, University of Chicago, 5460 S. Ellis Avenue, Chicago, IL 60637 (United States); Mueller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Heerikhuisen, Jacob; Pogorelov, Nikolai V. [Department of Physics and Center for Space Physics and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Reach, William T. [Universities Space Research Association, MS 211-3, Moffett Field, CA 94035 (United States); Zank, Gary [Department of Physics and Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35805 (United States)

    2012-11-20

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a {sub gr} {approx}< 0.01 {mu}m are completely excluded from the inner heliosphere. Large grains, a {sub gr} {approx}> 1.0 {mu}m, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  2. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Hoffman, John; Draine, B. T.

    2016-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition

  3. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States)

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  4. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  5. Tholins - Organic chemistry of interstellar grains and gas

    Science.gov (United States)

    Sagan, C.; Khare, B. N.

    1979-01-01

    The paper discusses tholins, defined as complex organic solids formed by the interaction of energy - for example, UV light or spark discharge - with various mixtures of cosmically abundant gases - CH4, C2H6, NH3, H2O, HCHO, and H2S. It is suggested that tholins occur in the interstellar medium and are responsible for some of the properties of the interstellar grains and gas. Additional occurrences of tholins are considered. Tholins have been produced experimentally; 50 or so pyrolytic fragments of the brown, sometimes sticky substances have been identified by gas chromatography-mass spectrometry, and the incidence of these fragments in tholins produced by different procedures is reported.

  6. The destruction and growth of dust grains in interstellar space

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1978-01-01

    The processes governing the destruction and growth of dust grains in interstellar space are investigated with a view to establishing the conditions required for the existence of ice mantles. In this paper sputtering by particles with energies in the eV to GeV range is considered. Previous sputtering yield estimates which were based on theoretical considerations are shown to be greatly in error for incident particle energies of less than 1 keV. Empirical formulae for the sputtering threshold energy and the sputtering yield are derived from the extensive experimental data available. The sputtering of grains in H II regions, in the inter-cloud medium, and in shock waves produced by cloud-cloud collisions and by supernova remnants, is investigated. Of these, supernova remnants are shown to be the most important, leading to lifetimes of approximately 2 x 10 8 yr for ice grains and between 5 to 20 x 10 8 yr for refractory grains. Destruction rates are estimated for grains bombarded by MeV and GeV cosmic rays. It is shown that collision cascade sputtering dominates evaporative sputtering produced by thermal spikes. It is also shown that even if all electron excitation energy loss in a grain material could be transferred to the lattice particles, the observed cosmic ray flux spectrum could not cause significant destruction of ice grains. (author)

  7. Interstellar ice grains in the Taurus molecular clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Bode, M.F.; Baines, D.W.T.; Evans, A.

    1983-01-01

    Observations made in November 1981 using the United Kingdom Infrared Telescope (UKIRT) at Mauna Kea of the 3 μm ice absorption feature in the spectra of several obscured stars in the Taurus interstellar clouds are reported. The feature correlated in strength with extinction at visual wavelengths (Asub(v)), and is present in stars with Asub(v) as low as 4-6 mag. Ice may be widespread in the Taurus clouds, vindicating ideas on grain composition and growth first reported nearly 50 yr ago. (author)

  8. Effects of grain size distribution on the interstellar dust mass growth

    OpenAIRE

    Hirashita, Hiroyuki; Kuo, Tzu-Ming

    2011-01-01

    Grain growth by the accretion of metals in interstellar clouds (called `grain growth') could be one of the dominant processes that determine the dust content in galaxies. The importance of grain size distribution for the grain growth is demonstrated in this paper. First, we derive an analytical formula that gives the grain size distribution after the grain growth in individual clouds for any initial grain size distribution. The time-scale of the grain growth is very sensitive to grain size di...

  9. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Chiar, J. E.; Ricca, A. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Adamson, A. J., E-mail: jchiar@seti.org, E-mail: Alessandra.Ricca@1.nasa.gov, E-mail: tielens@strw.leidenuniv.nl, E-mail: aadamson@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96729 (United States)

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  10. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    International Nuclear Information System (INIS)

    Chiar, J. E.; Ricca, A.; Tielens, A. G. G. M.; Adamson, A. J.

    2013-01-01

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 μm) and aliphatic (3.4 μm) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp 2 bonds can be measured in astronomical spectra using the 6.2 μm CC aromatic stretch feature, whereas the 3.4 μm aliphatic feature can be used to quantify the fraction of sp 3 bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp 3 content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  11. Structure in the interstellar polarization curve and the nature of the polarizing grains

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Smith, R.J.

    1984-01-01

    At this workshop the emphasis is on divining the nature of the interstellar grains by using infrared spectral features as the principal diagnostic. Nevertheless other approaches are also contributing to an understanding of the grains and deserve some attention. This paper describes the structure recently found in the interstellar polarization curve, and discusses its relation to the structure seen in the extinction curve and the nature of the grains producing the spectral features. (author)

  12. Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models

    Science.gov (United States)

    Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.

    1993-01-01

    UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.

  13. Cataclysmic variables as probes of x-ray properties of interstellar grains

    International Nuclear Information System (INIS)

    Bode, M.F.; Evans, A.; Norwell, G.A.

    1983-01-01

    Interstellar-grain properties have previously been probed at wavelengths ranging from the infrared to the ultraviolet. Recent work by other authors has shown that we may also observe the effects of scattering by such grains at x-ray wavelengths. In this paper we suggest that investigations of the x-ray properties of interstellar grains may profitably be conducted in sight lines to variable sources. Particular emphasis is given in this context to cataclysmic variables and related objects

  14. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    Science.gov (United States)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  15. Ultraviolet extinction properties of grains in the interstellar medium

    International Nuclear Information System (INIS)

    Seab, C.G.

    1982-01-01

    The IUE satellite has been used to derive UV extinction curves for 58 stars, ranging in spectral type from 06 the A5, and with E(B-V) reddenings from 0.09 to 1.59 mag. The average reddening is 0.63 mag. Anomalous extinction curves were particularly sought in the project. The most striking discovery was the near absence of the 2175 Angstrom extinction feature from the line of sight towards HD 29647 in the Taurus dark cloud. The collection of data has been analyzed in several ways. Patterns are sought in the collection as a whole, in homogeneous subsets of the data, and in relation to diffuse band strengths. Apart from some well-known correlations, only a few weak relationships are found, including a quasi-relationship between the 2175 Angstrom bump and the 4430 Angstrom diffuse band that persists after the basic E(B-V) dependencies have been removed. A search for diffuse bands in the UV was done by stacking 48 of the extinction curves to reduce the noise. The stacked curve showed no evidence of new diffuse bands. To help interpret the anomalous extinction curves, a theoretical simulation of grain processing in interstellar shocks was undertaken. Shock processing was found to cause strong 2175 angstorm bumps and high far UV extinction. Comparison to extinction curves associated with supernova remnants confirms the predictions of strong 2175 Angstrom bumps, and partially confirms the prediction of high far UV extinction. The implications of all of these results are considered for the two most prominent grain models

  16. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  17. A UNIFIED MODEL OF GRAIN ALIGNMENT: RADIATIVE ALIGNMENT OF INTERSTELLAR GRAINS WITH MAGNETIC INCLUSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Lazarian, A. [Department of Astronomy, University of Wisconsin-Madison (United States)

    2016-11-10

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by earlier studies. The alignment of such grains depends on the so-called RAT parameter q {sup max}, which is determined by the grain shape. In this paper, we elaborate on our model of RAT alignment for grains with enhanced magnetic susceptibility due to iron inclusions, such that RAT alignment is magnetically enhanced, which we term the MRAT mechanism. Such grains can be aligned with high angular momentum at the so-called high- J attractor points, achieving a high degree of alignment. Using our analytical model of RATs, we derive the critical value of the magnetic relaxation parameter δ {sub m} to produce high- J attractor points as functions of q {sup max} and the anisotropic radiation angle relative to the magnetic field ψ . We find that if about 10% of the total iron abundance present in silicate grains is forming iron clusters, this is sufficient to produce high- J attractor points for all reasonable values of q {sup max}. To calculate the degree of grain alignment, we carry out numerical simulations of MRAT alignment by including stochastic excitations from gas collisions and magnetic fluctuations. We show that large grains can achieve perfect alignment when the high- J attractor point is present, regardless of the values of q {sup max}. Our obtained results pave the way for the physical modeling of polarized thermal dust emission as well as magnetic dipole emission. We also find that millimeter-sized grains in accretion disks may be aligned with the magnetic field if they are incorporated with iron nanoparticles.

  18. A new component of the interstellar matter - Small grains and large aromatic molecules

    International Nuclear Information System (INIS)

    Puget, J.L.

    1989-01-01

    Predictions from dust models constructed to account for the interstellar extinction curve are in conflict with emission data. This paper shows that the introduction of small grains and large aromatic molecules as a new component of the interstellar matter can resolve this conflict. Observational evidence for the existence of very small grains is also reviewed, along with the physics of IR emission by thermal fluctuations and its relation to very small particles. 99 refs

  19. Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM

    Science.gov (United States)

    Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.

  20. THE EFFECTS OF GRAIN SIZE AND TEMPERATURE DISTRIBUTIONS ON THE FORMATION OF INTERSTELLAR ICE MANTLES

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States)

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.

  1. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  2. Recombination efficiency of molecular hydrogen on interstellar grains - II: A numerical study

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Ankan, Das; Kinsuk, Acharyya; Sonali, Chakrabarti

    2006-05-01

    Knowledge of the recombination time on the grain surfaces has been a major obstacle in deciding the production rate of molecular hydrogen and other molecules in the interstellar medium. We present a numerical study to compute this time for molecular hydrogen for various cloud and grain parameters. We also find the time dependence, particularly when a grain is freshly injected into the system. Apart from the fact that the recombination times seem to be functions of the grain parameters such as the activation barrier energy, temperature etc., our result also shows the dependence on the number of sites in the grain S and the effective accretion rate per site a s of atomic hydrogen. To put simply the average time that a pair of atomic hydrogens will take to produce one molecular hydrogen depends on how heavily the grain is already populated by atomic and molecular hydrogens and how fast the hopping and desorption times are. We show that if we write the average recombination time as T r ∼ S α /A H , where, A H is the hopping rate, then α could be much greater than 1 for all astrophysically relevant accretion rates. Thus the average formation rate of H 2 is also dependent on the grain parameters, temperature and the accretion rate. We believe that our results will affect the overall rate of the formation of complex molecules such as methanol which requires successive hydrogenation on the grain surfaces in the interstellar medium. (author)

  3. BRILLIANT PEBBLES: A METHOD FOR DETECTION OF VERY LARGE INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Socrates, Aristotle; Draine, Bruce T.

    2009-01-01

    A photon of wavelength λ ∼ 1 μm interacting with a dust grain of radius a p ∼ 1 mm (a 'pebble') undergoes scattering in the forward direction, largely within a small characteristic diffraction angle θ s ∼ λ/a p ∼ 100''. Though millimeter-size dust grains contribute negligibly to the interstellar medium's visual extinction, the signal they produce in scattered light may be detectable, especially for variable sources. Observations of light scattered at small angles allow for the direct measurement of the large grain population; variable sources can also yield tomographic information of the interstellar medium's mass distribution. The ability to detect brilliant pebble halos requires a careful understanding of the instrument point-spread function.

  4. Interstellar gas and large grains toward HD 38087

    International Nuclear Information System (INIS)

    Snow, T.P.; Witt, A.

    1989-01-01

    High-dispersion IUE spectra have been obtained of HD 38087, a star associated with reflection nebulosity where 2175 A scattering has previously been observed. The presence of 2175 A in emission implies unusually large grains, an attempt was made to see how these unusual grains may have affected the depletions of gas-phase elements onto dust in the line of sight. Even though the observed scattering region constitutes only a fraction of the total column density of dust, it is expected that the present line-of-sight analysis provides useful information on the gas and dust in the scattering nebulosity. Somewhat larger overall depletions than normal are found, and it is found that the depletions of certain elements (manganese and zinc) are enhanced relative to the normal pattern of element-to-element depletions, suggesting that grain growth has occurred with some elements sticking to grains preferentially. The molecular fraction in the line of sight is low, in accord with similar lines of sight having low far-ultraviolet extinction and large depletions. 37 refs

  5. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.

  6. The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, Alexey; Jäger, Cornelia [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Thomas [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Jonusas, Mindaugas; Krim, Lahouari, E-mail: alexey.potapov@uni-jena.de [Department of Chemistry, Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, Paris F-75005 (France)

    2017-09-10

    An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication for a possible methanol formation route in such systems.

  7. VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shu; Jiang, B. W. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2015-09-20

    The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ the ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.

  8. Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains

    Science.gov (United States)

    Garrod, Robin

    2015-08-01

    The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.

  9. TEMPERATURE SPECTRA OF INTERSTELLAR DUST GRAINS HEATED BY COSMIC RAYS. I. TRANSLUCENT CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kalvāns, Juris, E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f{sub T}, s{sup −1}, determines how often a certain temperature T{sub CR}, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f{sub T} and T{sub CR} spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μ m and such grains covered with ice mantles of thickness 0.1 a and 0.3 a . Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A{sub V} = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T{sub CR} spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T{sub CR} values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  10. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  11. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main (Germany)

    2017-02-10

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  12. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  13. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  14. Laboratory simulation of interstellar grain chemistry and the production of complex organic molecules

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.; Valero, G. J.

    1990-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared (5000 to 500 cm(-1), 2 to 20 microns m), the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these astronomical spectra with the spectra of laboratory ices one can determine the composition and abundance of the icy materials frozen on the cold (10K) dust grains present in the interior of molecular clouds. These grains and their ice mantles may well be the building blocks from which comets are made. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, researchers present the infrared spectra of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds. The last component was incorporated into this particular experiment as a tracer of the behavior of a non-aromatic hydrocarbon. The change in the composition that results from ultraviolet photolysis of this ice mixture using a UV lamp to simulate the interstellar radiation field is shown. Photolysis produces CO, CO2, CH4, HCO, H2CO, as well as a family of moderately volatile hydrocarbons. Less volatile carbonaceous materials are also produced. The evolution of the infrared spectrum of the ice as the sample is warmed up to room temperature is illustrated. Researchers believe that the changes are similar to those which occur as ice is ejected from a comet and warmed up by solar radiation. The warm-up sequence shows that the nitrile or iso-nitrile bearing compound

  15. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    Science.gov (United States)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  16. Observations of the interstellar ice grain feature in the Taurus molecular clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Longmore, A.J.; Baines, D.W.T.; Evans, A.

    1984-01-01

    Although water ice was originally proposed as a major constituent of the interstellar grain population, the advent of infrared astronomy has shown that the expected absorption due to O-H stretching vibrations at 3 μm is illusive. Observations have in fact revealed that the carrier of this feature is apparently restricted to regions deep within dense molecular clouds. However, the exact carrier of this feature is still controversial, and many questions remain as to the conditions required for its appearance. The Taurus molecular clouds were selected for observations, in the form of a preliminary survey in the 2-4 μm window. It is concluded that the carrier of the 3μm absorption feature appears to reside in the general cloud medium and is probably amorphous water ice. (author)

  17. Gas-surface interactions and heterogeneous chemistry on interstellar grains analogues

    Directory of Open Access Journals (Sweden)

    Cazaux S.

    2012-01-01

    Full Text Available Detailed laboratory studies and progress in surface science technique, have allowed in recent years the first experimental confirmation of surface reaction schemes, as introduced by Tielens, Hagen and Charnley [1,2]. In this paper, we review few heterogeneous processes which give routes to form elementary molecules considered as precursors for explaining the variety and richness of molecular species in the interstellar medium. Adsorption, diffusion and reaction processes are discussed. With emphasis on the experimental approaches, but also supported by theoretical developments, progresses in the understanding of the “catalytic role” of a dust grain surface in various physical conditions are described. Recent advances made on few important species (H2, H2O, CH3OH are used to illustrate basic properties and raise open questions.

  18. Observations of the interstellar ice grain feature in the Taurus molecular clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Bode, H.F.; Longmore, A.J.; Baines, D.W.T.; Evans, A.

    1983-01-01

    Although water ice was originally proposed as a major constituent of the interstellar grain population (e.g. Oort and van de Hulst, 1946), the advent of infrared astronomy has shown that the expected absorption due to O-H stretching vibrations at 3 μm is illusive. Observations have in fact revealed that the carrier of this feature is apparently restricted to regions deep within dense molecular clouds (Merrill et al., 1976; Willner et al., 1982). However, the exact carrier of this feature is still controversial, and many questions remain as to the conditions required for its appearance. It is also uncertain whether it is restricted to circumstellar shells, rather than the general cloud medium. Detailed discussion of the 3 μm band properties is given elsewhere in this volume. 15 references, 4 figures

  19. Nitrile versus isonitrile adsorption at interstellar grain surfaces. II. Carbonaceous aromatic surfaces

    Science.gov (United States)

    Bertin, M.; Doronin, M.; Michaut, X.; Philippe, L.; Markovits, A.; Fillion, J.-H.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.

    2017-12-01

    Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims: In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods: The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results: The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.

  20. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    Science.gov (United States)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  1. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  2. Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach

    Science.gov (United States)

    Caselli, Paola; Stantcheva, Tatiana; Shalabiea, Osama; Shematovich, Valery I.; Herbst, Eric

    2002-10-01

    The formation of singly and doubly deuterated isotopomers of formaldehyde and of singly, doubly, and multiply deuterated isotopomers of methanol on interstellar grain surfaces has been studied with a semi-empirical modified rate approach and a Monte Carlo method in the temperature range 10- 20 K. Agreement between the results of the two methods is satisfactory for all major and many minor species throughout this range. If gas-phase fractionation can produce a high abundance of atomic deuterium, which then accretes onto grain surfaces, diffusive surface chemistry can produce large abundances of deuterated species, especially at low temperatures and high gas densities. Warming temperatures will then permit these surface species to evaporate into the gas, where they will remain abundant for a considerable period. We calculate that the doubly deuterated molecules CHD 2OH and CH 2DOD are particularly abundant and should be searched for in the gas phase of protostellar sources. For example, at 10 K and high density, these species can achieve up to 10-20% of the abundance of methanol.

  3. THE COMPOSITION OF INTERSTELLAR GRAINS TOWARD ζ OPHIUCHI: CONSTRAINING THE ELEMENTAL BUDGET NEAR THE DIFFUSE-DENSE CLOUD TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Poteet, Charles A.; Whittet, Douglas C. B. [New York Center for Astrobiology, Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Draine, Bruce T., E-mail: charles.poteet@gmail.com [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2015-03-10

    We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O are inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.

  4. Interstellar Grains as Amino Acid Factories and the Origin of Life

    Science.gov (United States)

    Sorrell, Wilfred H.

    1997-09-01

    Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010-1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller

  5. Formation of molecular hydrogen on carbonaceous grains from the interstellar medium. Role of the surface, her relaxation, her morphology

    International Nuclear Information System (INIS)

    Bachellerie, D.

    2008-12-01

    The formation of H 2 in the interstellar medium, from two hydrogen atoms, is a fundamental question in astrophysics. This very exothermic reaction is indeed the first step of a series of essential reactions for the interstellar physical-chemistry that takes place on the surface of interstellar dust grains. In the warm regions of the ISM, diffuse clouds and Photodissociation regions, the invoked formation mechanism is the Eley-Rideal heterogeneous catalysis reaction, in which one H atom is initially chemisorbed. The grains have mainly carbonaceous graphitic-like composition. Previous theoretical works carried out using constrained geometries were unable to explain the formation of H 2 in the observed rovibrationnal states (v≤5). In order to take into account the degrees of freedom of all relevant atoms, we have built, from the Brenner potential, a new potential that models the graphene H-H system.With this potential, we have completed a classical molecular dynamics study of the formation of H 2 . This work has been performed for collision energies of the impinging H atoms from 0.015 eV to 0.2 eV and for surface temperature of 0, 10 and 30 K. One of the salient results is that the reaction cross section is directly related with the shape of the potential seen by the impinging H atom. Furthermore, the rovibrationnal distribution obtained by allowing the surface atoms to move is in better agreement with the one observed by astrophysicists (v≤6), the surface absorbs a large part (∼25%) of the available energy. Some works about the influence of: an additional H atom upon the surface or a possible porous structure of the grains, on the formation of H 2 are presented in appendices. (author)

  6. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  7. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  8. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  9. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  10. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    International Nuclear Information System (INIS)

    Whittet, D. C. B.

    2010-01-01

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n H ). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as ∼160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  11. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  12. Interstellar chemistry.

    Science.gov (United States)

    Klemperer, William

    2006-08-15

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature.

  13. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  14. Interstellar organic chemistry.

    Science.gov (United States)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  15. Irradiation of FeS: Implications for the Lifecycle of Sulfur in the Interstellar Medium and Presolar FeS Grains

    Science.gov (United States)

    Keller, Lindsay P.; Loeffler, M. J.; Christoffersen, R.; Dukes, C.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Fe(Ni) sulfides are ubiquitous in chondritic meteorites and cometary samples where they are the dominant host of sulfur. Despite their abundance in these early solar system materials, their presence in interstellar and circumstellar environments is poorly understood. Fe-sulfides have been reported from astronomical observations of pre- and post-main sequence stars [1, 2] and occur as inclusions in bonafide circumstellar silicate grains [3, 4]. In cold, dense molecular cloud (MC) environments, sulfur is highly depleted from the gas phase [e.g. 5], yet observations of sulfur-bearing molecules in dense cores find a total abundance that is only a small fraction of the sulfur seen in diffuse regions [6], therefore the bulk of the depletion must reside in an abundant unobserved phase. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium (ISM) [7-9], indicating that little sulfur is incorporated into solid grains in this environment. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. The main destruction mechanism is sputtering due to supernova shocks in the warm, diffuse ISM [10]. This process involves the reduction of Fe-sulfide with the production of Fe metal as a by-product and returning S to the gas phase. In order to test this hypothesis, we irradiated FeS and analyzed the resulting material using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

  16. Interstellar extinction correlations

    International Nuclear Information System (INIS)

    Jones, A.P.; Williams, D.A.; Duley, W.W.

    1987-01-01

    A recently proposed model for interstellar grains in which the extinction arises from small silicate cores with mantles of hydrogenated amorphous carbon (HAC or α-C:H), and large, but thinly coated, silicate grains can successfully explain many of the observed properties of interstellar dust. The small silicate cores give rise to the 2200 A extinction feature. The extinction in the visual is produced by the large silicates and the HAC mantles on the small cores, whilst the far UV extinction arises in the HAC mantles with a small contribution form the silicate grains. The grain model requires that the silicate material is the more resilient component and that variations in the observed extinction from region to region are due to the nature and depletion of the carbon in the HAC mantles. (author)

  17. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  18. Interstellar Extinction

    OpenAIRE

    Gontcharov, George

    2017-01-01

    This review describes our current understanding of interstellar extinction. This differ substantially from the ideas of the 20th century. With infrared surveys of hundreds of millions of stars over the entire sky, such as 2MASS, SPITZER-IRAC, and WISE, we have looked at the densest and most rarefied regions of the interstellar medium at distances of a few kpc from the sun. Observations at infrared and microwave wavelengths, where the bulk of the interstellar dust absorbs and radiates, have br...

  19. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  20. THERMODYNAMICS AND CHARGING OF INTERSTELLAR IRON NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Brandon S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Draine, B. T., E-mail: brandon.s.hensley@jpl.nasa.gov [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2017-01-10

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  1. Interstellar ammonia

    International Nuclear Information System (INIS)

    Ho, P.T.P.; Townes, C.H.

    1983-01-01

    Investigations and results on interstellar NH3 are discussed. The physics of the molecule, its interstellar excitation, and its formation and dissociation mechanisms are reviewed. The observing techniques and instruments, including single-antenna facilities, infrared and submillimeter techniques, and interferometric studies using the Very Large Array are briefly considered. Spectral data analysis is discussed, including the derivation of optical depths, excitation measurements, ortho-para measurements, and cross sections. Progress achieved in understanding the properties and evolution of the interstellar medium through NH3 studies is reviewed, including observations of nearby dark clouds and of clumping effects in molecular clouds, as well as interferometric observations of hot molecular cores in Orion, W51, and Sagittarius A. Research results on extragalactic NH3, far-infrared, submillimeter, and midinfrared NH3 observations are described. 101 references

  2. Magnetite and the interstellar medium

    International Nuclear Information System (INIS)

    Landaberry, S.C.; Magalhaes, A.M.

    1976-01-01

    Recent observations concerning interstellar circular polarization are explained by a simple two-cloud model using magnetite (Fe 3 O 4 ) grains as polarizing agents. Three stars covering a wide range of linear polarization spectral shapes were selected. Reasonably low column densities are required in order to interpret polarization data [pt

  3. Interstellar holography

    NARCIS (Netherlands)

    Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.

    2008-01-01

    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of

  4. Interstellar matter

    International Nuclear Information System (INIS)

    Mezger, P.G.

    1978-01-01

    An overview of the formation of our galaxy is presented followed by a summary of recent work in star formation and related topics. Selected discussions are given on interstellar matter including absorption characteristics of dust, the fully ionised component of the ISM and the energy density of lyc-photons in the solar neighbourhood and the diffuse galactic IR radiation

  5. Interstellar space: the astrochemist's laboratory

    International Nuclear Information System (INIS)

    Allen, M.A.

    1976-01-01

    A mechanism for the formation of molecules on small (radius less than or equal to 0.04 μ) interstellar grains is proposed. A simplified H 2 formation model is then presented that utilizes this surface reaction mechanism. This approach is further developed into an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains again providing the key reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. The reaction rates for ion-molecule chemistry are approximately the same, therefore indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain size ranges, large molecules containing two or more heavy atoms are more predominant than lighter ''ices''--H 2 O, NH 3 , and CH 4 . It is possible that absorption due to these large molecules in the mantles may contribute to the observed 3μ band in astronomical spectra. The second part of this thesis is an account of a radio astronomy observational program to detect new transitions of both previously observed and yet undetected interstellar molecules. The negative results yield order ofmagnitude upper limits to the column densities of the lower transition states of the various molecules. One special project was the search for the Λ-doublet transitions of the 2 H/sub 3 / 2 /, J = 3 / 2 state of OD. The resulting upper limit for the OD/OH column density ratio towards the galactic center is 1/400 and is discussed with reference to theories about deuterium enrichment in interstellar molecules

  6. Grain investigation by the help of satellite observatories

    International Nuclear Information System (INIS)

    Friedemann, C.

    1988-01-01

    Interstellar grains are investigated by the help of satellite observatories taking into account extraterrestrical ultraviolet observations, infrared astronomy by the help of orbiting cooled telescopes, observed ultraviolet properties of interstellar grains, and consequences of infrared astronomy for dust investigation

  7. Modelling interstellar extinction: Pt. 1

    International Nuclear Information System (INIS)

    Jones, A.P.

    1988-01-01

    Several methods of calculating the extinction of porous silicate grains are discussed, these include effective medium theories and hollow spherical shells. Porous silicate grains are shown to produce enhanced infrared, ultraviolet and far-ultraviolet extinction and this effect can be used to reduce the abundance of carbon required to match the average interstellar extinction, however, matching the visual extinction is rather more problematical. We have shown that the enhanced extinction at long and short wavelengths have different origins, and have explained why the visual extinction is little affected by porosity. The implications of porous grains in the interstellar medium are discussed with particular reference to surface chemistry, the polarization of starlight, and their dynamical evolution. (author)

  8. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  9. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  10. Interstellar depletions and the filling factor of the hot interstellar medium

    International Nuclear Information System (INIS)

    Dwek, E.; Scalo, J.M.

    1979-01-01

    We have examined theoretically the evolution of refractory interstellar grain abundances and corresponding metal deplections in the solar neighborhood. The calculations include a self-consistent treatment of red-giant winds, planetary nebulae, protostellar nebulae, and suprnovae as sources of grains and star formation, and of encounters with supernova blast waves as sinks. We find that in the standard two-phase model for the interstellar medium (ISM), grain destruction is very efficient, and the abundance of refractory grains should be negligible, contrary to observations. In a cloudy three-phase ISM most grains reside in the warm and cold phases of the medium. Supernova blast waves expand predominantly in the hot and tenuous phase of the medium and are showed down as they propagate through a cloud. In order to obtain significant (approx.3) depletions of metals presubably locked up in refractory grain cores, the destruction of grains that reside in the clouds must be minimal. This requires that (a) the density contrast between the cloud and intercloud medium be sufficiently high, and (b) the filling factor of the hot and tenuous gas of the interstellar medium, which presumably gives rise to the O VI absorption and soft X-ray emission, be nearly unity. Much larger depletions (> or approx. =10) must reflect accretion of mantles within interstellar clouds

  11. Abundances in the diffuse interstellar medium

    International Nuclear Information System (INIS)

    Harris, A.W.

    1988-04-01

    The wealth of interstellar absorption line data obtained with the Copernicus and IUE satellites has opened up a new era in studies of the interstellar gas. It is now well established that certain elements, generally those with high condensation temperatures, are substantially under-abundant in the gas-phase relative to total solar or cosmic abundances. This depletion of elements is due to the existence of solid material in the form of dust grains in the interstellar medium. Surprisingly, however, recent surveys indicate that even volatile elements such as Zn and S are significantly depleted in many sight lines. Developments in this field which have been made possible by the large base of UV interstellar absorption line data built up over recent years are reviewed and the implications of the results for our understanding of the physical processes governing depletion are discussed. (author)

  12. An investigation of the interstellar extinction

    International Nuclear Information System (INIS)

    Roche, P.F.; Aitken, D.K.; Melbourne Univ., Point Cook

    1984-01-01

    The 10 μm extinction towards six WC8 or WC9 Wolf-Rayet stars is investigated. All objects show smooth dust emission suffering silicate absorption with depths well correlated with the extinction in the visible. The de-reddened spectra are well represented by emission from featureless grain components, possibly from iron or carbon grains. The extinction to the stars is found to be dominantly interstellar in origin with little extinction from the circumstellar shell. (author)

  13. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  14. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  15. Search for interstellar methane

    International Nuclear Information System (INIS)

    Knacke, R.F.; Kim, Y.H.; Noll, K.S.; Geballe, T.R.

    1990-01-01

    Researchers searched for interstellar methane in the spectra of infrared sources embedded in molecular clouds. New observations of several lines of the P and R branches of the nu 3 band of CH4 near 3.3 microns give column densities in the range N less than 1(-2) times 10 to the minus 16th power cm(-2). Resulting abundance ratios are (CH4)/(CO) less than 3.3 times 10 to the minus 2nd power toward GL961 in NGC 2244 and less than 2.4 times 10 to the minus 3rd power toward GL989 in the NGC 2264 molecular cloud. The limits, and those determined in earlier observations of BN in Orion and GL490, suggest that there is little methane in molecular clouds. The result agrees with predictions of chemical models. Exceptions could occur in clouds where oxygen may be depleted, for example by H2O freezing on grains. The present observations probably did not sample such regions

  16. The Interstellar Medium

    CERN Document Server

    Lequeux, James

    2005-01-01

    Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, "The Interstellar Medium" is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.

  17. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    Science.gov (United States)

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  18. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  19. Nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.

    1981-01-01

    A significant role in producing the pattern of interstellar scintillation observed in discrete radio sources may be played by the magnetoacoustic turbulence that will be generated as shock waves are propagated at velocity V/sub sh/roughly-equal 20--100 km/sec through the interstellar medium, as well as by irregularities in stellar wind emanating from type OB stars

  20. On Graphene in the Interstellar Medium

    Science.gov (United States)

    Chen, X. H.; Li, Aigen; Zhang, Ke

    2017-11-01

    The possible detection of C24, a planar graphene that was recently reported to be in several planetary nebulae by García-Hernández et al., inspires us to explore whether and how much graphene could exist in the interstellar medium (ISM) and how it would reveal its presence through its ultraviolet (UV) extinction and infrared (IR) emission. In principle, interstellar graphene could arise from the photochemical processing of polycyclic aromatic hydrocarbon (PAH) molecules, which are abundant in the ISM, due to the complete loss of their hydrogen atoms, and/or from graphite, which is thought to be a major dust species in the ISM, via fragmentation caused by grain–grain collisional shattering. Both quantum-chemical computations and laboratory experiments have shown that the exciton-dominated electronic transitions in graphene cause a strong absorption band near 2755 \\mathringA . We calculate the UV absorption of graphene and place an upper limit of ∼5 ppm of C/H (i.e., ∼1.9% of the total interstellar C) on the interstellar graphene abundance. We also model the stochastic heating of graphene C24 in the ISM, excited by single starlight photons of the interstellar radiation field and calculate its IR emission spectra. We also derive the abundance of graphene in the ISM to be <5 ppm of C/H by comparing the model emission spectra with that observed in the ISM.

  1. Dust in the Diffuse Neutral Interstellar Medium

    Science.gov (United States)

    Sofia, Ulysses J.

    2008-05-01

    Studies of interstellar dust have always relied heavily upon Laboratory Astrophysics for interpretation. Laboratory values, in the broad sense that includes theory, are needed for the most basic act of measuring interstellar abundances, to the more complex determination of what grains are responsible for particular extinction. The symbiotic relationship between astronomical observations and Laboratory Astrophysics has prompted both fields to move forward, especially in the era of high-resolution ultraviolet spectroscopy when new elemental species could be interpreted and observations were able to show the limits of laboratory determinations. Thanks to this synergy, we currently have a good idea of the quantity of the most abundant elements incorporated into dust in diffuse neutral interstellar clouds: carbon, oxygen, iron, silicon and magnesium. Now the task is to figure out how, chemically and physically, those elements are integrated into interstellar grains. We can do this by comparing extinction curves to grain populations in radiative transfer models. The limitation at the present time is the availability of optical constants in the infrared through ultraviolet for species that are likely to exist in dust, i.e., those that are easy to form in the physical environments around stars and in molecular clouds. Extinction in some lines of sight can be fit within current abundance limits and with the optical constants that are available. However the inability to reproduce other extinction curves suggests that optical constants can be improved, either in quality for compounds that have been measured, or quantity in the sense of providing data for more materials. This talk will address the current state and the future of dust studies in the diffuse neutral interstellar medium. This work is supported by the grant HST-AR-10979.01-A from the Space Telescope Science Institute to Whitman College.

  2. Organic Synthesis in Simulated Interstellar Ice Analogs

    Science.gov (United States)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  3. Gitting of infrared data to the interstellar polarization law

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D

    1984-02-15

    The ability of Serkowski's law describing the wavelength dependence of interstellar polarization to encompass new infrared measurements in combination with optical data has been examined. Fitting by least-squares procedures reveals departures from the law in various wavelength zones or at specific wavelength points across the optical and infrared spectrum. These structures may be caused by a combination of effects such as normal experimental noise, complex interstellar clouds or systematic errors in the polarimetry but the possibility remains that some, particularly in the infrared, reflect the scattering properties of interstellar grains. 8 references.

  4. Fitting of infrared data to the interstellar polarization law

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D [Glasgow Univ., Great Britain

    1984-02-15

    The ability of Serkowski's law describing the wavelength dependence of interstellar polarization to encompass new infrared measurements in combination with optical data has been examined. Fitting by least-squares procedures reveals departures from the law in various wavelength zones or at specific wavelength points across the optical and infrared spectrum. These structures may be caused by a combination of effects such as normal experimental noise, complex interstellar clouds or systematic errors in the polarimetry but the possibility remains that some, particularly in the infrared, reflect the scattering properties of interstellar grains.

  5. NASA's interstellar probe mission

    International Nuclear Information System (INIS)

    Liewer, P.C.; Ayon, J.A.; Wallace, R.A.; Mewaldt, R.A.

    2000-01-01

    NASA's Interstellar Probe will be the first spacecraft designed to explore the nearby interstellar medium and its interaction with our solar system. As envisioned by NASA's Interstellar Probe Science and Technology Definition Team, the spacecraft will be propelled by a solar sail to reach >200 AU in 15 years. Interstellar Probe will investigate how the Sun interacts with its environment and will directly measure the properties and composition of the dust, neutrals and plasma of the local interstellar material which surrounds the solar system. In the mission concept developed in the spring of 1999, a 400-m diameter solar sail accelerates the spacecraft to ∼15 AU/year, roughly 5 times the speed of Voyager 1 and 2. The sail is used to first bring the spacecraft to ∼0.25 AU to increase the radiation pressure before heading out in the interstellar upwind direction. After jettisoning the sail at ∼5 AU, the spacecraft coasts to 200-400 AU, exploring the Kuiper Belt, the boundaries of the heliosphere, and the nearby interstellar medium

  6. Impact fracture experiments simulating interstellar grain-grain collisions

    International Nuclear Information System (INIS)

    Freund, F.; Chang, S.; Dickinson, J.T.

    1990-01-01

    Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules

  7. Grain formation in the expanding gas flow around cool luminous stars

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of solid particles in interstellar space has been revealed by the extinction of starlight in UV, visible and IR. The important sources of interstellar grains are considered to be cool luminous mass loss stars. (author)

  8. The galactic interstellar medium

    CERN Document Server

    Burton, WB; Genzel, R

    1992-01-01

    This volume contains the papers of three extended lectures addressing advanced topics in astronomy and astrophysics. The topics discussed include the most recent observational data on interstellar matter outside our galaxy and the physics and chemistry of molecular clouds.

  9. Dynamics of interstellar matter

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1975-01-01

    A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)

  10. Origins of GEMS Grains

    Science.gov (United States)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  11. Wavelength dependence of interstellar polarization

    International Nuclear Information System (INIS)

    Mavko, G.E.

    1974-01-01

    The wavelength dependence of interstellar polarization was measured for twelve stars in three regions of the Milky Way. A 120A bandpass was used to measure the polarization at a maximum of sixteen wavelengths evenly spaced between 2.78μ -1 (3600A) and 1.28μ -1 (7800A). For such a wide wavelength range, the wavelength resolution is superior to that of any previously reported polarization measurements. The new scanning polarimeter built by W. A. Hiltner of the University of Michigan was used for the observations. Very broad structure was found in the wavelength dependence of the polarization. Extensive investigations were carried out to show that the structure was not caused by instrumental effects. The broad structure observed is shown to be in agreement with concurrent extinction measurements for the same stars. Also, the observed structure is of the type predicted when a homogeneous silicate grain model is fitted to the observed extinction. The results are in agreement with the hypothesis that the very broad band structure seen in the extinction is produced by the grains. (Diss. Abstr. Int., B)

  12. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  13. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  14. Identification of interstellar polysaccharides and related hydrocarbons

    International Nuclear Information System (INIS)

    Hoyle, F.; Olavesen, A.H.; Wickramasinghe, N.C.

    1978-01-01

    A discussion is presented on the infrared transmittance spectra of several polysaccharides that may be of interest as possible interstellar candidates. It is stated that a 2.5 to 15 μm spectrum computed from the author's measurements is remarkably close to that required to explain a wide range of astronomical data, except for two points. First the required relative opacity at the 3 μm absorption dip is a factor of about 1.5 lower than was found in laboratory measurements; this difference may arise from the presence of water in terrestrial polysaccharide samples. Secondly, in the 9.5 to 12 μm waveband an additional source of opacity appears to be necessary. Close agreement between the spectrum of this additional opacity and the absorption spectrum of propene, C 3 H 6 , points strongly to the presence of hydrocarbons of this type, which may be associated with polysaccharide grains in interstellar space. (U.K.)

  15. Interstellar depletion anomalies and ionization potentials

    International Nuclear Information System (INIS)

    Tabak, R.G.

    1979-01-01

    Satellite observations indicate that (1) most elements are depleted from the gas phase when compared to cosmic abundances, (2) some elements are several orders of magnitude more depleted than others, and (3) these depletions vary from cloud to cloud. Since the most likely possibility is that the 'missing' atoms are locked into grains, depletions occur either by accretion onto core particles in interstellar clouds or earlier, during the period of primary grain formation. If the latter mechanism is dominant, then the most important depletion parameter is the condensation temperature of the elements and their various compounds. However, this alone is not sufficient to explain all the observed anomalies. It is shown that electrostatic effects - under a wide variety of conditions- can enormously enhance the capture cross-section of the grain. It is suggested that this mechanism can also account for such anomalies as the apparent 'overabundance' of the alkali metals in the gas phase. (orig.)

  16. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  17. Dust Spectroscopy and the Nature of Grains

    Science.gov (United States)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  18. Ionization of Interstellar Hydrogen

    Science.gov (United States)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  19. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  20. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  1. Interstellar Silicon Depletion and the Ultraviolet Extinction

    Science.gov (United States)

    Mishra, Ajay; Li, Aigen

    2018-01-01

    Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 Å interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates [Si/H]dust and the 2175 Å bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance [Si/H]gas is known. We derive [Si/H]dust either from [Si/H]ISM - [Si/H]gas or from the Kramers- Kronig relation which relates the wavelength-integrated extinction to the total dust volume, where [Si/H]ISM is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive [Si/H]dust from fi�tting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We fi�nd that in all three cases [Si/H]dust shows no correlation with the 2175 Å bump, while the carbon depletion [C/H]dust tends to correlate with the 2175 Å bump. This supports carbon grains instead of silicates as the possible carrier of the 2175 Å bump. We also �find that neither [Si/H]dust nor [C/H]dust alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.

  2. Use of Laboratory Data to Model Interstellar Chemistry

    Science.gov (United States)

    Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.

    2006-01-01

    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.

  3. Structural, chemical and isotopic examinations of interstellar organic matter extracted from meteorites and interstellar dust particles

    Science.gov (United States)

    Busemann, Henner; Alexander, Conel M. O'D.; Nittler, Larry R.; Stroud, Rhonda M.; Zega, Tom J.; Cody, George D.; Yabuta, Hikaru; Kilcoyne, A. L. David

    2008-10-01

    Meteorites and Interplanetary Dust Particles (IDPs) are supposed to originate from asteroids and comets, sampling the most primitive bodies in the Solar System. They contain abundant carbonaceous material. Some of this, mostly insoluble organic matter (IOM), likely originated in the protosolar molecular cloud, based on spectral properties and H and N isotope characteristics. Together with cometary material returned with the Stardust mission, these samples provide a benchmark for models aiming to understand organic chemistry in the interstellar medium, as well as for mechanisms that secured the survival of these fragile molecules during Solar System formation. The carrier molecules of the isotope anomalies are largely unknown, although amorphous carbonaceous spheres, so-called nanoglobules, have been identified as carriers. We are using Secondary Ion Mass Spectrometry to identify isotopically anomalous material in meteoritic IOM and IDPs at a ~100-200 nm scale. Organics of most likely interstellar origin are then extracted with the Focused-Ion-Beam technique and prepared for synchrotron X-ray and Transmission Electron Microscopy. These experiments yield information on the character of the H- and N-bearing interstellar molecules: While the association of H and N isotope anomalies with nanoglobules could be confirmed, we have also identified amorphous, micron-sized monolithic grains. D-enrichments in meteoritic IOM appear not to be systematically associated with any specific functional groups, whereas 15N-rich material can be related to imine and nitrile functionality. The large 15N- enrichments observed here (δ15N > 1000 ‰) cannot be reconciled with models using interstellar ammonia ice reactions, and hence, provide new constraints for understanding the chemistry in cold interstellar clouds.

  4. Molecular diagnostics of interstellar shocks

    International Nuclear Information System (INIS)

    Hartquist, T.W.; Oppenheimer, M.; Dalgarno, A.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km s -1 Substantial enhancements are predicted in the concentrations of the molecules H 2 S, SO, and SiO compared to those anticipated in cold interstellar clouds

  5. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-02-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  6. Observational constraints on interstellar chemistry

    International Nuclear Information System (INIS)

    Winnewisser, G.

    1984-01-01

    The author points out presently existing observational constraints in the detection of interstellar molecular species and the limits they may cast on our knowledge of interstellar chemistry. The constraints which arise from the molecular side are summarised and some technical difficulties encountered in detecting new species are discussed. Some implications for our understanding of molecular formation processes are considered. (Auth.)

  7. Molecular diagnostics of interstellar shocks

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.

    1980-01-01

    The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.

  8. The effect of catastrophic collisional fragmentation and diffuse medium accretion on a computational interstellar dust system

    Science.gov (United States)

    Liffman, Kurt

    1990-01-01

    The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.

  9. Visualizing Interstellar's Wormhole

    Science.gov (United States)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-06-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres; (iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole; (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole; (vi) Using the student's implementation, exploring the wormhole's Einstein ring and particularly the peculiar motions of star images near the ring, and exploring what it looks like to travel through a wormhole.

  10. Interstellar molecules and masers

    International Nuclear Information System (INIS)

    Nguyen-Q-Rieu; Guibert, J.

    1978-01-01

    The study of dense and dark clouds, in which hydrogen is mostly in molecular form, became possible since the discovery of interstellar molecules, emitting in the centimeter and millimeter wavelengths. The molecular lines are generally not in local thermal equilibrium (LTE). Their intensity can often be explained by invoking a population inversion mechanism. Maser emission lines due to OH, H 2 O and SiO molecules are among the most intense molecular lines. The H 2 CO molecule, detected in absorption in front of the cold cosmic background radiation of 2.7 K, illustrates the inverse phenomenon, the antimaser absorption. For a radio transition of frequency v, the inversion rate Δn (relative population difference between the upper and lower level) as well as the maser gain can be determined from the radio observations. In the case of the OH lines in the 2 PIsub(3/2), J=3/2 state, the inversion rates approximately 1 to 2% derived from the observations, are comparable with those obtained in the laboratory. The determination of the excitation mechanisms of the masers, through the statistical equilibrium and radiative transfer equations, implies the knowledge of collisional and radiative transition probabilities. A pumping model, which can satisfactorily explain the radio observations of some interstellar OH clouds, will be discussed [fr

  11. Surface science studies of ethene containing model interstellar ices

    Science.gov (United States)

    Puletti, F.; Whelan, M.; Brown, W. A.

    2011-05-01

    The formation of saturated hydrocarbons in the interstellar medium (ISM) is difficult to explain only by taking into account gas phase reactions. This is mostly due to the fact that carbonium ions only react with H_2 to make unsaturated hydrocarbons, and hence no viable route to saturated hydrocarbons has been postulated to date. It is therefore likely that saturation processes occur via surface reactions that take place on interstellar dust grains. One of the species of interest in this family of reactions is C_2H_4 (ethene) which is an intermediate in several molecular formation routes (e.g. C_2H_2 → C_2H_6). To help to understand some of the surface processes involving ethene, a study of ethene deposited on a dust grain analogue surface (highly oriented pyrolytic graphite) held under ultra-high vacuum at 20 K has been performed. The adsorption and desorption of ethene has been studied both in water-free and water-dominated model interstellar ices. A combination of temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) have been used to identify the adsorbed and trapped species and to determine the kinetics of the desorption processes. In all cases, ethene is found to physisorb on the carbonaceous surface. As expected water has a very strong influence on the desorption of ethene, as previously observed for other model interstellar ice systems.

  12. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  13. JHK photometric study of the variable interstellar extinction in the direction of open star cluster NGC 654

    International Nuclear Information System (INIS)

    Sagar, Ram; Qianzhong Yu

    1989-01-01

    JHK magnitudes have been determined for 18 stars in the field of NGC 654. Study of the interstellar extinction law in the cluster direction indicates an anomalous distribution of interstellar grains causing more extinction in U and B pass-bands compared to that obtained from the colour excesses E(V-J), E(V-H) and E(V-K) using a normal reddening law. This implies a small shift in the grain-size distribution towards smaller than normal sized particles. Patchy distribution of interstellar matter seems to be responsible for the non-uniform extinction in the cluster region. (author)

  14. The diffuse interstellar medium

    Science.gov (United States)

    Cox, Donald P.

    1990-01-01

    The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.

  15. Interstellar scattering and resolution limitations

    International Nuclear Information System (INIS)

    Dennison, B.

    1987-01-01

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources. 14 references

  16. The distribution of interstellar dust

    International Nuclear Information System (INIS)

    Clocchiatti, A.; Marraco, H.G.

    1986-01-01

    We propose the interstellar matter structural function as a tool to derive the features of the interstellar dust distribution. We study that function resolving some ideal dust distribution models. Later we describe the method used to find a reliable computing algorithm for the observational case. Finally, we describe the steps to build a model for the interstellar matter composed by spherically symmetrical clouds. The density distribution for each of these clouds is D(r) = D 0 .esup(-r/r 0 ) 2 . The preliminary results obtained are summarised. (author)

  17. Recent interstellar molecular line work

    International Nuclear Information System (INIS)

    Winnewisser, G.

    1975-01-01

    A summary of recent interstellar molecular line work is presented. Transitions of the following molecules have been detected in Sgr B2: Vinylcyanide, H 2 C 2 HCN, formic acid, HCOOH, dimethyl ether (CH 3 ) 2 O and isotopically labelled cyanoacetylene- 13 C,HC 13 CCN and HCC 13 CN. The data on cyanoacetylene give an upper limit to the abundance ratio 12 C/ 13 C of 36 +- 5. A short discussion of the interstellar chemistry leads to the conclusion that hydrocarbons such as acetylene, HCCH, ethylen, H 2 CCH 2 and ethane H 3 CCH 3 should be present in interstellar clouds. 13 refs

  18. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  19. Interstellar dust within the life cycle of the interstellar medium

    OpenAIRE

    Demyk K.

    2012-01-01

    Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium.

  20. Dense interstellar cloud chemistry: Basic issues and possible dynamical solution

    International Nuclear Information System (INIS)

    Prasad, S.S.; Heere, K.R.; Tarafdar, S.P.

    1989-01-01

    Standing at crossroad of enthusiasm and frustration, dense intertellar cloud chemistry has a squarely posed fundamental problem: Why do the grains appear to play at best a minor role in the chemistry? Grain surface chemistry creates considerable difficulties when the authors treat dense clouds as static objects and ignore the implications of the processes by which the clouds became dense in the first place. A new generation of models which treat chemical and dynamical evolutions concurrently are therefore presented as possible solution to the current frustrations. The proposed modeling philosophy and agenda could make the next decade quite exciting for interstellar chemistry

  1. Riddling bifurcation and interstellar journeys

    International Nuclear Information System (INIS)

    Kapitaniak, Tomasz

    2005-01-01

    We show that riddling bifurcation which is characteristic for low-dimensional attractors embedded in higher-dimensional phase space can give physical mechanism explaining interstellar journeys described in science-fiction literature

  2. The formation of small grains in shocks in the ISM

    Science.gov (United States)

    Jones, Anthony P.; Tielens, Alexander G. G. M.

    1994-01-01

    Carbonaceous and silicate grains swept up, and betatron accelerated, by supernova-generated shock waves in the interstellar medium are exposed to grain destructive processing. The degree of grain destruction is determined by the differential gas-grain and grain-grain velocities, which lead to sputtering of the grain surface and grain core disruption (deformation, vaporization and shattering), respectively. The threshold pressure for grain shattering in grain-grain collisions (100 k bar) is considerably lower than that for vaporization (approximately 5 M bar). Therefore, collisions between grains shatter large grains into smaller fragments (i.e., small grains and PAH's). Using a new algorithms for the destructive processes, it was possible to model the formation fo small grain fragments in grain-grain collisions in the warm phase of the interstellar medium. It was found that in one cycle through the warm medium (approximately 3 x 10(sup 6) years) of order 1-2% of the total grain mass is shattered into particles with radii of less than 50 A.

  3. The Interstellar Conspiracy

    Science.gov (United States)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to

  4. Computer simulation of dust grain evolution

    Science.gov (United States)

    Liffman, K.

    1989-01-01

    The latest results are reported from a Monte Carlo code that is being developed at NASA Ames. The goal of this program, is to derive from the observed and presumed properties of the interstellar medium (ISM) the following information: (1) the size spectrum of interstellar dust; (2) the chemical structure of interstellar dust; (3) interstellar abundances; and (4) the lifetime of a dust grain in the ISM. Presently this study is restricted to refractory interstellar material, i.e., the formation and destruction of ices are not included in the program. The program is embedded in an analytic solution for the bulk chemical evolution of a two-phase interstellar medium in which stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary intercloud medium. The well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. Refractory dust is created by thermal condensation as stellar matter flows away from sites of nucleosynthesis such as novae and supernovae and/or from the matter returned from evolved intermediate stars. The history of each particle is traced by standard Monte Carlo techniques as it is sputtered and fragmented by supernova shock waves in the intercloud medium. It also accretes an amorphous mantle of gaseous refractory atoms when its local medium joins with the molecular cloud medium. Finally it encounters the possibility of astration (destruction by star formation) within the molecular clouds.

  5. Physical model for the 2175 A interstellar extinction feature

    International Nuclear Information System (INIS)

    Hecht, J.H.

    1986-01-01

    Recent IUE observations have shown that the 2175 A interstellar extinction feature is constant in wavelength but varies in width. A model has been constructed to explain these results. It is proposed that the 2175 A feature will only be seen when there is extinction due to carbon grains which have lost their hydrogen. In particular, the feature is caused by a separate population of small (less than 50 A radius), hydrogen-free carbon grains. The variations in width would be due to differences in either their temperature, size distribution, or impurity content. All other carbon grains retain hydrogen, which causes the feature to be suppressed. If this model is correct, then it implies that the grains responsible for the unidentified IR emission features would not generally cause the 2175 A feature. 53 references

  6. Depletion of interstellar elements and the interaction between gas and dust in space

    International Nuclear Information System (INIS)

    Snow, T.P. Jr.

    1975-01-01

    Recent data obtained with Copernicus, combined with new results from the literature, indicate that the depletions of interstellar elements may depend on cloud density in a simple way. This is expected if the depletions are due to accretion of gas particles onto grains under presently existing conditions, but is not expected if the depletions take place during the grain formation process, before mixing into the interstellar medium. The suggestion that depletion occurs via accretion may be supported by the existence of a good correlation between depletions and first ionization potentials of the elements, since the latter quantity determines to a great extent the chemical and physical properties, and hence possibly the sticking coefficient, of each species. If the grains do not carry large positive charges, then ion-grain encounters may be important not only in creating the depletions, but also in determining ionization equilibrium, particularly if a large population of very small grains is present

  7. Detection of interstellar methylcyanoacetylene

    International Nuclear Information System (INIS)

    Broten, N.W.; MacLeod, J.M.; Avery, L.W.; Irvine, W.M.; Hoeglund, B.; Friberg, P.; Hjalmarson

    1984-01-01

    A new interstellar molecule, methylcyanoacetylene (CH 3 C 3 N), has been detected in the molecular cloud TMC-1. The J = 8 → 7, J = 7 → 6, J = 6 → 5, and J = 5 → 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 → 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity V/sub lSR/ = 5.8 km s -1 for TMC-1, typical of other molecules in the cloud. All Observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al., so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 → 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined from these observations is quite low, with 2.7 K 12 cm -2

  8. On supernovae as a source of interstellar dust. The current observational picture

    International Nuclear Information System (INIS)

    Dinerstein, H.L.

    1984-01-01

    Supernovae have been generally thought of as being effective agents for the destruction of ambient interstellar dust. The idea that supernovae may also be a source of dust has been of interest recently, and is attractive for a couple of reasons. The main motivation is to explain meteoritic inclusions with peculiar isotopic abundance ratios as supernova dust condensates predating the solar nebula. In addition, although the nucleation process is not fully understood, the high concentration of condensable elements in the supernova mantle suggests the possibility that grain formation could be very efficient. In this case, supernovae could be a major source of new grain cores to the interstellar medium. (author)

  9. Interstellar Dust in the Heliosheath: Tentative Discovery of the Magnetic Wall of the Heliosphere

    Science.gov (United States)

    Frisch, P. C.

    2005-12-01

    The evident identification of interstellar dust grains entrained in the magnetic wall of the heliosphere is reported. It is shown that the distribution of dust grains causing the weak polarization of light from nearby stars is consistent with polarization by small charged interstellar dust grains captured in the heliosphere magnetic wall (Tinbergen 1982, Frisch 2005). There is an offset between the deflected small charged polarizing dust grains, radius less than 0.2 microns, and the undeflected large grain population, radius larger than 0.2 microns. The region of maximum polarization is towards ecliptic coordinates lambda,beta = 295,0 deg, which is offset along the ecliptic longitude by about 35 deg from the heliosphere nose and extends to low ecliptic latitudes where the heliosphere magnetic wall is expected. An offset is also found between the best aligned dust grains, near lambda=281 deg to 220 deg, and the upwind direction of the undeflected inflow of large grains seen by Ulysses and Galileo. In the aligned-grain region, the polarization strength anti-correlates with ecliptic latitude, indicating that the magnetic wall was predominantly at negative ecliptic latitudes when these data were acquired. These data are consistent with model predictions for an interstellar magnetic field which is tilted by 60 deg with respect to the ecliptic plane, and parallel to the galactic plane. References: Tinbergen, 1982: AA, v105, p53; Frisch, 2005: to appear in ApJL.

  10. Interstellar Sweat Equity

    Science.gov (United States)

    Cohen, M. H.; Becker, R. E.; O'Donnell, D. J.; Brody, A. R.

    So, you have just launched aboard the Starship, headed to an exoplanet light years from Earth. You will spend the rest of your natural life on this journey in the expectation and hope that your grandchildren will arrive safely, land, and build a new settlement. You will need to govern the community onboard the Starship. This system of governance must meet unique requirements for participation, representation, and decision-making. On a spaceship that can fly and operate by itself, what will the crewmembers do for their generations in transit? Certainly, they will train and train again to practice the skills they will need upon arrival at a new world. However, this vicarious practice neither suffices to prepare the future pioneers for their destiny at a new star nor will it provide them with the satisfaction in their own work. To hone the crewmembers' inventive and technical skills, to challenge and prepare them for pioneering, the crew would build and expand the interstellar ship in transit. This transstellar ``sweat equity'' gives a stake in the enterprise to all the people, providing meaningful and useful activity to the new generations of crewmembers. They build all the new segments of the vessel from raw materials - including atmosphere - stored on board. Construction of new pressure shell modules would be one option, but they also reconstruct or fill-in existing pressurized volumes. The crew makes new life support system components and develops new agricultural modules in anticipation of their future needs. Upon arrival at the new star or planet, the crew shall apply these robustly developed skills and self-sufficient spirit to their new home.

  11. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  12. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  13. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    2003-06-01

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  14. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.

    Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  15. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  16. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  17. Interstellar Initiative Web Page Design

    Science.gov (United States)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  18. Interstellar matter within elliptical galaxies

    Science.gov (United States)

    Jura, Michael

    1988-01-01

    Multiwavelength observations of elliptical galaxies are reviewed, with an emphasis on their implications for theoretical models proposed to explain the origin and evolution of the interstellar matter. Particular attention is given to interstellar matter at T less than 100 K (atomic and molecular gas and dust), gas at T = about 10,000 K, and gas at T = 10 to the 6th K or greater. The data are shown to confirm the occurrence of mass loss from evolved stars, significant accretion from companion galaxies, and cooling inflows; no evidence is found for large mass outflow from elliptical galaxies.

  19. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  20. Skating on thin ice: surface chemistry under interstellar conditions

    Science.gov (United States)

    Fraser, H.; van Dishoeck, E.; Tielens, X.

    Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159

  1. Interstellar and Solar Nebula Materials in Cometary Dust

    Science.gov (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon

    2017-01-01

    Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive

  2. Chemistry and photophysics of polycyclic aromatic hydrocarbons in the interstellar medium

    NARCIS (Netherlands)

    Boschman, Leon

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium, and it is thought that they are a key factor in the formation of molecular hydrogen at high gas and dust grain temperatures. We have explored how PAHs can contribute to the formation of H2 by taking a small PAH

  3. From ice to gas : constraining the desorption processes of interstellar ices

    NARCIS (Netherlands)

    Fayolle, Edith Carine

    2013-01-01

    The presence of icy mantles on interstellar dust grains play a key role in the formation of molecules observed at all stages of star formation. This thesis addresses thermal and UV-induced ice sublimation. Using state of the art laboratory experiments and synchrotron-based UV radiation, the

  4. Interstellar turbulence and shock waves

    International Nuclear Information System (INIS)

    Bykov, A.M.

    1982-01-01

    Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed

  5. Stardust Interstellar Preliminary Examination (ISPE)

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  6. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hiroshi, E-mail: hiroshi_kimura@cps-jp.org [Graduate School of Science, Kobe University, c/o CPS (Center for Planetary Science), Chuo-ku Minatojima Minamimachi 7-1-48, Kobe 650-0047 (Japan)

    2013-09-20

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  7. The Reincarnation of Interstellar Dust: The Importance of Organic Refractory Material in Infrared Spectra of Cometary Comae and Circumstellar Disks

    Science.gov (United States)

    Kimura, Hiroshi

    2013-09-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  8. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    2013-01-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks

  9. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  10. PAHs in Translucent Interstellar Clouds

    Science.gov (United States)

    Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.

    2011-05-01

    We discuss the proposal of relating the origin of some of the diffuse interstellar bands (DIBs) to neutral polycyclic aromatic hydrocarbons (PAHs) present in translucent interstellar clouds. The spectra of several cold, isolated gas-phase PAHs have been measured in the laboratory under experimental conditions that mimic the interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. This comparison provides - for the first time - accurate upper limits for the abundances of specific PAH molecules along specific lines-of-sight. Something that is not attainable from IR observations alone. The comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations leads to two major findings: (1) a finding specific to the individual molecules that were probed in this study and, which leads to the clear and unambiguous conclusion that the abundance of these specific neutral PAHs must be very low in the individual translucent interstellar clouds that were probed in this survey (PAH features remain below the level of detection) and, (2) a general finding that neutral PAHs exhibit intrinsic band profiles that are similar to the profile of the narrow DIBs indicating that the carriers of the narrow DIBs must have close molecular structure and characteristics. This study is the first quantitative survey of neutral PAHs in the optical range and it opens the way for unambiguous quantitative searches of PAHs in a variety of interstellar and circumstellar environments. // Reference: F. Salama et al. (2011) ApJ. 728 (1), 154 // Acknowledgements: F.S. acknowledges the support of the NASA's Space Mission Directorate APRA Program. J.K. acknowledges the financial support of the Polish State (grant N203 012 32/1550). The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.

  11. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  12. Iron: A Key Element for Understanding the Origin and Evolution of Interstellar Dust

    Science.gov (United States)

    Dwek, Eli

    2016-01-01

    The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of the interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB (Asymptotic Giant Branch) stars. Only the latter two are observed to be sources of interstellar dust, since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65 percent of the iron is injected into the ISM (Inter-Stellar Matter) in gaseous form. Yet, ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase compared to expected solar abundances. The missing iron, comprising about 90 percent of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.

  13. Physical conditions in CaFe interstellar clouds

    OpenAIRE

    Gnacinski, P.; Krogulec, M.

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.

  14. The inventory of interstellar materials available for the formation of the solar system

    Science.gov (United States)

    Sandford, Scott A.

    1996-07-01

    Tremendous progress has been made in the field of interstellar dust in recent years through the use of telescopic observations, theoretical studies, laboratory studies of analogs, and the study of actual interstellar samples found in meteorites. It is increasingly clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This understanding is a far cry from the picture of interstellar materials held as recently as two decades ago, a picture which incorporated only a few generic types of grains and few molecules. In this paper, I attempt to review some of our current knowledge of the more abundant materials thought to exist in the ISM. The review concentrates on matter in interstellar dense molecular clouds since it is the materials in these environments from which new stars and planetary systems are formed. However, some discussion is reserved for materials in circumstellar environments and in the diffuse ISM. The paper also focuses largely on solid materials as opposed to gases since solids contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with a discussion of some of the implications resulting from the recent growth of our knowledge about interstellar materials and also considers a number of areas in which future work might be expected to yield important results.

  15. Representing culture in interstellar messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological and cultural models.

  16. Chemical evolution of interstellar dust, comets and the origins of life

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Zhao, N.; Hage, J.

    1989-01-01

    The chemistry and morphological structure of a comet nucleus as an aggregate of interstellar dust is used to provide comparisons with a variety of comet Halley results: the density of the nucleus and of the dust; the dust cloud model and its consequences on the production of C + and CN in the coma by small organic grains; the surface albedo and the low nucleus heat conductivity and high surface temperature; the appearance of 10 -14 g and 10 -17 g dust particles along with higher masses; the mass spectra of dust and infrared spectroscopy as evidence for complex organic grain mantles and of very small carbonaceous and silicate grains; the appearence of small grains resulting from breakup of larger grains. The cosmic ray dosage of a comet nucleus during its 4.5 billion years in the Oort cloud appears to be many orders of magnitude less than the dosage of the preaggregated interstellar dust by ultraviolet photons except perhaps in the outer few meters of the nucleus of a new comet. The heat conductivity calculated for aggregated dust is certainly less than 10 -4 that of crystalline ice. This, in combination with the interstellar dust microstructure, provide a basis for showing that solar heating of the interior of a nucleus is lower than previously estimated

  17. The Effect of an Inert Solid Reservoir on Molecular Abundances in Dense Interstellar Clouds

    Directory of Open Access Journals (Sweden)

    Kalvāns Juris

    2012-12-01

    Full Text Available The question, what is the role of freeze-out of chemical species in determining the molecular abundances in the interstellar gas is a matter of debate. We investigate a theoretical case of a dense interstellar molecular cloud core by time-dependent modeling of chemical kinetics, where grain surface reactions deliberately are not included. That means, the gas-phase and solid-phase abundances are influenced only by gas reactions, accretion on grains and desorption. We compare the results to a reference model where no accretion occurs, and only gas-phase reactions are included. We can trace that the purely physical processes of molecule accretion and desorption have major chemical consequences on the gas-phase chemistry. The main effect of introduction of the gas-grain interaction is long-term molecule abundance changes that come nowhere near an equilibrium during the typical lifetime of a prestellar core.

  18. Non-monotonic spatial distribution of the interstellar dust in astrospheres: finite gyroradius effect

    Science.gov (United States)

    Katushkina, O. A.; Alexashov, D. B.; Izmodenov, V. V.; Gvaramadze, V. V.

    2017-02-01

    High-resolution mid-infrared observations of astrospheres show that many of them have filamentary (cirrus-like) structure. Using numerical models of dust dynamics in astrospheres, we suggest that their filamentary structure might be related to specific spatial distribution of the interstellar dust around the stars, caused by a gyrorotation of charged dust grains in the interstellar magnetic field. Our numerical model describes the dust dynamics in astrospheres under an influence of the Lorentz force and assumption of a constant dust charge. Calculations are performed for the dust grains with different sizes separately. It is shown that non-monotonic spatial dust distribution (viewed as filaments) appears for dust grains with the period of gyromotion comparable with the characteristic time-scale of the dust motion in the astrosphere. Numerical modelling demonstrates that the number of filaments depends on charge-to-mass ratio of dust.

  19. On the origin of organic molecules in interstellar space and some of its consequences

    International Nuclear Information System (INIS)

    Johansson, K.L.V.

    1981-01-01

    The possible sources of complex organic molecules observed in the interstellar space are discussed. It is found that a leakage from lifebearing planets cannot possibly explain the observed amounts of complex organic molecules. They are probably formed in interstellar clouds, either free in space or on the surface of grains. This opens the possibility that planets (also the earth) moving through such clouds may have collected appreciable amounts of complex organic molecules. It would therefore be feasible to perform experiments like the Urey-Miller's, starting with a considerably more complex mixture than the traditional one. (Auth.)

  20. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  1. Solid H2 in the interstellar medium

    Science.gov (United States)

    Füglistaler, A.; Pfenniger, D.

    2018-06-01

    Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.

  2. Interstellar extinction and polarization in the infrared

    International Nuclear Information System (INIS)

    Martin, P.G.; Whittet, D.C.B.

    1990-01-01

    The wavelength dependences of interstellar continuum extinction and polarization in the range 0.35-5 microns are examined. The existence of a universal extinction curve with power law index of about 1.8 extending from the near-IR to at least 5 microns appears to be established for both diffuse and dense cloud dust. The polarization yields evidence for some degree of universality in the 1.6-5 micron regime which may be represented by a power law with index 1.5-2.0, encompassing that for extinction. The form of the polarization curve in the IR seems independent of the wavelength at which the degree of polarization peaks in the optical, implying that variations in that wavelength are caused by changes in the optical properties of the particle at blue-visible rather than IR wavelengths. It is argued that the more significant alterations of the grain size distribution from one environment to another occur for the smaller particles. 47 refs

  3. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  4. The Abundance of Mg in the Interstellar Medium

    Science.gov (United States)

    Fitzpatrick, Edward L.

    1997-06-01

    An empirical determination of the f-values of the far-UV Mg II λλ1239, 1240 lines is reported. The strong near-UV Mg II λλ2796, 2803 lines are generally highly saturated along most interstellar sight lines outside the local interstellar medium (ISM) and usually yield extremely uncertain estimates of Mg+ column densities in interstellar gas. Since Mg+ is the dominant form of Mg in the neutral ISM, and since Mg is expected to be a significant constituent of interstellar dust grains, the far-UV lines are critical for assessing the role of this important element in the ISM. This study consists of complete component analyses of the absorption along the lines of sight toward HD 93521 in the Galactic halo and ξ Persei and ζ Ophiuchi in the Galactic disk, including all four UV Mg+ lines and numerous other transitions. The three analyses yield consistent determinations of the λλ1239, 1240 f-values, with weighted means of (6.4 +/- 0.4) × 10-4 and (3.2 +/- 0.2) × 10-4, respectively. These results are a factor of ~2.4 larger than a commonly used theoretical estimate, and a factor of ~2 smaller than a recently suggested empirical revision. The effects of this result on gas- and dust-phase abundance measurements of Mg are discussed. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-2655. This Letter is dedicated to the memory of Professor Lyman Spitzer Jr. He was a great guy.

  5. Mechanisms of heating the interstellar matter

    International Nuclear Information System (INIS)

    Lequeux, J.

    1975-01-01

    The knowledge of the interstellar medium has been considerably improved in the recent years, thanks in particular to Radioastronomy and Ultraviolet Space Astronomy. This medium is a natural laboratory where the conditions and various and very different to what can be realised in terrestrial laboratories. To illustrate its interest for physicists here one of the most interesting but controversial points of interstellar astronomy is discussed: the mechanisms for heating and cooling the interstellar medium [fr

  6. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  7. Pure iron grains are rare in the universe.

    Science.gov (United States)

    Kimura, Yuki; Tanaka, Kyoko K; Nozawa, Takaya; Takeuchi, Shinsuke; Inatomi, Yuko

    2017-01-01

    The abundant forms in which the major elements in the universe exist have been determined from numerous astronomical observations and meteoritic analyses. Iron (Fe) is an exception, in that only depletion of gaseous Fe has been detected in the interstellar medium, suggesting that Fe is condensed into a solid, possibly the astronomically invisible metal. To determine the primary form of Fe, we replicated the formation of Fe grains in gaseous ejecta of evolved stars by means of microgravity experiments. We found that the sticking probability for the formation of Fe grains is extremely small; only a few atoms will stick per hundred thousand collisions so that homogeneous nucleation of metallic Fe grains is highly ineffective, even in the Fe-rich ejecta of type Ia supernovae. This implies that most Fe is locked up as grains of Fe compounds or as impurities accreted onto other grains in the interstellar medium.

  8. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    Science.gov (United States)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  9. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2015-01-01

    Using the Planck far-infrared and Arecibo GALFA 21 cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas/dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared with the standard gas/dust ratio. Three hypotheses are considered. First, the apparently low gas/dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H 2 /CO ratio comparable to Galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21 cm lines and find that the optical depth must be ∼3, significantly higher than found from surveys of radio sources. Third, grain properties may change within the clouds: they become more emissive when they are colder, while not utilizing heavy elements that already have their cosmic abundance fully locked into grains. It is possible that all three processes are active, and follow-up studies will be required to disentangle them and measure the true total gas and dust content of interstellar clouds

  10. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    Science.gov (United States)

    2001-10-01

    blocks for vinyl alcohol and other chemicals are able to form the necessary chemical bonds to make larger molecules - those containing as many as six or more atoms. "It has been an ongoing quest to understand exactly how these more complex molecules form and become distributed throughout the interstellar medium," said Turner. Since the 1970s, scientists have speculated that molecules could form on the microscopic dust grains in interstellar clouds. These dust grains are thought to trap the fast-moving molecules. The surface of these grains would then act as a catalyst, similar to a car's catalytic converter, and enable the chemical reactions that form vinyl alcohol and the other complex molecules. The problem with this theory, however, is that the newly formed molecules would remain trapped on the dust grains at the low temperature characteristic of most of interstellar space, and the energy necessary to "knock them off" would also be strong enough to break the chemical bonds that formed them. "This last process has not been well understood," explained Turner. "The current theory explains well how molecules like vinyl alcohol could form, but it doesn't address how these new molecules are liberated from the grains where they are born." To better understand how this might be accomplished, the scientists considered the volatile and highly energetic region of space where these molecules were detected. Turner and others speculate that since this cloud lies near an area of young, energetic star formation, the energy from these stars could evaporate the icy surface layers of the grains. This would liberate the molecules from their chilly nurseries, depositing them into interstellar space where they can be detected by sensitive radio antennas on Earth. Astronomers are able to detect the faint radio signals that these molecules emit as they jump between quantum energy states in the act of rotating or vibrating. Turner cautions, however, that even though this discovery has shed

  11. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    Science.gov (United States)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully

  12. Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results

    Science.gov (United States)

    Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.

    1997-01-01

    Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.

  13. A note on the possible origin of comets in an interstellar gas cloud

    International Nuclear Information System (INIS)

    Yabushita, S.; Hasegawa, I.

    1978-01-01

    A possible origin of comets in an interstellar gas cloud is discussed in relation to the two recent results on cometary research. First, among 200 long-period comets whose original incoming orbits were recently calculated, seven have definitely and 14 have probably negative values of 1/a, where 1/a is twice the binding energy (positive a corresponds to an elliptic orbit) with respect to the solar system barycentre. Second, it has been shown how an aggregate of dust grains embedded in an icy matrix of gaseous compounds could form in an interstellar gas cloud, which could be identified with the icy nucleus of a comet. Again, of about 20 comets whose original 1/a values are negative, seven are transformed into future elliptic orbits by planetary perturbation. Thus, a comet which originated in an interstellar cloud could be captured by the solar system

  14. Probing the diffuse interstellar medium with diffuse interstellar bands

    Science.gov (United States)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  15. Identifying specific interstellar polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Mulas, Giacomo; Malloci, Giuliano; Porceddu, Ignazio

    2005-01-01

    Interstellar Polycyclic Aromatic Hydrocarbons (PAHs) have been thought to be ubiquitous for more than twenty years, yet no single species in this class has been identified in the Interstellar Medium (ISM) to date. The unprecedented sensitivity and resolution of present Infrared Space Observatory (ISO) and forthcoming Herschel observations in the far infrared spectral range will offer a unique way out of this embarrassing impasse

  16. Can spores survive in interstellar space

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.; Greenberg, J.M.

    1985-08-01

    Inactivation of spores (Bacillus subtilis) has been investigated in the laboratory by vacuum ultraviolet radiation in simulated interstellar conditions. Damage produced at the normal interstellar particle temperature of 10 K is less than at higher temperatures: the major damage being produced by radiation in the 2,000-3,000 A range. The results place constraints on the panspermia hypothesis. (author).

  17. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  18. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  19. Interstellar Probe: First Step to the Stars

    Science.gov (United States)

    McNutt, R. L., Jr.

    2017-12-01

    The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such

  20. INTERSTELLAR ABUNDANCES TOWARD X Per, REVISITED

    International Nuclear Information System (INIS)

    Valencic, Lynne A.; Smith, Randall K.

    2013-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the Chandra X-Ray Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO 3 (enstatite) and Mg 1.6 Fe 0.4 SiO 4 (olivine) provided the best fit to the O K edge, with N(MgSiO 3 )/N(Mg 1.6 Fe 0.4 SiO 4 ) = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

  1. Organic compounds in circumstellar and interstellar environments.

    Science.gov (United States)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  2. Analysis of proton irradiation products in simulated interstellar dusts by mass spectrometry

    International Nuclear Information System (INIS)

    Kasamatsu, Takashi; Kaneko, Takeo; Tsuchiya, Masahiko; Kobayashi, Kensei

    1996-01-01

    It is known that various kinds of organic compounds exist in space. In order to study the possibility of the formation of organic compounds in comets or their precursory bodies (interstellar dust grains), ice mixtures of carbon monoxide (or methane), ammonia and water made in a cryostat at 10 K ('simulated cometary ices') were irradiated with high energy protons. Irradiated ice products were warmed up to room temperature, while sublimed gases were analyzed with a quadrupole mass spectrometer. Some hydrocarbons and alcohols were detected. 'Amino acid precursors' (compounds yielding amino acids after hydrolysis) were detected in non-volatile products remaining on the substrate at room temperature. These results suggest the possible formation of organic compounds in interstellar dust grains by cosmic radiation. (author)

  3. Grain-gas interaction in envelopes of red giants

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1976-01-01

    A model for the ejection of the dust shell of red giant stars through the action of the stellar radiation pressure is developed. Being momentum-coupled to the gas, the dust shell can drive an effective mass loss. On the other hand, the grain injection rate into the interstellar space can be estimated [pt

  4. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  5. Radio propagation through the turbulent interstellar plasma

    International Nuclear Information System (INIS)

    Rickett, B.J.

    1990-01-01

    The current understanding of interstellar scattering is reviewed, and its impact on radio astronomy is examined. The features of interstellar plasma turbulence are also discussed. It is concluded that methods involving the investigation of the flux variability of pulsars and extragalactic sources and the VLBI visibility curves constitute new techniques for probing the ISM. However, scattering causes a seeing limitation in radio observations. It is now clear that variation due to RISS (refractive interstellar scintillations) is likely to be important for several classes of variable sources, especially low-frequency variables and centimeter-wave flickering. 168 refs

  6. Physics of the galaxy and interstellar matter

    International Nuclear Information System (INIS)

    Scheffler, H.; Elsasser, H.

    1988-01-01

    This book is based on the authors' long standing experience in teaching astronomy courses. It presents in a modern and complete way our present picture of the physics of the Milky Way system. The first part of the book deals with topics of more empirical character, such as the positions and motions of stars, the structure and kinetics of the stellar systems and interstellar phenomena. The more advanced second part is devoted to the interpretation of observational results, i.e. to the physics of interstellar gas and dust, to stellar dynamics, to the theory of spiral structures and the dynamics of interstellar gas

  7. Structure and evolution of the interstellar medium

    International Nuclear Information System (INIS)

    Chieze, J.P.

    1985-10-01

    We give a two dimensional hydrodynamical analysis of HI clouds collisions in order to determine the mass spectrum of diffuse interstellar clouds. We have taken into account evaporation and abrasion by supernovae blast waves. The conditions for cloud merging or fragmentation are precised. Applications to the model of the interstellar medium of Mc Kee and Ostriker are also discussed. On the other hand, we show that molecular clouds belong to a one parameter family which can be identified to the sequence of the gravitationally unstable states of clouds bounded by the uniform pressure of the coronal phase of the interstellar medium. Hierarchical fragmentation of molecular clouds is analysed in this context [fr

  8. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    International Nuclear Information System (INIS)

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-01-01

    Methanol (CH 3 OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH 3 OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH 3 OH and the other commonly observed C- and O-bearing species, H 2 O, CO, and CO 2 . We use this catalog to investigate the abundance of ice-phase CH 3 OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH 3 OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H 2 O and CO 2 is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH 3 OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH 3 OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH 3 OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  9. Grain growth across protoplanetary discs: 10 μm silicate feature versus millimetre slope

    NARCIS (Netherlands)

    Lommen, D.J.P.; van Dishoeck, E.F.; Wright, C.M.; Min, M.

    2010-01-01

    Context. Young stars are formed with dusty discs around them. The dust grains in the disc are originally of the same size as interstellar dust, i.e., of the order of 0.1 μm. Models predict that these grains will grow in size through coagulation. Observations of the silicate features around 10 and 20

  10. The Inventory of Interstellar Materials Available for the Formation of the Solar System

    Science.gov (United States)

    Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    Dr. Derek Sears, the editor of the journal Meteoritics and Planetary Science, has established a policy of having each issue of the journal contain an invited review of an area that he deems to be of special cur-rent importance. Typically 20 to 25 pages of the beginning of the journal are devoted to each review. He has asked me to prepare such a review summarizing what we know about the composition and structure of interstellar materials. The attached paper is the result. This is a good time for such a review since tremendous progress has been made in the field of interstellar dust in recent years through the use of telescopic observations, theoretical studies, laboratory studies of analogs, and the study of actual interstellar samples found in meteorites. It is increasing clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This understanding is a far cry from the picture of interstellar materials held as recently as two decades ago, a picture which incorporated only a few generic types of grains and few molecules. In the paper I review our current knowledge of the more abundant materials thought to exist in the ISM. The review concentrates on matter in interstellar dense molecular clouds since it is the materials in these environments from which new stars and planetary systems are formed, although materials in circumstellar environments and in the diffuse ISM are also discussed. The paper focuses largely on solid materials since they contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with discussion of some of the implications resulting from the identification of these interstellar materials. I also present some new thoughts, the most intriguing being that meteoritic 'microdiamonds' may be the same material that modelers of the

  11. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  12. RUSTY OLD STARS: A SOURCE OF THE MISSING INTERSTELLAR IRON?

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.; Markwick, A. J.; Sloan, G. C.; Bernard-Salas, J.; Matsunaga, N.; Matsuura, M.; Kraemer, K. E.

    2010-01-01

    Iron, the universe's most abundant refractory element, is highly depleted in both circumstellar and interstellar environments, meaning it exists in solid form. The nature of this solid is unknown. In this Letter, we provide evidence that metallic iron grains are present around oxygen-rich asymptotic giant branch stars, where it is observationally manifest as a featureless mid-infrared excess. This identification is made using Spitzer Space Telescope observations of evolved globular cluster stars, where iron dust production appears ubiquitous and in some cases can be modeled as the only observed dust product. In this context, FeO is examined as the likely carrier for the 20 μm feature observed in some of these stars. Metallic iron appears to be an important part of the dust condensation sequence at low metallicity, and subsequently plays an influential role in the interstellar medium. We explore the stellar metallicities and luminosities at which iron formation is observed, and how the presence of iron affects the outflow and its chemistry. The conditions under which iron can provide sufficient opacity to drive a wind remain unclear.

  13. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and

  14. Update on an Interstellar Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    Whats the news coming from the research world on the interstellar asteroid visitor, asteroid 1I/Oumuamua? Read on for an update from a few of the latest studies.What is Oumuamua?In lateOctober2017, the discovery of minor planet 1I/Oumuamua was announced. This body which researchers first labeled asa comet and later revised to an asteroid had just zipped around the Sun and was already in the process of speeding away whenwe trained our telescopes on it. Its trajectory, however, marked it as being a visitor from outside our solar system: the first knownvisitorof its kind.Since Oumuamuasdiscovery, scientists have been gathering as many observations of this bodyas possible before it vanishes into the distance. Simultaneously, theorists have leapt at the opportunity to explain its presence and the implications its passage has on our understanding of our surroundings. Here we present just a few of the latest studies that have been published on this first detected interstellar asteroid including several timelystudies published in our new journal, Research Notes of the AAS.The galactic velocity of Oumuamua does not coincide with any of the nearest stars to us. [Mamajek 2018]Where Did Oumuamua Come From?Are we sure Oumuamua didnt originate in our solar system andget scattered into a weird orbit? Jason Wright (The Pennsylvania State University) demonstrates via a series of calculations that no known solar system body could have scattered Oumuamua onto its current orbit nor could any stillunknown object bound to our solar system.Eric Mamajek (Caltech and University of Rochester) showsthat thekinematics of Oumuamua areconsistent with what we might expect of interstellar field objects, though he argues that its kinematics suggest its unlikely to have originated from many of the neareststellar systems.What AreOumuamuas Properties?Oumuamuas light curve. [Bannister et al. 2017]A team of University of Maryland scientists led by Matthew Knight captured a light curve of Oumuamua using

  15. Newly detected molecules in dense interstellar clouds

    Science.gov (United States)

    Irvine, William M.; Avery, L. W.; Friberg, P.; Matthews, H. E.; Ziurys, L. M.

    Several new interstellar molecules have been identified including C2S, C3S, C5H, C6H and (probably) HC2CHO in the cold, dark cloud TMC-1; and the discovery of the first interstellar phosphorus-containing molecule, PN, in the Orion "plateau" source. Further results include the observations of 13C3H2 and C3HD, and the first detection of HCOOH (formic acid) in a cold cloud.

  16. Carbon chain molecules in interstellar clouds

    International Nuclear Information System (INIS)

    Winnewisser, G.; Walmsley, C.M.

    1979-01-01

    A survey of the distribution of long carbon chain molecules in interstellar clouds shows that their abundance is correlated. The various formation schemes for these molecules are discussed. It is concluded that the ion-molecule type formation mechanisms are more promising than their competitors. They have also the advantage of allowing predictions which can be tested by observations. Acetylene C 2 H 2 and diacetylene HCCCCH, may be very abundant in interstellar clouds. (Auth.)

  17. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    International Nuclear Information System (INIS)

    Wu, C.; York, D.G.; Snow, T.P.

    1981-01-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (lambdalambda4430, 5780, 6284) to the overall extinction curve. Equivalent widths of lambdalambda5780 and 6284 are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in our sample. The central depth of lambda4430 is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. lambda4430 is strongly correlated with the strength of the 2200-A bump. Our data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. lambda4430 may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as we are attempting

  18. Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere

    Science.gov (United States)

    Frisch, P. C.

    2006-06-01

    Data showing that light from nearby stars, Tinbergen (1982) and Piirola (1977), were acquired during the solar minimum of the mid-1970's when the magnetic wall was expected to form at negative ecliptic latitudes because the solar magnetic polarity was north-pole-positive. The polarization is seen primarily at negative ecliptic latitudes, consistent with the expected magnetic wall position. The interstellar magnetic field direction at the Sun is derived from these data. The small dust grains most likely to cause the polarization are also the grains excluded from the heliosphere by small gyroradii, <100 AU. The direction of maximum polarization is offset by ˜ 20 --40 deg. from the inflow direction of the large grains that are gravitationally focused in the heliosphere tail. Interstellar dust grains in and near the heliosphere form a potential contaminant of the cosmic microwave background signal, which should then be identifiable because the spatial behavior of these grains depends on the phase of the 22 year solar magnetic activity cycle. The author would like to thank NASA for supporting her research.

  19. Enabling the First Interstellar Missions

    Science.gov (United States)

    Lubin, P.

    2017-12-01

    All propulsion systems that leave the Earth are based on chemical reactions. Chemical reactions, at best, have an efficiency compared to rest mass of 10-10 (or about 1eV per bond). All the mass in the universe converted to chemical reactions would not propel even a single proton to relativistic speeds. While chemistry will get us to Mars it will not allow interstellar capability in any reasonable mission time. Barring new physics we are left with few realistic solutions. None of our current propulsion systems, including nuclear, are capable of the relativistic speeds needed for exploring the many nearby stellar systems and exo-planets. However recent advances in photonics and directed energy systems now allow us to realize what was only a decade ago, simply science fiction, namely the ability to seriously conceive of and plan for relativistic flight. From fully-functional gram-level wafer-scale spacecraft capable of speeds greater than c/4 that could reach the nearest star in 20 years to spacecraft for large missions capable of supporting human life with masses more than 105 kg (100 tons) for rapid interplanetary transit that could reach speeds of greater than 1000 km/s can be realized. With this technology spacecraft can be propelled to speeds currently unimaginable. Photonics, like electronics, and unlike chemical propulsion is an exponential technology with a current double time of about 20 months. This is the key. The cost of such a system is amortized over the essentially unlimited number of launches. In addition, the same photon driver can be used for many other purposes including beamed energy to power high Isp ion engines, remote asteroid composition analysis and planetary defense. This would be a profound change in human capability with enormous implications. Known as Starlight we are now in a NASA Phase II study. The FY 2017 congressional appropriations request directs NASA to study the feasibility of an interstellar mission to coincide with the 100th

  20. ON THE FORMATION OF CO2 AND OTHER INTERSTELLAR ICES

    International Nuclear Information System (INIS)

    Garrod, R. T.; Pauly, T.

    2011-01-01

    We investigate the formation and evolution of interstellar dust-grain ices under dark-cloud conditions, with a particular emphasis on CO 2 . We use a three-phase model (gas/surface/mantle) to simulate the coupled gas-grain chemistry, allowing the distinction of the chemically active surface from the ice layers preserved in the mantle beneath. The model includes a treatment of the competition between barrier-mediated surface reactions and thermal-hopping processes. The results show excellent agreement with the observed behavior of CO 2 , CO, and water ice in the interstellar medium. The reaction of the OH radical with CO is found to be efficient enough to account for CO 2 ice production in dark clouds. At low visual extinctions, with dust temperatures ∼>12 K, CO 2 is formed by direct diffusion and reaction of CO with OH; we associate the resultant CO 2 -rich ice with the observational polar CO 2 signature. CH 4 ice is well correlated with this component. At higher extinctions, with lower dust temperatures, CO is relatively immobile and thus abundant; however, the reaction of H and O atop a CO molecule allows OH and CO to meet rapidly enough to produce a CO:CO 2 ratio in the range ∼2-4, which we associate with apolar signatures. We suggest that the observational apolar CO 2 /CO ice signatures in dark clouds result from a strongly segregated CO:H 2 O ice, in which CO 2 resides almost exclusively within the CO component. Observed visual-extinction thresholds for CO 2 , CO, and H 2 O are well reproduced by depth-dependent models. Methanol formation is found to be strongly sensitive to dynamical timescales and dust temperatures.

  1. Components in the interstellar medium

    International Nuclear Information System (INIS)

    Martin, E.R.

    1981-01-01

    An analysis is made of the lines of sight toward 32 stars with a procedure that gives velocity components for various interstellar ions. The column densities found for species expected to be relatively undepleted are used to estimate the column density of neutral hydrogen in each component. Whenever possible, the molecular hydrogen excitation temperature, abundances (relative to S II), electron density, and hydrogen volume density are calculated for each component. The results for each star are combined to give total HI column density as a function of (LSR) velocity. The derived velocities correspond well with those found in optical studies. The mean electron density is found to be approximately constant with velocity, but the mean hydrogen volume density is found to vary. The data presented here are consistent with the assumption that some of the velocity components are due to circumstellar material. The total HI column density toward a given star is generally in agreement with Lyman alpha measurements, but ionization and abundance effects are important toward some stars. The total HI column density is found to vary exponentially with velocity (for N(HI)> 10 17 cm -2 ), with an indication that the velocity dispersion at low column densities (N(HI) 17 cm -2 ) is approximately constant. An estimate is made of the kinetic energy density due to cloud motion which depends only on the total HI column density as a function of velocity. The value of 9 x 10 42 erg/pc 3 is in good agreement with a theoretical prediction

  2. Characterization of Interstellar Organic Molecules

    International Nuclear Information System (INIS)

    Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.

    2008-01-01

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  3. The photoevaporation of interstellar clouds

    International Nuclear Information System (INIS)

    Bertoldi, F.

    1989-01-01

    The dynamics of the photoevaporation of interstellar clouds and its consequences for the structure and evolution of H II regions are studied. An approximate analytical solution for the evolution of photoevaporating clouds is derived under the realistic assumption of axisymmetry. The effects of magnetic fields are taken into account in an approximate way. The evolution of a neutral cloud subjected to the ionizing radiation of an OB star has two distinct stages. When a cloud is first exposed to the radiation, the increase in pressure due to the ionization at the surface of the cloud leads to a radiation-driven implosion: an ionization front drives a shock into the cloud, ionizes part of it and compresses the remaining into a dense globule. The initial implosion is followed by an equilibrium cometary stage, in which the cloud maintains a semistationary comet-shaped configuration; it slowly evaporates while accelerating away from the ionizing star until the cloud has been completely ionized, reaches the edge of the H II region, or dies. Expressions are derived for the cloud mass-loss rate and acceleration. To investigate the effect of the cloud photoevaporation on the structure of H II regions, the evolution of an ensemble of clouds of a given mass distribution is studied. It is shown that the compressive effect of the ionizing radiation can induce star formation in clouds that were initially gravitationally stable, both for thermally and magnetically supported clouds

  4. The interstellar medium in galaxies

    CERN Document Server

    1997-01-01

    It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc­ ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen­ tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...

  5. Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions

    Science.gov (United States)

    Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare

    2018-04-01

    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.

  6. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    Science.gov (United States)

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  7. CO{sub 2} INFRARED PHONON MODES IN INTERSTELLAR ICE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Ilsa R. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Fayolle, Edith C.; Öberg, Karin I., E-mail: irc5zb@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-11-20

    CO{sub 2} ice is an important reservoir of carbon and oxygen in star- and planet-forming regions. Together with water and CO, CO{sub 2} sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO{sub 2} ice spectroscopy is a prerequisite to characterize CO{sub 2} interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO{sub 2} longitudinal optical (LO) phonon mode in pure CO{sub 2} ice and in CO{sub 2} ice mixtures with H{sub 2}O, CO, and O{sub 2} components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of the James Webb Space Telescope , this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.

  8. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  9. Measuring the level of interstellar inheritance in the solar protoplanetary disk

    Science.gov (United States)

    Alexander, Conel M. O'd.; Nittler, Larry R.; Davidson, Jemma; Ciesla, Fred J.

    2017-09-01

    The timing and extent to which the initial interstellar material was thermally processed provide fundamental constraints for models of the formation and early evolution of the solar protoplanetary disk. We argue that the nonsolar (solar Δ17O ≈ -29‰) and near-terrestrial (Δ17O ≈ 0‰) O-isotopic compositions of the Earth and most extraterrestrial materials (Moon, Mars, asteroids, and comet dust) were established very early by heating of regions of the disk that were modestly enriched (dust/gas ≥ 5-10 times solar) in primordial silicates (Δ17O ≈ -29‰) and water-dominated ice (Δ17O ≈ 24‰) relative to the gas. Such modest enrichments could be achieved by grain growth and settling of dust to the midplane in regions where the levels of turbulence were modest. The episodic heating of the disk associated with FU Orionis outbursts were the likely causes of this early thermal processing of dust. We also estimate that at the time of accretion the CI chondrite and interplanetary dust particle parent bodies were composed of 5-10% of pristine interstellar material. The matrices of all chondrites included roughly similar interstellar fractions. Whether this interstellar material avoided the thermal processing experienced by most dust during FU Orionis outbursts or was accreted by the disk after the outbursts ceased to be important remains to be established.

  10. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira [Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Takano, Yoshinori, E-mail: oba@lowtem.hokudai.ac.jp [Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 (Japan)

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  11. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    International Nuclear Information System (INIS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Takano, Yoshinori

    2016-01-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH 2 DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  12. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  13. Heterogeneous condensation of ice mantle around silicate core grain in molecular cloud

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Interstellar water ice grains are observed in the cold and dense regions such as molecular clouds, HII regions and protostellar objects. The water ice is formed from gas phase during the cooling stage of cosmic gas with solid grain surfaces of high temperature silicate minerals. It is a question whether the ice is formed through the homogeneous condensation process (as the ice alone) or the heterogeneous one (as the ice around the pre-existing high temperature mineral grains). (author)

  14. Formation of dust grains with impurities in red giant winds

    Science.gov (United States)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  15. Interstellar abundances in dense, moderately reddened lines of sight. I. Observational evidence for density-dependent depletion

    International Nuclear Information System (INIS)

    Joseph, C.L.; Snow, T.P. Jr.; Seab, C.G.; Crutcher, R.M.; NASA, Ames Research Center, Moffett Field, CA; Illinois Univ., Urbana)

    1986-01-01

    The nature of dust-gas interactions, which are capable of modifying the size distribution of interstellar grains and thus causing changes in the selective extinction curve, are investigated through depletion studies. The gaseous abundances of 15 elements have been determined for several lines of sight toward moderately reddened stars, each having an anomalous extinction curve and a large abundance of cyanogen (CN). The basic result of this study is that certain elements appear to deplete preferentially in interstellar clouds having a large abundance of CN. Since CN is a sensitive indicator of the interstellar spatial density, the data might suggest that the unique pattern of enhanced depletion observed here represents the best observational evidence of accretion. 107 references

  16. Evolution of interstellar dust in light of Herschel Space Observatory data

    International Nuclear Information System (INIS)

    Arab, Heddy

    2012-01-01

    Interstellar dust grains are nanometer to micrometer sized particles. Although a weak proportion of the total interstellar mass is at solid state, dust plays a fundamental role in the evolution of the interstellar medium (ISM) and of the galaxy itself. Grains can be observed in the UV and visible wavelength through extinction whereas their emission is in the infrared to submillimeter range. Astrophysical observations combined to numerical models and laboratory studies of dust analogs improve our comprehension of the nature and the physics of interstellar grains. For example, evidence of dust evolution in the interstellar medium are now numerous, even if the physical processes responsible of this evolution are still poorly understood. Understanding how grains evolve with physical conditions requires observations of various environments. Photodissociation regions (PDRs) are zones of the ISM where the radiation field and the local density vary on short spatial scales (∼10''- 20''). Moreover the many gas tracers offer the opportunity to constraint efficiently the physical conditions within PDRs. Past missions such as ISO and Spitzer allow to study the evolution of dust in the near-Infrared range. At longer wavelengths, where the emission is dominated by the grains at thermal equilibrium with the radiation, instruments rarely resolved the spatial emission in PDRs. PACS and SPIRE instruments onboard Herschel Space Observatory provide spectro-photometric data between 70 and 500 μm. Their high spatial resolution (from 5 to 35 arcmin) makes these observations ideal for the study of dust evolution in PDRs. We present here an analysis of Herschel observations of three PDRs: the Orion Bar, the Horsehead and NGC 7023 East, characterized by different physical conditions. By combining these data with shorter wavelength observations from Spitzer, we can study the dust emission spectrum from 3.6 to 500 μm at different positions within the PDR. Intensity profiles are extracted

  17. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  18. Photodissociation and excitation of interstellar molecules

    International Nuclear Information System (INIS)

    Dishoeck, E.F. van.

    1984-01-01

    Apart from a rather long introduction containing some elementary astrophysics, quantum chemistry and spectroscopy and an incomplete, historical review of molecular observations, this thesis is divided into three sections. In part A, a rigorous quantum chemical and dynamical study is made of the photodissociation processes in the OH and HCl molecules. In part B, the cross sections obtained in part A are used in various astrophysical problems such as the study of the abundances of the OH and HCl molecules in interstellar clouds, the use of the OH abundance as a measure of the cosmic ray ionization rate, the lifetime of the OH radical in comets and the abundance of OH in the solar photosphere. Part C discusses the excitation of the C 2 molecule under interstellar conditions, its use as a diagnostic probe of the temperature, density and strength of the radiation field in interstellar clouds. Quadrupole moments and oscillator strengths are analyzed. (Auth.)

  19. On the nature of interstellar turbulence

    International Nuclear Information System (INIS)

    Altunin, V.I.

    1981-01-01

    Possible reasons of interstellar medium turbulence manifested in pulsar scintillation and radio-frequency emission scattering of extragalactic sources near by the Galaxy plane, are discussed. Sources and conditions of turbulence emergence in HII region shells, supernova, residue and in stellar wind giving observed scattering effects are considered. It is shown that in the formation of the interstellar scintillation pattern of discrete radio-frequency emission sources a certain role can be played by magnetosound turbulence, which arises due to shock-waves propagating in the interstellar medium at a velocity Vsub(sh) approximately 20-100 km/s as well as by stellar-wind inhomogeneity of OB classes stars [ru

  20. Physics of the interstellar and intergalactic medium

    CERN Document Server

    Draine, Bruce T

    2010-01-01

    This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resourc...

  1. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  2. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  3. Infrared emission from isolated dust clouds in the presence of very small dust grains

    Science.gov (United States)

    Lis, Dariusz C.; Leung, Chun M.

    1991-01-01

    Models of the effects of small grain-generated temperature fluctuations on the IR spectrum and surface brightness of externally heated interstellar dust clouds are presently constructed on the basis of a continuum radiation transport computer code which encompasses the transient heating of small dust grains. The models assume a constant fractional abundance of large and small grains throughout the given cloud. A comparison of model results with IRAS observations indicates that the observed 12-25 micron band emissions are associated with about 10-A radius grains, while the 60-100 micron emission is primarily due to large grains which are heated under the equilibrium conditions.

  4. The interstellar lithium abundance and the 7Li/6Li ratio

    International Nuclear Information System (INIS)

    Ferlet, R.; Dennefeld, M.

    1985-01-01

    The λ 6708 doublet of interstellar Li I has been observed at high spectral resolution (3.km s -1 ) and very good signal to noise ratio (∼ 4000) towards δ Sco and ζ Oph. Using a profile fitting method, we derive for the first time outside the solar system a 7 Li/ 6 Li ratio of 38 for a diffuse cloud in front of ζ Oph. Even the lower limit of the error bar is incompatible with the ratio measured in meteorites and is not explained by recent models of galactic evolution. The existence of a local inhomogeneity is suggested. Finally, as for other alkalis, lithium is depleted on to dust grains in the diffuse interstellar medium [fr

  5. Could comets be carriers of intact homochiral biomolecules from interstellar space?

    International Nuclear Information System (INIS)

    Navarro Gonzales, R.; Khanna, R.K.; Ponnamperuma, C.

    1992-01-01

    It has been suggested that the synchrotron circularly polarized ultraviolet light produced off-angle to the orbit of neutron star remnants of supernova explosions interacted with interstellar grains from the presolar nebula producing chiral molecules. Furthermore, it has also been suggested that comets were the carriers of such extraterrestrial sources of homochirality from interstellar space to the primitive Earth. We present here a computer model calculation of the effect of ionizing radiation on cometary material. The external (cosmic rays) and internal (embedded radionuclides) contributions were considered to determine the degree of destruction of possible homochiral biomolecules present such as amino acids and carboxylic acids. Our results suggest that an insignificant degree of destruction (2-12%) of the homochiral biomolecules could be expected. Therefore, comets could be carriers of intact homochiral biomolecules. (author)

  6. SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2012-02-10

    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

  7. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    International Nuclear Information System (INIS)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-01-01

    by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at ∼975 Å does not appear to play a role in grain alignment for the low-density ISM studied here.

  8. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, P. C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Andersson, B-G [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, M.S. N232-12 Moffett Field, CA 94035 (United States); Berdyugin, A.; Piirola, V. [Finnish Centre for Astronomy with ESO, University of Turku (Finland); DeMajistre, R. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM (United States); Magalhaes, A. M.; Seriacopi, D. B. [Inst. de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo (Brazil); McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Schwadron, N. A. [Space Science Center, University of New Hampshire, Durham, NH (United States); Slavin, J. D. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Wiktorowicz, S. J. [Department of Astronomy, University of California at Santa Cruz, Santa Cruz, CA (United States)

    2012-12-01

    ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.

  9. REVISITING ULYSSES OBSERVATIONS OF INTERSTELLAR HELIUM

    International Nuclear Information System (INIS)

    Wood, Brian E.; Müller, Hans-Reinhard; Witte, Manfred

    2015-01-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ∼0.°3 and the speed by no more than ∼0.3 km s –1 . A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V ISM = 26.08 ± 0.21 km s –1 , λ = 75.54 ± 0.°19, β = –5.44 ± 0.°24, and T = 7260 ± 270 K; where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n He = 0.0196 ± 0.0033 cm –3 in the interstellar medium

  10. REVISITING ULYSSES OBSERVATIONS OF INTERSTELLAR HELIUM

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Müller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Witte, Manfred, E-mail: brian.wood@nrl.navy.mil [Max-Planck-Institute for Solar System Research, Katlenburg-Lindau D-37191 (Germany)

    2015-03-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ∼0.°3 and the speed by no more than ∼0.3 km s{sup –1}. A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V {sub ISM} = 26.08 ± 0.21 km s{sup –1}, λ = 75.54 ± 0.°19, β = –5.44 ± 0.°24, and T = 7260 ± 270 K; where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n {sub He} = 0.0196 ± 0.0033 cm{sup –3} in the interstellar medium.

  11. Interstellar propagation of low energy cosmic rays

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  12. THE AGE OF THE LOCAL INTERSTELLAR BUBBLE

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2011-01-01

    The Local Interstellar Bubble is an irregular region from 50 to 150 pc from the Sun in which the interstellar gas density is 10 -2 -10 -3 of that outside the bubble and the interstellar temperature is 10 6 K. Evidently most of the gas was swept out by one or more supernovae. I explored the stellar contents and ages of the region from visual double stars, spectroscopic doubles, single stars, open clusters, emission regions, X-ray stars, planetary nebulae, and pulsars. The bubble has three sub-regions. The region toward the galactic center has stars as early as O9.5 V and with ages of 2-4 M yr. It also has a pulsar (PSRJ1856-3754) with a spin-down age of 3.76 Myr. That pulsar is likely to be the remnant of the supernova that drove away most of the gas. The central lobe has stars as early as B7 V and therefore an age of about 160 Myr or less. The Pleiades lobe has stars as early as B3 and therefore an age of about 50 Myr. There are no obvious pulsars that resulted from the supernovae that cleared out those areas. As found previously by Welsh and Lallement, the bubble has five B stars along its perimeter that show high-temperature ions of O VI and C II along their lines of sight, confirming its high interstellar temperature.

  13. Fluorescent excitation of interstellar H2

    NARCIS (Netherlands)

    Black, J.H.; Dishoeck, van E.F.

    1987-01-01

    The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature,

  14. Organics in meteorites - Solar or interstellar?

    Science.gov (United States)

    Alexander, Conel M. O'D.; Cody, George D.; Fogel, Marilyn; Yabuta, Hikaru

    2008-10-01

    The insoluble organic material (IOM) in primitive meteorites is related to the organic material in interplanetary dust particles and comets, and is probably related to the refractory organic material in the diffuse interstellar medium. If the IOM is representative of refractory ISM organics, models for how and from what it formed will have to be revised.

  15. Optical observations of nearby interstellar gas

    Science.gov (United States)

    Frisch, P. C.; York, D. G.

    1984-11-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  16. Interstellar Extinction in the Gaia Photometric Systems

    Directory of Open Access Journals (Sweden)

    Bridžius A.

    2003-12-01

    Full Text Available Three medium-band photometric systems proposed for the Gaia space mission are intercompared in determining color excesses for stars of spectral classes from O to M at V = 18 mag. A possibility of obtaining a three-dimensional map of the interstellar extinction is discussed.

  17. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types

  18. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  19. Tracing magnetic fields with aligned grains

    International Nuclear Information System (INIS)

    Lazarian, A.

    2007-01-01

    Magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g., transport of heat), and cosmic rays. One of the easiest ways to determine the magnetic field direction is via polarization of radiation resulting from extinction or/and emission by aligned dust grains. Reliability of interpretation of the polarization maps in terms of magnetic fields depends on how well we understand the grain-alignment theory. Explaining what makes grains aligned has been one of the big issues of the modern astronomy. Numerous exciting physical effects have been discovered in the course of research undertaken in this field. As both the theory and observations matured, it became clear that the grain-alignment phenomenon is inherent not only in diffuse interstellar medium or molecular clouds but also is a generic property of the dust in circumstellar regions, interplanetary space and cometary comae. Currently the grain-alignment theory is a predictive one, and its results nicely match observations. Among its predictions is a subtle phenomenon of radiative torques. This phenomenon, after having stayed in oblivion for many years after its discovery, is currently viewed as the most powerful means of alignment. In this article, I shall review the basic physical processes involved in grain alignment, and the currently known mechanisms of alignment. I shall also discuss possible niches for different alignment mechanisms. I shall dwell on the importance of the concept of grain helicity for understanding of many properties of grain alignment, and shall demonstrate that rather arbitrarily shaped grains exhibit helicity when they interact with gaseous and radiative flows

  20. The influence of the interstellar medium on climate and life

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.

    1980-01-01

    Recent studies of the gas and dust between the stars, the interstellar medium, reveal a complex chemistry which indicates that prebiotic organic chemistry is ubiquitous. The relationship between this interstellar chemistry and the organic chemistry of the early solar system and the Earth is explored. The interstellar medium is also considered as likely to have a continuing influence upon the climate of the Earth and other planets. Life forms as known are not only descendants of the organic evolution begun in the interstellar medium, but their continuing evolution is also molded through occasional interactions between the interstellar medium, the Sun and the climate on Earth. (author)

  1. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  2. Simulating galactic dust grain evolution on a moving mesh

    Science.gov (United States)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  3. The loop I superbubble and the local interstellar magnetic field

    International Nuclear Information System (INIS)

    Frisch, Priscilla Chapman

    2014-01-01

    Recent data on the interstellar magnetic field in the low density nearby interstellar medium suggest a new perspective for understanding interstellar clouds within 40 pc. The directions of the local interstellar magnetic field found from measurements of optically polarized starlight and the very local field found from the Ribbon of energetic neutral atoms discovered by IBEX nearly agree. The geometrical relation between the local magnetic field, the positions and kinematics of local interstellar clouds, and the Loop I S1 superbubble, suggest that the Sun is located in the boundary of this evolved superbubble. The quasiperpendicular angle between the bulk kinematics and magnetic field of the local ISM indicates that a complete picture of low density interstellar clouds needs to include information on the interstellar magnetic field.

  4. Observational constraints on interstellar depletion mechanisms in lines of sight exhibiting peculiar extinction curves

    International Nuclear Information System (INIS)

    Joseph, C.L.

    1985-01-01

    The nature of dust-gas interactions, which are capable of modifying the size distribution of the grains and thus causing changes in the selective extinction curve, are investigated through depletion studies. The gaseous abundances of 16 elements were determined for several lines of sight toward moderately reddened stars, each having a so called anomalous extinction curve. Four lines of sight in the rho Ophiuchi dark cloud complexes as well as several lines of sight through the diffuse interstellar medium were also analyzed for comparison. Two approaches are used to assess the strength of density dependent depletion processes. First, the depletion pattern from element-to-element for each integrated line of sight is studied with particular emphasis being given to those species that are potential discriminators between the two major competing models of grain formation and growth. In the second approach, the relative abundancies of neutral atoms, which are thought to form primarily in the densest portions of interstellar clouds, are studied. Both of these constraints are then compared to a theoretical extinction curve derived from a simple model for the size distribution of the grains based on the degree of mantling

  5. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  6. Diffuse interstellar gas in disk galaxies

    International Nuclear Information System (INIS)

    Vladilo, G.

    1989-01-01

    The physical properties of the diffuse gas in our Galaxy are reviewed and considered as a starting point for interstellar (IS) studies of disk galaxies. Attention is focussed on the atomic and ionic component, detected through radio, optical, ultraviolet (UV) and X-ray observations. The cooling and heating processes in the IS gas are briefly recalled in order to introduce current models of disk and halo gas. Observations of nearby galaxies critical to test IS models are considered, including 21-cm surveys, optical and UV absorptions of bright, extragalactic sources, and X-ray emission from hot halos. Finally, further steps necessary to develop a global model for the structure and evolution of the interstellar medium are indicated. (author)

  7. Glaciations and dense interstellar clouds; and reply

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK); Dennison, B; Mansfield, V N

    1976-09-16

    Reference is made to Dennison and Mansfield (Nature 261:32 (1976)) who offered comments on a previous paper by the author (Nature 255:607 (1975)), in which he suggested that a possible cause of an ice age on the Earth was the passage of the solar system through an interstellar matter compression region bordering a spiral arm of the Galaxy. Dennison and Mansfield criticised this suggestion because it led them to expect to find a dense cloud of interstellar matter still very close to the Earth, whereas no such cloud is known. It is stated here that this criticism ignores the structure of the Galaxy, that provided the basis of the suggestion. A reply by Dennison and Mansfield is appended.

  8. Fast Neutral reactions in cold interstellar clouds

    International Nuclear Information System (INIS)

    Graff, M.M.

    1989-01-01

    The dynamics of exothermic neutral reactions between radical species have been examined, with particular attention to reactivity at the very low energies characteristic of cold interstellar clouds. Long-range interactions (electrostatic and spin-orbit) were considered within in the adiabatic capture-infinite order sudden approximation (ACIOSA). Analytic expressions have been developed for cross sections and rate constants of exothermic reactions between atoms and dipolar radicals at low temperatures. A method for approximating the adiabatic potential surface for the reactive state will be presented. The reaction systems O+OH and O+CH are both predicted to be fast at low temperatures. The systems C+CH and C+OH are expected to be nonreactive at low temperatures, and upper limits of rate constants for these reactions have been estimated. General predictions are made for other reaction systems. Implications for interstellar chemistry will be discussed

  9. Polarization of submillimetre lines from interstellar medium

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  10. Absorption and emission characteristics of interstellar dust

    International Nuclear Information System (INIS)

    Allamandola, L.J.

    1984-01-01

    Molecular transitions which occur in the middle infrared region of the spectrum correspond with the characteristic frequencies of molecular vibrations. Thus, moderate resolution spectroscopy of the interstellar medium offers unique evidence about the molecules in the condensed and gaseous phases and their distribution. The author discusses the spectral properties of the condensed phase. However, in the astrophysical literature, it is difficult to find a qualitative description of the effects the solid state has on molecular vibrations, and since it is these which largely determine the spectroscopic properties of the interstellar dust, this discussion begins with a general description of these effects and then is directed toward describing the optical characteristics of the molecular ice component of the dust. The properties of this component of the dust are stressed, rather than those expected from more homogeneous components such as silicates, graphite, or amorphous carbon since these have been discussed in considerable detail elsewhere. (Auth.)

  11. CN radical in diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Federman, S.R.; Danks, A.C.; Lambert, D.L.

    1984-01-01

    A survey of 15 lines of sight for the CN B 2 Σ + --X 2 Σ + interstellar absorption lines shows that the CN column density in diffuse interstellar clouds follows the relation log N(CN)proportionalm log N(H 2 ), where mroughly-equal3. This result is reproduced by a reaction network in which CN is produced primarily from C 2 by the neutral-neutral reaction C 2 +N → CN+C, and photodissociation is the main destruction pathway for the neutral molecules CH, C 2 , and CN. The CN radical is the first molecular species observed in diffuse clouds that requires a neutral-neutral reaction for its formation in the gas phase. The network also reproduces the observed ratio N(CN)/N(H 2 )

  12. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  13. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  14. Stochastic histories of refractory interstellar dust

    International Nuclear Information System (INIS)

    Liffman, K.; Chayton, D.D.

    1988-01-01

    The authors calculate histories for refractory dust particles in the interstellar medium. The double purposes are to learn something of the properties of interstellar dust as a system and to evaluate with specific assumptions the cosmic chemical memory interpretation of a specific class of isotopic anomalies. They assemble the profile of a particle population from a large number of stochastic, or Monte Carlo, histories of single particles, which are necessarily taken to be independent with this approach. They specify probabilities for each of the events that may befall a given particle and unfold its history by a sequence of random numbers. They assume that refractory particles are created only by thermal condensation within stellar material during its ejection from stars, and that these refractory particles can be destroyed only by being sputtered to a size too small for stability or by being incorporated into the formation of new stars. In order to record chemical detail, the authors take each new refractory particle to consist of a superrefractory core plus a more massive refractory mantle. They demonstrate that these superrefractory cores have effective lifetimes much longer than the turnover time of dust mass against sputtering. As examples of cosmic chemical memory they evaluate the 16 O-richness of interstellar aluminum and mechanisms for the 48 Ca/ 50 Ti correlation. Several related consequences of this approach are discussed

  15. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  16. Chemical reactivities of some interstellar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M S

    1980-01-01

    Work in the area of chemical evolution during the last 25 years has revealed the formation of a large number of biologically important molecules produced from simple starting materials under relatively simple experimental conditions. Much of this work has resulted from studies under atmospheres simulating that of the primitive earth or other planets. During the last decade, progress has also been made in the identification of chemical constituents of interstellar medium. A number of these molecules are the same as those identified in laboratory experiments. Even though the conditions of the laboratory experiments are vastly different from those of the cool, low-density interstellar medium, some of the similarities in composition are too obvious to go unnoticed. The present paper highlights some of the similarities in the composition of prebiotic molecules and those discovered in the interstellar medium. Also the chemical reactions which some of the common molecules e.g., NH3, HCN, H2CO, HC(triple bond)-C-CN etc. can undergo are surveyed.

  17. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  18. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  19. PRODUCTION AND RECOIL LOSS OF COSMOGENIC NUCLIDES IN PRESOLAR GRAINS

    International Nuclear Information System (INIS)

    Trappitsch, Reto; Leya, Ingo

    2016-01-01

    Presolar grains are small particles that condensed in the vicinity of dying stars. Some of these grains survived the voyage through the interstellar medium (ISM) and were incorporated into meteorite parent bodies at the formation of the Solar System. An important question is when these stellar processes happened, i.e., how long presolar grains were drifting through the ISM. While conventional radiometric dating of such small grains is very difficult, presolar grains are irradiated with galactic cosmic rays (GCRs) in the ISM, which induce the production of cosmogenic nuclides. This opens the possibility to determine cosmic-ray exposure (CRE) ages, i.e., how long presolar grains were irradiated in the ISM. Here, we present a new model for the production and loss of cosmogenic 3 He, 6,7 Li, and 21,22 Ne in presolar SiC grains. The cosmogenic production rates are calculated using a state-of-the-art nuclear cross-section database and a GCR spectrum in the ISM consistent with recent Voyager data. Our findings are that previously measured 3 He and 21 Ne CRE ages agree within the (sometimes large) 2 σ uncertainties and that the CRE ages for most presolar grains are smaller than the predicted survival times. The obtained results are relatively robust since interferences from implanted low-energy GCRs into the presolar SiC grains and/or from cosmogenic production within the meteoroid can be neglected.

  20. NEW ULTRAVIOLET EXTINCTION CURVES FOR INTERSTELLAR DUST IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gordon, Karl D.; Bohlin, R. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Massa, Derck L.; Wolff, Michael J. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Fitzpatrick, Edward L., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: bohlin@stsci.edu, E-mail: kgordon@stsci.edu, E-mail: bianchi@jhu.edu, E-mail: mjwolff@spacescience.org, E-mail: edward.fitzpatrick@villanova.edu [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States)

    2015-12-10

    New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with the Hubble Space Telescope/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher signal-to-noise ratio than previous studies. Direct measurements of N(H i) were made using the Lyα absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5–14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from solar to 1.5 solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program, finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-solar.

  1. Chemical Simulations of Prebiotic Molecules: Interstellar Ethanimine Isomers

    Science.gov (United States)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    The E- and Z-isomers of ethanimine (CH3CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s-1 in the foreground of continuum emission generated by H II regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

  2. CHEMICAL SIMULATIONS OF PREBIOTIC MOLECULES: INTERSTELLAR ETHANIMINE ISOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Donghui; Durr, Allison [Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475 (United States); Herbst, Eric [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Corby, Joanna F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Hassel, George [Physics and Astronomy Department, Siena College, Loudonville, NY 12211 (United States)

    2016-06-20

    The E- and Z- isomers of ethanimine (CH{sub 3}CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s{sup −1} in the foreground of continuum emission generated by H ii regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

  3. PAHs molecules and heating of the interstellar gas

    Science.gov (United States)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  4. The Ingenious Theory of Interstellar Trade

    Science.gov (United States)

    Radhakrishnan, Arun; Ganapathy, Rohan M.

    This paper extends interplanetary trade theory to an interstellar setting. It is chiefly concerned with the following question: How should interest charges on goods in transit be computed when the goods travel at speeds close to the actual speed of light? This is a problem because the time taken in transit will appear less to an observer travelling with the goods than to a stationary observer. An innovative and ingenious solution is derived from the economic theory, and two useless but TRUE theorems are proved. The interstellar trade would happen in such a way that two time frames must be considered namely that of the stationary observer whose time runs faster compared to the time frame of the observer in transit The interest in a given trade is purely based on the time taken for the debtor to pay the amount, once the goods have been delivered by the seller. But, in case of interstellar trade, the interest to be calculated in between two time frames would lead to the question of which time frame to be considered and moreover, the time taken for the goods to reach the destination is signicantly prolonged compared to the interplanetary trade, which means, even the slightest variations in the interest rate would be magnied. Apart from this, various new factors arise while calculating the interest. The factors include the time value of money, and the risk of variation in demand for goods, the risk of interspace accidents causing loss of the goods and the rate of perish-ability in case of organic goods. The first two factors considered, for which the time frame of the stationary observer is considered and the factors such as the risk of accidents and the rate of perish-ability of the goods are considered based on the time frame of the observer in transit's point of view. The reasons for such considerations and various assumptions on these concepts are dealt in this paper. The theorems that are formulated in this paper would provide the interstellar traders a basic

  5. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  6. Circumstellar and interstellar material in the CO3 chondrite ALHA77307: An isotopic and elemental investigation

    Science.gov (United States)

    Bose, Maitrayee; Floss, Christine; Stadermann, Frank J.; Stroud, Rhonda M.; Speck, Angela K.

    2012-09-01

    We have carried out a NanoSIMS C, N and O ion imaging study of the CO3.0 chondrite ALHA77307. The distribution of O-anomalous grains in ALHA77307 is similar to that observed in other primitive meteorites, and is dominated (84%) by 17O-rich Group 1 grains from low-mass asymptotic giant branch (AGB) stars of close-to-solar metallicity. Four percent of the grains belong to Group 2, whose 18O depletions suggest cool-bottom processing in low-mass stars during the AGB phase, while 8% are Group 4 grains with likely origins in Type II supernova (SN) ejecta. One ferromagnesian silicate has a very high 17O enrichment; nova explosions have been suggested as sources for such grains, but recent models with updated reaction rates show large discrepancies with the grain data, leaving the origins of these grains uncertain. Most of the grains are silicates (86%) with the remainder consisting of oxides (8%), three silica grains and two 'composite' grains composed of multiple subgrains with different elemental compositions. The elemental compositions of the silicates are similar to those found in other studies, with a predominance of non-stoichiometric compositions and high (up to 44 at.%) Fe concentrations. A comparison of isotopic and elemental compositions for all presolar silicates shows that olivine compositions are overabundant in Group 4 grains compared to grains from Groups 1 and 2. This may reflect injection of presolar material from a nearby supernova into the early solar nebula and incorporation into parent bodies before alteration of compositions through irradiation and sputtering in the interstellar medium, as is likely to have occurred for the Group 1 and 2 grains from more distant AGB stars. The matrix material in ALHA77307 contains abundant carbonaceous hotspots with excesses in 15N. However, unlike CR chondrites, the insoluble organic matter (IOM) in ALHA77307 does not have a bulk N isotopic anomaly, consistent with Raman evidence that it has experienced more

  7. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  8. An introduction to the physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2007-01-01

    Streamlining the extensive information from the original, highly acclaimed monograph, this new An Introduction to the Physics of Interstellar Dust provides a concise reference and overview of interstellar dust and the interstellar medium. Drawn from a graduate course taught by the author, a highly regarded figure in the field, this all-in-one book emphasizes astronomical formulae and astronomical problems to give a solid foundation for the further study of interstellar medium. Covering all phenomena associated with cosmic dust, this inclusive text eliminates the need to consult special physica

  9. Synthesis of molecules in interstellar clouds and star formation

    International Nuclear Information System (INIS)

    Ghosh, K.K.; Ghosh, S.N.

    1981-01-01

    Study of the formation and destruction processes of interstellar molecules may throw certain light on interstellar medium. Formation and destruction processes of some interstellar molecules are proposed on the basis of laboratory data. The abundances of these molecules are calculated under steady-state condition. The calculated values are then compared with the observed values, obtained by different investigators. It appears that gas phase ion-neutral reactions are capable of synthesizing most interstellar molecules. The role of ion-neutral reactions to star formation has also been discussed. (author)

  10. Astronomy in Denver: Probing Interstellar Circular Polarization with Polvis, a Full Stokes Single Shot Polarimeter

    Science.gov (United States)

    Wolfe, Tristan; Stencel, Robert E.

    2018-06-01

    Measurements of optical circular polarization (Stokes V) introduced by dust grains in the ISM are important for two main reasons. First of all, the polarization itself contains information about the metallic versus dielectric composition of the dust grains themselves (H. C. van de Hulst 1957, textbook). Additionally, circular polarization can help constrain the interstellar component of the polarization of any source that may have intrinsic polarization, which needs to be calibrated for astrophysical study. Though interstellar circular polarization has been observed (P. G. Martin 1972, MNRAS 159), most broadband measurements of ISM polarization include linear polarization only (Stokes Q and U), due to the relatively low circular polarization signal and the added instrumentation complexity of including V-measurement capability. Prior circular polarization measurements have also received very little follow-up in the past several decades, even as polarimeters have become more accurate due to advances in technology. The University of Denver is pursuing these studies with POLVIS, a prototype polarimeter that utilizes a stress-engineered optic ("SEO", A. K. Spilman and T. G. Brown 2007, Applied Optics IP 46) to produce polarization-dependent PSFs (A. M. Beckley and T. G. Brown 2010, Proc SPIE 7570). These PSFs are analyzed to provide simultaneous Stokes I, Q, U, and V measurements, in a single beam and single image, along the line-of-sight to point source-like objects. Polvis is the first polarimeter to apply these optics and measurement techniques for astronomical observations. We present the first results of this instrument in B, V, and R wavebands, providing a fresh look at full Stokes interstellar polarization. Importantly, this set of efforts will constrain the ISM contribution to the polarization with respect to intrinsic stellar components. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver

  11. Constraints on interstellar dust models from extinction and spectro-polarimetry

    Science.gov (United States)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.

    2017-12-01

    We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations, and is in agreement with cosmic abundance constraints. Reducing the number of free parameters leads to results that are inconsistent with the cosmic abundances of silicate and carbon. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70-200 nm.

  12. SURVIVAL OF INTERSTELLAR MOLECULES TO PRESTELLAR DENSE CORE COLLAPSE AND EARLY PHASES OF DISK FORMATION

    International Nuclear Information System (INIS)

    Hincelin, U.; Wakelam, V.; Hersant, F.; Guilloteau, S.; Commerçon, B.

    2013-01-01

    An outstanding question of astrobiology is the link between the chemical composition of planets, comets, and other solar system bodies and the molecules formed in the interstellar medium. Understanding the chemical and physical evolution of the matter leading to the formation of protoplanetary disks is an important step for this. We provide some new clues to this long-standing problem using three-dimensional chemical simulations of the early phases of disk formation: we interfaced the full gas-grain chemical model Nautilus with the radiation-magnetohydrodynamic model RAMSES, for different configurations and intensities of the magnetic field. Our results show that the chemical content (gas and ices) is globally conserved during the collapsing process, from the parent molecular cloud to the young disk surrounding the first Larson core. A qualitative comparison with cometary composition suggests that comets are constituted of different phases, some molecules being direct tracers of interstellar chemistry, while others, including complex molecules, seem to have been formed in disks, where higher densities and temperatures allow for an active grain surface chemistry. The latter phase, and its connection with the formation of the first Larson core, remains to be modeled

  13. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  14. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  15. Long Term Perspective On Interstellar Flight

    Science.gov (United States)

    Millis, M. G.

    2017-12-01

    The process and interim findings of a broad interstellar flight assessment is presented. In contrast to precursor mission studies, this assessment takes a longer view and also considers factors that have been underrepresented in prior studies. The goal is to chart a conceptual roadmap for interstellar flight development that takes all the factors into account and ultimately identifies which research options, today, might have the greatest overall impact on future progress. Three envisioned flight eras are examined, the "era of precursors," the "era of infrastructure," and the "unforeseeable future." Several influential factors have typically been missing from prior studies that will now be assessed; a) the impact of different, often implicit, motivations, b) the interdependency of infrastructure with vehicle design, c) the pace of different developments, and d) the enormous energy required for any interstellar mission. Regarding motivations for example, if the driving motivation is to launch soon, then the emphasis is on existing technologies. In contrast, if the motivation is the survival of humanity, then the emphasis would be on 'world ships.' Infrastructure considerations are included in a broader system-level context. Future infrastructure will support multiple in-space activities, not just one mission-vehicle development. Though it may be too difficult to successfully assess, the study will attempt to compare the rates of different developments, such as the pace of Earth-based astronomy, miniaturization, artificial intelligence, infrastructure development, transhumanism, and others. For example, what new information could be acquired after 30 years of further advances in astronomy compared to a space probe with current technology and a 30 year flight time? The final factor of the study is to assess the pace and risks of the enormous energy levels required for interstellar flight. To compare disparate methods, a set of 'meta measures' will be defined and

  16. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  17. Interstellar extinction in the Taurus dark clouds

    International Nuclear Information System (INIS)

    Meistas, E.; Straizys, V.

    1981-01-01

    The results of photoelectric photometry of 89 stars in the Vilnius seven-color system in the area of the Taurus dark clouds with corrdinates (1950) 4sup(h)16sup(m)-4sup(h)33sup(m), +16 0 -+20 0 are presented. Photometric spectral types, absolute magnitude, color excesses, interstellar extinctions and distances of the stars are determined. The distance of the dark nebula is found to be 140 pc and is in a good agreement with the distance determined for the dark nebula Khavtassi 286, 278. The average extinction Asub(v) in the investigated area is of the order of 1.4. (author)

  18. Interstellar colonization and the zoo hypothesis

    International Nuclear Information System (INIS)

    Jones, E.M.

    1978-01-01

    Michael Hart and others have pointed out that current estimates of the number of technological civilizations arisen in the Galaxy since its formation is in fundamental conflict with the expectation that such a civilization could colonize and utilize the entire Galaxy in 10 to 20 million years. This dilemma can be called Hart's paradox. Resolution of the paradox requires that one or more of the following are true: we are the Galaxy's first technical civilization; interstellar travel is immensely impractical or simply impossible; technological civilizations are very short-lived; or we inhabit a wildnerness preserve. The latter is the zoo hypothesis

  19. The interstellar medium in galaxies - An overview

    Science.gov (United States)

    Knapp, G. R.

    1990-01-01

    Recent observational developments on the subject of the interstellar medium in galaxies are summarized, with emphasis placed on global properties. The properties and distribution of the ISM in the solar neighborhood and in the Galactic plane are examined and a number of results from the most important observational probes (HI, CO, and infrared) are described. A recent development is the observation of the ISM in galaxies of all morphological types, early to late. These developments are summarized and the properties of different types of galaxies are compared to one another. The origin of radio galaxies, the effect of environment, and the prospects for direct observations of ISM evolution in galaxies are discussed.

  20. OH radiation from the interstellar cloud medium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Q-Rieu,; Winnberg, A [Max-Planck-Institut fuer Radioastronomie, Bonn (F.R. Germany); Guibert, J [Observatoire de Paris, Section de Meudon, 92 (France); Lepine, J R.D. [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia et Astrofisica; Johansson, L E.B. [Rymdobservatoriet, Onsala (Sweden); Goss, W M [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics

    1976-02-01

    We have detected OH in the direction of about 50% of the continuum sources investigated. The OH abundance is one order of magnitude less than usually found in dust clouds. Most of the OH features have HI counterparts. This suggests that the OH radiation arises from the HI interstellar cold clouds. Our observations allowed in some cases the determination of the excitation temperatures in all four lines. A pumping model involving far-infrared radiation and collisions with neutral and charged particles has been proposed. It explains the observed excitation temperatures.

  1. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  2. Chemical equilibrium models of interstellar gas clouds

    International Nuclear Information System (INIS)

    Freeman, A.

    1982-10-01

    This thesis contains work which helps towards our understanding of the chemical processes and astrophysical conditions in interstellar clouds, across the whole range of cloud types. The object of the exercise is to construct a mathematical model representing a large system of two-body chemical reactions in order to deduce astrophysical parameters and predict molecular abundances and chemical pathways. Comparison with observations shows that this type of model is valid but also indicates that our knowledge of some chemical reactions is incomplete. (author)

  3. Interstellar extinction in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nandy, K.; Morgan, D.H.; Willis, A.J.; Wilson, R.; Gondhalekar, P.M.; Houziaux, L.

    1980-01-01

    Recent UV observations together with complementary visible data of several reddened and comparison stars of similar spectral types in the Large Magellanic Cloud have been used to study the interstellar extinction in that galaxy. Most of the reddened stars studied here are located within 2 0 of 30 Doradus and show remarkably high extinction in the far UV, suggesting a large abundance of small particles. From the optical wavelength to 2,600 A the normalised extinction curves of the LMC stars are similar to the mean galactic extinction law. (author)

  4. PROPERTIES OF DIFFUSE INTERSTELLAR BANDS AT DIFFERENT PHYSICAL CONDITIONS OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Kos, J.; Zwitter, T.

    2013-01-01

    Diffuse interstellar bands (DIBs) can trace different conditions of the interstellar medium (ISM) along the sightline toward the observed stars. A small survey was made in optical wavelengths, producing high-resolution and high signal-to-noise spectra. We present measurements of 19 DIBs' properties in 50 sightlines toward hot stars, distributed at a variety of galactic coordinates and interstellar reddening. Equivalent widths were obtained by fitting asymmetric Gaussian and variable continua to DIBs. Conditions of the ISM were calculated from eight atomic and molecular interstellar lines. Two distinctly different types of DIBs were identified by carefully comparing correlation coefficients between DIBs and reddening and by different behavior in UV-shielded (ζ) and nonshielded (σ) sightlines. A ratio of DIBs at 5780 Å and 5797 Å proved to be reliable enough to distinguish between two different sightline types. Based on the linear relations between DIB equivalent width and reddening for σ and ζ sightlines, we divide DIBs into type I (where both linear relations are similar) and type II (where they are significantly different). The linear relation for ζ type sightlines always shows a higher slope and larger x-intercept parameter than the relation for σ sightlines. Scatter around the linear relation is reduced after the separation, but it does not vanish completely. This means that UV shielding is the dominant factor of the DIB equivalent width versus reddening relation shape for ζ sightlines, but in σ sightlines other physical parameters play a major role. No similar dependency on gas density, electron density, or turbulence was observed. A catalog of all observed interstellar lines is made public

  5. Grain Handling and Storage.

    Science.gov (United States)

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  6. Grain Grading and Handling.

    Science.gov (United States)

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  7. Distribution of Interstellar Reddening Material in the Galactic Plane

    Directory of Open Access Journals (Sweden)

    Chulhee Kim

    1987-12-01

    Full Text Available By using the recently determined color excess and distance data of classical cepheids by Kim(1985, the distribution of interstellar reddening material was studied to see the general picture of the average rate of interstellar absorption out to about 7-8kpc in the Galactic plane in various directions from the sun.

  8. GAS PHASE SYNTHESIS OF (ISO)QUINOLINE AND ITS ROLE IN THE FORMATION OF NUCLEOBASES IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Parker, Dorian S. N.; Kaiser, Ralf I.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Mebel, Alexander M.; Tielens, Alexander G. G. M.

    2015-01-01

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellar shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite

  9. A Search for Interstellar Monohydric Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Chakrabarti, Sandip K. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Rd., Kolkata, 700084 (India); Sivaraman, Bhalamurugan [Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, 380009 (India); Etim, Emmanuel E., E-mail: ankan.das@gmail.com [Indian Institute of Science Bangalore, 560012 (India)

    2017-02-10

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  10. 26Al in the interstellar medium

    International Nuclear Information System (INIS)

    Clayton, D.D.; Leising, M.D.

    1987-01-01

    Several different lines of physical reasoning have converged on the importance of the radioactive nucleus 26 Al. The sciences of meteoritics, nucleosynthesis, gamma-ray astronomy, galactic chemical evolution, solar system formation, and interstellar chemistry all place this nucleus in a central position with possible profound implications. Perhaps more importantly the study of this radioactivity can unite these diverse fields in a complicated framework which will benefit all of them. This review traces the evolution of ideas concerning 26 Al in the context of these disciplines. 26 Al was first discussed for the possibility that its decay energy could melt meteorite parent bodies, and its daughter, 26 Mg, was later found in meteorites with enhanced abundance. It was also among the first radioactivities expected to be synthesized in interestingly large quantities in nulceosynthetic events. The first definitive detection of gamma-rays from an interstellar radioactivity is that of 1.809 MeV gamma-rays from 26 Al. This discovery has many implications, some of which are outlined here. The whole problem of isotopic anomalies in meteorites is greatly influenced by the specific issues surrounding excess 26 Mg, whether it represents in situ decay of 26 Al or memory of conditions of the ISM. The relationships among these ideas and their implications are examined. (orig.)

  11. UV observations of local interstellar medium.

    Science.gov (United States)

    Kurt, V.; Mironova, E.; Fadeev, E.

    2008-12-01

    The methods of the interstellar matter study are described. The brief information of space missions aimed at observations in the unreachable for ground based telescopes UV spectral range (IUE, As- tron, HST and GALEX.) is presented. The history of discovery of H and He atoms entering the Solar System from the local interstellar medium (LISM) is given in brief. The results of observations performed by the group from Stern- berg Astronomical Institute (SAI MSU) and Space Research Institute (IKI RAS) performed with the help of the missions Prognoz-5, Prognoz-6 and the stations Zond-1, Venera and Mars and aimed at estimation of all basic LISM parameters (the velocity of the Sun in relation to LISM, directions of movement, densities of H and He atoms, LISM temperature) are presented. We also describe the present-day investigations of LISM performed with SOHO and ULYSSES mis- sions including the direct registration of He atoms entering the Solar System. The problem of interaction between the incoming flow of the ISM atoms ("in- terstellar wind") and the area of two shocks at the heliopause border (100-200 AU) is discussed. The LISM parameters obtained using the available data are presented in two tables.

  12. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  13. PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN

    Energy Technology Data Exchange (ETDEWEB)

    Gurnett, D. A.; Kurth, W. S. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA 52242 (United States); Stone, E. C.; Cummings, A. C. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Krimigis, S. M.; Decker, R. B. [Applied Physics Laboratory/JHU, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Ness, N. F. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Burlaga, L. F., E-mail: donald-gurnett@uiowa.edu [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-08-20

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the “foreshock” that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  14. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    Science.gov (United States)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  15. Laboratory Studies of the Formation of Interstellar Dust from Molecular Precursors

    Science.gov (United States)

    Contreras, Cesar S.; Salama, Farid

    2009-06-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the carbonaceous dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains and all are expected to exhibit FIR spectral signatures. Space observations from the UV (HST) to the IR (ISO, Spitzer) help place size constraints on the molecular component of carbonaceous IS dust and its contribution to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic

  16. A Combined Experimental and Theoretical Study on the Formation of Interstellar Propylene Oxide (CH3CHCH2O)—A Chiral Molecule

    Science.gov (United States)

    Bergantini, Alexandre; Abplanalp, Matthew J.; Pokhilko, Pavel; Krylov, Anna I.; Shingledecker, Christopher N.; Herbst, Eric; Kaiser, Ralf I.

    2018-06-01

    This work reveals via a combined experimental, computational, and astrochemical modeling study that racemic propylene oxide (c-C3H6O)—the first chiral molecule detected outside Earth toward the high-mass star-forming region Sagittarius B2(N)—can be synthesized by non-equilibrium reactions initiated by the effects of secondary electrons generated in the track of cosmic rays interacting with ice-coated interstellar grains through excited-state and spin-forbidden reaction pathways operating within low-temperature interstellar ices at 10 K. Our findings confront traditional hypotheses that thermal chemistries followed by processing of interstellar grains dictate the formation of complex organic molecules (COMs) in molecular clouds. Instead, we reveal a hitherto poorly quantified reaction class involving excited-state and spin-forbidden chemistry leading to racemic mixtures of COMs inside interstellar ices prior to their sublimation in star-forming regions. This fundamental production mechanism is of essential consequence in aiding our understanding of the origin and evolution of chiral molecules in the universe.

  17. One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO2-C2H6 films at 11 K. A FTIR study

    International Nuclear Information System (INIS)

    Schriver, A.; Schriver-Mazzuoli, L.; Ehrenfreund, P.; D'Hendecourt, L.

    2007-01-01

    It has been predicted by theoretical models that ethane and ethanol are present in icy mantles covering dust particles in dense interstellar clouds. Laboratory spectra of ethanol embedded in astrophysically relevant ice matrices were compared to the Infrared Space Observatory and ground-based astronomical spectra of high mass protostars. From this comparison strict upper-limits of ethanol (compared to solid water) on interstellar grains could be derived that are below 1.2%. In dense star forming regions ethanol is observed in gas phase with an abundance which is many orders of magnitude in excess of predictions based on pure gas-phase chemistry. Ethane has not been observed in the interstellar gas or on grains. In contrast, ethane has been detected in several comets with a percentage of 2 + C 2 H 6 , of CH 3 CH 2 OH and CH 3 CHO in addition to photoproducts of CO 2 or C 2 H 6 and their implications for interstellar/cometary chemistry

  18. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  19. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: Richard.G.Arendt@nasa.gov [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  20. Interstellar Mapping and Acceleration Probe (IMAP)

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Moebius, E.; Spence, H. E.; Opher, M.; Kasper, J.; Zurbuchen, T. H.; Mewaldt, R.

    2016-01-01

    Our piece of cosmic real estate, the heliosphere, is the domain of all human existence – an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (∼5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion

  1. Interstellar scattering of pulsar radiation. Pt. 1

    International Nuclear Information System (INIS)

    Backer, D.C.

    1975-01-01

    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that spectra of interstellar scintillation are consistent with a gaussian shape, that scintillation indices are near unity, and that scintillation bandwidth depends linearly on dispersion measure. Observations at cm wavelengths show that the observer is in the near field of the scattering medium for objects with the lowest dispersion measures, and confirm the step dependence of correlation bandwidth on dispersion measure found by Sutton (1971). The variation of scattering parameters with dispersion measure may indicate that the rms deviation of thermal electron density on the scale of 10 11 cm grows with path length through the galaxy. (orig.) [de

  2. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  3. The mass spectrum of interstellar clouds

    International Nuclear Information System (INIS)

    Dickey, J.M.; Garwood, R.W.

    1989-01-01

    The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal. 36 refs

  4. Structure and characteristics of diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Arshutkin, L.N.; Kolesnik, I.G.

    1978-01-01

    The results of model calculations for spherically symmetrical interstellar clouds being under external pressure are given. Thermal balance of gas clouds is considered. Ultraviolet radiation fields in clouds and equilibrium for chemical elements are calculated for this purpose. Calculations were carried out in the case when cooling is under way mainly by carbon atoms and ions. The clouds with mass up to 700 Msub(sun) under external pressure from 800 to 3000 K cm -3 are considered. In typical for Galactic disk conditions, clouds have dense n > or approximately 200 cm -3 , and cold T approximately 20-30 K state clouds depending on external pressure is given. The critical mass for clouds at the Galactic disk is approximately 500-600 Msub(sun). It is less than the isothermal solution by a factor of approximately 1.5. The massive gas-dust cloud formation problem is discussed

  5. Searching for Cost-Optimized Interstellar Beacons

    Science.gov (United States)

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-06-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arriarrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses.

  6. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  7. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    International Nuclear Information System (INIS)

    Guessoum, N.; Jean, P.; Gillard, W.

    2006-01-01

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM

  8. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Guessoum, N. [American University of Sharjah, Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: nguessoum@aus.ac.ae; Jean, P. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Gillard, W. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France)

    2006-02-28

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM.

  9. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  10. Interstellar Ices and Radiation-induced Oxidations of Alcohols

    Science.gov (United States)

    Hudson, R. L.; Moore, M. H.

    2018-04-01

    Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted.

  11. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    Science.gov (United States)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  12. SEARCHING FOR NAPHTHALENE CATION ABSORPTION IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Searles, Justin M.; Destree, Joshua D.; Snow, Theodore P.; Salama, Farid; York, Donald G.; Dahlstrom, Julie

    2011-01-01

    Interstellar naphthalene cations (C 10 H + 8 ) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C 10 H + 8 is not a DIB carrier in typical reddened sight lines.

  13. Astronomical and Meteoritic Evidence for the Nature of Interstellar Dust and Its Processing in Protoplanetary Disks

    Science.gov (United States)

    Alexander, C. M. O'd.; Boss, A. P.; Keller, L. P.; Nuth, J. A.; Weinberger, A.

    Here we compare the astronomical and meteoritic evidence for the nature and origin of interstellar dust, and how it is processed in protoplanetary disks. The relative abundances of circumstellar grains in meteorites and interplanetary dust particles (IDPs) are broadly consistent with most astronomical estimates of galactic dust production, although graphite/amorphous C is highly underabundant. The major carbonaceous component in meteorites and IDPs is an insoluble organic material (IOM) that probably formed in the interstellar medium, but a solar origin cannot be ruled out. GEMS (glass with embedded metal and sulfide) that are isotopically solar within error are the best candidates for interstellar silicates, but it is also possible that they are solar system condensates. No dust from young stellar objects has been identified in IDPs, but it is difficult to differentiate them from solar system material or indeed some circumstellar condensates. The crystalline silicates in IDPs are mostly solar condensates, with lesser amounts of annealed GEMS. The IOM abundances in IDPs are roughly consistent with the degree of processing indicated by their crystallinity if the processed material was ISM dust. The IOM contents of meteorites are much lower, suggesting that there was a gradient in dust processing in the solar system. The microstructure of much of the pyroxene in IDPs suggests that it formed at temperatures >1258 K and cooled relatively rapidly (~1000 K/h). This cooling rate favors shock heating rather than radial transport of material annealed in the hot inner disk as the mechanism for producing crystalline dust in comets and IDPs. Shock heating is also a likely mechanism for producing chondrules in meteorites, but the dust was probably heated at a different time and/or location to chondrules.

  14. The interstellar carbonaceous aromatic matter as a trap for molecular hydrogen

    Science.gov (United States)

    Pauzat, F.; Lattelais, M.; Ellinger, Y.; Minot, C.

    2011-04-01

    We report a theoretical study of the physisorption of molecular hydrogen, H2, on a major component of the interstellar dust, namely, the polyaromatic carbonaceous grains. Going beyond the model of the polycyclic aromatic hydrocarbon freeflyers and its theoretical treatment within the super molecule approach, we consider the graphene surface in a Density Functional Theory periodic approach using plane-wave expansions. The physisorption energy of isolated H2 on that flat and rigid support is determined to be attractive by ˜0.75 kcal mol-1 and practically independent of the orientation with respect to the infinite surface. Since this energy is also not affected by the position (over a ring centre, a carbon atom or the middle of a carbon-carbon bond), we can conclude that H2 is able to move freely like a ball rolling on the graphene support. We also investigate the conditions for multiple physisorption. It leads to a monolayer of H2 molecules where the corresponding interaction energy per H2 amounts to a potential depth of ˜1 kcal mol-1, close to the available experimental estimates ranging from 1.1 to 1.2 kcal mol-1. We show that the most energetically favourable coverage, which corresponds to an arrangement of the H2 molecules, the closest possible to the dimer configuration, leads to a surface density of ˜0.8 × 1015 molecule cm-2. Finally, assuming that 15-20 per cent of the interstellar carbon is locked in aromatic systems, one obtains ˜10-5 of the interstellar hydrogen trapped as H2 on such types of surfaces.

  15. THE EFFICIENCY AND WAVELENGTH DEPENDENCE OF NEAR-INFRARED INTERSTELLAR POLARIZATION TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Hirofumi; Kurita, Mikio; Kanai, Saori; Sato, Shuji [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishiyama, Shogo; Nakajima, Yasushi; Tamura, Motohide; Kandori, Ryo [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8858 (Japan); Nagata, Tetsuya; Yoshikawa, Tatsuhito [Department of Astronomy, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kato, Daisuke [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sato, Yaeko; Suenaga, Takuya, E-mail: hattan@z.phys.nagoya-u.ac.jp, E-mail: shogo.nishiyama@nao.ac.jp [Department of Astronomical Sciences, Graduate University for Advanced Studies (Sokendai), Mitaka, Tokyo 181-8858 (Japan)

    2013-04-15

    Near-infrared polarimetric imaging observations toward the Galactic center (GC) have been carried out to examine the efficiency and wavelength dependence of interstellar polarization. A total area of about 5.7 deg{sup 2} is covered in the J, H, and K{sub S} bands. We examined the polarization efficiency, defined as the ratio of the degree of polarization to color excess. The interstellar medium between the GC and us shows a polarization efficiency lower than that in the Galactic disk by a factor of three. Moreover we investigated the spatial variation of the polarization efficiency by comparing it with that of the color excess, degree of polarization, and position angle. The spatial variations of color excess and degree of polarization depend on the Galactic latitude, while the polarization efficiency varies independently of the Galactic structure. Position angles are nearly parallel to the Galactic plane, indicating a longitudinal magnetic field configuration between the GC and us. The polarization efficiency anticorrelates with dispersions of position angles. The low polarization efficiency and its spatial variation can be explained by the differences in the magnetic field directions along the line of sight. From the lower polarization efficiency, we suggest a higher strength of a random component relative to a uniform component of the magnetic field between the GC and us. We also derived the ratios of degree of polarization p{sub H} /p{sub J} = 0.581 {+-} 0.004 and p{sub K{sub S}}/p{sub H} = 0.620 {+-} 0.002. The power-law indices of the wavelength dependence of polarization are {beta}{sub JH} = 2.08 {+-} 0.02 and {beta}{sub HK{sub S}} = 1.76 {+-} 0.01. Therefore, the wavelength dependence of interstellar polarization exhibits flattening toward longer wavelengths in the range of 1.25-2.14 {mu}m. The flattening would be caused by aligned large-size dust grains.

  16. A self-consistent model of the three-phase interstellar medium in disk galaxies

    International Nuclear Information System (INIS)

    Wang, Z.

    1989-01-01

    In the present study the author analyzes a number of physical processes concerning velocity and spatial distributions, ionization structure, pressure variation, mass and energy balance, and equation of state of the diffuse interstellar gas in a three phase model. He also considers the effects of this model on the formation of molecular clouds and the evolution of disk galaxies. The primary purpose is to incorporate self-consistently the interstellar conditions in a typical late-type galaxy, and to relate these to various observed large-scale phenomena. He models idealized situations both analytically and numerically, and compares the results with observational data of the Milky Way Galaxy and other nearby disk galaxies. Several main conclusions of this study are: (1) the highly ionized gas found in the lower Galactic halo is shown to be consistent with a model in which the gas is photoionized by the diffuse ultraviolet radiation; (2) in a quasi-static and self-regulatory configuration, the photoelectric effects of interstellar grains are primarily responsible for heating the cold (T ≅ 100K) gas; the warm (T ≅ 8,000K) gas may be heated by supernova remnants and other mechanisms; (3) the large-scale atomic and molecular gas distributions in a sample of 15 disk galaxies can be well explained if molecular cloud formation and star formation follow a modified Schmidt Law; a scaling law for the radial gas profiles is proposed based on this model, and it is shown to be applicable to the nearby late-type galaxies where radio mapping data is available; for disk galaxies of earlier type, the effect of their massive central bulges may have to be taken into account

  17. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  18. The influence of Oort clouds on the mass and chemical balance of the interstellar medium

    International Nuclear Information System (INIS)

    Stern, S.A.; Shull, J.M.

    1990-01-01

    The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common. 50 refs

  19. Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry

    Science.gov (United States)

    Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.

    2014-12-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.

  20. LABORATORY FORMATION OF FULLERENES FROM PAHS: TOP-DOWN INTERSTELLAR CHEMISTRY

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castellanos, Pablo; Tielens, Alexander G. G. M.; Paardekooper, Daniel M.; Linnartz, Harold

    2014-01-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C 60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C 60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C 2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C 60 . These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space

  1. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Science.gov (United States)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  2. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  3. Growing interstellar molecules with ion-molecule reactions

    International Nuclear Information System (INIS)

    Bohme, D.K.

    1989-01-01

    Laboratory measurements of gas-phase ion-molecule reactions continue to provide important insights into the chemistry of molecular growth in interstellar environments. It is also true that the measurements are becoming more demanding as larger molecules capture our interest. While some of these measurements are motivated by current developments in chemical models of interstellar environments or by new molecular observations by astronomers, others explore novel chemistry which can lead to predictions of new interstellar molecules. Here the author views the results of some recent measurements, taken in the Ion Chemistry Laboratory at York University with the SIFT technique, which address some of the current needs of modellers and observers and which also provide some new fundamental insight into molecular growth, particularly when it occurs in the presence of large molecules such as PAH molecules which are now thought to have a major influence on the chemistry of interstellar environments in which they are present

  4. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  5. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  6. On the Efficiency of Grain Alignment in Dark Clouds

    Science.gov (United States)

    Lazarian, A.; Goodman, Alyssa A.; Myers, Philip C.

    1997-11-01

    A quantitative analysis of grain alignment in the filamentary dark cloud L1755 in Ophiuchus is presented. We show that the observed decrease of the polarization-to-extinction ratio for the inner parts of this quiescent dark cloud can be explained as a result of the decrease of the efficiency of grain alignment. We make quantitative estimates of grain alignment efficiency for six mechanisms involving grains with either thermal or suprathermal rotation, interacting with either magnetic field or gaseous flow. We also make semiquantitative estimates of grain alignment by radiative torques. We show that in conditions typical of dark cloud interiors, all known major mechanisms of grain alignment fail. All the studied mechanisms predict polarization at least an order of magnitude below the currently detectable levels of ~1%. On the contrary, in the dark cloud environments where Av sight, including the interiors of dark quiescent clouds, where no alignment is possible. We dedicate this paper to the memory of Edward M. Purcell and Lyman Spitzer, Jr., two pioneers in the quantitative study of the interstellar medium.

  7. The local interstellar medium and gamma-ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.; Paul, J.

    1985-08-01

    The recent improvement of the calibration of the galaxy counts used as an interstellar-absorption tracer modifies significantly the picture of the local interstellar medium (ISM). Consequently, previous analyses of the γ-ray emission from the local ISM involving galaxy counts have to be revised. In this paper, we consider the implications regarding the cosmic-ray (CR) density in the local ISM, and in particular within Loop I, a nearby supernova remnant (SNR)

  8. Stellar and interstellar K lines - Gamma Pegasi and iota Herculis.

    Science.gov (United States)

    Hobbs, L. M.

    1973-01-01

    High-resolution scans show that the relatively strong (about 90 mA) K lines of Ca II in the early B stars gamma-Peg and iota-Her are almost entirely stellar in origin, although the latter case includes a small interstellar contribution. Such stellar lines can be of great importance in augmenting the interstellar absorption, up through the earliest of the B stars.

  9. The Turbulent Interstellar Medium: Insights and Questions from Numerical Models

    OpenAIRE

    Mac Low, Mordecai-Mark; de Avillez, Miguel A.; Korpi, Maarit J.

    2003-01-01

    "The purpose of numerical models is not numbers but insight." (Hamming) In the spirit of this adage, and of Don Cox's approach to scientific speaking, we discuss the questions that the latest generation of numerical models of the interstellar medium raise, at least for us. The energy source for the interstellar turbulence is still under discussion. We review the argument for supernovae dominating in star forming regions. Magnetorotational instability has been suggested as a way of coupling di...

  10. New look at radiative association in dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.

    1980-01-01

    A corrected statistical theory of radiative association reactions is presented and discussed. Calculations are undertaken to determine the rate coefficients of a variety of radiative association reactions of possible importance in dense interstellar clouds. Our results confirm the suggestion of Smith and Adams that certain radiative association reactions occur quite rapidly at low temperature and are probably important in the synthesis of complex interstellar molecules

  11. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.

    1982-05-01

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation [fr

  12. Modern Progress and Modern Problems in High Resolution X-ray Absorption from the Cold Interstellar Medium

    Science.gov (United States)

    Corrales, Lia; Li, Haochuan; Heinz, Sebastian

    2018-01-01

    With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.

  13. Mid-infrared emission from the local and extragalactic interstellar medium: the Isocam view

    International Nuclear Information System (INIS)

    Tran, Quang-Dan

    1998-01-01

    This research thesis is an attempt to identify the properties of different physical components (UIB, VSG, and so on) which can be observed by the camera embarked in the ISO satellite (ISOCAM), and to use these properties to understand the emission of galaxies in the middle infrared. In the first part, the author addresses dusts as they can be seen in the Galaxy interstellar medium. The objective is to obtain some elements of understanding on the different contributions in the middle infrared. This comprised the study of the impulse mechanism, the study of properties of non-identified infrared bands, and the discussion of very small grains visible in the H II regions. The second part reports the interpretation of the emission of galaxies in the middle infrared. This comprises the interpretation of the infrared emission of starburst galaxies, and the discussion of the emission of spiral galaxies and of the way this emission can be understood [fr

  14. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

    Science.gov (United States)

    Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.

    2018-03-01

    The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.

  15. The hydrogen coverage of interstellar PAHs [Polycyclic Aromatic Hydrocarbons

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.; Allamandola, L.J.; Barker, J.R.; Cohen, M.

    1986-02-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a uv photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense uv fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments

  16. Small-scale structure in the diffuse interstellar medium

    International Nuclear Information System (INIS)

    Meyer, D.M.

    1990-01-01

    The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less. 21 refs

  17. Starry messages: Searching for signatures of interstellar archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  18. Infrared spectra of interstellar deuteronated PAHs

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  19. Circumstellar grain extinction properties of recently discovered post AGB stars

    International Nuclear Information System (INIS)

    Buss, R.H. Jr.; Lamers, H.J.G.L.M.; Snow, T.P. Jr.

    1989-01-01

    The circumstellar grains of two hot evolved post asymptotic giant branch (post AGB) stars, HD 89353 and HD 213985 were examined. From ultraviolet spectra, energy balance of the flux, and Kurucz models, the extinction around 2175 A was derived. With visual spectra, an attempt was made to detect 6614 A diffuse band absorption arising from the circumstellar grains so that we could examine the relationship of these features to the infrared features. For both stars, we did not detect any diffuse band absorption at 6614 A, implying the carrier of this diffuse band is not the carrier of the unidentified infrared features not of the 2175 A bump. The linear ultraviolet extinction of the carbon-rich star HD 89353 was determined to continue across the 2175 A region with no sign of the bump; for HD 213985 it was found to be the reverse: a strong, wide bump in the mid-ultraviolet. The 213985 bump was found to be positioned at 2340 A, longward of its usual position in the interstellar medium. Since HD 213985 was determined to have excess carbon, the bump probably arises from a carbonaceous grain. Thus, in view of the ultraviolet and infrared properties of the two post AGB stars, ubiquitous interstellar infrared emission features do not seem to be associated with the 2175 A bump. Instead, the infrared features seem related to the linear ultraviolet extinction component: hydrocarbon grains of radius less than 300 A are present with the linear HD 89353 extinction; amorphous anhydrous carbonaceous grains of radius less than 50 A might cause the shifted ultraviolet extinction bump of HD 213985

  20. Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains

    Science.gov (United States)

    Papoular, Robert J.; Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.; Papoular, Renaud

    2013-07-01

    The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the ultraviolet extinction of nanoparticles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 Å features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 μm-1, while its peak position shifts from 4.65 to 4.75 μm-1. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 μm-1). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial sp2 bondings into sp3 or sp1, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals, etc. The present treatment thus bridges gaps between physically different model materials.

  1. THE 6 μ m FEATURE AS A TRACER OF ALIPHATIC COMPONENTS OF INTERSTELLAR CARBONACEOUS GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Hsia Chih-Hao; Sadjadi, Seyedabdolreza; Zhang Yong; Kwok Sun, E-mail: chhsia@must.edu.mo, E-mail: ssadjadi@hku.hk, E-mail: zhangy96@hku.hk, E-mail: sunkwok@hku.hk [Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2016-12-01

    An unidentified infrared emission (UIE) feature at 6.0 μ m is detected in a number of astronomical sources showing the UIE bands. In contrast to the previous suggestion that this band is due to C=O vibrational modes, we suggest that the 6.0 μ m feature arises from olefinic double-bond functional groups. These groups are likely to be attached to aromatic rings, which are responsible for the major UIE bands. The possibility that the formation of these functional groups is related to the hydrogenation process is discussed.

  2. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbonsformation

    Czech Academy of Sciences Publication Activity Database

    Merino, P.; Švec, Martin; Martinez, J. I.; Jelínek, Pavel; Lacovig, P.; Dalmiglio, M.; Lizzit, S.; Soukiassian, P.; Cernicharo, J.; Martin-Gago, J. A.

    2014-01-01

    Roč. 5, JAN (2014), s. 1-9 ISSN 2041-1723 Grant - others:AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : STM * DFT * astronomy * graphene * PAH Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014 http://www.nature.com/ncomms/2014/140121/ncomms4054/full/ncomms4054.html

  3. Dust in the small Magellanic cloud. 1: Interstellar polarization and extinction data

    Science.gov (United States)

    Magalhaes, A. M.; Rodrigues, C. V.; Coyne, C. V.; Piirola, V.

    1996-01-01

    The typical extinction curve for the Small Magellanic Cloud (SMC), in contrast to that for the Galaxy, has no bump at 2175 A and has a steeper rise into the far ultraviolet. For the Galaxy the interpretation of the extinction and, therefore, the dust content of the interstellar medium has been greatly assisted by measurements of the wavelength dependence of the polarization. For the SMC no such measurements existed. Therefore, to further elucidate the dust properties in the SMC we have for the first time measured linear polarization with five colors in the optical region of the spectrum for a sample of reddened stars. For two of these stars, for which there were no existing UV spectrophotometric measurements, but for which we measured a relatively large polarization, we have also obtained data from the International Ultraviolet Explorer (IUE) in order to study the extinction. We also attempt to correlate the SMC extinction and polarization data. The main results are: the wavelength of maximum polarization, lambda(sub max), in the SMC is typically smaller than that in the Galaxy; however, AZC 456, which shows the UV extinction bump, has a lambda(sub max) typical of that in the Galaxy, but its polarization curve is narrower and its bump is shifted to shorter wavelengths as compared to the Galaxy; and from an analysis of both the extinction and polarization data it appears that the SMC has typically smaller grains than those in the Galaxy. The absence of the extinction bump in the SMC has generally been thought to imply a lower carbon abundance in the SMC compared to the Galaxy. We interpret our results to mean that te size distribution of the interstellar grains, and not only the carbon abundance, is different in the SMC as compared to the Galaxy. In Paper 2 we present dust model fits to these observations.

  4. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  5. Size distribution of dust grains: A problem of self-similarity

    International Nuclear Information System (INIS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all

  6. Size and density distribution of very small dust grains in the Barnard 5 cloud

    Science.gov (United States)

    Lis, Dariusz C.; Leung, Chun Ming

    1991-01-01

    The effects of the temperature fluctuations in small graphite grains on the energy spectrum and the IR surface brightness of an isolated dust cloud heated externally by the interstellar radiation field were investigated using a series of models based on a radiation transport computer code. This code treats self-consistently the thermal coupling between the transient heating of very small dust grains and the equilibrium heating of conventional large grains. The model results were compared with the IRAS observations of the Barnard 5 (B5) cloud, showing that the 25-micron emission of the cloud must be produced by small grains with a 6-10 A radius, which also contribute about 50 percent to the observed 12-micron emission. The remaining 12 micron flux may be produced by the polycyclic aromatic hydrocarbons. The 60-and 100-micron radiation is dominated by emission from large grains heated under equilibrium conditions.

  7. Interstellar clouds and the formation of stars

    International Nuclear Information System (INIS)

    Alfen, H.; Carlqvist, P.

    1977-12-01

    The 'pseudo-plasma formalism' which up to now has almost completely dominated theoretical astrophysics must be replaced by an experimentally based approach, involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. The revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud, they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instablility. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems

  8. Stability of interstellar clouds containing magnetic fields

    International Nuclear Information System (INIS)

    Langer, W.D.; and Bell Laboratories, Crawford Hill Laboratory, Holmdel, NJ)

    1978-01-01

    The stability of interstellar clouds against gravitational collapse and fragmentation in the presence of magnetic fields is investigated. A magnetic field can provide pressure support against collapse if it is strongly coupled to the neutral gas; this coupling is mediated by ion-neutral collisions in the gas. The time scale for the growth of perturbations in the gas is found to be a sensitive function of the fractional ion abundance of the gas. For a relatively large fractional ion abundance, corresponding to strong coupling, the collapse of the gas is retarded. Star formation is inhibited in dense clouds and the collapse time for diffuse clouds cn exceed the limit on their lifetime set by disruptive processes. For a small fractional ion abundance, the magnetic fields do not inhibit collapse and the distribution of the masses of collapsing fragments are likely to be quite different in regions of differing ion abundance. The solutions also predict the existence of large-scale density waves corresponding to two gravitational-magnetoacoustic modes. The conditions which best support these modes correspond to those found in the giant molecular clouds

  9. VIBRONIC PROGRESSIONS IN SEVERAL DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Duley, W. W.; Kuzmin, Stanislav

    2010-01-01

    A number of vibronic progressions based on low-energy vibrational modes of a large molecule have been found in the diffuse interstellar band (DIB) spectrum of HD 183143. Four active vibrational modes have been identified with energies at 5.18 cm -1 , 21.41 cm -1 , 31.55 cm -1 , and 34.02 cm -1 . The mode at 34.02 cm -1 was previously recognized by Herbig. Four bands are associated with this molecule, with origins at 6862.61 A, 6843.64 A, 6203.14 A, and 5545.11 A (14589.1 cm -1 , 14608.08 cm -1 , 16116.41 cm -1 , and 18028.9 cm -1 , respectively). The progressions are harmonic and combination bands are observed involving all modes. The appearance of harmonic, rather than anharmonic, terms in these vibronic progressions is consistent with torsional motion of pendant rings, suggesting that the carrier is a 'floppy' molecule. Some constraints on the type and size of the molecule producing these bands are discussed.

  10. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  11. Interstellar Extinction in 20 Open Star Clusters

    Science.gov (United States)

    Rangwal, Geeta; Yadav, R. K. S.; Durgapal, Alok K.; Bisht, D.

    2017-12-01

    The interstellar extinction law in 20 open star clusters namely, Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B - V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362, and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69, and IC 4996. We have found that the differential colour-excess ΔE(B - V), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of colour excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. For the clusters Berkeley 7, NGC 7380, and NGC 6871, a dependence of colour excess E(B - V) with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530, and one star in NGC 6231 have excess flux in near-IR. This indicates that these stars may have circumstellar material around them.

  12. DYNAMIC SPECTRAL MAPPING OF INTERSTELLAR PLASMA LENSES

    Energy Technology Data Exchange (ETDEWEB)

    Tuntsov, Artem V.; Walker, Mark A. [Manly Astrophysics, 3/22 Cliff Street, Manly 2095 (Australia); Koopmans, Leon V. E. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Bannister, Keith W.; Stevens, Jamie; Johnston, Simon [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Reynolds, Cormac; Bignall, Hayley E., E-mail: Artem.Tuntsov@manlyastrophysics.org, E-mail: Mark.Walker@manlyastrophysics.org, E-mail: koopmans@astro.rug.nl [International Centre for Radio Astronomy Research—Curtin University, Perth (Australia)

    2016-02-01

    Compact radio sources sometimes exhibit intervals of large, rapid changes in their flux density, due to lensing by interstellar plasma crossing the line of sight. A novel survey program has made it possible to discover these “Extreme Scattering Events” (ESEs) in real time, resulting in a high-quality dynamic spectrum of an ESE observed in PKS 1939–315. Here we present a method for determining the column-density profile of a plasma lens, given only the dynamic radio spectrum of the lensed source, under the assumption that the lens is either axisymmetric or totally anisotropic. Our technique relies on the known, strong frequency dependence of the plasma refractive index in order to determine how points in the dynamic spectrum map to positions on the lens. We apply our method to high-frequency (4.2–10.8 GHz) data from the Australia Telescope Compact Array of the PKS 1939–315 ESE. The derived electron column-density profiles are very similar for the two geometries we consider, and both yield a good visual match to the data. However, the fit residuals are substantially above the noise level, and deficiencies are evident when we compare the predictions of our model to lower-frequency (1.6–3.1 GHz) data on the same ESE, thus motivating future development of more sophisticated inversion techniques.

  13. Detection of interstellar vibrationally excited HCN

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Turner, B.E.

    1986-01-01

    Vibrationally excited HCN has been observed for the first time in the interstellar medium. The J = 3-2 rotational transitions of the l-doubled (0,1/sup 1d/,1c, 0) bending mode of HCN have been detected toward Orion-KL and IRC +10216. In Orion, the overall column density in the (0,1,0) mode, which exclusively samples the ''hot core,'' is 1.7-10 16 cm -2 and can be understood in terms of the ''doughnut'' model for Orion. The ground-state HCN column density implied by the excited-state observations is 2.3 x 10 18 cm -2 in the hot core, at least one order of magnitude greater than the column densities derived for HCN in its spike and plateau/doughnut components. Radiative excitation by 14 μm flux from IRc2 accounts for the (0,1,0) population provided the hot core is approx.6-7 x 10 16 cm distant from IRc2, in agreement with the ''cavity'' model for KL. Toward IRC +10216 we have detected J = 3-2 transitions of both (0,1/sup 1c/,/sup 1d/,0) and (0,2 0 ,0) excited states. The spectral profiles have been modeled to yield abundances and excitation conditions throughout the expanding envelope

  14. Interstellar rendezvous missions employing fission propulsion systems

    International Nuclear Information System (INIS)

    Lenard, Roger X.; Lipinski, Ronald J.

    2000-01-01

    There has been a conventionally held nostrum that fission system specific power and energy content is insufficient to provide the requisite high accelerations and velocities to enable interstellar rendezvous missions within a reasonable fraction of a human lifetime. As a consequence, all forms of alternative mechanisms that are not yet, and may never be technologically feasible, have been proposed, including laser light sails, fusion and antimatter propulsion systems. In previous efforts, [Lenard and Lipinski, 1999] the authors developed an architecture that employs fission power to propel two different concepts: one, an unmanned probe, the other a crewed vehicle to Alpha Centauri within mission times of 47 to 60 years. The first portion of this paper discusses employing a variant of the ''Forward Resupply Runway'' utilizing fission systems to enable both high accelerations and high final velocities necessary for this type of travel. The authors argue that such an architecture, while expensive, is considerably less expensive and technologically risky than other technologically advanced concepts, and, further, provides the ability to explore near-Earth stellar systems out to distances of 8 light years or so. This enables the ability to establish independent human societies which can later expand the domain of human exploration in roughly eight light-year increments even presuming that no further physics or technology breakthroughs or advances occur. In the second portion of the paper, a technology requirement assessment is performed. The authors argue that reasonable to extensive extensions to known technology could enable this revolutionary capability

  15. Interstellar extinction in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nandy, K.; Morgan, D.H.; Willis, A.J.; Wilson, R.; Gondhalekar, P.M.

    1981-01-01

    A systematic investigation of interstellar extinction in the ultraviolet as a function of position in the Large Magellanic Cloud has been made from an enlarged sample of reddened and comparison stars distributed throughout the cloud. Except for one star SK-69-108, the most reddened star of our sample, the shape of the extinction curves for the LMC stars do not show significant variations. All curves show an increase in extinction towards 2200 A, but some have maxima near 2200 A, some near 1900 A. It has been shown that the feature of the extinction curve near 1900 A is caused by the mismatch of the stellar F III 1920 A feature. The strength of this 1920 A feature as a function of luminosity and spectral type has been determined. The extinction curves have been corrected for the mismatch of the 1920 feature and a single mean extinction curve for the LMC normalized to Asub(V) = 0 and Esub(B-V) = 1 is presented. For the same value of Esub(B-V) the LMC stars show the 2200 A feature weaker by a factor 2 as compared with the galactic stars. Higher extinction shortward of 2000 A in the LMC extinction curves than that in our Galaxy, as reported in earlier papers, is confirmed. (author)

  16. Interstellar clouds and the formation of stars

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H; Carlqvist, P [Kungliga Tekniska Hoegskolan, Stockholm (Sweden). Institutionen foer Plasmafysik

    1978-05-01

    Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere through in situ measurements. The 'pseudo-plasma formalism', which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A 'stellesimal' accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.

  17. Modelling interstellar structures around Vela X-1

    Science.gov (United States)

    Gvaramadze, V. V.; Alexashov, D. B.; Katushkina, O. A.; Kniazev, A. Y.

    2018-03-01

    We report the discovery of filamentary structures stretched behind the bow-shock-producing high-mass X-ray binary Vela X-1 using the SuperCOSMOS H-alpha Survey and present the results of optical spectroscopy of the bow shock carried out with the Southern African Large Telescope. The geometry of the detected structures suggests that Vela X-1 has encountered a wedge-like layer of enhanced density on its way and that the shocked material of the layer partially outlines a wake downstream of Vela X-1. To substantiate this suggestion, we carried out 3D magnetohydrodynamic simulations of interaction between Vela X-1 and the layer for three limiting cases. Namely, we run simulations in which (i) the stellar wind and the interstellar medium (ISM) were treated as pure hydrodynamic flows, (ii) a homogeneous magnetic field was added to the ISM, while the stellar wind was assumed to be unmagnetized, and (iii) the stellar wind was assumed to possess a helical magnetic field, while there was no magnetic field in the ISM. We found that although the first two simulations can provide a rough agreement with the observations, only the third one allowed us to reproduce not only the wake behind Vela X-1, but also the general geometry of the bow shock ahead of it.

  18. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  19. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  20. Compaction of cereal grain

    OpenAIRE

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  1. Microbiota of kefir grains

    OpenAIRE

    Tomislav Pogačić; Sanja Šinko; Šimun Zamberlin; Dubravka Samaržija

    2013-01-01

    Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities f...

  2. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  3. Is life the rule or the exception? The answer may be in the interstellar clouds

    Science.gov (United States)

    2002-05-01

    Credits: ESA 2002. Illustration by Medialab Did the main ingredients for life come from outer space? In addition to forming in comets and asteroids, amino acids, the 'building blocks' of life, may form in dust grains in the space between the stars Rosetta artist view hi-res Size hi-res: 397 kb Credits: ESA Rosetta’s mission to a comet An artist's impression of the Rosetta spacecraft, its target Comet 67P/Churyumov-Gerasimenko, and the Philae lander being delivered onto its surface. Rosetta’s 11-year expedition began in March 2004, with an Ariane 5 launch from Kourou in French Guiana, and the spacecraft was then sent towards the outer Solar System. The long journey includes three gravity assists at Earth (2004, 2007, 2009), one at Mars (2007), and two asteroid encounters: (2867) Steins (2008) and (21) Lutetia (2010). Rosetta will reach Comet 67/P Churyumov-Gerasimenko in 2014, and will be the first mission ever to orbit a comet’s nucleus and to deliver a lander, called Philae, on its surface. Artist's Impression of the Herschel Spacecraft hi-res Size hi-res: 138 Kb Artist's Impression of the Herschel Spacecraft Herschel is the only space facility dedicated to the submillimetre and far infrared part of the spectrum. Its vantage point in space provides several decisive advantages, including a low and stable background and full access to this part of the spectrum. Herschel has the potential of discovering the earliest epoch proto-galaxies, revealing the cosmologically evolving AGN-starburst symbiosis, and unraveling the mechanisms involved in the formation of stars and planetary system bodies. The key science objectives emphasise specifically the formation of stars and galaxies, and the interrelation between the two, but also includes the physics of the interstellar medium, astrochemistry, and solar system studies. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers

  4. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    Science.gov (United States)

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  5. Surfatron accelerator in the local interstellar cloud

    Energy Technology Data Exchange (ETDEWEB)

    Loznikov, V. M., E-mail: vloznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2017-01-15

    Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~10{sup 7} GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E{sub CH}/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E{sub Ð}¡{sub L}/Z ≤ 3 × 10{sup 6} GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E{sub CL} ~ 10{sup 17} eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 10{sup 6} GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.

  6. SECONDARY POPULATION OF INTERSTELLAR NEUTRALS seems deflected to the side

    Science.gov (United States)

    Nakagawa, H.; Bzowski, M.; Yamazaki, A.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.

    Recently the neutral hydrogen flow in the inner heliosphere was found to be deflected relative to the helium flow by about 4 degrees Lallement et al 2005 The explanation of this delfection offered was a distortion of the heliosphere under the action of an ambient interstellar magnetic field In a separate study a number of data sets pertaining to interstellar neutral atoms obtained with various techniques were compiled and interpreted as due to an inflow of interstellar gas from an ecliptic longitude shifted by 10 - 40 degrees from the canonical upstream interstellar neutral flow direction at 254 degrees Collier et al 2004 The origin and properties of such a flow is still under debate We have performed a cross-experiment analysis of the heliospheric hydrogen and helium photometric observations performed simltaneously by the Nozomi spacecraft between the Earth and Mars orbit and explored possible deflection of hydrogen and helium flows with respect to the canonical upwind direction For the interpretation we used predictions of a state of the art 3D and fully time-dependent model of the neutral gas in the heliosphere with the boundary conditions ionization rates and radiation pressure taken from literature The model includes two populations of the thermal interstellar hydrogen predicted by the highly-reputed Moscow Monte Carlo model of the heliosphere The agreement between the data and simulations is not satifactory when one assumes that the upwind direction is the same for both populations and identical with the direction derived from inerstellar helium

  7. Interstellar Abundances Toward X Per, Revisited

    Science.gov (United States)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  8. Dust clouds in Orion and the interstellar neutral hydrogen distribution

    International Nuclear Information System (INIS)

    Bystrova, N.V.

    1989-01-01

    According to published examples of the far IR observations in the Orion and its surroundings, several well defined dust clouds of different sizes and structure are present. For comparison of these clouds with the neutral hydrogen distribution on the area of approx. 1000 sq degs, the data from Pulkovo Sky Survey in the interstellar neutral Hydrogen Radio Line as well as special observations with the RATAN-600 telescope in 21 cm line were used. From the materials of Pulkovo HI Survey, the data were taken near the line emission at ten velocities between -21.8 and +25.6 km/s LSR for the structural component of the interstellar hydrogen emission. The results given concern mainly the Orion's Great Dust Cloud and the Lambda Orionis region where the information about the situation with the dust and interstellar hydrogen is very essential for interpretation

  9. Cosmic ray diffusion in a violent interstellar medium

    International Nuclear Information System (INIS)

    Bykov, A.M.; Toptygin, I.N.

    1985-01-01

    A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

  10. A scenario for interstellar exploration and its financing

    CERN Document Server

    Bignami, Giovanni F

    2013-01-01

    This book develops a credible scenario for interstellar exploration and colonization. In so doing, it examines: • the present situation and prospects for interstellar exploration technologies; • where to go: the search for habitable planets; • the motivations for space travel and colonization; • the financial mechanisms required to fund such enterprises. The final section of the book analyzes the uncertainties surrounding the presented scenario. The purpose of building a scenario is not only to pinpoint future events but also to highlight the uncertainties that may propel the future in different directions. Interstellar travel and colonization requires a civilization in which human beings see themselves as inhabitants of a single planet and in which global governance of these processes is conducted on a cooperative basis. The key question is, then, whether our present civilization is ready for such an endeavor, reflecting the fact that the critical uncertainties are political and cultural in nature. I...

  11. Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension.

    Science.gov (United States)

    Tritsis, Aris; Tassis, Konstantinos

    2018-05-11

    Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Necessity for non-standard models of interstellar turbulence. The 'Champagne bottle' model

    Energy Technology Data Exchange (ETDEWEB)

    Bonazzola, S; Celnikier, L M; Chevreton, M [Observatoire de Paris, Section de Meudon, 92 (France)

    1978-01-01

    A complete treatment of interstellar pulsar scintillation by the Physically Thin Screen phase changing model allows one to obtain better agreement with observation and thereby extract new information about the turbulence structure of the interstellar plasma.

  13. On the necessity for non-standard models of interstellar turbulence. The 'Champagne bottle' model

    International Nuclear Information System (INIS)

    Bonazzola, S.; Celnikier, L.M.; Chevreton, M.

    1978-01-01

    A complete treatment of interstellar pulsar scintillation by the Physically Thin Screen phase changing model allows one to obtain better agreement with observation and thereby extract new information about the turbulence structure of the interstellar plasma

  14. The existence and nature of the interstellar bow shock

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Jaffel, Lotfi [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Strumik, M.; Ratkiewicz, R.; Grygorczuk, J., E-mail: bjaffel@iap.fr [Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw (Poland)

    2013-12-20

    We report a new diagnosis of two different states of the local interstellar medium (LISM) near our solar system by using a sensitivity study constrained by several distinct and complementary observations of the LISM, solar wind, and inner heliosphere. Assuming the Interstellar Boundary Explorer (IBEX) He flow parameters for the LISM, we obtain a strength of ∼2.7 ± 0.2 μG and a direction pointing away from galactic coordinates (28, 52) ± 3° for the interstellar magnetic field as a result of fitting Voyager 1 and Voyager 2 in situ plasma measurements and IBEX energetic neutral atoms ribbon. When using Ulysses parameters for the LISM He flow, we recently reported the same direction but with a strength of 2.2 ± 0.1 μG. First, we notice that with Ulysses He flow, our solution is in the expected hydrogen deflection plane (HDP). In contrast, for the IBEX He flow, the solution is ∼20° away from the corresponding HDP plane. Second, the long-term monitoring of the interplanetary H I flow speed shows a value of ∼26 km s{sup –1} measured upwind from the Doppler shift in the strong Lyα sky background emission line. All elements of the diagnosis seem therefore to support Ulysses He flow parameters for the interstellar state. In that frame, we argue that reliable discrimination between superfast, subfast, or superslow states of the interstellar flow should be based on most existing in situ and remote observations used together with global modeling of the heliosphere. For commonly accepted LISM ionization rates, we show that a fast interstellar bow shock should be standing off upstream of the heliopause.

  15. Interstellar Propulsion Research: Realistic Possibilities and Idealistic Dreams

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Though physically possible, interstellar travel will be exceedingly difficult. Both the known laws of physics and the limits of our current understanding of engineering place extreme limits on what may actually be possible. Our remote ancestors looked at the night sky and assumed those tiny points of light were campfires around which other tribes were gathered -- and they dreamed of someday making the trip to visit them. In our modern era, we've grown accustomed to humans regularly traveling into space and our robots voyaging ever-deeper into the outer edges of our solar system. Traveling to those distant campfires (stars) has been made to look easy by the likes of Captains Kirk and Picard as well as Han Solo and Commander Adama. Our understanding of physics and engineering has not kept up with our imaginations and many are becoming frustrated with the current pace at which we are exploring the universe. Fortunately, there are ideas that may one day lead to new physical theories about how the universe works and thus potentially make rapid interstellar travel possible -- but many of these are just ideas and are not even close to being considered a scientific theory or hypothesis. Absent any scientific breakthroughs, we should not give up hope. Nature does allow for interstellar travel, albeit slowly and requiring an engineering capability far beyond what we now possess. Antimatter, fusion and photon sail propulsion are all candidates for relatively near-term interstellar missions. The plenary lecture will discuss the dreams and challenges of interstellar travel, our current understanding of what may be possible and some of the "out of the box" ideas that may allow us to become an interstellar species someday in the future.

  16. Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope

    Science.gov (United States)

    McGuire, Brett A.; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Kalenskii, Sergei V.; Herbst, Eric; Remijan, Anthony J.; McCarthy, Michael C.

    2017-07-01

    We report the detection of the carbon-chain radical HC5O for the first time in the interstellar medium toward the cold core TMC-1 using the 100 m Green Bank Telescope. We observe four hyperfine components of this radical in the J=17/2\\to 15/2 rotational transition that originates from the {}2{{{\\Pi }}}1/2 fine structure level of its ground state and calculate an abundance of n/{n}{H2}=1.7× {10}-10, assuming an excitation temperature of {T}{ex}=7 K. No indication of HC3O, HC4O, or HC6O, is found in these or archival observations of the source, while we report tentative evidence for HC7O. We compare calculated upper limits and the abundance of HC5O to predictions based on (1) the abundance trend of the analogous HC n N family in TMC-1 and (2) a gas-grain chemical model. We find that the gas-grain chemical model well reproduces the observed abundance of HC5O, as well as the upper limits of HC3O, HC6O, and HC7O, but HC4O is overproduced. The prospects for astronomical detection of both shorter and longer HC n O chains are discussed.

  17. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20 K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible......This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800deg2 at high Galactic latitude. The main goal...... of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2...

  18. The Interstellar Ethics of Self-Replicating Probes

    Science.gov (United States)

    Cooper, K.

    Robotic spacecraft have been our primary means of exploring the Universe for over 50 years. Should interstellar travel become reality it seems unlikely that humankind will stop using robotic probes. These probes will be able to replicate themselves ad infinitum by extracting raw materials from the space resources around them and reconfiguring them into replicas of themselves, using technology such as 3D printing. This will create a colonising wave of probes across the Galaxy. However, such probes could have negative as well as positive consequences and it is incumbent upon us to factor self-replicating probes into our interstellar philosophies and to take responsibility for their actions.

  19. Interstellar Scintillation and Scattering of Micro-arc-second AGN

    Directory of Open Access Journals (Sweden)

    David L. Jauncey

    2016-11-01

    Full Text Available The discovery of the first quasar 3C 273 led directly to the discovery of their variability at optical and radio wavelengths. We review the radio variability observations, in particular the variability found at frequencies below 1 GHz, as well as those exhibiting intra-day variability (IDV at cm wavelengths. Observations have shown that IDV arises principally from scintillation caused by scattering in the ionized interstellar medium of our Galaxy. The sensitivity of interstellar scintillation towards source angular sizes has provided a powerful tool for studying the most compact components of radio-loud AGN at microarcsecond and milliarcsecond scale resolution.

  20. Thermoluminescence of Simulated Interstellar Matter after Gamma-ray Irradiation

    OpenAIRE

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-01-01

    Interstellar matter is known to be strongly irradiated by radiation and several types of cosmic ray particles. Simulated interstellar matter, such as forsterite $\\rm Mg_{2}SiO_{4}$, enstatite $\\rm MgSiO_{3}$ and magnesite $\\rm MgCO_{3}$ has been irradiated with the $\\rm ^{60}Co$ gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is $10^{...

  1. A photometric map of interstellar reddening within 100 PC

    Science.gov (United States)

    Perry, C. L.; Johnston, L.; Crawford, D. L.

    1982-12-01

    Color excesses and distances are calculated for 300 bright, northern, late F stars using uvby beta photometric indices. The data allow an extension of the earlier maps by Perry and Johnston of the spatial distribution of interstellar reddening into the local (r less than 100 pc) solar neighborhood. Some definite conclusions are made regarding the distribution of interstellar dust in the northern hemisphere and within 300 pc of the sun by merging these results and the polarimetric observations by Tinbergen (1982) for 180 stars within 35 pc of the sun.

  2. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  3. UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS

    Science.gov (United States)

    Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.

    2005-01-01

    Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.

  4. Interstellar gas near and within the solar system

    International Nuclear Information System (INIS)

    Burgin, M.S.

    1981-01-01

    The picture of the interaction between the local interstellar medium (LISM) and the solar environment developed in recent years is described, and prospects are discussed for obtaining complete information about the LISM. Special attention is given to the neutral component of the LISM, particularly to the results of observations of the uv radiation scattered from hydrogen and helium atoms penetrating the solar system from interstellar space. The properties of the LISM plasma are considered only as they pertain to the interaction with the neutral component

  5. Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The evolution course of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies. 26 refs

  6. Kansas Agents Study Grain Marketing

    Science.gov (United States)

    Schoeff, Robert W.

    1973-01-01

    Author is an extension specialist in feed and grain marketing for Kansas State University. He describes a tour set up to educate members of the Kansas Grain and Feed Dealers' Association in the area of grain marketing and exporting. (GB)

  7. Whole Grains and Fiber

    Science.gov (United States)

    ... for Physical Activity in Children My Family Health Tree What's that you're drinking? Get Active with ... grains. When grocery shopping, an easy way to identify healthy food choices is to look for the ...

  8. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  9. SEARCH FOR INTERSTELLAR METHOXYACETONITRILE AND CYANOETHANOL: INSIGHTS INTO COUPLING OF CYANO- TO METHANOL AND AMMONIA CHEMISTRY

    International Nuclear Information System (INIS)

    Braakman, R.; Belloche, A.; Menten, K. M.; Blake, G. A.

    2010-01-01

    As part of an effort to study gas-grain chemical models in star-forming regions as they relate to molecules containing cyanide (-C≡N) groups, we present here a search for the molecules 2-cyanoethanol (OHCH 2 CH 2 CN) and methoxyacetonitrile (CH 3 OCH 2 CN) in the galactic center region SgrB2. These species are structural isomers of each other and are targeted to investigate the cross-coupling of pathways emanating from the photolysis products of methanol and ammonia with pathways involving cyano-containing molecules. Methanol and ammonia ices are two of the main repositories of the elements C, O, and N in cold clouds and understanding their link to cyanide chemistry could give important insights into prebiotic molecular evolution. Neither species was positively detected, but the upper limits we determined allow comparison to the general patterns gleaned from chemical models. Our results indicate the need for an expansion of the model networks to better deal with cyano-chemistry, in particular with respect to pathways including products of methanol photolysis. In addition to these results, the two main observational routes for detecting new interstellar molecules are discussed. One route is by decreasing detection limits at millimeter wavelength through spatial filtering with interferometric studies at the Atacama Large Millimeter Array (ALMA), and the second is by searching for intense torsional states at THz frequencies using the Herschel Space Observatory. 2-cyanoethanol and methoxyacetonitrile would both be good test beds for exploring the capabilities of ALMA and Herschel in the study of complex interstellar chemistry.

  10. Elaboration, organisation and optical properties of carbon nano-particles as interstellar dust models

    International Nuclear Information System (INIS)

    Galvez, Aymeric

    1999-01-01

    Astrophysical and space observations from ultraviolet to infrared (IR) wavelengths provide the only signatures of carbon cosmic dust which is formed in the vicinity of old stars by molecular species condensation around 1000 K. Despite numerous models developed, a fundamental question concerns the exact nature of these grains in space. Their sampling being impossible, a better knowledge of these objects requires earth analogues obtained in conditions as close as possible of those met in space. Implying synthesis mechanism similar to those postulated for carbon cosmic dust, infrared laser pyrolysis (IRLP) appears as a versatile method in order to produce a wide variety of nanoparticles able to reproduce the main signatures characteristics of the interstellar carbon dust. We checked that the synthesised particles by this method showed strong analogies with carbon dust from the point of view of their infrared spectroscopy. The majority of the bands observed by the astrophysicists are present in spectra. Nevertheless defects exist and can be connected to the too small size of the poly-aromatic units present in such deposits. In order to confirm this size effect and to refine the spectroscopic agreement, we chose two different way by acting either directly on the synthesis by modifying the most relevant experimental parameters (temperature of flame, residence time of the reagent in the reactional zone) or indirectly by the means of post-processing (annealing, irradiation). In order to follow the optical, structural and micro-textural evolutions, the deposits thus formed or treated were characterised by infrared spectroscopy, Transmission electron Microscopy (TeM) and by image analysis of the TeM patterns in order to correlate, their organisation multi-scales and in particular the diameter of the aromatic units, with their aptitude to reproduce the spectral characteristics of interstellar carbonaceous dust. (author) [fr

  11. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    Science.gov (United States)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  12. Climatic effects during passage of the solar system through interstellar clouds

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.; Butler, D.M.; Newman, M.J.

    1976-01-01

    It is thought likely that the solar system passes through regions where there are a large number of dense interstellar clouds. When this occurs several processes may cause significant changes in the climate of the Earth and other planets. Matters here discussed include the influences of compression of the solar wind cavity, accretion of matter by the Sun, and particulate input into the Earth's atmosphere. Gravitational energy released by the accretion of interstellar material by the Sun may enhance the solar luminosity, and considerations of terrestrial heat balance suggest that luminosity enhancements of 1% or more will produce significant variations of climate. Observational evidence suggests that there is some mechanism producing a relationship between solar wind flow and climate. One proposed mechanism is that contemporary solar wind modulation of galactic cosmic rays influences climate, and the fact that the Earth would be outside the solar wind cavity for all or part of the year may have an effect on terrestrial climate. Relatively small variations of solar UV radiation input may have perceptible influences on climate, and if a 1% variation in radiation input to the stratosphere has a significant effect then accretion may have a large impact on terrestrial conditions, even though the change in the total heat balance is negligible.With regard to dust input into the Earth's atmosphere it is estimated that during the lifetime of the solar system the mass of dust grains accreted by the Earth should have been about 10 16 to 10 18 g; the matter of evidence for their presence is discussed. It is concluded that the processes proposed have very complex implications for global weather patterns; and at present it is not possible to evaluate which, if any, will unquestionably affect the Earth's climate. (U.K.)

  13. Formation of interstellar methanol ice prior to the heavy CO freeze-out stage

    Science.gov (United States)

    Qasim, D.; Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; Boogert, A. C. A.; Linnartz, H.

    2018-04-01

    Context. The formation of methanol (CH3OH) on icy grain mantles during the star formation cycle is mainly associated with the CO freeze-out stage. Yet there are reasons to believe that CH3OH also can form at an earlier period of interstellar ice evolution in CO-poor and H2O-rich ices. Aims: This work focuses on CH3OH formation in a H2O-rich interstellar ice environment following the OH-mediated H-abstraction in the reaction, CH4 + OH. Experimental conditions are systematically varied to constrain the CH3OH formation yield at astronomically relevant temperatures. Methods: CH4, O2, and hydrogen atoms are co-deposited in an ultrahigh vacuum chamber at 10-20 K. OH radicals are generated by the H + O2 surface reaction. Temperature programmed desorption - quadrupole mass spectrometry (TPD-QMS) is used to characterize CH3OH formation, and is complemented with reflection absorption infrared spectroscopy (RAIRS) for CH3OH characterization and quantitation. Results: CH3OH formation is shown to be possible by the sequential surface reaction chain, CH4 + OH → CH3 + H2O and CH3 + OH → CH3OH at 10-20 K. This reaction is enhanced by tunneling, as noted in a recent theoretical investigation Lamberts et al. (2017, A&A, 599, A132). The CH3OH formation yield via the CH4 + OH route versus the CO + H route is approximately 20 times smaller for the laboratory settings studied. The astronomical relevance of the new formation channel investigated here is discussed.

  14. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  15. Large dust grains in the wind of VY Canis Majoris

    Science.gov (United States)

    Scicluna, P.; Siebenmorgen, R.; Wesson, R.; Blommaert, J. A. D. L.; Kasper, M.; Voshchinnikov, N. V.; Wolf, S.

    2015-12-01

    Massive stars live short lives, losing large amounts of mass through their stellar wind. Their mass is a key factor determining how and when they explode as supernovae, enriching the interstellar medium with heavy elements and dust. During the red supergiant phase, mass-loss rates increase prodigiously, but the driving mechanism has proven elusive. Here we present high-contrast optical polarimetric-imaging observations of the extreme red supergiant VY Canis Majoris and its clumpy, dusty, mass-loss envelope, using the new extreme-adaptive-optics instrument SPHERE at the VLT. These observations allow us to make the first direct and unambiguous detection of submicron dust grains in the ejecta; we derive an average grain radius ~0.5 μm, 50 times larger than in the diffuse ISM, large enough to receive significant radiation pressure by photon scattering. We find evidence for varying grain sizes throughout the ejecta, highlighting the dynamical nature of the envelope. Grains with 0.5 μm sizes are likely to reach a safe distance from the eventual explosion of VY Canis Majoris; hence it may inject upwards of 10-2 M⊙ of dust into the ISM. Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Paranal Observatory under program 60.A-9368(A).Appendix A is available in electronic form at http://www.aanda.org

  16. Interstellar C2, CH, and CN in translucent molecular clouds

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Black, J.H.

    1989-01-01

    Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH,

  17. Three-Component Dust Models for Interstellar Extinction C ...

    Indian Academy of Sciences (India)

    without standard' method were used to constrain the dust characteristics in the mean ISM (RV = 3.1), ... Interstellar dust models have evolved as the observational data have advanced, and the most popular dust ... distribution comes from the IRAS observation which shows an excess of 12 μ and. 25 μ emission from the ISM ...

  18. The Stardust Interstellar Dust Collector and Stardust@home

    Science.gov (United States)

    Westphal, A. J.; Anderson, D.; Bastien, R.; Butterworth, A.; Frank, D.; Gainsforth, Z.; Kelley, N.; Lettieri, R.; Mendez, B.; Prasad, R.; Tsitrin, S.; von Korff, J.; Warren, J.; Wertheimer, D.; Zhang, A.; Zolensky, M.

    2006-12-01

    The Stardust sample return mission is effectively two missions in one. Stardust brought back to earth for analytical study the first solid samples from a known solar system body beyond the moon, comet Wild2. The first results of the analyses of these samples are reported elsewhere in this session. In a separate aerogel collector, Stardust also captured and has returned the first samples of contemporary interstellar dust. Landgraf et al. [1] has estimated that ~ 50 interstellar dust particles in the micron size range have been captured in the Stardust Interstellar Dust Collector. Their state after capture is unknown. Before analysis of these particles can begin, they must be located in the collector. Here we describe the current status of Stardust@home, the massively distributed public search for these tiny interstellar dust particles. So far more than 13,000 volunteers have collectively performed more than 10,000,000 searches in stacks of digital images of ~10% of the collector. We report new estimates of the flux of interplanetary dust at ~2 AU based on the results of this search, and will compare with extant models[2]. References: [1] Landgraf et al., (1999) Planet. Spac. Sci. 47, 1029. [2] Staubach et al. (2001) in Interplanetary Dust, E. Grün, ed., Astron. &Astro. Library, Springer, 2001.

  19. Rapid interstellar scintillation of quasar PKS 1257-326

    NARCIS (Netherlands)

    Bignall, Hayley E.; Jauncey, David L.; Lovell, James E. J.; Tzioumis, Anastasios K.; Macquart, Jean-Pierre; Kedziora-Chudczer, Lucyna; Engvold, O

    2005-01-01

    PKS 1257-326 is one of three quasars known to show unusually large and rapid, intra-hour intensity variations, as a result of scintillation in the turbulent Galactic interstellar medium. We have measured time delays in the variability pattern arrival times at the VLA and the ATCA, as well as an

  20. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    Science.gov (United States)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  1. Project Icarus: Stakeholder Scenarios for an Interstellar Exploration Program

    Science.gov (United States)

    Hein, A. M.; Tziolas, A. C.; Osborne, R.

    The Project Icarus Study Group's objective is to design a mainly fusion-propelled interstellar probe. The starting point are the results of the Daedalus study, which was conducted by the British Interplanetary Society during the 1970's. As the Daedalus study already indicated, interstellar probes will be the result of a large scale, decade-long development program. To sustain a program over such long periods, the commitment of key stakeholders is vital. Although previous publications identified political and societal preconditions to an interstellar exploration program, there is a lack of more specific scientific and political stakeholder scenarios. This paper develops stakeholder scenarios which allow for a more detailed sustainability assessment of future programs. For this purpose, key stakeholder groups and their needs are identified and scientific and political scenarios derived. Political scenarios are based on patterns of past space programs but unprecedented scenarios are considered as well. Although it is very difficult to sustain an interstellar exploration program, there are scenarios in which this seems to be possible, e.g. the discovery of life within the solar system and on an exoplanet, a global technology development program, and dual-use of technologies for defence and security purposes. This is a submission of the Project Icarus Study Group.

  2. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NARCIS (Netherlands)

    Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.

    2014-01-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even

  3. Influence of the interstellar medium on climate and life: the Black Cloud revisited

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, Jr, R J

    1980-06-01

    Recent studies of the gas and dust between the stars, the interstellar medium, reveal a complex chemistry which indicates that prebiotic organic chemistry is ubiquitous. The relationship between this interstellar chemistry and the organic chemistry of the early solar system and the earth is explored. The interstellar medium is also considered as likely to have a continuing influence upon the climate of the earth and other planets. Life forms as we know them are not only descendants of the organic evolution begun in the interstellar medium, but their continuing evolution is also molded through occasional interactions between the interstellar medium, the sun and the climate on earth.

  4. Influence of the interstellar medium on climate and life. The black cloud revisited

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, Jr, R J [Rice Univ., Houston, TX (USA). Dept. of Space Physics and Astronomy

    1980-06-01

    Recent studies of the gas and dust between the stars, the interstellar medium, reveal a complex chemistry which indicates that prebiotic organic chemistry is ubiquitous. The relationship between this interstellar chemistry and the organic chemistry of the early solar system and the Earth is explored. The interstellar medium is also considered as likely to have a continuing influence upon the climate of the Earth and other planets. Life forms as known are not only descendants of the organic evolution begun in the interstellar medium, but their continuing evolution is also molded through occasional interactions between the interstellar medium, the Sun and the climate on Earth.

  5. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  6. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    Science.gov (United States)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} is the dominant gas in the dense clouds of the interstellar medium (ISM). At densities of 10 (5) cm (-3) , an H _{2} molecule arrives at the surface of a 0.1 mum-sized, ice-covered dust grain once every few seconds [1]. At 10 K, H _{2} can diffuse into the pores of the ice mantle and adsorb at high-energy binding sites, loading the ice with hydrogen over the lifetime of the cloud. These icy grains are also impacted by galactic cosmic rays and stellar winds (in clouds with embedded protostar). Based on the available cosmic proton flux spectrum [2], we estimate a small impact rate of nearly 1 hit per year on a 0.1 μm sized grain, or 10 (-7) times the impact frequency of the neutral H _{2}. The energy deposited by such impacts can release the adsorbed H _{2} into the gas phase (impact desorption or sputtering). Recently, we have reported on a new process of ion-induced enhanced adsorption, where molecules from the gas phase are incorporated into the film when irradiation is performed in the presence of ambient gas [3]. The interplay between ion-induced ejection and adsorption can be important in determining the gas-solid balance in the ISM. To understand the effects of cosmic rays/stellar winds impacts on interstellar ice immersed in H _{2} gas, we have performed irradiation of porous amorphous ice films loaded with H _{2} through co-deposition or adsorption following growth. The irradiations were performed with 100 keV H (+) using fluxes of 10 (10) -10 (12) H (+) cm (-2) s (-1) at 7 K, in presence of ambient H _{2} at pressures ranging from 10 (-5) to 10 (-8) Torr. Our initial results show a net loss in adsorbed H _{2} during irradiation, from competing ion-induced ejection and adsorption. The H _{2} loss per ion decreases exponentially with fluence, with a cross-section of 10 (-13) cm (2) . In addition to hydrogen removal, irradiation also leads to trapping of H _{2} in the ice film, from closing of the pores during irradiation [4]. As a result, 2.6 percent

  7. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through diffuse interstellar bands and neutral sodium

    NARCIS (Netherlands)

    van Loon, J.Th.; Bailey, M.; Tatton, B.L.; Maíz Apellániz, J.; Crowther, P.A.; de Koter, A.; Evans, C.J.; Hénault-Brunet, V.; Howarth, I.D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N.R.

    2013-01-01

    Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims. The aim is to use DIBs

  8. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  9. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  10. GRAIN ALIGNMENT INDUCED BY RADIATIVE TORQUES: EFFECTS OF INTERNAL RELAXATION OF ENERGY AND COMPLEX RADIATION FIELD

    International Nuclear Information System (INIS)

    Hoang, Thiem; Lazarian, A.

    2009-01-01

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns the grain axis of maximum moment of inertia (the axis of major inertia) with respect to the grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of major inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of major inertia with angular momentum, and both the axis of major inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For alignment without high-J attractors, beside the earlier studied attractors with low angular momentum (low-J attractors), there appear new low-J attractors. In addition, we also study the alignment of grains in the presence of strong internal relaxation, but induced not by a radiation beam as in earlier studies but instead induced by a complex radiation field that can be decomposed into dipole and quadrupole components. We found that in this situation the parameter space q max , for which high-J attractors exist in trajectory maps, is more extended, resulting in the higher degree of polarization expected. Our results are useful for modeling polarization arising from aligned dust grains in molecular clouds.

  11. Comet Grains: Their IR Emission and Their Relation to ISM Grains

    Science.gov (United States)

    Wooden, Diane H.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Comets and the chodritic, porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3 - 40 micron) reveal the presence of a warm (nearIR) featureless emission modeled by amorphous carbon grains. Broad and narrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Fe and 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IR spectra of CP IDPs dominated by GEMS (0.1 micron silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He' ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (ISM Mg-rich crystals leads to the

  12. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    Science.gov (United States)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N

  13. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  14. Radiation disinfestation of grain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-10-15

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  15. Computerized radioautographic grain counting

    International Nuclear Information System (INIS)

    McKanna, J.A.; Casagrande, V.A.

    1985-01-01

    In recent years, radiolabeling techniques have become fundamental assays in physiology and biochemistry experiments. They also have assumed increasingly important roles in morphologic studies. Characteristically, radioautographic analysis of structure has been qualitative rather than quantitative, however, microcomputers have opened the door to several methods for quantifying grain counts and density. The overall goal of this chapter is to describe grain counting using the Bioquant, an image analysis package based originally on the Apple II+, and now available for several popular microcomputers. The authors discuss their image analysis procedures by applying them to a study of development in the central nervous system

  16. Radiation disinfestation of grain

    International Nuclear Information System (INIS)

    1962-01-01

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  17. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  18. Moniliformin in Norwegian grain

    NARCIS (Netherlands)

    Uhlig, S.; Torp, M.; Jarp, J.; Parich, A.; Gutleb, A.C.; Krska, R.

    2004-01-01

    Norwegian grain samples (73 oats, 75 barley, 83 wheat) from the 2000-02 growing seasons were examined for contamination with moniliformin, and the association between the fungal metabolite and the number of kernels infected with common Fusaria was investigated. Before quantification of moniliformin

  19. Developing ISM Dust Grain Models with Precision Elemental Abundances from IXO

    Science.gov (United States)

    Valencic, L. A.; Smith, R. K.; Juet, A.

    2009-01-01

    The exact nature of interstellar dust grains in the Galaxy remains mysterious, despite their ubiquity. Many viable models exist, based on available IR-UV data and assumed elemental abundances. However, the abundances, which are perhaps the most stringent constraint, are not well known: modelers must use proxies in the absence of direct measurements for the diffuse interstellar medium (ISM). Recent revisions of these proxy values have only added to confusion over which is the best representative for the diffuse ISM, and highlighted the need for direct, high signal-to-noise measurements from the ISM itself. The International X-ray Observatory's superior facilities will enable high-precision elemental abundance measurements. We ill show how these results will measure both the overall ISM abundances and challenge dust models, allowing us to construct a more realistic picture of the ISM.

  20. Interstellar extinction in the dark Taurus clouds. Pt. 1

    International Nuclear Information System (INIS)

    Straizys, V.; Meistas, E.

    1980-01-01

    The results of photoelectric photometry of 74 stars in the Vilnius seven-color system in the area of Taurus dark clouds with coordinates (1950) 4sup(h)20sup(m)-4sup(h)48sup(m)+24 0 .5-+27 0 are presented. Photometric spectral types, absolute magnitudes, color excesses, interstellar extinctions and distances of the stars are determined. The dark cloud Khavtassi 286, 278 and the surrounding absorbing nebulae are found to extend from 140 to 175 pc from the sun. The average interstellar extinction Asub(V) on both sides of the dark cloud is of the order of 1sup(m).5. We find no evidence of the existence of several absorbing clouds situated at various distances. (author)

  1. Molecular Diagnostics of the Interstellar Medium and Star Forming Regions

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.

    1996-03-01

    Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.

  2. Optical Polarization as a Probe of the Local Interstellar Medium

    Science.gov (United States)

    Tinbergen, J.

    1984-01-01

    The use of interstellar polarization as a tool for measuring interstellar dust is discussed. Problems resulting from dust and magnetic field configurations becoming mixed up are discussed, as is the availability of sufficiently bright stars to obtain the photons needed for precision measurements. It is proposed that: (1) on the scale of several hundred parsec, there is a preferential magnetic field direction, as evidenced by observations at the Galactic poles and selected longitudes in the Galactic plane; (2) the local (r 50 pc) region is devoid of dust, as evidenced by the mean square degree of polarization as a function of distance; and, less certainly, that (3) at a distance of less than 5 pc, there is a patch of dust which may be of interest in connection with cloud models.

  3. The synthesis of complex molecules in interstellar clouds

    Science.gov (United States)

    Huntress, W. T., Jr.; Mitchell, G. F.

    1979-01-01

    The abundances of polyatomic molecules that may be formed by CH3(+) radiative association reactions in dense interstellar molecular clouds are reevaluated. The formation of a number of complex interstellar molecules via radiative association reactions involving ionic precursors other than CH3(+) is also investigated; these additional precursors include CH3O(+), CH3CO(+), CH5(+), HCO(+), NO(+), H2CN(+), C2H2(+), and NH3(+). The results indicate that the postulated gas-phase ion-molecule radiative association reactions could potentially explain the synthesis of most of the more complex species observed in dense molecular clouds such as Sgr B2. It is concluded, however, that in order to be conclusive, laboratory data are needed to show whether or not these reactions proceed at the required rates at low temperatures.

  4. On the carbon enrichment of the interstellar medium

    International Nuclear Information System (INIS)

    Sarmiento, A.; Peimbert, M.

    1985-01-01

    The contribution of novae, IMS, and massive stars to the 12 C and 13 C enrichment of the interstellar medium is evaluated. The following results are obtained: a) novae are not important contributors to the 12 C abundance but contribute significantly to 13 C, b) limits to the ratio of the mixing length to the pressure scale height,α, and to the mass loss rate parameter, eta, are derived for IMS, c) IMS are the main contributors to the 12 C and 13 C enrichment of the interstellar medium, d) it is easier to explain the solar vicinity 12 C/ 13 C ratio than the solar system ratio, e) to explain the 12 C/ 13 C ratio in the ISM the mass ejected per nova outburst has to be approx. 1 x 10 -5 M sub(sun). (author)

  5. The nature of interstellar dust as revealed by light scattering

    Directory of Open Access Journals (Sweden)

    D. A. Williams

    2011-09-01

    Full Text Available Interstellar dust was first identified through the extinction that it causes of optical starlight. Initially, observational and theoretical studies of extinction were made to identify simple ways of removing the effect of extinction. Over the last few decades it has become clear that dust has a number of very important roles in interstellar physics and chemistry, and that through these roles dust affects quite fundamentally the evolution of the Milky Way and other galaxies. However, our detailed knowledge of the actual material of dust remains relatively poor. The use of accurate models for the interaction of electromagnetic radiation with particles of arbitrary shape and composition remains vital, if our description of dust is to improve.

  6. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    International Nuclear Information System (INIS)

    HOUTS, MICHAEL G.; LENARD, ROGER X.; LIPINSKI, RONALD J.; PATTON, BRUCE; POSTON, DAVID; WRIGHT, STEVEN A.

    1999-01-01

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total ΔV of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years

  7. Interstellar material in front of chi ophiuchi. I. Optical observations

    International Nuclear Information System (INIS)

    Frisch, P.C.

    1979-01-01

    Optical observations of the interstellar material in front of chi Oph are discussed. The main interstellar cloud is made up of several regions with velocities between -6 and -12 km s -1 (heliocentric). Both CH and CH + are found within this feature, but with central velocities which differ by 2 km s -1 . Another cloud, with a velocity of -26 km s -1 , contains relatively strong Ca + lines. It has a ratio between Ca + and Na 0 column densities that is appropriate for ''high-velocity'' clouds. Calcium, iron, and sodium column densities are used to estimate an average electron density for the line of sight as well as for each cloud. The abundances of CH and CH + , and the absence of CN, are analyzed in terms of current theories about their origin

  8. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    Science.gov (United States)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  9. Spiral arms and a supernova-dominated interstellar medium

    International Nuclear Information System (INIS)

    Brand, P.W.J.L.; Heathcote, S.R.

    1982-01-01

    Models of the interstellar medium (ISM) utilizing the large energy output of supernovae to determine the average kinematical properties of the gas, are subjected to an imposed (spiral) density wave. The consequent appearance of the ISM is considered. In particular the McKee-Ostriker model with cloud evaporation is used, but it is shown that the overall appearance of the galaxy model does not change significantly if a modification of Cox's mechanism, with no cloud evaporation, is incorporated. It is found that a spiral density wave shock can only be self-sustaining if quite restrictive conditions are imposed on the values of the galactic supernova rate and the mean interstellar gas density. (author)

  10. Chemical Evolution in the Interstellar Medium: From Astrochemistry to Astrobiology

    Science.gov (United States)

    Allamandola, Louis J.

    2009-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the Universe. In cold molecular clouds, the birthplace of planets and stars, interstellar molecules freeze onto dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. Astrochemical evolution, highlights of this field from a chemist's perspective, and the astronomer's infrared toolbox will be reviewed.

  11. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  12. SYSTEMATIC THEORETICAL STUDY ON THE INTERSTELLAR CARBON CHAIN MOLECULES

    Energy Technology Data Exchange (ETDEWEB)

    Etim, Emmanuel E.; Arunan, Elangannan [Inorganic and Physical Chemistry Department, Indian Institute of Science Bangalore, 560012 (India); Gorai, Prasanta; Das, Ankan [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata 700 084 (India); Chakrabarti, Sandip K., E-mail: ankan.das@gmail.com [Department of Chemical Sciences, Federal University Wukari,  Katsina-Ala Road, P.M.B. 1020 Wukari, Taraba State (Nigeria)

    2016-12-01

    In an effort to further our interest in understanding the basic chemistry of interstellar molecules, here we carry out an extensive investigation of the stabilities of interstellar carbon chains; C{sub n}, H{sub 2}C{sub n}, HC{sub n}N and C{sub n}X (X = N, O, Si, S, H, P, H{sup −}, N{sup −}). These sets of molecules account for about 20% of all the known interstellar and circumstellar molecules. Their high abundances, therefore, demand serious attention. High-level ab initio quantum chemical calculations are employed to accurately estimate the enthalpy of formation, chemical reactivity indices, global hardness and softness, and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, and these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd-numbered carbon chains. Interstellar chemistry is not actually driven by thermodynamics, but it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd-numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even-numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.

  13. Superconducting ion scoop and its application to interstellar flight

    Energy Technology Data Exchange (ETDEWEB)

    Matloff, G L; Fennelly, A J

    1974-09-01

    Physical and engineering aspects of a superconducting ion scoop with an effective field radius of 10/sup 4/ km are discussed. Application of the system to interstellar ramjet travel is considered. Used in conjunction with a large boron sail towed behind the spacecraft, the scoop could be applied as a deceleration mechanism for thermonuclear-rocket-boosted vehicles moving at least as fast as 0.2C.

  14. Hot interstellar tunnels. I. Simulation of interacting supernova remnants

    International Nuclear Information System (INIS)

    Smith, B.W.

    1977-01-01

    Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10 -2 cm -3 and Tapprox.10 6 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10 -7 Myr -1 pc -3 . Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 10 7 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities

  15. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  16. The variation of interstellar element abundances with hydrogen density

    International Nuclear Information System (INIS)

    Keenan, F.P.; Hibbert, A.; Dufton, P.L.; Murray, M.J.

    1986-01-01

    The variation of the interstellar nitrogen, oxygen and magnesium abundances with mean line-of-sight hydrogen density is analysed in terms of a two-component model, which consists of warm, low-density neutral gas and cold clouds. In all cases the gas-phase abundances have been deduced using reliable oscillator strengths specifically calculated for this purpose. Depletions in the warm and cold gas, are derived from non-linear least-squares fits to the data. (author)

  17. A chemical model for the interstellar medium in galaxies

    OpenAIRE

    Bovino, S.; Grassi, Tommaso; Capelo, P. R.; Schleicher, D. R. G.; Banerjee, R.

    2016-01-01

    Aims: We present and test chemical models for three-dimensional hydrodynamical simulations of galaxies. We explore the effect of changing key parameters such as metallicity, radiation, and non-equilibrium versus equilibrium metal cooling approximations on the transition between the gas phases in the interstellar medium. Methods: The microphysics was modelled by employing the public chemistry package KROME, and the chemical networks were tested to work in a wide range of densities and temp...

  18. HERSCHEL/HIFI DISCOVERY OF HCL+ IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    De Luca, M.; Gerin, M.; Falgarone, E.; Gupta, H.; Drouin, B. J.; Pearson, J. C.; Neufeld, D.; Teyssier, D.; Lis, D. C.; Monje, R.; Phillips, T. G.; Goicoechea, J. R.; Godard, B.; Bell, T. A.; Coutens, A.

    2012-01-01

    The radical ion HCl + , a key intermediate in the chlorine chemistry of the interstellar gas, has been identified for the first time in the interstellar medium with the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared. The ground-state rotational transition of H 35 Cl + , 2 Π 3/2 J = 5/2-3/2, showing Λ-doubling and hyperfine structure, is detected in absorption toward the Galactic star-forming regions W31C (G10.6-0.4) and W49N. The complex interstellar absorption features are modeled by convolving in velocity space the opacity profiles of other molecular tracers toward the same sources with the fine and hyperfine structure of HCl + . This structure is derived from a combined analysis of optical data from the literature and new laboratory measurements of pure rotational transitions, reported in the accompanying Letter by Gupta et al. The models reproduce well the interstellar absorption, and the frequencies inferred from the astronomical observations are in exact agreement with those calculated using spectroscopic constants derived from the laboratory data. The detection of H 37 Cl + toward W31C, with a column density consistent with the expected 35 Cl/ 37 Cl isotopic ratio, provides additional evidence for the identification. A comparison with the chemically related molecules HCl and H 2 Cl + yields an abundance ratio of unity with both species (HCl + : H 2 Cl + : HCl ∼ 1). These observations also yield the unexpected result that HCl + accounts for 3%-5% of the gas-phase chlorine toward W49N and W31C, values several times larger than the maximum fraction (∼1%) predicted by chemical models.

  19. Source of the 26Al observed in the interstellar medium

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.

    1985-01-01

    Recent HEAO 3 observations have been interpreted by Mahoney and colleagues as requiring approximately 3 M/sub sun/ of 26 Al alive in the interstellar medium. Calculations briefly discussed in this Letter indicate that there is substantial production and dispersal of 26 Al in the stellar winds of O and W-R stars and suggest that the stellar winds of very massive stars are a significant source of 26 Al

  20. Numerical study of rotating interstellar clouds: equilibrium and collapse

    International Nuclear Information System (INIS)

    Norman, M.L.

    1980-06-01

    Equilibrium and collapse of rotating, axisymmetric, idealized interstellar gas clouds is calculated with a 2D hydrodynamics code. The hydrodynamics features an improved angular momentum advection algorithm. Angular momentum is advected consistently with mass by deriving angular momentum fluxes from mass fluxes and the local distribution of specific angular momentum. Local conservation is checked by a graph of mass versus specific angular momentum for the cloud as a whole

  1. Optical properties of likely constituents of interstellar dust

    International Nuclear Information System (INIS)

    Dayawansa, I.J.

    1977-07-01

    Optical properties of polyoxymethylene (POM) at room temperature have been measured from the near ultra-violet to infrared as an initial stage of a link between interstellar dust and organic matter, and the results, which are particularly relevant to interstellar extinction, are reported. There is a strong possibility of a more complex organic component which could significantly contribute to the interstellar extinction. Measurements have also been made of the effect of fast neutron bombardment on the optical properties of quartz (SiO 2 ). At a high total flux of neutrons the crystalline quartz will change to its amorphous form which has extinction properties that resemble the interstellar extinction. Extinction due to small particles of several forms of SiO 2 has been measured and among them the hydrated mineral, opal, behaved like an amorphous silica. Neutron irradiated olivine showed a stronger and a broader 10μm band in addition to weaker bands towards the longer wavelengths which indicated that atomic damage has been produced. At high fluxes more atomic damage is expected to change the crystalline structure and thereby cause changes in the infrared absorption properties. Extinction measurements were also made for smoke particles of MgO in the infrared. When the measurements were made with the particles deposited on substrates, in addition to a very broad surface mode absorption feature around 20μm an extinction maximum was observed typical of the bulk mode at 25μm. Extinction measurements for MgO smoke particles in air also showed similar results. However when the particles were dispersed in a non-absorbing medium, the bulk absorption mode was not observed. This implies that the appearance of the bulk mode is due to clumping. (author)

  2. Dissociative recombination of interstellar ions: electronic structure calculations for HCO+

    International Nuclear Information System (INIS)

    Kraemer, W.P.; Hazi, A.U.

    1985-01-01

    The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs

  3. Interstellar scattering in the inner parts of the galaxy

    International Nuclear Information System (INIS)

    Rao, A.P.; Ananthakrishnan, S.

    1984-01-01

    A new survey of the galactic plane for sources with size less than 1 arc s at 327 MHz shows that towards the inner parts of the galaxy for galactic latitudes less than 5deg, interstellar scattering is much larger than expected from data at higher latitudes. The enhanced scattering varies both with galactic latitude and longitude. A two-component model for the distribution of scattering matter in the Galaxy is proposed to interpret the observations. (author)

  4. Interaction of Interstellar Shocks with Dense Obstacles: Formation of ``Bullets''

    Science.gov (United States)

    Gvaramadze, V. V.

    The so-called cumulative effect take place in converging conical shock waves arising behind dense obstacles overtaken by incident interstellar shock. A significant part of energy of converging flow of matter swept-up by a radiative conical shock can be transferred to a dense jet-like ejection (``bullet'') directed along the cone axis. Possible applications of this effect for star-forming regions (e.g., OMC-1) and supernova remnants (e.g., Vela SNR) are discussed.

  5. THz Time-Domain Spectroscopy of Interstellar Ice Analogs

    Science.gov (United States)

    Ioppolo, Sergio; McGuire, Brett A.; de Vries, Xander; Carroll, Brandon; Allodi, Marco; Blake, Geoffrey

    2015-08-01

    The unambiguous identification of nearly 200 molecular species in different astronomical environments proves that our cosmos is a ‘Molecular Universe’. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that there is a strong interplay between the gas and the solid phase throughout the process of forming molecules in space. Observations of interstellar ices are generally limited to lines-of-sight along which infrared absorption spectroscopy is possible. Therefore, the identification of more complex prebiotic molecules in the mid-IR is difficult because of their low expected interstellar abundances and the overlap of their absorption features with those from the more abundant species. In the THz region, telescopes can detect Interstellar ices in emission or absorption against dust continuum. Thus, THz searches do not require a background point source. Moreover, since THz spectra are the fingerprint of inter- and intramolecular forces, complex species can present unique modes that do not overlap with those from simpler, more abundant molecules. THz modes are also sensitive to temperature and phase changes in the ice. Therefore, spectroscopy at THz frequencies has the potential to better characterize the physics and chemistry of the ISM. Currently, the Herschel Space Telescope, SOFIA, and ALMA databases contain a vast amount of new THz spectral data that require THz laboratory spectra for interpretation. The latter, however, are largely lacking. We have recently constructed a new THz time-domain spectroscopy system operating in the range between 0.3 - 7.5 THz. This work focuses on the laboratory investigation of the composition and structure of the most abundant interstellar ice analogs compared to some more complex species. Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research is to provide the scientific community with an extensive THz ice

  6. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    International Nuclear Information System (INIS)

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.; Chakrabarti, Sonali

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds. Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules. So far these have been used to study the abundances of these molecules in space. However, in order to obtain more accurate final compositions in these media, we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star. We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radical-molecular reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud. We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models. Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions. The presence of grains strongly affects the abundances of the gas phase species. We also carry out a comparative study between different pathways available for the synthesis of adenine, alanine, glycine and other molecules considered in our network. Despite the huge abundances of the neutral reactive species, production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways

  7. INTERSTELLAR PICKUP ION PRODUCTION IN THE GLOBAL HELIOSPHERE AND HELIOSHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Florinski, V.; Guo, X., E-mail: yw0009@uah.edu [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2016-11-20

    Interstellar pickup ions (PUIs) play a significant part in mediating the solar wind (SW) interaction with the interstellar medium. In this paper, we examine the details of spatial variation of the PUI velocity distribution function (VDF) in the SW by solving the PUI transport equation. We assume the PUI distribution is isotropic resulting from strong pitch-angle scattering by wave–particle interaction. A three-dimensional model combining the MHD treatment of the background SW and neutrals with a kinetic treatment of PUIs throughout the heliosphere and the surrounding local interstellar medium has been developed. The model generates PUI power-law tails via second-order Fermi process. We analyze how PUIs transform across the heliospheric termination shock and obtain the PUI phase space distribution in the inner heliosheath including continuing velocity diffusion. Our simulated PUI spectra are compared with observations made by New Horizons , Ulysses , Voyager 1, 2 , and Cassini , and a satisfactory agreement is demonstrated. Some specific features in the observations, for example, a cutoff of PUI VDF at v = V {sub SW} and a f ∝ v {sup -5} tail in the reference frame of the SW, are well represented by the model.

  8. The Starflight Handbook: A Pioneer's Guide to Interstellar Travel

    Science.gov (United States)

    Mallove, Eugene F.; Matloff, Gregory L.

    1989-06-01

    The Starflight Handbook A Pioneer's Guide to Interstellar Travel "The Starflight Handbook is an indispensable compendium of the many and varied methods for traversing the vast interstellar gulf--don't leave the Solar System without it!" --Robert Forward "Very sensible, very complete and useful. Its good use of references and technical `sidebars' adds to the book and allows the nontechnical text to be used by ordinary readers in an easy fashion. I certainly would recommend this book to anyone doing any thinking at all about interstellar flight or the notion of possibilities of contacts between hypothetical civilizations in different stat systems." --Louis Friedman Executive Director, The Planetary Society The Starflight Handbook is the first and only compendium on planet Earth of the radical new technologies now on the drawing boards of some of our smartest and most imaginative space scientists and engineers. Scientists and engineers as well as general readers will be captivated by its: In-depth discussions of everything from nuclear pulse propulsion engines to in-flight navigation, in flowing, non-technical language Sidebars and appendices cover technical and mathematical concepts in detail Seventy-five elegant and enlightening illustrations depicting starships and their hardware

  9. Laboratory studies of ion-molecule reactions and interstellar chemistry

    International Nuclear Information System (INIS)

    Koyano, Inosuke

    1989-01-01

    Several types of laboratory studies have been performed on ion-molecule reactions relevant to the formation of the interstellar molecules. Special emphasis is placed on the formation, structure, and reactivity of the C 3 H 3 + ions, which are believed to play a key role in interstellar chemistry. When these ions are produced by the reaction of C 3 H 4+ with C 3 H 4 in a beam-gas arrangement, their times-of-flight (TOF) show abnormally broad distributions regardless of the sources of the reactant C 3 H 4 + ion (photoionization of allene, propyne, the cyclopropene) and the nature of the neutral reactant, while all other product ions from the same reaction show sharp TOF distributions. On the other hand, all C 3 H 3 + ions produced by unimolecular decomposition of energetic C 3 H 4 + ions show sharp TOF distribution. The peculiarity of the C 3 H 3 + ions manifested in these and other experiments is discussed in conjunction with interstellar chemistry

  10. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    Science.gov (United States)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step

  11. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    Science.gov (United States)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  12. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  13. Dust grain charging in a wake of other grains

    International Nuclear Information System (INIS)

    Miloch, W. J.; Block, D.

    2012-01-01

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  14. INTERSTELLAR-MEDIUM MAPPING IN M82 THROUGH LIGHT ECHOES AROUND SUPERNOVA 2014J

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi; Wang, Lifan; Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Baade, Dietrich; Patat, Ferdinando; Spyromilio, Jason [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Straße 2, D-85748 Garching b. München (Germany); Cracraft, Misty; Sparks, William B. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Höflich, Peter A. [Department of Physics, Florida State University, Tallahassee, Florida 32306-4350 (United States); Maund, Justyn; Stevance, Heloise F. [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Wang, Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, 100084 (China); Wheeler, J. Craig, E-mail: ngc4594@physics.tamu.edu [Department of Astronomy and McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2017-01-01

    We present multiple-epoch measurements of the size and surface brightness of the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82. Hubble Space Telescope ( HST ) ACS/WFC images were taken ∼277 and ∼416 days after B -band maximum in the filters F 475 W , F 606 W , and F 775 W . Observations with HST WFC3/UVIS images at epochs ∼216 and ∼365 days are included for a more complete analysis. The images reveal the temporal evolution of at least two major light-echo components. The first one exhibits a filled ring structure with position-angle-dependent intensity. This radially extended, diffuse echo indicates the presence of an inhomogeneous interstellar dust cloud ranging from ∼100 to ∼500 pc in the foreground of the SN. The second echo component appears as an unresolved luminous quarter-circle arc centered on the SN. The wavelength dependence of scattering measured in different dust components suggests that the dust producing the luminous arc favors smaller grain sizes, while that causing the diffuse light echo may have sizes similar to those of the Milky Way dust. Smaller grains can produce an optical depth consistent with that along the supernova-Earth line of sight measured by previous studies around maximum light. Therefore, it is possible that the dust slab from which the luminous arc arises is also responsible for most of the extinction toward SN 2014J. The optical depths determined from the Milky Way-like dust in the scattering matters are lower than the optical depth produced by the dust slab.

  15. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  16. DETAILED INTERSTELLAR POLARIMETRIC PROPERTIES OF THE PIPE NEBULA AT CORE SCALES

    International Nuclear Information System (INIS)

    Franco, G. A. P.; Alves, F. O.; Girart, J. M.

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12,000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival Two Micron All Sky Survey data, we estimate that the surveyed areas present total visual extinctions in the range 0.6 mag ≤ A V ≤ 4.6 mag. While the observed polarizations show a well-ordered large-scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one sees details that are characteristics of each core. Although many observed stars present degrees of polarization that are unusual for the common interstellar medium (ISM), our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic ISM. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. The Pipe nebula is certainly an interesting region to investigate the processes that prevailed during the initial phases of low-mass stellar formation.

  17. Chemical Evolution of Interstellar Methanol Ice Analogs upon Ultraviolet Irradiation: The Role of the Substrate

    Science.gov (United States)

    Ciaravella, A.; Jiménez-Escobar, A.; Cosentino, G.; Cecchi-Pestellini, C.; Peres, G.; Candia, R.; Collura, A.; Barbera, M.; Di Cicca, G.; Varisco, S.; Venezia, A. M.

    2018-05-01

    An important issue in the chemistry of interstellar ices is the role of dust materials. In this work, we study the effect of an amorphous water-rich magnesium silicate deposited onto ZnSe windows on the chemical evolution of ultraviolet-irradiated methanol ices. For comparison, we also irradiate similar ices deposited onto bare ZnSe windows. Silicates are produced at relatively low temperatures exploiting a sol–gel technique. The chemical composition of the synthesized material reflects the forsterite stoichiometry. Si–OH groups and magnesium carbonates are incorporated during the process. The results show that the substrate material does affect the chemical evolution of the ice. In particular, the CO2/CO ratio within the ice is larger for methanol ices deposited onto the silicate substrate as a result of concurrent effects: the photolysis of carbonates present in the adopted substrate as a source of CO2, CO, and carbon and oxygen atoms; reactions of water molecules and hydroxyl radicals released from the substrate with the CO formed in the ice by the photolysis of the methanol ice; and changes in the structure and energy of the silicate surface by ultraviolet irradiation, leading to more favorable conditions for chemical reactions or catalysis at the grain surface. The results of our experiments allow such chemical effects contributed by the various substrate material components to be disentangled.

  18. Into the Darkness: Interstellar Extinction Near the Cepheus OB3 Molecular Cloud

    Science.gov (United States)

    Fitzpatrick, Edward L.; Jacklin, S.; Massa, D.

    2014-01-01

    We present the results of a followup investigation to a study performed by Massa and Savage (1984, ApJ, 279, 310) of the properties of UV interstellar extinction in the region of the Cepheus OB3 molecular cloud. That study was performed using UV photometry and spectro-photometry from the ANS and IUE satellites. We have extended this study into the IR, utilizing the uniform database of IR photometry available from the 2MASS project. This is a part of a larger program whose goal is to study the properties of extinction in localized regions, where we hope to find clues to dust grain growth and destruction processes through spatial correlations of extinction with distinct environmental properties. Similarly to Massa and Savage’s UV results, we find that the IR extinction properties on the Cepheus OB3 region vary systematically with the apparent proximity of the target stars to the molecular cloud. We also find that the UV extinction and the IR extinction are crudely correlated. The methodology leading to these results and their implications are discussed.

  19. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  20. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  1. INTERSTELLAR GAS FLOW PARAMETERS DERIVED FROM INTERSTELLAR BOUNDARY EXPLORER-Lo OBSERVATIONS IN 2009 AND 2010: ANALYTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Möbius, E.; Bochsler, P.; Heirtzler, D.; Kucharek, H.; Lee, M. A.; Leonard, T.; Schwadron, N. A.; Wu, X.; Petersen, L.; Valovcin, D.; Wurz, P.; Bzowski, M.; Kubiak, M. A.; Fuselier, S. A.; Crew, G.; Vanderspek, R.; McComas, D. J.; Saul, L.

    2012-01-01

    Neutral atom imaging of the interstellar gas flow in the inner heliosphere provides the most detailed information on physical conditions of the surrounding interstellar medium (ISM) and its interaction with the heliosphere. The Interstellar Boundary Explorer (IBEX) measured neutral H, He, O, and Ne for three years. We compare the He and combined O+Ne flow distributions for two interstellar flow passages in 2009 and 2010 with an analytical calculation, which is simplified because the IBEX orientation provides observations at almost exactly the perihelion of the gas trajectories. This method allows separate determination of the key ISM parameters: inflow speed, longitude, and latitude, as well as temperature. A combined optimization, as in complementary approaches, is thus not necessary. Based on the observed peak position and width in longitude and latitude, inflow speed, latitude, and temperature are found as a function of inflow longitude. The latter is then constrained by the variation of the observed flow latitude as a function of observer longitude and by the ratio of the widths of the distribution in longitude and latitude. Identical results are found for 2009 and 2010: an He flow vector somewhat outside previous determinations (λ ISM∞ = 79. 0 0+3. 0 0(–3. 0 5), β ISM∞ = –4. 0 9 ± 0. 0 2, V ISM∞ 23.5 + 3.0(–2.0) km s –1 , T He = 5000-8200 K), suggesting a larger inflow longitude and lower speed. The O+Ne temperature range, T O+Ne = 5300-9000 K, is found to be close to the upper range for He and consistent with an isothermal medium for all species within current uncertainties.

  2. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  3. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  4. Predictive coarse-graining

    Energy Technology Data Exchange (ETDEWEB)

    Schöberl, Markus, E-mail: m.schoeberl@tum.de [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany); Zabaras, Nicholas [Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching (Germany); Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Koutsourelakis, Phaedon-Stelios [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany)

    2017-03-15

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  5. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  6. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  7. Grain preservation in SSSR

    International Nuclear Information System (INIS)

    Trisviatski, L.A.

    1973-01-01

    First the importance of cereals collected in the S.S.S.R., the reason why the government had to put in practice a storage chain, composed of large capacity store houses (200 000 metric tonnes, or more) is reminded. When climatic conditions result in wet harvested grains, cereals are dried either in state enterprise dryers (32 to 50 tonnes/hour) or in kolkhozes' dryers (2 to 16 tonnes/hour). A new type of drying with recycling, has been developped, economizing 10 to 15 p. 100. Then the possibilities offered by the technique of partial drying of very wet grains are studied and the preservation processes using fresh ventilation, or hot ventilation with drying effect are described. The question of silage of wet grains destined to animal consumption is then examined as well as preservation by sodium pyrosulfide; the use of propionic acid, little developped in SSSR, is studied now, just as storage with inert gas. The struggle technics against insects, either with chemical agents, or with irradiation are described. Finally the modalities of technicians formation, specialized in preservation, are discussed [fr

  8. Photoelectric charging of dust grains

    International Nuclear Information System (INIS)

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  9. Visible and ultraviolet (800--130 nm) extinction of vapor-condensed silicate, carbon, and silicon carbide smokes and the interstellar extinction curve

    International Nuclear Information System (INIS)

    Stephens, J.R.

    1980-01-01

    The extinction curves from 800 to 130 nm (1.25--7.7 μm -1 ) of amorphous silicate smokes nominally of olivine and pyroxene composition, carbon smokes, and crystalline SiC smokes are presented. The SiC smoke occurred in the low-temperature (β) cubic structural form. The mean grain radius ranged from 5 to 13 nm. The extinction profiles of the amorphous olivine smokes were similar in the ultraviolet to the measured extinction curves of crystalline olivine of nearly the same grain size. The SiC smoke showed an absorption edge which occurred at significantly longer wavelengths than the calculated extinction profile of the hexagonal SiC form previously used to calculate the interstellar extinction profile. Neither SiC nor amorphous silicates show an extinction band similar to the observed 6.6 μm -1 astronomical extinction band

  10. Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible

    DEFF Research Database (Denmark)

    Cardoso, J.F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust. In addition to the information on the direction of the Galactic magnetic field, this also brings new constraints on the properties of dust. The dust grains that emit the radiation...... with the spectral dependence in the submillimetre from Planck, will be important for constraining and understanding the full complexity of the grain models, and for interpreting the Planck thermal dust polarization and refinement of the separation of this contamination of the cosmic microwave background....... of dust, and therefore of the important dust model parameters, composition, size, and shape. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, pV, and the optical depth in the V band to the star, τV. Toward these stars we measure...

  11. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here

  12. Storing Peanuts in Grain Bags

    Science.gov (United States)

    A study was executed to determine the potential of storing farmers stock peanuts and shelled peanuts for crushing in hermetically sealed grain bags. The objectives of the study were to evaluate equipment for loading and unloading the grain bags, the capacity of the grain bags, and the changes in qu...

  13. Stardust Interstellar Preliminary Examination VII: Synchrotron X-Ray Fluorescence Analysis of Six Stardust Interstellar Candidates Measured with the Advanced Photon Source 2-ID-D Microprobe

    Science.gov (United States)

    Allen, Carlton C.; Anderson, David; Bastien, Ron K.; Brenker, Frank E.; Flynn, George J.; Frank, David; Gainsforth, Zack; Sandford, Scott A.; Simionovici, Alexandre S.; Zolensky, Michael E.

    2014-01-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 < or = Z < or = 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  14. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  15. The evolution of grain mantles and silicate dust growth at high redshift

    Science.gov (United States)

    Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney

    2018-05-01

    In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.

  16. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  17. EVIDENCE FOR H{sub 2} FORMATION DRIVEN DUST GRAIN ALIGNMENT IN IC 63

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, B-G; De Buizer, J.; Charcos-Llorens, M. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3 Moffett Field, CA 94035 (United States); Piirola, V. [Finnish Centre for Astronomy with ESO, University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Clemens, D. P. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Uomoto, A. [Observatories of the Carnegie Institution, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Geballe, T. R. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Lazarian, A.; Hoang, T. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Vornanen, T., E-mail: bg@sofia.usra.edu [Tuorla Observatory, University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland)

    2013-10-01

    In the interstellar medium (ISM), molecular hydrogen is expected to form almost exclusively on the surfaces of dust grains. Due to that molecule's large formation energy (–4.5 eV), several dynamical effects are likely associated with the process, including the alignment of asymmetric dust grains with the ambient magnetic field. Such aligned dust grains are, in turn, believed to cause the broadband optical/infrared polarization observed in the ISM. Here, we present the first observational evidence for grain alignment driven by H{sub 2} formation, by showing that the polarization of the light from stars behind the reflection nebula IC 63 appears to correlate with the intensity of H{sub 2} fluorescence. While our results strongly suggest a role for 'Purcell rockets' in grain alignment, additional observations are needed to conclusively confirm their role. By showing a direct connection between H{sub 2} formation and a probe of the dust characteristics, these results also provide one of the first direct confirmations of the grain-surface formation of H{sub 2}. We compare our observations to ab initio modeling based on Radiative Torque Alignment (RAT) theory.

  18. Rocket and satellite observations of the local interstellar medium

    International Nuclear Information System (INIS)

    Jelinsky, P.N.

    1988-01-01

    The purpose of the study described in this thesis was to obtained new information on the structure of the local interstellar medium (ISM). Two separate experiments using different instruments were used in this study. The first experiment employed a spectrometer with a spectral bandpass from 350-1150 angstrom which was placed at the focus of a 95 cm, f/2.8 normal incidence telescope flown on an Aries sounding rocket. The purpose of this experiment was to measure the interstellar absorption edges, due to neutral helium and neutral hydrogen, in the spectrum of a hot white dwarf. The hot white dwarf G191-B2B was observed for 87 seconds during the flight. Unfortunately, due to high pressure in the rocket, no scientifically useful data was obtained during the flight. The second experiment utilized the high resolution spectrometer on the International Ultraviolet Explorer satellite. The purpose of the experiment was to observe interstellar absorption lines in the spectrum of hot white dwarfs. A new method of determining the equivalent widths of absorption lines and their uncertainties was developed. The neutral hydrogen column density is estimated from the N I, Si II, and C II columns. Unfortunately, the uncertainties in the neutral hydrogen columns are very large, only two are constrained to better than an order of magnitude. High ionization species (N V, Si IV, and C IV) are seen in five of the stars. Upper limits to the temperature of the ISM are determined from the velocity dispersions. The temperature of the low ionization gas toward four of the stars is constrained to be less than 50,000 K

  19. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    Science.gov (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  20. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of