WorldWideScience

Sample records for interpretive structural modeling

  1. The importance of structural model availability on seismic interpretation

    Science.gov (United States)

    Alcalde, Juan; Bond, Clare E.; Johnson, Gareth; Butler, Robert W. H.; Cooper, Mark A.; Ellis, Jennifer F.

    2017-04-01

    Interpretation of faults in seismic images is central to the creation of geological models of the subsurface. The use of prior knowledge acquired through learning allows interpreters to move from singular observations to reasoned interpretations based on the conceptual models available to them. The amount and variety of fault examples available in textbooks, articles and training exercises is therefore likely to be a determinant factor in the interpreters' ability to interpret realistic fault geometries in seismic data. We analysed the differences in fault type and geometry interpreted in seismic data by students before and after completing a masters module in structural geology, and compared them to the characteristics of faults represented in the module and textbooks. We propose that the observed over-representation of normal-planar faults in early teaching materials influences the interpretation of data, making this fault type and geometry dominant in the pre-module interpretations. However, when the students were exposed to a greater range in fault models in the module, the range of fault type and geometry increased. This work explores the role of model availability in interpretation and advocates for the use of realistic fault models in training materials.

  2. ORGANIZING SCENARIO VARIABLES BY APPLYING THE INTERPRETATIVE STRUCTURAL MODELING (ISM

    Directory of Open Access Journals (Sweden)

    Daniel Estima de Carvalho

    2009-10-01

    Full Text Available The scenario building method is a thought mode - taken to effect in an optimized, strategic manner - based on trends and uncertain events, concerning a large variety of potential results that may impact the future of an organization.In this study, the objective is to contribute towards a possible improvement in Godet and Schoemaker´s scenario preparation methods, by employing the Interpretative Structural Modeling (ISM as a tool for the analysis of variables.Given this is an exploratory theme, bibliographical research with tool definition and analysis, examples extraction from literature and a comparison exercise of referred methods, were undertaken.It was verified that ISM may substitute or complement the original tools for the analysis of variables of scenarios per Godet and Schoemaker’s methods, given the fact that it enables an in-depth analysis of relations between variables in a shorter period of time, facilitating both structuring and construction of possible scenarios.Key-words: Strategy. Future studies. Interpretative Structural Modeling.

  3. Analysis of Challenges for Management Education in India Using Total Interpretive Structural Modelling

    Science.gov (United States)

    Mahajan, Ritika; Agrawal, Rajat; Sharma, Vinay; Nangia, Vinay

    2016-01-01

    Purpose: The purpose of this paper is to identify challenges for management education in India and explain their nature, significance and interrelations using total interpretive structural modelling (TISM), an innovative version of Warfield's interpretive structural modelling (ISM). Design/methodology/approach: The challenges have been drawn from…

  4. Rule-based image interpretation with models of expected structure

    Science.gov (United States)

    Shemlon, Stephen; Dunn, Stanley M.

    1990-07-01

    Consider the problem of localizing and identifying cell organelle in a transmission electron micrograph. Opera. . tions on regions constitute the key tasks in segmenting such images. The construction of meaningful entities from an initial fine partitioning of such an image poses problems that are generally linked to the type of objects to be identified. Restraining region manipulation algorithms to a particular class of images may simplify the process. However the loss of retargetability for the segmentation process is a serious handicap of such a solution. Segmentation must be based on a formal mechanism for reasoning about scenes (cells) their images (trans. . mission electron micrographs) objects in the scene (organelle) and their representation (image regions) if the system is to be suitable for a wide variety of domains. Mathematical morphology offers such a mechanism but the drawbacks of point set topology limit its success to low-level vision tasks. A modification based on expected morphological properties of point sets and not their fixed structure is useful for intermediate vision. This modification makes it possible to develop a theory for region manipulation. The main goal of growing and shrinking is to obtain regions with a given expected structure. The operations involve a search in the region space for candidates satisfying specified conditions and capable of producing final regions that fit the desired goal subject to given constraints. In this paper we describe

  5. Analysing green supply chain management practices in Brazil's electrical/electronics industry using interpretive structural modelling

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Mathiyazhagan, K.

    2013-01-01

    that exists between GSCM practices with regard to their adoption within Brazilian electrical/electronic industry with the help of interpretive structural modelling (ISM). From the results, we infer that cooperation with customers for eco-design practice is driving other practices, and this practice acts...

  6. Quantum Structures of Model-Universe: Questioning the Everett Interpretation of Quantum Mechanics

    CERN Document Server

    Jeknic-Dugic, J; Francom, A

    2011-01-01

    Our objective is to demonstrate an inconsistency with both the original and modern Everettian Many Worlds Interpretations. We do this by examining two important corollaries of the universally valid quantum mechanics in the context of the Quantum Brownian Motion (QBM) model: "Entanglement Relativity" and the "parallel occurrence of decoherence." We conclude that the highlighted inconsistency demands that either there is a privileged spatial structure of the QBM model universe or that the Everettian Worlds are not physically real.

  7. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    Science.gov (United States)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  8. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    Science.gov (United States)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  9. Customer involvement in greening the supply chain: an interpretive structural modeling methodology

    Science.gov (United States)

    Kumar, Sanjay; Luthra, Sunil; Haleem, Abid

    2013-04-01

    The role of customers in green supply chain management needs to be identified and recognized as an important research area. This paper is an attempt to explore the involvement aspect of customers towards greening of the supply chain (SC). An empirical research approach has been used to collect primary data to rank different variables for effective customer involvement in green concept implementation in SC. An interpretive structural-based model has been presented, and variables have been classified using matrice d' impacts croises- multiplication appliqué a un classement analysis. Contextual relationships among variables have been established using experts' opinions. The research may help practicing managers to understand the interaction among variables affecting customer involvement. Further, this understanding may be helpful in framing the policies and strategies to green SC. Analyzing interaction among variables for effective customer involvement in greening SC to develop the structural model in the Indian perspective is an effort towards promoting environment consciousness.

  10. Multi-dimensional Magnetotelluric Modeling of General Anisotropy and Its Implication for Structural Interpretation

    Science.gov (United States)

    Guo, Z.; Wei, W.; Egbert, G. D.

    2015-12-01

    Although electrical anisotropy is likely at various scales in the Earth, present 3D inversion codes only allow for isotropic models. In fact, any effects of anisotropy present in any real data can always be accommodated by (possibly fine scale) isotropic structures. This suggests that some complex structures found in 3D inverse solutions (e.g., alternating elongate conductive and resistive "streaks" of Meqbel et al. (2014)), may actually represent anisotropic layers. As a step towards better understanding how anisotropy is manifest in 3D inverse models, and to better incorporate anisotropy in 3D MT interpretations, we have implemented new 1D, 2D AND 3D forward modeling codes which allow for general anisotropy and are implemented in matlab using an object oriented (OO) approach. The 1D code is used primarily to provide boundary conditions (BCs). For the 2D case we have used the OO approach to quickly develop and compare several variants including different formulations (three coupled electric field components, one electric and one magnetic component coupled) and different discretizations (staggered and fixed grids). The 3D case is implemented in integral form on a staggered grid, using either 1D or 2D BC. Iterative solvers, including divergence correction, allow solution for large model grids. As an initial application of these codes we are conducting synthetic inversion tests. We construct test models by replacing streaky conductivity layers, as found at the top of the mantle in the EarthScope models of Meqbel et al. (2014), with simpler smoothly varying anisotropic layers. The modeling process is iterated to obtain a reasonable match to actual data. Synthetic data generated from these 3D anisotropic models can then be inverted with a 3D code (ModEM) and compared to the inversions obtained with actual data. Results will be assessed, taking into account the diffusive nature of EM imaging, to better understand how actual anisotropy is mapped to structure by 3D

  11. Analysing green supply chain management practices in Brazil's electrical/electronics industry using interpretive structural modelling

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Mathiyazhagan, K.

    2013-01-01

    Industries need to adopt the environmental management concepts in the traditional supply chain management. The green supply chain management (GSCM) is an established concept to ensure environment-friendly activities in industry. This paper identifies the relationship of driving and dependence...... that exists between GSCM practices with regard to their adoption within Brazilian electrical/electronic industry with the help of interpretive structural modelling (ISM). From the results, we infer that cooperation with customers for eco-design practice is driving other practices, and this practice acts...... as a vital role among other practices. Commitment to GSCM from senior managers and cooperation with customers for cleaner production occupy the highest level. © 2013 © 2013 Taylor & Francis....

  12. Analysis of interactions among the barriers to JIT production: interpretive structural modelling approach

    Science.gov (United States)

    Jadhav, J. R.; Mantha, S. S.; Rane, S. B.

    2015-12-01

    `Survival of the fittest' is the reality in modern global competition. Organizations around the globe are adopting or willing to embrace just-in-time (JIT) production to reinforce the competitiveness. Even though JIT is the most powerful inventory management methodologies it is not free from barriers. Barriers derail the implementation of JIT production system. One of the most significant tasks of top management is to identify and understand the relationship between the barriers to JIT production for alleviating its bad effects. The aims of this paper are to study the barriers hampering the implementation of successful JIT production and analysing the interactions among the barriers using interpretive structural modelling technique. Twelve barriers have been identified after reviewing literature. This paper offers a roadmap for preparing an action plan to tackle the barriers in successful implementation of JIT production.

  13. Structure classification from the joint interpretation of seismic and magnetotelluric models

    Science.gov (United States)

    Bedrosian, P. A.; Maercklin, N.; Ritter, O.; Ryberg, T.; Weckmann, U.

    2004-12-01

    Magnetotelluric (MT) and seismic methods provide information about the conductivity and velocity structure of the subsurface on similar scales and resolutions. The independent electrical and seismic tomograms can be combined, using a classification approach, to map lithologic, tectonic, and hydrologic boundaries. The method employed is independent of theoretical/empirical relations linking electrical and seismic parameters, and based solely on the statistical correlation of physical property models in parameter space. Regions of high correlation (classes) can in turn be examined in the spatial domain. The spatial distribution of these clusters, and the boundaries between them, provide structural information not always evident from the individual models. The method is applied to coincident seismic velocity and electrical resistivity models from two active transform margins. Along the San Andreas Fault, classification studies reveal the strong lithological contrast across the fault, suggesting it is sub-vertical in the upper crust throughout central California. A possible hydrologic boundary is further identified to the northeast of the fault. Classification studies along the Dead Sea Transform reflect the dominant lithologies surrounding the fault, and suggest the fault is again vertical in the upper crust, but offset to the east of the surface trace. There are indications that the basement is uplifted by ˜ 2 km east of the fault. These results suggest a quantitative, joint interpretation of MT and seismic data can greatly improve our ability to delineate lithologic, tectonic, and hydrologic boundaries, thus overcoming some of the resolution limitations inherent to the MT and seismic methods.

  14. Modelling and interpreting biologically crusted dryland soil sub-surface structure using automated micropenetrometry

    Science.gov (United States)

    Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter

    2015-04-01

    Soil penetrometers are used routinely to determine the shear strength of soils and deformable sediments both at the surface and throughout a depth profile in disciplines as diverse as soil science, agriculture, geoengineering and alpine avalanche-safety (e.g. Grunwald et al. 2001, Van Herwijnen et al. 2009). Generically, penetrometers comprise two principal components: An advancing probe, and a transducer; the latter to measure the pressure or force required to cause the probe to penetrate or advance through the soil or sediment. The force transducer employed to determine the pressure can range, for example, from a simple mechanical spring gauge to an automatically data-logged electronic transducer. Automated computer control of the penetrometer step size and probe advance rate enables precise measurements to be made down to a resolution of 10's of microns, (e.g. the automated electronic micropenetrometer (EMP) described by Drahorad 2012). Here we discuss the determination, modelling and interpretation of biologically crusted dryland soil sub-surface structures using automated micropenetrometry. We outline a model enabling the interpretation of depth dependent penetration resistance (PR) profiles and their spatial differentials using the model equations, σ {}(z) ={}σ c0{}+Σ 1n[σ n{}(z){}+anz + bnz2] and dσ /dz = Σ 1n[dσ n(z) /dz{} {}+{}Frn(z)] where σ c0 and σ n are the plastic deformation stresses for the surface and nth soil structure (e.g. soil crust, layer, horizon or void) respectively, and Frn(z)dz is the frictional work done per unit volume by sliding the penetrometer rod an incremental distance, dz, through the nth layer. Both σ n(z) and Frn(z) are related to soil structure. They determine the form of σ {}(z){} measured by the EMP transducer. The model enables pores (regions of zero deformation stress) to be distinguished from changes in layer structure or probe friction. We have applied this method to both artificial calibration soils in the

  15. Structural Analysis of the Factors Influencing the Financing of Forestry Enterprises Based on Interpretive Structural Modeling(ISM)

    Institute of Scientific and Technical Information of China (English)

    Zhen; WANG; Weiping; LIU; Xiaomin; JIANG

    2015-01-01

    Through the collection of related literature,we point out the six major factors influencing China’s forestry enterprises’ financing: insufficient national support; regulations and institutional environmental factors; narrow channels of financing; inappropriate existing mortgagebacked approach; forestry production characteristics; forestry enterprises’ defects. Then,we use interpretive structural modeling( ISM) from System Engineering to analyze the structure of the six factors and set up ladder-type structure. We put three factors including forestry production characteristics,shortcomings of forestry enterprises and regulatory,institutional and environmental factors as basic factors and put other three factors as important factors. From the perspective of the government and enterprises,we put forward some personal advices and ideas based on the basic factors and important factors to ease the financing difficulties of forestry enterprises.

  16. Teacher Effectiveness Examined as a System: Interpretive Structural Modeling and Facilitation Sessions with U.S. and Japanese Students

    Science.gov (United States)

    Georgakopoulos, Alexia

    2009-01-01

    This study challenges narrow definitions of teacher effectiveness and uses a systems approach to investigate teacher effectiveness as a multi-dimensional, holistic phenomenon. The methods of Nominal Group Technique and Interpretive Structural Modeling were used to assist U.S. and Japanese students separately construct influence structures during…

  17. Interpretive Structural Modeling Of Implementation Enablers For Just In Time In ICPI

    Directory of Open Access Journals (Sweden)

    Nitin Upadhye

    2014-12-01

    Full Text Available Indian Corrugated Packaging Industries (ICPI have built up tough competition among the industries in terms of product cost, quality, product delivery, flexibility, and finally customer’s demand. As their customers, mostly OEMs are asking Just in Time deliveries, ICPI must implement JIT in their system. The term "JIT” as, it denotes a system that utilizes less, in terms of all inputs, to create the same outputs as those created by a traditional mass production system, while contributing increased varieties for the end customer. (Womack et al. 1990 "JIT" focuses on abolishing or reducing Muda (“Muda", the Japanese word for waste and on maximizing or fully utilizing activities that add value from the customer's perspective. There is lack of awareness in identifying the right enablers of JIT implementation. Therefore, this study has tried to find out the enablers from the literature review and expert’s opinions from corrugated packaging industries and developed the relationship matrix to see the driving power and dependence between them. In this study, modeling has been done in order to know the interrelationships between the enablers with the help of Interpretive Structural Modeling and Cross Impact Matrix Multiplication Applied to Classification (MICMAC analysis for the performance of Indian corrugated packaging industries.

  18. Understanding influential factors on implementing green supply chain management practices: An interpretive structural modelling analysis.

    Science.gov (United States)

    Agi, Maher A N; Nishant, Rohit

    2017-03-01

    In this study, we establish a set of 19 influential factors on the implementation of Green Supply Chain Management (GSCM) practices and analyse the interaction between these factors and their effect on the implementation of GSCM practices using the Interpretive Structural Modelling (ISM) method and the "Matrice d'Impacts Croisés Multiplication Appliquée à un Classement" (MICMAC) analysis on data compiled from interviews with supply chain (SC) executives based in the Gulf countries (Middle East region). The study reveals a strong influence and driving power of the nature of the relationships between SC partners on the implementation of GSCM practices. We especially found that dependence, trust, and durability of the relationship with SC partners have a very high influence. In addition, the size of the company, the top management commitment, the implementation of quality management and the employees training and education exert a critical influence on the implementation of GSCM practices. Contextual elements such as the industry sector and region and their effect on the prominence of specific factors are also highlighted through our study. Finally, implications for research and practice are discussed.

  19. Response of pine forest to disturbance of pine wood nematode with interpretative structural model

    Institute of Scientific and Technical Information of China (English)

    Juan SHI; Youqing LUO; Xiaosu YAN; Weiping CHEN; Ping JIANG

    2009-01-01

    Pine wood nematode (PWN, Bursaphelenchus xylophilus), originating from North America, causes destructive pine wilt disease. Different pine forest ecosystems have different resistances to B. xylophilus,and after its invasion, the resilience and restoration direction of different ecosystems also varies. In this study, an interpretative structural model was applied for analyzing the response of pine forest ecosystem to PWN disturbance. The result showed that a five-degree multi-stage hierarchical system affected the response of the pine forest ecosystem to PWN disturbance, in which direct affecting factors are resistance and resilience. Furthermore,the analysis to the 2nd, 3rd and 4th degree factors showed that not only does distribution pattern of plant species and pine's ecological features affect the resistance of pine forests' ecosystem, but removal of attacked trees and other measures also influence the resistance through indirectly affecting the damage degree of Monochamus alternatus and distribution pattern of plant species. As for resilience,it is influenced directly by soil factors, hydrology,surrounding species provenance and biological character-istics of the second and jointly dominant species, and the climate factors can also have a direct or indirect effect on it by affecting the above factors. Among the fifth elements,the elevation, gradient and slope direction, topographical factors, diversity of geographical location and improve-ment of prevention technology all influence the response of pine forest ecosystem to PWN disturbance.

  20. Quantum Structures of a Model-Universe: An Inconsistency with Everett Interpretation of Quantum Mechanics

    OpenAIRE

    2011-01-01

    We observe a Quantum Brownian Motion (QBM) Model Universe in conjunction with recently established Entanglement Relativity and Parallel Occurrence of Decoherence. The Parallel Occurrence of Decoherence establishes the simultaneous occurrence of decoherence for two mutually irreducible structures (decomposition into subsystems) of the total QBM model universe. First we find that Everett world branching for one structure excludes branching for the alternate structure and in order to reconcile t...

  1. New interpretation of arterial stiffening due to cigarette smoking using a structurally motivated constitutive model

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2011-01-01

    Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... caused by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models...

  2. New interpretation of arterial stiffening due to cigarette smoking using a structurally motivated constitutive model

    DEFF Research Database (Denmark)

    Enevoldsen, Majken; Henneberg, K-A; Jensen, J A

    2011-01-01

    Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models to capture...

  3. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs

    Institute of Scientific and Technical Information of China (English)

    Li Sheng-Jie; Shao Yu; Chen Xu-Qiang

    2016-01-01

    We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workfl ow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.%♦Corresponding author: Li Sheng-Jie (Email: Richard@cup.edu.cn)

  4. Some Cautionary Notes on the Specification and Interpretation of LISREL-type Structural Equation Models.

    Science.gov (United States)

    Baldwin, Beatrice

    LISREL-type structural equation modeling is a powerful statistical technique that seems appropriate for social science variables which are complex and difficult to measure. The literature on the specification, estimation, and testing of such models is voluminous. The greatest proportion of this literature, however, focuses on the technical aspects…

  5. Total Productive Maintenance And Role Of Interpretive Structural Modeling And Structural Equation Modeling In Analyzing Barriers In Its Implementation A Literature Review

    Directory of Open Access Journals (Sweden)

    Prasanth S. Poduval

    2015-08-01

    Full Text Available Abstract - The aim of the authors is to present a review of literature of Total Productive Maintenance and the barriers in implementation of Total Productive Maintenance TPM. The paper begins with a brief description of TPM and the barriers in implementation of TPM. Interpretive Structural Modeling ISM and its role in analyzing the barriers in TPM implementation is explained in brief. Applications of ISM in analyzing issues in various fields are highlighted with special emphasis on TPM. The paper moves on to introduction to Structural Equation Modeling SEM and its role in validating ISM in analyzing barriers in implementation of TPM. The paper concludes with a gap analysis from the current literature research that can be carried out and expected outcomes from the proposed research.

  6. Three-dimensional Evolutionary Models of the Qiongxi Structures, Southwestern Sichuan Basin, China: Evidence from Seismic Interpretation and Geomorphology

    Institute of Scientific and Technical Information of China (English)

    JIA Qiupeng; JIA Dong; LUO Liang; CHEN Zhuxin; LI Yiquan; DENG Fei; SUN Shengsi; LI Haibin

    2009-01-01

    Fold terminations are key features in the study of compressional fault-related folds. Such terminations could be due to loss of displacement on the thrust fault or/and forming a lateral or oblique ramp. Thus, high-quality seismic data would help unambiguously define which mechanism should be responsible for the termination of a given fault-related fold. The Qiongxi and Qiongxinan structures in the Sichuan Basin, China are examples of natural fault-propagation folds that possess a northern termination and a structural saddle between them. The folds/fault geometry and along-strike displacement variations are constrained by the industry 3-D seismic volume. We interpret that the plunge of the fold near the northern termination and the structural saddle are due to the loss of displacement along strike. The fault geometry associated with the northern termination changes from a flat-ramp at the crest of the Qiongxinan structure, where displacement is the greatest, to simply a ramp near the northern tip of the Qiongxi structure, without forming a lateral or oblique ramp. In this study, we also use the drainage pattern, embryonic structure preserved in the crest of the Qiongxinan structure and the assumption that displacement along a fault is proportional to the duration of thrusting to propose a model for the lateral propagation of the Qiongxinan and Qiongxi structures. Specifically, we suggest that the structure first initiated as an isolated fault ramp within brittle units. With increased shortening, the fault grows to link with lower detachments in weaker shale units to create a hybridized fault-propagation fold. Our model suggests a possible explanation for the lateral propagation history of the Qiongxinan and Qiongxi structures, and also provides an alternative approach to confirming the activity of the previous Pingluoba structure in the southwestern Sichuan Basin in the late Cenozoic.

  7. Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: An Indian perspective

    Directory of Open Access Journals (Sweden)

    Sunil Luthra

    2011-07-01

    Full Text Available Purpose: Green Supply Chain Management (GSCM has received growing attention in the last few years. Most of the automobile industries are setting up their own manufacturing plants in competitive Indian market. Due to public awareness, economic, environmental or legislative reasons, the requirement of GSCM has increased.  In this context, this study aims to develop a structural model of the barriers to implement GSCM in Indian automobile industry.Design/methodology/approach: We have identified various barriers and contextual relationships among the identified barriers. Classification of barriers has been carried out based upon dependence and driving power with the help of MICMAC analysis. In addition to this, a structural model of barriers to implement GSCM in Indian automobile industry has also been put forward using Interpretive Structural Modeling (ISM technique. Findings: Eleven numbers of relevant barriers have been identified from literature and subsequent discussions with experts from academia and industry. Out of which, five numbers of barriers have been identified as dependent variables; three number of barriers have been identified as the driver variables and three number of barriers have been identified as the linkage variables. No barrier has been identified as autonomous variable. Four barriers have been identified as top level barriers and one bottom level barrier. Removal of these barriers has also been discussed.Research limitations/implications: A hypothetical model of these barriers has been developed based upon experts’ opinions. The conclusions so drawn may be further modified to apply in real situation problem. Practical implications: Clear understanding of these barriers will help organizations to prioritize better and manage their resources in an efficient and effective way.Originality/value: Through this paper we contribute to identify the barriers to implement GSCM in Indian automobile industry and to prioritize them

  8. Formal modelling of cognitive interpretation

    OpenAIRE

    Rukšenas, R.; Curzon, P; Back, J.; Blandford, A.

    2007-01-01

    We formally specify the interpretation stage in a dual state space human-computer interaction cycle. This is done by extending/reorganising our previous cognitive architecture. In particular, we focus on shape related aspects of the interpretation process associated with device input prompts. A cash-point example illustrates our approach. Using the SAL model checking environment, we show how the extended cognitive architecture facilitates detection of prompt-shape induced human error. © Sprin...

  9. Evaluating Structural Equation Models for Categorical Outcomes: A New Test Statistic and a Practical Challenge of Interpretation.

    Science.gov (United States)

    Monroe, Scott; Cai, Li

    2015-01-01

    This research is concerned with two topics in assessing model fit for categorical data analysis. The first topic involves the application of a limited-information overall test, introduced in the item response theory literature, to structural equation modeling (SEM) of categorical outcome variables. Most popular SEM test statistics assess how well the model reproduces estimated polychoric correlations. In contrast, limited-information test statistics assess how well the underlying categorical data are reproduced. Here, the recently introduced C2 statistic of Cai and Monroe (2014) is applied. The second topic concerns how the root mean square error of approximation (RMSEA) fit index can be affected by the number of categories in the outcome variable. This relationship creates challenges for interpreting RMSEA. While the two topics initially appear unrelated, they may conveniently be studied in tandem since RMSEA is based on an overall test statistic, such as C2. The results are illustrated with an empirical application to data from a large-scale educational survey.

  10. Modeling and interpretation of images*

    Directory of Open Access Journals (Sweden)

    Min Michiel

    2015-01-01

    Full Text Available Imaging protoplanetary disks is a challenging but rewarding task. It is challenging because of the glare of the central star outshining the weak signal from the disk at shorter wavelengths and because of the limited spatial resolution at longer wavelengths. It is rewarding because it contains a wealth of information on the structure of the disks and can (directly probe things like gaps and spiral structure. Because it is so challenging, telescopes are often pushed to their limitations to get a signal. Proper interpretation of these images therefore requires intimate knowledge of the instrumentation, the detection method, and the image processing steps. In this chapter I will give some examples and stress some issues that are important when interpreting images from protoplanetary disks.

  11. Mapping chemical performance on molecular structures using locally interpretable explanations

    CERN Document Server

    Whitmore, Leanne S; Hudson, Corey M

    2016-01-01

    In this work, we present an application of Locally Interpretable Machine-Agnostic Explanations to 2-D chemical structures. Using this framework we are able to provide a structural interpretation for an existing black-box model for classifying biologically produced fuel compounds with regard to Research Octane Number. This method of "painting" locally interpretable explanations onto 2-D chemical structures replicates the chemical intuition of synthetic chemists, allowing researchers in the field to directly accept, reject, inform and evaluate decisions underlying inscrutably complex quantitative structure-activity relationship models.

  12. Interpretive and Formal Models of Discourse Processing.

    Science.gov (United States)

    Bulcock, Jeffrey W.; Beebe, Mona J.

    Distinguishing between interpretive and formal models of discourse processing and between qualitative and quantitative research, this paper argues that formal models are the analogues of interpretive models, and that the two are complementary. It observes that interpretive models of reading are being increasingly derived from qualitative research…

  13. Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features

    OpenAIRE

    Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.

    2009-01-01

    In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) dat...

  14. Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique-An Indian perspective

    OpenAIRE

    Sunil Luthra; Vinod Kumar; Sanjay Kumar; Abid Haleem

    2011-01-01

    Purpose: Green Supply Chain Management (GSCM) has received growing attention in the last few years. Most of the automobile industries are setting up their own manufacturing plants in competitive Indian market. Due to public awareness, economic, environmental or legislative reasons, the requirement of GSCM has increased.  In this context, this study aims to develop a structural model of the barriers to implement GSCM in Indian automobile industry.Design/methodology/approach: We have ident...

  15. Structural interpretation of seismic data and inherent uncertainties

    Science.gov (United States)

    Bond, Clare

    2013-04-01

    associated further interpretation and analysis of the techniques and strategies employed. This resource will be of use to undergraduate, post-graduate, industry and academic professionals seeking to improve their seismic interpretation skills, develop reasoning strategies for dealing with incomplete datasets, and for assessing the uncertainty in these interpretations. Bond, C.E. et al. (2012). 'What makes an expert effective at interpreting seismic images?' Geology, 40, 75-78. Bond, C. E. et al. (2011). 'When there isn't a right answer: interpretation and reasoning, key skills for 21st century geoscience'. International Journal of Science Education, 33, 629-652. Bond, C. E. et al. (2008). 'Structural models: Optimizing risk analysis by understanding conceptual uncertainty'. First Break, 26, 65-71. Bond, C. E. et al., (2007). 'What do you think this is?: "Conceptual uncertainty" In geoscience interpretation'. GSA Today, 17, 4-10.

  16. Structure and kinematic analysis of the deepwater area of the Qiongdongnan Basin through a seismic interpretation and analogue modeling experiments

    Institute of Scientific and Technical Information of China (English)

    SUN Zhen; WANG Zhenfeng; SUN Zhipeng; WANG Zhangwen; ZHANG Wei; HE Lijuan

    2015-01-01

    Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.

  17. Interpretation and mathematical modeling of temporal changes of temperature observed in borehole Yaxcopoil-1 within the Chicxulub impact structure, Mexico

    Science.gov (United States)

    Šafanda, Jan; Wilhelm, Helmut; Heidinger, Philipp; Čermák, Vladimír

    2009-06-01

    SummaryGeothermal research of the Chicxulub impact structure on the Yucatan Peninsula, Mexico, included repeated temperature logs following 0.3-0.8, 15, 24, 34 and 50 months after shut-in of drilling operations at the 1.5 km deep Yaxcopoil-1 borehole. A gradual distortion of the linear temperature profile by a cold wave propagating downward from 145 m to 317 m was detected within the observational period of 49 months (March 2002-April 2006). The amplitude of the cold wave was increasing with depth and time in the range of 0.8-1.6 °C. As an explanation of this unusual phenomenon, the hypothesis of downward migration of a large volume of drilling mud, reported lost during drilling within the overlying and cooler highly porous and permeable karstic rocks, has been proposed. The thermal effects of the migrating fluid have been evaluated by solving numerically the heat conduction-convection equation in appropriate geothermal models. The best coincidence between the observed data and the simulations was yielded by the model of the drilling mud migrating as a large body. Parameters of this model are constrained by the measured temperature logs relatively tightly: (i) the vertical extent of the downward migrating fluid body is about 5-10 m, possibly increasing within the observational period of 49 months by a factor of 2; (ii) the horizontal extent of the body must be at least 15-20 m, i.e. by order(s) of magnitude larger than the diameter of the borehole; (iii) the average speed of the migration is about 5 metres per month and (iv) the fluid must migrate through a highly porous rock (80% porosity or more). This high porosity, which is necessary for the model to fit the observed data, and the observed relatively stable velocity of the migration indicate the existence of a well-developed system of interconnected cavities down to more than 300 m about 150 m more than the deepest cave system known in Yucatan yet.

  18. Interpreting Quantum Logic as a Pragmatic Structure

    Science.gov (United States)

    Garola, Claudio

    2017-02-01

    Many scholars maintain that the language of quantum mechanics introduces a quantum notion of truth which is formalized by (standard, sharp) quantum logic and is incompatible with the classical (Tarskian) notion of truth. We show that quantum logic can be identified (up to an equivalence relation) with a fragment of a pragmatic language LGP of assertive formulas, that are justified or unjustified rather than trueor false. Quantum logic can then be interpreted as an algebraic structure that formalizes properties of the notion of empirical justification according to quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic.

  19. Interpretation And Mathematical Modelling Of Temporal Changes Of Temperature Observed In Borehole Yaxcopoil-1 Within The Chicxulub Ipact Structure, Mexico

    Science.gov (United States)

    Safanda, J.; Wilhelm, H.; Heidinger, P.; Cermak, V.

    2007-05-01

    The geothermal research of the Chicxulub impact structure on the Yucatan Peninsula, Mexico, included repeated temperature logs of the 1.5 km deep borehole Yaxcopoil-1, which were done following 0.3-0.8, 15, 24, 34 and 50 months after shut-in of drilling operations. A gradual distortion of the linear temperature profile by a cold wave of the 0.8 -1.6°C amplitude was detected propagating downward from 145 m to 317 m within the observational period of 50 months (March 2002 - April 2006). As an explanation of this unusual phenomenon, the hypothesis of a downward migration of the drilling mud, accumulated within the overlying and cooler highly porous and permeable karstic rocks during the drilling, was proposed. Velocity of the downward propagation of the cold wave decreased appreciably between the last two logs (December 2004 - April 2006). It may indicate that the mud migrating downward through the system of interconnected caverns and conduits reached a bottom of the secondary porosity zone. We present results of simulations of thermal effects of the downward migrating drilling mud, obtained by a numerical solution of the heat transfer equation in a set of geothermal models of the borehole and its surroundings.

  20. Chain graph models and their causal interpretations

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Richardson, Thomas S.

    2002-01-01

    the equilibrium distributions of dynamic models with feed-back. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for directed acyclic graphs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have......Chain graphs are a natural generalization of directed acyclic graphs and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are many simple and apparently plausible, but ultimately fallacious......, interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to flawed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated from...

  1. Integrating rift inheritance and different plate kinematic scenarios in Alpine models: implications for the interpretation of the deep structures of the Alps

    Science.gov (United States)

    Manatschal, Gianreto; Tugend, Julie; Chenin, Pauline; Nirrengarten, Michael; Epin, Marie-Eva; Picazo, Suzanne; Mohn, Geoffroy

    2017-04-01

    The Alps result from the imbrication of its former rifted margins and intervening oceanic basins. Thus, the formation and evolution of this orogen depends, among other factors, on the overall kinematic evolution, nature and size of the oceanic domain, and on the occurrence of inherited rift structures. Most Alpine models mainly focus on the compressional history. Only few of them integrate plate kinematic scenarios and rift/oceanic models based on the latest observations and concepts derived from the research developed at rifted margins. In this presentation we will mainly focus on three recent outcomes of this research that may significantly impact the interpretation of the Alps. 1) The nature of the J-magnetic anomaly (including anomaly M0) as an oceanic isochron is questioned as a result of the re-evaluation of the breakup processes offshore Iberia-Newfoundland. As a consequence, classical kinematic models proposed for the Iberia plate and used also for the Alpine domain need to be revised. 2) The size of the oceanic basins prior to their subduction in the Alpine domain indeed depends on the plate kinematic model. New plate kinematic models, in line with studies of the mantle rocks derived from the Alpine ophiolites, do not show any evidence for an unequivocal mature oceanic domain with depleted mantle lithosphere. 3) Hyperextended magma-poor rifted margins, such as the fossil Alpine Tethys margins, include extremely thinned continental crust (<10 km) and exhumed serpentinized mantle with minor magmatic additions. Rheological weaknesses inherited from hyperextension are likely to control the location of decoupling levels and formation of buttresses during orogeny resulting in important implications for the nature of orogenic roots and restorations. In our presentation we will review different plate kinematic scenarios and their consequences for Alpine restorations (i.e., maximum vs. minimum size of the oceanic domains, widths of hyper-extended domains and timing

  2. Why style matters - uncertainty and structural interpretation in thrust belts.

    Science.gov (United States)

    Butler, Rob; Bond, Clare; Watkins, Hannah

    2016-04-01

    Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of

  3. Novel interpretation of the mean structure of feroxyhyte

    Energy Technology Data Exchange (ETDEWEB)

    Sestu, Matteo, E-mail: msestu@unica.it [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, S.S. 554 bivio per Sestu, 09042 Monserrato, CA (Italy); Carta, Daniela; Casula, Maria F. [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, S.S. 554 bivio per Sestu, 09042 Monserrato, CA (Italy); Corrias, Anna [School of Physical Sciences, The University of Kent, Canterbury, Kent CT2 (United Kingdom); Navarra, Gabriele [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, S.S. 554 bivio per Sestu, 09042 Monserrato, CA (Italy)

    2015-05-15

    The structure of the iron oxyhydroxide called feroxyhyte (δ-FeOOH), which shows an elusive X-ray powder diffraction pattern, has been represented so far using models describing a mean structure based on the crystalline network of the iron(III) oxide hematite (α-Fe{sub 2}O{sub 3}). In this paper, a novel description of the mean structure of feroxyhyte is presented, which is based on the structure of the thermodynamically stable iron oxyhydroxide goethite. Starting from different local arrangements present in the goethite network, a mean structural model is determined which shows an X-ray powder diffraction pattern almost coincident with previous studies. This outcome enables to integrate the structure of feroxyhyte among those of other well characterized iron oxyhydroxides. - Graphical abstract: The structure of the iron oxy-hydroxide feroxyhyte can be described by local arrangements present in the goethite network. - Highlights: • The structure of feroxyhyte (δ-FeOOH) proposed in literature is discussed. • The structure of goethite (α-FeOOH) is analyzed. • A structural relationship between feroxyhyte and goethite is found. • New interpretation of the mean structure of δ-FeOOH is given.

  4. The Importance of Structure Coefficients in Interpreting Regression Research.

    Science.gov (United States)

    Heidgerken, Amanda D.

    The paper stresses the importance of consulting beta weights and structure coefficients in the interpretation of regression results. The effects of multilinearity and suppressors and their effects on interpretation of beta weights are discussed. It is concluded that interpretations based on beta weights only can lead the unwary researcher to…

  5. Structural abstract interpretation, A formal study using Coq

    CERN Document Server

    Bertot, Yves

    2008-01-01

    interpreters are tools to compute approximations for behaviors of a program. These approximations can then be used for optimisation or for error detection. In this paper, we show how to describe an abstract interpreter using the type-theory based theorem prover Coq, using inductive types for syntax and structural recursive programming for the abstract interpreter's kernel. The abstract interpreter can then be proved correct with respect to a Hoare logic for the programming language.

  6. Injecting Abstract Interpretations into Linear Cost Models

    Directory of Open Access Journals (Sweden)

    David Cachera

    2010-06-01

    Full Text Available We present a semantics based framework for analysing the quantitative behaviour of programs with regard to resource usage. We start from an operational semantics equipped with costs. The dioid structure of the set of costs allows for defining the quantitative semantics as a linear operator. We then present an abstraction technique inspired from abstract interpretation in order to effectively compute global cost information from the program. Abstraction has to take two distinct notions of order into account: the order on costs and the order on states. We show that our abstraction technique provides a correct approximation of the concrete cost computations.

  7. Structure and interpretation of rhythm and timing

    NARCIS (Netherlands)

    Honing, H.J.

    2002-01-01

    Rhythm, as it is performed and perceived, is only sparingly addressed in music theory. Existing theories of rhythmic structure are often restricted to music as notated in a score, and as a result are bound to refrain from making statements about music as it is perceived and appreciated by listeners.

  8. Structure and interpretation of rhythm and timing

    NARCIS (Netherlands)

    Honing, H.J.

    2002-01-01

    Rhythm, as it is performed and perceived, is only sparingly addressed in music theory. Existing theories of rhythmic structure are often restricted to music as notated in a score, and as a result are bound to refrain from making statements about music as it is perceived and appreciated by listeners.

  9. Interpretation of test data with dynamic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Biba, P. [Southern California Edison, San Clemente, CA (United States). San Onofre Nuclear Generating Station

    1999-11-01

    The in-service testing of many Important-to-safety components, such as valves, pumps, etc. is often performed while the plant is either shut-down or the particular system is in a test mode. Thus the test conditions may be different from the actual operating conditions under which the components would be required to operate. In addition, the components must function under various postulated accident scenarios, which can not be duplicated during plant normal operation. This paper deals with the method of interpretation of the test data by a dynamic model, which allows the evaluation of the many factors affecting the system performance, in order to assure component and system operability.

  10. Morphologic interpretation of fertile structures in glossopterid gymnosperms

    Science.gov (United States)

    Schopf, J.M.

    1976-01-01

    The problem of determining affinity among glossopterid gymnosperms is beset by deficiencies in preservation, natural dissociation of parts, and scarcity of features assuredly critical for morphologic comprarison. The glossopterids probably are not a very heterogeneous group of plants, but this is difficult to prove. The Gondwana glacial "hiatus" has resulted in the omission of a critical chapter glossopterid evolution. As a consequence, morphologic features and phyletic probabilities must be evaluated on a much more hypothetical basis than would otherwise be justified. Confusion has arisen from the lack of morphologic terms that permit clear discussion of a newly evolved type of reproductive structure in glossopterids. The structure, here designated a "fertiliger", consists of a leafy bract, a partially adnate stalk, and a fertile head or capitulum. Seven types of fertile structures are discussed, all of which are bilaterally symmetrical and have different features on dorsiventral surfaces. I regard all fertiligers as ovulate but this interpretation may bot be acceptable to some workers; others may not accept dorsiventral organization of the capitulum as being fundamental. Among glossopterids, however, in spite of differences in preservation that may seem to support a variant interpretation, these ovulate fertiligers are the distinctive features that show general consistency. A single fertile bract bearing several capitula, as exemplified by Lidgettonia, is called a compound fertiliger. Staminate structures (microsporophylls) of glossopterids are separately classified as Eretmonia, Glossotheca, and possibly as other taxa. Only the manner of sporangial attachment is not entirely clear. It seems likely the staminate parts have previously been confused with scale leaves and are actually coextensive in distribution with the glossopterids. A tentative phyletic model suggests the distant derivation of glossopterids from middle Carboniferous cordaiteans. Many details must

  11. The Interpretive Shaping of Embodied Musical Structure in Piano Performance

    Directory of Open Access Journals (Sweden)

    Bryony Buck

    2013-12-01

    Full Text Available Research has indicated that the magnitude of physical expressive movements during a performance helps to communicate a musician's affective intent. However, the underlying function of these performance gestures remains unclear. Nine highly skilled solo pianists are examined here to investigate the effect of structural interpretation on performance motion patterns. Following previous findings that these performers generate repeated patterns of motion through overall upper-body movements corresponding to phrasing structure, this study now investigates the particular shapes traced by these movements. Through this we identify universal and idiosyncratic features within the shapes of motion patterns generated by these performers. Gestural shapes are examined for performances of Chopin's explicitly structured A major Prelude (Op. 28, No. 7 and are related to individual interpretations of the more complex phrasing structure of Chopin's B minor Prelude (Op. 28, No. 6. Findings reveal a universal general embodiment of phrasing structure and other higher-level structural features of the music. The physical makeup of this embodiment, however, is particular to both the performer and the piece being performed. Examining the link between performers' movements and interpreted structure strengthens understanding of the connection between body and instrument, furthering awareness of the relations between cognitive interpretation and physical expression of structure within music performance.

  12. New interpretation of the deep mantle structure beneath eastern China

    Science.gov (United States)

    Ma, Pengfei; Liu, Shaofeng; Lin, Chengfa; Yao, Xiang

    2016-04-01

    Recent study of high resolution seismic tomography presents a large mass of high velocity abnormality beneath eastern China near the phase change depth, expanding more than 1600km-wide in East-west cross-section across the North China plate. This structure high is generally believed to be the subducted slab of Pacific plate beneath the Eurasia continent, while its origin and dynamic effect on the Cenozoic tectonic evolution of eastern China remain to be controversial. We developed a subduction-driven geodynamic mantle convection model that honors a set of global plate reconstruction data since 230Ma to help understand the formation and evolution of mantle structure beneath eastern China. The assimilation of plate kinematics, continuous evolving plate margin, asymmetric subduction zone, and paleo seafloor age data enables the spatial and temporal consistency between the geologic data and the mantle convection model, and guarantees the conservation of the buoyancy flux across the lithosphere and subducted slabs. Our model achieved a first order approximation between predictions and the observed data. Interestingly, the model suggests that the slab material stagnated above discontinuity didn't form until 15Ma, much later than previous expected, and the fast abnormality in the mid-mantle further west in the tomographic image is interpreted to be the remnants of the Mesozoic Izanagi subduction. Moreover, detailed analysis suggests that the accelerated subduction of Philippine Sea plate beneath Eurasia plate along the Ryukyu Trench and Nankai Trough since 15Ma may largely contribute to extending feature above 670km discontinuity. The long distance expansion of the slab material in the East-west direction may be an illusion caused by the approximate spatial perpendicularity between the cross-section and the subduction direction of the Philippine Sea plate. Our model emphasizes the necessity of the re-examination on the geophysical observation and its tectonic and

  13. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    Science.gov (United States)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic

  14. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Mora K. [Texas Tech University, Lubbock; Hiemstra, T [Oak Ridge National Laboratory (ORNL); Van Riemsdijk, Willem H. [Wageningen University and Research Centre, The Netherlands; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL

    2009-01-01

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic

  15. Interpretations

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    Although nobody can question the practical efficiency of quantum mechanics, there remains the serious question of its interpretation. As Valerio Scarani puts it, "We do not feel at ease with the indistinguishability principle (that is, the superposition principle) and some of its consequences." Indeed, this principle which pervades the quantum world is in stark contradiction with our everyday experience. From the very beginning of quantum mechanics, a number of physicists--but not the majority of them!--have asked the question of its "interpretation". One may simply deny that there is a problem: according to proponents of the minimalist interpretation, quantum mechanics is self-sufficient and needs no interpretation. The point of view held by a majority of physicists, that of the Copenhagen interpretation, will be examined in Section 10.1. The crux of the problem lies in the status of the state vector introduced in the preceding chapter to describe a quantum system, which is no more than a symbolic representation for the Copenhagen school of thought. Conversely, one may try to attribute some "external reality" to this state vector, that is, a correspondence between the mathematical description and the physical reality. In this latter case, it is the measurement problem which is brought to the fore. In 1932, von Neumann was first to propose a global approach, in an attempt to build a purely quantum theory of measurement examined in Section 10.2. This theory still underlies modern approaches, among them those grounded on decoherence theory, or on the macroscopic character of the measuring apparatus: see Section 10.3. Finally, there are non-standard interpretations such as Everett's many worlds theory or the hidden variables theory of de Broglie and Bohm (Section 10.4). Note, however, that this variety of interpretations has no bearing whatsoever on the practical use of quantum mechanics. There is no controversy on the way we should use quantum mechanics!

  16. A Modeling Perspective on Interpreting Rates of Change in Context

    Science.gov (United States)

    Ärlebäck, Jonas B.; Doerr, Helen M.; O'Neil, AnnMarie H.

    2013-01-01

    Functions provide powerful tools for describing change, but research has shown that students find difficulty in using functions to create and interpret models of changing phenomena. In this study, we drew on a models and modeling perspective to design an instructional approach to develop students' abilities to describe and interpret rates of…

  17. New Cosmological Model and Its Implications on Observational Data Interpretation

    Directory of Open Access Journals (Sweden)

    Vlahovic Branislav

    2013-09-01

    Full Text Available The paradigm of ΛCDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard ΛCDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.

  18. Structural and geophysical interpretation of Roatan Island, Honduras, Western Caribbean

    Science.gov (United States)

    Sutton, Daniel Scott

    Roatan Island is the largest of the Bay Islands of Honduras. These islands form an emergent crest off the Caribbean coast of Honduras called the Bonacca Ridge. The Bartlett Trough to the north and subsequent Bonacca Ridge were likely formed due to the transform fault system of the Motagua-Swan Islands Fault System. This fault system forms the tectonic plate boundary between the North American and Caribbean plates. Although the timing and kinematics are poorly constrained, the Bay Islands and the Bonacca Ridge were likely uplifted due to transpression along this left-lateral strike-slip system. With limited regional exposures along the adjacent tectonic boundary, this study aimed to present a structural interpretation for Roatan. This new interpretation is further explained through regional considerations for a suggested geologic history of the northwestern Caribbean. In order to better constrain the kinematics of uplift and exhumation of Roatan Island, structural, gravity, and magnetic surveys were conducted. Principal attention was directed to the structural relationship between the geologic units and their relationship to one another through deformation. Resulting geologic cross-sections from this study present the metamorphic basement exposed throughout the island to be in a normal structural order consisting of biotite schist and gneiss, with overlying units of chlorite schist, carbonate, and conglomerate. These units have relatively concordant strike and dip measurements, consistent with resultant magnetic survey readings. Additionally, large and irregular bodies of amphibolite and serpentinite throughout the island are interpreted to have been emplaced as mafic and ultra-mafic intrusions in weakness zones along Early Paleogene transform system fault planes. The interpretation and suggested geologic history from this study demonstrate the importance of transpressive tectonics both local to Roatan and regionally throughout geologic history. Consideration of

  19. Conversations about Art: A Disruptive Model of Interpretation.

    Science.gov (United States)

    Gooding-Brown, Jane

    This paper describes a disruptive model of interpretation which explores positions in discursive practices embedded in visual culture as a means of understanding self and difference. The model understands interpretation as a Foucauldian technique of the self, and its use may give art teachers and students strategies for understanding the social…

  20. Interpretation models and charts of production profiles in horizontal wells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stratified flow is common for the gravity segregation and flow regimes are very complex because of borehole inclination,therefore,all the conventional production logging tools cannot be effectively applied in horizontal wells,thus significantly increasing the difficulties in log interpretation. In this paper,firstly,the overseas progress in updated integration tools for horizontal wells and production profile interpretation methods has been discussed in brief. Secondly,by means of theory study and experimental simulations,we have obtained the production profile interpretation model and experimental interpretation charts,which have been calibrated by the improved downhole technology and optimization methods. Finally,we have interpreted X-well with the production profile interpretation software designed by us,and it proves that the methods are useful for the production profile interpretation in horizontal wells.

  1. AN INTEGRATED APPROACH OF INTERPRETIVE STRUCTURAL MODELING (ISM AND ANALYTIC HIERARCHY PROCESS (AHP IN DEVELOPING INSTITUTIONAL SYSTEM OF THE BEEF CATTLE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Rimbun Sumarsono

    2016-04-01

    Full Text Available This study is aimed to knowing Structuring the sub element of Institutional System of Beef Cattle Industry, The methods used for data collection is by distributing questionnaires, interviews with experts and literature studies. Results of questionnaires and interviews with experts used to construct a hierarchy of election strategy Beef Cattle industry development. Preparation of hierarchy elections industrial development strategy Beef Cattle using AHP technique The formulation of a model institutional system Beef Cattle industry development with key elements in the element's goal is to realize a strong institutional element is the need for government support, elements of the perpetrator is a trader. While the key elements in the benchmarks is the increasing diversification of products Beef Cattle, element of constraint is the weak institutional system, lack of government support for industrial development Beef Cattle and the lack of guidance to the Breeders. For elements of the desired changes to the industrial development Beef Cattle is the formation of an independent group of cattle at the planting site Beef Cattle

  2. Pedagogic Models, Teachers' Frames of Interpretation and Assessment Practices.

    Science.gov (United States)

    Sakonidis, Haralambos; Tsatsaroni, Anna; Lamnias, Costas

    2002-01-01

    Constructed a theoretical framework to connect the internal structure of specialized educational discourse with the frames of interpretation that teachers used in dealing with teaching, learning, and assessment. Data from Greek elementary school teachers indicated that teachers' interpretive frames related to the serial languages of traditional,…

  3. Interpretation of Tadpole Structures in the Solar Radio Radiation

    Science.gov (United States)

    Mann, Gottfried; Melnik, Valentin; Rucker, Helmut; Konovalenko, Alexander

    2016-04-01

    The new spectrometer on the Ukrainian radio telescope UTR-2 allows to observe the solar radio radiation at low frequencies (10-30 MHz) with a high spectral and temporal resolution. Tadpole structures were observed as special fine structures in the solar radio radiation. They show a fast drift (-2.13 MHz/s) in the dynamic radio spectrum. They appear as an ensemble of tadpoles drifting slowly (-8.3 kHz/s) from high to low frequencies. The tadpoles are interpreted as electron beams accelerated at shocks in the high corona.

  4. Protein flexibility: coordinate uncertainties and interpretation of structural differences

    Energy Technology Data Exchange (ETDEWEB)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); Rashin, Abraham H. L. [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); Rutgers, The State University of New Jersey, 22371 BPO WAY, Piscataway, NJ 08854-8123 (United States); Jernigan, Robert L. [LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States)

    2009-11-01

    Criteria for the interpretability of coordinate differences and a new method for identifying rigid-body motions and nonrigid deformations in protein conformational changes are developed and applied to functionally induced and crystallization-induced conformational changes. Valid interpretations of conformational movements in protein structures determined by X-ray crystallography require that the movement magnitudes exceed their uncertainty threshold. Here, it is shown that such thresholds can be obtained from the distance difference matrices (DDMs) of 1014 pairs of independently determined structures of bovine ribonuclease A and sperm whale myoglobin, with no explanations provided for reportedly minor coordinate differences. The smallest magnitudes of reportedly functional motions are just above these thresholds. Uncertainty thresholds can provide objective criteria that distinguish between true conformational changes and apparent ‘noise’, showing that some previous interpretations of protein coordinate changes attributed to external conditions or mutations may be doubtful or erroneous. The use of uncertainty thresholds, DDMs, the newly introduced CDDMs (contact distance difference matrices) and a novel simple rotation algorithm allows a more meaningful classification and description of protein motions, distinguishing between various rigid-fragment motions and nonrigid conformational deformations. It is also shown that half of 75 pairs of identical molecules, each from the same asymmetric crystallographic cell, exhibit coordinate differences that range from just outside the coordinate uncertainty threshold to the full magnitude of large functional movements. Thus, crystallization might often induce protein conformational changes that are comparable to those related to or induced by the protein function.

  5. Interpretive and Critical Phenomenological Crime Studies: A Model Design

    Science.gov (United States)

    Miner-Romanoff, Karen

    2012-01-01

    The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…

  6. Interpreting Results from the Multinomial Logit Model

    DEFF Research Database (Denmark)

    Wulff, Jesper

    2015-01-01

    This article provides guidelines and illustrates practical steps necessary for an analysis of results from the multinomial logit model (MLM). The MLM is a popular model in the strategy literature because it allows researchers to examine strategic choices with multiple outcomes. However, there see...

  7. Model-Based Integration and Interpretation of Data

    DEFF Research Database (Denmark)

    Petersen, Johannes

    2004-01-01

    Data integration and interpretation plays a crucial role in supervisory control. The paper defines a set of generic inference steps for the data integration and interpretation process based on a three-layer model of system representations. The three-layer model is used to clarify the combination...... of constraint and object-centered representations of the work domain throwing new light on the basic principles underlying the data integration and interpretation process of Rasmussen's abstraction hierarchy as well as other model-based approaches combining constraint and object-centered representations. Based...

  8. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NARCIS (Netherlands)

    Ridley, M.K.; Hiemstra, T.; Riemsdijk, van W.H.; Machesky, M.L.

    2009-01-01

    Acid–base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in

  9. Implications of structural analysis, P-T pseudosection modelling and white mica 40Ar/39Ar age distributions for the interpretation of the tectonometamorphic history of Syros (Cyclades, Greece)

    Science.gov (United States)

    Álvarez, Manuel Ignacio de Paz; Uunk, Bertram; Brouwer, Fraukje; Wijbrans, Jan

    2017-04-01

    The island of Syros, in the Cycladic region of Greece, remains a key location for investigations aiming to understand tectonic and metamorphic subduction processes of fluid-rock interaction and metasomatism, channel flow, extrusion wedges and back-arc extension in syn-collisional environments. The present ongoing research is based on newly obtained 40Ar/39Ar phengite ages, P-T modelling of eclogite, blueschist and greenschist facies samples, and structural analysis and mapping. It provides new insights in order to unravel the complex Eocene-Miocene history of the Cycladic Blueschist Unit (CBU) in Syros. Numerous previous contributions provide a wide variety of interpretations for similar observations. An agreement on a basic input such as the peak metamorphic conditions achieved by the different identified units within the island, needed for the proposition of geological sound models, is still lacking despite considerable efforts. This research aims to estimate peak metamorphic conditions for several of them. Preliminary data suggests that they experienced peak metamorphic conditions varying between 20-25kbar and temperatures ranging 500-600°C: this supports a recent trend in literature towards higher peak pressure conditions for eclogite metamorphism. Moreover, it suggests that the different units reached similar metamorphic conditions. Structural observations on the island scale support previous research with respect to the preservation of at least two ductile deformation events. The first, mostly recorded in the northern part of the island associated to preserved lawsonite pseudomorphs, is interpreted to record prograde burial and top-to-the-S thrusting in blueschist facies. The second, pervasively found across the island, is associated to a continuum of top-to-the-E extensional shearing that started in eclogite facies, being the blueschist structures the dominant ones. Continued greenschist overprint is found as both static and deformation-driven. It is

  10. IT Project Risk Management Based on Interpretative Structural Model and AHP%基于解释结构模型和AHP的IT项目开发风险管理

    Institute of Scientific and Technical Information of China (English)

    周晓光; 李莉; 高学东

    2013-01-01

    The risk factors impacting development of IT project are identified,and a model of risk management for IT pro-ject is established based on interpretative structural model.According to the hierarchical relationship of interpretative struc-tural model,the direct and fundamental factors are found out.The risk factors affecting the development of IT project are quantitative analyzed by AHP,and the grade of risk factors are divided.Through the application of a bank’ s collecting and returning project,it shows that the proposed method can effectively deal with the risk of IT project,and it provides a new way to manage the risk of IT project.%识别影响IT项目开发的风险因素,构建基于解释结构模型的IT项目风险管理模型;根据解释结构模型的递阶层次关系,得出IT项目开发风险中的直接因素和根本因素,并根据层次分析法对IT项目开发的风险因素进行定量分析、划分风险等级。通过某银行集中提回项目的应用表明,上述方法可以有效地处理IT项目开发风险,为IT项目的风险管理提供一个新的途径。

  11. Back to the basics: Using observations and interpretation to define watershed model structure. A case study in the Upper Coastal Plain, US.

    Science.gov (United States)

    Vache, K. B.

    2015-12-01

    This study outlines the development and use of an integrated catchment model that has been developed as part of a long-term project focused on impacts of short-rotation loblolly pine production as a biofuel feedstock. The field-related aspects of the project were initiated in 2009 and focused on the development of a baseline dataset developed from hydrometric, isotopic, and water quality monitoring of a set of small paired catchments. In the winter of 2013 a series of treatments, representing typical forest management strategies in the southeastern US were implemented, and monitoring will continue through 2018. We have used the available long-term measurements to outline a conceptual model of catchment hydrology in this region which is characterized by low gradient slopes and deep sandy soils. The conceptual model has been translated into an object-oriented landscape modeling framework, allowing for the development of a set of long term landuse scenarios which serve as temporally-varying boundaries conditions for the catchment model. The presentation focuses primarily on these modeling results, with particular emphasis on the influence of short rotation harvest on groundwater recharge and stream water quantity over decadal scales.

  12. Superconnections: an interpretation of the standard model

    Directory of Open Access Journals (Sweden)

    Gert Roepstorff

    2000-07-01

    Full Text Available The mathematical framework of superbundles as pioneered by D. Quillen suggests that one consider the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank n where n=2 for the electroweak theory and n=5 for the full Standard Model. The present setup is similar to but avoids the use of non-commutative geometry.

  13. Modelling and Interpretation of Adsorption Isotherms

    Directory of Open Access Journals (Sweden)

    Nimibofa Ayawei

    2017-01-01

    Full Text Available The need to design low-cost adsorbents for the detoxification of industrial effluents has been a growing concern for most environmental researchers. So modelling of experimental data from adsorption processes is a very important means of predicting the mechanisms of various adsorption systems. Therefore, this paper presents an overall review of the applications of adsorption isotherms, the use of linear regression analysis, nonlinear regression analysis, and error functions for optimum adsorption data analysis.

  14. Conceptual design interpretations, mindset and models

    CERN Document Server

    Andreasen, Mogens Myrup; Cash, Philip

    2015-01-01

    Maximising reader insights into the theory, models, methods and fundamental reasoning of design, this book addresses design activities in industrial settings, as well as the actors involved. This approach offers readers a new understanding of design activities and related functions, properties and dispositions. Presenting a ‘design mindset’ that seeks to empower students, researchers, and practitioners alike, it features a strong focus on how designers create new concepts to be developed into products, and how they generate new business and satisfy human needs.   Employing a multi-faceted perspective, the book supplies the reader with a comprehensive worldview of design in the form of a proposed model that will empower their activities as student, researcher or practitioner. We draw the reader into the core role of design conceptualisation for society, for the development of industry, for users and buyers of products, and for citizens in relation to public systems. The book also features original con...

  15. MODELING THE EFFECTIVENESS OF THE CORPORATE IDENTITY MIX IN PERCEIVED QUALITY AND CUSTOMER- RELATED BRAND EQUITY WITH INTERPRETIVE STRUCTURAL EQUATIONS AND MICMAC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Mahsa Pishdar

    2014-01-01

    Full Text Available This study aims to identify the relation between corporate identity mix, perceived quality on customers’ behalf and customer-centric brand equity. A review of the available literature within this scope resulted in making a primary model which represents that the corporate identity mix has an effect upon the perceived quality and brand equity by some variables such as corporate image and corporate reputation. Statistical analysis of the formulated hypotheses leads us to the conclusion that the influence of identity mix on corporate image and other correlations showed in the primary model could not be denied. Confirmatory Factor Analysis (CFA was executed and, as a result, established that all fitting indexes are in an immaculate condition and factor loadings are significant when the confidence level is 95%. So, the primary model of the survey will be supplemented with some new relations. It appears that the corporate identity mix can directly affect the brand equity, corporate reputation and perceived identity, besides, corporate image and corporate reputation directly affect the brand equity. The upshot of the MICMAC analysis on corporate identity mix variables shows that corporate characteristic and culture play a key role in this system.

  16. A forward modeling approach for interpreting impeller flow logs.

    Science.gov (United States)

    Parker, Alison H; West, L Jared; Odling, Noelle E; Bown, Richard T

    2010-01-01

    A rigorous and practical approach for interpretation of impeller flow log data to determine vertical variations in hydraulic conductivity is presented and applied to two well logs from a Chalk aquifer in England. Impeller flow logging involves measuring vertical flow speed in a pumped well and using changes in flow with depth to infer the locations and magnitudes of inflows into the well. However, the measured flow logs are typically noisy, which leads to spurious hydraulic conductivity values where simplistic interpretation approaches are applied. In this study, a new method for interpretation is presented, which first defines a series of physical models for hydraulic conductivity variation with depth and then fits the models to the data, using a regression technique. Some of the models will be rejected as they are physically unrealistic. The best model is then selected from the remaining models using a maximum likelihood approach. This balances model complexity against fit, for example, using Akaike's Information Criterion.

  17. Modeling Change Over Time: Conceptualization, Measurement, Analysis, and Interpretation

    Science.gov (United States)

    2009-11-12

    2007 to 29-11-2008 4. TITLE AND SUBTITLE Modeling Change Over Time: Conceptualization, Measurement, Analysis, and Interpretation 5a. CONTRACT NUMBER...Multilevel Modeling Portal (www.ats.ucla.edu/stat/ mlm /) and the Web site of the Center for Multilevel Modeling (http://multilevel.ioe.ac.uk/index.html

  18. Interpreting metabolomic profiles using unbiased pathway models.

    Directory of Open Access Journals (Sweden)

    Rahul C Deo

    2010-02-01

    Full Text Available Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT in 50 individuals, 25 with normal (NGT and 25 with impaired glucose tolerance (IGT. Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for "active modules"--regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved

  19. Analysis of Influencing Factors of Construction Cost Based on Interpretative Structural Modeling%基于解释结构模型的施工成本影响因素分析

    Institute of Scientific and Technical Information of China (English)

    朱晶

    2015-01-01

    Recognizing factors which influence construction cost and figuring out the relationship between factors is of signifi -cance for cost management .On the basis of literature review , fifteen influencing factors were proposed .And the hierarchical structure model of factors which influence construction cost was constructed based on interpretative structural modeling (ISM). The hierarchical relationship of influencing factors was acquired and strategies used to control construction cost were put forward . It aims at improving construction cost management by providing solving ideas for construction enterprises .%论述了识别影响施工成本的因素,理清施工成本各影响因素之间的关系对做好施工成本管理具有的重要意义,通过文献研究提炼出影响施工成本的15个因素,并借助解释结构模型构建了施工成本影响因素的层次结构模型,得出了各影响因素之间的层次关系,在此基础上分析了控制施工成本的策略,为施工企业提高施工成本管理水平提供了一种新思路。

  20. The processing role of structural constraints on the interpretation of pronouns and anaphors.

    Science.gov (United States)

    Badecker, William; Straub, Kathleen

    2002-07-01

    The authors report 6 self-paced word-by-word reading studies of how morphosyntactic agreement, focus status, and the structural constraints of binding theory apply and interact during the online interpretation of pronouns (e.g., him, her) and anaphors (e.g., himself, each other). Previous studies held that structural conditions on coreference work as interpretive filters that impose exceptionless limits on which antecedent candidates can be evaluated by subsequent, content-based processes. These experiments instead support an interactive-parallel-constraint model, in which multiple weighted constraints (including constraints on binding) simultaneously influence the net activation of a candidate during preselection stages of antecedent evaluation. Accordingly, structurally inaccessible candidates can interfere with antecedent selection if they are both prominent in focus structure and gender-number compatible with the pronoun or anaphor.

  1. Baroclinic instability in the two-layer model. Interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Joseph [Meteorological Inst., Univ. of Munich (Germany)

    2009-10-15

    Two new interpretations of the wellknown instability criterion of the two-layer model of baroclinic instability are given whereby also a slight generalization of this model is introduced by admitting an interface on top with a reduced gravity g. It is found that instability sets in when the horizontal potential temperature advection by the barotropic mode becomes more important than the vertical temperature advection due to this mode. The second interpretation is based on potential vorticity (PV) thinking. Instability implies a dominance of the vertical PV coupling coefficient compared to horizontal mean state PV advection generated at the same level. The interface damps with decreasing g. (orig.)

  2. [How to fit and interpret multilevel models using SPSS].

    Science.gov (United States)

    Pardo, Antonio; Ruiz, Miguel A; San Martín, Rafael

    2007-05-01

    Hierarchic or multilevel models are used to analyse data when cases belong to known groups and sample units are selected both from the individual level and from the group level. In this work, the multilevel models most commonly discussed in the statistic literature are described, explaining how to fit these models using the SPSS program (any version as of the 11 th ) and how to interpret the outcomes of the analysis. Five particular models are described, fitted, and interpreted: (1) one-way analysis of variance with random effects, (2) regression analysis with means-as-outcomes, (3) one-way analysis of covariance with random effects, (4) regression analysis with random coefficients, and (5) regression analysis with means- and slopes-as-outcomes. All models are explained, trying to make them understandable to researchers in health and behaviour sciences.

  3. Interpretation Problems in Modelling Complex Artifacts for Diagnosis

    DEFF Research Database (Denmark)

    Lind, Morten

    1996-01-01

    The paper analyse the interpretation problems involved in building models for diagnosis of industrial systems. It is shown that the construction of a fault tree of a plant is based on general diagnostic knowledge and an extensive body of plant knowledge. It is also shown that the plant knowledge ...

  4. Interpreting Marginal Effects in the Multinomial Logit Model

    DEFF Research Database (Denmark)

    Wulff, Jesper

    2014-01-01

    This paper presents the challenges when researchers interpret results about relationships between variables from discrete choice models with multiple outcomes. The recommended approach is demonstrated by testing predictions from transaction cost theory on a sample of 246 Scandinavian firms that h...

  5. Continuous media interpretation of supersymmetric Wess-Zumino type models

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, P.S. [Universidade Estadual de Campinas (Brazil). Departamento de Matematica Aplicada; Zanchin, V.T. [Departamento de Fisica-CCNE, Universidade Federal de Santa Maria, 97119, Santa Maria, R.S. (Brazil)

    1995-02-20

    Supersymmetric Wess-Zumino type models are considered as classical material media that can be interpreted as fluids of ordered strings with heat flow along the strings, or a mixture of fluids of ordered strings with either a cloud of particles or a flux of directed radiation. ((orig.))

  6. Invalidity of Geometrical Interpretation of F-Spin Structure of Nuclear Rotations by Otsuka's View

    Science.gov (United States)

    Long, Guilu

    1995-06-01

    In Otsuka's view of nuclear rotations neutrons and protons are not rotating around a common axis, but rather around separate axis. In this letter, we pointed out that this invalidates the geometrical interpretation of F-spin structure of the neutron-proton interacting boson model, where the angle between the axis of symmetries of neutron ellipsoid and proton ellipsoid is used to determine whether a state is F-spin symmetric or mixed symmetric.

  7. Confusing cracks and difficult deformations: Interpreting structural damage in masonry

    NARCIS (Netherlands)

    De Vent, I.; Rots, J.G.; Van Hees, R.P.J.; Hobbelman, G.J.

    2012-01-01

    Cracks and deformatiçns in masonry are common phenomena in historical buildings. If they are interpreted correctly, they can be an extremely valuable source çf informatiçn on the load history of the premises. Nevertheless, this interpretation is not always as obvious as one may think. In the framewo

  8. Restraining Factors for the Effective Supply of Drug for Children Based on Interpretative Structural Modeling%基于解释结构模型的儿童用药有效供给制约因素分析

    Institute of Scientific and Technical Information of China (English)

    卫陈; 顾海

    2015-01-01

    From the perspective of current status of drug supply for children, the article analyzed the restraining factors for the effective drug supply for children by literature view and expert interview and analyzed the structural and hierarchical relation among restraining factors by interpretative structural modeling. We found 9 factors for the inefficient drug supply for children, among which the most direct reason is the lack of rational profit of companies; high research cost, weak foundation of clinical trial, unstable market, the absence of preferential policy of medical insurance and nonstandard drug administration are intermediary factors; the lack of relevant laws and regulations, barriers of purchasing by invitation to bid and the lack of subjects for clinical trials are the root causes of the problem.%本文从儿童用药供给的现状出发,通过文献研究和专家访谈分析儿童用药有效供给的制约因素,应用解释结构模型分析制约因素间的结构层次关系。结果表明,制约儿童用药有效供给不足的因素共有9个,其中企业没有合理利润是最直接原因,研发成本高、临床试验基础薄弱、市场不稳定、医保无政策倾斜以及用药不规范是中间层因素,相关法律法规缺失、招标采购政策壁垒以及临床试验受试者缺乏是问题的根源。

  9. A challenging interpretation of a hexagonally layered protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Michael C.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [UCLA, Los Angeles, CA 90095 (United States)

    2014-01-01

    The authors describe the structure determination of a hexagonally layered protein structure that suffered from a complicated combination of translational non-crystallographic symmetry and hemihedral twinning. This case serves as a reminder that broken crystallographic symmetry resulting from doubling of a unit-cell axis often requires a new choice of origin. The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the β-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed.

  10. Interpretation of searches for supersymmetry with simplified models

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.

    2013-09-01

    The results of searches for supersymmetry by the CMS experiment are interpreted in the framework of simplified models. The results are based on data corresponding to an integrated luminosity of 4.73 to 4.98fb-1. The data were collected at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. This paper describes the method of interpretation and provides upper limits on the product of the production cross section and branching fraction as a function of new particle masses for a number of simplified models. These limits and the corresponding experimental acceptance calculations can be used to constrain other theoretical models and to compare different supersymmetry-inspired analyses.

  11. Interpretation of searches for supersymmetry with simplified models

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard

    2013-01-01

    The results of searches for supersymmetry by the CMS experiment are interpreted in the framework of simplified models. The results are based on data corresponding to an integrated luminosity of 4.73 to 4.98 inverse femtobarns. The data were collected at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. This paper describes the method of interpretation and provides upper limits on the product of the production cross section and branching fraction as a function of new particle masses for a number of simplified models. These limits and the corresponding experimental acceptance calculations can be used to constrain other theoretical models and to compare different supersymmetry-inspired analyses.

  12. Life course models: improving interpretation by consideration of total effects.

    Science.gov (United States)

    Green, Michael J; Popham, Frank

    2016-12-28

    Life course epidemiology has used models of accumulation and critical or sensitive periods to examine the importance of exposure timing in disease aetiology. These models are usually used to describe the direct effects of exposures over the life course. In comparison with consideration of direct effects only, we show how consideration of total effects improves interpretation of these models, giving clearer notions of when it will be most effective to intervene. We show how life course variation in the total effects depends on the magnitude of the direct effects and the stability of the exposure. We discuss interpretation in terms of total, direct and indirect effects and highlight the causal assumptions required for conclusions as to the most effective timing of interventions.

  13. Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs.

    Science.gov (United States)

    Nicolotti, Orazio; Gillet, Valerie J; Fleming, Peter J; Green, Darren V S

    2002-11-07

    Deriving quantitative structure-activity relationship (QSAR) models that are accurate, reliable, and easily interpretable is a difficult task. In this study, two new methods have been developed that aim to find useful QSAR models that represent an appropriate balance between model accuracy and complexity. Both methods are based on genetic programming (GP). The first method, referred to as genetic QSAR (or GPQSAR), uses a penalty function to control model complexity. GPQSAR is designed to derive a single linear model that represents an appropriate balance between the variance and the number of descriptors selected for the model. The second method, referred to as multiobjective genetic QSAR (MoQSAR), is based on multiobjective GP and represents a new way of thinking of QSAR. Specifically, QSAR is considered as a multiobjective optimization problem that comprises a number of competitive objectives. Typical objectives include model fitting, the total number of terms, and the occurrence of nonlinear terms. MoQSAR results in a family of equivalent QSAR models where each QSAR represents a different tradeoff in the objectives. A practical consideration often overlooked in QSAR studies is the need for the model to promote an understanding of the biochemical response under investigation. To accomplish this, chemically intuitive descriptors are needed but do not always give rise to statistically robust models. This problem is addressed by the addition of a further objective, called chemical desirability, that aims to reward models that consist of descriptors that are easily interpretable by chemists. GPQSAR and MoQSAR have been tested on various data sets including the Selwood data set and two different solubility data sets. The study demonstrates that the MoQSAR method is able to find models that are at least as good as models derived using standard statistical approaches and also yields models that allow a medicinal chemist to trade statistical robustness for chemical

  14. The Impact of Non-Uniform Thermal Structure on the Interpretation of Exoplanet Emission Spectra

    CERN Document Server

    Feng, Y Katherina; Fortney, Jonathan J; Stevenson, Kevin B; Bean, Jacob; Kreidberg, Laura; Parmentier, Vivien

    2016-01-01

    The determination of atmospheric structure and molecular abundances of planetary atmospheres via spectroscopy involves direct comparisons between models and data. While varying in sophistication, most model-spectra comparisons fundamentally assume "1D" model physics. However, knowledge from general circulation models and of solar system planets suggests that planetary atmospheres are inherently "3D" in their structure and composition. We explore the potential biases resulting from standard "1D" assumptions within a Bayesian atmospheric retrieval framework. Specifically, we show how the assumption of a single 1-dimensional thermal profile can bias our interpretation of the thermal emission spectrum of a hot Jupiter atmosphere that is composed of two thermal profiles. We retrieve upon spectra of unresolved model planets as observed with a combination of $HST$ WFC3+$Spitzer$ IRAC as well as $JWST$ under varying differences in the two thermal profiles. For WFC3+IRAC, there is a significantly biased estimate of CH...

  15. 基于解释结构模型的农民科技创业影响因素分析%Analysis of Science and Technology Entrepreneurship of Farmers Based on Interpretation Structure Model

    Institute of Scientific and Technical Information of China (English)

    焦爱英; 郭昕霞

    2016-01-01

    农民科技创业问题是社会热点问题,它可以加速农村剩余劳动力转移,推动非农产业的发展,对于解决“三农”问题具有重要意义。基于前期研究,从农民、政府、服务机构3个方面分析我国农民科技创业的影响因素,引入解释结构模型进行建模分析,更加层次化、条理化地划分子系统、影响因素间复杂关系,进而有针对性地提出解决对策建议。%Science and technology entrepreneurship of farmers is a hot social issue,which can accelerate the transfer of ru-ral surplus labor force,promote the development of non -agricultural industries,and has important significance to solve the“three rural issues”.The paper,based on the previous research,from three aspects of farmers,government and service a-gencies,analyzes many factors that affect science and technology entrepreneurship of farmers,and introduces an interpreta-tion structural model toexplain these factors,in order to make the complex relationship between factors more hierarchical and systematic.Finally,the paper puts forward countermeasures.

  16. Comment on ``Interpretation of the fine structure in the 14C radioactive decay of 223'

    Science.gov (United States)

    Hussonnois, M.; Le Du, J. F.; Brillard, L.; Ardisson, G.

    1991-12-01

    Priority of our interpretation of the fine structure in the 14C radioactive decay of 223Ra is asserted. It seems that the deformation parameter values, used in the framework of ARM to interpret properties of both 223Ra ground and excited states, partly allow for the qualitative interpretation of the experimental hindrance factors to the 209Pb states.

  17. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    CERN Document Server

    Chevallard, Jacopo

    2016-01-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret in terms of physical parameters any combination of photometric and spectroscopic galaxy observations. The current version of the tool includes the versatile modeling of the emission from stars and photoionized gas, attenuation by dust and the accounting for different instrumental effects. We show a first application of the BEAGLE tool to the interpretation of broadband SEDs of a published sample of ${\\sim}10^4$ galaxies at redshifts $0.1 \\lesssim z\\lesssim8$. We find that the constraints derived on photometric redshifts using this multi-purpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and ...

  18. Backward Causation in Complex Action Model --- Superdeterminism and Transactional Interpretations

    CERN Document Server

    Nielsen, Holger B

    2010-01-01

    It is shown that the transactional interpretation of quantum mechanics being referred back to Feynman-Wheeler's time reversal symmetric radiation theory has reminiscences to our complex action model. In this complex action model the initial conditions are in principle even calculable. Thus it philosophically points towards superdeterminism, but really the Bell theorem problem is solved in our model of complex action by removing the significance of signals running slower than by light velocity. Our model as earlier published predicts that LHC should have some failure before reaching to have produced as many Higgs-particles as would have been produced the SSC accelerator. In the present article, we point out that a cardgame involving whether to restrict LHC-running as we have proposed to test our model will under all circumstances be a success.

  19. Interpreting structural damage in masonry: Diagnostic tool and approach

    NARCIS (Netherlands)

    Vent, A.E. de; Rots, J.G.; Hees, R.P.J. van

    2013-01-01

    A sound diagnosis can only be reached starting from a correct interpretation of the damage. This is not always an easy task: symptoms may be misunderstood, alternative hypotheses overlooked, and the context of the damage left unconsidered. This paper aims to offer architects, contractors and enginee

  20. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben

    2000-01-01

    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  1. Internal models for interpreting neural population activity during sensorimotor control.

    Science.gov (United States)

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

  2. Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.

    1994-01-01

    Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.

  3. Coloration of the Chilean Bellflower, Nolana paradoxa, interpreted with a scattering and absorbing layer stack model

    OpenAIRE

    Stavenga, Doekele G; van der Kooi, Casper J.

    2015-01-01

    Main conclusion An absorbing-layer-stack model allows quantitative analysis of the light flux in flowers and the resulting reflectance spectra. It provides insight in how plants can optimize their flower coloration for attracting pollinators. The coloration of flowers is due to the combined effect of pigments and light-scattering structures. To interpret flower coloration, we applied an optical model that considers a flower as a stack of layers, where each layer can be treated with the Kubelk...

  4. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    Science.gov (United States)

    Chevallard, Jacopo; Charlot, Stéphane

    2016-10-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modelling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ˜ 10^4 galaxies at redshifts 0.1 ≲ z ≲ 8. We find that the constraints derived on photometric redshifts using this multipurpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

  5. Delta-tilde interpretation of standard linear mixed model results

    DEFF Research Database (Denmark)

    Brockhoff, Per Bruun; Amorim, Isabel de Sousa; Kuznetsova, Alexandra

    2016-01-01

    effects relative to the residual error and to choose the proper effect size measure. For multi-attribute bar plots of F-statistics this amounts, in balanced settings, to a simple transformation of the bar heights to get them transformed into depicting what can be seen as approximately the average pairwise...... for factors with differences in number of levels. For mixed models, where in general the relevant error terms for the fixed effects are not the pure residual error, it is suggested to base the d-prime-like interpretation on the residual error. The methods are illustrated on a multifactorial sensory profile...... inherently challenging effect size measure estimates in ANOVA settings....

  6. Bridging the information gap: computational tools for intermediate resolution structure interpretation.

    Science.gov (United States)

    Jiang, W; Baker, M L; Ludtke, S J; Chiu, W

    2001-05-18

    Due to large sizes and complex nature, few large macromolecular complexes have been solved to atomic resolution. This has lead to an under-representation of these structures, which are composed of novel and/or homologous folds, in the library of known structures and folds. While it is often difficult to achieve a high-resolution model for these structures, X-ray crystallography and electron cryomicroscopy are capable of determining structures of large assemblies at low to intermediate resolutions. To aid in the interpretation and analysis of such structures, we have developed two programs: helixhunter and foldhunter. Helixhunter is capable of reliably identifying helix position, orientation and length using a five-dimensional cross-correlation search of a three-dimensional density map followed by feature extraction. Helixhunter's results can in turn be used to probe a library of secondary structure elements derived from the structures in the Protein Data Bank (PDB). From this analysis, it is then possible to identify potential homologous folds or suggest novel folds based on the arrangement of alpha helix elements, resulting in a structure-based recognition of folds containing alpha helices. Foldhunter uses a six-dimensional cross-correlation search allowing a probe structure to be fitted within a region or component of a target structure. The structural fitting therefore provides a quantitative means to further examine the architecture and organization of large, complex assemblies. These two methods have been successfully tested with simulated structures modeled from the PDB at resolutions between 6 and 12 A. With the integration of helixhunter and foldhunter into sequence and structural informatics techniques, we have the potential to deduce or confirm known or novel folds in domains or components within large complexes.

  7. Enhancing CIDOC-CRM and compatible models with the concept of multiple interpretation

    Science.gov (United States)

    Van Ruymbeke, M.; Hallot, P.; Billen, R.

    2017-08-01

    Modelling cultural heritage and archaeological objects is used as much for management as for research purposes. To ensure the sustainable benefit of digital data, models benefit from taking the data specificities of historical and archaeological domains into account. Starting from a conceptual model tailored to storing these specificities, we present, in this paper, an extended mapping to CIDOC-CRM and its compatible models. Offering an ideal framework to structure and highlight the best modelling practices, these ontologies are essentially dedicated to storing semantic data which provides information about cultural heritage objects. Based on this standard, our proposal focuses on multiple interpretation and sequential reality.

  8. Enhancing CIDOC-CRM and compatible models with the concept of multiple interpretation

    Directory of Open Access Journals (Sweden)

    M. Van Ruymbeke

    2017-08-01

    Full Text Available Modelling cultural heritage and archaeological objects is used as much for management as for research purposes. To ensure the sustainable benefit of digital data, models benefit from taking the data specificities of historical and archaeological domains into account. Starting from a conceptual model tailored to storing these specificities, we present, in this paper, an extended mapping to CIDOC-CRM and its compatible models. Offering an ideal framework to structure and highlight the best modelling practices, these ontologies are essentially dedicated to storing semantic data which provides information about cultural heritage objects. Based on this standard, our proposal focuses on multiple interpretation and sequential reality.

  9. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  10. Structure and unity. Trancendence-philosophical interpretation of quantum physics; Struktur und Einheit. Transzendenzphilosophische Interpretation der Quantenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, Juergen

    2013-07-01

    Since their beginnings at the begin of the 20th century quantum physics in the ontological and epistemological interpretation of their results is facing persistent difficulties, which could not be satisfactorily solved to this day. Some quantum phenomena are beyond of both our everyday understanding of the world and the classical-physical picture of the world, which is essentially based on the mechanics of Isaac Newton. They exceed our imagination and seem at least partly contradict logical and space-time laws. Transcendence-philosophical thinking, which exhibits a close structural relation to the logics of Georg Wilhelm Friedrich Hegel and to the philosophical systems analysis, provides a set of methodological instruments, which can help to avoid some problems of quantum-theoretical interpretation, which are in striking contrast to the mathematically consistent formulation of quantum theory. This is paradigmatically shown by selected main themes of the quantum-theoretical discussion.

  11. Holistic Analysis For The Interpretation of The Structure of Mt. Somma - Vesuvius

    Science.gov (United States)

    Luongo, G.; Tizzani, P.; Solaro, G.

    The aim of this research is to define a unitary structural model of Mount Somma U Vesuvius, by holistic interpretation of geophysical and geological data. Surface structures pattern shows two different geometrical distribution, radial and horse-shoe shaped. Generally the radial distribution of fractures are due to stress field produced by an active magmatic pressure source; some of them resemble to the regional tec- tonics ones. These fractures are interpreted by an active circular hole model. Instead the collapse structures observed on the Southern side of volcano have been associated to the loading of volcanic edifice. The regional heat flow (100-110 mW/m2) and the hypocentral distribution of the seismicity data let us to obtain the local crust rheolog- ical stratification. In our case the brittle U ductile transition below the volcano is at depth of about 5 km. The loading of the volcanic edifice produces a deviatoric stress of 30 MPa in unconfined weight condition. This stress field can generate the present seismicity at Mt. Vesuvius. Moreover an overpressure acts along the Southern side of the volcano due to the dipping of the carbonate basement toward Tyrrhenian sea, according to the gravimetric Bouguer anomalies. From above considerations we have performed that the Mt. Somma U Vesuvius deformation is due to the spreading of the volcanic edifice togheter carbonate basement. This deformation is characterized by a displacement component in SW of Southern sector of the volcano.direction due to the basement dipping. Finally is reasonable to suppose that the unrest of Mt.Vesuvius may be the result of the basement tectonics and loading of volcanic edifice. In this interpretation the ascent of magma could be the consequence of this process. Ground deformation and seismicity monitoring could provide informations on the instability of Southern sector of the volcano.

  12. Structure and Ostension in the Interpretation of Discourse Deixis

    CERN Document Server

    Webber, Bryan R

    1991-01-01

    This paper examines demonstrative pronouns used as deictics to refer to the interpretation of one or more clauses. Although this usage is frowned upon in style manuals (for example Strunk and White (1959) state that ``This. The pronoun 'this', referring to the complete sense of a preceding sentence or clause, cannot always carry the load and so may produce an imprecise statement.''), it is nevertheless very common in written text. Handling this usage poses a problem for Natural Language Understanding systems. The solution I propose is based on distinguishing between what can be pointed to and what can be referred to by virtue of pointing. I argue that a restricted set of discourse segments yield what such demonstrative pronouns can point to and a restricted set of what Nunberg (1979) has called referring functions yield what they can refer to by virtue of that pointing.

  13. The Impact of Non-uniform Thermal Structure on the Interpretation of Exoplanet Emission Spectra

    Science.gov (United States)

    Feng, Y. Katherina; Line, Michael R.; Fortney, Jonathan J.; Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura; Parmentier, Vivien

    2016-09-01

    The determination of atmospheric structure and molecular abundances of planetary atmospheres via spectroscopy involves direct comparisons between models and data. While varying in sophistication, most model spectra comparisons fundamentally assume one-dimensional (1D) model physics. However, knowledge from general circulation models and of solar system planets suggests that planetary atmospheres are inherently three-dimensional in their structure and composition. We explore the potential biases resulting from standard “1D” assumptions within a Bayesian atmospheric retrieval framework. Specifically, we show how the assumption of a single 1D thermal profile can bias our interpretation of the thermal emission spectrum of a hot Jupiter atmosphere that is composed of two thermal profiles. We retrieve spectra of unresolved model planets as observed with a combination of the Hubble Space Telescope Wide Field Camera 3 (WFC3)+Spitzer Infrared Array Camera (IRAC) as well as the James Webb Space Telescope (JWST) under varying differences in the two thermal profiles. For WFC3+IRAC, there is a significantly biased estimate of CH4 abundance using a 1D model when the contrast is 80%. For JWST, two thermal profiles are required to adequately interpret the data and estimate the abundances when contrast is greater than 40%. We also apply this preliminary concept to the recent WFC3+IRAC phase curve data of the hot Jupiter WASP-43b. We see similar behavior as present in our simulated data: while the {{{H}}}2{{O}} abundance determination is robust, CH4 is artificially well-constrained to incorrect values under the 1D assumption. Our work demonstrates the need to evaluate model assumptions in order to extract meaningful constraints from atmospheric spectra and motivates exploration of optimal observational setups.

  14. Virtual Particle Interpretation of Quantum Mechanics - a non-dualistic model of QM with a natural probability interpretation

    CERN Document Server

    Karimäki, Janne Mikael

    2012-01-01

    An interpretation of non-relativistic quantum mechanics is presented in the spirit of Erwin Madelung's hydrodynamic formulation of QM and Louis de Broglie's and David Bohm's pilot wave models. The aims of the approach are as follows: 1) to have a clear ontology for QM, 2) to describe QM in a causal way, 3) to get rid of the wave-particle dualism in pilot wave theories, 4) to provide a theoretical framework for describing creation and annihilation of particles, and 5) to provide a possible connection between particle QM and virtual particles in QFT. These goals are achieved, if the wave function is replaced by a fluid of so called virtual particles. It is also assumed that in this fluid of virtual particles exist a few real particles and that only these real particles can be directly observed. This has relevance for the measurement problem in QM and it is found that quantum probabilities arise in a very natural way from the structure of the theory. The model presented here is very similar to a recent computati...

  15. Ocean's Skeletal Structures, Hypotheses and Interpretation of the Phenomenon

    CERN Document Server

    Rantsev-Kartinov, V A

    2004-01-01

    An analysis of databases of photographic images of ocean's surface, taken from various altitudes and for various types of rough ocean surface, revealed the presence of an ocean's skeletal structures (OSS). The OSSs differ from the formerly found skeletal structures (SS) only by the fact that OSS, in their interior, are filled in with closely packed blocks of a smaller size, up to thin capillaries of tens of micron in size. According to suggested hypothesis, the structure-forming dust is produced due to volcanic activity and atmospheric electricity. Such SS may fall on the ocean surface and produce an OSS. This idea is supported by the adsorption of air bubbles in the water by the SS to give a partial flotation of SS. In the sea water, various substances in different phase states of matter are in touch. This suggests the hypothesis, for the possibility of the action of surface tension even on the blocks of SS which is immersed in the sea. This phenomenon results in the aggregation of blocks deposited from the ...

  16. Combining Dual Scaling with Semi-Structured Interviews to Interpret Rating Differences

    Directory of Open Access Journals (Sweden)

    Ruth A. Childs

    2009-05-01

    Full Text Available Dual scaling, a variation of multidimensional scaling, can reveal the dimensions underlying scores, such as raters' judgments. This study illustrates the use of a dual scaling analysis with semi-structured interviews of raters to investigate the differences among the raters as captured by the dimensions. Thirty applications to a one-year post-Bachelor's degree teacher education program were rated by nine teacher educators. Eight of the raters were subsequently interviewed about how they rated the responses. A three-dimensional model was found to explain most of the variance in the ratings for two of the questions and a two-dimensional model was most interpretable for the third question. The interviews suggested that the dimensions reflected, in addition to differences in raters' stringency, differences in their beliefs about their roles as raters and about the types of insights that were required of applicants.

  17. Regularized Structural Equation Modeling.

    Science.gov (United States)

    Jacobucci, Ross; Grimm, Kevin J; McArdle, John J

    A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM's utility.

  18. Antagonism and Mutual Dependency. Critial Models of Performance and “Piano Interpretation Schools”

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2011-12-01

    Full Text Available To polarize and, coincidently, intersect two different concepts, in terms of a distinction/analogy between “piano interpretation schools” and “critical models” is the aim of this paper. The former, with its prior connotations of both empiricism and dogmatism and not directly shaped by aesthetic criteria or interpretational ideals, depends mainly on the aural and oral tradition as well the teacher-student legacy; the latter employs ideally the generic criteria of interpretativeness, which can be measured in accordance to an aesthetic formula and can include features such as non-obviousness, inferentially, lack of consensus, concern with meaning or significance, concern with structure or design, etc. The relative autonomy of the former is a challenge to the latter, which embraces the range of perspectives available in the horizon of the history of ideas about music and interpretation. The effort of recognizing models of criticism within musical interpretation creates the vehicle for new understandings of the nature and the historical development of Western classical piano performance, promoting also the production of quality critical argument and the communication of key performance tendencies and styles.

  19. The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation

    Science.gov (United States)

    van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong

    2017-02-01

    Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.

  20. Model Convolution: A Computational Approach to Digital Image Interpretation

    Science.gov (United States)

    Gardner, Melissa K.; Sprague, Brian L.; Pearson, Chad G.; Cosgrove, Benjamin D.; Bicek, Andrew D.; Bloom, Kerry; Salmon, E. D.

    2010-01-01

    Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called “model-convolution,” which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory. PMID:20461132

  1. Postural control model interpretation of stabilogram diffusion analysis

    Science.gov (United States)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  2. Interpreting network communicability with stochastic models and data

    CERN Document Server

    Colman, Ewan

    2016-01-01

    The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulae to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data-sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability, and the conclusion that the broadcast and receive scores can, under a range of circumstance...

  3. Animal model and pharmacokinetic interpretation of nicotine poisoning in man.

    Science.gov (United States)

    Brady, M E; Ritschel, W A; Saelinger, D A; Cacini, W; Patterson, A J

    1979-01-01

    The purpose of the study was to find an animal model and possible pharmacolokinetic interpretation of the fact that a patient survived an accidental sc poisoning with a nicotine-containing animal tranquilizing dart. The same dose size of 3.58 mg/kg causing poisoning in man was administered to rabbits iv and sc. Blood samples were obtained for nicotine analysis by cardiac punctures; and blood pressure, respiration rate, and saliva flow were measured. Analysis of the original solution used in the dart excluded the possibility of sub-potency. The extent of unchanged drug reaching systemic circulation (extent of bioavailability) upon sc administration was 83%. Hence, the possibility of survival in man due to rapid tissue metabolism was ruled out. The pharmacokinetic analysis revealed a significant reduction in sc plasma levels during the first half hour which is reported as the most critical period for patients experiencing nicotine intoxication. The disposition of nicotine in the rabbit, i.e. distribution and elimination, are identical upon iv and sc administration. The reduced toxicity, i.e. blood pressure and saliva flow rate, upon sc dosing may be explained by the difference in plasma level peaks between sc and iv administration.

  4. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets.

    Science.gov (United States)

    Marchese Robinson, Richard L; Palczewska, Anna; Palczewski, Jan; Kidley, Nathan

    2017-08-28

    The ability to interpret the predictions made by quantitative structure-activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package ( https://r-forge.r-project.org/R/?group_id=1725 ) for the R statistical

  5. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  6. Constructive Empiricism, Partial Structures and the Modal Interpretation of Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Otávio Bueno

    2014-01-01

    Full Text Available Van Fraassen's modal interpretation of non-relativistic quantum mechanics is articulated to support an anti-realist account of quantum theory. However, given the particular form of van Fraassen's anti-realism (constructive empiricism, two problems arise when we try to make it compatible with the modal interpretation: one difficulty concerns the tension between the need for modal operators in the modal interpretation and van Fraassen's skepticism regarding real modality in nature; another addresses the need for the truth predicate in the modal interpretation and van Fraassen's rejection of truth as the aim of science. After examining these two problems, I suggest a formal framework in which they can be accommodated – using da Costa and French's partial structures approach – and indicate a variant of van Fraassen's modal interpretation that does not face these difficulties.Quanta 2014; 3: 1–15.

  7. Interpreting linear support vector machine models with heat map molecule coloring

    Directory of Open Access Journals (Sweden)

    Rosenbaum Lars

    2011-03-01

    Full Text Available Abstract Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor.

  8. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model...

  9. Going Beyond Calculation and Concepts: Students' Interpretation and Knowledge Structures in Quantum Mechanics.

    Science.gov (United States)

    Finkelstein, Noah; Hoehn, Jessica

    2017-01-01

    Learning quantum mechanics requires students to develop not only new mathematical skills and conceptual understanding, but also has students reason about what these mean and how to organize understanding of quantum mechanical principles, tools and concepts. Towards this instructional goal, we present current research that examines how students make interpretations, probes understanding of student ontologies, and curricula that explicitly addresses interpretation of quantum phenomena and student reasoning structures (ontologies).

  10. New Model for Ecosystem Management Interpretation: Target Audiences on Military Lands.

    Science.gov (United States)

    Jacobson, Susan K.; Marynowski, Susan B.

    1998-01-01

    An interpretation model focusing on audience characteristics guided development of an ecosystem-management interpretive program targeting military leaders and planners at Eglin Air Force Base (Florida). Of five interpretative media tested, print mass media were most successful in increasing ecosystem knowledge and enhancing attitudes of both…

  11. INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS

    Directory of Open Access Journals (Sweden)

    Alexey N. Markov

    2015-01-01

    Full Text Available Complicated folded structures were recently recorded by radar survey in the lower portions of the Antarctic and Greenland ice sheets. From a geological point of view the Antarctic and Greenland ice sheets are considered as geological features, while the ice is classified as sedimentary or metamorphic rock. In this regard the genesis of the ice sheets is analyzed from the perspective of geodynamics and metamorphism, and complicated folded structures on radar profiles are interpreted as tectonic and metamorphic structures. This study considers the processes of three kinds of tectonic structures: glacial diapirs, glacial diapir folds and glacial intrusions. Radar profiles not only capture ice flow structure but can also detect the thermobaric field in ice sheet, and in this case the complicated folded structures are interpreted as representative of recorded metastable boundaries of ice recrystallization.

  12. Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation

    Science.gov (United States)

    Deng, Wubing; Morozov, Igor B.

    2017-06-01

    The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the

  13. Supporting interpretation of dynamic simulation. Application to chemical kinetic models; Aides a l`interpretation de simulations dynamiques. Application aux modeles de cinetique chimique

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, B.

    1998-04-22

    Numerous scientific and technical domains make constant use of dynamical simulations. Such simulators are put in the hands of a growing number of users. This phenomenon is due both to the extraordinary increase in computing performance, and to better graphical user interfaces which make simulation models easy to operate. But simulators are still computer programs which produce series of numbers from other series of numbers, even if they are displayed graphically. This thesis presents new interaction paradigms between a dynamical simulator and its user. The simulator produces a self-made interpretation of its results, thanks to a dedicated representation of its domain with objects. It shows dominant cyclic mechanisms identified by their instantaneous loop gain estimates, it uses a notion of episodes for splitting the simulation into homogeneous time intervals, and completes this by animations which rely on the graphical structure of the system. These new approaches are demonstrated with examples from chemical kinetics, because of the energic and exemplary characteristics of the encountered behaviors. They are implemented in the Spike software, Software Platform for Interactive Chemical Kinetics Experiments. Similar concepts are also shown in two other domains: interpretation of seismic wave propagation, and simulation of large projects. (author) 95 refs.

  14. Seismic interpretation of the sedimentation systems, structural geology and stratigraphic of the Chicxulub crater, carbonate platform of Yucatan, Mexico.

    Science.gov (United States)

    Iza, Canales-Garcia; Jaime, Urrutia-Fucugauchi; Joaquin Eduardo, Aguayo-Camargo; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    In order to describe the structural and stratigraphic features of the Chicxulub crater, was performed the present work of seismic interpretation, seismic attributes and generation of 3D surfaces. Load data it was performed in SEG-Y format, to display a total of 19 seismic reflection profiles were worked at domain time; the corresponding interpretation was carried out by separating five packages with textural differences, for this separation were used five horizons with seismic response representing the base of these packages, the correlation of horizons was made for all lines, creating composed lines so that all profiles were interpret together at intersections for form a grid. Multiple fault zones, were interpreted with the help of seismic attributes, like RMS amplitude, complex trace analysis, gradient of the trace and cosine phase. Was obtained the structural and stratigraphic interpretation , 3D models of the surfaces interpreted with which it is possible to observe the morphology of the base of the basin, it is controlled by the effect of the impact that formed the crater, has the features as a multi-ring crater. Shallower horizons shows that the topography of the base of the crater continues to affect the upper relief, which tends to be horizontal as it approaches the surface but is modeled by themselves sedimentary processes of the carbonate platform of Yucatán; packages below the base of the crater show the characteristics that own carbonated breccia, product the rupture of the material at impact, the material was deposited in a chaotic way, at this level we found the faults and fractures zone.

  15. Higher-order factor structures for the WISC-IV: implications for neuropsychological test interpretation.

    Science.gov (United States)

    Decker, Scott L; Englund, Julia A; Roberts, Alycia M

    2014-01-01

    Factor-analytic studies support a hierarchical four-factor model for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) with a prominent general, third-order factor. However, there is substantial disagreement on which type of higher-order model best fits the data and how different models should guide test interpretation in clinical practice, with many studies concluding interpretation should primarily be focused on general indicators of intelligence. We performed a series of confirmatory factor analyses with the WISC-IV standardization sample (N = 2,200, ages 6-16 years) to examine model fit and reexamined models used to support test interpretation at the general level. Consistent with previous research, bifactor models were difficult to identify; however, compared with bifactor and hierarchical models, the correlated factors model with no general higher-order factor provided the best fit to the data. Results from this study support the basic four-factor model specified in the WISC-IV technical manual, with test interpretation primarily focused at the factor level, rather than the general level suggested in previous studies.

  16. Structural model integrity

    Science.gov (United States)

    Wallerstein, D. V.; Lahey, R. S.; Haggenmacher, G. W.

    1977-01-01

    Many of the practical aspects and problems of ensuring the integrity of a structural model are discussed, as well as the steps which have been taken in the NASTRAN system to assure that these checks can be routinely performed. Model integrity as used applies not only to the structural model but also to the loads applied to the model. Emphasis is also placed on the fact that when dealing with substructure analysis, all of the checking procedures discussed should be applied at the lowest level of substructure prior to any coupling.

  17. On hydrological model complexity, its geometrical interpretations and prediction uncertainty

    NARCIS (Netherlands)

    Arkesteijn, E.C.M.M.; Pande, S.

    2013-01-01

    Knowledge of hydrological model complexity can aid selection of an optimal prediction model out of a set of available models. Optimal model selection is formalized as selection of the least complex model out of a subset of models that have lower empirical risk. This may be considered equivalent to

  18. Phase transition in triglycine family of hydrogen bonded ferroelectrics: An interpretation based on structural studies

    Indian Academy of Sciences (India)

    R R Choudhury; R Chitra; P U Sastry; Amit Das; M Ramanadham

    2004-07-01

    Using the crystal structure, a comprehensive interpretation of the origin of ferroelectricity in the hydrogen bonded triglycine family of crystals is given. Our detailed analysis showed that the instability of nitrogen double well potential plays a driving role in the mechanism of the ferroelectric transitions in these crystals.

  19. Processing visual rhetoric in advertisements: Interpretations determined by verbal anchoring and visual structure

    NARCIS (Netherlands)

    Lagerwerf, L.; Hooijdonk, van C.M.J.; Korenberg, A.

    2012-01-01

    This research investigated meaning operation in relation to verbal anchoring and visual structure of visual rhetoric in advertisements. Meaning operation refers to the relation between meaningful visual elements, and determines the number of interpretations of an image. Meaning operation ‘connection

  20. Towards a Comprehensive Model of Stereotypy: Integrating Operant and Neurobiological Interpretations

    Science.gov (United States)

    Lanovaz, Marc J.

    2011-01-01

    The predominant models on the emergence and maintenance of stereotypy in individuals with developmental disabilities are based on operant and neurobiological interpretations of the behavior. Although the proponents of the two models maintain largely independent lines of research, operant and neurobiological interpretations of stereotypy are not…

  1. On the interpretation of the layered structures detected by mesosphere-stratosphere-troposphere radars in dual frequency domain interferometry mode

    Science.gov (United States)

    Luce, H.; Crochet, M.; Hanuise, C.; Yamamoto, M.; Fukao, S.

    1999-09-01

    The frequency domain interferometry (FDI) technique has been developed for probing thin layered structures of the atmosphere. The position and thickness of a single layer embedded within the scattering volume can be deduced from the complex normalized cross correlation (coherence) of received signals at two closely spaced frequencies. Applied in the vertical pointing direction, this technique identified layered structures ("FDI layers") of 50-200 m in thickness in the lower atmosphere. These structures are 1 order of magnitude thicker than observed temperature sheets (about 10-m thick) which are very likely responsible for the main part of the VHF radar echoes in vertical direction. In this paper, although the ambiguity of the dual FDI technique is well known, we emphasize that the FDI layers do not necessarily correspond to a single atmospheric layer; they can also be interpreted as a more complex structure of very thin atmospheric layers. A simple model, introduced as an example, shows that the FDI layer thickness can also approximately be interpreted as the vertical separation of two very thin atmospheric layers. This result can explain by itself the differences between the estimated thicknesses by balloon and FDI radar techniques. Finally, we stress that comparisons with high-resolution in situ measurements are urgently needed for interpreting the FDI layers.

  2. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  3. Under the pile. Understanding subsurface dynamics of historical cities trough geophysical models interpretation

    Science.gov (United States)

    Bernardes, Paulo; Pereira, Bruno; Alves, Mafalda; Fontes, Luís; Sousa, Andreia; Martins, Manuela; Magalhães, Fernanda; Pimenta, Mário

    2017-04-01

    Braga is one of the oldest cities of the Iberian NW and as of so, the research team's studying the city's historical core for the past 40 years is often confronted with the unpredictability factor laying beneath an urban site with such a long construction history. In fact, Braga keeps redesigning its urban structure over itself on for the past 2000 years, leaving us with a research object filled with an impressive set of construction footprints from the various planning decisions that were taken in the city along its historical path. Aiming for a predicting understanding of the subsoil, we have used near surface geophysics as an effort of minimizing the areas of intervention for traditional archaeological survey techniques. The Seminário de Santiago integrated geophysical survey is an example of the difficulties of interpreting geophysical models in very complex subsurface scenarios. This geophysical survey was planned in order to aid the requalification project being designed for this set of historical buildings, that are estimated to date back to the 16h century, and that were built over one of the main urban arteries of both roman and medieval layers of Braga. We have used both GPR as well as ERT methods for the geophysical survey, but for the purpose of this article, we will focus in the use of the ERT alone. For the interpretation of the geophysical models we've cross-referenced the dense knowledge existing over the building's construction phases with the complex geophysical data collected, using mathematical processing and volume-based visualization techniques, resorting to the use of Res2Inv©, Paraview© and Voxler® software's. At the same time we tried to pinpoint the noise caused by the past 30 year's infrastructural interventions regarding the replacement of the building's water and sanitation systems and for which we had no design plants, regardless of its recent occurring. The deep impact of this replacement actions revealed by the archaeological

  4. INTEGRATION OF QSAR AND SAR METHODS FOR THE MECHANISTIC INTERPRETATION OF PREDICTIVE MODELS FOR CARCINOGENICITY

    Directory of Open Access Journals (Sweden)

    Natalja Fjodorova

    2012-07-01

    Full Text Available The knowledge-based Toxtree expert system (SAR approach was integrated with the statistically based counter propagation artificial neural network (CP ANN model (QSAR approach to contribute to a better mechanistic understanding of a carcinogenicity model for non-congeneric chemicals using Dragon descriptors and carcinogenic potency for rats as a response. The transparency of the CP ANN algorithm was demonstrated using intrinsic mapping technique specifically Kohonen maps. Chemical structures were represented by Dragon descriptors that express the structural and electronic features of molecules such as their shape and electronic surrounding related to reactivity of molecules. It was illustrated how the descriptors are correlated with particular structural alerts (SAs for carcinogenicity with recognized mechanistic link to carcinogenic activity. Moreover, the Kohonen mapping technique enables one to examine the separation of carcinogens and non-carcinogens (for rats within a family of chemicals with a particular SA for carcinogenicity. The mechanistic interpretation of models is important for the evaluation of safety of chemicals.

  5. The global quantum structures: Questioning the Everett Interpretation of Quantum Mechanics

    CERN Document Server

    Dugic, M

    2010-01-01

    A quantum state of a composite system obtains the different forms for the different structures (decompositions into subsystems) of the system. For a pure quantum state of the Universe we point out: the Everett branching can not simultaneously occur for the different global structures of the Universe. In order to keep consistency of the Everett interpretation there must be one and only one objective (real) global structure of the Universe; non-branching of the non-objective structures (as well as the local transformations regarding possibly objective a global structure) presents no problem. However, the universally valid quantum mechanics can not select the one and only one (objective) a global structure of the Universe--an additional criterion is needed. To this end, we show that neither the environment-induced decoherence can help. So, with the lack of any other criterion to discard the alternative global structures of the Universe, we are forced to conclude that the Everett interpretation is substantially i...

  6. Implementations and interpretations of the talbot-ogden infiltration model

    KAUST Repository

    Seo, Mookwon

    2014-11-01

    The interaction between surface and subsurface hydrology flow systems is important for water supplies. Accurate, efficient numerical models are needed to estimate the movement of water through unsaturated soil. We investigate a water infiltration model and develop very fast serial and parallel implementations that are suitable for a computer with a graphical processing unit (GPU).

  7. Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation

    Institute of Scientific and Technical Information of China (English)

    李明超; 韩彦青; 缪正建; 高伟

    2014-01-01

    Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological struc-ture through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and inte-grated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline (NURBS) technique is then pre-sented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.

  8. ASPECTS OF MATHEMATICAL MODELING AND INTERPRETATION OF A MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mihaela ALDEA

    2013-05-01

    Full Text Available In the paper developing we started from a model that allows a detailed decoding of causalrelationships and getting the laws that determine the evolution of the phenomenon.The model chosen for the study is a discrete event system applicable to optimize the transport systemused in pottery. In order to simulate the manufacturing process we chose Matlab package that contains pntoollibrary, by which can be realized modeling of analyzed graphs. Since the timings of manufacture are very highand the process simulation is conducted with difficulty, we divided the graph according to the transport system.

  9. Development of Interpretable Predictive Models for BPH and Prostate Cancer

    Science.gov (United States)

    Bermejo, Pablo; Vivo, Alicia; Tárraga, Pedro J; Rodríguez-Montes, JA

    2015-01-01

    BACKGROUND Traditional methods for deciding whether to recommend a patient for a prostate biopsy are based on cut-off levels of stand-alone markers such as prostate-specific antigen (PSA) or any of its derivatives. However, in the last decade we have seen the increasing use of predictive models that combine, in a non-linear manner, several predictives that are better able to predict prostate cancer (PC), but these fail to help the clinician to distinguish between PC and benign prostate hyperplasia (BPH) patients. We construct two new models that are capable of predicting both PC and BPH. METHODS An observational study was performed on 150 patients with PSA ≥3 ng/mL and age >50 years. We built a decision tree and a logistic regression model, validated with the leave-one-out methodology, in order to predict PC or BPH, or reject both. RESULTS Statistical dependence with PC and BPH was found for prostate volume (P-value < 0.001), PSA (P-value < 0.001), international prostate symptom score (IPSS; P-value < 0.001), digital rectal examination (DRE; P-value < 0.001), age (P-value < 0.002), antecedents (P-value < 0.006), and meat consumption (P-value < 0.08). The two predictive models that were constructed selected a subset of these, namely, volume, PSA, DRE, and IPSS, obtaining an area under the ROC curve (AUC) between 72% and 80% for both PC and BPH prediction. CONCLUSION PSA and volume together help to build predictive models that accurately distinguish among PC, BPH, and patients without any of these pathologies. Our decision tree and logistic regression models outperform the AUC obtained in the compared studies. Using these models as decision support, the number of unnecessary biopsies might be significantly reduced. PMID:25780348

  10. Looking at tardigrades in a new light: using epifluorescence to interpret structure.

    Science.gov (United States)

    Perry, E S; Miller, W R; Lindsay, S

    2015-02-01

    The use of epifluorescence microscopy coupled with ultraviolet (UV) autofluorescence is suggested as a means to view and interpret tardigrade structures. Endogenous fluorochromes are a known component of tardigrade cuticle, claws and bucco-pharyngeal apparatus. By imaging the autofluorescence from tardigrades, it is possible to document these structures in detail, including the subdivisions and boundaries of echiniscid (heterotardigrade) plates and the nature and spatial relationships of the texture (pores, granules, papillae and tubercles) on the various plates. This allows the determination of taxonomic features not easily seen with other microscopic techniques. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. Some Observations on the Identification and Interpretation of the 3PL IRT Model

    Science.gov (United States)

    Azevedo, Caio Lucidius Naberezny

    2009-01-01

    The paper by Maris, G., & Bechger, T. (2009) entitled, "On the Interpreting the Model Parameters for the Three Parameter Logistic Model," addressed two important questions concerning the three parameter logistic (3PL) item response theory (IRT) model (and in a broader sense, concerning all IRT models). The first one is related to the model…

  12. Geometric interpretation for the interacting-boson-fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1988-08-11

    A geometric oriented approach for studying the interacting-boson-fermion model for odd-A nuclei is presented. A deformed single-particle hamiltonian is derived by means of an algebraic Born-Oppenheimer treatment. Observables concerning spectrum and transitions are calculated for the case of a single-j fermion coupled to a prolate core charge boson number and arbitrary deformations.

  13. Stoichiometric plant-herbivore models and their interpretation

    NARCIS (Netherlands)

    Kuang, Y.; Huisman, J.; Elser, J.J.

    2004-01-01

    The purpose of this note is to mechanistically formulate a math-ematically tractable model that specifically deals with the dynamics of plant-herbivore interaction in a closed phosphorus (P)-limiting environment. The key to our approach is the employment of the plant cell P quota and the Droop

  14. Interpretation of electrochemical impedance spectroscopy (EIS) circuit model for soils

    Institute of Scientific and Technical Information of China (English)

    韩鹏举; 张亚芬; 陈幼佳; 白晓红

    2015-01-01

    Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy (EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.

  15. A statistical model for interpreting computerized dynamic posturography data

    Science.gov (United States)

    Feiveson, Alan H.; Metter, E. Jeffrey; Paloski, William H.

    2002-01-01

    Computerized dynamic posturography (CDP) is widely used for assessment of altered balance control. CDP trials are quantified using the equilibrium score (ES), which ranges from zero to 100, as a decreasing function of peak sway angle. The problem of how best to model and analyze ESs from a controlled study is considered. The ES often exhibits a skewed distribution in repeated trials, which can lead to incorrect inference when applying standard regression or analysis of variance models. Furthermore, CDP trials are terminated when a patient loses balance. In these situations, the ES is not observable, but is assigned the lowest possible score--zero. As a result, the response variable has a mixed discrete-continuous distribution, further compromising inference obtained by standard statistical methods. Here, we develop alternative methodology for analyzing ESs under a stochastic model extending the ES to a continuous latent random variable that always exists, but is unobserved in the event of a fall. Loss of balance occurs conditionally, with probability depending on the realized latent ES. After fitting the model by a form of quasi-maximum-likelihood, one may perform statistical inference to assess the effects of explanatory variables. An example is provided, using data from the NIH/NIA Baltimore Longitudinal Study on Aging.

  16. Interpretation of Higgs and SUSY searches in MSUGRA and GMSB models

    CERN Document Server

    De Vivie de Régie, J B

    2000-01-01

    Higgs and SUSY searches performed by the ALEPH experiment at LEP are interpreted in the framework of two constrained R-parity conserving models: minimal supergravity and minimal gauge mediated supersymmetry breaking. (4 refs).

  17. Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds

    Science.gov (United States)

    Shortridge, Julie E.; Guikema, Seth D.; Zaitchik, Benjamin F.

    2016-07-01

    In the past decade, machine learning methods for empirical rainfall-runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models are limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has often evaluated model performance based on predictive accuracy alone, while not considering broader objectives, such as model interpretability and uncertainty, that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine learning approaches (including generalized additive models, multivariate adaptive regression splines, artificial neural networks, random forests, and M5 cubist models) to simulate monthly streamflow in five highly seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under extreme climate conditions should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines) become highly variable when faced with high temperatures.

  18. The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra

    Science.gov (United States)

    Feng, Ying; Fortney, Jonathan J.; Line, Michael R.

    2016-10-01

    Observations and models have revealed the complex and dynamic states of exoplanetary atmospheres. In particular, the atmospheres of warm and hot gas giants have opened the doors to physical and chemical regimes unseen in our solar system. To understand their thermal structures and chemical abundances, the field has been moving towards inverse models, or ``retrievals.'' Traditionally, one retrieves what are supposed to be 1D hemispheric average atmospheric conditions. However, the real spectra are produced by 3D structures that feature hot and cool spots, chemical gradients, clouds, etc. How well does a 1D retrieval represent, or misrepresent, a complex reality?Here, we investigate the biases accompanying the 1D interpretation of retrievals by putting more complex retrieval scenarios to the test on emission spectra. Our first scenario is the emission from a hypothetical HD 189733b-like planet at first or third quarter phase, featuring a ``hot'' dayside and ``colder'' nightside thermal profile. We simulate JWST and WFC3+IRAC data and compare the results of retrieving for 1 profile (1 T-Ps) and abundances versus for 2 profiles (2 T-Ps) and abundances. We also examine the effects of increasing contrast between the two profiles. We find that, for both JWST and WFC3+IRAC, when the contrast is large (80% difference between the temperatures at the top of the atmosphere), the 1 T-P approach shows well constrained abundances -- but the retrieved values are inaccurate. When we apply the 2 T-P approach, we better recover the true value. We also demonstrate the effect on real WASP-43b HST+Spitzer phase curve data: invoking a second profile indeed reveals that 1 T-P returns a well-constrained, but likely false, abundance of methane. We also quantify which wavelengths are more sensitive to temperature profile differences. Our work is greatly complementary to observational studies.In the future, we will expand to retrieve from spectra at different phases and the study of dayside

  19. An exotic k-essence interpretation of interactive cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-01-15

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F = 1 + mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL). (orig.)

  20. An exotic k-essence interpretation of interactive cosmological models

    CERN Document Server

    Forte, Mónica

    2015-01-01

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions, they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type of dark energy (MHR), where the equations of state are not constant. With the kinetic function $F=1+mx$ and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL).

  1. Interpretation of topologically restricted measurements in lattice sigma-models

    CERN Document Server

    Bautista, Irais; Gerber, Urs; Hofmann, Christoph P; Mejía-Díaz, Héctor; Prado, Lilian

    2014-01-01

    We consider models with topological sectors, and difficulties with their Monte Carlo simulation. In particular we are concerned with the situation where a simulation has an extremely long auto-correlation time with respect to the topological charge. Then reliable numerical measurements are possible only within single topological sectors. The challenge is to assemble such restricted measurements to obtain an approximation for the full-fledged result, which corresponds to the correct sampling over the entire set of configurations. Under certain conditions this is possible, and it provides in addition an estimate for the topological susceptibility chi_t. Moreover, the evaluation of chi_t might be feasible even from data in just one topological sector, based on the correlation of the topological charge density. Here we present numerical test results for these techniques in the framework of non-linear sigma-models.

  2. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    K V S Shiv Chaitanya

    2014-07-01

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges $i\\hbar$, which are placed in between the two fixed imaginary charges arising due to the classical turning points of the potential. The interaction potential between unit moving imaginary charges $i\\hbar$ is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points.

  3. Aeromagnetic interpretation in the south-central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications

    Science.gov (United States)

    Ranganai, Rubeni T.; Whaler, Kathryn A.; Ebinger, Cynthia J.

    2016-11-01

    Regional aeromagnetic data from the south-central Zimbabwe Craton have been digitally processed and enhanced for geological and structural mapping and tectonic interpretation integrated with gravity data, to constrain previous interpretations based on tentative geologic maps and provide new information to link these structural features to known tectonic events. The derived maps show excellent correlation between magnetic anomalies and the known geology, and extend lithological and structural mapping to the shallow/near subsurface. In particular, they reveal the presence of discrete crustal domains and several previously unrecognised dykes, faults, and ultramafic intrusions, as well as extensions to others. Five regional structural directions (ENE, NNE, NNW, NW, and WNW) are identified and associated with trends of geological units and cross-cutting structures. The magnetic lineament patterns cut across the >2.7 Ga greenstone belts, which are shown by gravity data to be restricted to the uppermost 10 km of the crust. Therefore, the greenstone belts were an integral part of the lithosphere before much of the upper crustal (brittle) deformation occurred. Significantly, the observed magnetic trends have representatives craton-wide, implying that our interpretation and inferences can be applied to the rest of the craton with confidence. Geological-tectonic correlation suggests that the interpreted regional trends are mainly 2.5 Ga (Great Dyke age) and younger, and relate to tectonic events including the reactivation of the Limpopo Belt at 2.0 Ga and the major regional igneous/dyking events at 1.8-2.0 Ga (Mashonaland), 1.1 Ga (Umkondo), and 180 Ma (Karoo). Thus, their origin is here inferred to be inter- and intra-cratonic collisions and block movements involving the Zimbabwe and Kaapvaal Cratons and the Limpopo Belt, and later lithospheric heating and extension associated with the break-up of Gondwana. The movements produced structures, or reactivated older fractures

  4. A Computational Model of Syntactic Processing Ambiguity Resolution from Interpretation

    CERN Document Server

    Niv, M

    1994-01-01

    Syntactic ambiguity abounds in natural language, yet humans have no difficulty coping with it. In fact, the process of ambiguity resolution is almost always unconscious. But it is not infallible, however, as example 1 demonstrates. 1. The horse raced past the barn fell. This sentence is perfectly grammatical, as is evident when it appears in the following context: 2. Two horses were being shown off to a prospective buyer. One was raced past a meadow. and the other was raced past a barn. ... Grammatical yet unprocessable sentences such as 1 are called `garden-path sentences.' Their existence provides an opportunity to investigate the human sentence processing mechanism by studying how and when it fails. The aim of this thesis is to construct a computational model of language understanding which can predict processing difficulty. The data to be modeled are known examples of garden path and non-garden path sentences, and other results from psycholinguistics. It is widely believed that there are two distinct loci...

  5. Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms

    Science.gov (United States)

    Martínez-Santiago, Oscar; Marrero-Ponce, Yovani; Barigye, Stephen J.; Le Thi Thu, Huong; Torres, F. Javier; Zambrano, Cesar H.; Muñiz Olite, Jorge L.; Cruz-Monteagudo, Maykel; Vivas-Reyes, Ricardo; Vázquez Infante, Liliana; Artiles Martínez, Luis M.

    2016-01-01

    This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms. PMID:27240357

  6. Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms

    Directory of Open Access Journals (Sweden)

    Oscar Martínez-Santiago

    2016-05-01

    Full Text Available This report examines the interpretation of the Graph Derivative Indices (GDIs from three different perspectives (i.e., in structural, steric and electronic terms. It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms.

  7. Building a Structural Model: Parameterization and Structurality

    Directory of Open Access Journals (Sweden)

    Michel Mouchart

    2016-04-01

    Full Text Available A specific concept of structural model is used as a background for discussing the structurality of its parameterization. Conditions for a structural model to be also causal are examined. Difficulties and pitfalls arising from the parameterization are analyzed. In particular, pitfalls when considering alternative parameterizations of a same model are shown to have lead to ungrounded conclusions in the literature. Discussions of observationally equivalent models related to different economic mechanisms are used to make clear the connection between an economically meaningful parameterization and an economically meaningful decomposition of a complex model. The design of economic policy is used for drawing some practical implications of the proposed analysis.

  8. Principles and practice of structural equation modeling

    CERN Document Server

    Kline, Rex B

    2015-01-01

    Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by ex

  9. Modeling of surface myoelectric signals--Part II: Model-based signal interpretation.

    Science.gov (United States)

    Merletti, R; Roy, S H; Kupa, E; Roatta, S; Granata, A

    1999-07-01

    Experimental electromyogram (EMG) data from the human biceps brachii were simulated using the model described in [10] of this work. A multichannel linear electrode array, spanning the length of the biceps, was used to detect monopolar and bipolar signals, from which double differential signals were computed, during either voluntary or electrically elicited isometric contractions. For relatively low-level voluntary contractions (10%-30% of maximum force) individual firings of three to four-different motor units were identified and their waveforms were closely approximated by the model. Motor unit parameters such as depth, size, fiber orientation and length, location of innervation and tendonous zones, propagation velocity, and source width were estimated using the model. Two applications of the model are described. The first analyzes the effects of electrode rotation with respect to the muscle fiber direction and shows the possibility of conduction velocity (CV) over- and under-estimation. The second focuses on the myoelectric manifestations of fatigue during a sustained electrically elicited contraction and the interrelationship between muscle fiber CV, spectral and amplitude variables, and the length of the depolarization zone. It is concluded that a) surface EMG detection using an electrode array, when combined with a model of signal propagation, provides a useful method for understanding the physiological and anatomical determinants of EMG waveform characteristics and b) the model provides a way for the interpretation of fatigue plots.

  10. Paleoclassical Model of Pedestal Structure

    Science.gov (United States)

    Callen, J. D.

    2010-11-01

    Predictions are developed for the structure of plasma parameter profiles of H-mode pedestals in transport quasi-equilibrium in tokamak plasmas. They are based on assuming paleoclassical radial plasma transport processes dominate throughout the pedestal. The natural level of paleoclassical density transport is large in the pedestal compared to edge fueling due to neutral recycling. Thus, in this model the pedestal density profile is determined not by edge source fueling but rather by the density profile needed for the outward paleoclassical diffusive flux to be nearly balanced by the inward paleoclassical pinch flow. Specific predictions are given for the electron temperature and density gradients, profiles and magnitudes in the pedestal. The transition into ETG-driven anomalous radial electron heat transport in the core plasma determines the height of the electron pressure pedestal. Also, the profile of the toroidal plasma rotation in the pedestal is predicted. Model predictions are found to agree quantitatively (within a factor of 2) with the interpretive transport results obtained for the 98889 DIII-D pedestal [1]. 6pt[1] J.D. Callen et al., Nucl. Fusion 50, 064004 (2010).

  11. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  12. Clustering and interpretation of local earthquake tomography models in the southern Dead Sea basin

    Science.gov (United States)

    Bauer, Klaus; Braeuer, Benjamin

    2016-04-01

    The Dead Sea transform (DST) marks the boundary between the Arabian and the African plates. Ongoing left-lateral relative plate motion and strike-slip deformation started in the Early Miocene (20 MA) and produced a total shift of 107 km until presence. The Dead Sea basin (DSB) located in the central part of the DST is one of the largest pull-apart basins in the world. It was formed from step-over of different fault strands at a major segment boundary of the transform fault system. The basin development was accompanied by deposition of clastics and evaporites and subsequent salt diapirism. Ongoing deformation within the basin and activity of the boundary faults are indicated by increased seismicity. The internal architecture of the DSB and the crustal structure around the DST were subject of several large scientific projects carried out since 2000. Here we report on a local earthquake tomography study from the southern DSB. In 2006-2008, a dense seismic network consisting of 65 stations was operated for 18 months in the southern part of the DSB and surrounding regions. Altogether 530 well-constrained seismic events with 13,970 P- and 12,760 S-wave arrival times were used for a travel time inversion for Vp, Vp/Vs velocity structure and seismicity distribution. The work flow included 1D inversion, 2.5D and 3D tomography, and resolution analysis. We demonstrate a possible strategy how several tomographic models such as Vp, Vs and Vp/Vs can be integrated for a combined lithological interpretation. We analyzed the tomographic models derived by 2.5D inversion using neural network clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The DSB shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, a well-defined body

  13. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    T K Kundra

    2000-06-01

    Structural dynamic modification techniques attempt to reduce dynamic design time and can be implemented beginning with spatial models of structures, dynamic test data or updated models. The models assumed in this discussion are mathematical models, namely mass, stiffness, and damping matrices of the equations of motion of a structure. These models are identified/extracted from dynamic test data viz. frequency response functions (FRFs). Alternatively these models could have been obtained by adjusting or updating the finite element model of the structure in the light of the test data. The methods of structural modification for getting desired dynamic characteristics by using modifiers namely mass, beams and tuned absorbers are discussed.

  14. Construct validity of the reporter-interpreter-manager-educator structure for assessing students' patient encounter skills

    DEFF Research Database (Denmark)

    Tolsgaard, Martin G.; Arendrup, Henrick; Lindhardt, Bjarne O.

    2012-01-01

    PURPOSE: The aim of this study, done in Denmark, was to explore the construct validity of a Reporter-Interpreter-Manager-Educator (RIME)-structured scoring format for assessing patient encounter skills. METHOD: The authors developed a RIME-structured scoring form and explored its construct validity...... in a two-step procedure. The first step (implemented in 2009) was a randomized, controlled, experimental study in which the performance of three groups (16 fourth-year medical students, 16 sixth-year medical students, and 16 interns) was assessed in two simulated patient encounters. The second step...... (carried out during 2009-2010) was an observational study of patient encounter skills where clinician examiners used the scoring form in end-of-clerkship oral examinations of three consecutive cohorts of a total of 547 fourth-year medical students. RESULTS: In the experimental study, RIME scores showed...

  15. Graphic Methods for Interpreting Longitudinal Dyadic Patterns From Repeated-Measures Actor-Partner Interdependence Models

    DEFF Research Database (Denmark)

    Perry, Nicholas; Baucom, Katherine; Bourne, Stacia

    2017-01-01

    Researchers commonly use repeated-measures actor–partner interdependence models (RM-APIM) to understand how romantic partners change in relation to one another over time. However, traditional interpretations of the results of these models do not fully or correctly capture the dyadic temporal...

  16. Featuring Multiple Local Optima to Assist the User in the Interpretation of Induced Bayesian Network Models

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Pena, Jose; Kocka, Tomas

    2004-01-01

    We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...

  17. Using AMMI, factorial regression and partial least squares regression models for interpreting genotype x environment interaction.

    NARCIS (Netherlands)

    Vargas, M.; Crossa, J.; Eeuwijk, van F.A.; Ramirez, M.E.; Sayre, K.

    1999-01-01

    Partial least squares (PLS) and factorial regression (FR) are statistical models that incorporate external environmental and/or cultivar variables for studying and interpreting genotype × environment interaction (GEl). The Additive Main effect and Multiplicative Interaction (AMMI) model uses only th

  18. Interpretation of the results of statistical measurements. [search for basic probability model

    Science.gov (United States)

    Olshevskiy, V. V.

    1973-01-01

    For random processes, the calculated probability characteristic, and the measured statistical estimate are used in a quality functional, which defines the difference between the two functions. Based on the assumption that the statistical measurement procedure is organized so that the parameters for a selected model are optimized, it is shown that the interpretation of experimental research is a search for a basic probability model.

  19. Model-independent plot of dynamic PET data facilitates data interpretation and model selection.

    Science.gov (United States)

    Munk, Ole Lajord

    2012-02-21

    When testing new PET radiotracers or new applications of existing tracers, the blood-tissue exchange and the metabolism need to be examined. However, conventional plots of measured time-activity curves from dynamic PET do not reveal the inherent kinetic information. A novel model-independent volume-influx plot (vi-plot) was developed and validated. The new vi-plot shows the time course of the instantaneous distribution volume and the instantaneous influx rate. The vi-plot visualises physiological information that facilitates model selection and it reveals when a quasi-steady state is reached, which is a prerequisite for the use of the graphical analyses by Logan and Gjedde-Patlak. Both axes of the vi-plot have direct physiological interpretation, and the plot shows kinetic parameter in close agreement with estimates obtained by non-linear kinetic modelling. The vi-plot is equally useful for analyses of PET data based on a plasma input function or a reference region input function. The vi-plot is a model-independent and informative plot for data exploration that facilitates the selection of an appropriate method for data analysis.

  20. Development of Interpretation Algorithm for Optical Fiber Bragg Grating Sensors for Composite Structures

    Science.gov (United States)

    Peters, Kara

    2002-12-01

    Increasingly, optical fiber sensors, and in particular Bragg grating sensors, are being used in aerospace structures due to their immunity to electrical noise and the ability to multiplex hundreds of sensors into a single optical fiber. This significantly reduces the cost per sensor as the number of fiber connections and demodulation systems required is also reduced. The primary objective of this project is to study the effects of mounting issues such as adhesion, surface roughness, and high strain gradients on the interpretation of the measured strain. This is performed through comparison with electrical strain gage benchmark data. The long-term goal is to integrate such optical fiber Bragg grating sensors into a structural integrity monitoring system for the 2nd Generation Reusable Launch Vehicle. Previously, researchers at NASA Langley instrumented a composite wingbox with both optical fiber Bragg grating sensors and electrical strain gages during laboratory load-to-failure testing. A considerable amount of data was collected during these tests. For this project, data from two of the sensing optical fibers (each containing 800 Bragg grating sensors) were analyzed in detail. The first fiber studied was mounted in a straight line on the upper surface of the wingbox far from any structural irregularities. The results from these sensors showed a relatively large amount of noise compared to the electrical strain gages, but measured the same averaged strain curve. It was shown that the noise could be varied through the choice of input parameters in the data interpretation algorithm. Based upon the assumption that the strain remains constant along the gage length (a valid assumption for this fiber as confirmed by the measured grating spectra) this noise was significantly reduced. The second fiber was mounted on the lower surface of the wingbox in a pattern that circled surface cutouts and ran close to sites of impact damage, induced before the loading tests. As

  1. Graphic Methods for Interpreting Longitudinal Dyadic Patterns From Repeated-Measures Actor-Partner Interdependence Models

    DEFF Research Database (Denmark)

    Perry, Nicholas; Baucom, Katherine; Bourne, Stacia

    2017-01-01

    Researchers commonly use repeated-measures actor–partner interdependence models (RM-APIM) to understand how romantic partners change in relation to one another over time. However, traditional interpretations of the results of these models do not fully or correctly capture the dyadic temporal...... patterns estimated in RM-APIM. Interpretation of results from these models largely focuses on the meaning of single-parameter estimates in isolation from all the others. However, considering individual coefficients separately impedes the understanding of how these associations combine to produce...... to improve the understanding and presentation of dyadic patterns of association described by standard RM-APIMs. The current article briefly reviews the conceptual foundations of RM-APIMs, demonstrates how change-as-outcome RM-APIMs and VFDs can aid interpretation of standard RM-APIMs, and provides a tutorial...

  2. Study about Interpretation Models and Algorithm of Water-Flooded Formation Based on Resistivity

    Institute of Scientific and Technical Information of China (English)

    WANGYinghui; TANDehui; WANGQiongfang; CAIHongjie

    2005-01-01

    Many oil fields are developed by water injection in the world, it's difficult to interpret by welllogging information. EPT and C/O identify residual oil saturation or moveable oil, but they are only fit for oil-reservoir with porosity over 20%, and not for borehole. Additionally, Archie model is not completely fit for dynamic but the static oil-reservoir. Therefore, it's more difficult for WF (Water-flooded) oil-zone (dynamic oil-reservoir) with LPP (Low porosity and low permeability) to be interpreted. Resistivity logging series are the dominating tools to WF formation, so it becomes significantly important to research new interpretation models and algorithm based on resistivity well-logging for WF oil-zone with LPP. A set of new interpretation models for WFZ (Water flooded zone) are established according to the “U” type curve from experimentation, as well as according to mathematics analysis. The notable Archie model is only one case of these new models under special conditions. It is most important that these new models are all fit from exploration stage to development stage in oil field. At last, algorithm process and application result of these models are described.

  3. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    Reliable service life models for load carrying structures are significant elements in the evaluation of the performance and sustainability of existing and new structures. Furthermore, reliable service life models are prerequisites for the evaluation of the sustainability of maintenance strategies......, repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...

  4. Researches on Key Risk Factor and Mechanism of Large Construction Project Based on Interpretative Structural Model%基于结构方程模型的大型工程建设项目关键风险因素及作用机理研究

    Institute of Scientific and Technical Information of China (English)

    郭晓; 杨乃定; 邵予工; 董铁牛

    2011-01-01

    A modeling framework is put forward on perceived risks of key risk factors, based on distinctive characteristics of large construction project in China. The result based on data analysis shows that the key risk factors are environmental risk factor,technical risk factor,organization management risk factor,subcontractor management risk factor and environmental protection risk factor. Furthermore,interpretative structural model are used to analysis the hierarchical relationship among risk factors and mechanisms. These research findings are constructive in both theory and practice to the large construction project of China.%在分析我国大型工程建设项目风险特征的基础上,构建项目风险识别框架.并通过因子分析识别出自然环境、技术、组织管理、资源管理、分包商管理、环保等6方面是大型工程建设项目的关键风险因素.此外,还研究了大型工程建设项目关键风险因素的作用机理及作用模型,并采用结构方程模型检验.

  5. Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms Based on Kalman Filter Estimation

    Science.gov (United States)

    Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.

  6. Towards a realistic interpretation of quantum physics providing a physical model of the natural world

    CERN Document Server

    Santos, Emilio

    2012-01-01

    It is stressed the advantage of a realistic interpretation of quantum mechanics providing a physical model of the quantum world. After some critical comments on the most popular interpretations, the difficulties for a model are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave-particle duality and the Bell inequalities are commented. It is conjectured that an intuitive picture of the quantum world could be obtained compatible with the quantum predictions for actual experiments, although maybe incompatible with alleged predictions for ideal, unrealizable, experiments.

  7. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    Science.gov (United States)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured

  8. Interpretable Predictive Models for Knowledge Discovery from Home-Care Electronic Health Records

    Directory of Open Access Journals (Sweden)

    Bonnie L. Westra

    2011-01-01

    Full Text Available The purpose of this methodological study was to compare methods of developing predictive rules that are parsimonious and clinically interpretable from electronic health record (EHR home visit data, contrasting logistic regression with three data mining classification models. We address three problems commonly encountered in EHRs: the value of including clinically important variables with little variance, handling imbalanced datasets, and ease of interpretation of the resulting predictive models. Logistic regression and three classification models using Ripper, decision trees, and Support Vector Machines were applied to a case study for one outcome of improvement in oral medication management. Predictive rules for logistic regression, Ripper, and decision trees are reported and results compared using F-measures for data mining models and area under the receiver-operating characteristic curve for all models. The rules generated by the three classification models provide potentially novel insights into mining EHRs beyond those provided by standard logistic regression, and suggest steps for further study.

  9. Development of Disciplined Interpretation Using Computational Modeling in the Elementary Science Classroom

    CERN Document Server

    Farris, Amy Voss; Sengupta, Pratim

    2016-01-01

    Studies of scientists building models show that the development of scientific models involves a great deal of subjectivity. However, science as experienced in school settings typically emphasizes an overly objective and rationalistic view. In this paper, we argue for focusing on the development of disciplined interpretation as an epistemic and representational practice that progressively deepens students' computational modeling in science by valuing, rather than deemphasizing, the subjective nature of the experience of modeling. We report results from a study in which fourth grade children engaged in computational modeling throughout the academic year. We present three salient themes that characterize the development of students' disciplined interpretations in terms of their development of computational modeling as a way of seeing and doing science.

  10. Cordilleran front range structural features in northwest Montana interpreted from vintage seismic reflection data

    Science.gov (United States)

    Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.

    2016-04-01

    Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.

  11. A new interpretation of the Keller-Segel model based on multiphase modelling.

    Science.gov (United States)

    Byrne, Helen M; Owen, Markus R

    2004-12-01

    In this paper an alternative derivation and interpretation are presented of the classical Keller-Segel model of cell migration due to random motion and chemotaxis. A multiphase modelling approach is used to describe how a population of cells moves through a fluid containing a diffusible chemical to which the cells are attracted. The cells and fluid are viewed as distinct components of a two-phase mixture. The principles of mass and momentum balance are applied to each phase, and appropriate constitutive laws imposed to close the resulting equations. A key assumption here is that the stress in the cell phase is influenced by the concentration of the diffusible chemical. By restricting attention to one-dimensional cartesian geometry we show how the model reduces to a pair of nonlinear coupled partial differential equations for the cell density and the chemical concentration. These equations may be written in the form of the Patlak-Keller-Segel model, naturally including density-dependent nonlinearities in the cell motility coefficients. There is a direct relationship between the random motility and chemotaxis coefficients, both depending in an inter-related manner on the chemical concentration. We suggest that this may explain why many chemicals appear to stimulate both chemotactic and chemokinetic responses in cell populations. After specialising our model to describe slime mold we then show how the functional form of the chemical potential that drives cell locomotion influences the ability of the system to generate spatial patterns. The paper concludes with a summary of the key results and a discussion of avenues for future research.

  12. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models.

    Science.gov (United States)

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical

  13. Dark Matter at the LHC and IceCube - a Simplified Model Interpretation

    CERN Document Server

    Heisig, Jan

    2015-01-01

    We present an interpretation of searches for Dark Matter in a simplified model approach. Considering Majorana fermion Dark Matter and a neutral vector mediator with axial-vector interactions we explore mono-jet searches at the LHC and searches for neutrinos from Dark Matter annihilation in the Sun at IceCube and place new limits on model parameter space. Further, we compare the simplified model with its effective field theory approximation and discuss the validity of the latter one.

  14. Cognitive Elements of Empowerment: An "Interpretive" Model of Intrinsic Task Motivation

    OpenAIRE

    Thomas, Kenneth W.; Velthouse, Betty A.

    1990-01-01

    This article presents a cognitive model of empowerment. Here, empowerment is defined as increased intrinsic task motivation, and our subsequent model identifies four cognitions (task assessments) as the basis for worker empowerment: sense of impact, competence, meaningfulness, and choice. Adopting an interpretive perspective, we have used the model also to describe cognitive processes through which workers reach these conclusions. Central to the processes we describe are ...

  15. Dream interpretation, affect, and the theory of neuronal group selection: Freud, Winnicott, Bion, and Modell.

    Science.gov (United States)

    Shields, Walker

    2006-12-01

    The author uses a dream specimen as interpreted during psychoanalysis to illustrate Modell's hypothesis that Edelman's theory of neuronal group selection (TNGS) may provide a valuable neurobiological model for Freud's dynamic unconscious, imaginative processes in the mind, the retranscription of memory in psychoanalysis, and intersubjective processes in the analytic relationship. He draws parallels between the interpretation of the dream material with keen attention to affect-laden meanings in the evolving analytic relationship in the domain of psychoanalysis and the principles of Edelman's TNGS in the domain of neurobiology. The author notes how this correlation may underscore the importance of dream interpretation in psychoanalysis. He also suggests areas for further investigation in both realms based on study of their interplay.

  16. The social structure of heat consumption in Denmark: New interpretations from quantitative analysis

    DEFF Research Database (Denmark)

    Hansen, Anders Rhiger

    2016-01-01

    The role of households in relation to heat and energy consumption has been well-described in both quantitative and qualitative studies. However, where practice theory has developed as the main theoretical framework within qualitative studies on energy consumption, the more recent quantitative......, occupation, and immigration status influence the amount of heat consumed by a household; directly as an indicator of household practices and indirectly through type of building and household characteristics. New interpretations based on theories of practice show that factors such as the social structure...... of heat consumption, status of houses and unreflective practices are important for understanding the role of households in relation to heat consumption, and for forming policies for sustainable development....

  17. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, T. [LFI, Instituto Tecnologico Nuclear, and Centro de Fisica Nuclear, Universidade Lisboa E.N. 10, 2685-953 Sacavem (Portugal)]. E-mail: murmur@itn.pt; Pallon, J. [Lund Institute of Technology, Physics Department, Lund University, Lund (Sweden)]. E-mail: Jan.Pallon@pixe.lth.se; Alves, L.C. [LFI, Instituto Tecnologico Nuclear, and Centro de Fisica Nuclear, Universidade Lisboa E.N. 10, 2685-953 Sacavem (Portugal)]. E-mail: lcalves@itn.pt; Verissimo, A. [LFI, Instituto Tecnologico Nuclear, and Centro de Fisica Nuclear, Universidade Lisboa E.N. 10, 2685-953 Sacavem (Portugal)]. E-mail: averissimo@vims.edu; Filipe, P. [Departamento Dermatologia, Hospital Sta. Maria, Lisbon (Portugal)]. E-mail: pfilipe@fm.ul.pt; Silva, J.N. [Departamento Dermatologia, Hospital Sta. Maria, Lisbon (Portugal)]. E-mail: maiasilva@fm.ul.pt; Silva, R. [Departamento Dermatologia, Hospital Sta. Maria, Lisbon (Portugal)]. E-mail: rpalminhas@netcabo.pt

    2007-07-15

    The permeability of skin to nanoparticles of titanium dioxide (TiO{sub 2}) used in sunscreens as a reflector of the UV wavelengths of sunlight, was examined using nuclear microscopy techniques. Special attention was given to the permeation characteristics of these nanoparticles across the outer layers of skin, the stratum corneum, in healthy and psoriatic skin condition. Aspects that may influence the interpretation of results such as sample preparation difficulties and skin condition were focused. Sample preparation can damage the integrity of the corneocyte layers inducing unwanted artefacts that may bias the evaluation of results. Irradiation conditions may also introduce distortions in the labile structures of human skin. Skin condition, such as loss of corneocyte cohesion occurring in psoriasis also influence the permeation profile of the nanoparticles. Weighing and accounting for these features in the examination of skin by nuclear microscopy is crucial to accurately assess the TiO{sub 2} nanoparticles permeation depth.

  18. Modeling and interpretation of Q logs in carbonate rock using a double porosity model and well logs

    Science.gov (United States)

    Parra, Jorge O.; Hackert, Chris L.

    2006-03-01

    Attenuation data extracted from full waveform sonic logs is sensitive to vuggy and matrix porosities in a carbonate aquifer. This is consistent with the synthetic attenuation (1 / Q) as a function of depth at the borehole-sonic source-peak frequency of 10 kHz. We use velocity and densities versus porosity relationships based on core and well log data to determine the matrix, secondary, and effective bulk moduli. The attenuation model requires the bulk modulus of the primary and secondary porosities. We use a double porosity model that allows us to investigate attenuation at the mesoscopic scale. Thus, the secondary and primary porosities in the aquifer should respond with different changes in fluid pressure. The results show a high permeability region with a Q that varies from 25 to 50 and correlates with the stiffer part of the carbonate formation. This pore structure permits water to flow between the interconnected vugs and the matrix. In this region the double porosity model predicts a decrease in the attenuation at lower frequencies that is associated with fluid flowing from the more compliant high-pressure regions (interconnected vug space) to the relatively stiff, low-pressure regions (matrix). The chalky limestone with a low Q of 17 is formed by a muddy porous matrix with soft pores. This low permeability region correlates with the low matrix bulk modulus. A low Q of 18 characterizes the soft sandy carbonate rock above the vuggy carbonate. This paper demonstrates the use of attenuation logs for discriminating between lithology and provides information on the pore structure when integrated with cores and other well logs. In addition, the paper demonstrates the practical application of a new double porosity model to interpret the attenuation at sonic frequencies by achieving a good match between measured and modeled attenuation.

  19. Reframing the Interpretation of Sex Worker Health: A Behavioral–Structural Approach

    Science.gov (United States)

    Tuminez, Astrid S.

    2011-01-01

    Expanding sexually transmitted infection (STI) epidemics in many parts of Asia increase the importance of effective human immunodeficiency virus (HIV)/STI prevention programs for female sex workers. Designing sex worker health research and programs demands a well-stated conceptual approach, especially when one is interpreting the relationship between local policy environments and sex worker health. However, the core principles of the 2 most common conceptual approaches used in sex worker health programs—abolitionism and empowerment—have frequently divergent assumptions and implications. The abolitionist approach sees major aspects of the sex industry as fundamentally coercive and exploitative of women and supports dismantling all or parts of the sex sector. The empowerment approach strengthens sex workers’ agency and rights in order to build collective self-efficacy and have women invested in implementing their own HIV/STI prevention programs. This review compares these approaches using implication analysis and empirical cases from Asia. The misperception of an unresolvable gap between the 2 approaches ignores common ground that forms the basis of a new behavioral–structural conceptual framework. Explicitly accounting for the interaction between female sex worker behaviors and larger structures and policies, a behavioral–structural approach may provide a solid foundation for sex work research and programs. PMID:22043033

  20. Middle Ordovician Bioturbation Structures from Southeastern Margin of Ordos Basin and Their Environmentary Interpretation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Trace fossils were discovered in the Middle Ordovician Badou Member of Fengfeng Formation and the Member 1 of Jinsushan Formation in Mt. Jinsu of the Fuping region which lies at the southeastern margin of the Ordos basin. The rocks of the fore-mentioned parts contain a considerable amount of bioturbation structures, in which ichnogenus and ichnospecies can not be identified, and abundant stromatolites.The distributions and characteristics of the bioturbation structures are analyzed and summarized in this paper. The paleoenvironments of related formations and members were interpreted in the method of semiquantitative analysis of bioturbation structures with researches on stromatolites and sedimentology. It is suggested that Fuping zone, located in the southeastern margin of the Ordos basin, was a carbonate platform where stromatolite-developing tidal flat and low-energy subtidal open platform environments dominated. Also that this zone experienced three paleogeographic evolutions from tidal flat to low-energy subtidal open platform environments, that is, three larger-scale eustatisms occurred during the sedimentary period of Middle Ordovician Badou Member of Fengfeng Formation to the Member 1 of Jinsushan Formation.

  1. Interpreting the effects of altered brain anatomical connectivity on fMRI functional connectivity: a role for computational neural modeling.

    Science.gov (United States)

    Horwitz, Barry; Hwang, Chuhern; Alstott, Jeff

    2013-01-01

    Recently, there have been a large number of studies using resting state fMRI to characterize abnormal brain connectivity in patients with a variety of neurological, psychiatric, and developmental disorders. However, interpreting what the differences in resting state fMRI functional connectivity (rsfMRI-FC) actually reflect in terms of the underlying neural pathology has proved to be elusive because of the complexity of brain anatomical connectivity. The same is the case for task-based fMRI studies. In the last few years, several groups have used large-scale neural modeling to help provide some insight into the relationship between brain anatomical connectivity and the corresponding patterns of fMRI-FC. In this paper we review several efforts at using large-scale neural modeling to investigate the relationship between structural connectivity and functional/effective connectivity to determine how alterations in structural connectivity are manifested in altered patterns of functional/effective connectivity. Because the alterations made in the anatomical connectivity between specific brain regions in the model are known in detail, one can use the results of these simulations to determine the corresponding alterations in rsfMRI-FC. Many of these simulation studies found that structural connectivity changes do not necessarily result in matching changes in functional/effective connectivity in the areas of structural modification. Often, it was observed that increases in functional/effective connectivity in the altered brain did not necessarily correspond to increases in the strength of the anatomical connection weights. Note that increases in rsfMRI-FC in patients have been interpreted in some cases as resulting from neural plasticity. These results suggest that this interpretation can be mistaken. The relevance of these simulation findings to the use of functional/effective fMRI connectivity as biomarkers for brain disorders is also discussed.

  2. How WM Load Influences Linguistic Processing in Adults : A Computational Model of Pronoun Interpretation in Discourse

    NARCIS (Netherlands)

    van Rij, Jacolien; van Rijn, Hedderik; Hendriks, Petra

    2013-01-01

    This paper presents a study of the effect of working memory load on the interpretation of pronouns in different discourse contexts: stories with and without a topic shift. We discuss a computational model (in ACT-R, Anderson, 2007) to explain how referring expressions are acquired and used. On the b

  3. Electrostatic component of binding energy: Interpreting predictions from poisson-boltzmann equation and modeling protocols.

    Science.gov (United States)

    Chakavorty, Arghya; Li, Lin; Alexov, Emil

    2016-10-30

    Macromolecular interactions are essential for understanding numerous biological processes and are typically characterized by the binding free energy. Important component of the binding free energy is the electrostatics, which is frequently modeled via the solutions of the Poisson-Boltzmann Equations (PBE). However, numerous works have shown that the electrostatic component (ΔΔGelec ) of binding free energy is very sensitive to the parameters used and modeling protocol. This prompted some researchers to question the robustness of PBE in predicting ΔΔGelec . We argue that the sensitivity of the absolute ΔΔGelec calculated with PBE using different input parameters and definitions does not indicate PBE deficiency, rather this is what should be expected. We show how the apparent sensitivity should be interpreted in terms of the underlying changes in several numerous and physical parameters. We demonstrate that PBE approach is robust within each considered force field (CHARMM-27, AMBER-94, and OPLS-AA) once the corresponding structures are energy minimized. This observation holds despite of using two different molecular surface definitions, pointing again that PBE delivers consistent results within particular force field. The fact that PBE delivered ΔΔGelec values may differ if calculated with different modeling protocols is not a deficiency of PBE, but natural results of the differences of the force field parameters and potential functions for energy minimization. In addition, while the absolute ΔΔGelec values calculated with different force field differ, their ordering remains practically the same allowing for consistent ranking despite of the force field used. © 2016 Wiley Periodicals, Inc.

  4. DOMstudio: an integrated workflow for Digital Outcrop Model reconstruction and interpretation

    Science.gov (United States)

    Bistacchi, Andrea

    2015-04-01

    Different Remote Sensing technologies, including photogrammetry and LIDAR, allow collecting 3D dataset that can be used to create 3D digital representations of outcrop surfaces, called Digital Outcrop Models (DOM), or sometimes Virtual Outcrop Models (VOM). Irrespective of the Remote Sensing technique used, DOMs can be represented either by photorealistic point clouds (PC-DOM) or textured surfaces (TS-DOM). The first are datasets composed of millions of points with XYZ coordinates and RGB colour, whilst the latter are triangulated surfaces onto which images of the outcrop have been mapped or "textured" (applying a tech-nology originally developed for movies and videogames). Here we present a workflow that allows exploiting in an integrated and efficient, yet flexible way, both kinds of dataset: PC-DOMs and TS-DOMs. The workflow is composed of three main steps: (1) data collection and processing, (2) interpretation, and (3) modelling. Data collection can be performed with photogrammetry, LIDAR, or other techniques. The quality of photogrammetric datasets obtained with Structure From Motion (SFM) techniques has shown a tremendous improvement over the past few years, and this is becoming the more effective way to collect DOM datasets. The main advantages of photogrammetry over LIDAR are represented by the very simple and lightweight field equipment (a digital camera), and by the arbitrary spatial resolution, that can be increased simply getting closer to the out-crop or by using a different lens. It must be noted that concerns about the precision of close-range photogrammetric surveys, that were justified in the past, are no more a problem if modern software and acquisition schemas are applied. In any case, LIDAR is a well-tested technology and it is still very common. Irrespective of the data collection technology, the output will be a photorealistic point cloud and a collection of oriented photos, plus additional imagery in special projects (e.g. infrared images

  5. In Silico Model for Developmental Toxicity: How to Use QSAR Models and Interpret Their Results.

    Science.gov (United States)

    Marzo, Marco; Roncaglioni, Alessandra; Kulkarni, Sunil; Barton-Maclaren, Tara S; Benfenati, Emilio

    2016-01-01

    Modeling developmental toxicity has been a challenge for (Q)SAR model developers due to the complexity of the endpoint. Recently, some new in silico methods have been developed introducing the possibility to evaluate the integration of existing methods by taking advantage of various modeling perspectives. It is important that the model user is aware of the underlying basis of the different models in general, as well as the considerations and assumptions relative to the specific predictions that are obtained from these different models for the same chemical. The evaluation on the predictions needs to be done on a case-by-case basis, checking the analogs (possibly using structural, physicochemical, and toxicological information); for this purpose, the assessment of the applicability domain of the models provides further confidence in the model prediction. In this chapter, we present some examples illustrating an approach to combine human-based rules and statistical methods to support the prediction of developmental toxicity; we also discuss assumptions and uncertainties of the methodology.

  6. PRODUCT STRUCTURE DIGITAL MODEL

    Directory of Open Access Journals (Sweden)

    V.M. Sineglazov

    2005-02-01

    Full Text Available  Research results of representation of product structure made by means of CADDS5 computer-aided design (CAD system, Product Data Management Optegra (PDM system and Product Life Cycle Management Wind-chill system (PLM, are examined in this work. Analysis of structure component development and its storage in various systems is carried out. Algorithms of structure transformation required for correct representation of the structure are considered. Management analysis of electronic mockup presentation of the product structure is carried out for Windchill system.

  7. The embedded feature model for the interpretation of chromospheric contrast profiles

    Science.gov (United States)

    Steinitz, R.; Gebbie, K. B.; Bar, V.

    1977-01-01

    Contrast profiles obtained from chromospheric filtergrams and spectra of bright and dark mottles have to date been interpreted almost exclusively in terms of Becker's cloud model. Here we demonstrate the failure of this model to account in a physically consistent way for the observed contrasts. As an alternative, we introduce an embedded-feature model, restricting our discussion in this paper to stationary features. Our model is then characterized by three independent parameters: the density of absorbing atoms, the geometrical depth, and the profile of the absorption coefficient. An analytic approximation to the contrast resulting from such a model reproduces well the observed behavior of all types of contrast profiles.

  8. Analyzing the Barriers Encountered in Innovation Process Through Interpretive Structural Modelling: Evidence From Turkey(Yapısal Yorumlayıcı Modelleme İle Inovasyon Sürecinde Karşılaşılan Engellerin İncelenmesi: Türkiye Gerçeği

    Directory of Open Access Journals (Sweden)

    Ömür Yaşar SAATÇİOĞLU

    2010-01-01

    Full Text Available The aim of this study is to determine the barriers in the innovation process in Turkey’s conditions, investigate the interrelations among them and develop a model that can measure the interacting effects of the barriers on the other barriers and in the innovation system. Since there has not been a research in the relevant literature, which has identified the innovation barriers in Turkey, a detailed review related with innovation barriers has been conducted. After identifying 32 internal and 29 external barriers from the literature review, the second step was to determine the valid barriers for Turkey. This validation was performed by means of a DELPHI study. After identification of 12 valid barriers for Turkey’s conditions, interrelations between 12 barriers were established by using ISM (Interpretive Structural Modelling. The research was conducted based on the opinions of the experts about innovation barriers. It was found that “finance of innovation” barrier affected all of the barriers in Turkey. In order to increase innovation performance of Turkey, “finance of innovation” barrier should be settled. There have been a number of researches about innovation barriers in general. The researches are either on firm level, sector level, or country level. However, there has been no research in literature specifially looking for the interrelation among the innovation barriers. This paper is should be taken as the first study not only in investigating the barriers in the innovation process in Tureky, but also in developing a model which could be used in solving the innovation barriers. The findings of this research warn the related academicians, managers and policy makers about the importance of defining and determining the barriers to innovation.

  9. Problems with the concept 'interpretation'.

    Science.gov (United States)

    Paniagua, Cecilio

    2003-10-01

    Consensus on the conceptualisation of 'interpretation', the most characteristic feature of psychoanalytic technique, has proven elusive. Attempts at precising the meaning of this term are reviewed. The role of intuition and suggestion in interpretation are commented upon. There seem to exist polarities in interpreting styles. It is the author's contention that these are mostly contingent on the practitioner's adscription to the topographical or the structural model of the mind. The tendency to interpret deeply unconscious elements would correspond to pre-structural technique, whereas the tendency to direct the patient's attention to preconscious manifestations would be characteristic of the structural orientation. Clinical material is provided to illustrate the divergence of underlying theories of technique. The topographical interpreting of Freud and his early followers is different from the interpreting used in contemporary structural technique. 'Deep' interpreting approaches continue to be used side by side with clarification-like interpretations. The reasons for this coexistence are examined. There are powerful motivations for the adherence to pre-structural interpreting. It seems to gratify the analysand's dependency wishes and the analyst's narcissism more directly. It also provides a less sublimated satisfaction of epistemophilic drives. Maintaining ill-defined the concept 'interpretation' facilitates the application of the topographical technique with its irrational gratifications.

  10. Extraction and interpretation of gammaN-->Delta form factors within a dynamical model

    Energy Technology Data Exchange (ETDEWEB)

    B. Juliá-Díaz, T.-S. H. Lee, T. Sato, and L. C. Smith

    2007-01-01

    Within the dynamical model of Refs. [Phys. Rev. C54, 2660 (1996); C63, 055201 (2001)], we perform an analysis of recent data of pion electroproduction reactions at energies near the {Delta}(1232) resonance. We discuss possible interpretations of the extracted bare and dressed {gamma} N {yields} {Delta} form factors in terms of relativistic constituent quark models and Lattice QCD calculations. Possible future developments are discussed.

  11. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

    -correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...... conceived of and interpreted in terms of (and to some extent even calculated by means of) this long-run Phillips curve.    ...

  12. Exploring prospective secondary mathematics teachers' interpretation of student thinking through analysing students' work in modelling

    Science.gov (United States)

    Didis, Makbule Gozde; Erbas, Ayhan Kursat; Cetinkaya, Bulent; Cakiroglu, Erdinc; Alacaci, Cengiz

    2016-09-01

    Researchers point out the importance of teachers' knowledge of student thinking and the role of examining student work in various contexts to develop a knowledge base regarding students' ways of thinking. This study investigated prospective secondary mathematics teachers' interpretations of students' thinking as manifested in students' work that embodied solutions of mathematical modelling tasks. The data were collected from 25 prospective mathematics teachers enrolled in an undergraduate course through four 2-week-long cycles. Analysis of data revealed that the prospective teachers interpreted students' thinking in four ways: describing, questioning, explaining, and comparing. Moreover, whereas some of the prospective teachers showed a tendency to increase their attention to the meaning of students' ways of thinking more while they engaged in students' work in depth over time and experience, some of them continued to focus on only judging the accuracy of students' thinking. The implications of the findings for understanding and developing prospective teachers' ways of interpreting students' thinking are discussed.

  13. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data.

    Science.gov (United States)

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K

    2015-03-02

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Comparative Protein Structure Modeling Using MODELLER.

    Science.gov (United States)

    Webb, Benjamin; Sali, Andrej

    2016-06-20

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc.

  15. Linking Environmental Régimes, Space and Time: Interpretations of Structural and Functional Connectivity

    Science.gov (United States)

    Wainwright, J.; Ibrahim, T. G.; Lexartza-Artza, I.; Turnbull, L.

    2008-12-01

    Traditional approaches to environmental systems have been heavily constrained by separate disciplinary frameworks within ecology, hydrology and geomorphology. Within these disciplines, there has been a significant amount of attention recently to different ideas of connectivity. These differences have reflected different concepts of structural and functional connectivity, and problems of interpretation have been further exacerbated by a lack of attention to systems connectivity. For example, structural connectivity has tended to focus on static representations of the state of the environment and thereby fail to capture the dynamic behaviour of the system. Approaches to functional connectivity have usually failed to appreciate that this connectivity is process-specific and it is thus difficult to generalize from one disciplinary area to another, and indeed in some cases even within the same disciplinary framework (e.g. dissolved pollutants or eroded soil moving in different ways from the water body). A lack of consideration of connectivity between systems can cause serious misinterpretations of system function due to the importance of what essentially become ill- posed boundary conditions. We argue that a more holistic and transdisciplinary approach to connectivity, based on the integration of a range of structural, functional and systems approaches is fundamental for improved understanding of environmental systems across a wide range of scales. We will illustrate the potential of this holistic approach with reference to a wide range of examples relating to our ongoing work. These examples will include groundwater-stream interactions, slope-channel interactions and land degradation. In all of these settings, there are important interactions in the longitudinal, lateral and vertical dimensions. For the former, the capacity of the hyporheic zone to control the fate of contaminants of stream and groundwater origin in contact with riverbed sediments is critical. Key

  16. Algebraic model of baryon structure

    CERN Document Server

    Bijker, R

    2000-01-01

    We discuss properties of baryon resonances belonging to the Nucleon, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon, in which the radial excitations are interpreted as rotations and vibrations of the string configuration. We find good overall agreement with the available data. The main discrepancies are found for low lying S-wave states, in particular N(1535), N(1650), Sigma(1750), Lambda*(1405), Lambda(1670) and Lambda(1800).

  17. Geological and structural interpretation of Peninsular Malaysia by marine and aeromagnetic data: Some preliminary results

    Science.gov (United States)

    Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar

    2016-11-01

    Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.

  18. Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure

    Science.gov (United States)

    Mooney, W. D.; Gettings, M. E.; Blank, H. R.; Healy, J. H.

    1985-02-01

    The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovičić discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted

  19. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  20. Boosting model performance and interpretation by entangling preprocessing selection and variable selection.

    Science.gov (United States)

    Gerretzen, Jan; Szymańska, Ewa; Bart, Jacob; Davies, Antony N; van Manen, Henk-Jan; van den Heuvel, Edwin R; Jansen, Jeroen J; Buydens, Lutgarde M C

    2016-09-28

    The aim of data preprocessing is to remove data artifacts-such as a baseline, scatter effects or noise-and to enhance the contextually relevant information. Many preprocessing methods exist to deliver one or more of these benefits, but which method or combination of methods should be used for the specific data being analyzed is difficult to select. Recently, we have shown that a preprocessing selection approach based on Design of Experiments (DoE) enables correct selection of highly appropriate preprocessing strategies within reasonable time frames. In that approach, the focus was solely on improving the predictive performance of the chemometric model. This is, however, only one of the two relevant criteria in modeling: interpretation of the model results can be just as important. Variable selection is often used to achieve such interpretation. Data artifacts, however, may hamper proper variable selection by masking the true relevant variables. The choice of preprocessing therefore has a huge impact on the outcome of variable selection methods and may thus hamper an objective interpretation of the final model. To enhance such objective interpretation, we here integrate variable selection into the preprocessing selection approach that is based on DoE. We show that the entanglement of preprocessing selection and variable selection not only improves the interpretation, but also the predictive performance of the model. This is achieved by analyzing several experimental data sets of which the true relevant variables are available as prior knowledge. We show that a selection of variables is provided that complies more with the true informative variables compared to individual optimization of both model aspects. Importantly, the approach presented in this work is generic. Different types of models (e.g. PCR, PLS, …) can be incorporated into it, as well as different variable selection methods and different preprocessing methods, according to the taste and experience of

  1. The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text.

    Science.gov (United States)

    Rindflesch, Thomas C; Fiszman, Marcelo

    2003-12-01

    Interpretation of semantic propositions in free-text documents such as MEDLINE citations would provide valuable support for biomedical applications, and several approaches to semantic interpretation are being pursued in the biomedical informatics community. In this paper, we describe a methodology for interpreting linguistic structures that encode hypernymic propositions, in which a more specific concept is in a taxonomic relationship with a more general concept. In order to effectively process these constructions, we exploit underspecified syntactic analysis and structured domain knowledge from the Unified Medical Language System (UMLS). After introducing the syntactic processing on which our system depends, we focus on the UMLS knowledge that supports interpretation of hypernymic propositions. We first use semantic groups from the Semantic Network to ensure that the two concepts involved are compatible; hierarchical information in the Metathesaurus then determines which concept is more general and which more specific. A preliminary evaluation of a sample based on the semantic group Chemicals and Drugs provides 83% precision. An error analysis was conducted and potential solutions to the problems encountered are presented. The research discussed here serves as a paradigm for investigating the interaction between domain knowledge and linguistic structure in natural language processing, and could also make a contribution to research on automatic processing of discourse structure. Additional implications of the system we present include its integration in advanced semantic interpretation processors for biomedical text and its use for information extraction in specific domains. The approach has the potential to support a range of applications, including information retrieval and ontology engineering.

  2. Efficacy of very fast simulated annealing global optimization method for interpretation of self-potential anomaly by different forward formulation over 2D inclined sheet type structure

    Science.gov (United States)

    Biswas, A.; Sharma, S. P.

    2012-12-01

    Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the

  3. Numerical well testing interpretation model and applications in crossflow double-layer reservoirs by polymer flooding.

    Science.gov (United States)

    Yu, Haiyang; Guo, Hui; He, Youwei; Xu, Hainan; Li, Lei; Zhang, Tiantian; Xian, Bo; Du, Song; Cheng, Shiqing

    2014-01-01

    This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV), permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I) wellbore storage section, (II) intermediate flow section (transient section), (III) mid-radial flow section, (IV) crossflow section (from low permeability layer to high permeability layer), and (V) systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR).

  4. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2014-01-01

    Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.

  5. Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia

    Science.gov (United States)

    Blaikie, T. N.; Ailleres, L.; Betts, P. G.; Cas, R. A. F.

    2014-04-01

    We present results and a method to geophysically image the subsurface structures of maar volcanoes to better understand eruption mechanisms and risks associated with maar-forming eruptions. High-resolution ground gravity and magnetic data were acquired across several maar volcanoes within the Newer Volcanics Province of southeastern Australia, including the Ecklin maar, Red Rock Volcanic Complex, and Mount Leura Volcanic Complex. The depth and geometry of subsurface volcanic structures were determined by interpretation of gridded geophysical data and constrained 2.5-D forward and 3-D inverse modeling techniques. Bouguer gravity lows identified across the volcanic craters reflect lower density lake sediments and pyroclastic debris infilling the underlying maar-diatremes. These anomalies were reproduced during modeling by shallow coalesced diatremes. Short-wavelength positive gravity and magnetic anomalies identified within the center of the craters suggest complex internal structures. Modeling identified feeder vents, consisting of higher proportions of volcanic debris, intrusive dikes, and ponded magma. Because potential field models are nonunique, sensitivity analyses were undertaken to understand where uncertainty lies in the interpretations, and how the models may vary between the bounds of the constraints. Rather than producing a single "ideal" model, multiple models consistent with available geologic information are created using different inversion techniques. The modeling technique we present focuses on maar volcanoes, but there are wider implications for imaging the subsurface of other volcanic systems such as kimberlite pipes, scoria cones, tuff rings, and calderas.

  6. The interpretation models and discussion on the contractive structure deformation of Kuqa Depression, Tarim Basin%塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论

    Institute of Scientific and Technical Information of China (English)

    漆家福; 李勇; 吴超; 杨书江

    2013-01-01

    The basic characteristics of structural deformation in Kuqa Depression of, Tarim Basin is contractive structural deformation, owing to the development of a lot of thrusts and buckling folds in Mesozoic and Cenozoic strata. This paper establishes two types of model for interpreting the contractive structural deformation in Kuqa Depression based on the structural features interpreted from geological outcrop, seismic data, well-log and CEMP (Continuous Electromagnetic Profile) data, and discusses their differences in geometry, shortening extent and dynamics. One model is the "skin-contractive deformation", a typical "A-type" subduction model. The other is the "delaminate contractive deformation", in which both the sedimentary cover and the basement of the depression are involved in contractive deformation in respective styles, with no real regional detachment fault developed. The "delaminate contractive deformation" is considered to be more reasonable so far as the data and theoretical concepts are concerned. The model emphasizes that Cenozoic, Mesozoic and basement decoupled under lateral pressure between Tarim craton and South Tianshan Mountain affected by the capability of the strata, Cenozoic was dominated by detachment folds with break thrusts, Mesozoic was dominated by thrusts with related folds, and the basement was dominated by thrusts and faulted blocks. The shortening extents at the bottom of Cenozoic, the upper of Mesozoic and the basement of the depression are basically identical. The shortening extent ranges from 12km to15km according to length balance of Cenozoic bottom, and the depth involved in contractive deformation ranges from 20km to 26km in the front of South Tianshan Mountain according to excess area of Mesozoic in sectional plane. Therefore, the basement of the depression is uplifted in the north and is involved in the thrust. Although the intensity of contractive deformation gradually decreases from mountain to foreland and from the shallow

  7. Probabilistic Modeling of Timber Structures

    DEFF Research Database (Denmark)

    Köhler, J.D.; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2005-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present pro...... probabilistic model for these basic properties is presented and possible refinements are given related to updating of the probabilistic model given new information, modeling of the spatial variation of strength properties and the duration of load effects.......The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present...

  8. Geologic structures related to New Madrid earthquakes near Memphis, Tennessee, based on gravity and magnetic interpretations

    Science.gov (United States)

    Hildenbrand, T.G.; Stuart, W.D.; Talwani, P.

    2001-01-01

    New inversions of gravity and magnetic data in the region north of memphis. Tennessee, and south of latitude 36?? define boundaries of regional structures and igneous complexes in the upper crust. Microseismicity patterns near interpreted boundaries suggest that igneous complexes influence the locations of microseismicity. A weak seismicity cluster occurs near one intrusion (Covington pluton), at the intersection of the southwest margin of the Missouri batholith and the southeast margin of the Reelfoot rift. A narrow seismicity trend along the Reelfoot rift axis becomes diffuse near a second intrusion (Osceola intrusive complex) and changes direction to an area along the northwest flank of the intrusion. The axial seismicity trend also contains a tight cluster of earthquakes located just outside the Osceola intrusive complex. The mechanical explanation of the two seismicity patterns is uncertain, but the first cluster may be caused by stress concentration due to the high elastic stiffness and strength of the Covington intrusion. The spatially changing seismicity pattern near the Osceola complex may be caused by the preceding factors plus interaction with faulting along the rift axis. The axial seismicity strand itself is one of several connected and interacting active strands that may produce stress concentrations at strand ends and junctions. The microseismicity clusters at the peripheries of the two intrusions lead us to conclude that these stress concentrations or stressed volumes may be locations of future moderate to large earthquakes near Memphis. Published by Elsevier Science B.V.

  9. SPAR Model Structural Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    John Schroeder; Dan Henry

    2013-04-01

    The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRC’s Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: • Development of a standard methodology and implementation of support system initiating events • Treatment of loss of offsite power • Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are • SPAR model transparency • Common cause failure modeling deficiencies and approaches • Ac and dc modeling deficiencies and approaches • Instrumentation and control system modeling deficiencies and approaches

  10. Integrable models for quantum media excited by laser radiation: a method, physical interpretation, and examples

    OpenAIRE

    Savva, Vadim A.; Zelenkov, Vadim I.

    2014-01-01

    A method to build various integrable models for description of coherent excitation of multilevel media by laser pulses is suggested. Distribution functions over the energy levels of quantum systems depending on the time and frequency detuning are obtained. The distributions follow from Schr\\"odinger equation exact solutions and give the complete dynamical description of laser-excited quantum multilevel systems. Interpretation based on the Fourier spectra of the probability amplitudes of a qua...

  11. Model-based interpretation of the ECG: a methodology for temporal and spatial reasoning.

    OpenAIRE

    Tong, D. A.; Widman, L. E.

    1992-01-01

    A new software architecture for automatic interpretation of the electrocardiogram is presented. Using the hypothesize-and-test paradigm, a semi-quantitative physiological model and production rule-based knowledge are combined to reason about time- and space-varying characteristics of complex heart rhythms. A prototype system implementing the methodology accepts a semi-quantitative description of the onset and morphology of the P waves and QRS complexes that are observed in the body-surface el...

  12. A new interpretation of the structure of the Sept Iles Intrusive suite, Canada

    Science.gov (United States)

    Higgins, Michael D.

    2005-08-01

    The layered mafic intrusion at Sept Iles, Canada, is one of the largest intrusions in the world. A new interpretation of its structure is proposed, based on a review of its geology and a comparison with the Skaergaard intrusion, Greenland. Several different magmatic components are recognized; hence the name Sept Iles Intrusive suite (SIIS) is proposed. Emplacement of the suite may have been preceded by eruption of flood basalts. The first magmas of the suite rose in the crust to accumulate beneath the density filter afforded by the basalts. The largest component is the Sept Iles Mafic intrusion (SIMI). The Lower series of the SIMI is dominated by leucotroctolites and leucogabbros. Above it lie the Layered series, which is largely comprised of gabbro and troctolite. Both these units are unchanged from earlier interpretations. The anorthosites (s.l.), gabbros and monzogabbros, formerly called the Transitional series, are now considered to be the Upper Border series, developed by floatation of plagioclase. Common autoliths in the Layered series are parts of the hydrothermally altered Upper Border series from towards the interior of the intrusion, which have foundered and settled through the magma. The contamination of the magma that accompanied this event oxidised iron in the magma and led to the precipitation of magnetite around the periphery of the intrusion. The subsequent depletion of Fe 3+ and/or increase in SiO 2, CaO and P 2O 5 may have induced apatite saturation and accumulation to form two layers rich in apatite, near the base and at top of the Layered series. Granitic magma was developed by fractional crystallisation and was emplaced along the roof of the chamber, where it acquired large quantities of xenoliths. These were probably derived from the flood basalts, their evolved members and fragments of mafic dykes chilled by the granitic magma. Accumulations of monzonite pillows in this unit testify to another magmatic event and a floor to the granitic magma

  13. Subsalt Depth Seismic Imaging and Structural Interpretation in Dumre Area, Albania.

    OpenAIRE

    Jardin A.; Roure F.; Nikolla L.

    2011-01-01

    The challenge of seismic exploration in fold and thrust belt settings is to optimize the depth seismic images of the deep structural objectives beneath a complex overburden that may show strong horizontal and vertical velocity variations. In such areas, the seismic image is frequently of poor quality and the depth models of deep layers is often false due to the perturbed propagation of seismic energy through the deforming lens of the overlying layers. A range of seismic processing tools, incl...

  14. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  15. Numerical Modelling and Geological Interpretation of Geothermal Fields in Black Sea

    Science.gov (United States)

    Kostyanev, Simeon; Trapov, Georgi; Dimovski, Stefan; Vasilev, Atanas; Stoyanov, Velislav; Kostadinov, Evgeni

    2013-04-01

    A numerical solution to the thermal conductivity equation was carried out along three profiles; the Varna-Sukhumi profile and two transverse profiles. The purpose of this paper is a more detailed study of the distribution in depth of the thermal field in the light of the latest geological and geophysical data concerning the age and structure of the sedimentary rocks and the Black Sea basement. Specified seismic and tomographic data about the sedimentary formation and the region basement were obtained and employed in order to precise the results obtained from the previous studies. Calculations were carried out along a geological profile using real properties of sedimentary rocks and basement and they have shown that the regional variation of temperature along the Moho plane varies from 420 to 754° ?. The heat flow along the same plane varies from 15-20 t? 29-41 mW /m2. The part of the heat flow that is caused by radiogenic sources amounts to 17-30 mW/m2. The modelling results are presented as sections that illustrate the distribution of temperature and heat flow in depth. This article is initiated by the fact that between 1st January 2009 and 12th December 2011, Project # 226592, entitled "UP-GRADE BLACK SEA SCIENTIFIC NETWORK", was worked out as part of the Seventh Framework Program (FP7). A team from the University of Mining and Geology, Sofia, took part in the project developing a geothermal database for the Black Sea basin. Part of the data was employed for the modeling of then geothermal field along the Varna-Sukhumi Profile. A catalogue is being prepared that is going to comprise all geothermal data of the Black Sea that are available so far and that amount more than 750 at present. The authors wish to thank the Project Management for the provided opportunity to work on this problem. The numerical modelling the analysis and interpretation of geothermal data will contribute to the study of the geological evolution of the lithosphere of the Black Sea depression.

  16. INTERPRETATION OF BOUGUER ANOMALY TO DETERMINE FAULT AND SUBSURFACE STRUCTURE AT BLAWAN-IJEN GEOTHERMAL AREA

    Directory of Open Access Journals (Sweden)

    Anjar Pranggawan Azhari

    2016-10-01

    Full Text Available Gravity survey has been acquired by Gravimeter Lacoste & Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1, F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3, embedded shale and sand (ρ2=2.644 g/cm3 as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 & ρ7=2.821 g/cm3, andesite rock (ρ4=2.448 g/cm3 as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3 from Mt. Blau, and lava flow (ρ6=2.890 g/cm3.

  17. The Role of Stochastic Models in Interpreting the Origins of Biological Chirality

    Directory of Open Access Journals (Sweden)

    Gábor Lente

    2010-04-01

    Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.

  18. Interpreting Space-Based Trends in Carbon Monoxide with Multiple Models

    Science.gov (United States)

    Strode, Sarah A.; Worden, Helen M.; Damon, Megan; Douglass, Anne R.; Duncan, Bryan N.; Emmons, Louisa K.; Lamarque, Jean-Francois; Manyin, Michael; Oman, Luke D.; Rodriguez, Jose M.; Strahan, Susan E.; Tilmes, Simone

    2016-01-01

    We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.

  19. PBPK and population modelling to interpret urine cadmium concentrations of the French population

    Energy Technology Data Exchange (ETDEWEB)

    Béchaux, Camille, E-mail: Camille.bechaux@anses.fr [ANSES, French Agency for Food, Environmental and Occupational Health Safety, 27-31 Avenue du Général Leclerc, 94701 Maisons-Alfort (France); Bodin, Laurent [ANSES, French Agency for Food, Environmental and Occupational Health Safety, 27-31 Avenue du Général Leclerc, 94701 Maisons-Alfort (France); Clémençon, Stéphan [Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13 (France); Crépet, Amélie [ANSES, French Agency for Food, Environmental and Occupational Health Safety, 27-31 Avenue du Général Leclerc, 94701 Maisons-Alfort (France)

    2014-09-15

    As cadmium accumulates mainly in kidney, urinary concentrations are considered as relevant data to assess the risk related to cadmium. The French Nutrition and Health Survey (ENNS) recorded the concentration of cadmium in the urine of the French population. However, as with all biomonitoring data, it needs to be linked to external exposure for it to be interpreted in term of sources of exposure and for risk management purposes. The objective of this work is thus to interpret the cadmium biomonitoring data of the French population in terms of dietary and cigarette smoke exposures. Dietary and smoking habits recorded in the ENNS study were combined with contamination levels in food and cigarettes to assess individual exposures. A PBPK model was used in a Bayesian population model to link this external exposure with the measured urinary concentrations. In this model, the level of the past exposure was corrected thanks to a scaling function which account for a trend in the French dietary exposure. It resulted in a modelling which was able to explain the current urinary concentrations measured in the French population through current and past exposure levels. Risk related to cadmium exposure in the general French population was then assessed from external and internal critical values corresponding to kidney effects. The model was also applied to predict the possible urinary concentrations of the French population in 2030 assuming there will be no more changes in the exposures levels. This scenario leads to significantly lower concentrations and consequently lower related risk. - Highlights: • Interpretation of urine cadmium concentrations in France • PBPK and Bayesian population modelling of cadmium exposure • Assessment of the historic time-trend of the cadmium exposure in France • Risk assessment from current and future external and internal exposure.

  20. Structural evolution of the Yeongwol thrust system, northeastern Okcheon fold-thrust belt, Korea: Insights from structural interpretations and SHRIMP U-Pb and K-Ar geochronology

    Science.gov (United States)

    Jang, Yirang; Kwon, Sanghoon

    2017-04-01

    The NE-trending Okcheon Belt is a prominent fold-thrust belt preserved in the Korean Peninsula. In the Yeongwol area, the northeastern Okcheon Belt, the Cambrian-Ordovician (possibly to Silurian) Joseon Supergroup overlies the Carboniferous-Permian (possibly to early Triassic) Pyeongan Supergroup and/or Jurassic Bansong Group by N-S trending thrust faults, having highly connected traces in map view. To understand the structural geometry of these thrust faults and their evolution history, we have conducted structural analyses, together with SHRIMP U-Pb zircon and K-Ar illite age datings. The results show that (1) the thrusts in the Yeongwol area, carrying the lower Paleozoic strata over the upper Paleozoic or Mesozoic strata, are defined as the Yeongwol thrust system. The closed-loops map patterns of this system can further be interpreted by alternative duplex models in terms of a hinterland dipping duplex vs. a combination of major thrusts and connecting splays; (2) newly obtained SHRIMP U-Pb zircon ages from a dike and synorogenic sediments and K-Ar illite ages from fault gouges, together with previously reported evidences form the Yeongwol area, suggest multiple events after Permo-Triassic to early Neogene. The SHRIMP U-Pb detrital zircon ages from the lower Paleozoic rocks of the Yeongwol area can provide tectono-stratigraphic information of this area before the Permian. These further indicate the broader implications in that how detailed structural interpretations supported by the geochronological data can help to understand the tectonic evolution of the Okcheon Belt as well as the fold-thrust belts in general.

  1. Models as coherent sign structures

    NARCIS (Netherlands)

    Gazendam, H.W.M.; Jorna, R.J.J.M.; Gazendam, H.W.M.; Cijsouw, R.S.

    2003-01-01

    This chapter explains how models function as the glue that keeps organizations together. In an analysis of models from a semiotic and cognitive point of view, assumptions about evolutionary dynamics and bounded rationality are used. It is concluded that a model is a coherent sign structure,

  2. Structural interpretation of seismic data of Abu Rudeis-Sidri area, Northern Central Gulf of Suez, Egypt

    Science.gov (United States)

    Zahra, Hesham Shaker; Nakhla, Adel Mokhles

    2016-12-01

    The 2D and 3D seismic data are interpreted to evaluate the subsurface geologic structures in the Abu Rudeis-Sidri area that occupy the northern central part of the Gulf of Suez. The 2D seismic data are used for determination of the structural configurations and the tectonic features which is analyzed through the study of interpretation with the available geologic data, in which the geo-seismic depth maps for the main interesting tops (Kareem, Nukhul, Matulla, Raha and Nubia Formations) are represented. Such maps reflect that, the Miocene structure of Abu Rudeis-Sidri area is an asymmetrical NW-SE trending anticlinal feature dissected by a set of NW-SE fault system (clysmic). Added, the Pre-Miocene structure of the studied area is very complex, where the area is of NE dip and affected by severe faulting through varying stratigraphic levels.

  3. Utility of natural generalised inverse technique in the interpretation of dyke structures

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.M.M.; Murty, T.V.R.; Rao, P.R.; Lakshminarayana, S.; Subrahmanyam, A.S.; Murthy, K.S.R.

    Forward and Inverse methods of magnetic interpretation have been used to estimate the parameters of dyke like intrusion over the eastern continental shelf of India. In the forward problem, the tentative parameters of the causative source are assumed...

  4. Analysis, Interpretation, and Recognition of Facial Action Units and Expressions Using Neuro-Fuzzy Modeling

    CERN Document Server

    Khademi, Mahmoud; Manzuri-Shalmani, Mohammad T; Kiaei, Ali A

    2010-01-01

    In this paper an accurate real-time sequence-based system for representation, recognition, interpretation, and analysis of the facial action units (AUs) and expressions is presented. Our system has the following characteristics: 1) employing adaptive-network-based fuzzy inference systems (ANFIS) and temporal information, we developed a classification scheme based on neuro-fuzzy modeling of the AU intensity, which is robust to intensity variations, 2) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the subtle changes as well as temporal information involved in formation of the facial expressions, and 3) by continuous values of intensity and employing top-down hierarchical rule-based classifiers, we can develop accurate human-interpretable AU-to-expression converters. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with support vect...

  5. On the structure and probabilistic interpretation of Askey-Wilson densities and polynomials with complex parameters

    CERN Document Server

    Szabłowski, Paweł J

    2010-01-01

    We give equivalent forms of Askey-Wilson (AW) polynomials expressing them with a help of Al-Salam-Chihara polynomials. After restricting parameters of AW polynomials to complex conjugate pairs we give probabilistic interpretation of AW weight function and expand it in the series similar to Poisson-Mehler expansion formula and give its probabilistic interpretation. On the way (by setting certain parameter q to to 0) we get some formulae useful in rapidly developing so called 'free probability'.

  6. Seismic Sedimentology Interpretation Method of Meandering Fluvial Reservoir:From Model to Real Data

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Xianguo Zhang; Chengyan Lin; Jingfeng Yu; Shouxiu Zhang

    2015-01-01

    Reservoir architecture of meandering river deposition is complex and traditional seismic facies interpretation method cannot characterize it when layer thickness is under seismic vertical reso-lution. In this study, a seismic sedimentology interpretation method and workflow for point bar char-acterization is built. Firstly, the influences of seismic frequency and sandstone thickness on seismic re-flection are analyzed by outcrop detection with ground penetrating radar (GPR) and seismic forward modeling. It is found that (1) sandstone thickness can influence seismic reflection of point bar architec-ture. With the increasing of sandstone thickness from 1/4 wavelength (λ) to λ/2, seismic reflection ge-ometries various from ambiguous reflection,“V”type reflection to“X”type reflection;(2) seismic fre-quency can influence reservoirs’ seismic reflection geometry. Seismic events follow inclined lateral ag-gradation surfaces, which is isochronic depositional boundaries, in high frequency seismic data while the events extend along lithologic surfaces, which are level, in low frequency data. Secondly, strata slice interpretation method for thin layer depositional characterization is discussed with seismic forward modeling. Lastly, a method and workflow based on the above study is built which includes seismic fre-quency analysis, 90º phasing, stratal slicing and integrated interpretation of slice and seismic profile. This method is used in real data study in Tiger shoal, the Gulf of Mexico. Two episodes of meandering fluvial deposition is recognized in the study layer. Sandstone of the lower unit, which is formed in low base level stage, distributes limited. Sandstone distribution dimension and channel sinuosity become larger in the upper layer, which is high base level deposition.

  7. Analysis of coal enterprises management informatization proj ects construction risk factors based on interpretative structure modeling%基于解释结构模型的煤炭企业管理信息化项目建设风险要素分析

    Institute of Scientific and Technical Information of China (English)

    陈红军; 刘波; 任鑫

    2015-01-01

    加强管理信息化建设是煤炭企业转型升级的关键,管理信息化项目实施有着很高的失败率,煤炭企业必须将风险管理放在管理信息化项目建设的突出位置。管理信息化项目建设涉及风险要素较多,要素之间还存在复杂的影响关系,全面系统的风险识别和分析是有效风险管理的关键。通过风险分解结构(RBS)的方式系统识别煤炭信息化管理项目建设风险因素,并确定相应的风险结果,从而构建煤炭企业管理信息化项目建设风险要素集。在此基础上,运用解释结构模型(ISM)的方法划分风险要素层次结构,对要素进行了分类,系统分析了各风险要素之间影响关系,为煤炭企业管理信息化项目建设风险管理提供了有效思路和途径。%It’s crucial to enhance management informatization construction in the transformation and upgrading of coal enterprises.Management informatization proj ect is marked with higher failure rate,so coal enterprise must give priority to risk management when developing it.Management informatization proj ect is besieged with many risk factors among which there are complicated relations.Therefore,comprehensive, systematic risk identification and analysis is a key to effective risk management.Risk breakdown structure (RBS ) is adopted to systematically identify risk factors in coal informatization management proj ect, determine corresponding results caused by various risks,and construct risk factor database.On the basis of it,interpretative structural modeling(ISM)is applied to the hierarchical division and classification of risk factors.The paper systematically analyzes the mutual impacts caused by all risk factors and provides effective idea and approach for risk management of coal enterprise in its management informationization proj ect.

  8. Interpreting the upper level structure of the Madden-Julian oscillation

    Science.gov (United States)

    Monteiro, Joy M.; Adames, Ángel F.; Wallace, John M.; Sukhatme, Jai S.

    2014-12-01

    The nonlinear response of a spherical shallow water model to an imposed heat source in the presence of realistic zonal mean zonal winds is investigated numerically. The solutions exhibit elongated, meridionally tilted ridges and troughs indicative of a poleward dispersion of wave activity. As the speed of the jets is increased, the equatorial Kelvin wave is unaffected but the global Rossby wave train coalesces to form a compact, amplified quadrupole structure that bears a striking resemblance to the observed upper level structure of the Madden-Julian oscillation. In the presence of strong subtropical westerly jets, the advection of planetary vorticity by the meridional flow and relative vorticity by the zonally averaged background flow conspire to create the distinctive quadrupole configuration of flanking Rossby waves.

  9. Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data in heterogeneous populations

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2008-01-01

    Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three models that are most commonly used are in fact mathematically identical and differ only in their interpretation of the estimated parameters. By extending these previous models, we here propose a more mechanistic approach for the analysis of data from deuterium labeling experiments. We construct a model of 'kinetic heterogeneity' in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model (1) provides a mechanistic way of interpreting labeling data; (2) allows for a non-exponential loss of labeled cells during delabeling, and (3) can be used to describe data with variable labeling length.

  10. Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data in heterogeneous populations

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2008-01-01

    Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three models that are most commonly used are in fact mathematically identical and differ only in their interpretation of the estimated parameters. By extending these previous models, we here propose a more mechanistic approach for the analysis of data from deuterium labeling experiments. We construct a model of 'kinetic heterogeneity' in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model (1) provides a mechanistic way of interpreting labeling data; (2) allows for a non-exponential loss of labeled cells during delabeling, and (3) can be used to describe data with variable labeling length.

  11. Composition of uppermost mantle beneath the Northern Fennoscandia - numerical modeling and petrological interpretation

    Science.gov (United States)

    Virshylo, Ivan; Kozlovskaya, Elena; Prodaivoda, George; Silvennoinen, Hanna

    2013-04-01

    Studying of the uppermost mantle beneath the northern Fennoscandia is based on the data of the POLENET/LAPNET passive seismic array. Firstly, arrivals of P-waves of teleseismic events were inverted into P-wave velocity model using non-linear tomography (Silvennoinen et al., in preparation). The second stage was numerical petrological interpretation of referred above velocity model. This study presents estimation of mineralogical composition of the uppermost mantle as a result of numerical modeling. There are many studies concerning calculation of seismic velocities for polymineral media under high pressure and temperature conditions (Afonso, Fernàndez, Ranalli, Griffin, & Connolly, 2008; Fullea et al., 2009; Hacker, 2004; Xu, Lithgow-Bertelloni, Stixrude, & Ritsema, 2008). The elastic properties under high pressure and temperature (PT) conditions were modelled using the expanded Hook's law - Duhamel-Neumann equation, which allows computation of thermoelastic strains. Furthermore, we used a matrix model with multi-component inclusions that has no any restrictions on shape, orientation or concentration of inclusions. Stochastic method of conditional moment with computation scheme of Mori-Tanaka (Prodaivoda, Khoroshun, Nazarenko, & Vyzhva, 2000) is applied instead of traditional Voigt-Reuss-Hill and Hashin-Shtrikman equations. We developed software for both forward and inverse problem calculation. Inverse algorithm uses methods of global non-linear optimization. We prefer a "model-based" approach for ill-posed problem, which means that the problem is solved using geological and geophysical constraints for each parameter of a priori and final models. Additionally, we are checking at least several different hypothesis explaining how it is possible to get the solution with good fit to the observed data. If the a priori model is close to the real medium, the nearest solution would be found by the inversion. Otherwise, the global optimization is searching inside the

  12. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  13. Structuring very large domain models

    DEFF Research Database (Denmark)

    Störrle, Harald

    2010-01-01

    View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...

  14. Probabilistic modeling of timber structures

    DEFF Research Database (Denmark)

    Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2007-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet Publ...... is presented and possible refinements are given related to updating of the probabilistic model given new information, modeling of the spatial variation of strength properties and the duration of load effects.......The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...

  15. Interpretation of seismic section by acoustic modeling. Study of large amplitude events; Hadoba modeling ni yoru jishin tansa danmen no kaishaku. Kyoshinhaba event ni taisuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T.; Matsuoka, T.; Sato, T. [Japan Petroleum Exploration Corp., Tokyo (Japan); Minegishi, M.; Tsuru, T. [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    A large amplitude event difficult to interpret was discovered in the overlap section in offset data beyond 10km targeting at deep structures, and the event was examined. A wave field modeling was carried out by use of a simplified synclinal structure model because it had been estimated that the large amplitude event had something to do with a synclinal structure. A pseudospectral program was used for modeling the wave field on the assumption that the synclinal structure model would be an acoustic body and that the surface would contain free boundaries and multiple reflection. It was found as the result that a discontinuous large amplitude event is mapped out in the synclinal part of the overlap section when a far trace is applied beyond the structure during a CMP overlap process. This can be attributed to the concentration of energy produced by multiple reflection in the synclinal part and by the reflection waves beyond the critical angle. Accordingly, it is possible that phenomena similar to those encountered in the modeling process are emerging during actual observation. 2 refs., 8 figs.

  16. Entropy-Based Model for Interpreting Life Systems in Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Guo-lian Kang

    2008-01-01

    Full Text Available Traditional Chinese medicine (TCM treats qi as the core of the human life systems. Starting with a hypothetical correlation between TCM qi and the entropy theory, we address in this article a holistic model for evaluating and unveiling the rule of TCM life systems. Several new concepts such as acquired life entropy (ALE, acquired life entropy flow (ALEF and acquired life entropy production (ALEP are propounded to interpret TCM life systems. Using the entropy theory, mathematical models are established for ALE, ALEF and ALEP, which reflect the evolution of life systems. Some criteria are given on physiological activities and pathological changes of the body in different stages of life. Moreover, a real data-based simulation shows life entropies of the human body with different ages, Cold and Hot constitutions and in different seasons in North China are coincided with the manifestations of qi as well as the life evolution in TCM descriptions. Especially, based on the comparative and quantitative analysis, the entropy-based model can nicely describe the evolution of life entropies in Cold and Hot individuals thereby fitting the Yin–Yang theory in TCM. Thus, this work establishes a novel approach to interpret the fundamental principles in TCM, and provides an alternative understanding for the complex life systems.

  17. Caribbean sclerosponge radiocarbon measurements re-interpreted in terms of U/Th age models

    Energy Technology Data Exchange (ETDEWEB)

    Rosenheim, Brad E. [Woods Hole Oceanographic Institution, Department of Geology and Geophysics, MS 8, Woods Hole, MA 02546 (United States)]. E-mail: brosenheim@whoi.edu; Swart, Peter K. [University of Miami, Rosenstiel School of Marine and Atmospheric Science, Division of Marine Geology and Geophysics, Miami, FL (United States)

    2007-06-15

    Previously unpublished AMS radiocarbon measurements of a sclerosponge from tongue of the ocean (TOTO), Bahamas, as well as preliminary data from an investigation of the radiocarbon records of sclerosponges living at different depths in the adjacent Bahamas basin, Exuma Sound, are interpreted in terms of U-series age models. The data are compared to an existing Caribbean sclerosponge radiocarbon bomb curve measured using standard gas proportional beta counting and used to interpret a {sup 210}Pb age model. The {delta}{sup 14}C records from the sclerosponges illustrate a potential for use of radiocarbon both as a tracer of subsurface water masses or as an additional age constraint on recently sampled sclerosponges. By using an independent age model, this study lays the framework for utilizing sclerosponges from different locations in the tropics and subtropics and different depths within their wide depth range (0-250 m) to constrain changes in production of subtropical underwater in the Atlantic Ocean. This framework is significant because the proxy approach is necessary to supplement the short and coarse time series being used to constrain variability in the formation of Caribbean subtropical underwater, the return flow of a shallow circulation cell responsible for nearly 10% of the heat transported poleward in the N. Atlantic.

  18. Semiotic Interpretation of Lotka–Volterra Model and its Usage in Knowledge Management

    Directory of Open Access Journals (Sweden)

    Evdokimov Kirill E.

    2016-01-01

    Full Text Available Convergence of NBICS-technologies makes relevant the exact definition of objective goals’ spectrum, which pursued this self-organizing system of technologies. Authors consider the objective goals of this system of technologies as “semiotic attractors” and the tasks related to knowledge management at the NBICS-technologies niche as management of competition between the goals, which cause processes of creation, transmission, reception, usage and duplication of the new knowledge. Competitive interaction of these goals (and their symbolizations were researched on the grounds of Lotka–Volterra model. The original interpretation of Lotka–Volterra model is posed on the basis of stated interconnection between the stages of complex systems’ non-linear dynamics, this self-organization’s information mechanisms and the semiotic results of information processes’ stages. This synthesis of synergetic, cybernetic and semiotic paradigms is implemented on the grounds of A. N. Whitehead process philosophy. Semiotic interpretation of the model allowed determining the order of goals’ conversion and defining the stages of dynamics at which this transformation by means of knowledge management is constructive.

  19. Pre-Trip Expectations and Post-Trip Satisfaction with Marine Tour Interpretation in Hawaii: Applying the Norm Activation Model

    Science.gov (United States)

    Littlejohn, Kerrie; Needham, Mark D.; Szuster, Brian W.; Jordan, Evan J.

    2016-01-01

    This article examines environmental education by focusing on recreationist expectations for interpretation on marine tours, satisfaction with this interpretation and whether expectations were met, and how these perceptions correlate with components of the norm activation model. Recreationists surveyed before and after tours to Molokini, Hawaii (n…

  20. On the Practical Interpretability of Cross-Lagged Panel Models: Rethinking a Developmental Workhorse.

    Science.gov (United States)

    Berry, Daniel; Willoughby, Michael T

    2017-07-01

    Reciprocal feedback processes between experience and development are central to contemporary developmental theory. Autoregressive cross-lagged panel (ARCL) models represent a common analytic approach intended to test such dynamics. The authors demonstrate that-despite the ARCL model's intuitive appeal-it typically (a) fails to align with the theoretical processes that it is intended to test and (b) yields estimates that are difficult to interpret meaningfully. Specifically, using a Monte Carlo simulation and two empirical examples concerning the reciprocal relation between spanking and child aggression, it is shown that the cross-lagged estimates derived from the ARCL model reflect a weighted-and typically uninterpretable-amalgam of between- and within-person associations. The authors highlight one readily implemented respecification that better addresses these multiple levels of inference. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  1. Handbook of structural equation modeling

    CERN Document Server

    Hoyle, Rick H

    2012-01-01

    The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu

  2. Quantum interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Goernitz, T.; Weizsaecker, C.F.V.

    1987-10-01

    Four interpretations of quantum theory are compared: the Copenhagen interpretation (C.I.) with the additional assumption that the quantum description also applies to the mental states of the observer, and three recent ones, by Kochen, Deutsch, and Cramer. Since they interpret the same mathematical structure with the same empirical predictions, it is assumed that they formulate only different linguistic expressions of one identical theory. C.I. as a theory on human knowledge rests on a phenomenological description of time. It can be reconstructed from simple assumptions on predictions. Kochen shows that mathematically every composite system can be split into an object and an observer. Deutsch, with the same decomposition, describes futuric possibilities under the Everett term worlds. Cramer, using four-dimensional action at a distance (Wheeler-Feynman), describes all future events like past facts. All three can be described in the C.I. frame. The role of abstract nonlocality is discussed.

  3. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds.

    Science.gov (United States)

    Cataldo, Franco; Angelini, Giancarlo; García-Hernández, D Aníbal; Manchado, Arturo

    2013-07-01

    A series of 33 different polycyclic aromatic hydrocarbons (PAHs) were studied by far infrared spectroscopy (terahertz spectroscopy) in the spectral range comprised between 600 and 50 cm(-1). In addition to common PAHs like naphthalene, anthracene, phenanthrene, fluoranthene, picene, pyrene, benzo[α]pyrene, and perylene, also quite unusual PAHs were studied like tetracene, pentacene, acenaphtene, acenaphtylene, triphenylene, and decacyclene. A series of alkylated naphthalenes and anthracenes were studied as well as methypyrene. Partially or totally hydrogenated PAHs were also object of the present investigation, ranging from tetrahydronaphthalene (tetralin) to decahydronaphthalene (decalin), 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, hexahydropyrene, and dodecahydrotriphenylene. Finally, the large and quite rare PAHs coronene, quaterrylene, hexabenzocoronene, and dicoronylene were studied by far infrared spectroscopy. The resulting reference spectra were used in the interpretation of the chemical structure of asphaltenes (as extracted from a heavy petroleum fraction and from bitumen), the chemical structures of other petroleum fractions known as DAE (distillate aromatic extract) and RAE (residual aromatic extract), and a possible interpretation of components of the chemical structure of anthracite coal. Asphaltenes, heavy petroleum fractions, and coal were proposed as model compounds for the interpretation of the emission spectra of certain proto-planetary nebulae (PPNe) with a good matching in the mid infrared between the band pattern of the PPNe emission spectra and the spectra of these oil fractions or coal. Although this study was finalized in an astrochemical context, it may find application also in the petroleum and coal chemistry.

  4. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds

    Science.gov (United States)

    Cataldo, Franco; Angelini, Giancarlo; García-Hernández, D. A.; Manchado, Arturo

    2013-07-01

    A series of 33 different polycyclic aromatic hydrocarbons (PAHs) were studied by far infrared spectroscopy (terahertz spectroscopy) in the spectral range comprised between 600 and 50 cm-1. In addition to common PAHs like naphthalene, anthracene, phenanthrene, fluoranthene, picene, pyrene, benzo[α]pyrene, and perylene, also quite unusual PAHs were studied like tetracene, pentacene, acenaphtene, acenaphtylene, triphenylene, and decacyclene. A series of alkylated naphthalenes and anthracenes were studied as well as methypyrene. Partially or totally hydrogenated PAHs were also object of the present investigation, ranging from tetrahydronaphthalene (tetralin) to decahydronaphthalene (decalin), 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, hexahydropyrene, and dodecahydrotriphenylene. Finally, the large and quite rare PAHs coronene, quaterrylene, hexabenzocoronene, and dicoronylene were studied by far infrared spectroscopy. The resulting reference spectra were used in the interpretation of the chemical structure of asphaltenes (as extracted from a heavy petroleum fraction and from bitumen), the chemical structures of other petroleum fractions known as DAE (distillate aromatic extract) and RAE (residual aromatic extract), and a possible interpretation of components of the chemical structure of anthracite coal. Asphaltenes, heavy petroleum fractions, and coal were proposed as model compounds for the interpretation of the emission spectra of certain proto-planetary nebulae (PPNe) with a good matching in the mid infrared between the band pattern of the PPNe emission spectra and the spectra of these oil fractions or coal. Although this study was finalized in an astrochemical context, it may find application also in the petroleum and coal chemistry.

  5. Acquisition of Structure and Interpretation: Cases from Mandarin Bare and Non-Bare Noun Phrases

    Science.gov (United States)

    Chang, Hsiang-Hua

    2011-01-01

    Children's production of bare nominals is universal. When acquiring languages disallowing bare nominals, children will develop from the bare to the non-bare stage. However, Mandarin nominals may appear bare or non-bare in various positions with all kinds of interpretations. This dissertation conducts two acquisition studies to examine the…

  6. Redox biotransformation and delivery of anthracycline anticancer antibiotics: How interpretable structure-activity relationships of lethality using electrophilicity and the London formula for dispersion interaction work.

    Science.gov (United States)

    Pang, Siu-Kwong

    2017-03-30

    Quantum chemical methods and molecular mechanics approaches face a lot of challenges in drug metabolism study because of their either insufficient accuracy or huge computational cost, or lack of clear molecular level pictures for building computational models. Low-cost QSAR methods can often be carried out even though molecular level pictures are not well defined; however, they show difficulty in identifying the mechanisms of drug metabolism and delineating the effects of chemical structures on drug toxicity because a certain amount of molecular descriptors are difficult to be interpreted. In order to make a breakthrough, it was proposed that mechanistically interpretable molecular descriptors were used to correlate with biological activity to establish structure-activity plots. The mechanistically interpretable molecular descriptors used in this study include electrophilicity and the mathematical function in the London formula for dispersion interaction, and they were calculated using quantum chemical methods. The biological activity is the lethality of anthracycline anticancer antibiotics denoted as log LD50, which were obtained by intraperitoneal injection into mice. The results reveal that the plots for electrophilicity, which can be interpreted as redox reactivity of anthracyclines, can describe oxidative degradation for detoxification and reductive bioactivation for toxicity induction. The plots for the dispersion interaction function, which represent the attraction between anthracyclines and biomolecules, can describe efflux from and influx into target cells of toxicity. The plots can also identify three structural scaffolds of anthracyclines that have different metabolic pathways, resulting in their different toxicity behavior. This structure-dependent toxicity behavior revealed in the plots can provide perspectives on design of anthracycline anticancer antibiotics.

  7. Imaging and Interpreting Lithospheric Structure in the Southern Appalachians using the SESAME Broadband Array

    Science.gov (United States)

    Verellen, D.; Alberts, E.; Parker, H., Jr.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.

    2016-12-01

    The Southeastern Suture of the Appalachian Margin Experiment (SESAME) was designed to investigate the role of crustal and subcrustal deformation associated with Alleghanian collision and Mesozoic extension of the lithosphere across the southeastern United States. It involved the deployment of three profiles with a total length of 1300 kilometers. In this study, we use zero-offset reflections generated by the global seismic phase PKIKP as a virtual source to image structure within the lithosphere. Together with Consortium for Continental Reflection Profiling (COCORP) surveys, these data allow us to study the nature of the Moho and other discontinuities over a wide range of scales. A major objective of this work is to track variations in the detailed structure of the crust-mantle transition from Grenville basement beneath the Valley & Ridge to accreted terranes beneath the Coastal Plain and across the boundary between Laurentian and Gondwanan lithosphere. We also investigate the scale of layering in the uppermost mantle and its possible relation to contrasts in anisotropy in relation to shearing. Preliminary findings for a single earthquake (mb=6.1) recorded along a profile trending northwest across the Carolina Terrane, Inner Piedmont, and Blue Ridge show dipping reflectors at a depth of approximately 15-20 km in the crust, and layered, relatively flat-lying reflectors at a depth of roughly 70 km in the upper mantle. Ongoing work includes stacking of waveforms for multiple events in order to enhance signal-to-noise levels and construction of images for two additional north-south trending profiles across the Coastal Plain, where deep structure is more difficult to image due to reverberations within low-velocity sediments. The resulting broadband images of P-wave reflectivity will be used in combination with models of S-wave reflectivity derived by other methods to provide insight into the complex deformational history of the southern Appalachian system.

  8. An interpretation model of GPR point data in tunnel geological prediction

    Science.gov (United States)

    He, Yu-yao; Li, Bao-qi; Guo, Yuan-shu; Wang, Teng-na; Zhu, Ya

    2017-02-01

    GPR (Ground Penetrating Radar) point data plays an absolutely necessary role in the tunnel geological prediction. However, the research work on the GPR point data is very little and the results does not meet the actual requirements of the project. In this paper, a GPR point data interpretation model which is based on WD (Wigner distribution) and deep CNN (convolutional neural network) is proposed. Firstly, the GPR point data is transformed by WD to get the map of time-frequency joint distribution; Secondly, the joint distribution maps are classified by deep CNN. The approximate location of geological target is determined by observing the time frequency map in parallel; Finally, the GPR point data is interpreted according to the classification results and position information from the map. The simulation results show that classification accuracy of the test dataset (include 1200 GPR point data) is 91.83% at the 200 iteration. Our model has the advantages of high accuracy and fast training speed, and can provide a scientific basis for the development of tunnel construction and excavation plan.

  9. Integrated interpretation of a geological structure based on the combination of well logging, VSP and seismic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wachi, Noboru; Asakura, Natsuo; Ota, Yoichi; Ikawa, Takeshi; Iwaki, Yumio

    1985-03-15

    An integrated analysis procedure is given for a reliable interpretation of geological structure using the combination of well log, VSP (Vertical Seismic Profiling) and seismic records. Survey records are analyzed for 4 distinct high porosity layers following the procedure. The VSP records contained information about various effects caused by the characteristics of the layers, and the wave forms resembled more closely to the records obtained by seismic methods. The synthetic seismogram of VSP showed a better agreement with the seismic record than that of sonic log, and VSP method was confirmed to be effective for a reliable structure interpretation of oil and gas layers. Also, long spacing sonic log analysis showed a significant attenuations of elastic waves corresponding to high porosity layers. (19 figs, 7 refs)

  10. Interpretation of Vector-like Quark Searches: Heavy Gluons in Composite Higgs Models

    CERN Document Server

    Araque, Juan Pedro; Santiago, Jose

    2015-01-01

    Pair production of new vector-like quarks in pp collisions is considered model independent as it is usually dominated by QCD production. We discuss the interpretation of vector-like quark searches in the case that QCD is not the only relevant production mechanism for the new quarks. In particular we consider the effect of a new massive color octet vector boson with sizeable decay branching ratio into the new quarks. We pay special attention to the sensitivity of the Large Hadron Collider experiments, both in run-1 and early run-2, to differences in the kinematical distributions from the different production mechanisms. We have found that even though there can be significant differences in some kinematical distributions at the parton level, the differences are washed out at the reconstruction level. Thus, the published experimental results can be reinterpreted in models with heavy gluons by simply rescaling the production cross section.

  11. Interpreting predictive maps of disease: highlighting the pitfalls of distribution models in epidemiology

    Directory of Open Access Journals (Sweden)

    Nicola A. Wardrop

    2014-11-01

    Full Text Available The application of spatial modelling to epidemiology has increased significantly over the past decade, delivering enhanced understanding of the environmental and climatic factors affecting disease distributions and providing spatially continuous representations of disease risk (predictive maps. These outputs provide significant information for disease control programmes, allowing spatial targeting and tailored interventions. However, several factors (e.g. sampling protocols or temporal disease spread can influence predictive mapping outputs. This paper proposes a conceptual framework which defines several scenarios and their potential impact on resulting predictive outputs, using simulated data to provide an exemplar. It is vital that researchers recognise these scenarios and their influence on predictive models and their outputs, as a failure to do so may lead to inaccurate interpretation of predictive maps. As long as these considerations are kept in mind, predictive mapping will continue to contribute significantly to epidemiological research and disease control planning.

  12. Discussion of using artificial neural nets to identify the well-test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, K. (Univ. of Alberta, Edmonton, Alberta (Canada)); Chakrabarty, C. (Golder Associates, Nottingham (United Kingdom)); Wu, S. (Univ. of Melbourne (Australia))

    1994-09-01

    Use of artificial neural nets (ANN's) to identify noisy and apparently unrecognizable patterns is common for many real-world problems, ranging from applications such as speech recognition to stock market prediction. ANN approaches are often good candidates for recognizing patterns when rigid mathematical models do not exist or are insufficient to meet a full-scale identification requirement. Al-Kaabi and Lee's proposal of using ANN's to identify the well-test interpretation model is appropriate because well-test data is often highly nonlinear and noisy. The purpose of this discussion is to present some of the authors results in a similar study and to suggest a simple technique that would enhance the use of ANN's in Al-Kaabi and Lee's approach.

  13. Nested by design: model fitting and interpretation in a mixed model era

    National Research Council Canada - National Science Library

    Schielzeth, Holger; Nakagawa, Shinichi; Freckleton, Robert

    2013-01-01

    ...‐effects models offer a powerful framework to do so. Nested effects can usually be fitted using the syntax for crossed effects in mixed models, provided that the coding reflects implicit nesting...

  14. Distance Geometry Protocol to Generate Conformations of Natural Products to Structurally Interpret Ion Mobility-Mass Spectrometry Collision Cross Sections

    Science.gov (United States)

    2015-01-01

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data. PMID:25360896

  15. Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model

    Science.gov (United States)

    Sandaire, Johnny

    2009-01-01

    A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…

  16. Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model

    Science.gov (United States)

    Sandaire, Johnny

    2009-01-01

    A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…

  17. Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations

    CERN Document Server

    Albers, D J

    2011-01-01

    This paper addresses how to calculate and interpret the time-delayed mutual information for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can be also be used to understand the degree of homo- or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements fro...

  18. An Architecture for Real-Time Interpretation and Visualization of Structural Sensor Data in a Laboratory Environment

    Science.gov (United States)

    Doggett, William; Vazquez, Sixto

    2000-01-01

    A visualization system is being developed out of the need to monitor, interpret, and make decisions based on the information from several thousand sensors during experimental testing to facilitate development and validation of structural health monitoring algorithms. As an added benefit the system will enable complete real-time sensor assessment of complex test specimens. Complex structural specimens are routinely tested that have hundreds or thousands of sensors. During a test, it is impossible for a single researcher to effectively monitor all the sensors and subsequently interesting phenomena occur that are not recognized until post-test analysis. The ability to detect and alert the researcher to these unexpected phenomena as the test progresses will significantly enhance the understanding and utilization of complex test articles. Utilization is increased by the ability to halt a test when the health monitoring algorithm response is not satisfactory or when an unexpected phenomenon occurs, enabling focused investigation potentially through the installation of additional sensors. Often if the test continues, structural changes make it impossible to reproduce the conditions that exhibited the phenomena. The prohibitive time and costs associated with fabrication, sensoring, and subsequent testing of additional test articles generally makes it impossible to further investigate the phenomena. A scalable architecture is described to address the complex computational demands of structural health monitoring algorithm development and laboratory experimental test monitoring. The researcher monitors the test using a photographic quality 3D graphical model with actual sensor locations identified. In addition, researchers can quickly activate plots displaying time or load versus selected sensor response along with the expected values and predefined limits. The architecture has several key features. First, distributed dissimilar computers may be seamlessly integrated into the

  19. Modelling structured data with Probabilistic Graphical Models

    Science.gov (United States)

    Forbes, F.

    2016-05-01

    Most clustering and classification methods are based on the assumption that the objects to be clustered are independent. However, in more and more modern applications, data are structured in a way that makes this assumption not realistic and potentially misleading. A typical example that can be viewed as a clustering task is image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are geographically located, it is of interest to cluster data with an underlying dependence structure accounting for some spatial localisation. These spatial interactions can be naturally encoded via a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random fields and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic graphical models are tools that can be used to represent and manipulate data in a structured way while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of probabilistic graphical models are considered: Bayesian networks and Markov networks. The key concept of conditional independence and its link to Markov properties is presented. The main problems that can be solved with such tools are described. Some illustrations are given associated with some practical work.

  20. Exploring the Gross Schoenebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Gerard; Bauer, Klaus; Moeck, Inga; Schulze, Albrecht; Ritter, Oliver [Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam (Germany)

    2010-03-15

    Exploration for geothermal resources is often challenging because there are no geophysical techniques that provide direct images of the parameters of interest, such as porosity, permeability and fluid content. Magnetotelluric (MT) and seismic tomography methods yield information about subsurface distribution of resistivity and seismic velocity on similar scales and resolution. The lack of a fundamental law linking the two parameters, however, has limited joint interpretation to a qualitative analysis. By using a statistical approach in which the resistivity and velocity models are investigated in the joint parameter space, we are able to identify regions of high correlation and map these classes (or structures) back onto the spatial domain. This technique, applied to a seismic tomography-MT profile in the area of the Gross Schoenebeck geothermal site, allows us to identify a number of classes in accordance with the local geology. In particular, a high-velocity, low-resistivity class is interpreted as related to areas with thinner layers of evaporites; regions where these sedimentary layers are highly fractured may be of higher permeability. (author)

  1. Modeling and interpreting speckle pattern formation in swept-source optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Demidov, Valentin; Vitkin, I. Alex; Doronin, Alexander; Meglinski, Igor

    2017-03-01

    We report on the development of a unified Monte-Carlo based computational model for exploring speckle pattern formation in swept-source optical coherence tomography (OCT). OCT is a well-established optical imaging modality capable of acquiring cross-sectional images of turbid media, including biological tissues, utilizing back scattered low coherence light. The obtained OCT images include characteristic features known as speckles. Currently, there is a growing interest to the OCT speckle patterns due to their potential application for quantitative analysis of medium's optical properties. Here we consider the mechanisms of OCT speckle patterns formation for swept-source OCT approaches and introduce further developments of a Monte-Carlo based model for simulation of OCT signals and images. The model takes into account polarization and coherent properties of light, mutual interference of back-scattering waves, and their interference with the reference waves. We present a corresponding detailed description of the algorithm for modeling these light-medium interactions. The developed model is employed for generation of swept-source OCT images, analysis of OCT speckle formation and interpretation of the experimental results. The obtained simulation results are compared with selected analytical solutions and experimental studies utilizing various sizes / concentrations of scattering microspheres.

  2. Development of HT-BP nueral network system for the identification of well test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Sung, W.; Hanyang, U.; Yoo, I. [and others

    1995-12-31

    The neural network technique that is a field of artificial intelligence (AI) has proved to be a good model classifier in all areas of engineering and especially, it has gained a considerable acceptance in well test interpretation model (WTIM) identification of petroleum engineering. Conventionally, identification of the WTIM has been approached by graphical analysis method that requires an experienced expert. Recently, neural network technique equipped with back propagation (BP) learning algorithm was presented and it differs from the AI technique such as symbolic approach that must be accompanied with the data preparation procedures such as smoothing, segmenting, and symbolic transformation. In this paper, we developed BP neural network with Hough transform (HT) technique to overcome data selection problem and to use single neural network rather sequential nets. The Hough transform method was proved to be a powerful tool for the shape detection in image processing and computer vision technologies. Along these lines, a number of exercises were conducted with the actual well test data in two steps. First, the newly developed AI model, namely, ANNIS (Artificial intelligence Neural Network Identification System) was utilized to identify WTIM. Secondly, we obtained reservoir characteristics with the well test model equipped with modified Levenberg-Marquart method. The results show that ANNIS was proved to be quite reliable model for the data having noisy, missing, and extraneous points. They also demonstrate that reservoir parameters were successfully estimated.

  3. Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2016-01-01

    Full Text Available The tight gas reservoir in the fifth member of the Xujiahe formation contains heterogeneous interlayers of sandstone and shale that are low in both porosity and permeability. Elastic characteristics of sandstone and shale are analyzed in this study based on petrophysics tests. The tests indicate that sandstone and mudstone samples have different stress-strain relationships. The rock tends to exhibit elastic-plastic deformation. The compressive strength correlates with confinement pressure and elastic modulus. The results based on thin-bed log interpretation match dynamic Young’s modulus and Poisson’s ratio predicted by theory. The compressive strength is calculated from density, elastic impedance, and clay contents. The tensile strength is calibrated using compressive strength. Shear strength is calculated with an empirical formula. Finally, log interpretation of rock mechanical properties is performed on the fifth member of the Xujiahe formation. Natural fractures in downhole cores and rock microscopic failure in the samples in the cross section demonstrate that tensile fractures were primarily observed in sandstone, and shear fractures can be observed in both mudstone and sandstone. Based on different elasticity and plasticity of different rocks, as well as the characteristics of natural fractures, a fracture propagation model was built.

  4. Trade-offs between accuracy and interpretability in von Bertalanffy random-effects models of growth.

    Science.gov (United States)

    Vincenzi, Simone; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J; Mangel, Marc

    2016-07-01

    Better understanding of variation in growth will always be an important problem in ecology. Individual variation in growth can arise from a variety of processes; for example, individuals within a population vary in their intrinsic metabolic rates and behavioral traits, which may influence their foraging dynamics and access to resources. However, when adopting a growth model, we face trade-offs between model complexity, biological interpretability of parameters, and goodness of fit. We explore how different formulations of the von Bertalanffy growth function (vBGF) with individual random effects and environmental predictors affect these trade-offs. In the vBGF, the growth of an organism results from a dynamic balance between anabolic and catabolic processes. We start from a formulation of the vBGF that models the anabolic coefficient (q) as a function of the catabolic coefficient (k), a coefficient related to the properties of the environment (γ) and a parameter that determines the relative importance of behavior and environment in determining growth (ψ). We treat the vBGF parameters as a function of individual random effects and environmental variables. We use simulations to show how different functional forms and individual or group variability in the growth function's parameters provide a very flexible description of growth trajectories. We then consider a case study of two fish populations of Salmo marmoratus and Salmo trutta to test the goodness of fit and predictive power of the models, along with the biological interpretability of vBGF's parameters when using different model formulations. The best models, according to AIC, included individual variability in both k and γ and cohort as predictor of growth trajectories, and are consistent with the hypothesis that habitat selection is more important than behavioral and metabolic traits in determining lifetime growth trajectories of the two fish species. Model predictions of individual growth trajectories were

  5. Methods to improve computer-assisted seismic interpretation using seismic attributes: Multiattribute display, spectral data reduction, and attributes to quantify structural deformation and velocity anisotropy

    Science.gov (United States)

    Guo, Hao

    Computer-assisted seismic interpretation gained widespread acceptance in the mid 1980s that no 3D survey and few 2D surveys are interpreted without the aid of an interpretation workstation. Geoscientists routinely quantify features of geologic interest and enhance their interpretation through the use of seismic attributes. Typically these attributes are examined sequentially, or within different interpretation windows. In this dissertation, I present two novel means of presenting the information content of multiple attributes by a single image. In the first approach, I show how two, three, or four attributes can be displayed by an appropriate use of color. I use a colorstack model of Red, Green, and Blue (RGB) to map attributes of similar type such as volumes of near-, mid-, and far-angle amplitude or low-, moderate-, high-frequency spectral components. I use an HLS model to display a theme attribute modulated by another secondary attribute, such as dip magnitude modulating dip azimuth, or amplitude of the peak spectral frequency modulating the phase measured at the peak frequency. Transparency/opacity provides a 4th color dimension and provides additional attribute modulation capabilities. In the second approach I use principal component analysis to reduce the multiplicity of redundant data into a smaller, more manageable number of components. The importance of each principal component is proportional to its corresponding eigenvalue. By mapping the three largest principal components against red, green, and blue, we can represent more than 80% of the original information with a single colored image. I then use these tools to help quantify and correlate structural deformation with velocity anisotropy. I develop an innovative algorithm that automatically counts the azimuth distribution of the fast P-wave velocity (or alternatively, the strike of the structural lineaments) weighted by the amount of anisotropy (or the intensity of the lineaments) at any point in the

  6. Interpreting microarray data to build models of microbial genetic regulation networks

    Science.gov (United States)

    Sokhansanj, Bahrad A.; Garnham, Janine B.; Fitch, J. Patrick

    2002-06-01

    Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cell's global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments pose challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

  7. Interpreting Microarray Data to Build Models of Microbial Genetic Regulation Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B; Garnham, J B; Fitch, J P

    2002-01-23

    Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cells global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments poses challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

  8. Interpretation of graphene mobility data by means of a semiclassical Monte Carlo transport model

    Science.gov (United States)

    Bresciani, M.; Palestri, P.; Esseni, D.; Selmi, L.; Szafranek, B.; Neumaier, D.

    2013-11-01

    In this paper we compare experimental data and simulations based on a semiclassical model in order to investigate the relative importance of a several scattering mechanisms on the mobility of graphene nano-ribbons. Furthermore, some new experimental results complementing the range of ribbon widths available in the literature are also reported. We show that scattering with remote phonons originating in the substrate insulator can appreciably reduce the mobility of graphene and it should not be neglected in the interpretation of graphene mobility data. In fact by accounting for remote phonon scattering we could reproduce fairly well the experimentally observed dependence of the mobility on the ribbon width, the temperature and the inversion density, whereas the agreement with experiments is much worse when remote phonons are not included in the calculations.

  9. Model-based interpretation of the ECG: a methodology for temporal and spatial reasoning.

    Science.gov (United States)

    Tong, D A; Widman, L E

    1993-06-01

    A new software architecture for automatic interpretation of the electrocardiographic rhythm is presented. Using the hypothesize-and-test paradigm, a semiquantitative physiological model and production rule-based knowledge are combined to reason about time- and space-varying characteristics of complex heart rhythms. A prototype system implementing the methodology accepts a semiquantitative description of the onset and morphology of the P waves and QRS complexes that are observed in the body-surface electrocardiogram. A beat-by-beat explanation of the origin and consequences of each wave is produced. The output is in the standard cardiology laddergram format. The current prototype generates the full differential diagnosis of narrow-complex tachycardia and correctly diagnoses complex rhythms, such as atrioventricular (AV) nodal reentrant tachycardia with either hidden or visible P waves and varying degrees of AV block.

  10. Time-varying effect modeling with longitudinal data truncated by death: conditional models, interpretations, and inference.

    Science.gov (United States)

    Estes, Jason P; Nguyen, Danh V; Dalrymple, Lorien S; Mu, Yi; Şentürk, Damla

    2016-05-20

    Recent studies found that infection-related hospitalization was associated with increased risk of cardiovascular (CV) events, such as myocardial infarction and stroke in the dialysis population. In this work, we develop time-varying effects modeling tools in order to examine the CV outcome risk trajectories during the time periods before and after an initial infection-related hospitalization. For this, we propose partly conditional and fully conditional partially linear generalized varying coefficient models (PL-GVCMs) for modeling time-varying effects in longitudinal data with substantial follow-up truncation by death. Unconditional models that implicitly target an immortal population is not a relevant target of inference in applications involving a population with high mortality, like the dialysis population. A partly conditional model characterizes the outcome trajectory for the dynamic cohort of survivors, where each point in the longitudinal trajectory represents a snapshot of the population relationships among subjects who are alive at that time point. In contrast, a fully conditional approach models the time-varying effects of the population stratified by the actual time of death, where the mean response characterizes individual trends in each cohort stratum. We compare and contrast partly and fully conditional PL-GVCMs in our aforementioned application using hospitalization data from the United States Renal Data System. For inference, we develop generalized likelihood ratio tests. Simulation studies examine the efficacy of estimation and inference procedures.

  11. Structures in Molecular Clouds: Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  12. Distributed analysis of simultaneous EEG-fMRI time-series: modeling and interpretation issues.

    Science.gov (United States)

    Esposito, Fabrizio; Aragri, Adriana; Piccoli, Tommaso; Tedeschi, Gioacchino; Goebel, Rainer; Di Salle, Francesco

    2009-10-01

    Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) represent brain activity in terms of a reliable anatomical localization and a detailed temporal evolution of neural signals. Simultaneous EEG-fMRI recordings offer the possibility to greatly enrich the significance and the interpretation of the single modality results because the same neural processes are observed from the same brain at the same time. Nonetheless, the different physical nature of the measured signals by the two techniques renders the coupling not always straightforward, especially in cognitive experiments where spatially localized and distributed effects coexist and evolve temporally at different temporal scales. The purpose of this article is to illustrate the combination of simultaneously recorded EEG and fMRI signals exploiting the principles of EEG distributed source modeling. We define a common source space for fMRI and EEG signal projection and gather a conceptually unique framework for the spatial and temporal comparative analysis. We illustrate this framework in a graded-load working-memory simultaneous EEG-fMRI experiment based on the n-back task where sustained load-dependent changes in the blood-oxygenation-level-dependent (BOLD) signals during continuous item memorization co-occur with parametric changes in the EEG theta power induced at each single item. In line with previous studies, we demonstrate on two single-subject cases how the presented approach is capable of colocalizing in midline frontal regions two phenomena simultaneously observed at different temporal scales, such as the sustained negative changes in BOLD activity and the parametric EEG theta synchronization. We discuss the presented approach in relation to modeling and interpretation issues typically arising in simultaneous EEG-fMRI studies.

  13. Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue.

    Science.gov (United States)

    Tuer, Adam E; Akens, Margarete K; Krouglov, Serguei; Sandkuijl, Daaf; Wilson, Brian C; Whyne, Cari M; Barzda, Virginijus

    2012-11-21

    The second-order nonlinear polarization properties of fibrillar collagen in various rat tissues (vertebrae, tibia, tail tendon, dermis, and cornea) are investigated with polarization-dependent second-harmonic generation (P-SHG) microscopy. Three parameters are extracted: the second-order susceptibility ratio, R = [Formula: see text] ; a measure of the fibril distribution asymmetry, |A|; and the weighted-average fibril orientation, . A hierarchical organizational model of fibrillar collagen is developed to interpret the second-harmonic generation polarization properties. Highlights of the model include: collagen type (e.g., type-I, type-II), fibril internal structure (e.g., straight, constant-tilt), and fibril architecture (e.g., parallel fibers, intertwined, lamellae). Quantifiable differences in internal structure and architecture of the fibrils are observed. Occurrence histograms of R and |A| distinguished parallel from nonparallel fibril distributions. Parallel distributions possessed low parameter values and variability, whereas nonparallel distributions displayed an increase in values and variability. From the P-SHG parameters of vertebrae tissue, a three-dimensional reconstruction of lamellae of intervertebral disk is presented.

  14. A unified perspective of complex band structure: interpretations, formulations, and applications

    Science.gov (United States)

    Reuter, Matthew G.

    2017-02-01

    Complex band structure generalizes conventional band structure by also considering wavevectors with complex components. In this way, complex band structure describes both the bulk-propagating states from conventional band structure and the evanescent states that grow or decay from one unit cell to the next. Even though these latter states are excluded by translational symmetry, they become important when translational symmetry is broken via, for example, a surface or impurity. Many studies over the last 80 years have directly or indirectly developed complex band structure for an impressive range of applications, but very few discuss its fundamentals or compare its various results. In this work we build upon these previous efforts to expose the physical foundation of complex band structure, which mathematically implies its existence. We find that a material’s static and dynamic electronic structure are both completely described by complex band structure. Furthermore, we show that complex band structure reflects the minimal, intrinsic information contained in the material’s Hamiltonian. These realizations then provide a context for comparing and unifying the different formulations and applications of complex band structure that have been reported over the years. Ultimately, this discussion introduces the idea of examining the amount of information contained in a material’s Hamiltonian so that we can find and exploit the minimal information necessary for understanding a material’s properties.

  15. Better interpretation of snow remote sensing data with physics-based models

    Science.gov (United States)

    Sandells, M.; Davenport, I. J.; Quaife, T. L.; Flerchinger, G. N.; Marks, D. G.; Gurney, R. J.

    2012-12-01

    Interpretation of remote sensing data requires a model and some assumptions, and the quality of the end product depends on the accuracy and appropriateness of these. Snow is a vital component of the water cycle, both socially and economically, so accurate monitoring of this resource is important. However, the snow mass products from passive microwave data may have large errors in them, and were deemed too unreliable for consideration in the latest Intergovernmental Panel on Climate Change Assessment Report. The SSM/I passive microwave snow mass retrieval algorithm uses a linear brightness temperature difference model, and assumptions that snow has a fixed grain diameter of 0.8mm and density of 300 kg m-3. In reality, the properties of the snow vary in time and space depending on its thermal history, and scattering of microwave radiation is very sensitive to snow properties. If snow mass retrievals are to be made from remote sensing data, then these properties must be known rather well. Layered physics-based models are capable of simulating the evolution of profiles of temperature, water content in the snow or soil, and snow grain size. These simulations could be used to provide information to help understand remote sensing data. Additional information from other remote sensing sources could enhance the accuracy of the product. For example, surface snow grain size can be obtained from near-infrared reflectance observations, and these data can be used to constrain the physically-based model, as could thermal observations. Here, we will present a new method that could be used to derive better estimates of snow mass and soil moisture. The system is comprised of a physically-based model of the snow and soil to derive snow and soil properties, a snow microwave emission model to estimate the satellite observations and ancillary data to constrain the physically-based model. These components will be used to estimate snow mass from passive microwave data with data

  16. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  17. Upgrading aquifer test interpretations with numerical axisymmetric flow models using MODFLOW in the Donana area (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Bravo, N.; Guardiola-Albert, C.

    2011-07-01

    Though axisymmetric modelling is not widely used it can be incorporated into MODFLOW by tricking the grids with a log-scaling method to simulate the radial flow to a well and to upgrade hydraulic properties. Furthermore, it may reduce computer runtimes considerably by decreasing the number of dimensions. The Almonte-Marismas aquifer is a heterogeneous multi-layer aquifer underlying the Donana area, one of the most important wetlands in Europe. The characterization of hydraulic conductivity is of great importance, because this factor is included in the regional groundwater model, the main water-management support tool in the area. Classical interpretations of existing pumping tests have never taken into account anisotropy, heterogeneity and large head gradients. Thus, to improve the characterization of hydraulic conductivity in the groundwater model, five former pumping tests, located in different hydrogeological areas, have been modelled numerically to represent radial flow in different parts of the aquifer. These numerical simulations have proved to be suitable for reproducing groundwater flow during a pumping test, to corroborate hypotheses concerning unconfined or semi-confined aquifers and even to estimate different hydraulic conductivity values for each lithological layer drilled, which constitutes the main improvement of this model in comparison with classical methods. A comparison of the results shows that the values of the numerical model are similar to those obtained by classical analytic techniques but are always lower for the most permeable layer. It is also clear that the less complex the lithological distribution the more accurate the estimations of hydraulic conductivity. (Author) 46 refs.

  18. The non-power model of the genetic code: a paradigm for interpreting genomic information.

    Science.gov (United States)

    Gonzalez, Diego Luis; Giannerini, Simone; Rosa, Rodolfo

    2016-03-13

    In this article, we present a mathematical framework based on redundant (non-power) representations of integer numbers as a paradigm for the interpretation of genomic information. The core of the approach relies on modelling the degeneracy of the genetic code. The model allows one to explain many features and symmetries of the genetic code and to uncover hidden symmetries. Also, it provides us with new tools for the analysis of genomic sequences. We review briefly three main areas: (i) the Euplotid nuclear code, (ii) the vertebrate mitochondrial code, and (iii) the main coding/decoding strategies used in the three domains of life. In every case, we show how the non-power model is a natural unified framework for describing degeneracy and deriving sound biological hypotheses on protein coding. The approach is rooted on number theory and group theory; nevertheless, we have kept the technical level to a minimum by focusing on key concepts and on the biological implications. © 2016 The Author(s).

  19. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    Energy Technology Data Exchange (ETDEWEB)

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into the nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.

  20. Structure and modeling of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.A. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-12-31

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).

  1. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  2. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Claire L.; Bond-Lamberty, Ben; Desai, Ankur R.; Lavoie, Martin; Risk, Dave; Tang, Jianwu; Todd-Brown, Katherine; Vargas, Rodrigo

    2016-11-16

    A recent acceleration of model-data synthesis activities has leveraged many terrestrial carbon (C) datasets, but utilization of soil respiration (RS) data has not kept pace with other types such as eddy covariance (EC) fluxes and soil C stocks. Here we argue that RS data, including non-continuous measurements from survey sampling campaigns, have unrealized value and should be utilized more extensively and creatively in data synthesis and modeling activities. We identify three major challenges in interpreting RS data, and discuss opportunities to address them. The first challenge is that when RS is compared to ecosystem respiration (RECO) measured from EC towers, it is not uncommon to find substantial mismatch, indicating one or both flux methodologies are unreliable. We argue the most likely cause of mismatch is unreliable EC data, and there is an unrecognized opportunity to utilize RS for EC quality control. The second challenge is that RS integrates belowground heterotrophic (RH) and autotrophic (RA) activity, whereas modelers generally prefer partitioned fluxes, and few models include an explicit RS output. Opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Pushing for more experiments that not only partition RS but also monitor the age of RA and RH, as well as for the development of belowground RA components in models, would allow for more direct comparison between measured and modeled values. The third challenge is that soil respiration is generally measured at a very different resolution than that needed for comparison to EC or ecosystem- to global-scale models. Measuring soil fluxes with finer spatial resolution and more extensive coverage, and downscaling EC fluxes to match the scale of RS, will improve chamber and tower comparisons. Opportunities also exist to estimate RH at regional scales by implementing decomposition functional types, akin to plant functional

  3. Modeling of composite piezoelectric structures with the finite volume method.

    Science.gov (United States)

    Bolborici, Valentin; Dawson, Francis P; Pugh, Mary C

    2012-01-01

    Piezoelectric devices, such as piezoelectric traveling- wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, at least one of which is a piezoelectric transducer. Piezoelectric structures have mainly been numerically modeled using the finite element method. An alternative approach based on the finite volume method offers the following advantages: 1) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits; and 2) phenomena occurring at boundaries can be treated exactly. This paper presents a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures modeled with the finite volume method. The paper concludes with a modeling example of a unimorph structure.

  4. Interpretive Viewers and Structured Programs: The Implicit Representation of Soap Opera Characters.

    Science.gov (United States)

    Livingstone, Sonia M.

    1989-01-01

    Investigates regular viewers' representations of soap opera characters to discover the nature of these representations, the extent to which they reflect the application of social knowledge, and the extent to which they reflect the structure of the program. (MS)

  5. Interpreting Canonical Correlation Analysis through Biplots of Structure Correlations and Weights.

    Science.gov (United States)

    ter Braak, Cajo J. F.

    1990-01-01

    Canonical weights and structure correlations are used to construct low dimensional views of the relationships between two sets of variables. These views, in the form of biplots, display familiar statistics: correlations between pairs of variables, and regression coefficients. (SLD)

  6. Structuring as a Basis for Product Modelling

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik; Hansen, Claus Thorp

    1999-01-01

    Structure means the way which things are built up. A composite product does not exhibit one structure, but hides in its structure of parts several different structuring principles, which fit the production, service, transport etc. Structuring of product models is complex where many factors...... are influencing. This paper identifies four factors that are influencing the structure of a product model: genetics, functionality/property, product life and product assortment. Three principles, which support determination of product model structures, are proposed....

  7. Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey

    CERN Document Server

    Zhou, Yang

    2011-01-01

    Probabilistic graphical models combine the graph theory and probability theory to give a multivariate statistical modeling. They provide a unified description of uncertainty using probability and complexity using the graphical model. Especially, graphical models provide the following several useful properties: - Graphical models provide a simple and intuitive interpretation of the structures of probabilistic models. On the other hand, they can be used to design and motivate new models. - Graphical models provide additional insights into the properties of the model, including the conditional independence properties. - Complex computations which are required to perform inference and learning in sophisticated models can be expressed in terms of graphical manipulations, in which the underlying mathematical expressions are carried along implicitly. The graphical models have been applied to a large number of fields, including bioinformatics, social science, control theory, image processing, marketing analysis, amon...

  8. Interpreting the 750 GeV diphoton excess in the minimal dilaton model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Junjie [Wuhan University, Center for Theoretical Physics, School of Physics and Technology, Wuhan (China); Henan Normal University, Department of Physics, Xinxiang (China); Shang, Liangliang [Henan Normal University, Department of Physics, Xinxiang (China); Su, Wei; Zhang, Yang [Institute of Theoretical Physics, Academia Sinica, State Key Laboratory of Theoretical Physics, Beijing (China); Zhu, Jinya [Wuhan University, Center for Theoretical Physics, School of Physics and Technology, Wuhan (China)

    2016-05-15

    We try to interpret the 750 GeV diphoton excess in the minimal dilaton model, which extends the SM by adding one linearized dilaton field and vector-like fermions. We first show by analytic formulas in this framework that the production rates of the γγ, gg, Zγ, ZZ, WW*, t anti t, and hh signals at the 750 GeV resonance are only sensitive to the dilaton-Higgs mixing angle θ{sub S} and the parameter η ≡ vN{sub X}/f, where f is the dilaton decay constant and N{sub X} denotes the number of the fermions. Then we scan the two parameters by considering various theoretical and experimental constraints to find the solutions to the diphoton excess. We conclude that the model can predict the central value of the diphoton rate without conflicting with any constraints. The signatures of our explanation at the LHC Run II and the vacuum stability at high energy scale are also discussed. (orig.)

  9. Interpretation of machine-learning-based disruption models for plasma control

    Science.gov (United States)

    Parsons, Matthew S.

    2017-08-01

    While machine learning techniques have been applied within the context of fusion for predicting plasma disruptions in tokamaks, they are typically interpreted with a simple ‘yes/no’ prediction or perhaps a probability forecast. These techniques take input signals, which could be real-time signals from machine diagnostics, to make a prediction of whether a transient event will occur. A major criticism of these methods is that, due to the nature of machine learning, there is no clear correlation between the input signals and the output prediction result. Here is proposed a simple method that could be applied to any existing prediction model to determine how sensitive the state of a plasma is at any given time with respect to the input signals. This is accomplished by computing the gradient of the decision function, which effectively identifies the quickest path away from a disruption as a function of the input signals and therefore could be used in a plasma control setting to avoid them. A numerical example is provided for illustration based on a support vector machine model, and the application to real data is left as an open opportunity.

  10. Interpretation of CEMP(s) and CEMP(s + r) Stars with AGB Models

    CERN Document Server

    Bisterzo, S; Straniero, O; Aoki, W; 10.1071/AS08055

    2009-01-01

    Asymptotic Giant Branch (AGB) stars play a fundamental role in the s-process nucleosynthesis during their thermal pulsing phase. The theoretical predictions obtained by AGB models at different masses, s-process efficiencies, dilution factors and initial r-enrichment, are compared with spectroscopic observations of Carbon-Enhanced Metal-Poor stars enriched in s-process elements, CEMP(s), collected from the literature. We discuss here five stars as example, CS 22880-074, CS 22942-019, CS 29526-110, HE 0202-2204, and LP 625-44. All these objects lie on the main-sequence or on the giant phase, clearly before the TP-AGB stage: the hypothesis of mass transfer from an AGB companion, would explain the observed s-process enhancement. CS 29526-110 and LP 625-44 are CEMP(s+r) objects, and are interpreted assuming that the molecular cloud, from which the binary system formed, was already enriched in r-process elements by SNII pollution. In several cases, the observed s-process distribution may be accounted for AGB models...

  11. Interpreting the 750 GeV diphoton excess in the minimal dilaton model

    Science.gov (United States)

    Cao, Junjie; Shang, Liangliang; Su, Wei; Zhang, Yang; Zhu, Jinya

    2016-05-01

    We try to interpret the 750 GeV diphoton excess in the minimal dilaton model, which extends the SM by adding one linearized dilaton field and vector-like fermions. We first show by analytic formulas in this framework that the production rates of the γ γ , gg, Zγ , ZZ, WW^*, tbar{t}, and hh signals at the 750 GeV resonance are only sensitive to the dilaton-Higgs mixing angle θ _S and the parameter η ≡ v N_X/f, where f is the dilaton decay constant and N_X denotes the number of the fermions. Then we scan the two parameters by considering various theoretical and experimental constraints to find the solutions to the diphoton excess. We conclude that the model can predict the central value of the diphoton rate without conflicting with any constraints. The signatures of our explanation at the LHC Run II and the vacuum stability at high energy scale are also discussed.

  12. Interpreting the 750 GeV diphoton excess in the Minimal Dilaton Model

    CERN Document Server

    Cao, Junjie; Su, Wei; Zhang, Yang; Zhu, Jingya

    2016-01-01

    We try to interpret the 750 GeV diphoton excess in the Minimal Dilaton Model, which extends the SM by adding one linearized dilaton field and vector-like fermions. We first show by analytic formulae in this framework that the production rates of the $\\gamma \\gamma$, $gg$, $Z\\gamma$, $ZZ$, $WW$, $t\\bar{t}$ and $hh$ signals at the $750 {\\rm GeV}$ resonance are only sensitive to the dilaton-Higgs mixing angle $\\theta_S$ and the parameter $\\eta \\equiv v N_X/f$, where $f$ is the dilaton decay constant and $N_X$ denotes the number of the fermions. Then we scan the two parameters by considering various theoretical and experimental constraints to find the solutions to the diphoton excess. We conclude that the model can predict the central value of the diphoton rate without conflicting with any constraints. The signatures of our explanation at the LHC Run II and the stability of the vacuum at high energy scale are also discussed.

  13. Mars’ Low Dissipation Factor at 11-h - Interpretation from Anelasticity-Based Dissipation Model

    Science.gov (United States)

    Castillo-Rogez, Julie; Choukroun, M.

    2010-10-01

    We explore the information contained in the ratio of the tidal Love number k2 to the dissipation factor Q characterizing the response of Mars to the tides exerted by its satellite Phobos (11-h period). Assuming that Mars can be approximated as a Maxwell body, Bills et al. [1] have inferred an average viscosity of the Martian mantle 8.7x1014 Pa s. Such a low viscosity appears inconsistent with Mars’ thermal evolution and current heat budget models. Alternative explanations include the presence of partial melt in the mantle [2], or the presence of an aquifer in the crust [3]. We revisit the interpretation of Mars’ k2/Q using a laboratory-based attenuation model that accounts for material viscoelasticity and anelasticity. As a first step, we have computed Mars’ k2/Q for an interior model that includes a solid inner core, a liquid core layer, a mantle, and crust (consistent with the observed moment of inertia, and k2 measured at the orbital period), and searched for the range of mantle viscosities that can explain the observed k2/Q. Successful models are characterized by an average mantle viscosity between 1018 and 1022 Pa s, which rules out the presence of partial melt in the mantle. We can narrow down that range by performing a more detailed calculation of the mineralogy and temperature profiles. Preliminary results will be presented at the meeting. References: [1] Bills et al. (2005) JGR 110, E00704; [2] Ruedas et al. (2009 White paper to the NRC Planetary Science decadal survey; [3] Bills et al. (2009) LPS 40, 1712. MC is supported by a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract to NASA. Government sponsorship acknowledged.

  14. Up-Scaling Field Observations to Ground Truth Seismic Interpretations and Test Dynamic Models of Deep Water Rifted Margins: What are the Challenges?

    Science.gov (United States)

    Manatschal, G.; Nirrengarten, M.; Epin, M. E.

    2015-12-01

    Recent advances on the study of rifted margins resulted from the development of new, high-resolution seismic imaging methods and dynamic modelling that enable to image the crustal scale structure of rifted margins and experiment under what conditions they formed. However, both the used parameter space as well as the seismic interpretations and model results need to be ground truth by direct observations and data. In the case of deep-water rifted margins, the problem is that drill hole data is expensive, rare and only available from a handful of examples worldwide. In contrast, remnants preserving kilometre-scale outcrops of former deep-water rifted margins have been described from the Alps and the Pyrenees in Western Europe. These large-scale outcrops provide a direct access to mantle and crustal rocks and the associated sedimentary sequences and magmatic additions. The combination of world-class outcrops, classical, field-based mapping and analytical methods can provide the missing data that is necessary to calibrate and test dynamic models as well as to ground truth seismic interpretations. In my presentation I will use observations and data from key outcrops from the most distal fossil Alpine Tethys margins exposed in SE Switzerland with the aim to describe the deformation processes and conditions during final rifting and to test rift modes (semi-ductile flow vs. brittle poly-phase faulting). I will in particular focus on the way strain is distributed and the bulk rheology evolves during hyper-extension and mantle exhumation and compare the observations with model results and seismic interpretations. Up-and down scaling observations/data and bridging multiple spatial and temporal scales is a key to understand the large-scale extensional processes that are at the origin of the formation of hyper-extend and exhumed mantle domains. The major challenge is to understand how the learnings obtained from the well-documented examples in the Alps and Pyrenees can be used

  15. Crystal Structure and Functional Interpretation of the Erythrocyte spectrin Tetramerization Domain Complex

    Energy Technology Data Exchange (ETDEWEB)

    J Ipsaro; S Harper; T Messick; R Marmorstein; A Mondragon; D Speicher

    2011-12-31

    As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrin fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in {alpha}-spectrin that occur upon binding to {beta}-spectrin, and it reports the first structure of the {beta}-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.

  16. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex

    Energy Technology Data Exchange (ETDEWEB)

    Ipsaro, Jonathan J.; Harper, Sandra L.; Messick, Troy E.; Marmorstein, Ronen; Mondragón, Alfonso; Speicher, David W. (Wistar); (NWU)

    2010-09-07

    As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrin fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in {alpha}-spectrin that occur upon binding to {beta}-spectrin, and it reports the first structure of the {beta}-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.

  17. Seismic attribute analysis for 3-D structural interpretation of the offshore South Marsh Island, Gulf of Mexico

    Science.gov (United States)

    Horozal, Senay; Lee, Gwang Hoon; Cukur, Deniz; Pigott, John D.

    2013-04-01

    Structural and seismic attribute analyses of 3-D seismic reflection data from southwest offshore South Marsh Island, Louisiana, Gulf of Mexico, reveal complex structures affected by salt tectonics triggered by interaction between salt, faults and rapid deltaic sedimentation on the shallow continental shelf. Salt exercises the main control on the sedimentary processes in the study area to move, to divert sediment, to create instability, and to block sediment transport pathways. The depths of salt range about 4,300 m (14,000 ft) to 6,500 m (21,600 ft). Salt is very deep and forms a thin sheet in the southwestern part of the area, whereas it rises to shallow depths, forming a dome in the central part. Salt is seen at relatively shallow stratigraphic levels in the northwest and south where it forms thin salt rollers. The margins of Miocene strata are deformed by salt movement and faulting in the study area. The study area is riddled by numerous normal faults which are mostly E-trending and some N- and NW-trending with southward gradual increase in growth factors. Eight main normal faults were interpreted from seismic data which are mostly E-trending S-dipping, and are accompanied by smaller secondary faults. Three of E-trending down-to-the-basin growth faults cut across the study area separating the area into four blocks. These faults form a stair-stepping structure in the south direction. Two conjugate-crossing normal faults are located over the central salt dome which may indicate active salt doming. Seismic attribute analysis was applied as output of seismic volumes, and horizon and time-slice maps in order to identify the structure of study area. These attribute volumes together with time- and horizon-slices gave amplitude anomalies at discontinuities (faults) and lithological changes (sand to shale, salt). Faults interpreted and mapped from seismic profiles and those identified by seismic attribute slices are compatible, therefore, seismic attribute analysis can

  18. Interpreting Climate Model Projections of Extreme Weather Events for Decision Makers

    Science.gov (United States)

    Vavrus, S. J.; Notaro, M.

    2014-12-01

    The proliferation of output from climate model ensembles, such as CMIP3 and CMIP5, has greatly expanded access to future projections, but there is no accepted blueprint for how this data should be interpreted. Decision makers are thus faced with difficult questions when trying to utilize such information: How reliable are the multi-model mean projections? How should the changes simulated by outlier models be treated? How can raw projections of temperature and precipitation be translated into probabilities? The multi-model average is often regarded as the most accurate single estimate of future conditions, but higher-order moments representing the variance and skewness of the distribution of projections provide important information about uncertainty. We have analyzed a set of statistically downscaled climate model projections from the CMIP3 archive to conduct an assessment of extreme weather events at a level designed to be relevant for decision makers. Our analysis uses the distribution of 13 GCM projections to derive the inter-model standard deviation (and coefficient of variation, COV), skewness, and percentile ranges for simulated changes in extreme heat, cold, and precipitation during the middle and late 21st century for the A1B emissions scenario. These metrics help to establish the overall confidence level across the entire range of projections (via the inter-model COV), relative confidence in the simulated high-end versus low-end changes (via skewness), and probabilistic uncertainty bounds derived from a bootstrapping technique. Over our analysis domain centered on the United States Midwest, some primary findings include: (1) Greater confidence in projections of less extreme cold than more extreme heat and intense precipitation, (2) Greater confidence in the low-end than high-end projections of extreme heat, and (3) Higher spatial and temporal variability in the confidence of projected increases of heavy precipitation. In addition, our bootstrapping

  19. Modeling and interpreting biological effects of mixtures in the environment: introduction to the metal mixture modeling evaluation project.

    Science.gov (United States)

    Van Genderen, Eric; Adams, William; Dwyer, Robert; Garman, Emily; Gorsuch, Joseph

    2015-04-01

    The fate and biological effects of chemical mixtures in the environment are receiving increased attention from the scientific and regulatory communities. Understanding the behavior and toxicity of metal mixtures poses unique challenges for incorporating metal-specific concepts and approaches, such as bioavailability and metal speciation, in multiple-metal exposures. To avoid the use of oversimplified approaches to assess the toxicity of metal mixtures, a collaborative 2-yr research project and multistakeholder group workshop were conducted to examine and evaluate available higher-tiered chemical speciation-based metal mixtures modeling approaches. The Metal Mixture Modeling Evaluation project and workshop achieved 3 important objectives related to modeling and interpretation of biological effects of metal mixtures: 1) bioavailability models calibrated for single-metal exposures can be integrated to assess mixture scenarios; 2) the available modeling approaches perform consistently well for various metal combinations, organisms, and endpoints; and 3) several technical advancements have been identified that should be incorporated into speciation models and environmental risk assessments for metals.

  20. SANS spectra of the fractal supernucleosomal chromatin structure models

    Science.gov (United States)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2012-03-01

    The eukaryotic genome consists of chromatin—a nucleoprotein complex with hierarchical architecture based on nucleosomes, the organization of higher-order chromatin structures still remains unknown. Available experimental data, including SANS spectra we had obtained for whole nuclei, suggested fractal nature of chromatin. Previously we had built random-walk supernucleosomal models (up to 106 nucleosomes) to interpret our SANS spectra. Here we report a new method to build fractal supernucleosomal structure of a given fractal dimension or two different dimensions. Agreement between calculated and experimental SANS spectra was significantly improved, especially for model with two fractal dimensions—3 and 2.

  1. A three-dimensional gravity model of the geologic structure of Long Valley caldera

    Energy Technology Data Exchange (ETDEWEB)

    Carle, S.F.; Goldstein, N.E.

    1987-03-01

    Several attempts to define and interpret this anomaly have been made in the past using 2-D and 3-D models. None of the previous interpretations have yielded definitive results, but in fairness, the interpretation here has benefited from a larger gravity data base and more subsurface control than available to previous workers. All published 3-D models simplistically assumed constant density of fill. All 2-D models suffered from the inherent three-dimensionality of the complicated density structure of Long Valley caldera. In addition, previous interpreters have lacked access to geological data, such as well lithologies and density logs, seismic refraction interpretations, suface geology, and structural geology interpretations. The purpose of this study is to use all available gravity data and geological information to constrain a multi-unit, 3-D density model based on the geology of Long Valley caldera and its vicinity. Insights on the geologic structure of the caldera fill can help other geophysical interpretations in determining near-surface effects so that deeper structure may be resolved. With adequate control on the structure of the caldera fill, we are able to examine the gravity data for the presence of deeper density anomalies in the crust. 20 refs., 7 figs.

  2. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or foundat

  3. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or

  4. Exactly solvable models of baryon structure

    CERN Document Server

    Bijker, R

    1998-01-01

    We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study.

  5. Exactly solvable models of baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico. Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University. Jerusalem 91904, Israel (Israel)

    1998-12-31

    We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)

  6. Computation and interpretation of vibrational spectra on the structure of Losartan using ab initio and Density Functional methods

    Science.gov (United States)

    Latha, B.; Gunasekaran, S.; Srinivasan, S.; Ramkumaar, G. R.

    2014-11-01

    The solid phase FTIR and FT-Raman spectra of Losartan have been recorded in the region 400-4000 cm-1. The spectra were interpreted in terms of fundamental modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by Quantum chemical methods. The vibrational frequencies yield good agreement between observed and calculated values. The infrared and Raman spectra were also predicted from the calculated intensities. (1)H and (13)C NMR spectra were recorded and resonance chemical shifts of the molecule were calculated. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies calculated by TD-HF approach. NBO atomic charges of the molecules and second order perturbation theory analysis of Fock matrix also calculated and interpreted. The geometrical parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, and absorption wavelengths were compared with experimental and theoretical data of the molecule.

  7. Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Directory of Open Access Journals (Sweden)

    M. Vichi

    2004-01-01

    Full Text Available A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM coupled with the European Regional Seas Ecosystem Model (ERSEM has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (oversaturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics have shown that the nutrient dynamics are linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic, or to coupled nitrification-denitrification (under strong organic inputs. The model indicates the

  8. Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Directory of Open Access Journals (Sweden)

    J. W. Baretta

    2004-08-01

    Full Text Available A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM coupled with the European Regional Seas Ecosystem Model (ERSEM has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (oversaturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics have shown that the nutrient dynamics is linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic, or to coupled nitrification-denitrification (under strong organic inputs. The model indicates the

  9. A geometrical approach to structural change modeling

    OpenAIRE

    Stijepic, Denis

    2013-01-01

    We propose a model for studying the dynamics of economic structures. The model is based on qualitative information regarding structural dynamics, in particular, (a) the information on the geometrical properties of trajectories (and their domains) which are studied in structural change theory and (b) the empirical information from stylized facts of structural change. We show that structural change is path-dependent in this model and use this fact to restrict the number of future structural cha...

  10. AIRSAR observations of the Gulf Stream with interpretation from sea truth and modeling

    Science.gov (United States)

    Valenzuela, G. R.; Chubb, S. R.; Marmorino, G. O.; Trump, C. L.; Lee, J. S.; Cooper, A. L.; Askari, F.; Keller, W. C.; Kaiser, J. A. C.; Mied, R. P.

    1991-01-01

    On 20 Jul., JPL/DC-8 synthetic aperture radar (SAR) participated in the 17-21 Jul. 1990 NRL Gulf Stream (GS) experiment in preparation for SIR-C missions in 1993, 1994, and 1996 for calibration purposes and to check modes and techniques for operation at our experimental site off the east coast of the US. During this experiment, coordinated and near simultaneous measurements were performed from ship (R/V Cape Henlopen) and other aircraft (NADC/P-3 and NRL/P-3) to address scientific questions relating to the origin of 'slick-like' features observed by Scully-Power, the refraction and modulation of waves by variable currents, the effect of current and thermal fronts on radar imagery signatures and the modification of Kelvin ship wakes by fronts. The JPL/DC-8 and NADC/P-3 SAR's are fully polarimetric systems. Their composite frequency range varies between P- and X-band. We describe in detail the Airborne SAR (AIRSAR) participation in the Jul. 1990 GS experiment and present preliminary results of the ongoing analysis and interpretation of the radar imagery in the context of ground truth, other remote measurements, and modeling efforts.

  11. On the zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics

    Science.gov (United States)

    de Beauregard, O. Costa

    1988-09-01

    Being formalized inside the S-matrix scheme, the zigzagging causility model of EPR correlations has full Lorentz and CPT invariance. EPR correlations, proper or reversed, and Wheeler's smoky dragon metaphor are respectively pictured in spacetime or in the momentum-energy space, as V-shaped, A-shaped, or C-shaped ABC zigzags, with a summation at B over virtual states |B> = *. The formal parrallelism breaks down at the level of interpretation because (A|C) = ||2. CPT invariance implies the Fock and Watanabe principle that, in quantum mechanics, retarded (advanced) waves are used for prediction (retrodiction), an expression of which is = = , with |Φ> denoting a preparation, |Ψ> a measurement, and U the evolution operator. The transformation |Ψ> = |UΦ> or |Φ> = |U-1Ψ> exchanges the “preparation representation” and the “measurement representation” of a system and is ancillary in the formalization of the quantum chance game by the “wavelike algebra” of conditional amplitude. In 1935 EPR overlooked that a conditional amplitude = Σ between the two distant measurements is at stake, and that only measurements actually performed do make sense. The reversibility = * implies that causality is CPT-invariant, or arrowless, at the microlevel. Arrowed causality is a macroscopic emergence, corollary to wave retardation and probability increase. Factlike irreversibility states repression, not suppression, of “blind statistical retrodiction”—that is, of “final cause.”

  12. Structural interpretation of seismic reflection data from eastern Salt Range and Potwar Plateau, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, E.S.; Lillie, R.J.; Zaman, A.S.H.; Yousaf, M.

    1989-07-01

    Approximately 1600 km of seismic reflection profiles from the eastern Salt Range and Potwar Plateau (SR/PP) of Pakistan is integrated with available magnetostratigraphic, surface geologic, and well data to classify structural styles, determine the timing of deformation, and estimate the amount of telescoping of the sedimentary cover. The eastern SR/PP are similar to other fold-and-thrust belts underlain by evaporites in that (1) it is part of a zone of overthrusting that extends considerably farther over the Himalayan foreland than adjacent areas not underlain by evaporites, (2) the overall thrust wedge has a narrow cross-sectional taper, (3) structures verge toward the hinterland as well as toward the foreland, and (4) fold trends are long and continuous, consisting of tight salt-cored anticlines separated by broad synclines. 11 figures, 1 table.

  13. The structure of prion: is it enough for interpreting the diverse phenotypes of prion diseases?

    Institute of Scientific and Technical Information of China (English)

    Chan Tian; Xiaoping Dong

    2013-01-01

    Prion diseases,or transmissible spongiform encephalopathies,are neurodegenerative diseases,which affect human and many species of animals with 100% fatality rate.The most accepted etiology for prion disease is 'prion',which arises from the conversion from cellular PrPC to the pathological PrPsc.This review discussed the characteristic structure of PrP,including PRNP gene,PrPC,PrPSc,PrP amyloid,and prion strains.

  14. Interpretation of ionospheric F-region structures in the vicinity of ionisation troughs observed by satellite radio tomography

    Directory of Open Access Journals (Sweden)

    G. A. Aladjev

    Full Text Available Tomographic images of the spatial distribution of electron density in the ionospheric F-region are presented from the Russian-American Tomography Experiment (RATE in November 1993 as well as from campaigns carried out in northern Scandinavia in November 1995 and in Russia in April 1990. The reconstructions selected display the ionisation troughs above the tomographic chains of receivers during geomagnetically quiet and disturbed periods. Two mathematical models of the high-latitude ionosphere developed in the Polar Geophysical Institute have been applied for interpretation of the observed tomographic images.

    Key words. Ionosphere (electric fields and currents; ion chemistry and composition; plasma convection

  15. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    Directory of Open Access Journals (Sweden)

    Sokhansanj Bahrad A

    2007-07-01

    Full Text Available Abstract Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular

  16. Structural interpretation of the Steenkampskraal monazite deposit, Western Cape, South Africa

    Science.gov (United States)

    Basson, I. J.; Muntingh, J. A.; Jellicoe, B. C.; Anthonissen, C. J.

    2016-09-01

    The Steenkampskraal Monazite Mine was first established in 1952, to extract monazite ore for the production of thorium and rare earth element (REE) concentrate. Refurbishment of the mine in recent years has required the re-inspection and re-evaluation of the mineralized monazite zone (MMZ). This contribution presents a structural review of the MMZ and its emplacement, based on recent data and its setting at the southern extent of the Bushmanland Sub-province of the Namaqua-Natal Metamorphic Belt. New surface and underground mapping confirm that the MMZ is a moderately-dipping body within gneissic host rocks on the southern limb of a broad F3 antiform. Thickness variations, both down-dip and along-strike, are the result of D2 and D3 deformation. The MMZ has been locally transected and steepened by subsequent late-D3, "steep-structures", which are typical of the Okiep copper district, ∼150 km north of Steenkampskraal. Geochronological data suggest that the MMZ was intruded, emplaced or formed at 1046 ± 7.5 Ma, at the start of the D3 Klondikean Episode (1040-1020 Ma). Unlike the analogous copper-bearing Koperberg Suite in the Okiep Copper district, the MMZ was not intruded into Klondikean-aged steep structures, but was rather transected and steepened by these. Local steepening of the otherwise moderately-dipping to flat-lying MMZ makes it locally amenable to detection by soil sampling and radiometric surveys.

  17. On Prerequisites of Interpreters

    Institute of Scientific and Technical Information of China (English)

    范文

    2006-01-01

    Interpreters are invariably playing a crucial role in international affairs. Those who regularly read pictorials or watch TV news programs know best why interpreters are always placed between two leaders. That is because interpreters are indispensable if any two VIPs aim to achieve further understanding, to eliminate bilateral distrust or even establish alliance with each other, a fact may partly account for why so many students are swarming into translation schools. Are they able to become interpreters? What are the prerequisites for an interpreter? This article will, taking into operative factors as complete as possible, provide a basic framework under which prerequisites of interpreters are structured.

  18. Geomorphic Map of Worcester County, Maryland, Interpreted from a LIDAR-Based, Digital Elevation Model

    Science.gov (United States)

    Newell, Wayne L.; Clark, Inga

    2008-01-01

    A recently compiled mosaic of a LIDAR-based digital elevation model (DEM) is presented with geomorphic analysis of new macro-topographic details. The geologic framework of the surficial and near surface late Cenozoic deposits of the central uplands, Pocomoke River valley, and the Atlantic Coast includes Cenozoic to recent sediments from fluvial, estuarine, and littoral depositional environments. Extensive Pleistocene (cold climate) sandy dune fields are deposited over much of the terraced landscape. The macro details from the LIDAR image reveal 2 meter-scale resolution of details of the shapes of individual dunes, and fields of translocated sand sheets. Most terrace surfaces are overprinted with circular to elliptical rimmed basins that represent complex histories of ephemeral ponds that were formed, drained, and overprinted by younger basins. The terrains of composite ephemeral ponds and the dune fields are inter-shingled at their margins indicating contemporaneous erosion, deposition, and re-arrangement and possible internal deformation of the surficial deposits. The aggregate of these landform details and their deposits are interpreted as the products of arid, cold climate processes that were common to the mid-Atlantic region during the Last Glacial Maximum. In the Pocomoke valley and its larger tributaries, erosional remnants of sandy flood plains with anastomosing channels indicate the dynamics of former hydrology and sediment load of the watershed that prevailed at the end of the Pleistocene. As the climate warmed and precipitation increased during the transition from late Pleistocene to Holocene, dune fields were stabilized by vegetation, and the stream discharge increased. The increased discharge and greater local relief of streams graded to lower sea levels stimulated down cutting and created the deeply incised valleys out onto the continental shelf. These incised valleys have been filling with fluvial to intertidal deposits that record the rising sea

  19. Magnetic mapping around Les Saintes islands (Lesser Antilles, Guadeloupe) for structural interpretation

    Science.gov (United States)

    Mercier de Lépinay, J.; Munschy, M.; Géraud, Y.; Diraison, M.; Navelot, V.; Verati, C.; Corsini, M.; Lardeaux, J. M.

    2016-12-01

    In Les Saintes archipelago, the outcrop analysis of Terre-de-Haut island allows to point out several fault systems and geological objects such as lava domes and lava flows. Moreover an exhumed geothermal paleo-system was identified and is thought to be an interesting analogue of the active geothermal system of Bouillante, Guadeloupe. To fully understand this area, the offshore continuation of the geological features is a major concern. The previously known onshore features are visible on airborne magnetic maps due to the highly magnetized material in Les Saintes archipelago. Moreover hydrothermal processes alter the magnetized minerals of volcanic rocks, creating a significant variation in the magnetic measurements. Therefore an adapted marine magnetic study can help the geological understanding of this particular area. In order to correctly link the offshore and onshore structures, the magnetic survey must be close enough to the shoreline and detailed enough so as to correctly outline the tectonic structures. An appropriate solution for such a survey was to use a magnetometer aboard a speedboat. Such a boat allows more navigation flexibility than a classic oceanic vessel towing a magnetometer; it can sail at higher speed on calm seas and closer to the shoreline. This kind of set up is only viable because the magnetic effect of the ship can be compensated using the same algorithms than those used for airborne magnetometry. Studies were implemented through the GEOTREF program which benefits from the support of both the ADEME and the French public funds "Investments for the future". The use of magnetic field transformations allows a large variety of structures to be highlighted, providing insights that help to build a general understanding of the nature and distribution of the magnetic sources. Using a reduction to the pole map operator we are able to prolong the volcanic structures at sea. The marine part of the paleo-geothermal system extension is also roughly

  20. Strike-Slip Faulting Processes on Ganymede: Global Morphological Mapping and Structural Interpretation of Grooved and Transitional Terrains

    Science.gov (United States)

    Burkhard, L. M.; Cameron, M. E.; Smith-Konter, B. R.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.

    2015-12-01

    Ganymede's fractured surface reveals many large-scale, morphologically distinct regions of inferred distributed shear and strike-slip faulting that may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's complex icy surface, we perform a detailed mapping of key examples of strike-slip morphologies (i.e., en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. We focus on complex structures associated with grooved terrain (e.g. Nun Sulcus, Dardanus Sulcus, Tiamat Sulcus, and Arbela Sulcus) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio, including Byblus Sulcus and Philus Sulcus). Detailed structural interpretations suggest strong evidence of strike-slip faulting in some regions (i.e., Nun and Dardanus Sulcus); however, further investigation of additional strike-slip structures is required of less convincing regions (i.e., Byblus Sulcus). Where applicable, these results are synthesized into a global database representing an inferred sense of shear for many of Ganymede's fractures. Moreover, when combined with existing observations of extensional features, these results help to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain on Ganymede.

  1. Interpretation of gravity data to delineate structural features connected to low-temperature geothermal resources at Northeastern Portugal

    Science.gov (United States)

    Represas, Patricia; Monteiro Santos, F. A.; Ribeiro, José; Ribeiro, Joana A.; Almeida, Eugénio P.; Gonçalves, Rui; Moreira, Mário; Mendes-Victor, L. A.

    2013-05-01

    A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology.

  2. Significance of Kinetics for Sorption on Inorganic Colloids: Modeling and Data Interpretation Issues

    Science.gov (United States)

    Painter, S.; Cvetkovic, V.; Pickett, D.; Turner, D.

    2001-12-01

    Irreversible or slowly reversible attachment to inorganic colloids is a process that may enhance radionuclide transport in the environment. An understanding of sorption kinetics is critical in evaluating this process. A two-site kinetic model for sorption on inorganic colloids is developed and used to evaluate laboratory data. This model was developed as an alternative to the equilibrium colloid sorption model employed by the U.S. Department of Energy (DOE) in their performance assessment for the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada. The model quantifies linear first-order sorption on two types of hypothetical sites (fast and slow) characterized by two pairs of rates (forward and reverse). We use the model to explore data requirements for long-term predictive calculations and to evaluate laboratory kinetic sorption data of Lu et al. Five batch sorption data sets are considered with Pu(V) as the tracer and montmorillonite, hematite, silica, and smectite as colloids. Using asymptotic results applicable on the 240 hour time-scale of the experiments, a robust estimation procedure is developed for the fast-site partitioning coefficient and the slow forward rate. The estimated range for the partition coefficient is 1.1-76 L/g; the range for the slow forward rate is 0.0017-0.02 L/h. Comparison of one-site and two-site sorption interpretations reveals the difficulty in discriminating between the two models for montmorillonite and to a lesser extent for hematite. For silica and smectite the two-site model clearly provides a better representation of the data as compared with a single site model. Kinetic data for silica are available for different colloid concentrations (0.2 g/L and 1.0 g/L). For the range of experimental conditions considered, the forward rate appears to be independent of the colloid concentration. The slow reverse rate cannot be estimated on the time scale of the experiments; we estimate the detection limits for the

  3. Estimating and interpreting migration of Amazonian forests using spatially implicit and semi-explicit neutral models.

    Science.gov (United States)

    Pos, Edwin; Guevara Andino, Juan Ernesto; Sabatier, Daniel; Molino, Jean-François; Pitman, Nigel; Mogollón, Hugo; Neill, David; Cerón, Carlos; Rivas-Torres, Gonzalo; Di Fiore, Anthony; Thomas, Raquel; Tirado, Milton; Young, Kenneth R; Wang, Ophelia; Sierra, Rodrigo; García-Villacorta, Roosevelt; Zagt, Roderick; Palacios Cuenca, Walter; Aulestia, Milton; Ter Steege, Hans

    2017-06-01

    With many sophisticated methods available for estimating migration, ecologists face the difficult decision of choosing for their specific line of work. Here we test and compare several methods, performing sanity and robustness tests, applying to large-scale data and discussing the results and interpretation. Five methods were selected to compare for their ability to estimate migration from spatially implicit and semi-explicit simulations based on three large-scale field datasets from South America (Guyana, Suriname, French Guiana and Ecuador). Space was incorporated semi-explicitly by a discrete probability mass function for local recruitment, migration from adjacent plots or from a metacommunity. Most methods were able to accurately estimate migration from spatially implicit simulations. For spatially semi-explicit simulations, estimation was shown to be the additive effect of migration from adjacent plots and the metacommunity. It was only accurate when migration from the metacommunity outweighed that of adjacent plots, discrimination, however, proved to be impossible. We show that migration should be considered more an approximation of the resemblance between communities and the summed regional species pool. Application of migration estimates to simulate field datasets did show reasonably good fits and indicated consistent differences between sets in comparison with earlier studies. We conclude that estimates of migration using these methods are more an approximation of the homogenization among local communities over time rather than a direct measurement of migration and hence have a direct relationship with beta diversity. As betadiversity is the result of many (non)-neutral processes, we have to admit that migration as estimated in a spatial explicit world encompasses not only direct migration but is an ecological aggregate of these processes. The parameter m of neutral models then appears more as an emerging property revealed by neutral theory instead of

  4. Finger Thickening during Extra-Heavy Oil Waterflooding: Simulation and Interpretation Using Pore-Scale Modelling

    Science.gov (United States)

    Bondino, Igor; Hamon, Gerald

    2017-01-01

    Although thermal methods have been popular and successfully applied in heavy oil recovery, they are often found to be uneconomic or impractical. Therefore, alternative production protocols are being actively pursued and interesting options include water injection and polymer flooding. Indeed, such techniques have been successfully tested in recent laboratory investigations, where X-ray scans performed on homogeneous rock slabs during water flooding experiments have shown evidence of an interesting new phenomenon–post-breakthrough, highly dendritic water fingers have been observed to thicken and coalesce, forming braided water channels that improve sweep efficiency. However, these experimental studies involve displacement mechanisms that are still poorly understood, and so the optimization of this process for eventual field application is still somewhat problematic. Ideally, a combination of two-phase flow experiments and simulations should be put in place to help understand this process more fully. To this end, a fully dynamic network model is described and used to investigate finger thickening during water flooding of extra-heavy oils. The displacement physics has been implemented at the pore scale and this is followed by a successful benchmarking exercise of the numerical simulations against the groundbreaking micromodel experiments reported by Lenormand and co-workers in the 1980s. A range of slab-scale simulations has also been carried out and compared with the corresponding experimental observations. We show that the model is able to replicate finger architectures similar to those observed in the experiments and go on to reproduce and interpret, for the first time to our knowledge, finger thickening following water breakthrough. We note that this phenomenon has been observed here in homogeneous (i.e. un-fractured) media: the presence of fractures could be expected to exacerbate such fingering still further. Finally, we examine the impact of several system

  5. Interpreting Regression Results: beta Weights and Structure Coefficients are Both Important.

    Science.gov (United States)

    Thompson, Bruce

    Various realizations have led to less frequent use of the "OVA" methods (analysis of variance--ANOVA--among others) and to more frequent use of general linear model approaches such as regression. However, too few researchers understand all the various coefficients produced in regression. This paper explains these coefficients and their…

  6. Resistor network as a model of fractures in granitic rocks - model for ERT interpretation in crystalline rocks

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Janeček, Josef; Slavík, Lubomír; Bárta, Jaroslav

    2017-04-01

    Recently we have developed and tested system for long-term monitoring of underground excavation stability in granitic rocks. It is based on repeated ultrasonic time-of-flight measurement and electrical resistivity tomography (ERT) measurement. The ERT measurement is performed directly on the rock wall using 48 electrodes. The spacing between electrodes was selected 20 centimeters. Based on sensitivity function it can be expected that maximum penetration depth of ERT is about 1.5 m. The observed time changes in apparent resistivity are expected to be mainly result of changes in fracture water saturation. To get some basic knowledge about relation between electrical resistivity in the rock fracture zone and its saturation a series of laboratory tests with rock samples with different porosity and different saturation was performed. The model of crystalline rock with sparse net of fractures is highly inhomogeneous medium and can be hardly considered as 2D layered model, which is usually used in ERT inversion. Therefore, we prepared resistor-network model for the qualitative/quantitative interpretation of observed apparent resistivity changes. Some preliminary results of our experience with this new type of resistivity model are presented. The results can be used for underground storage monitoring projects. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  7. Models of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S. (Physics Dept., Univ. of Durham (UK))

    1991-01-01

    The ingredients required to construct models of the cosmic large scale structure are discussed. Input from particle physics leads to a considerable simplification by offering concrete proposals for the geometry of the universe, the nature of the dark matter and the primordial fluctuations that seed the growth of structure. The remaining ingredient is the physical interaction that governs dynamical evolution. Empirical evidence provided by an analysis of a redshift survey of IRAS galaxies suggests that gravity is the main agent shaping the large-scale structure. In addition, this survey implies large values of the mean cosmic density, {Omega}> or approx.0.5, and is consistent with a flat geometry if IRAS galaxies are somewhat more clustered than the underlying mass. Together with current limits on the density of baryons from Big Bang nucleosynthesis, this lends support to the idea of a universe dominated by non-baryonic dark matter. Results from cosmological N-body simulations evolved from a variety of initial conditions are reviewed. In particular, neutrino dominated and cold dark matter dominated universes are discussed in detail. Finally, it is shown that apparent periodicities in the redshift distributions in pencil-beam surveys arise frequently from distributions which have no intrinsic periodicity but are clustered on small scales. (orig.).

  8. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    Science.gov (United States)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models

  9. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  10. On interpretation

    Directory of Open Access Journals (Sweden)

    Michał Januszkiewicz

    2013-01-01

    Full Text Available The article entitled “On interpretation” is an attempt to formulate a viewpoint on the issue of textual interpretation. It presents different ideas related to interpretation, including especially those that are concerned with a text’s meaning and with the way in which it is interpreted by the reader. The author proposes another interpretation method which he calls transactional. The primary concern is how to possibly justify the fundamental character of interpretation and interpretative activity while at the same time preserving and respecting the relative autonomy of an interpreted text.

  11. Interpretation of the pre-edge X-ray absorption fine structures in MnO

    Institute of Scientific and Technical Information of China (English)

    LI Shu-Jun; HU Rong; HU Tian-Dou; XIE Ya-Ning; ZHANG Jing; TAO Ye; WU Zi-Yu

    2003-01-01

    The weak pre-edge features in the Mn K-edge X-ray absorption near-edge structure (XANES) spectrumof manganese monoxide (MnO) were investigated by comparing experimental data with dipolar and quadrupolarcross-section calculations in the framework of multiple-scattering theory. We assign the first pre-edge feature to a di-rect quadrupolar transition from Is core state to 3d molecular orbitals of the central atom, e.g., the lowest in energy,due to the more effective attraction of the core hole. The second peak in this region arises unambiguously from thehybridization between p-orbitals of the central atom with higher-shell metal octahedral orbitals.

  12. Interpretation of the structure function of rotation measure in the interstellar medium

    CERN Document Server

    Xu, Siyao

    2016-01-01

    The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian & Pogosyan (2016) are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when the SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent ...

  13. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    Science.gov (United States)

    Self-Trail, Jean M.; Edwards, Lucy E.; Litwin, Ronald J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of water- saturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dino-flagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As

  14. A Constrained 3D Density Model of the Upper Crust from Gravity Data Interpretation for Central Costa Rica

    Directory of Open Access Journals (Sweden)

    Oscar H. Lücke

    2010-01-01

    Full Text Available The map of complete Bouguer anomaly of Costa Rica shows an elongated NW-SE trending gravity low in the central region. This gravity low coincides with the geographical region known as the Cordillera Volcánica Central. It is built by geologic and morpho-tectonic units which consist of Quaternary volcanic edifices. For quantitative interpretation of the sources of the anomaly and the characterization of fluid pathways and reservoirs of arc magmatism, a constrained 3D density model of the upper crust was designed by means of forward modeling. The density model is constrained by simplified surface geology, previously published seismic tomography and P-wave velocity models, which stem from wide-angle refraction seismic, as well as results from methods of direct interpretation of the gravity field obtained for this work. The model takes into account the effects and influence of subduction-related Neogene through Quaternary arc magmatism on the upper crust.

  15. Subsurface Structures at the Chang’e-3 Landing Site:Interpretations from Orbital and In-Situ Imagery Data

    Institute of Scientific and Technical Information of China (English)

    Le Qiao; Zhiyong Xiao; Jiannan Zhao; Long Xiao

    2016-01-01

    The Chang’e-3 (CE-3) spacecraft successfully landed on one of the youngest mare sur-faces on the Moon in December 2013. The Yutu rover carried by CE-3 was equipped with a radar sys-tem that could reveal subsurface structures in unprecedented details, which would facilitate under-standing regional and global evolutionary history of the Moon. Based on regional geology, cratering scaling, and morphological study, here we quantify the subsurface structures of the landing site using high-resolution orbital and in-situ imagery data. Three layers of lunar regolith, two layers of basalt units, and one layer of ejecta deposits are recognized at the subsurface of the landing site, and their thicknesses are deduced based on the imagery data. These results could serve as essential references for the on-going interpretation of the CE-3 radar data. The ability to validate our theoretical subsurface structure using CE-3 in-situ radar observations will improve the methods for quantifying lunar sub-surface structure using crater morphologies and scaling.

  16. Interpreting Data: The Hybrid Mind

    Science.gov (United States)

    Heisterkamp, Kimberly; Talanquer, Vicente

    2015-01-01

    The central goal of this study was to characterize major patterns of reasoning exhibited by college chemistry students when analyzing and interpreting chemical data. Using a case study approach, we investigated how a representative student used chemical models to explain patterns in the data based on structure-property relationships. Our results…

  17. Interpreting Data: The Hybrid Mind

    Science.gov (United States)

    Heisterkamp, Kimberly; Talanquer, Vicente

    2015-01-01

    The central goal of this study was to characterize major patterns of reasoning exhibited by college chemistry students when analyzing and interpreting chemical data. Using a case study approach, we investigated how a representative student used chemical models to explain patterns in the data based on structure-property relationships. Our results…

  18. Solar wind structure at large heliocentric distances - An interpretation of Pioneer 10 observations

    Science.gov (United States)

    Hundhausen, A. J.; Gosling, J. T.

    1976-01-01

    Examination of hourly values of the solar wind speed observed by the Pioneer 10 spacecraft beyond a heliocentric distance of 4 AU reveals (1) a prevalent 'sawtoothlike' speed-time profile, most speed fluctuations displaying a rapid rise and a much slower decline, and (2) the nearly universal appearance of abrupt (on the 1-hour time resolution of these data) changes in the speed on the rising portions of the speed fluctuations. These previously unreported characteristics, as well as the rate of decay of stream amplitudes derived earlier by Collard and Wolfe, are in general agreement with the predictions of stream propagation models that neglect any conversion of kinetic energy to thermal energy outside of shock fronts. Thus the Pioneer 10 observations give the first confirmation of the general concept of solar wind stream evolution employed in these models, i.e., that solar wind speed inhomogeneities appear to steepen to form shock waves and that the 'wave amplitudes' decay slowly as the shock waves propagate outward from the sun.

  19. On the Physical Interpretation of the Saleh-Valenzuela Model and the definition of its power delay profiles

    NARCIS (Netherlands)

    Meijerink, Arjan; Molisch, Andreas F.

    2014-01-01

    The physical motivation and interpretation of the stochastic propagation channel model of Saleh and Valenzuela are discussed in detail. This motivation mainly relies on assumptions on the stochastic properties of the positions of transmitter, receiver and scatterers in the propagation environment,

  20. A classical mechanics model for the interpretation of piezoelectric property data

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Andrew J., E-mail: a.j.bell@leeds.ac.uk [Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-12-14

    In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s{sup E}, dielectric permittivity ε{sup X}, and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expression of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s{sup E} and ε{sup X} and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.

  1. Soil Retaining Structures: Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these struc

  2. Performances of effective medium model in interpreting optical properties of polyvinylcarbazole:ZnSe nanocomposites

    Science.gov (United States)

    Benchaabane, Aida; Ben Hamed, Zied; Kouki, Fayçal; Abderrahmane Sanhoury, Mohamed; Zellama, Kacem; Zeinert, Andreas; Bouchriha, Habib

    2014-04-01

    The effective medium model is applied to investigate the optical properties of hybrid nanocomposite layers of Polyvinylcarbazole (PVK) and nanoparticles of Zinc Selenide (ZnSe). Thin films of PVK:ZnSe nanocomposites show a porous microstructure with pore diameters of 500 nm. Numerical calculations led to the determination of optical constants such as the refractive index n, the extinction coefficient k, the dielectric permittivity ɛ, and absorption coefficient α. Using common theoretical models, we have determined the Cauchy parameters of the refractive index, namely, static ɛs and lattice ɛ∞ dielectric constants as well as the plasma frequency ωp, carrier density to effective mass ratio N/me*, and the optical conductivity σoc. We show that the optical band gap energy Eg of the nanocomposite structure decreases slightly upon the increase of the nanoparticles volume fraction and is in good agreement with the Vegard law.

  3. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    Science.gov (United States)

    Croft, B.; Pierce, J. R.; Martin, R. V.

    2014-04-01

    mean lifetime of 3.9 days for the 137Cs emissions injected with a uniform spread through the model's Northern Hemisphere boundary layer. Simulated e-folding times were insensitive to emission parameters (altitude, location, and time), suggesting that these measurement-based e-folding times provide arobust constraint on simulated e-folding times. Despite the reasonable global mean agreement of GEOS-Chem with measurement e-folding times, site by site comparisons yield differences of up to a factor of two, which suggest possible deficiencies in either the model transport, removal processes or the representation of 137Cs removal, particularly in the tropics and at high latitudes. There is an ongoing need to develop constraints on aerosol lifetimes, but these measurement-based constraints must be carefully interpreted given the sensitivity of mean lifetimes and e-folding times to both mixing and removal processes.

  4. Interactive Modelling of Molecular Structures

    Science.gov (United States)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  5. An Interpretation of Tevatron SUSY Trilepton Search Results in mSUGRA and in a Model-independent Fashion

    CERN Document Server

    Dube, Sourabh; Somalwar, Sunil; Sood, Alexander

    2008-01-01

    Both the CDF and D0 experiments at the Tevatron search for supersymmetry using the golden three lepton and missing energy "trilepton" signature of chargino-neutralino production. However, the experimental results are presented for specific parameter values of a given model or for custom-made scenarios in the region of sensitivity. By breaking down search sensitivity according to the tau-lepton content of the trileptons, we are able to present in this paper a recipe to extend the interpretation of the Tevatron trilepton search results to the general mSUGRA model. We also attempt to interprete the search results in a model-independent fashion by expressing them in terms of relevant sparticle masses instead of specific parameters of a model such as mSUGRA.

  6. Mechanistic QSAR models for interpreting degradation rates of sulfonamides in UV-photocatalysis systems.

    Science.gov (United States)

    Huang, Xiangfeng; Feng, Yi; Hu, Cui; Xiao, Xiaoyu; Yu, Daliang; Zou, Xiaoming

    2015-11-01

    Photocatalysis is one of the most effective methods for treating antibiotic wastewater. Thus, it is of great significance to determine the relationship between degradation rates and structural characteristics of antibiotics in photocatalysis processes. In the present study, the photocatalytic degradation characteristics of 10 sulfonamides (SAs) were studied using two photocatalytic systems composed of nanophase titanium dioxide (nTiO2) plus ultraviolet (UV) and nTiO2/activated carbon fiber (ACF) plus UV. The results indicated that the largest apparent SA degradation rate constant (Kapp) is approximately 5 times as large as that of the smallest one. Based on the degradation mechanism and the partial least squares regression (PLS) method, optimum Quantitative Structure Activity Relationship (QSAR) models were developed for the two systems. Mechanistic models indicated that the degradation rule of SAs in the TiO2 systems strongly relates to their highest occupied molecular orbital (Ehomo), the maximum values of nucleophilic attack (f(+)x), and the minimum values of the most negative partial charge on a main-chain atom (q(C)min), whereas the maximum values of OH radical attack (f(0)x) and the apparent adsorption rate constant values (kad) are key factors affecting the degradation rule of SAs in the TiO2/ACF system.

  7. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  8. Prediction of Local Quality of Protein Structure Models Considering Spatial Neighbors in Graphical Models

    Science.gov (United States)

    Shin, Woong-Hee; Kang, Xuejiao; Zhang, Jian; Kihara, Daisuke

    2017-01-01

    Protein tertiary structure prediction methods have matured in recent years. However, some proteins defy accurate prediction due to factors such as inadequate template structures. While existing model quality assessment methods predict global model quality relatively well, there is substantial room for improvement in local quality assessment, i.e. assessment of the error at each residue position in a model. Local quality is a very important information for practical applications of structure models such as interpreting/designing site-directed mutagenesis of proteins. We have developed a novel local quality assessment method for protein tertiary structure models. The method, named Graph-based Model Quality assessment method (GMQ), explicitly considers the predicted quality of spatially neighboring residues using a graph representation of a query protein structure model. GMQ uses conditional random field as its core of the algorithm, and performs a binary prediction of the quality of each residue in a model, indicating if a residue position is likely to be within an error cutoff or not. The accuracy of GMQ was improved by considering larger graphs to include quality information of more surrounding residues. Moreover, we found that using different edge weights in graphs reflecting different secondary structures further improves the accuracy. GMQ showed competitive performance on a benchmark for quality assessment of structure models from the Critical Assessment of Techniques for Protein Structure Prediction (CASP). PMID:28074879

  9. Models and structures: mathematical physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems.

  10. Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors.

    Science.gov (United States)

    Helbling, Damian E; Hollender, Juliane; Kohler, Hans-Peter E; Fenner, Kathrin

    2010-09-01

    Partial microbial degradation of xenobiotic compounds in wastewater treatment plants (WWTPs) results in the formation of transformation products, which have been shown to be released and detectable in surface waters. Rule-based systems to predict the structures of microbial transformation products often fail to discriminate between alternate transformation pathways because structural influences on enzyme-catalyzed reactions in complex environmental systems are not well understood. The amide functional group is one such common substructure of xenobiotic compounds that may be transformed through alternate transformation pathways. The objective of this work was to generate a self-consistent set of biotransformation data for amide-containing compounds and to develop a metabolic logic that describes the preferred biotransformation pathways of these compounds as a function of structural and electronic descriptors. We generated transformation products of 30 amide-containing compounds in sludge-seeded bioreactors and identified them by means of HPLC-linear ion trap-orbitrap mass spectrometry. Observed biotransformation reactions included amide hydrolysis and N-dealkylation, hydroxylation, oxidation, ester hydrolysis, dehalogenation, nitro reduction, and glutathione conjugation. Structure-based interpretation of the results allowed for identification of preferences in biotransformation pathways of amides: primary amides hydrolyzed rapidly; secondary amides hydrolyzed at rates influenced by steric effects; tertiary amides were N-dealkylated unless specific structural moieties were present that supported other more readily enzyme-catalyzed reactions. The results allowed for the derivation of a metabolic logic that could be used to refine rule-based biotransformation pathway prediction systems to more specifically predict biotransformations of amide-containing compounds.

  11. Making Tree Ensembles Interpretable

    OpenAIRE

    Hara, Satoshi; Hayashi, Kohei

    2016-01-01

    Tree ensembles, such as random forest and boosted trees, are renowned for their high prediction performance, whereas their interpretability is critically limited. In this paper, we propose a post processing method that improves the model interpretability of tree ensembles. After learning a complex tree ensembles in a standard way, we approximate it by a simpler model that is interpretable for human. To obtain the simpler model, we derive the EM algorithm minimizing the KL divergence from the ...

  12. Single and Double ITCZ in Aqua-Planet Models with Globally and Temporally Uniform Sea Surface Temperature and Solar Insolation: An Interpretation

    Science.gov (United States)

    Chao, Winston C.; Chen, Baode; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Previous studies (Chao 2000, Chao and Chen 2001, Kirtman and Schneider 2000, Sumi 1992) have shown that, by means of one of several model design changes, the structure of the ITCZ in an aqua-planet model with globally uniform SST and solar angle (U-SST-SA) can change between a single ITCZ at the equator and a double ITCZ straddling the equator. These model design changes include switching to a different cumulus parameterization scheme (e.g., from relaxed Arakawa Schubert scheme (RAS) to moist convective adjustment scheme (MCA)), changes within the cumulus parameterization scheme, and changes in other aspects of the model, such as horizontal resolution. Sometimes only one component of the double ITCZ shows up; but still this is an ITCZ away from the equator, quite distinct from a single ITCZ over the equator. Since these model results were obtained by different investigators using different models which have yielded reasonable general circulation, they are considered as reliable. Chao and Chen (2001; hereafter CC01) have made an initial attempt to interpret these findings based on the concept of rotational ITCZ attractors that they introduced. The purpose of this paper is to offer a more complete interpretation.

  13. Structural Equation Models of Latent Interactions: An Appropriate Standardized Solution and Its Scale-Free Properties

    Science.gov (United States)

    Wen, Zhonglin; Marsh, Herbert W.; Hau, Kit-Tai

    2010-01-01

    Standardized parameter estimates are routinely used to summarize the results of multiple regression models of manifest variables and structural equation models of latent variables, because they facilitate interpretation. Although the typical standardization of interaction terms is not appropriate for multiple regression models, straightforward…

  14. Learning Undirected Graphical Models with Structure Penalty

    CERN Document Server

    Ding, Shilin

    2011-01-01

    In undirected graphical models, learning the graph structure and learning the functions that relate the predictive variables (features) to the responses given the structure are two topics that have been widely investigated in machine learning and statistics. Learning graphical models in two stages will have problems because graph structure may change after considering the features. The main contribution of this paper is the proposed method that learns the graph structure and functions on the graph at the same time. General graphical models with binary outcomes conditioned on predictive variables are proved to be equivalent to multivariate Bernoulli model. The reparameterization of the potential functions in graphical model by conditional log odds ratios in multivariate Bernoulli model offers advantage in the representation of the conditional independence structure in the model. Additionally, we impose a structure penalty on groups of conditional log odds ratios to learn the graph structure. These groups of fu...

  15. Exploring Prospective Secondary Mathematics Teachers' Interpretation of Student Thinking through Analysing Students' Work in Modelling

    Science.gov (United States)

    Didis, Makbule Gozde; Erbas, Ayhan Kursat; Cetinkaya, Bulent; Cakiroglu, Erdinc; Alacaci, Cengiz

    2016-01-01

    Researchers point out the importance of teachers' knowledge of student thinking and the role of examining student work in various contexts to develop a knowledge base regarding students' ways of thinking. This study investigated prospective secondary mathematics teachers' interpretations of students' thinking as manifested in students' work that…

  16. Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response

    NARCIS (Netherlands)

    Anderson, B.I.

    2001-01-01

    The electrical resistivity measured by well logging tools is one of the most important rock parameters for indicating the amount of hydrocarbons present in a reservoir. The main interpretation challenge is to invert the measured data, solving for the true resistivity values in each zone of a reservo

  17. The Mw6.5 17 November 2015 Lefkada (Greece) Earthquake: Structural Interpretation by Means of the Aftershock Analysis

    Science.gov (United States)

    Papadimitriou, E.; Karakostas, V.; Mesimeri, M.; Chouliaras, G.; Kourouklas, Ch.

    2017-07-01

    The 2015 Mw6.5 Lefkada main shock occurred at the south western part of Lefkada Island (Greece), less than 2 years after the occurrence of a doublet along the western part of the nearby Kefalonia Island, Paliki peninsula (on 25/01/2014, with Mw6.1 and 03/02/2014 with Mw6.0) and 12 years after the 2003 Mw6.2 main shock that struck the northwestern part of Lefkada Island. The four failed dextral strike slip fault segments belong to the Kefalonia transform fault zone (KTFZ), the major active boundary that bounds from the west the area of central Ionian Islands, namely Lefkada and Kefalonia. It is associated with several known historical earthquakes and is considered the most hazardous area in the Greek territory. The KTFZ fault segments are characterized by high slip rates (of the order of tens of millimeters per year), with maximum earthquake magnitudes up to 6.7 for Lefkada and 7.2 for Kefalonia fault zone, respectively. The double difference location technique was employed for relocating the aftershocks revealing a seismogenic layer extending from 3 to 16 km depth and multiple activation on well-defined fault planes, with strikes that differ than the main rupture and dips either to east or to west. This implies that strain energy was not solely released on a main fault only, but on secondary and adjacent fault segments as well. The reliable definition of their geometry forms the basis for the structural interpretation of the local fault network. The aftershock spatial distribution indicates three main clusters of the seismic activity, along with activation of smaller faults to an extent of more than 50 km. A northeasterly striking cluster is observed to the north of the main shock epicenter, with a remarkable aftershock density. The central cluster is less dense than the previous one with an epicentral alignment in full accordance with the strike provided by the main shock centroid moment tensor solution, and is considered as the main rupture with a length of 17 km

  18. Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines.

    Science.gov (United States)

    Das, Rudra Narayan; Roy, Kunal; Popelier, Paul L A

    2015-11-01

    The present study explores the chemical attributes of diverse ionic liquids responsible for their cytotoxicity in a rat leukemia cell line (IPC-81) by developing predictive classification as well as regression-based mathematical models. Simple and interpretable descriptors derived from a two-dimensional representation of the chemical structures along with quantum topological molecular similarity indices have been used for model development, employing unambiguous modeling strategies that strictly obey the guidelines of the Organization for Economic Co-operation and Development (OECD) for quantitative structure-activity relationship (QSAR) analysis. The structure-toxicity relationships that emerged from both classification and regression-based models were in accordance with the findings of some previous studies. The models suggested that the cytotoxicity of ionic liquids is dependent on the cationic surfactant action, long alkyl side chains, cationic lipophilicity as well as aromaticity, the presence of a dialkylamino substituent at the 4-position of the pyridinium nucleus and a bulky anionic moiety. The models have been transparently presented in the form of equations, thus allowing their easy transferability in accordance with the OECD guidelines. The models have also been subjected to rigorous validation tests proving their predictive potential and can hence be used for designing novel and "greener" ionic liquids. The major strength of the present study lies in the use of a diverse and large dataset, use of simple reproducible descriptors and compliance with the OECD norms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Further insights on the French WISC-IV factor structure through Bayesian structural equation modeling.

    Science.gov (United States)

    Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry

    2013-06-01

    The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Bipole-dipole interpretation with three-dimensional models (including a field study of Las Alturas, New Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, G.W.; Jiracek, G.R.

    1979-09-01

    The bipole-dipole responses of three-dimensional (3D) prisms were studied using an integral equation numerical solution. Although response patterns are quite complex, the bipole-dipole method appears to be a useful, efficient means of mapping the areal distribution of resistivity. However, 3D modeling is required for quantitative interpretation. Computer time for our solution varies from negligible for small bodies to 6 minutes on a UNIVAC 1108 for the largest possible body (85 cubes). Bipole-dipole response varies significantly with bipole orientation and position, but simply changing the distance between the bipole and the body does not greatly affect the response. However, the response is complex and interpretation ambiguous if both transmitter electrodes are located directly over a body. Boundaries of shallow bodies are much better resolved than those of deep bodies. Conductive bodies produce false polarization highs that can confuse interpretation. It is difficult to distinguish the effects of depth and resistivity contrast, and, as with all electrical methods, depth extent is difficult to resolve. Interactive interpretation of bipole-dipole field results from a geothermal prospect in New Mexico illustrates the value of the 3D modeling technique.

  1. Interpretability formalized

    NARCIS (Netherlands)

    Joosten, Joost Johannes

    2004-01-01

    The dissertation is in the first place a treatment of mathematical interpretations. Interpretations themselves will be studied, but also shall they be used to study formal theories. Interpretations, when used in comparing theories, tell us, in a natural way, something about proof-strength of form

  2. A Novel Interpretation of Structural Dot Plots of Genomes Derived from the Analysis of Two Strains of Neisseria meningitidis

    Institute of Scientific and Technical Information of China (English)

    Wilfred R.Cuff; Venkata R.S.K.Duvvuri; Binhua Liang; Bhargavi Duvvuri; Gillian E.Wu; Jianhong Wu; Raymond S.W.Tsang

    2010-01-01

    Neisseria meningitidis is the agent of invasive meningococcal disease,including cerebral meningitis and septicemia.Because the diseases caused by different clonai groups (sequence types) have their own epidemiological characteristics,it is important to understand the differences among the genomes of the N.meningitidis clonal groups.To this end,a novel interpretation of a structural dot plot of genomes was devised and applied;exact nucleotide matches between the genomes of N.meningitidis serogroup A strain Z2491 and serogroup B strain MC58 were identified,leading to the specification of various structural regions.Known and putative virulence genes for each N.meningitidis strain were then classified into these regions.We found that virulence genes of MC58 tend more to the translocated regions (chromosomal segments in new sequence contexts) than do those of Z2491,notably tending towards the interface between one of the translocated regions and the collinear region.Within the collinear region,virulence genes tend to occur within 16 kb of gaps in the exact matches.Verification of these tendencies using genes clustered in the cps locus was sufficiently supportive to suggest that these tendencies can be used to focus the search for and understanding of virulence genes and mechanisms of pathogenicity in these two organisms.

  3. Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function.

    Science.gov (United States)

    Becker, Maxi; Schubert, Torsten; Strobach, Tilo; Gallinat, Jürgen; Kühn, Simone

    2016-07-01

    There is a vast amount of literature indicating that multiple language expertise leads to positive transfer effects onto other non-language cognitive domains possibly due to enhanced cognitive control. However, there is hardly any evidence about underlying mechanisms on how complex behavior like simultaneous interpreting benefits cognitive functioning in other non-language domains. Therefore, we investigated whether simultaneous interpreters (SIs) exhibit cognitive benefits in tasks measuring aspects of cognitive control compared to a professional multilingual control group. We furthermore investigated in how far potential cognitive benefits are related to brain structure (using voxel-based morphometry) and function (using regions-of-interest-based functional connectivity and graph-analytical measures on low-frequency BOLD signals in resting-state brain data). Concerning cognitive control, the results reveal that SIs exhibit less mixing costs in a task switching paradigm and a dual-task advantage compared to professional multilingual controls. In addition, SIs show more gray matter volume in the left frontal pole (BA 10) compared to controls. Graph theoretical analyses revealed that this region exhibits higher network values for global efficiency and degree and is functionally more strongly connected to the left inferior frontal gyrus and middle temporal gyrus in SIs compared to controls. Thus, the data provide evidence that SIs possess cognitive benefits in tasks measuring cognitive control. It is discussed in how far the central role of the left frontal pole and its stronger functional connectivity to the left inferior frontal gyrus represents a correlate of the neural mechanisms for the observed behavioral effects.

  4. Covariance structure models of expectancy.

    Science.gov (United States)

    Henderson, M J; Goldman, M S; Coovert, M D; Carnevalla, N

    1994-05-01

    Antecedent variables under the broad categories of genetic, environmental and cultural influences have been linked to the risk for alcohol abuse. Such risk factors have not been shown to result in high correlations with alcohol consumption and leave unclear an understanding of the mechanism by which these variables lead to increased risk. This study employed covariance structure modeling to examine the mediational influence of stored information in memory about alcohol, alcohol expectancies in relation to two biologically and environmentally driven antecedent variables, family history of alcohol abuse and a sensation-seeking temperament in a college population. We also examined the effect of criterion contamination on the relationship between sensation-seeking and alcohol consumption. Results indicated that alcohol expectancy acts as a significant, partial mediator of the relationship between sensation-seeking and consumption, that family history of alcohol abuse is not related to drinking outcome and that overlap in items on sensation-seeking and alcohol consumption measures may falsely inflate their relationship.

  5. Partial Least Squares Structural Equation Modeling with R

    Directory of Open Access Journals (Sweden)

    Hamdollah Ravand

    2016-09-01

    Full Text Available Structural equation modeling (SEM has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and restrictions (e.g. normality and relatively large sample sizes that could discourage practitioners from applying the model. Partial least squares SEM (PLS-SEM is a nonparametric technique which makes no distributional assumptions and can be estimated with small sample sizes. In this paper a general introduction to PLS-SEM is given and is compared with conventional SEM. Next, step by step procedures, along with R functions, are presented to estimate the model. A data set is analyzed and the outputs are interpreted

  6. Fracture propagation in Indiana Limestone interpreted via linear softening cohesive fracture model

    Science.gov (United States)

    Rinehart, Alex J.; Bishop, Joseph E.; Dewers, Thomas

    2015-04-01

    We examine the use of a linear softening cohesive fracture model (LCFM) to predict single-trace fracture growth in short-rod (SR) and notched 3-point-bend (N3PB) test configurations in Indiana Limestone. The broad goal of this work is to (a) understand the underlying assumptions of LCFM and (b) use experimental similarities and deviations from the LCFM to understand the role of loading paths of tensile fracture propagation. Cohesive fracture models are being applied in prediction of structural and subsurface fracture propagation in geomaterials. They lump the inelastic processes occurring during fracture propagation into a thin zone between elastic subdomains. LCFM assumes that the cohesive zone initially deforms elastically to a maximum tensile stress (σmax) and then softens linearly from the crack opening width at σmax to zero stress at a critical crack opening width w1. Using commercial finite element software, we developed LCFMs for the SR and N3PB configurations. After fixing σmax with results from cylinder splitting tests and finding an initial Young's modulus (E) with unconfined compressive strength tests, we manually calibrate E and w1 in the SR model against an envelope of experimental data. We apply the calibrated LCFM parameters in the N3PB geometry and compare the model against an envelope of N3PB experiments. For accurate simulation of fracture propagation, simulated off-crack stresses are high enough to require inclusion of damage. Different elastic moduli are needed in tension and compression. We hypothesize that the timing and location of shear versus extensional micromechanical failures control the qualitative macroscopic force-versus-displacement response in different tests. For accurate prediction, the LCFM requires a constant style of failure, which the SR configuration maintains until very late in deformation. The N3PB configuration does not maintain this constancy. To be broadly applicable between geometries and failure styles, the LCFM

  7. Fundamental modeling issues on benchmark structure for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    HU; Sau-Lon; James

    2009-01-01

    The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems, and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detec- tion, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly.

  8. Fundamental modeling issues on benchmark structure for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    LI HuaJun; ZHANG Min; WANG JunRong; HU Sau-Lon James

    2009-01-01

    The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems,and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detection, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly.

  9. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  10. Structural Equation Modeling in Special Education Research.

    Science.gov (United States)

    Moore, Alan D.

    1995-01-01

    This article suggests the use of structural equation modeling in special education research, to analyze multivariate data from both nonexperimental and experimental research. It combines a structural model linking latent variables and a measurement model linking observed variables with latent variables. (Author/DB)

  11. Water's structure around hydrophobic solutes and the iceberg model.

    Science.gov (United States)

    Galamba, N

    2013-02-21

    The structure of water in the hydration shells of small hydrophobic solutes was investigated through molecular dynamics. The results show that a subset of water molecules in the first hydration shell of a nonpolar solute have a significantly enhanced tetrahedrality and a slightly larger number of hydrogen bonds, relative to the molecules in water at room temperature, consistent with the experimentally observed negative excess entropy and increased heat capacity of hydrophobic solutions at room temperature. This ordering results from the rearrangement of a small number of water molecules near the nonpolar solutes that occupy one to two vertices of the enhanced water tetrahedra. Although this structuring is not nearly like that often associated with a literal interpretation of the term "iceberg" in the Frank and Evans iceberg model, it does support a moderate interpretation of this model. Thus, the tetrahedral orientational order of this ensemble of water molecules is comparable to that of liquid water at ~10 °C, although not accompanied by the small contraction of the O-O distance observed in cold water. Further, we show that the structural changes of water in the vicinity of small nonpolar solutes cannot be inferred from the water radial distribution functions, explaining why this increased ordering is not observed through neutron diffraction experiments. The present results restore a molecular view where the slower translational and reorientational dynamics of water near hydrophobic groups has a structural equivalent resembling water at low temperatures.

  12. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  13. Non-orthodox combinatorial models based on discordant structures

    CERN Document Server

    Romanov, V F

    2010-01-01

    This paper introduces a novel method for compact representation of sets of n-dimensional binary sequences in a form of compact triplets structures (CTS), supposing both logic and arithmetic interpretations of data. Suitable illustration of CTS application is the unique graph-combinatorial model for the classic intractable 3-Satisfiability problem and a polynomial algorithm for the model synthesis. The method used for Boolean formulas analysis and classification by means of the model is defined as a bijective mapping principle for sets of components of discordant structures to a basic set. The statistic computer-aided experiment showed efficiency of the algorithm in a large scale of problem dimension parameters, including those that make enumeration procedures of no use. The formulated principle expands resources of constructive approach to investigation of intractable problems.

  14. Product model structure for generalized optimal design

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The framework of the generalized optimization product model with the core of network- and tree-hierarchical structure is advanced to improve the characteristics of the generalized optimal design. Based on the proposed node-repetition technique, a network-hierarchical structure is united with the tree-hierarchical structure to facilitate the modeling of serialization and combination products. The criteria for product decomposition are investigated. Seven tree nodes are defined for the construction of a general product model, and their modeling properties are studied in detail. The developed product modeling system is applied and examined successfully in the modeling practice of the generalized optimal design for a hydraulic excavator.

  15. Analysis and interpretation of the model of a Faraday cage for electromagnetic compatibility testing

    Directory of Open Access Journals (Sweden)

    Nenad V. Munić

    2014-02-01

    Full Text Available In order to improve the work of the Laboratory for Electromagnetic Compatibility Testing in the Technical Test Center (TTC, we investigated the influence of the Faraday cage on measurement results. The primary goal of this study is the simulation of the fields in the cage, especially around resonant frequencies, in order to be able to predict results of measurements of devices under test in the anechoic chamber or in any other environment. We developed simulation (computer models of the cage step by step, by using the Wipl-D program and by comparing the numerical results with measurements as well as by resolving difficulties due to the complex structure and imperfections of the cage. The subject of this paper is to present these simulation models and the corresponding results of the computations and measurements. Construction of the cage The cage is made of steel plates with the dimensions 1.25 m x 2.5 m. The base of the cage is a square; the footprint interior dimensions are 3.76 m x 3.76 m, and the height is 2.5 m. The cage ceiling is lowered by plasticized aluminum strips. The strips are loosely attached to the carriers which are screwed to the ceiling. The cage has four ventilation openings (two on the ceiling and two on one wall, made of honeycomb waveguide holes. In one corner of the cage, there is a single door with springs made of beryllium bronze. For frequencies of a few tens of MHz, the skin effect is fully developed in the cage walls. By measuring the input impedance of the wire line parallel to a wall of the cage, we calculated the surface losses of the cage plates. In addition, we used a magnetic probe to detect shield discontinuities. We generated a strong current at a frequency of 106 kHz outside the cage and measured the magnetic field inside the cage at the places of cage shield discontinuities. In this paper, we showed the influence of these places on the measurement results, especially on the qualitative and quantitative

  16. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling

    Science.gov (United States)

    Onisko, Agnieszka; Druzdzel, Marek J.; Austin, R. Marshall

    2016-01-01

    Background: Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. Aim: The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. Materials and Methods: This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan–Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. Results: The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Conclusion: Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches. PMID:28163973

  17. A healthy fear of the unknown: perspectives on the interpretation of parameter fits from computational models in neuroscience.

    Directory of Open Access Journals (Sweden)

    Matthew R Nassar

    2013-04-01

    Full Text Available Fitting models to behavior is commonly used to infer the latent computational factors responsible for generating behavior. However, the complexity of many behaviors can handicap the interpretation of such models. Here we provide perspectives on problems that can arise when interpreting parameter fits from models that provide incomplete descriptions of behavior. We illustrate these problems by fitting commonly used and neurophysiologically motivated reinforcement-learning models to simulated behavioral data sets from learning tasks. These model fits can pass a host of standard goodness-of-fit tests and other model-selection diagnostics even when the models do not provide a complete description of the behavioral data. We show that such incomplete models can be misleading by yielding biased estimates of the parameters explicitly included in the models. This problem is particularly pernicious when the neglected factors are unknown and therefore not easily identified by model comparisons and similar methods. An obvious conclusion is that a parsimonious description of behavioral data does not necessarily imply an accurate description of the underlying computations. Moreover, general goodness-of-fit measures are not a strong basis to support claims that a particular model can provide a generalized understanding of the computations that govern behavior. To help overcome these challenges, we advocate the design of tasks that provide direct reports of the computational variables of interest. Such direct reports complement model-fitting approaches by providing a more complete, albeit possibly more task-specific, representation of the factors that drive behavior. Computational models then provide a means to connect such task-specific results to a more general algorithmic understanding of the brain.

  18. A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator

    Directory of Open Access Journals (Sweden)

    Louis de Grange

    2010-09-01

    Full Text Available Maximum entropy models are often used to describe supply and demand behavior in urban transportation and land use systems. However, they have been criticized for not representing behavioral rules of system agents and because their parameters seems to adjust only to modeler-imposed constraints. In response, it is demonstrated that the solution to the entropy maximization problem with linear constraints is a multinomial logit model whose parameters solve the likelihood maximization problem of this probabilistic model. But this result neither provides a microeconomic interpretation of the entropy maximization problem nor explains the equivalence of these two optimization problems. This work demonstrates that an analysis of the dual of the entropy maximization problem yields two useful alternative explanations of its solution. The first shows that the maximum entropy estimators of the multinomial logit model parameters reproduce rational user behavior, while the second shows that the likelihood maximization problem for multinomial logit models is the dual of the entropy maximization problem.

  19. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    Science.gov (United States)

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  20. Interpreting H2O isotope variations in high-altitude ice cores using a cyclone model

    Science.gov (United States)

    Holdsworth, Gerald

    2008-04-01

    Vertical profiles of isotope (δ18O or δD) values versus altitude (z) from sea level to high altitude provide a link to cyclones, which impact most ice core sites. Cyclonic structure variations cause anomalous variations in ice core δ time series which may obscure the basic temperature signal. Only one site (Mount Logan, Yukon) provides a complete δ versus z profile generated solely from data. At other sites, such a profile has to be constructed by supplementing field data. This requires using the so-called isotopic or δ thermometer which relates δ to a reference temperature (T). The construction of gapped sections of δ versus z curves requires assuming a typical atmospheric lapse rate (dT/dz), where T is air temperature, and using the slope (dδ/dT) of a site-derived δ thermometer to calculate dδ/dz. Using a three-layer model of a cyclone, examples are given to show geometrically how changes in the thickness of the middle, mixed layer leads to the appearance of anomalous δ values in time series (producing decalibration of the δ thermometer there). The results indicate that restrictions apply to the use of the δ thermometer in ice core paleothermometry, according to site altitude, regional meteorology, and climate state.

  1. Linguistics in Text Interpretation

    DEFF Research Database (Denmark)

    Togeby, Ole

    2011-01-01

    A model for how text interpretation proceeds from what is pronounced, through what is said to what is comunicated, and definition of the concepts 'presupposition' and 'implicature'.......A model for how text interpretation proceeds from what is pronounced, through what is said to what is comunicated, and definition of the concepts 'presupposition' and 'implicature'....

  2. Modeling and Interpreting CHAMP Magnetic Anomaly Field over China Continent Using Spherical Cap Harmonic Analysis

    Institute of Scientific and Technical Information of China (English)

    Fu Yuanyuan; Liu Qingsheng; Yang Tao

    2004-01-01

    Based on the CHAMP Magsat data set, spherical cap harmonic analysis was used to model the magnetic fields over China continent. The data set used in the analysis includes the 15′×15′ gridded values of the CHAMP anomaly fields (latitude φ=25°N to 50°N and longitude λ=78°E to 135°E). The pole of the cap is located at φ=35°N and λ=110°E with half-angle of 30°. The maximum index (Kmax) of the model is 30 and the total number of model coefficients is 961, which corresponds to the minimum wavelength at the earth's surface about 400 km. The root mean square (RMS) deviations between the calculated and observed values are ~ 4 nT for ΔX, ~ 3 nT for ΔY and ~ 3.5 nT for ΔZ, respectively. Results show that positive anomalies are found mainly at the Tarim basin with ~6- 8 nT, the Yangtze platform and North China platform with ~4 nT, and the Songliao basin with ~4-6 nT. In contrast, negative anomaly is mainly located in the Tibet orogenic belt with the amplitude ~ (-6)-(-8) nT. Upward continuation of magnetic anomalies was used to semi-quantitatively separate the magnetic anomalies in different depths of crust. The magnetic anomalies at the earth's surface are from -6 to 10 nT for upper crust, middle crust -27 to 42 nT and lower crust -12 to 18 nT, respectively. The strikes of the magnetic anomalies for the upper crust are consistent with those for the middle crust, but not for the lower crust. The high positive magnetic anomalies mainly result from the old continental nucleus and diastrophic block (e.g. middle Sichuan continental nucleus, middle Tarim basin continental nucleus, Junggar diastrophic block and Qaidam diastrophic block). The amplitudes of the magnetic anomalies of the old continental nucleus and diastrophic block are related to evolution of deep crust. These results improve our understanding of the crustal structure over China continent.

  3. Variable Fidelity Aeroelastic Toolkit - Structural Model Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...

  4. Visual Environment for Rich Data Interpretation (VERDI) program for environmental modeling systems

    Science.gov (United States)

    VERDI is a flexible, modular, Java-based program used for visualizing multivariate gridded meteorology, emissions and air quality modeling data created by environmental modeling systems such as the CMAQ model and WRF.

  5. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    to dynamic ocean waves. The goal of this research project is to develop numerical soil models for computing realistic seabed response in the interacting offshore environment, where ocean waves, seabed and offshore structure highly interact with each other. The seabed soil models developed are based...... as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...... of Computational Fluid Dynamics (CFD) and structural mechanics are available. The interaction in the system is modeled in a 1-way manner: First detailed free surface CFD calculations are executed to obtain a realistic wave field around a given structure. Then the dynamic structural response, due to the motions...

  6. Using global magnetospheric models for simulation and interpretation of Swarm external field measurements

    DEFF Research Database (Denmark)

    Moretto, T.; Vennerstrøm, Susanne; Olsen, Nils

    2006-01-01

    We have used a global model of the solar wind magnetosphere interaction to model the high latitude part of the external contributions to the geomagnetic field near the Earth. The model also provides corresponding values for the electric field. Geomagnetic quiet conditions were modeled to provide...

  7. Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models.

    Directory of Open Access Journals (Sweden)

    Bryan R Conroy

    Full Text Available Multivariate decoding models are increasingly being applied to functional magnetic imaging (fMRI data to interpret the distributed neural activity in the human brain. These models are typically formulated to optimize an objective function that maximizes decoding accuracy. For decoding models trained on full-brain data, this can result in multiple models that yield the same classification accuracy, though some may be more reproducible than others--i.e. small changes to the training set may result in very different voxels being selected. This issue of reproducibility can be partially controlled by regularizing the decoding model. Regularization, along with the cross-validation used to estimate decoding accuracy, typically requires retraining many (often on the order of thousands of related decoding models. In this paper we describe an approach that uses a combination of bootstrapping and permutation testing to construct both a measure of cross-validated prediction accuracy and model reproducibility of the learned brain maps. This requires re-training our classification method on many re-sampled versions of the fMRI data. Given the size of fMRI datasets, this is normally a time-consuming process. Our approach leverages an algorithm called fast simultaneous training of generalized linear models (FaSTGLZ to create a family of classifiers in the space of accuracy vs. reproducibility. The convex hull of this family of classifiers can be used to identify a subset of Pareto optimal classifiers, with a single-optimal classifier selectable based on the relative cost of accuracy vs. reproducibility. We demonstrate our approach using full-brain analysis of elastic-net classifiers trained to discriminate stimulus type in an auditory and visual oddball event-related fMRI design. Our approach and results argue for a computational approach to fMRI decoding models in which the value of the interpretation of the decoding model ultimately depends upon optimizing a

  8. Desverbalización y estructuras sintácticas en interpretación simultánea (Deverbalization and gramatical structure in simultaneous interpreting

    Directory of Open Access Journals (Sweden)

    Ginette Gabriela Castro Yáñez

    2014-06-01

    Full Text Available Se han propuesto diferentes modelos cognitivos y psicolingüísticos con la finalidad de explicar y describir las características de la interpretación simultánea. Uno de ellos es el del procesamiento basado en el sentido, en el que se enmarca el proceso de desverbalización, consistente en la extracción del significado del texto de su estructura gramatical. En este estudio exploratorio y transversal de carácter cualitativo se busca obtener evidencia de este proceso por medio de la comparación de las estructuras gramaticales que presentan el texto origen y meta. Para ello se analizó las características estructurales del "output" de seis participantes, a partir de lo que se detectó diez fenómenos, cuyas características se describen y que presentan evidencias empíricas a favor y en contra del proceso de desverbalización. (Different cognitive and psycholinguistic models have been proposed in order to explain and describe the characteristics of simultaneous interpreting. One of those models is the meaningbased processing, in which the deverbalization process is found. It consists in the extraction of the text’s meaning out of its grammatical structure. This transversal, qualitative and exploratory research aims to obtain evidence about this process, through the comparison of the grammatical structures presented by both the source and target texts. To achieve this goal, the structural features from six participants’ output were analyzed. Ten phenomena were detected and their characteristics were described. They present empiric evidence for and against deverbalization.

  9. A Teaching Model for Truss Structures

    Science.gov (United States)

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  10. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  11. Two-zone model for the broadband Crab nebula spectrum: microscopic interpretation

    Directory of Open Access Journals (Sweden)

    Fraschetti F.

    2017-01-01

    Full Text Available We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10−5 eV and ~ 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to ~ 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.

  12. Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks.

    Science.gov (United States)

    Caywood, Matthew S; Roberts, Daniel M; Colombe, Jeffrey B; Greenwald, Hal S; Weiland, Monica Z

    2016-01-01

    There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as "black boxes" that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model's predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy.

  13. The issue of statistical power for overall model fit in evaluating structural equation models

    Directory of Open Access Journals (Sweden)

    Richard HERMIDA

    2015-06-01

    Full Text Available Statistical power is an important concept for psychological research. However, examining the power of a structural equation model (SEM is rare in practice. This article provides an accessible review of the concept of statistical power for the Root Mean Square Error of Approximation (RMSEA index of overall model fit in structural equation modeling. By way of example, we examine the current state of power in the literature by reviewing studies in top Industrial-Organizational (I/O Psychology journals using SEMs. Results indicate that in many studies, power is very low, which implies acceptance of invalid models. Additionally, we examined methodological situations which may have an influence on statistical power of SEMs. Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study. Finally, results indicated that power is significantly related to model fit statistics used in evaluating SEMs. The results from this quantitative review imply that researchers should be more vigilant with respect to power in structural equation modeling. We therefore conclude by offering methodological best practices to increase confidence in the interpretation of structural equation modeling results with respect to statistical power issues.

  14. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  15. A New Interpretation of Spontaneous Sway Measures Based on a Simple Model of Human Postural Control

    National Research Council Canada - National Science Library

    Maurer, Christoph; Peterka, Robert J

    ...) traces that closely resemble physiologically measured COP functions can be produced by an appropriate selection of model parameters in a simple feedback model of the human postural control system...

  16. Interpretation of thermochronological cooling ages using thermal modelling: an example from shallow magma intrusions from the Kerguelen archipelago

    Science.gov (United States)

    Ahadi, Floriane; Delpech, Guillaume; Gautheron, Cécile; Nomade, Sébastien; Zeyen, Hermann; Guillaume, Damien

    2017-04-01

    much younger and range from 1.4 ± 0.7 Ma to 0.8 ± 0.1 Ma. Combined with the thermochronological approach, the thermal structure of the crust beneath the Kerguelen Plateau was established by inverse modelling of gravity, geoid and topography data. The results suggest a mean current thermal gradient of ˜40°/km for the Kerguelen Plateau. Moreover, thermal modelling allows reconstructing heat diffusion in 1D after successive sill intrusions (vertically and horizontally) in order to confirm AHe data can be interpreted as exhumation ages in both complexes. In this case, the mean thermal gradient can be considered to convert the cooling rates in erosion rates.

  17. Structural Equation Modeling of Travel Choice Dynamics

    OpenAIRE

    Golob, Thomas F.

    1988-01-01

    This research has two objectives. The first objective is to explore the use of the modeling tool called "latent structural equations" (structural equations with latent variables) in the general field of travel behavior analysis and the more specific field of dynamic analysis of travel behavior. The second objective is to apply a latent structural equation model in order to determine the causal relationships between income, car ownership, and mobility. Many transportation researchers ...

  18. Effects of waveform model systematics on the interpretation of GW150914

    OpenAIRE

    2016-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's e...

  19. Simulation Modeling to Interpret the Captures of Moths in Pheromone-Baited Traps Used for Surveillance of Invasive Species: the Gypsy Moth as a Model Case.

    Science.gov (United States)

    Bau, Josep; Cardé, Ring T

    2016-09-01

    When pheromone traps are used for detection of an invasive pest and then delimitation of its distribution, an unresolved issue is the interpretation of failure to capture any target insects. Is a population present but not detected, a so-called false negative? Using the gypsy moth (Lymantria dispar) as an exemplar, we modeled the probability of males being captured in traps deployed at densities typical for surveillance (1 per 2.6 km(2) or 1 per mi(2)) and delimitation (up to 49 per 2.6 km(2)). The simulations used a dynamic wind model generating a turbulent plume structure and varying wind direction, and a behavior model based on the documented maneuvers of gypsy moths during plume acquisition and along-plume navigation. Several strategies of plume acquisition using Correlated Random Walks were compared to ensure that the generated dispersions over three days were not either overly clumped or ranged many km. Virtual moths were released into virtual space with patterns mimicking prior releases of gypsy moth males in Massachusetts at varying distance from a baited trap. In general, capture rates of virtual and real moths at varying trap densities were similar. One application of this approach was to estimate through bootstrapping the probabilities of not detecting populations having densities ranging from 1 to 100 moths per 2.6 km(2) and using traps that varied from 25 to 100 % in their efficiencies of capture. Low-level populations (e.g., 20-30 per 2.6 km(2)) often were not detected with one trap per 2.6 km(2), especially when traps had low efficiencies.

  20. Global identifiability of linear structural equation models

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2010-01-01

    Structural equation models are multivariate statistical models that are defined by specifying noisy functional relationships among random variables. We consider the classical case of linear relationships and additive Gaussian noise terms. We give a necessary and sufficient condition for global identifiability of the model in terms of a mixed graph encoding the linear structural equations and the correlation structure of the error terms. Global identifiability is understood to mean injectivity of the parametrization of the model and is fundamental in particular for applicability of standard statistical methodology.

  1. Linking canopy reflectance to crop structure and photosynthesis to capture and interpret spatiotemporal dimensions of per-field photosynthetic productivity

    Science.gov (United States)

    Xue, Wei; Jeong, Seungtaek; Ko, Jonghan; Tenhunen, John

    2017-03-01

    Nitrogen and water availability alter canopy structure and physiology, and thus crop growth, yielding large impacts on ecosystem-regulating/production provisions. However, to date, explicitly quantifying such impacts remains challenging partially due to lack of adequate methodology to capture spatial dimensions of ecosystem changes associated with nitrogen and water effects. A data fitting, where close-range remote-sensing measurements of vegetation indices derived from a handheld instrument and an unmanned aerial vehicle (UAV) system are linked to in situ leaf and canopy photosynthetic traits, was applied to capture and interpret inter- and intra-field variations in gross primary productivity (GPP) in lowland rice grown under flooded conditions (paddy rice, PD) subject to three nitrogen application rates and under rainfed conditions (RF) in an East Asian monsoon region of South Korea. Spatial variations (SVs) in both GPP and light use efficiency (LUEcabs) early in the growing season were enlarged by nitrogen addition. The nutritional effects narrowed over time. A shift in planting culture from flooded to rainfed conditions strengthened SVs in GPP and LUEcabs. Intervention of prolonged drought late in the growing season dramatically intensified SVs that were supposed to seasonally decrease. Nevertheless, nitrogen addition effects on SV of LUEcabs at the early growth stage made PD fields exert greater SVs than RF fields. SVs of GPP across PD and RF rice fields were likely related to leaf area index (LAI) development less than to LUEcabs, while numerical analysis suggested that considering strength in LUEcabs and its spatial variation for the same crop type tends to be vital for better evaluation in landscape/regional patterns of ecosystem photosynthetic productivity at critical phenology stages.

  2. Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks

    Science.gov (United States)

    Caywood, Matthew S.; Roberts, Daniel M.; Colombe, Jeffrey B.; Greenwald, Hal S.; Weiland, Monica Z.

    2017-01-01

    There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as “black boxes” that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model’s predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy. PMID:28123359

  3. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models

    Science.gov (United States)

    Cess, R. D.; Potter, G. L.; Ghan, S. J.; Blanchet, J. P.; Boer, G. J.

    1989-01-01

    Understanding the cause of differences among general circulation model projections of carbon dioxide-induced climatic change is a necessary step toward improving the models. An intercomparison of 14 atmospheric general circulation models, for which sea surface temperature perturbations were used as a surrogate climate change, showed that there was a roughly threefold variation in global climate sensitivity. Most of this variation is attributable to differences in the models' depictions of cloud-climate feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as climatic predictors.

  4. Animal-Assisted Therapy for persons with disabilities based on canine tail language interpretation via fuzzy emotional behavior model.

    Science.gov (United States)

    Phanwanich, Warangkhana; Kumdee, Orrawan; Ritthipravat, Panrasee; Wongsawat, Yodchanan

    2011-01-01

    Animal-Assisted Therapy (AAT) is the science that employs the merit of human-animal interaction to alleviate mental and physical problems of persons with disabilities. However, to achieve the goal of AAT for persons with severe disabilities (e.g. spinal cord injury and amyotrophic lateral sclerosis), real-time animal language interpretation is needed. Since canine behaviors can be visually distinguished from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequency are selected as our features of interests. New fuzzy rules and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into three canine emotional behaviors, i.e., agitate, happy, and scare as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog. The average recognition rate in real dog is 93.75% accuracy.

  5. Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation

    Science.gov (United States)

    Illman, Walter A.; Berg, Steven J.; Zhao, Zhanfeng

    2015-05-01

    The robust performance of hydraulic tomography (HT) based on geostatistics has been demonstrated through numerous synthetic, laboratory, and field studies. While geostatistical inverse methods offer many advantages, one key disadvantage is its highly parameterized nature, which renders it computationally intensive for large-scale problems. Another issue is that geostatistics-based HT may produce overly smooth images of subsurface heterogeneity when there are few monitoring interval data. Therefore, some may question the utility of the geostatistical inversion approach in certain situations and seek alternative approaches. To investigate these issues, we simultaneously calibrated different groundwater models with varying subsurface conceptualizations and parameter resolutions using a laboratory sandbox aquifer. The compared models included: (1) isotropic and anisotropic effective parameter models; (2) a heterogeneous model that faithfully represents the geological features; and (3) a heterogeneous model based on geostatistical inverse modeling. The performance of these models was assessed by quantitatively examining the results from model calibration and validation. Calibration data consisted of steady state drawdown data from eight pumping tests and validation data consisted of data from 16 separate pumping tests not used in the calibration effort. Results revealed that the geostatistical inversion approach performed the best among the approaches compared, although the geological model that faithfully represented stratigraphy came a close second. In addition, when the number of pumping tests available for inverse modeling was small, the geological modeling approach yielded more robust validation results. This suggests that better knowledge of stratigraphy obtained via geophysics or other means may contribute to improved results for HT.

  6. Objective interpretation as conforming interpretation

    Directory of Open Access Journals (Sweden)

    Lidka Rodak

    2011-12-01

    Full Text Available The practical discourse willingly uses the formula of “objective interpretation”, with no regards to its controversial nature that has been discussed in literature.The main aim of the article is to investigate what “objective interpretation” could mean and how it could be understood in the practical discourse, focusing on the understanding offered by judicature.The thesis of the article is that objective interpretation, as identified with textualists’ position, is not possible to uphold, and should be rather linked with conforming interpretation. And what this actually implies is that it is not the virtue of certainty and predictability – which are usually associated with objectivity- but coherence that makes the foundation of applicability of objectivity in law.What could be observed from the analyses, is that both the phenomenon of conforming interpretation and objective interpretation play the role of arguments in the interpretive discourse, arguments that provide justification that interpretation is not arbitrary or subjective. With regards to the important part of the ideology of legal application which is the conviction that decisions should be taken on the basis of law in order to exclude arbitrariness, objective interpretation could be read as a question “what kind of authority “supports” certain interpretation”? that is almost never free of judicial creativity and judicial activism.One can say that, objective and conforming interpretation are just another arguments used in legal discourse.

  7. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    Science.gov (United States)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0

  8. Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

    DEFF Research Database (Denmark)

    -ocean-atmosphere-wave-sediment-transport (COAWST) modeling system. The roughness length has been calculated using seven schemes (Charnock, Fan, Oost, Drennen, Liu, Andreas, Taylor-Yelland). The stress approach is applied through a wave boundary layer model in SWAN. The experiments are done to a case where the Synthetic Aperture Radar (SAR) image......Air and sea interacts, where winds generate waves and waves affect the winds. This topic is ever relevant for offshore functions such as shipping, portal routines, wind farm operation and maintenance. In a coupled modeling system, the atmospheric modeling and the wave modeling interfere with each...... other through an interface. In most modeling system the interface is described through the roughness length. The roughness length is parameterized with the basic idea of the Charnock formulation while the coefficients could be functions of simply wind speed, or wave parameters. More advanced interfaces...

  9. Interpreting the variability of CO2 columns over North America using a chemistry transport model: application to SCIAMACHY data

    Directory of Open Access Journals (Sweden)

    P. S. Monks

    2008-04-01

    Full Text Available We use the GEOS-Chem chemistry transport model to interpret variability of CO2 columns and associated column-averaged volume mixing ratios (CVMRs observed by the SCIAMACHY satellite instrument during the 2003 North American growing season, accounting for the instrument averaging kernel. Model and observed columns, largely determined by surface topography, averaged on a 2°×2.5° grid, are in excellent agreement (model bias=3%, r>0.9, as expected. Model and observed CVMRs, determined by scaling column CO2 by surface pressure data, are on average within 3% but are only weakly correlated, reflecting a large positive model bias (10–15 ppmv at 50–70° N during midsummer at the peak of biospheric uptake. GEOS-Chem generally reproduces the magnitude and seasonal cycle of observed CO2 surface VMRs across North America. During midsummer we find that model CVMRs and surface VMRs converge, reflecting the instrument vertical sensitivity and the strong influence of the land biosphere on lower tropospheric CO2 columns. We use model tagged tracers to show that local fluxes largely determine CVMR variability over North America, with the largest individual CVMR contributions (1.1% from the land biosphere. Fuel sources are relatively constant while biomass burning make a significant contribution only during midsummer. We also show that non-local sources contribute significantly to total CVMRs over North America, with the boreal Asian land biosphere contributing close to 1% in midsummer at high latitudes. We used the monthly-mean Jacobian matrix for North America to illustrate that: 1 North American CVMRs represent a superposition of many weak flux signatures, but differences in flux distributions should permit independent flux estimation; and 2 the atmospheric e-folding lifetimes for many of these flux signatures are 3–4 months, beyond which time they are too well-mixed to interpret.

  10. "On Clocks and Clouds:" Confirming and Interpreting Climate Models as Scientific Hypotheses (Invited)

    Science.gov (United States)

    Donner, L.

    2009-12-01

    The certainty of climate change projected under various scenarios of emissions using general circulation models is an issue of vast societal importance. Unlike numerical weather prediction, a problem to which general circulation models are also applied, projected climate changes usually lie outside of the range of external forcings for which the models generating these changes have been directly evaluated. This presentation views climate models as complex scientific hypotheses and thereby frames these models within a well-defined process of both advancing scientific knowledge and recognizing its limitations. Karl Popper's Logik der Forschung (The Logic of Scientific Discovery, 1934) and 1965 essay “On Clocks and Clouds” capture well the methodologies and challenges associated with constructing climate models. Indeed, the process of a problem situation generating tentative theories, refined by error elimination, characterizes aptly the routine of general circulation model development. Limitations on certainty arise from the distinction Popper perceived in types of natural processes, which he exemplified by clocks, capable of exact measurement, and clouds, subject only to statistical approximation. Remarkably, the representation of clouds in general circulation models remains the key uncertainty in understanding atmospheric aspects of climate change. The asymmetry of hypothesis falsification by negation and much vaguer development of confidence in hypotheses consistent with some of their implications is an important practical challenge to confirming climate models. The presentation will discuss the ways in which predictions made by climate models for observable aspects of the present and past climate can be regarded as falsifiable hypotheses. The presentation will also include reasons why “passing” these tests does not provide complete confidence in predictions about the future by climate models. Finally, I will suggest that a “reductionist” view, in

  11. Polychronous Interpretation of Synoptic, a Domain Specific Modeling Language for Embedded Flight-Software

    CERN Document Server

    Besnard, L; Ouy, J; Talpin, J -P; Bodeveix, J -P; Cortier, A; Pantel, M; Strecker, M; Garcia, G; Rugina, A; Buisson, J; Dagnat, F

    2010-01-01

    The SPaCIFY project, which aims at bringing advances in MDE to the satellite flight software industry, advocates a top-down approach built on a domain-specific modeling language named Synoptic. In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic features hierarchical decomposition of application and control modules in synchronous block diagrams and state machines. Its semantics is described in the polychronous model of computation, which is that of the synchronous language Signal.

  12. A new structural interpretation relating NW Libya to the Hun Graben, western Sirt Basin based on a new paleostress inversion

    Indian Academy of Sciences (India)

    K M Abdunaser; K J W McCaffrey

    2015-12-01

    The present study is based on fault-slip data (striated fault planes with known sense of slip) measured in outcrops in two structural domains located along the Hun Graben, western Sirt Basin (150 fault-slip data) and the Jifarah Basin and Nafusah Uplift, northwest Libya (200 fault-slip data). Pre-existing field data collected in two previous studies were reprocessed using standard inversion methods in MyFaultTM (v. 1.03) stereonet software, produced by Pangaea Scientific Ltd. The aim of this study was to use paleostress orientations and relative paleostress magnitudes (stress ratios), determined using the reduced stress concept, to test a new understanding of the kinematic characteristics, the relationship between the two areas and the paleostress fields that controlled the evolution of the fault systems responsible for the observed deformation. Various types of faults (normal faults, sinistral normal faults, dextral normal faults and strike-slip faults) were recorded from outcrops comprised of Mesozoic and Cenozoic sedimentary sequences in which a lineation rake is present on minor structures with displacement ranging from several centimetres to several metres. Two different domains of a NNE–SSW directed extension regime ranging from N12°E to 25°E and minor ENE–WSW and WNW–ESE compression were identified in the analysis. The results are remarkably homogeneous at all sites and consistent with progressive collisional coupling of Africa and Europe, being under approximately WNW–ESE reactivated compressional stresses during the Late Eocene-age. The new kinematic and structural conceptual model that has been proposed is a test of the prevailing tectonic models describing the Cenozoic kinematic evolution of the areas. The results show the remarkable influence of basement fabrics of different ages on the subsequent structural development of NW Libya.

  13. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    Science.gov (United States)

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii

  14. Author's reply to discussion of using artificial neural nets to identify the well-test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kaabi, A.U.; Lee, W.J. (Texas A and M Univ., College Station, TX (United States))

    1994-09-01

    The authors thank Yeung et al. for their discussion about their original paper. They agree with Yeung et al. that their proposed scaling method, when applied to patterns with distinct subparts such as the one shown, represents an improvement on the method they proposed. This is particularly true because Yeung et al.'s method eliminates the need to train the artificial neural networks (ANN's) on different sizes (scales) of the same pattern of a specific interpretation model. This paper presents the following comments for discussion and suggestions for further improvement.

  15. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...... in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding...

  16. Challenges for biological interpretation of environmental proteomics data in non-model organisms.

    Science.gov (United States)

    Dowd, W Wesley

    2012-11-01

    Environmental physiology, toxicology, and ecology and evolution stand to benefit substantially from the relatively recent surge of "omics" technologies into these fields. These approaches, and proteomics in particular, promise to elucidate novel and integrative functional responses of organisms to diverse environmental challenges, over a variety of time scales and at different levels of organization. However, application of proteomics to environmental questions suffers from several challenges--some unique to high-throughput technologies and some relevant to many related fields--that may confound downstream biological interpretation of the data. I explore three of these challenges in environmental proteomics, emphasizing the dependence of biological conclusions on (1) the specific experimental context, (2) the choice of statistical analytical methods, and (3) the degree of proteome coverage and protein identification rates, both of which tend to be much less than 100% (i.e., analytical incompleteness). I use both a review of recent publications and data generated from my previous and ongoing proteomics studies of coastal marine animals to examine the causes and consequences of these challenges, in one case analyzing the same multivariate proteomics data set using 29 different combinations of statistical techniques common in the literature. Although some of the identified issues await further critical assessment and debate, when possible I offer suggestions for meeting these three challenges.

  17. Quantitative structure - mesothelioma potency model ...

    Science.gov (United States)

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including asbestos fibers, are influenced by changes in fiber dose composition, bioavailability, and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and comprehensive rat intra-pleural (IP) dose characterization data set with a wide variety of EP size, shape, crystallographic, chemical, and bio-durability properties facilitated extensive statistical analyses of 50 rat IP exposure test results for evaluation of alternative dose pleural mesothelioma response models. Utilizing logistic regression, maximum likelihood evaluations of thousands of alternative dose metrics based on hundreds of individual EP dimensional variations within each test sample, four major findings emerged: (1) data for simulations of short-term EP dose changes in vivo (mild acid leaching) provide superior predictions of tumor incidence compared to non-acid leached data; (2) sum of the EP surface areas (ÓSA) from these mildly acid-leached samples provides the optimum holistic dose response model; (3) progressive removal of dose associated with very short and/or thin EPs significantly degrades resultant ÓEP or ÓSA dose-based predictive model fits, as judged by Akaike’s Information Criterion (AIC); and (4) alternative, biologically plausible model adjustments provide evidence for reduced potency of EPs with length/width (aspect) ratios 80 µm. Regar

  18. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course.

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-yr research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent to which students' data interpretations were valid and/or generative. By analyzing small-group audio recordings during in-class activities, we demonstrated how students used instructor-provided models to build and refine data interpretations. Often, students used models to broaden the scope of data interpretations, tying conclusions to a biological significance. Coding analysis revealed several strategies and challenges that were common among students in this collaborative setting. Spontaneous argumentation was present in 82% of transcripts, suggesting that data interpretation using models may be a way to elicit this important disciplinary practice. Argumentation dialogue included frequent co-construction of claims backed by evidence from data. Other common strategies included collaborative decoding of data representations and noticing data patterns before making interpretive claims. Focusing on irrelevant data patterns was the most common challenge. Our findings provide evidence to support the feasibility of supporting students' data-interpretation skills within a large lecture course.

  19. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  20. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  1. Stable methods of interpretation of gravimetric data

    Science.gov (United States)

    Martyshko, P. S.; Ladovskiy, I. V.; Byzov, D. D.

    2016-12-01

    A method for interpretation of potential geophysical fields, based on a stable inversion algorithm, is proposed. The stability of the algorithm is provided by an original choice of the zero approximation model and stepwise solution of the inverse problem by a correctness set. The three-dimensional density distribution of local structures as grid functions is reconstructed by layer-wise anomalies of a spilt field. Examples of interpretation of the practical gravimetric data illustrating the efficiency of the method are given.

  2. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  3. The Effects of Leadership Training and Experience: A Contingency Model Interpretation

    Science.gov (United States)

    Fiedler, Fred E.

    1972-01-01

    Summarizes recent studies based on the contingency model of leadership effectiveness, which suggest why research has failed to show that leadership training and experience increase organizational performance. The contingency model postulated that group performance depends on the match between situational favorableness, i.e., the leader's control…

  4. Long-term development of how students interpret a model; Complementarity of contexts and mathematics.

    NARCIS (Netherlands)

    Vos, Francisca; Roorda, Gerrit

    2016-01-01

    When students engage in rich mathematical modelling tasks, they have to handle real-world contexts and mathematics in chorus. This is not easy. In this chapter, contexts and mathematics are perceived as complementary, which means they can be integrated. Based on four types of approaches to modelling

  5. An information criterion for marginal structural models.

    Science.gov (United States)

    Platt, Robert W; Brookhart, M Alan; Cole, Stephen R; Westreich, Daniel; Schisterman, Enrique F

    2013-04-15

    Marginal structural models were developed as a semiparametric alternative to the G-computation formula to estimate causal effects of exposures. In practice, these models are often specified using parametric regression models. As such, the usual conventions regarding regression model specification apply. This paper outlines strategies for marginal structural model specification and considerations for the functional form of the exposure metric in the final structural model. We propose a quasi-likelihood information criterion adapted from use in generalized estimating equations. We evaluate the properties of our proposed information criterion using a limited simulation study. We illustrate our approach using two empirical examples. In the first example, we use data from a randomized breastfeeding promotion trial to estimate the effect of breastfeeding duration on infant weight at 1 year. In the second example, we use data from two prospective cohorts studies to estimate the effect of highly active antiretroviral therapy on CD4 count in an observational cohort of HIV-infected men and women. The marginal structural model specified should reflect the scientific question being addressed but can also assist in exploration of other plausible and closely related questions. In marginal structural models, as in any regression setting, correct inference depends on correct model specification. Our proposed information criterion provides a formal method for comparing model fit for different specifications.

  6. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  7. Challenges in structural approaches to cell modeling.

    Science.gov (United States)

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of waveform model systematics on the interpretation of GW150914

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H -P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; 'Alvarez, M Dovale; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Galiana, A Fern'andez; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kr"amer, C; Kringel, V; Krishnan, B; Kr'olak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vas'uth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Vicer'e, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J; Boyle, M; Chu, T; Hemberger, D; Hinder, I; Kidder, L E; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S; Vano-Vinuales, A

    2016-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analyses on mock signals from numerical simulations of a serie...

  9. A first course in structural equation modeling

    CERN Document Server

    Raykov, Tenko

    2012-01-01

    In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one.Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner's guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software.Highlights of the Second Edition include: Review of latent change (growth) analysis models at an introductory level Coverage of the popular Mplus program Updated examples of LISREL and EQS A CD that contains all of the text's LISREL, EQS, and Mplus examples.A First Course in Structural Equation Modeling is intended as an introductory book for students...

  10. MODELS OF STRUCTURES IN DIDACTICSMODELS OF STRUCTURES IN DIDACTICS

    Directory of Open Access Journals (Sweden)

    Stefan Niewitecki

    2016-09-01

    Full Text Available The final aim of teaching students subjects, such as structural mechanics, reinforced concrete, and steel structures is to teach them how structures work in a given building as well as to provide them with skills enabling them to calculate and design structures. The behavioral model of the structure, contrary to the architectural model, which focuses mainly on the external form of the building, shows workings from both the static and dynamic points of view (e.g., the influence of the wind load, dead loads, and imposed loads A series of fifteen behavioral models constructed of organic glass (poly-methyl methacrylate, also called Plexiglas® or metaplex was built for didactic purposes for the academic staff of the Department of the Technical Fundamentals of Architectural Design at the University of Technology in Gdansk. This article presents the characteristics of these models, as well as their application in didactics. The usage of the models in specific educational subjects at the Department of the Technical Fundamentals of Architectural Design has been adopted as a classification criterion.

  11. A logical partial equivalencerelation model of abstract interpretation%抽象解释的部分等价逻辑关系模型

    Institute of Scientific and Technical Information of China (English)

    王蓁蓁

    2015-01-01

    ,because the condition such as concrete or abstract semantic operations have any special properties(e.g.monotonicity)is not required.Therefore,the abstraction is not as the classic understanding.The classic way is to treat some approximation of states as an abstraction,and require that both concrete semantic domains and abstract semantic domains have certain special mathematical structure,for example, lattice or cpo,that is the result of treating “approximation”as the basic essence of abstraction.Whereas,our model help structure a concrete system from the semantic domain and the semantic operation the two parts by using partial equivalence relations and logical partial equivalence relations,i.e.,it extracts their components separately and finally forms the collection of equivalence classes to discuss the semantic domain and semantic operators.Also,based on such a model,we can discuss the issues that are different from the traditional models,such as the complexity problem and the polymorphism problems,so that it may deepen our understanding for the abstract interpretation theory.

  12. Modeling of Human Joint Structures.

    Science.gov (United States)

    1982-09-01

    Radial Lateral " epicondyle Olecranon Radius Ulna Figure 3. Lateral aspect of the right elbow joint. -17- Annular Ligament This strong band encircles... elbow joint, knee joint, human joints, shoulder joint, ankle joint, joint models, hip joint, ligaments. 20. ABSTRACT (Continue on reverse side If...ligaments. -A rather extended discussion of the articulations and anatomical descriptions of the elbow , shoulder, hip, knee and ankle joints are

  13. Basics of Structural Equation Modeling

    CERN Document Server

    Maruyama, Dr Geoffrey M

    1997-01-01

    With the availability of software programs, such as LISREL, EQS, and AMOS, modeling (SEM) techniques have become a popular tool for formalized presentation of the hypothesized relationships underlying correlational research and test for the plausibility of hypothesizing for a particular data set. Through the use of careful narrative explanation, Maruyama's text describes the logic underlying SEM approaches, describes how SEM approaches relate to techniques like regression and factor analysis, analyzes the strengths and shortcomings of SEM as compared to alternative methodologies, and explores

  14. Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.

    Science.gov (United States)

    Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P

    2014-01-01

    Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  16. Structural Dynamics Model of a Cartesian Robot

    Science.gov (United States)

    1985-10-01

    34 D FILE COPY AD-A198 053 *.CC Technical Report 1009 Structural Dynamics Model of a Cartesian Robot "DTIC SELEC T E 0 Alfonso Garcia Reynoso MIT...COVERED Structural Dynamics Model of a Cartesian Robot technical report G. PERFORMING ORG. REPORT NUM9ER 7. AUTHO0R(@) S. CONTRACT On GRANT NUMSER...8217 %S S Structural Dynamics Model of a Cartesian Robot by Alfonso Garcia Reynoso BSME Instituto Tecnol6gico de Veracruz (1967) MSME Instituto Tecnol6gico

  17. Using models to interpret the impact of roadside barriers on near-road air quality

    Science.gov (United States)

    Amini, Seyedmorteza; Ahangar, Faraz Enayati; Schulte, Nico; Venkatram, Akula

    2016-08-01

    The question this paper addresses is whether semi-empirical dispersion models based on data from controlled wind tunnel and tracer experiments can describe data collected downwind of a sound barrier next to a real-world urban highway. Both models are based on the mixed wake model described in Schulte et al. (2014). The first neglects the effects of stability on dispersion, and the second accounts for reduced entrainment into the wake of the barrier under unstable conditions. The models were evaluated with data collected downwind of a kilometer-long barrier next to the I-215 freeway running next to the University of California campus in Riverside. The data included measurements of 1) ultrafine particle (UFP) concentrations at several distances from the barrier, 2) micrometeorological variables upwind and downwind of the barrier, and 3) traffic flow separated by automobiles and trucks. Because the emission factor for UFP is highly uncertain, we treated it as a model parameter whose value is obtained by fitting model estimates to observations of UFP concentrations measured at distances where the barrier impact is not dominant. Both models provide adequate descriptions of both the magnitude and the spatial variation of observed concentrations. The good performance of the models reinforces the conclusion from Schulte et al. (2014) that the presence of the barrier is equivalent to shifting the line sources on the road upwind by a distance of about HU/u∗ where H is the barrier height, U is the wind velocity at half of the barrier height, and u∗ is the friction velocity. The models predict that a 4 m barrier results in a 35% reduction in average concentration within 40 m (10 times the barrier height) of the barrier, relative to the no-barrier site. This concentration reduction is 55% if the barrier height is doubled.

  18. Effects of waveform model systematics on the interpretation of GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.

    2017-05-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

  19. Practical Model and Protocol for Interpreting MCMI-III Results to Clients.

    Science.gov (United States)

    Staley, Joy D.; Brown, Nathan C.

    One ethical dilemma for psychologists is finding methods to share test results with their clients in such a way that the client is not deleteriously labeled, but is encouraged by the knowledge of assessed strength and growth areas. This paper offers one answer by presenting a structured protocol that draws on an iceberg metaphor for categorizing…

  20. Measuring English Language Workplace Proficiency across Subgroups: Using CFA Models to Validate Test Score Interpretation

    Science.gov (United States)

    Yoo, Hanwook; Manna, Venessa F.

    2017-01-01

    This study assessed the factor structure of the Test of English for International Communication (TOEIC®) Listening and Reading test, and its invariance across subgroups of test-takers. The subgroups were defined by (a) gender, (b) age, (c) employment status, (d) time spent studying English, and (e) having lived in a country where English is the…

  1. Measuring English Language Workplace Proficiency across Subgroups: Using CFA Models to Validate Test Score Interpretation

    Science.gov (United States)

    Yoo, Hanwook; Manna, Venessa F.

    2017-01-01

    This study assessed the factor structure of the Test of English for International Communication (TOEIC®) Listening and Reading test, and its invariance across subgroups of test-takers. The subgroups were defined by (a) gender, (b) age, (c) employment status, (d) time spent studying English, and (e) having lived in a country where English is the…

  2. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

     This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error......-correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...

  3. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

    2009-01-01

    This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error......-correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...

  4. A Dynamical Interpretation of Connes' Unimodularity Condition in Standard Model and Majorana Neutrino

    CERN Document Server

    Morita, K; Morita, Katsusada; Okumura, Yoshitaka

    2004-01-01

    Standard model is minimally extended using the unitary group $G'=U(3)\\times SU(2)\\times U(1)$ of Connes' color-flavor algebra. In place of Connes' unimodularity condition an extra Higgs is assumed to spontaneously break $G'$ down to standard model gauge group. It is shown that the theory becomes anomaly-free only if right-handed neutrino is present in each generation. It is also shown that the extra Higgs gives rise to large Majorana mass of right-handed neutrino and the model contains new vectorial neutral current.

  5. Analysing, Interpreting, and Testing the Invariance of the Actor-Partner Interdependence Model

    Directory of Open Access Journals (Sweden)

    Gareau, Alexandre

    2016-09-01

    Full Text Available Although in recent years researchers have begun to utilize dyadic data analyses such as the actor-partner interdependence model (APIM, certain limitations to the applicability of these models still exist. Given the complexity of APIMs, most researchers will often use observed scores to estimate the model's parameters, which can significantly limit and underestimate statistical results. The aim of this article is to highlight the importance of conducting a confirmatory factor analysis (CFA of equivalent constructs between dyad members (i.e. measurement equivalence/invariance; ME/I. Different steps for merging CFA and APIM procedures will be detailed in order to shed light on new and integrative methods.

  6. Interpretation of laser/multi-sensor data for short range terrain modeling and hazard detection

    Science.gov (United States)

    Messing, B. S.

    1980-01-01

    A terrain modeling algorithm that would reconstruct the sensed ground images formed by the triangulation scheme, and classify as unsafe any terrain feature that would pose a hazard to a roving vehicle is described. This modeler greatly reduces quantization errors inherent in a laser/sensing system through the use of a thinning algorithm. Dual filters are employed to separate terrain steps from the general landscape, simplifying the analysis of terrain features. A crosspath analysis is utilized to detect and avoid obstacles that would adversely affect the roll of the vehicle. Computer simulations of the rover on various terrains examine the performance of the modeler.

  7. Polychronous Interpretation of Synoptic, a Domain Specific Modeling Language for Embedded Flight-Software

    Directory of Open Access Journals (Sweden)

    Loïc Besnard

    2010-03-01

    Full Text Available The SPaCIFY project, which aims at bringing advances in MDE to the satellite flight software industry, advocates a top-down approach built on a domain-specific modeling language named Synoptic. In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic features hierarchical decomposition of application and control modules in synchronous block diagrams and state machines. Its semantics is described in the polychronous model of computation, which is that of the synchronous language SIGNAL.

  8. Uncertainty Representation and Interpretation in Model-based Prognostics Algorithms based on Kalman Filter Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — This article discusses several aspects of uncertainty represen- tation and management for model-based prognostics method- ologies based on our experience with Kalman...

  9. Implementation of empirical-mathematical modelling in upper secondary physics: Teachers’ interpretations and considerations

    Directory of Open Access Journals (Sweden)

    Carl Angell

    2008-11-01

    Full Text Available This paper reports on the implementation of an upper secondary physics curriculum with an empirical-mathematical modelling approach. In project PHYS 21, we used the notion of multiple representations of physical phenomena as a framework for developing modelling activities for students. Interviews with project teachers indicate that implementation of empirical-mathematical modelling varied widely among classes. The new curriculum ideas were adapted to teachers’ ways of doing andreflecting on teaching and learning rather than radically changing these. Modelling was taken up as a method for reaching the traditional content goals of physics teaching, whereas goals related to process skills and the nature of science were given a lower priority by the teachers. Our results indicate that more attention needs to be focused on teachers’ and students’ meta-understanding of physics and physics learning.

  10. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    Science.gov (United States)

    Lau, William K. M.

    2002-01-01

    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  11. Fluid flow model of the Cerro Prieto Geothermal Field based on well log interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, S.E.; Lippmann, M.J.; Zelwe, R.; Howard, J.H.

    1982-08-10

    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine the direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  12. AMICON: A multi-model interpretative code for two phase flow instrumentation with uncertainty analysis

    Science.gov (United States)

    Teague, J. W., II

    1981-08-01

    The code was designed to calculate mass fluxes and mass flux standard deviations, as well as certain other fluid physical properties. Several models are used to compute mass fluxes and uncertainties since some models provide more reliable results than others under certain flow situations. The program was specifically prepared to compute these variables using data gathered from spoolpiece instrumentation on the Thermal-Hydraulic Test Facility (THTF) and written to an Engineering Units (EU) data set.

  13. Exploring the uncertainties of early detection results: model-based interpretation of mayo lung project

    Directory of Open Access Journals (Sweden)

    Berman Barbara

    2011-03-01

    Full Text Available Abstract Background The Mayo Lung Project (MLP, a randomized controlled clinical trial of lung cancer screening conducted between 1971 and 1986 among male smokers aged 45 or above, demonstrated an increase in lung cancer survival since the time of diagnosis, but no reduction in lung cancer mortality. Whether this result necessarily indicates a lack of mortality benefit for screening remains controversial. A number of hypotheses have been proposed to explain the observed outcome, including over-diagnosis, screening sensitivity, and population heterogeneity (initial difference in lung cancer risks between the two trial arms. This study is intended to provide model-based testing for some of these important arguments. Method Using a micro-simulation model, the MISCAN-lung model, we explore the possible influence of screening sensitivity, systematic error, over-diagnosis and population heterogeneity. Results Calibrating screening sensitivity, systematic error, or over-diagnosis does not noticeably improve the fit of the model, whereas calibrating population heterogeneity helps the model predict lung cancer incidence better. Conclusions Our conclusion is that the hypothesized imperfection in screening sensitivity, systematic error, and over-diagnosis do not in themselves explain the observed trial results. Model fit improvement achieved by accounting for population heterogeneity suggests a higher risk of cancer incidence in the intervention group as compared with the control group.

  14. A Force Structure Design Model

    Science.gov (United States)

    1991-09-01

    199) WRITE(20,*)’ MODEL FAR10 /ALL/’ WRITE(20, 159) 159 FORMAT(’*------------- LOOP--------------- WRITE(20,*) ’SOLVE FAR10 USING RMIP MINIMIZING...SOLVE FARIO USING RMIP MINIMIZING MAXDEV OPTION X:4:0:1 DISPLAY X.L OPTION FAR:4:O:1; DISPLAY FAR OPTION R:4:0:1 OPTION R1:4:Q:1 OPTION R2:4:0:1...LOOP ------------------------ 102 SOLVE FAR10 USING RMIP MINIMIZING MAXDEV 103 OPTION X:4:0:1 104 DISPLAY X.L 105 OPTION FAR

  15. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained......The primary structure of a protein is the sequence of its amino acids. The secondary structure describes structural properties of the molecule such as which parts of it form sheets, helices or coils. Spacial and other properties are described by the higher order structures. The classification task...

  16. Ignoring imperfect detection in biological surveys is dangerous: a response to 'fitting and interpreting occupancy models'.

    Directory of Open Access Journals (Sweden)

    Gurutzeta Guillera-Arroita

    Full Text Available In a recent paper, Welsh, Lindenmayer and Donnelly (WLD question the usefulness of models that estimate species occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are not well founded and may negatively impact the quality of statistical inference in ecology and related management decisions. Here we respond to WLD's claims, evaluating in detail their arguments, using simulations and/or theory to support our points. In particular, WLD argue that both disregarding and accounting for imperfect detection lead to the same estimator performance regardless of sample size when detectability is a function of abundance. We show that this, the key result of their paper, only holds for cases of extreme heterogeneity like the single scenario they considered. Our results illustrate the dangers of disregarding imperfect detection. When ignored, occupancy and detection are confounded: the same naïve occupancy estimates can be obtained for very different true levels of occupancy so the size of the bias is unknowable. Hierarchical occupancy models separate occupancy and detection, and imprecise estimates simply indicate that more data are required for robust inference about the system in question. As for any statistical method, when underlying assumptions of simple hierarchical models are violated, their reliability is reduced. Resorting in those instances where hierarchical occupancy models do no perform well to the naïve occupancy estimator does not provide a satisfactory solution. The aim should instead be to achieve better estimation, by minimizing the effect of these issues during design, data collection and analysis, ensuring that the right amount of data is collected and model assumptions are met, considering model extensions where appropriate.

  17. Viral epidemics in a cell culture: novel high resolution data and their interpretation by a percolation theory based model.

    Directory of Open Access Journals (Sweden)

    Balázs Gönci

    Full Text Available Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation.

  18. A Structured Methodology for Spreadsheet Modelling

    CERN Document Server

    Knight, Brian; Rajalingham, Kamalesen

    2008-01-01

    In this paper, we discuss the problem of the software engineering of a class of business spreadsheet models. A methodology for structured software development is proposed, which is based on structured analysis of data, represented as Jackson diagrams. It is shown that this analysis allows a straightforward modularisation, and that individual modules may be represented with indentation in the block-structured form of structured programs. The benefits of structured format are discussed, in terms of comprehensibility, ease of maintenance, and reduction in errors. The capability of the methodology to provide a modular overview in the model is described, and examples are given. The potential for a reverse-engineering tool, to transform existing spreadsheet models is discussed.

  19. Structural classification and a binary structure model for superconductors

    Institute of Scientific and Technical Information of China (English)

    Dong Cheng

    2006-01-01

    Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.

  20. Formal models in animal-metacognition research: the problem of interpreting animals' behavior.

    Science.gov (United States)

    Smith, J David; Zakrzewski, Alexandria C; Church, Barbara A

    2016-10-01

    Ongoing research explores whether animals have precursors to metacognition-that is, the capacity to monitor mental states or cognitive processes. Comparative psychologists have tested apes, monkeys, rats, pigeons, and a dolphin using perceptual, memory, foraging, and information-seeking paradigms. The consensus is that some species have a functional analog to human metacognition. Recently, though, associative modelers have used formal-mathematical models hoping to describe animals' "metacognitive" performances in associative-behaviorist ways. We evaluate these attempts to reify formal models as proof of particular explanations of animal cognition. These attempts misunderstand the content and proper application of models. They embody mistakes of scientific reasoning. They blur fundamental distinctions in understanding animal cognition. They impede theoretical development. In contrast, an energetic empirical enterprise is achieving strong success in describing the psychology underlying animals' metacognitive performances. We argue that this careful empirical work is the clear path to useful theoretical development. The issues raised here about formal modeling-in the domain of animal metacognition-potentially extend to biobehavioral research more broadly.

  1. Interpreting Recent Global-Mean Temperature Changes in the Lower Stratosphere Simulated by Climate Models

    Science.gov (United States)

    Geller, M. A.; Zhou, T.; Martin, W. G. K.; Song, H.; Wang, S.; Nazarenko, L.; Lo, K. W. K.

    2014-12-01

    It has been suggested that state-of-the-art climate models, both with interactive chemistry and without interactive chemistry (CCMVal-2 and CMIP5) do not reproduce the observed lower stratosphere temperature anomalies that are observed by satellite microwave sounding instruments. We find that making two changes in the analysis can eliminate this disagreement. One is a change in the definition of the temperature anomalies as being zero for the 4-year mean (1979-1982) at the beginning of the data and modeling analysis period. Such a definition of the zero temperature anomaly does not take into proper account that observations over a relatively short period represent a single realization of several possible climate states, and thus this zero anomaly definition can be misleading when comparing anomalies from observations and models. The other change is our taking into account all CMIP-5 and CCMVal-2 model runs that ran realistic scenarios for the period 1979-2005. With these two changes in the analysis, we conclude that temperature changes from both CMIP-5 and CCMVal-2 models agree well with MSU-4 observations over the period 1979-2005.

  2. Rodent models of obsessive compulsive disorder: Evaluating validity to interpret emerging neurobiology.

    Science.gov (United States)

    Zike, Isaac; Xu, Tim; Hong, Natalie; Veenstra-VanderWeele, Jeremy

    2017-03-14

    Obsessive Compulsive Disorder (OCD) is a common neuropsychiatric disorder with unknown molecular underpinnings. Identification of genetic and non-genetic risk factors has largely been elusive, primarily because of a lack of power. In contrast, neuroimaging has consistently implicated the cortico-striatal-thalamo-cortical circuits in OCD. Pharmacological treatment studies also show specificity, with consistent response of OCD symptoms to chronic treatment with serotonin reuptake inhibitors; although most patients are left with residual impairment. In theory, animal models could provide a bridge from the neuroimaging and pharmacology data to an understanding of pathophysiology at the cellular and molecular level. Several mouse models have been proposed using genetic, immunological, pharmacological, and optogenetic tools. These experimental model systems allow testing of hypotheses about the origins of compulsive behavior. Several models have generated behavior that appears compulsive-like, particularly excessive grooming, and some have demonstrated response to chronic serotonin reuptake inhibitors, establishing both face validity and predictive validity. Construct validity is more difficult to establish in the context of a limited understanding of OCD risk factors. Our current models may help us to dissect the circuits and molecular pathways that can elicit OCD-relevant behavior in rodents. We can hope that this growing understanding, coupled with developing technology, will prepare us when robust OCD risk factors are better understood.

  3. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  4. Testing Models for Structure Formation

    CERN Document Server

    Kaiser, N

    1993-01-01

    I review a number of tests of theories for structure formation. Large-scale flows and IRAS galaxies indicate a high density parameter $\\Omega \\simeq 1$, in accord with inflationary predictions, but it is not clear how this meshes with the uniformly low values obtained from virial analysis on scales $\\sim$ 1Mpc. Gravitational distortion of faint galaxies behind clusters allows one to construct maps of the mass surface density, and this should shed some light on the large vs small-scale $\\Omega$ discrepancy. Power spectrum analysis reveals too red a spectrum (compared to standard CDM) on scales $\\lambda \\sim 10-100$ $h^{-1}$Mpc, but the gaussian fluctuation hypothesis appears to be in good shape. These results suggest that the problem for CDM lies not in the very early universe --- the inflationary predictions of $\\Omega = 1$ and gaussianity both seem to be OK; furthermore, the COBE result severely restricts modifications such as tilting the primordial spectrum --- but in the assumed matter content. The power s...

  5. Global model structures for ∗-modules

    DEFF Research Database (Denmark)

    Böhme, Benjamin

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  6. Nuclear Structure Functions from Constituent Quark Model

    CERN Document Server

    Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin

    1999-01-01

    We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.

  7. On the interpretation of recharge estimates from steady-state model calibrations.

    Science.gov (United States)

    Anderson, William P; Evans, David G

    2007-01-01

    Ground water recharge is often estimated through the calibration of ground water flow models. We examine the nature of calibration errors by considering some simple mathematical and numerical calculations. From these calculations, we conclude that calibrating a steady-state ground water flow model to water level extremes yields estimates of recharge that have the same value as the time-varying recharge at the time the water levels are measured. These recharge values, however, are a subdued version of the actual transient recharge signal. In addition, calibrating a steady-state ground water flow model to data collected during periods of rising water levels will produce recharge values that underestimate the actual transient recharge. Similarly, calibrating during periods of falling water levels will overestimate the actual transient recharge. We also demonstrate that average water levels can be used to estimate the actual average recharge rate provided that water level data have been collected for a sufficient amount of time.

  8. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction.

    Science.gov (United States)

    Lester, N P; Shuter, B J; Abrams, P A

    2004-08-07

    We develop a model for somatic growth in fishes that explicitly allows for the energy demand imposed by reproduction. We show that the von Bertalanffy (VB) equation provides a good description of somatic growth after maturity, but not before. We show that the parameters of the VB equation are simple functions of age at maturity and reproductive investment. We use this model to show how the energy demands for both growth and reproduction trade off to determine optimal life-history traits. Assuming that both age at maturity and reproductive investment adapt to variations in adult mortality to maximize lifetime offspring production, our model predicts that: (i) the optimal age of maturity is inversely related to adult mortality rate; (ii) the optimal reproductive effort is approximately equal to adult mortality rate. These predictions are consistent with observed variations in the life-history traits of a large sample of iteroparous freshwater fishes. Copyright 2004 The Royal Society

  9. Consistent interpretation of molecular simulation kinetics using Markov state models biased with external information

    CERN Document Server

    Rudzinski, Joseph F; Bereau, Tristan

    2016-01-01

    Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and reference (e.g., from experiments or higher-level simulations) observables. To bound the microscopic information generated by computer simulations within reference measurements, we propose a method that reweights the microscopic transitions of the system to improve consistency with a set of coarse kinetic observables. The method employs the well-developed Markov state modeling framework to efficiently link microscopic dynamics with long-time scale constraints, thereby consistently addressing a wide range of time scales. To emphasize the robustness of the method, we consider two distinct coarse-grained models with significant kinetic inconsistencies. When applied to the simulated conformational dynamics of small peptides, the reweighting procedure systematically ...

  10. A numerical analysis model for the interpretation of in vivo platelet consumption data.

    Directory of Open Access Journals (Sweden)

    Ted S Strom

    Full Text Available Unlike anemias, most thrombocytopenias cannot be separated into those due to impaired production and those due to accelerated consumption. While rapid clearance of labeled platelets from the bloodstream can be followed in thrombocytopenic individuals, no model exists for quantitatively inferring from autologous or allogeneic platelet consumption data what changes in random consumption, lifespan dependent consumption, and platelet production rate may have caused the thrombocytopenia. Here we describe a numerical analysis model which resolves these issues. The model applies three parameter values (a random consumption rate constant, a lognormally-distributed platelet lifespan, and the standard deviation of the latter to a matrix comprising a series of platelet cohorts which are sequentially produced and fractionally consumed in a series of time intervals. The cohort platelet counts achieved after equilibration of production and consumption both enumerate the population age distribution and sum to the population platelet count. Continued platelet consumption after production is halted then serves to model in vivo platelet consumption data, with consumption rate in the first such interval defining the equilibrium platelet production rate. We use a least squares fitting procedure to find parameter values which best fit observed platelet consumption data obtained in WT and thrombocytopenic WASP(- mice. Equilibrium platelet age distributions are then 'grafted' into the matrix to allow modeling of the consumption of WT platelets in WASP(- recipients, and vice versa. The optimal parameter values obtained indicate that random WT platelet consumption accounts for a larger fraction of platelet turnover than was previously suspected. Platelet WASP deficiency accelerates random consumption, and a trans effect of recipient WASP deficiency contributes to this. Application of the model to clinical data will allow distinctions to be made between thrombocytopenias

  11. Fundamentals of PV Efficiency Interpreted by a Two-Level Model

    CERN Document Server

    Alam, Muhammad A

    2012-01-01

    Elementary physics of photovoltaic energy conversion in a two-level atomic PV is considered. We explain the conditions for which the Carnot efficiency is reached and how it can be exceeded! The loss mechanisms - thermalization, angle entropy, and below-bandgap transmission - explain the gap between Carnot efficiency and the Shockley-Queisser limit. Wide varieties of techniques developed to reduce these losses (e.g., solar concentrators, solar-thermal, tandem cells, etc.) are reinterpreted by using a two level model. Remarkably, the simple model appears to capture the essence of PV operation and reproduce the key results and important insights that are known to the experts through complex derivations.

  12. The Boomerang-Chapare transfer zone (recent oil discovery trend in Bolivia): structural interpretation and experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Specht, M.; Colletta, B.; Letouzey, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Baby, P. [Office de la Recherche Scientifique et Technique d`Outre-Mer (ORSTOM), 93 - Bondy (France); Oller, J.; Montemurro, G. [Yacimientos Petroliferos Fiscales Bolivianos, La Paz (Bolivia)

    1996-12-01

    The central part of the Bolivian Andean fold and thrust belt is characterized by the existence of lateral and oblique ramps offsetting its from. The Boomerang-Chapare transfer zone, north of Santa Cruz, is the most dramatic in so far as it provokes a hundred-kilometer sinistral offset of the Andean thrust front. Combined surface and subsurface data have been used here to present an up-to-date structural and kinematic model of the Boomerang-Chapare transfer zone. Moreover, a set of analog modeling in a sandbox has enabled us to test our hypotheses and study the propagation of the thrusts. THE 3D visualization of the deformed model was done by computerized X-ray tomography. We thus show that the main decollement level is located at the bottom of a Paleozoic sedimentary wedge lying on the Brazilian shield and that geometry of the border of the detached wedge is what governs and situates the development of the transfer zone. The relation between thrust propagation sequence and location of oil fields is then examined. (authors). 18 refs., 13 figs., 7 photos.

  13. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equatio