WorldWideScience

Sample records for interplanetary transport conditions

  1. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  2. Remarks on transport theories of interplanetary fluctuations

    International Nuclear Information System (INIS)

    Ye Zhou; Matthaeus, W.H.

    1990-01-01

    The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present

  3. Effects of the interplanetary conditions on the magnetic activity observed in the southern auroral zone

    International Nuclear Information System (INIS)

    Cazeneuve, H.A.; Tabocchini, H.

    1981-01-01

    The relationship between the interplanetary conditions and the magnetic activity recorded at Belgrano is examined. H-component magnetograms, rheometer records and the concurrent interplanetary data are used. It is found that the geomagnetic activity is generated by the combined effect of a variety of interplanetary conditions. The data distinctly show that each physical entity of the interplanetary medium has a specific and precise role in the development of active periods. The reversal of the IMF polarity appears to be the critical step in the generation of geomagnetic activity. (author)

  4. The measurement of interplanetary scintillations in conditions of strong radio interference

    International Nuclear Information System (INIS)

    Duffett-Smith, P.J.

    1980-01-01

    Observations of interplanetary scintillations (IPS) are often severely limited by interference from man-made transmissions within the receiver pass-band. A new method of measuring IPS is described which can give useful data even in conditions of bad interference. (author)

  5. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  6. Radio images of the interplanetary turbulent plasma

    International Nuclear Information System (INIS)

    Vlasov, V.I.

    1979-01-01

    The results of the interplanetary scintillation daily observations of approximately 140 radio sources are given. The observations were carried out at the radiotelescope VLPA FIAN during 24 days in October-November 1975 and 6 days in April 1976. The maps (radio images) of interplanetary turbulent plasma are presented. The analysis of the maps reveals the presence of large-scale irregularities in the interplanetary plasma. The variability in large-scale structure of the interplanetary plasma is due mainly to transport of matter from the Sun. A comparison of the scintillation with the geomagnetic activity index detected the presence of a straight connection between them

  7. The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2017-02-10

    Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22, and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.

  8. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  9. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  10. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  11. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    Science.gov (United States)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  12. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  13. Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions

    Directory of Open Access Journals (Sweden)

    W. Miyake

    2002-04-01

    Full Text Available The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polar-orbiting Exos-D (Akebono satellite. We found that both the solar wind velocity and density, as well as IMF By and Bz , affect the occurrence frequency of ion conics. The energy of ion conics also depends on the solar wind velocity, IMF By and Bz . The ion beams around the local noon are not significantly controlled by the interplanetary conditions. The results reveal that ion convection, as well as the energy source, is important to understand the production of dayside ion conics while that of ion beams basically reflects the intensity of local field-aligned currents.Key words. Ionosphere (particle acceleration – magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere ionosphere interaction

  14. Interplanetary medium and geomagnetic activity after compact flare triplets 1966-1981

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Mikerina, N.V.; Pavlov, P.P.

    1986-01-01

    The interplanetary medium state and geomagnetic activity when the Earth is getting into this or that interplanetary disturbance zone after flare triplets, i.e. trains of three solar flares out of an active zone, are considered. There are the following conditionally differentiated zones in the interplanetary disturbance configuration: a forbidden (F), a perturbed (P) and a normal (N) zones of interplanetary disturbance. The interplanetary medium disturbances and geomagnetic activity after trains of three flares of class 2 and higher out of one of active zones depend on the following factors: the magnetic axis orientation of a bipolar group of active zone spots appeared after flares, time interval between the first and second flares in the train, flare intensity. The conditions of maximum disturbance occurrence pointed out. The interplanetary and geomagnetic disturbance intensity in the N zone is higher than that of the F and P zones (i.e. in the proximity of the great circle planes passing through the flares parallel with tha active zone magnetic axes), and it is higher after quasicompact rather than after compact triplets (i.e. it considerably grows when passing over the critical value of the time interval betwenn the first and second triplet flares, τ 12 =16 h)

  15. Interplanetary spheromacs

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.

    1985-01-01

    The solution of Helmholtz's equation is used for the representation of force-free magnetic fields as series of spheroidal wave functions. It is assumed that these functions describe painly interplanetary hydromagnetic clouds in the shape of flattered and extended ellipsoids which are formed at the interaction of flare e ections with corona and interplanetary plasma

  16. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    International Nuclear Information System (INIS)

    Ng, C.K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation

  17. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    Science.gov (United States)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  18. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  19. Study of Travelling Interplanetary Phenomena (STIP) workshop travel

    Science.gov (United States)

    Wu, S. T.

    1986-01-01

    Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.

  20. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    Science.gov (United States)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/ are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  1. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  2. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  3. 3-D model of ICME in the interplanetary medium

    Science.gov (United States)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  4. Solar and interplanetary disturbances

    CERN Document Server

    Alurkar, S K

    1997-01-01

    Over the last three decades, a spate of solar wind observations have been made with sophisticated ground-based and space-borne instruments. Two highly successful space missions of the Skylab and the twin spacecraft Helios 1 and 2 have amassed an invaluable wealth of information on the large scale structure of the inner heliosphere, the solar and interplanetary magnetic field, coronal holes, interplanetary dust, solar windflows, etc.Solar and interplanetary propagating phenomena have been extensively studied during the last two decades. Very recently, a new simple model based on results from a

  5. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-12-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  6. Interplanetary space transport using inertial fusion propulsion

    International Nuclear Information System (INIS)

    Orth, C.D.

    1998-01-01

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts

  7. INTERPLANETARY PROPAGATION OF SOLAR ENERGETIC PARTICLE HEAVY IONS OBSERVED AT 1 AU AND THE ROLE OF ENERGY SCALING

    International Nuclear Information System (INIS)

    Mason, G. M.; Haggerty, D. K.; Li, G.; Zank, G. P.; Cohen, C. M. S.; Leske, R. A.; Mewaldt, R. A.; Desai, M. I.

    2012-01-01

    We have studied ∼0.3 to >100 MeV nucleon –1 H, He, O, and Fe in 17 large western hemisphere solar energetic particle events (SEP) to examine whether the often observed decrease of Fe/O during the rise phase is due to mixing of separate SEP particle populations, or is an interplanetary transport effect. Our earlier study showed that the decrease in Fe/O nearly disappeared if Fe and O were compared at energies where the two species interplanetary diffusion coefficient were equal, and therefore their kinetic energy nucleon –1 was different by typically a factor ∼2 ( e nergy scaling ) . Using an interplanetary transport model that includes effects of focusing, convection, adiabatic deceleration, and pitch angle scattering we have fit the particle spectral forms and intensity profiles over a broad range of conditions where the 1 AU intensities were reasonably well connected to the source and not obviously dominated by local shock effects. The transport parameters we derive are similar to earlier studies. Our model follows individual particles with a Monte Carlo calculation, making it possible to determine many properties and effects of the transport. We find that the energy scaling feature is preserved, and that the model is reasonably successful at fitting the magnitude and duration of the Fe/O ratio decrease. This along with successfully fitting the observed decrease of the O/He ratio leads us to conclude that this feature is best understood as a transport effect. Although the effects of transport, in particular adiabatic deceleration, are very significant below a few MeV nucleon –1 , the spectral break observed in these events at 1 AU is only somewhat modified by transport, and so the commonly observed spectral breaks must be present at injection. For scattering mean free paths of the order of 0.1 AU adiabatic deceleration is so large below ∼200 keV nucleon –1 that ions starting with such energies at injection are cooled sufficiently as to be

  8. EVIDENCE OF CONFINEMENT OF SOLAR-ENERGETIC PARTICLES TO INTERPLANETARY MAGNETIC FIELD LINES

    International Nuclear Information System (INIS)

    Chollet, E. E.; Giacalone, J.

    2011-01-01

    We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity dropouts because magnetic field lines filled with and empty of particle flux mix together. The edges of these dropouts are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in the time available during their transport from the Sun. In this paper, we perform high time-resolution observations of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport.

  9. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    International Nuclear Information System (INIS)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M.; Nikolic, L.

    2017-01-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s −1 . Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  10. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M. [Institute of Physics, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Nikolic, L., E-mail: manuela.temmer@uni-graz.at [Canadian Hazards Information Service, Natural Resources Canada, 2617 Anderson Road, Ottawa, Ontario K1A 0Y3 (Canada)

    2017-02-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  11. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  12. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  13. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  14. Cultural ethology as a new approach of interplanetary crew's behavior

    Science.gov (United States)

    Tafforin, Carole; Giner Abati, Francisco

    2017-10-01

    From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.

  15. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  16. Correlation of variations of charged particle fluxes in the flare on 3 November, 1973 with change of parameters of interplanetary medium according to the data of the ''Mars-7'' automatic interplanetary station and ''Prognoz-3'' artificial Earth's satellite

    International Nuclear Information System (INIS)

    Kuzhevskij, B.M.; Mineev, Yu.V.; Savenko, I.A.; Spir'kova, E.S.; Surova, G.M.; ShestopaloV, I.P.

    1979-01-01

    The experimental data on the charged particle fluxes in the flare on the 3d of November, 1973 are analyzed. The experiments were carried out at the ''Prognoz-3'' artificial Earth satellite and ''Mars-7'' automatic interplanetary station with the help of devices recorded Esub(e) >= 30 keV energy electrons, 1 <= Esub(p) <= 5 MeV energy protons and 1-150 MeV energy protons. Presented are the data on variations of the intensity of cosmic ray particles which are compared with the data on interplanetary magnetic fields. The character of proton and electron intensity variations is explained by the change of interplanetary medium parameters. It is supposed that the electron splashes and proton intensity variations recorded at the satellites are conditioned by the sign change of the interplanetary magnetic field

  17. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  18. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  19. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  20. Interplanetary matter

    International Nuclear Information System (INIS)

    Ceplecha, Z.; Pecina, P.

    1987-01-01

    Of the total number of 57 presented papers 56 have been submitted to INIS. One paper was out of INIS scope. List of sessions (in brackets is the number of papers presented in the respective session and incorporated in the INIS): Preface (2), Comets (17), Asteroids (7), Meteors (19), Interplanetary dust (9), Other bodies (2). (Z.S.). 155 figs., 68 tabs., 1140 refs

  1. The Ring Current Response to Solar and Interplanetary Storm Drivers

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  2. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS

  3. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  4. Solar energetic particle anisotropies and insights into particle transport

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  5. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    Science.gov (United States)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  6. The VISTA spacecraft: Advantages of ICF [Inertial Confinement Fusion] for interplanetary fusion propulsion applications

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

  7. "Driverless" Shocks in the Interplanetary Medium

    Science.gov (United States)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  8. Multifrequency techniques for studying interplanetary scintillations

    International Nuclear Information System (INIS)

    Woo, R.

    1975-01-01

    Rytov's approximation or the method of smooth perturbations is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars or spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron density fluctuations. It is shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the analysis is also essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the Sun

  9. Dynamics of interplanetary dust grains

    International Nuclear Information System (INIS)

    Lamy, P.L.

    1975-01-01

    The interaction of spherical grains of various materials-three silicates (quartz, obsidian and andesite), water-ice and iron - whose radii lie in the micronic and submicronic range with the interplanetary medium is solved. This includes: the interaction with the solar radiation field which is solved using Mie scattering theory and taking into account the precise dependence of the optical properties of the five materials upon wavelength; the interaction with the solar wind: corpuscular tangential drag is found to be always important and may even be larger than the Poynting-Robertson drag; the interaction with the interplanetary magnetic field is investigated in terms of a diffusion or random walk through a series of electromagnetic scatterings, leading to a Chapman-Komolgorov equation (i.e., a generalized Liouville equation). Numerical results are presented for these interactions spanning the entire solar system with circularity of elliptical orbits, direct or retrograde, with grains of various materials and sizes and giving -probably for the first time - a clear global picture of the interaction of dust grains with the interplanetary medium. The dynamics of the grains is then investigated using the theory of general perturbations and the numerical integration of trajectories of circum-solar grains

  10. TRANSPORTATION INDUSTRY EFFECTIVE MANAGEMENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    V. I. Kuznetsov

    2011-01-01

    Full Text Available Main aspects that determine conditions of transportation industry effective management and decrease of transportation expenses are discussed. Theoretical concepts making it possible to solve the problem of scientific management of the whole country’s goods transportation costs are provided for. Main approaches are presented to the solution of motor transport operation ecological optimization problem as well as to the rise of motor transport workers’ labor productivity, to the increase of transportation vehicles use efficiency and to determine functional capacity of the motor transport complex.

  11. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  12. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  13. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoglyadova, Olga P. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109 (United States); Zank, Gary P.; Li, Gang [Department of Space Science, UAH, Huntsville, AL35899 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States)

    2015-02-12

    particle composition of SEP events, we address in some detail the injection problem. Although steady-state models can improve our understanding of the diffusive shock acceleration mechanism, SEP events are inherently time-dependent. We therefore review the time-dependent theory of DSA in some detail, including estimating possible maximum particle energies and particle escape from the shock complex. We also discuss generalizations of the diffusive transport approach to modeling particle acceleration by considering a more general description based on the focused transport equation. The escape of accelerated particles from the shock requires that their subsequent transport in the interplanetary medium be modeled and the consequence of interplanetary transport can lead to the complex spectra and compositional profiles that are observed frequently. The different approaches to particle transport in the inner heliosphere are reviewed. The various numerical models that have been developed to solve the gradual SEP problem are reviewed. Explicit comparisons of modeling results with observations of large SEP events are discussed. A summary of current progress and the outlook on the SEP problem and remaining open questions conclude the review.

  14. Variations of interplanetary parameters and cosmic-ray intensities

    International Nuclear Information System (INIS)

    Geranios, A.

    1980-01-01

    Observations of cosmic ray intensity depressions by earth bound neutron monitors and measurements of interplanetary parameter's variations aboard geocentric satellites in the period January 1972-July 1974 are analysed and grouped according to their correlation among them. From this analysis of about 30 cases it came out that the majority of the depressions correlates with the average propagation speed of interplanetary shocks as well as with the amplitude of the interplanetary magnetic field after the eruption of a solar flare. About one fourth of the events correlates with corotating fast solar wind streams. As the recovery time of the shock-related depressions depends strongly on the heliographic longitude of the causitive solar flare, it seems that the cosmic ray modulation region has a corotative-like feature. (Auth.)

  15. Sector boundary distortion in the interplanetary medium

    International Nuclear Information System (INIS)

    Suess, S.T.; Feynman, J.

    1977-01-01

    We address the theoretical problem of the effect of a solar wind meridional velocity gradient on the orientation, or tipping, of a line embedded within the interplanetary plasma. We find that rotations of from 30degree to 75degree, between 1.5 solar radii and I AU, are produced when observed values for the solar wind velocity and its meridional gradient are used. This is not a small effect, nor is it difficult to calculate: it is a natural consequence of any meridional velocity gradient in the interplanetary medium. In relating this result to observed sector boundaries we note that the latitude dependence of the width of interplanetary magnetic sectors (dominant polarity or Rosenberg-Coleman effect) implies that sector boundaries at I AU are generally inclined at an angle of from 10degree to 20degree to the solar equatorial plane. Conversely, studies of photospheric magnetic fields have led to the conclusion that sector boundaries near the sun are, on the average, at large angles (approx.90degree) to the solar equatorial plane. If the dominant polarity effect were to be produced by rotation in the interplanetary medium, the sign of the solar wind meridional velocity gradient must not change at the equator, but the gradient does have to change sign for +/- boundary crossings in comparison to -/+ boundary crossings

  16. Solar sail time-optimal interplanetary transfer trajectory design

    International Nuclear Information System (INIS)

    Gong Shengpin; Gao Yunfeng; Li Junfeng

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  17. Observations of energetic particles in the near and far interplanetary medium

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1979-01-01

    Recent experimental results suggest that acceleration of particles to energies as high as 30 MeV/nucleon is commonplace in the interplanetary medium beyond several AU, and that most of the > or approx. =10 MeV/nucleon particles observed near earth, especially at solar minimum, are predominantly interplanetary in origin. We review experimental observations of the anomalous ''cosmic-ray'' component and of corotating particle streams with an emphasis on the composition of these interplanetary particles. These direct observations, although still rudimentary, are already providing constraints necessary for developing realistic theoretical descriptions of interplanetary acceleration mechanisms and should thus help us to understand similar processes in other astrophysical objects

  18. Plasma transport through magnetic boundaries

    International Nuclear Information System (INIS)

    Treumann, R.A.

    1992-01-01

    We examine the overall plasma diffusion processes across tangential discontinuities of which the best known example is the Earth's magnetopause during northward interplanetary magnetic field conditions. The existence of the low latitude boundary layer (LLBL) adjacent to the magnetopause during those periods is ample evidence for the presence of so far poorly defined and understood entry processes acting at the magnetopause. We conclude that microscopic instabilities are probably not efficient enough to account for the LLBL. They affect only a small number of resonant particles. It is argued that macroscopic nonresonant turbulence is the most probable mechanism for plasma transport

  19. 10 CFR 71.71 - Normal conditions of transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Normal conditions of transport. 71.71 Section 71.71 Energy..., Special Form, and LSA-III Tests 2 § 71.71 Normal conditions of transport. (a) Evaluation. Evaluation of each package design under normal conditions of transport must include a determination of the effect on...

  20. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2016-09-01

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  1. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail: vaniafatima@gmail.com, E-mail: savian@lacesm.ufsm.br [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: eecher@dge.inpe.br [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: njschuch@lacesm.ufsm.br [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)

    2007-07-01

    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  2. Heliomagnetic cycle of magneto-ionospheric and interplanetary activities

    International Nuclear Information System (INIS)

    Zaretskij, N.S.; Krymskij, P.F.; Maksimov, Ya.Ya.

    1983-01-01

    The difference in frequency distributions of geomagnetic- and ionospheric disturbance levels are revealed within generalized intervals: odd-even- and even-odd 11-year solar activity cycles. The interplanetary medium of the first half of the 20th cycle (before reversal of the general heliomagnetic field polarity) is characterized by the background vertical component of the interplanetary magnetic field (IMF) in the north direction, rather small variability of the interplanetary field and low solar wind velocity. The south field component, higher field dispersion and high-velocity corpuscular fluxes are characteristic of the second half of the cycle. The 22-year variation in the number of small and moderate values of the geomagnetic activity within the limits of the 20th cycle is satisfactorily described by the behaviour of the quantities of the corresponding values of the IMF north-south component, field variability and solar wind velocity

  3. The structure of plasma-density irregularities in the interplanetary medium

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1975-01-01

    The conflict in the literature as to whether the plasma-density spatial spectrum of the irregularities in the interplanetary medium is of Gaussian or power law form is discussed. Particular attention is paid to the interplanetary scintillation effects ascribed to these irregularities. It is shown that the phase-screen theory of scintillations can be invoked to devise a set of critical tests which provide a means of discriminating between the conflicting hypotheses. Differences in the predicted behaviour of the single sensor temporal spectra of the scintillations for the two irregularity forms provide the main tests of the conflicting hypotheses. However, it is also shown that the two hypotheses lead to different forms of the variation of scintillation index with the observing frequency and the solar elongation of the scintillating source. Consideration is given to the optimum conditions for observing the Fourier and Bessel temporal spectra modulation which is due to the Fresnel filtering of the spatial spectrum. Determination of irregularity shape, orientation and motion in terms of this modulation is also discussed. (author)

  4. Observations of interplanetary energetic ion enhancements near magnetic sector boundaries

    International Nuclear Information System (INIS)

    Briggs, P.R.; Armstrong, T.P.

    1984-01-01

    We have examined all energetic medium nuclei (carbon, nitrogen, and oxygen) flux increases observed all the satellites IMP 7 and IMP 8 at 1 AU during Bartels rotations 1906-1974. After removing flare-related increases, the remaining 14 ''events'' were compared to interplanetary magnetic field and solar wind parameters. We have discovered a class of flux enhancements in which the ion increases occur close to the onset of magnetic sector boundary crossings. We interpret this observation as a facilitated access to 1 AU of energetic ions from the corona or chromopshere via the magnetic sector structure. It appears that this access is more significant for medium than for lighter nuclei, ''suggesting a possible charge- or rigidity-dependent transport mechanism

  5. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  6. Relationships between interplanetary quantities and the global auroral electrojet index

    International Nuclear Information System (INIS)

    Meloni, A.; Wolfe, A.; Lanzerotti, L.J.

    1982-01-01

    We have studied, using linear cross correlation and multilinear regression analyses, statistical relations between the magnetospheric auroral electrojet intensity index AE and various parameters characterizing the interplanetary plasma and magnetic field. We also consider the recently proposed epsilon parameter as an independent variable. The analyses were carried out separately for twenty-eight days in mid 1975 and for each of five individual magnetic storm intervals that have been previously discussed extensively in the literature. We find that when the interplanetary data set is not distinguished as to the direction of the north-south component B/sub z/, the interplanetary electric field -VB/sub z/ carried to the front of the magnetosphere correlates with AE substantially better than does epsilon. Considering only data during which B/sub z/ is negative gives a slightly better correlation of epsilon with AE than of the electric field with AE. The correlations are valid for the specific storm periods as well as for the unrestricted twenty-eight days of data. Our results suggest that the physical processes involved in energy transfer to the nightside magnetosphere depend upon the direction of the north-south component of the interplanetary magnetic field: the interplanetary electric field plays an important role during northward B/sub z/ and the epsilon parameter and the electric field both provide an indication of energy transfer and substorm activity during southward B/sub z/

  7. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    Science.gov (United States)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  8. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    International Nuclear Information System (INIS)

    Barnes, A.

    1983-01-01

    The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)

  9. Interplanetary laser ranging - an emerging technology for planetary science missions

    Science.gov (United States)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  10. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  11. Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Spann, James F.; Zank, G.

    2014-01-01

    We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs

  12. Machine learning and evolutionary techniques in interplanetary trajectory design

    OpenAIRE

    Izzo, Dario; Sprague, Christopher; Tailor, Dharmesh

    2018-01-01

    After providing a brief historical overview on the synergies between artificial intelligence research, in the areas of evolutionary computations and machine learning, and the optimal design of interplanetary trajectories, we propose and study the use of deep artificial neural networks to represent, on-board, the optimal guidance profile of an interplanetary mission. The results, limited to the chosen test case of an Earth-Mars orbital transfer, extend the findings made previously for landing ...

  13. On the solar origin of interplanetary disturbances observed in the vicinity of the Earth

    Directory of Open Access Journals (Sweden)

    N. Vilmer

    Full Text Available The solar origin of 40 interplanetary disturbances observed in the vicinity of the Earth between January 1997 and June 1998 is investigated in this paper. Analysis starts with the establishment of a list of Interplanetary Mass Ejections or ICMEs (magnetic clouds, flux ropes and ejecta and of Interplanetary Shocks measured at WIND for the period for which we had previously investigated the coupling of the interplanetary medium with the terrestrial ionospheric response. A search for associated coronal mass ejections (CMEs observed by LASCO/SOHO is then performed, starting from an estimation of the transit time of the inter-planetary perturbation from the Sun to the Earth, assumed to be achieved at a constant speed (i.e. the speed measured at 1 AU. EIT/SOHO and Nançay Radioheliograph (NRH observations are also used as proxies in this identification for the cases when LASCO observations do not allow one to firmly establish the association. The last part of the analysis concerns the identification of the solar source of the CMEs, performed using a large set of solar observations from X-ray to radio wavelengths. In the present study, this association is based on a careful examination of many data sets (EIT, NRH and H images and not on the use of catalogs and of Solar Geophysical Data reports. An association between inter-planetary disturbances and LASCO/CMEs or proxies on the disk is found for 36 interplanetary events. For 32 events, the solar source of activity can also be identified. A large proportion of cases is found to be associated with a flare signature in an active region, not excluding of course the involvement of a filament. Conclusions are finally drawn on the propagation of the disturbances in the interplanetary medium, the preferential association of disturbances detected close to the Earth’s orbit with halos or wide CMEs and the location on the solar disk of solar sources of the interplanetary disturbances during that period

  14. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  15. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  16. Criteria of interplanetary parameters causing intense magnetic storms (Dsub(st) < -100 nT)

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Tsurutani, B.T.

    1987-01-01

    Ten intense magnetic storms (Dsub(st) 5 mV m -1 , that last for intervals > 3 h. Because we find a one-to-one relationship between these interplanetary events and intense storms, we suggest that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. The close proximity of the Bsub(z) events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported and thus the two interplanetary features and corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity (northward) Bsub(z) events with the same criteria shows that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity. (author)

  17. Study of interplanetary hydrogen from Lyman alpha emission and absorption determination

    International Nuclear Information System (INIS)

    Cazes, Serge.

    1979-09-01

    The purpose of the work submitted in this paper is to contribute to the study of interplanetary hydrogen from Lyman alpha emission and absorption measurements, carried out on board the D2A, OSO-8 and Copernicus satellites. This study, which was undertaken from the D2A satellite, moved us to study the interplanetary environment as from observations made from the following experiments placed on board the OSO-8 and Copernicus satellites. The experiment set up on board the OSO-8 satellite made it possible to obtain the profile of the solar alpha Lyman emission. An absorption profile was observed for the first time on these profiles and this made it possible to attribute them to interplanetary hydrogen and enabled us to make a direct and local determination of the solar ionization rate. - The spectrometer set up on board Copernicus made it possible to obtain the emission spectrum of the interplanetary environment at the same time as the geocorona. The overall velocity of the interplanetary environment was deduced from the Doppler shift between the two spectra. In the first part, the principle of the REA and POLAR experiments is recalled but only the REA experiment is described in detail, particularly the problems arising from the construction and calibration of the cell. In the second part, a study of the interplanetary environment made from the D2A determinations is presented in synthesized form. On the other hand, the study to which theses initial results led us is presented in detail. Finally, in the third part, the results obtained by means of the OSO-8 and Copernicus satellites are given [fr

  18. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  19. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    Science.gov (United States)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  20. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  1. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  2. Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions

    International Nuclear Information System (INIS)

    Leubner, M.P.

    2004-01-01

    Numerous in situ observations indicate clearly the presence of nonthermal electron and ion structures as ubiquitous and persistent feature in a variety of astrophysical plasma environments. In particular, the detected suprathermal particle populations are accurately represented by the family of κ-distributions, a power-law in particle speed. After clarifying the characteristics of high-energy tail distributions under various space plasma conditions, different generation mechanisms of energetic particles are introduced where numerical simulations of wave-particle interaction based on a Fokker-Planck approach demonstrate how Landau interaction ultimately leads to κ-like distributions. Because of lack of theoretical justification, the use of the analytical form of κ-functions was frequently criticized. It is shown that these distributions turn out as consequence of an entropy generalization favored by nonextensive thermo-statistics, thus providing the missing link for powerlaw models of suprathermal tails from fundamental physics, along with a physical interpretation of the structure parameter κ. Moreover, with regard to the full nonextensive formalism, compatible also with negative values of κ, it is demonstrated that core-halo distribution structures, as observed for instance under typical interplanetary plasma conditions, are a natural content of the pseudo-additive entropy concept. The significance of the complete κ-distribution family with regard to observed core-halo electron and double-humped ion velocity space characteristics is illuminated, where the observed peak separation scale of interplanetary proton distributions is compatible with a maximum entropy condition

  3. Transceiver optics for interplanetary communications

    Science.gov (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  4. Relation of geomagnetic activity index variations with parameters of interplanetary scintillations

    International Nuclear Information System (INIS)

    Vlasov, V.I.; Shishov, V.I.; Shishova, T.D.

    1985-01-01

    A correlation between the Asub(p)-index of geomagnetic activity, index of interplanetary scintillations and solar wind velocity, has been considered depending on the spatial position of the interplanetary plasma (IPP) regions under study. It is shown, that the scintillation index can be used to forecast the geomagnetic activity, whereas the solar wind velocity can not be used for the purpose. Heliolongitudinal dependence of geoeffectiveness of IPP sreading perturbations agrees well with their structure in the heliolongitudinal cross section (and, on the whole, with the angular structure and direction of IPP perturbation spread). To use interplanetary scintillations in forecasting the geomagnetic activity (on the level of correlation not below 0.5), the angular distance of the investigated IPP regions relative to the Sun-Earth line on the average should not exceed 30-40 deg. The time of delay between the moments of observation of variations in the scintillation index the time of passage of the corresponding heliocentric distances at an average rate of the interplanetary perturbation spread approximately 500 km/s

  5. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo

    1989-01-01

    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)

  6. Two-dimensional, time-dependent MHD description of interplanetary disturbances: simulation of high speed solar wind interactions

    International Nuclear Information System (INIS)

    Wu, S.T.; Han, S.M.; Dryer, M.

    1979-01-01

    A two-dimensional, time-dependent, magnetohydrodynamic, numerical model is used to investigate multiple, transient solar wind flows which start close to the Sun and then extend into interplanetary space. The initial conditions are assumed to be appropriate for steady, homogeneous solar wind conditions with an average, spiral magnetic field configuration. Because both radial and azimuthal dimensions are included, it is possible to place two or more temporally-developing streams side-by-side at the same time. Thus, the evolution of the ensuing stream interaction is simulated by this numerical code. Advantages of the present method are as follows: (1) the development and decay of asymmetric MHD shocks and their interactions are clearly indicated; and (2) the model allows flexibility in the specification of evolutionary initial conditions in the azimuthal direction, thereby making it possible to gain insight concerning the interplanetary consequences of real physical situations more accurately than by use of the one-dimensional approach. Examples of such situations are the occurrence of near-simultaneous solar flares in adjacent active regions and the sudden appearance of enlargement of coronal holes as a result of a transient re-arrangement from a closed to an open magnetic field topology. (author)

  7. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  8. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  9. Relationship between Interplanetary (IP) Parameters and ...

    Indian Academy of Sciences (India)

    3SITAA-SAC, Indian Space Research Organisation, Ahmedabad, Gujarat 380 015, India. 4Indian Space Research Organisation-Head Quarters, Bangalore, Karnataka, India. Abstract. In the present study, .... Lepping, R. P., Jones, J. A., Burlaga, L. F. 1990, Magnetic field structure of Interplanetary. Magnetic Clouds at 1 A.U; ...

  10. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.

    Science.gov (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez

    2017-07-26

    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  11. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  12. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    Science.gov (United States)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  13. Solar and interplanetary particles at 2 to 4 MEV during solar cycles 21, solar cycle variations of event sizes, and compositions

    International Nuclear Information System (INIS)

    Armstrong, T.P.; Shields, J.C.; Briggs, P.R.; Eckes, S.

    1985-01-01

    In this paper 2 to 4 MeV/nucleon protons, alpha particles, and medium (CNO) nuclei in the near-Earth interplanetary medium during the years 1974 to 1981 are studied. This period contains both the solar activity minimum in 1976 and the very active onset phase of Solar Cycle 21. Characteristic compositional differences between the solar minimum and solar maximum ion populations have been investigated. Previous studies of interplanetary composition at these energies have concentrated on well-defined samples of the heliospheric medium. During flare particle events, the ambient plasma is dominated by ions accelerated in specific regions of the solar atmosphere; observation of the proton/alpha and alpha/medium ratios for flare events shows that there is marked compositional variability both during an event and from event to event suggesting the complicated nature of flare particle production and transport

  14. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  15. The Ultimate Destination: Choice of Interplanetary Exploration Path can define Future of Interstellar Spaceflight

    Science.gov (United States)

    Silin, D. V.

    Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the

  16. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  17. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  18. Interplanetary Magnetic Field and Plasma Values Related to Hildcaas Events

    Science.gov (United States)

    Prestes, A.; Serra, S. L.; Vieira, L. A.

    2013-05-01

    In this work we investigate the interplanetary conditions during the occurrence of 150 HILDCAAs/QUASI-HILDCAAs events occurred between 1998 and 2007. These events were chosen by following strictly the selection criteria for this kind of phenomena and with some criteria flexible. Among the criteria used to characterize events HILDCAAs, the criterion that considers "the AE values never dropped below 200 nT for more than 2 h at a time" was more restrictive, thus only this was modified by changing from 2 to 4 hours the period in which the AE value can't be below 200 nT. In the interplanetary medium, HILDCAAs are associated with high speed solar wind streams, which are frequently embedded with alfvénic fluctuations. At the Sun, these high speed streams are originated in coronal holes. The distribution of events HILDCAAs/quasi-HILDCAAs along the solar cycle shows a pattern of double peak, a less intense around the maximum of the sunspot cycle and other intense in the descending phase, similar to the distribution of low-latitude coronal holes. For each one of the selected events we have found the most probable value of interplanetary magnetic field and plasma. The average values of AE, AU, AL and Dst indices, the density and temperature of the solar wind protons, the solar wind speed, the Bz component of the IMF, the IMF intensity, dynamic pressure and factor beta, among all the 150 events HILDCAAs/quasi-HILDCAAs, were: AE (344.5 ± 65.0 nT), AU (131.0 ± 33.0 nT), AL (-213.7 ± 51.2 nT), Dst (-25.8 ± 12.2 nT), Density (5,0 ± 1,8 cm-3), Temperature (151269.5 ± 48907.7 K), |V| (538.2 ± 83.3 km/s) Bz (-0.71 ± 1.02 nT), |B| (6.7 ± 1.4 nT) pressure (2.6 ± 0.7 nPa) and Beta (0.66 ± 0.27).

  19. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories

    Science.gov (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  20. Comparison of mass transport using average and transient rainfall boundary conditions

    International Nuclear Information System (INIS)

    Duguid, J.O.; Reeves, M.

    1976-01-01

    A general two-dimensional model for simulation of saturated-unsaturated transport of radionuclides in ground water has been developed and is currently being tested. The model is being applied to study the transport of radionuclides from a waste-disposal site where field investigations are currently under way to obtain the necessary model parameters. A comparison of the amount of tritium transported is made using both average and transient rainfall boundary conditions. The simulations indicate that there is no substantial difference in the transport for the two conditions tested. However, the values of dispersivity used in the unsaturated zone caused more transport above the water table than has been observed under actual conditions. This deficiency should be corrected and further comparisons should be made before average rainfall boundary conditions are used for long-term transport simulations

  1. Analysis Of Interplanetary Phenomenon, Geomagnetic And ...

    African Journals Online (AJOL)

    The storm was found to be a double step storm with the first Dstmin resulting mainly from ring current injection due to increase in solar wind density while magnetospheric convection electric field played the leading role in the development of the second Dstmin . The analysis of the interplanetary and foF2 data show that the ...

  2. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  3. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  4. Transport synthetic acceleration with opposing reflecting boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zika, M R; Adams, M L

    2000-02-01

    The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iterating on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.

  5. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: A new reconstruction of the interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2013-11-01

    Full Text Available We present a new reconstruction of the interplanetary magnetic field (IMF, B for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a. Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear fit of the form B = χ · (IDV(1d − βα with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010.

  6. Geomagnetic response to solar and interplanetary disturbances

    Czech Academy of Sciences Publication Activity Database

    Saiz, E.; Cerrato, Y.; Cid, C.; Dobrica, V.; Hejda, Pavel; Nenovski, P.; Stauning, P.; Bochníček, Josef; Danov, D.; Demetrescu, C.; Gonzalez, W. D.; Maris, G.; Teodosiev, D.; Valach, F.

    2013-01-01

    Roč. 3, July (2013), A26/1-A26/20 ISSN 2115-7251 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar activity * interplanetary medium * indices * ionosphere (general) * ring current Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.519, year: 2013

  7. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): interplanetary Alfven wave trains

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Gonzalez, W.D.

    1987-01-01

    It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)

  8. Radar Characterization of the Interplanetary Meteoroid Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new modeling effort that will make substantial refinements and improvements to our existing models of the interplanetary meteoroid environment near...

  9. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of...

  10. Optimizing Materials for Energy Harvesting on Interplanetary Return Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned interplanetary missions will only be desirable once the ability to return is established. Even using improved fuel technologies we have not resourced the fuel...

  11. Assessing transportation and road conditions in niger state, nigeria ...

    African Journals Online (AJOL)

    Assessing transportation and road conditions in niger state, nigeria using geoinformatics, with focus on impact of climate ... Also the impacts of climate change on transportation were highlighted. ... EMAIL FULL TEXT EMAIL FULL TEXT

  12. Interplanetary sources of magnetic storms: A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed T......-p/T-exp, together with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more...

  13. Interplanetary sources to magnetic storms - A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed Tp/Texp, together...... with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more so. Only...

  14. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  15. Transport coefficients of low-energy cosmic rays in interplanetary space

    International Nuclear Information System (INIS)

    Palmer, I.

    1982-01-01

    The propagation of energetic particles along and across the interplantary magnetic field is governed by the large-scale field geometry and by scattering in small-scale turbulent fields. Values of the scattering mean free path parallel to the field, γ/sub parallel/ (R), are reviewed in prompt solar bursts and nonimpulsive (corotating) events. Analysis of intensity and anisotropy profiles in combination is a powerful tool for elucidating γ/sub parallel/ (R). A consensus is found: at 1 AU, γ/sub parallel/ = 0.08--0.3 AU over a wide range of rigidity, R = 5 x 10 -4 to 5 GV. Efforts to explain the discrepancy between empirical values of γ/sub parallel/ and scattering theory are discussed. Quantitative measures of γ/sub parallel/ in rare scatter-free events, where magnetic power spectra. Cross-field diffusion due to random walk of field lines is revisited. Recent values deduced from magnetic power spectra in interplanetary space, magnetic diffusion at the sun, Jovian electron propagation, and cosmic ray events are evaluated. Again, a consensus is sought, and a reasonable mean is K/sub perpendicular//sup r//β = 10 21 cm 2 s -1 . Previous arguments against a significant K/sub perpendicular//sup r/ are reassessed, including the problem of the persistance of intensity fluctuations in cosmic ray events. Combining the consensus for K/sub perpendicular//sup r//β with that for γ/sub parallel/<0.1 at 1 AU, and thus neglect of K/sub perpendicular//sup r/ in the modeling of solar cosmic ray events appears justified (although account needs to be taken of coronal propagation). The outlook for the future includes better empirical values of γ/sub parallel/ down to E/sub p/approx.10 keV and E/sub e/approx. 1 keV, comparison with scattering theories at these energies, and comparison between empirical and theoretical γ/sub parallel/ in other regions such as the magnetosheath and upstream solar wind

  16. The problems of cosmic ray particle simulation for the near-Earth orbital and interplanetary flight conditions

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes

  17. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  18. Implementing a Near-Optimal Optical Receiver for Inter-Planetary Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Objective: Interplanetary communications signals are inherently weak at the receiver. In fact, for a desired data rate the received optical pulses may...

  19. Fast, Autonomous Chemical Interplanetary Mission Design via Hybrid Optimal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Interplanetary mission design is historically a complex and expensive process requiring many human-hours of work. This proposal outlines a novel technique for...

  20. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  1. Interplanetary and lunar surface SP-100 nuclear power applications

    International Nuclear Information System (INIS)

    Josloff, A.T.; Shepard, N.F.; Smith, M.; Stephen, J.D.

    1992-01-01

    This paper describes how the SP-100 Space Reactor Power System (SRPS) can be tailored to meet the specific requirements for a lunar surface power system to meet the needs of the consolidation and utilization phases outlined in the 90-day NASA SEI study report. This same basic power system can also be configured to obtain the low specific masses needed to enable robotic interplanetary science missions employing Nuclear Electric Propulsion (NEP). In both cases it is shown that the SP-100 SRPS can meet the specific requirements. For interplanetary NEP missions, performance upgrades currently being developed in the area of light weight radiators and improved thermoelectric material are assumed to be technology ready in the year 2000 time frame. For lunar applications, some system rearrangement and enclosure of critical components are necessary modifications to the present baseline design

  2. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  3. Structural Evaluation on HIC Transport Packaging under Accident Conditions

    International Nuclear Information System (INIS)

    Chung, Sung Hwan; Kim, Duck Hoi; Jung, Jin Se; Yang, Ke Hyung; Lee, Heung Young

    2005-01-01

    HIC transport packaging to transport a high integrity container(HIC) containing dry spent resin generated from nuclear power plants is to comply with the regulatory requirements of Korea and IAEA for Type B packaging due to the high radioactivity of the content, and to maintain the structural integrity under normal and accident conditions. It must withstand 9 m free drop impact onto an unyielding surface and 1 m drop impact onto a mild steel bar in a position causing maximum damage. For the conceptual design of a cylindrical HIC transport package, three dimensional dynamic structural analysis to ensure that the integrity of the package is maintained under all credible loads for 9 m free drop and 1 m puncture conditions were carried out using ABAQUS code.

  4. IPS observations of transient interplanetary phenomena associated with solar filament activity in late august

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Marubashi, Katsuhide.

    1985-01-01

    Large-scale structures of the solar wind plasma during the severe geomagnetic storm of August 27-29, 1978 are studied on the basis of IPS and spacecraft observations. Three-dimensional configuration of an interplanetary disturbance which caused the SSC of August 27, 1978 was an oblate sphere having an axial ratio of 1.7. Approximate excess mass and kinetic energy contained within the high-speed portion of the disturbance (--500 km s -1 ) were 10 16 g and 3 x 10 31 erg, respectively. An interplanetary disturbance was also observed on August 28, 1978 during the main phase of the geomagnetic storm. It is suggested that the solar-filament activity which took place near the solar disk center in August 23-25, 1978 caused these interplanetary disturbances. (author)

  5. The Earth's passage of the April 11, 1997 coronal ejecta: geomagnetic field fluctuations at high and low latitude during northward interplanetary magnetic field conditions

    Directory of Open Access Journals (Sweden)

    S. Lepidi

    1999-10-01

    Full Text Available An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay and a low latitude (L'Aquila, Italy station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions

  6. Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions

    Directory of Open Access Journals (Sweden)

    T. D. Phan

    2004-07-01

    Full Text Available On 26 January 2001, the Cluster spacecraft detected high-speed plasma jets at multiple crossings of the high-latitude duskside magnetopause (MP and boundary layer (BL over a period of more than 2h. The 4 spacecraft combined spent more than half of this time in the MP/BL and jets were observed whenever a spacecraft was in the MP. These observations were made under steady southward and dawnward interplanetary magnetic field (IMF conditions. The magnetic shear across the local MP was ~100° and β~1 in the adjacent magnetosheath. The jet velocity is in remarkable agreement with reconnection prediction throughout the entire interval, except for one crossing that had no ion measurements inside the current layer. The flow speed measured in the deHoffmann Teller frame is 90% of the Alfvén speed on average for the 10 complete MP current layer crossings that are resolved by the ion measurements. These findings strongly suggest that reconnection was continuously active for more than two hours. The jets were directed persistently in the same northward and anti-sunward direction, implying that the X-line was always below the spacecraft. This feature is inconsistent with patchy and random reconnection or convecting multiple X-lines. The majority of MP/BL crossings in this two-hour interval were partial crossings, implying that they are caused by bulges sliding along the MP, not by inward-outward motion of a uniformly thin MP/BL. The presence of the bulges suggests that, although reconnection is continuously active under steady IMF conditions, its rate may be modulated. The present investigation also reveals that (1 the predicted ion D-shaped distributions are absent in all reconnection jets on this day, (2 the electric field fluctuations are larger in the reconnecting MP than in the magnetosheath proper, but their amplitudes never exceed 20mV/m, (3 the ion-electron differential motion is ~20km/s for the observed MP current density of ~50nA/m2 (∇× B, thus

  7. Dynamics of magnetic clouds in interplanetary space

    International Nuclear Information System (INIS)

    Yeh, T.

    1987-01-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure

  8. Dynamics of magnetic clouds in interplanetary space

    Science.gov (United States)

    Yeh, Tyan

    1987-09-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure.

  9. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Science.gov (United States)

    2010-01-01

    ... air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on the authority of all direct U.S. and foreign carriers to operate in air transportation that they have...

  10. Commercially-driven human interplanetary propulsion systems: Rationale, concept, technology, and performance requirements

    International Nuclear Information System (INIS)

    Williams, C.H.; Borowski, S.K.

    1996-01-01

    Previous studies of human interplanetary missions are largely characterized by long trip times, limited performance capabilities, and enormous costs. Until these missions become dramatically more open-quote open-quote commercial-friendly close-quote close-quote, their funding source and rationale will be restricted to national governments and their political/scientific interests respectively. A rationale is discussed for human interplanetary space exploration predicated on the private sector. Space propulsion system requirements are identified for interplanetary transfer times of no more than a few weeks/months to and between the major outer planets. Nuclear fusion is identified as the minimum requisite space propulsion technology. A conceptual design is described and evolutionary catalyzed-DD to DHe 3 fuel cycles are proposed. Magnetic nozzles for direct thrust generation and quantifying the operational aspects of the energy exchange mechanisms between high energy reaction products and neutral propellants are identified as two of the many key supporting technologies essential to satisfying system performance requirements. Government support of focused, breakthrough technologies is recommended at funding levels appropriate to other ongoing federal research. copyright 1996 American Institute of Physics

  11. Transport of persistent organic pollutants by microplastics in estuarine conditions

    Science.gov (United States)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-03-01

    Microplastics represent an increasing source of anthropogenic contamination in aquatic environments, where they may also act as scavengers and transporters of persistent organic pollutants. As estuaries are amongst the most productive aquatic systems, it is important to understand sorption behaviour and transport of persistent organic pollutants (POPs) by microplastics along estuarine gradients. The effects of salinity sorption equilibrium kinetics on the distribution coefficients (Kd) of phenanthrene (Phe) and 4,4‧-DDT, onto polyvinyl chloride (PVC) and onto polyethylene (PE) were therefore investigated. A salinity gradient representing freshwater, estuarine and marine conditions, with salinities corresponding to 0 (MilliQ water, 690 μS/cm), 8.8, 17.5, 26.3 and 35 was used. Salinity had no significant effect on the time required to reach equilibrium onto PVC or PE and neither did it affect desorption rates of contaminants from plastics. Although salinity had no effect on sorption capacity of Phe onto plastics, a slight decrease in sorption capacity was observed for DDT with salinity. Salinity had little effect on sorption behaviour and POP/plastic combination was shown to be a more important factor. Transport of Phe and DDT from riverine to brackish and marine waters by plastic is therefore likely to be much more dependent on the aqueous POP concentration than on salinity. The physical characteristics of the polymer and local environmental conditions (e.g. plastic density, particle residence time in estuaries) will affect the physical transport of contaminated plastics. A transport model of POPs by microplastics under estuarine conditions is proposed. Transport of Phe and DDT by PVC and PE from fresh and brackish water toward fully marine conditions was the most likely net direction for contaminant transport and followed the order: Phe-PE >> DDT-PVC = DDT-PE >> Phe-PVC.

  12. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    Science.gov (United States)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  13. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  14. One-dimensional radionuclide transport under time-varying conditions

    International Nuclear Information System (INIS)

    Gelbard, F.; Olague, N.E.; Longsine, D.E.

    1990-01-01

    This paper discusses new analytical and numerical solutions presented for one-dimensional radionuclide transport under time-varying fluid-flow conditions including radioactive decay. The analytical solution assumes that all radionuclides have identical retardation factors, and is limited to instantaneous releases. The numerical solution does not have these limitations, but is tested against the limiting case given for the analytical solution. Reasonable agreement between the two solutions was found. Examples are given for the transport of a three-member radionuclide chain transported over distances and flow rates comparable to those reported for Yucca Mountain, the proposed disposal site for high-level nuclear waste

  15. Shenzhen Comprehensive Transport System Planning:An Exploration of Sustainable Urban Transport Development on Condition of Limited Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With "integration" as the direction,Shenzhen Comprehensive Transport Planning integrates the plan,construction and management of all kinds of transport mode in the transport system,and integrates the transport with the social,economic and environment development.The planning specifies the strategic targets,key indicators,development strategies as well as major policies of the comprehensive transport system,which explores an alternative way for the sustainable urban transport development under the condition of limited resources in Shenzhen.

  16. A study of the inferred interplanetary magnetic field polarity periodicities

    International Nuclear Information System (INIS)

    Xanthakis, J.; Tritakis, V.P.; Zerefos, Ch.

    1981-01-01

    A detailed Power Spectrum Analysis applied on the daily polarities of the inferred interplanetary magnetic field, published by Svalgaard, has pointed out that the main periodicity apparent in these data is 27-28 days, which suggests a recurrency of a 2-sector structure. There is also a secondary periodicity of 13-14 days which mainly appears in the yers of the descending branch of the solar cycle and superimposes on the 2-sector structure, transforming it into a 4-sector structure. A strict statistical study of the correlation between the predominant polarity of the interplanetary magnetic field and the heliographic latitude of the Earth, also known as the Rosenberg-Coleman effect, pointed out that perhaps there is a faint correspondence between these two elements, but one cannot speak of a systematic effect. (Auth.)

  17. WAYS TO INCREASE COMPETITIVENESS OF RAILWAY TRANSPORT IN MODERN CONDITIONS

    Directory of Open Access Journals (Sweden)

    P. V. Bech

    2015-07-01

    Full Text Available Purpose. In this paper it is necessary to analyze the types of competition in the transport market in order to find ways to improve the competitiveness of railway transport and to determine the ensuring equal conditions for all market participants by eliminating discrimination in competition. Methodology. Analysis of recent research and publications on the subject was held by the authors. The question of the development of competition, increased competitiveness in railway transport was investigated. Attention is drawn to the fact that due to the decline in traffic volumes on all modes of transport competition may significantly change the usual sphere the effective use of different modes of transport. Every mode of transport occupies a particular segment of the transport market, taking into account its technical and economic features, weakly competing, and in some cases do not compete with each other (except the road transport. However, it is entirely possible competition inside these segments.Findings. The problems of management of competitiveness, including the transport market, which required extensive analysis and serious scientific study, were identified. Originality. As a result of this work the features of transport and production of transport in modern conditions were structured. The dependences of passenger turnover and freight turnover by mode of transport over the past decade were shown. The question of additional profits by providing the cargo owners a range of service was examined. The optimal combination of cost and quality of such services at each transportation company promotes increasing its competitive status. Practical value. Competition between enterprises of the industry put the aim of improving the competitiveness of not only railway subsystems directly involved in technology movement of cargoes and the movement of passengers, but also the organization of infrastructure in the first place – subsystems to expand services

  18. DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Smith, Charles W.; Schwadron, Nathan A.; DeForest, Craig E.

    2013-01-01

    The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF

  19. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    Science.gov (United States)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  20. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Tuleta, M.; Gabla, L. [Jagiellonian Univ., Institute of Physics, Cracow (Poland); Szkarlat, A. [Clinical Children' s Hospital of the Jagiellonian Univ., Medical College, Lab. of Microbiology, Cracow (Poland)

    2005-04-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  1. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Szkarlat, A.

    2005-01-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  2. Observations of the interplanetary sector structure up to heliographic latitudes of 160: Pioneer 11

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Rosenberg, R.L.

    1978-01-01

    A study of the interplanetary sector structure at heliographic latitudes up to 16 0 N is reported. The study is based on magnetic field measurements made on board Pioneer 11 as the spacecraft traveled along the post-Jupiter-encounter trajectory. Preliminary measurements are used to determine the dominant polarity of the interplanetary magnetic field during 43 successive solar rotations including Pioneer's ascent to its maximum latitude and motion inward from 5 to 3.7 AU. As the latitude of Pioneer increased, the dominant polarity became continually more positive, corresponding to an outward-directed solar interplanetary field. When the spacecraft reached the highest latitude, the usual sector structure had essentially disappeared. A histogram of the field longitude angle, based on data acquired during 1 month at 16 0 latitude, shows an almost total absence of inward-directed fields. A comparison with interplanetary field polarities in the ecliptic, as inferred from geomagnetic field variations, rules out the possibility that a time variation rather than a latitude dependence is responsible. The Pioneer 11 observations imply that the boundary between adjacent sectors corresponds physically to a current sheet surrounding the sun and lying near parallel to the solar equatorial plane. Above this current sheet, in the northern hemisphere, the field polarity at this phase of the solar cycle is outward, and below the current sheet, in the southern hemisphere, it is inward. The Pioneer observations confirm earlier theoretical suggestions regarding the existence and equatorial orientation of this current sheet. The properties of the current sheet and some major implications and questions associated with it are discussed. It is shown that the radial component of the sheet current is compensated by the distributed currents in the northern and southern hemispheres associated with the spiraled interplanetary field

  3. Ruthenium transport experiments in air ingress accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Teemu, Karkele; Ulrika, Backman; Ari, Auvinen; Unto, Tapper; Jorma, Jokiniemi [VTT Technical Research Centre of Finland, Fine Particles (Finland); Riitta, Zilliacus; Maija, Lipponen; Tommi, Kekki [VTT Technical Research Centre of Finland, Accident Management (Finland); Jorma, Jokiniemi [Kuopio Univ., Dept. of Environmental Sciences, Fine Particle and Aerosol Technology Lab. (Finland)

    2007-07-01

    In this study the release, transport and speciation of ruthenium in conditions simulating an air ingress accident was studied. Ruthenium dioxide was exposed to oxidising environment at high temperature (1100-1700 K) in a tubular flow furnace. At these conditions volatile ruthenium species were formed. A large fraction of the released ruthenium was deposited in the tube as RuO{sub 2}. Depending on the experimental conditions 1-26 wt% of the released ruthenium was trapped in the outlet filter as RuO{sub 2} particles. In stainless steel tube 0-8.8 wt% of the released ruthenium reached the trapping bottle as gaseous RuO{sub 4}. A few experiments were carried out, in which revaporization of ruthenium deposited on the tube walls was studied. In these experiments, oxidation of RuO{sub 2} took place at a lower temperature. During revaporization experiments 35-65 % of ruthenium was transported as gaseous RuO{sub 4}. In order to close mass balance and achieve better time resolution 4 experiments were carried out using a radioactive tracer. In these experiments ruthenium profiles were measured. These experiments showed that the most important retention mechanism was decomposition of gaseous RuO{sub 3} into RuO{sub 2} as the temperature of the furnace was decreasing. In these experiments the transport rate of gaseous ruthenium was decreasing while the release rate was constant.

  4. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  5. Jovian electron bursts: Correlation with the interplanetary field direction and hydromagnetic waves

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Chenette, D.L.; Conlon, T.F.; Simpson, J.A.

    1976-01-01

    The bursts of relativistic electrons detected on Pioneer 10 upstream from Jupiter and within 400r/subj/ of the planet have been found to be correlated with the interplanetary magnetic field. In the three examples upon which this study is based, during the month prior to the Pioneer 10 encounter, electrons with energies between 3 and 6 MeV escaping from Jupiter's magnetosphere were observed only when the interplanetary magnetic field was along the Jupiter-spacecraft line. In addition, large-amplitude interplanetary waves with characteristic periods of 10 min were observed and found to be well correlated with intervals during which the field was along the Jupiter-spacecraft line. Abrupt changes in the field away from the preferred direction caused equally abrupt terminations of the waves with an accompanying reduction in the electron flux. These results are consistent with propagation of the electrons from Jupiter to Pioneer along, rather than across, the magnetic field lines. The direction of the interplanetary magnetic field is apparently not affected by the electron bursts or by other particles from Jupiter. The average Parker spiral direction is clear with no enhancement in the Jupiter-spacecraft direction. Two alternative possibilities are considered for the origin of the waves. If they were generated near Jupiter, they would have to propagate to the spacecraft in the whistler mode. The expected attenuation of these waves over distances of several hundred r/subj/ an their long travel times make this explanation unattractive. Alternatively, hydromagnetic wave generation by Jovian charged particles, presumably the relativistic electrons themselves, as they travel upstream, appears to be an attractive explanation

  6. August 1972 solar-terrestrial events: interplanetary magnetic field observations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E J [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-10-01

    A review is presented of the interplanetary magnetic field observations acquired in early August 1972 when four solar flares erupted in McMath Plage region 1976. Measurements of the interplanetary field were obtained by Earth satellites, HEOS-2 and Explorer 41, and by Pioneers 9 and 10 which, by good fortune, were radially aligned and only 45/sup 0/ east of the Earth-Sun direction. In response to the four flares, four interplanetary shocks were seen at Earth and at Pioneer 9, which was then at a heliocentric distance of 0.78 AU. However, at Pioneer 10, which was 2.2 AU from the Sun, only two forward shocks and one reverse shock were seen. The available magnetic field data acquired in the vicinity of the shocks are presented. Efforts to identify corresponding shocks at the several locations and to deduce their velocities of propagation between 0.8 and 2.2 AU are reviewed. The early studies were based on average velocities between the Sun and Pioneer 9, the Sun and Earth and the Sun and Pioneer 10. A large deceleration of the shocks between the Sun and 0.8 AU as well as between 0.8 and 2.2 AU was inferred. More recently the local velocities of the shocks at Pioneers 9 and 10 have become available. A comparision of these velocities shows little, if any, deceleration between 0.8 and 2.2 AU and implies that most or all of the deceleration actually occurred nearer the Sun. Evidence is also presented that shows a significant departure of the flare-generated shock fronts from spherical symmetry.

  7. Solar events and their influence on the interplanetary medium

    Science.gov (United States)

    Joselyn, Jo Ann

    The Workshop on Solar Events and Their Influence on the Interplanetary Medium very successfully met its goal “to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances.” Organized by the National Oceanic and Atmospheric Administration Space Environment Laboratory and funded by the national Aeronautics and Space Administration (NASA) Solar Maximum Mission Principal Investigators and the Space Environment Laboratory, this meeting was held held September 8—11, 1986, in Estes Park, Colo. A total of 94 scientists, including representatives from Argentina, Germany, Japan, France, Scotland, England, Australia, Poland, Israel, Greece, China and the United States attended. A novel meeting schedule was adopted, with no formal presentations other than a keynote address by Rainer Schwenn of the Max Planck Institut fur Aeronomie (Federal republic of Germany), entitled “Transients on the Sun and Their Effects on the Interplanetary Medium: An Interdisciplinary Challenge” a Gordon A. Newkirk Memorial talk on “Early History of the Coronagraph” by John Eddy of the University Corporation for Atmospheric Research Office of Interdisciplinary Earth Studies (Boulder, Colo.); and introductory and summary statements by working group leaders. Instead, there were three working groups, which met either independently or with one of the other groups according to a prearranged plan. Suggested roundtable discussion topics were distributed in advance to the members of each group, but primarily, each group was expected to think of questions for the other groups and respond to requests for information from them. As may be expected, for some topics there was group consensus. Other topics were contentious.

  8. The near-Earth and interplanetary plasma

    International Nuclear Information System (INIS)

    Al'pert, Y.L.

    1983-01-01

    This monograph is an extensive revision and expansion of the original paper which first appeared in 1976 in the encyclopedia, Handbuch der Physik. It presents a detailed and comprehensive treatment of wave processes and of the motion of bodies through plasma around moving bodies such as artificial satellites, and with natural plasma waves and oscillations. Contents, abridged: General properties of the near-Earth and interplanetary plasma. Refractive indexes of cold magnetoplasma. Growth rates for the different oscillation branches. Nonlinear effects in a plasma. Group velocity, trajectories, and trapping of electromagnetic waves in a magnetoplasma. Indexes

  9. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  10. Optimizing interplanetary trajectories with deep space maneuvers

    Science.gov (United States)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  11. A new propulsion concept for interplanetary missions

    Science.gov (United States)

    Dujarric, C.

    2001-11-01

    When tons of payload must be brought back from the planets to Earth, the current launch-system technology hits size limitations. The huge Saturn-V launcher that enabled the Apollo missions to go to the Moon would be dwarfed by a single launcher capable of sending men to a destination like Mars and bringing them back. Keeping interplanetary missions within a reasonable size and cost therefore requires technological progress in terms of both vehicle weight reduction and propulsion efficiency.

  12. From conservative to reactive transport under diffusion-controlled conditions

    Science.gov (United States)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  13. Tracking a major interplanetary disturbance

    International Nuclear Information System (INIS)

    Tappin, S.J.; Hewish, A.; Gapper, G.R.

    1983-01-01

    The severe geomagnetic storm which occurred during 27-29 August 1978 was remarkable because it arrived unexpectedly and was not related to a solar flare or long-lived coronal hole. Observations on 900 celestial radio sources show that the storm was associated with a large-scale region causing enhanced interplanetary scintillation which enveloped the Earth at the same time. The disturbance was first detected on 26 August, when the outer boundary had reached a distance of about 0.8 a.u. from the Sun and it was tracked until 30 August. The enhancement was followed by a fast solar wind stream and its shape suggests that it was a compression zone caused by the birth of the stream. (author)

  14. Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ming; Yang, Liping; Liu, Ying D.; Keiji, Hayashi; Li, Huichao [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Didcot (United Kingdom); Li, Bo; Xia, Lidong, E-mail: mxiong@spacweather.ac.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China)

    2017-07-20

    Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.

  15. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  16. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an appa...... on the distribution and motion of interplanetary (>μm sized) dust....

  17. The thickness of the interplanetary collisionless shock waves

    International Nuclear Information System (INIS)

    Pinter, S.

    1980-05-01

    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  18. 3rd Interplanetary Network Gamma-Ray Burst Website

    Science.gov (United States)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  19. The neutron transport with general boundary conditions (II)

    International Nuclear Information System (INIS)

    Boulanouar, Mohamed

    2012-01-01

    This Note deals with the one-dimensional transport operator, on an unbounded domain, endowed with general boundary conditions. We show the generation of a strongly continuous semigroup and we study its spectral properties. In particular, we prove the existence of a leading eigenvalue. (author)

  20. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    Science.gov (United States)

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  2. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  3. An Alternative Interpretation of the Relationship between the Inferred Open Solar Flux and the Interplanetary Magnetic Field

    Science.gov (United States)

    Riley, Pete

    2007-01-01

    Photospheric observations at the Wilcox Solar Observatory (WSO) represent an uninterrupted data set of 32 years and are therefore unique for modeling variations in the magnetic structure of the corona and inner heliosphere over three solar cycles. For many years, modelers have applied a latitudinal correction factor to these data, believing that it provided a better estimate of the line-of-sight magnetic field. Its application was defended by arguing that the computed open flux matched observations of the interplanetary magnetic field (IMF) significantly better than the original WSO correction factor. However, no physically based argument could be made for its use. In this Letter we explore the implications of using the constant correction factor on the value and variation of the computed open solar flux and its relationship to the measured IMF. We find that it does not match the measured IMF at 1 AU except at and surrounding solar minimum. However, we argue that interplanetary coronal mass ejections (ICMEs) may provide sufficient additional magnetic flux to the extent that a remarkably good match is found between the sum of the computed open flux and inferred ICME flux and the measured flux at 1 AU. If further substantiated, the implications of this interpretation may be significant, including a better understanding of the structure and strength of the coronal field and I N providing constraints for theories of field line transport in the corona, the modulation of galactic cosmic rays, and even possibly terrestrial climate effects.

  4. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  5. Evolution and interaction of large interplanetary streams

    International Nuclear Information System (INIS)

    Whang, Y.C.; Burlaga, L.F.

    1985-02-01

    A computer simulation for the evolution and interaction of large interplanetary streams based on multi-spacecraft observations and an unsteady, one-dimensional MHD model is presented. Two events, each observed by two or more spacecraft separated by a distance of the order of 10 AU, were studied. The first simulation is based on the plasma and magnetic field observations made by two radially-aligned spacecraft. The second simulation is based on an event observed first by Helios-1 in May 1980 near 0.6 AU and later by Voyager-1 in June 1980 at 8.1 AU. These examples show that the dynamical evolution of large-scale solar wind structures is dominated by the shock process, including the formation, collision, and merging of shocks. The interaction of shocks with stream structures also causes a drastic decrease in the amplitude of the solar wind speed variation with increasing heliocentric distance, and as a result of interactions there is a large variation of shock-strengths and shock-speeds. The simulation results shed light on the interpretation for the interaction and evolution of large interplanetary streams. Observations were made along a few limited trajectories, but simulation results can supplement these by providing the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. The use of a quantitative nonlinear simulation model including shock merging process is crucial in the interpretation of data obtained in the outer heliosphere

  6. Motion of the sources for type II and type IV radio bursts and flare-associated interplanetary disturbances

    Science.gov (United States)

    Sakurai, K.; Chao, J. K.

    1974-01-01

    Shock waves are indirectly observed as the source of type II radio bursts, whereas magnetic bottles are identified as the source of moving metric type IV radio bursts. The difference between the expansion speeds of these waves and bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the bottles behave quite differently from the waves and that the bottles are generally much slower than the waves. It has been suggested that the waves are related to flare-associated interplanetary disturbances which produce SSC geomagnetic storms. These disturbances may, therefore, be identified as interplanetary shock waves. The relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space is briefly discussed.

  7. Pituitary-adrenocortical adjustments to transport stress in horses with previous different handling and transport conditions

    Directory of Open Access Journals (Sweden)

    E. Fazio

    2016-08-01

    Full Text Available Aim: The changes of the hypothalamic pituitary adrenal (HPA axis response to a long distance transportation results in increase of adrenocorticotropic hormone (ACTH and cortisol levels. The purpose of the study was to quantify the level of short-term road transport stress on circulating ACTH and cortisol concentrations, related to the effect of previous handling and transport experience of horses. Materials and Methods: The study was performed on 56 healthy horses after short-term road transport of 30 km. The horses were divided into four groups, Groups A, B, C, and D, with respect to the handling quality: Good (Groups A and B, bad (Group D, and minimal handling (Group C conditions. According to the previous transport, experience horses were divided as follows: Horses of Groups A and D had been experienced long-distance transportation before; horses of Groups B and C had been limited experience of transportation. Results: One-way RM-ANOVA showed significant effects of transport on ACTH changes in Groups B and C and on cortisol changes in both Groups A and B. Groups A and B showed lower baseline ACTH and cortisol values than Groups C and D; Groups A and B showed lower post-transport ACTH values than Groups C and D. Groups A, B, and C showed lower post-transport cortisol values than Group D. Only Groups A and B horses have shown an adequate capacity of stress response to transportation. Conclusion: The previous transport experience and quality of handling could influence the HPA axis physiological responses of horses after short-term road transport.

  8. The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays

    International Nuclear Information System (INIS)

    Lepping, R.P.; Burlaga, L.F.; Ogilvie, K.W.; Tsurutani, B.T.; Lazarus, A.J.; Evans, D.S.; Klein, L.W.

    1991-01-01

    A large interplanetary magnetic cloud has been observed in the mid-December 1982 data from ISEE 3. It is estimated to have a heliocentric radial extent of approx-gt 0.4 AU, making it one of the largest magnetic clouds yet observed at 1 AU. The magnetic field measured throughout the main portion of the cloud was fairly tightly confined to a plane as it changed direction by 174 degree while varying only moderately in magnitude. Throughout nearly the entire duration of the cloud's passage, IMP 8 was located in the Earth's dawn magnetosheath providing observations of this cloud's interaction with the bow shock and magnetopause; the cloud is shown to maintain its solar wind characteristics during the interaction. Near the end of the cloud passage, at 0806 UT on December 17, ISEE 3 (and IMP 8 at nearly the same time) observed an oblique fast forward interplanetary shock closely coincident in time with a geomagnetic storm sudden commencement. The shock, moving much faster than the cloud (radial speeds of 700 and 390 km/s, respectively, on the average), was in the process of overtaking the cloud. The index Dst decreased monotonically by ∼ 130 nT during the 2-day cloud passage by the Earth and was well correlated with the B z component of the interplanetary magnetic field. There was no significant decrease in the cosmic ray intensity recorded by ground-based neutron monitors at this time of rather strong, smoothly changing fields. However, a Forbush decrease did occur immediately after the interplanetary shock, during a period of significant field turbulence. Thus a large, smooth, interplanetary helical magnetic field configuration engulfing the Earth does not necessarily deflect cosmic rays sufficiently to cause a Forbush decrease, but there is a suggestion that such a decrease may be caused by particle scattering by turbulent magnetic fields

  9. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.

    2016-01-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  10. Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    Science.gov (United States)

    McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro

    2016-01-01

    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.

  11. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  12. Utilization of emergency medical transports and hospital admissions among persons with behavioral health conditions.

    Science.gov (United States)

    Cuddeback, Gary; Patterson, P Daniel; Moore, Charity Galena; Brice, Jane H

    2010-04-01

    Emergency medical services transport and emergency department misuse among persons with behavioral health conditions is a concern. Administrative data were used to examine medical transports and hospital admissions among persons with behavioral health conditions. Data on 70,126 medical transports to emergency departments in three southeastern counties were analyzed. Compared with general medical transports, fewer behavioral health transports resulted in a hospital admission. Among behavioral health transports, persons with schizophrenia were 2.62 times more likely than those with substance use disorders to be admitted, and persons with mood disorders were 4.36 times more likely than those with substance use disorders to be admitted. Also, among behavioral health transports, rural transports were less likely than more urban transports to result in a hospital admission. More training of emergency medical services personnel and more behavioral health crisis resources, especially targeting rural areas and substance use disorders, are needed.

  13. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  14. First Taste of Hot Channel in Interplanetary Space

    Science.gov (United States)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  15. EU road freight transport sector : work and employment conditions

    NARCIS (Netherlands)

    Houtman, I.L.D.; Klein Hesselink, D.J.; Bossche, S.N.J. van den; Berg, R. van der; Heuvel, F. van den

    2004-01-01

    International competition and technological developments have had both positive and negative effects on the road freight transport sector. These changes have significantly influenced work and employment conditions in the sector. As this report highlights, creating more and better jobs while

  16. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  17. Automated interplanetary shock detection and its application to Wind observations

    Czech Academy of Sciences Publication Activity Database

    Krupařová, Oksana; Maksimovic, M.; Šafránková, J.; Němeček, Z.; Santolík, Ondřej; Krupař, Vratislav

    2013-01-01

    Roč. 118, č. 8 (2013), 4793–4803 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : Interplanetary shocks * instruments and techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50468/abstract

  18. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    Szenknect, St.

    2003-10-01

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  19. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  20. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  1. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    Science.gov (United States)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    E). We also study the effect of vertical component of interplanetary magnetic field (IMF) on the variation of the magnitude of H component during storm time of April, July and. November 2004. Results show that before sudden storm commencement. (SSC) time magnitude of H component and IMF show smooth variation but.

  3. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    Science.gov (United States)

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-10-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.

  4. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  5. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    Science.gov (United States)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  6. Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle

    Science.gov (United States)

    Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.

    1976-01-01

    The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.

  7. Interplanetary variability recorded by the sled instrument aboard the Phobos spacecraft during that period of solar cycle 22 characterized by a transition from solar minimum- to solar maximum-dominated conditions

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.M.P. (Saint Patrick' s Coll., Maynooth (Ireland)); Afonin, V.V.; Gringauz, K.I. (AN SSSR, Moscow (USSR). Space Research Inst.) (and others)

    Twin telescope particle detector systems SLED-1 and SLED-2, with the capability of monitoring electron and ion fluxes within an energy range spanning approximately 30 keV to a few megaelectron volts, were individually launched on the two spacecraft (Phobos-2 and Phobos-1, respectively) of the Soviet Phobos Mission to Mars and its moons in July 1988. A short description of the SLED instrument and a preliminary account of representative solar-related particle enhancements recorded by SLED-1 and SLED-2 during the Cruise Phase, and by SLED-1 in the near Martian environment (within the interval 25 July 1988-26 March 1989) are presented. These observations were made while the interplanetary medium was in the course of changing over from solar minimum- to solar maximum-dominated conditions and examples are presented of events associated with each of these phenomenological states. (author).

  8. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    Science.gov (United States)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  9. Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Zakharov, L.E.; Gorelenkova, M.V.

    2001-01-01

    This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration

  10. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  11. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H Component. Rajni Devi Smita Dubey Shailendra Saini Babita Devi Ajay Dhar S. K. Vijay A. K. Gwal. Volume 29 Issue 1-2 March-June 2008 pp 281-286 ...

  12. Interplanetary Magnetic Field Power Spectrum Variations in the Inner Heliosphere: A Wind and MESSENGER Study

    Science.gov (United States)

    Szabo, Adam; Koval, A.

    2011-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the similar observations made by the MESSENGER spacecraft in the inner heliosphere affords an opportunity to compare magnetic field power spectral density variations as a function of radial distance from the Sun under different solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The powe'r spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. Wind and MESSENGER magnetic fluctuations are compared for times when the two spacecraft are close to radial and Parker field alignment. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.

  13. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  14. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Marsh, M. S.; Dalla, S.; Kelly, J.; Laitinen, T.

    2013-01-01

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations

  15. Implications of the quasi-neutrality condition for neoclassical transport in stellarators

    International Nuclear Information System (INIS)

    Beidler, C.D.; Maassberg, H.

    2005-01-01

    In conventional stellarator neoclassical theory, the transport coefficients are determined so as to satisfy the so-called ambipolarity constraint on the radial particle fluxes but without regard to the additional requirement that the underlying solutions of the kinetic equation also fulfill local quasi-neutrality. This neglect is consistent with the assumption that density, n and electrostatic potential, Φ, are constant on a flux surface and is justified in the literature with analytic scaling arguments which demonstrate that quasi-neutrality introduces variations of n and Φ on a flux surface which have only a modest impact on bulk-plasma transport. The consequences for impurity transport have not been considered. In this contribution, the implications which the quasi-neutrality condition has for neoclassical transport in stellarators are investigated using a version of the General Solution of the Ripple-Averaged Kinetic Equation (GSRAKE) which accounts for the variation of Φ on flux surfaces. Solutions of the kinetic equation which simultaneously fulfill the ambipolarity and the quasi-neutrality conditions are determined iteratively using standard methods for solving systems of non-linear equations, given specified density and temperature profiles for pure hydrogen plasmas. For a conventional heliotron device, it is shown that quasi-neutrality significantly reduces the radial extent of the region in which multiple solutions of the ambipolarity condition can exist. Especially in the plasma periphery, where strong density and temperature gradients are found, the magnitude of the 'ion' root is reduced significantly leading to increased particle and energy fluxes. For strongly drift-optimized stellarators, on the other hand, bulk plasma transport is much less affected. In a small number of cases, the non-linear system of equations produces additional solutions which are not possible when only ambipolarity is enforced, but such cases are rare. Finally, it is

  16. Multiple spacecraft observations of interplanetary shocks: characteristics of the upstream ulf turbulence

    International Nuclear Information System (INIS)

    Russell, C.T.; Smith, E.J.; Tsurutani, B.T.; Gosling, J.T.; Bame, S.J.

    1982-01-01

    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. We invert an overdetermined set of equations to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals we then calculate the Mach number and angle between the interplanetary magnetic field and the shock normal for each shock. These parameters allow us to separate the upstream waves into two classes: whistler-mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right-hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum

  17. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  18. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.

    2001-01-01

    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  19. Long-term Regularities in Distribution of Global Solar and Interplanetary Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Pavel

    2013-01-01

    Roč. 37, č. 2 (2013), s. 637-642 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA300030808 Institutional support: RVO:67985815 Keywords : interplanetary magnetic field * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. The role of automatic control in future interplanetary spaceflight

    Science.gov (United States)

    Scull, J. R.; Moore, J. W.

    1976-01-01

    The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.

  1. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  2. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  3. Autonomous aerobraking for low-cost interplanetary missions

    Science.gov (United States)

    Carrelli, David; O'Shaughnessy, Daniel; Strikwerda, Thomas; Kaidy, James; Prince, Jill; Powell, Richard

    2014-01-01

    Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3-6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.

  4. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    Science.gov (United States)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  5. Dependence of the amount of open magnetic flux on the direction of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Akasofu, S.I.; Ahn, B.H.

    1980-01-01

    The power generated by the solar wind-magnetosphere dynamo is proportional to the amount of the open magnetic flux phi. It is difficult to use this fact in determining observationally the dependence of phi on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, PHI is very closely proportional to sin(theta/2) for a wide range of the intensity of the uniform field, where theta denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates. (author)

  6. Transport of radionuclides in the atmosphere during complex meteorological conditions

    International Nuclear Information System (INIS)

    Antic, D.; Telenta, B.

    1991-01-01

    Radionuclides from various sources (nuclear and fossil fuel power plants, nuclear facilities, medical facilities, etc.) are being released to the atmosphere. The meteorological conditions determine the atmospheric turbulence, dispersion, and removal processes of the radionuclides. A two-dimensional version of the cloud model based on the Klemp-Wilhelmson dynamic and Lin et al.'s microphysics and thermodynamics has been adapted and used to simulate the transport of radionuclides emitted from a power plant or other source to the atmosphere. Calculations of the trajectories and radii for a few puffs are included in this paper. These numerical investigations show that the presented model can be used for the transport simulation of radionuclides and for the assessment of the radiological impact of power plants and other sources in safety assessments and comparative studies. Because it can simulate puff trajectories, this model is especially valuable in the presence of complex meteorological conditions

  7. Suprathermal protons in the interplanetary solar wind

    Science.gov (United States)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  8. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  9. A Transporter of Ibuprofen is Upregulated in MDCK I Cells under Hyperosmotic Culture Conditions

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Rasmussen, Rune N; Mo, Junying

    2016-01-01

    Ibuprofen is a widely used drug. It has been identified as an inhibitor of several transporters, but it is not clear if ibuprofen is a substrate of any transporter itself. In the present work, we have characterized a transporter of ibuprofen, which is upregulated by hyperosmotic culture conditions...... in Madin-Darby canine kidney I (MDCK I) renal cells. [(3)H]-Ibuprofen uptake rate was measured in MDCK I cell cultured under normal (300 mOsm) and hyperosmotic (500 mOsm) conditions. Hyperosmotic conditions were obtained by supplementing urea, NaCl, mannitol, or raffinose to culture medium. The effect...... of increased osmolarity was investigated for different incubation times. [(3)H]-Ibuprofen uptake in MDCK I cells was upregulated by hyperosmotic culture condition, and was saturable with a Km value of 0.37 ± 0.08 μM and a Vmax of 233.1 ± 17.2 pmol· cm(-2)· min(-1). Racemic [(3)H]-ibuprofen uptake could...

  10. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  11. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    International Nuclear Information System (INIS)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H.; Fauth, A.C.; Kemp, E.; Manganote, E.J.T.; Oliveira, M.A. Leigui de; Miranda, P.; Ticona, R.; Velarde, A.

    2012-01-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  12. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Fauth, A.C.; Kemp, E.; Manganote, E.J.T. [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Oliveira, M.A. Leigui de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Miranda, P.; Ticona, R.; Velarde, A. [Universidad Mayor de San Andres (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Fisicas

    2012-07-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  13. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  14. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  15. Convection in the polar ionosphere and the state of the interplanetary medium

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    A model of the continuous distribution of electric fields (E) controlled by parameters of the interplanetary medium has been developed which reproduces all the empirically known types of E distributions. This model is used to calculate the corresponding types of plasma convection in the polar ionosphere, represented by two-, three-, and four-vortex structures.

  16. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    Science.gov (United States)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  17. Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions

    Science.gov (United States)

    Kiplinger, Alan L.

    1998-01-01

    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare.

  18. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  19. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  20. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, Satish G. [Rochester Inst. of Technology, Rochester, NY (United States); Lu, Zijie [Rochester Inst. of Technology, Rochester, NY (United States); Rao, Navalgund [Rochester Inst. of Technology, Rochester, NY (United States); Sergi, Jacqueline [Rochester Inst. of Technology, Rochester, NY (United States); Rath, Cody [Rochester Inst. of Technology, Rochester, NY (United States); McDade, Christopher [Rochester Inst. of Technology, Rochester, NY (United States); Trabold, Thomas [General Motors, Honeoye Falls, NY (United States); Owejan, Jon [General Motors, Honeoye Falls, NY (United States); Gagliardo, Jeffrey [General Motors, Honeoye Falls, NY (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Yassar, Reza S. [Michigan Technological Univ., Houghton, MI (United States); Medici, Ezequiel [Michigan Technological Univ., Houghton, MI (United States); Herescu, Alexandru [Michigan Technological Univ., Houghton, MI (United States)

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  1. Dayside auroras in relation to the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.; Deehr, C.S.

    1986-01-01

    Dynamics of dayside auroras, including cusp emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated by optical ground-based observations from Svalbard, Norway, and IMF data from various satellites. Combined with the Svalbard program, simultaneous night-side observations from Alaska provide information on the large-scale behaviour of the auroral oval. Drift characteristics, spatial scale, time of duration and repetition frequency of auroral structures on the day-side, occuring at the time of large-scale oval expansions (IMF B z z positive and negative values

  2. Possible mechanism of the interplanetary medium effect on the diurnal rotation rate of the Earth

    International Nuclear Information System (INIS)

    Krymskij, P.F.

    1993-01-01

    Mechanism is proposed for effect of the solar wind and interplanetary magnetic field on the Earth rotation. In the mechanism base is Hall current generation in the plasma layer of the magnetosphere tail

  3. Competitiveness of the railway transportation in the conditions of functioning of the infrastructure new organizational-economic mechanism

    Directory of Open Access Journals (Sweden)

    M.I. Mishchenko

    2012-08-01

    Full Text Available The transport infrastructure of railways of the countries of EU-27 in the conditions of functioning new organizational-economic mechanism, and also dynamics of level of competitiveness of a railway transportation as result of reforming of railways of the countries of EU-27, in the conditions of realisation of the European transport legislation is investigated.

  4. Turbulence in the solar atmosphere and in the interplanetary plasma

    International Nuclear Information System (INIS)

    Chashei, I.V.; Shishov, V.I.

    1984-01-01

    Analysis of the basic properties of the turbulence in the solar chromosphere, corona, and supercorona (the plasma acceleration zone) indicates that the energy of acoustic disturbances generated at the photospheric level will be conveyed outward into the interplanetary plasma jointly by nonlinear wave interactions and wave propagation effects. Above the chromosphere, damping will be strongest at heights Rroughly-equal0.4 R/sub sun/ for acoustic-type waves and at Rroughly-equalR/sub sun/ for Alfven waves

  5. Nonlinear generation of the fundamental radiation of interplanetary type III radio bursts

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Alves, M.V.

    1988-01-01

    A new generation mechanism of interplanetary type III radio bursts at the fundamental electron plasma frequency is discussed. It is shown that the electromagnetic oscillating two-stream instability, driven by two oppositely propagating Langmuir waves, can account for the experimental observations. In particular, the major difficulties encountered by the previously considered electromagnetic decay instability are removed. 19 references

  6. Correlation Between Monthly Cumulative Auroral Electrojet Indices, DST Index and Interplanetary Electric Field During Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2005-12-01

    Full Text Available Magnetospheric substorms occur frequently during magnetic storms, suggesting that the two phenomena are closely associated. We can investigate the relation between magnetospheric substorms and magnetic storms by examining the correlation between AE and Dst indices. For this purpose, we calculated the monthly cumulative AU, |AL| and |Dst| indices. The correlation coefficient between the monthly cumulative |AL| and |Dst| index is found to be 0.60, while that between monthly cumulative AU and |Dst| index is 0.28. This result indicates that substorms seem to contribute to the development of magnetic storms. On the other hand, it has been reported that the interplanetary electric field associated with southward IMF intensifies the magnetospheric convection, which injects charged particles into the inner magnetosphere, thus developing the ring current. To evaluate the contribution of the interplanetary electric field to the development of the storm time ring current belt, we compared the monthly cumulative interplanetary electric field and the monthly cumulative Dst index. The correlation coefficient between the two cumulative indices is 0.83 for southward IMF and 0.39 for northward IMF. It indicates that magnetospheric convection induced by southward IMF is also important in developing magnetic storms. Therefore, both magnetospheric substorm and enhanced magnetospheric convection seem to contribute to the buildup of magnetic storm.

  7. Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: intermediate shocks?

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2005-01-01

    Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in

  8. Characteristics of Energy Transport of Li-conditioned and non-Li-conditioned Plasmas in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Ding, S.; Kaye, S.M.; Bell, R.E.; Kaita, R.; Kugel, H.; LeBlanc, B.P.; Paul, S.; Wan, B.

    2009-01-01

    The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and are reported here. Transport trends and dependences have been isolated, and it is found that both electron and ion energy transport coefficients have strong dependences on local values of n(del)T, which in turn is strongly dependent on local current density profile. Without identifying this dependence, it is difficult to identify others, such as the dependence of transport coefficients on B p (or q), I p and P heat . In addition, a comparison between discharges with and without Lithium wall conditioning has been made. While the trends in the two sets of data are similar, the thermal transport loss, especially in the electron channel, is found to strongly depend on the amount of Lithium deposited, decreasing by up to 50% of its no-Lithium value.

  9. Global Optimization of Interplanetary Missions with, Hybrid Propulsion, Multi-Stage Spacecraft, Aerocapture, and Planetary Atmospheric Probes

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this IRAD is to expand the capability of Goddard’s interplanetary trajectory preliminary design tool, the Evolutionary Mission Trajectory Generator...

  10. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 1: A new geomagnetic data composite

    Science.gov (United States)

    Lockwood, M.; Barnard, L.; Nevanlinna, H.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Davis, C. J.

    2013-11-01

    We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845-1890 (inclusive) and 1893-1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891-1892 and 1897-1907) and the nearby Seddin observatories (1908-1910) and intercalibration achieved using the Potsdam-Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2-6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used

  11. A structural evaluation of the Shippingport reactor pressure vessel for transport impact conditions

    International Nuclear Information System (INIS)

    Witte, M.C.; Chou, C.K.

    1989-01-01

    The Shippingport Atomic Power Station in Shippingport, Pennsylvania, is being decommissioned and dismantled. This government-leased property will be returned, in a radiologically safe condition, to its owner. All radioactive material is being removed from the Shippingport Station and transported for burial to the DOE Hanford Reservation in Richland, Washington. The reactor pressure vessel (RPV) will be transported by barge to Hanford. This paper describes an evaluation of the structural response of the RPV to the normal and accident impact test conditions as required by the Code of Federal Regulations. 3 refs., 5 figs., 3 tabs

  12. Orbital and angular motion construction for low thrust interplanetary flight

    Science.gov (United States)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  13. Relation of the Dsub(st) index to the azimuth component of the interplanetary magnetic field vector during separate storms

    International Nuclear Information System (INIS)

    Kovalevskij, I.V.; Levitin, A.E.; Fedoseeva, M.K.

    1984-01-01

    A relation between the index Dsub(st) and azimuthal component Bsub(y) of interplanetary magnetic field (IMF) vector during several magnetic storms with Dsub(st) > 100nT is discussed. It is established that the relation between Dsub(st) index and Bsub(y) and Esub(z) component of electric interplanetary field (EIF) is closed than the relation between Dsub(st) and Bsub(z) component of IMF and Esub(y) component of EIF. Correlation coefficients of Dsub(st) and Bsub(y) and Esub(z) differ but slightly from each other

  14. Solar sources of interplanetary southward B/sub z/ events responsible for major magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Tang, F.; Tsurutani, B.T.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J.

    1989-01-01

    Tsurutani et al. [1988] analyzed the 10 intense interplanetary southward B/sub z/ events that led to major magnetic storms (Dst 3.0) are associated with prominence eruptions. For three of the five southward B/sub z/ events in which the driver gases are the causes of the intense southward field leading to magnetic storms, the photospheric fields of the solar sources have no dominant southward component, indicating the driver gas fields do not always result from a simple outward convection of solar magnetic fields. Finally we compare the solar events and their resulting interplanetary shocks and find that the standard solar parameters do not correlate with the strengths of the resulting shocks at 1 AU. The implications are discussed. copyright American Geophysical Union 1989

  15. Charge and current transport in open field lines turbulence: Influence of plasma-surface boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Futtersack, R., E-mail: romain.futtersack@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Universite Paul Sabatier Toulouse, LAPLACE, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Hagelaar, G. [Universite Paul Sabatier Toulouse, LAPLACE, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Ghendrih, Ph.; Simonin, A. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-07-15

    We investigate the impact of both parallel and transverse boundary conditions on the current and charge transport in open field line systems using the TOKAM2D code, which solves a minimal model for interchange turbulence. Various limit test cases are discussed and analyzed. In the parallel direction, the sheath conductivity is found to play an essential role in the stabilization of large-scale potential structures, leading to the formation of transport channel or transport barrier respectively for an insulating end wall or a wall with an enhanced sheath conductivity. On another hand, the addition of transverse boundary conditions intrinsically changes the transport characteristics, influencing both radial profiles and probability density functions. It underlines that in some cases a detailed description of the plasma-wall interaction process is required to get a proper description of the current loop pattern that determines electrostatic turbulent transport.

  16. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  17. Formation condition of internal transport barrier in JT-60U plasmas

    International Nuclear Information System (INIS)

    Koide, Y.; Fujita, T.; Takizuka, T.; Shirai, H.; Hatae, T.; Isayama, A.; Isei, N.; Sakamoto, Y.; Kamada, Y.; Kikuchi, M.

    2001-01-01

    Onset condition of Internal Transport Barrier (ITB) in reversed shear discharges was investigated. Local values of electron density, electron temperature, and ion temperature seem not to be essential for the ITB onset. Remarkable correlation between electron temperature gradient and magnetic shear was observed at the onset. In addition, ITB well outside the q-minimum position was found. Its onset condition seems to be continuous with that observed in negative shear region. (author)

  18. An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Gonzalez, A.; Prestes, A.; Klausner, V. [Laboratory of Physics and Astronomy, IP and D/Universidade do Vale do Paraíba—UNIVAP, São José dos Campos, SP (Brazil); Mendes, O. [Division of Space Geophysics, National Institute for Space Research, São José dos Campos, SP (Brazil); Calzadilla, A. [Department of Space Geophysics, Institute of Geophysics and Astronomy, Havana (Cuba); Domingues, M. O., E-mail: ojeda.gonzalez.a@gmail.com [Associate Laboratory of Applied Computing and Mathematics, National Institute for Space Research, São José dos Campos, SP (Brazil)

    2017-03-10

    Spatio-temporal entropy (STE) analysis is used as an alternative mathematical tool to identify possible magnetic cloud (MC) candidates. We analyze Interplanetary Magnetic Field (IMF) data using a time interval of only 10 days. We select a convenient data interval of 2500 records moving forward by 200 record steps until the end of the time series. For every data segment, the STE is calculated at each step. During an MC event, the STE reaches values close to zero. This extremely low value of STE is due to MC structure features. However, not all of the magnetic components in MCs have STE values close to zero at the same time. For this reason, we create a standardization index (the so-called Interplanetary Entropy, IE, index). This index is a worthwhile effort to develop new tools to help diagnose ICME structures. The IE was calculated using a time window of one year (1999), and it has a success rate of 70% over other identifiers of MCs. The unsuccessful cases (30%) are caused by small and weak MCs. The results show that the IE methodology identified 9 of 13 MCs, and emitted nine false alarm cases. In 1999, a total of 788 windows of 2500 values existed, meaning that the percentage of false alarms was 1.14%, which can be considered a good result. In addition, four time windows, each of 10 days, are studied, where the IE method was effective in finding MC candidates. As a novel result, two new MCs are identified in these time windows.

  19. Microcharacterization of interplanetary dust collected in the earth's stratosphere

    International Nuclear Information System (INIS)

    Fraundorf, P.B.

    1980-01-01

    This thesis involved an examination of the internal structure of thirteen 10 μm aggregates using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively-unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. This thesis shows that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. In the course of this study, significant developments were necessary in the techniques of analysis for: (i) selected area electron diffraction (SAED) data; (ii) energy dispersive x-ray spectra; and (iii) spatial heterogeneity in geological materials. These developments include a method for analysing single crystal SAED patterns using spherical geometry. The method makes possible much more efficient use of diffraction data taken with a goniometer specimen stage. It allows major portions of the analysis to be done by a microprocessor, and it has potential for a wide range of on-line applications. Also, a comprehensive approach to the study of point-to-point heterogeneity in geological materials was developed. Some statistical, comparative, petrographic, and physical applications are described in the thesis

  20. Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.

    Science.gov (United States)

    Martin, R. N.; Belcher, J. W.; Lazarus, A. J.

    1973-01-01

    This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).

  1. Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions

    Directory of Open Access Journals (Sweden)

    Luis Ruiz-Garcia

    2010-05-01

    Full Text Available Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.

  2. Equatorial storm sudden commencements and interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  3. Heliocentric distance dependence of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Behannon, K.W.

    1978-01-01

    Recent and ongoing planetary missions have provided and are continuing to provide extensive observations of the variations of the interplanetary magnetic field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations are observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, a process also contributing to the observed variability of the IMF. Temporal variations on a time scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r -2 , as was predicted by Parker, while the azimuthal component decreases more rapidly than the r -1 dependence predicted by simple theory. Three sets of observations are consistent with r/sup -1.3/ dependence for vertical-barB/sub phi/vertical-bar. The temporal variability of solar wind speed is most likely the predominant contributor to this latter observational result. The long-term average azimuthal component radial gradient is probably consistent with the Parker r -1 dependence when solar wind speed variations are taken into account. The observations of the normal component magnitude vertical-barB/sub theta/vertical-bar are roughly consistent with a heliocentric distance dependence of r/sup -1.4/. The observed radial distance dependence of the total magnitude of the IMF is well described by the Parker formulation. There is observational evidence that amplitudes of fluctuations of the vector field with periods less than 1 day vary with heliocentric distance as approximately r/sup -3/2/, in agreement with theoretical models by Whang and Hollweg

  4. Data Transport Subsystem - The SFOC glue

    Science.gov (United States)

    Parr, Stephen J.

    1988-01-01

    The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.

  5. Pioneer Venus and near-earth observations of interplanetary shocks

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Russell, C.T.; Knudsen, W.C.; Scarf, F.L.

    1987-01-01

    Twenty-three transient interplanetary shocks observed near earth during 1978-1982, and mostly reported in the literature, have also been identified at the Pioneer Venus Orbiter spacecraft. There seems to be a fairly consistent trend for lower shock speeds, farther from the sun. Shock normals obtained using the Pioneer Venus data correspond well with published values from near earth. By referring to the portion of the Pioneer Venus plasma data used here from locations at longitudes within 37 degree of earth, it is found that shocks are weaker at earth, compared with closer to the sun

  6. Electrostatic noise measurement with a pair of spherical probes near interplanetary shocks

    International Nuclear Information System (INIS)

    Solomon, J.; Touzin, F.

    1991-01-01

    In order to obtain accurate measurements of electrostatic noise spectra on board the ISEE 1 satellite, near interplanetary shock waves, the authors perform a detailed theoretical and numerical study of an antenna consisting of a pair of spherical probes. They compute the quasi-thermal electrostatic noise observed theoretically on the antenna by assuming that the solar wind plasma can be properly represented by the sum of two Maxwellian distributions (core and halo). They study the dependence of the electrostatic spectra on the antenna length and on the different plasma parameters, particularly on the density and temperature ratio of the core and of the halo. They show that by also taking into account the instrumental noise and the shot noise on the antenna, a calibration factor can be precisely determined for the antenna that they consider. They display some results obtained from measurements of electrostatic noise spectra behind interplanetary shock waves. Finally, they discuss the real meaning of a specific halo temperature, and they show that, in a first approximation, the theoretical results are only slightly modified when they consider types of distributions other than Maxwellians

  7. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Science.gov (United States)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450

  8. Relations between turbulent regions of interplanetary magnetic field and Jovian decametric radio wave emissions from the main source

    International Nuclear Information System (INIS)

    Oya, H.; Morioka, A.

    1981-01-01

    Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt. Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKAPPA sub(rho). The dynamic cross-correlation between JDW and ΣKAPPAsubrho indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period. (author)

  9. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  10. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  11. Particle acceleration in the interplanetary space

    International Nuclear Information System (INIS)

    Tverskoj, B.A.

    1983-01-01

    A review on the problem of particle acceleration in the interplanetary space is given. The main lationship attention is paid to the problem of the re/ between the impact- and turbulent acceleration when an undisturbed magnetic field forms not too small angle THETA > 10 deg with the shock wave front. The following conclusions are drawn. Particle acceleration at the shock wave front is manifested in the explicit form, if the shock wave propagates along a homogeneous (in the 11 cm range) solar wind. The criterion of such an acceleration is the exponential distribution function F approximately vsup(-ν) (v is the particle velocity and ν is the accelerated particle spectrum index) in the low energy range and the conservation of this function at considerable distances behind the front. The presence of an additional turbulent acceleration behind the front is manifested in decreasing ν down to approximately 3.5 in the low energy range and in the spectrum evolution behind the front

  12. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  13. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  14. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical

  15. Photometric data from some photographs of Mars obtained with the Automatic Interplanetary Station 'Mars 3'

    International Nuclear Information System (INIS)

    Botvinova, V.V.; Bugaenko, O.I.; Koval, I.K.; Narajeva, M.K.; Selivanov, A.S.

    1974-01-01

    The results of detailed photometric treatment of Mars photographs obtained with the Automatic Interplanetary Station 'Mars 3' in three wavelengths are given. Photometric maps of the Martian surface have been constructed; a thin layer observed near the limb has been investigated. (Auth.)

  16. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  17. Interplanetary electrons: what is the strength of the Jupiter source

    International Nuclear Information System (INIS)

    Fillius, W.; Ip, Wing-Huen; Knickerbocker, P.

    1977-01-01

    Because there is not enough information to support a rigorous answer, we use a phenomenological approach and conservative assumptions to address the source strength of Jupiter for interplanetary electrons. We estimate that Jupiter emits approximately 10 24 - 10 26 electrons s -1 of energy > 6 MeV, which source may be compared with the population of approximately 3 x 10 28 electrons of the same energy in Jupiter's outer magnetosphere. We conclude that Jupiter accelerates particles at a rate exceeding that of ordinary trapped particle dynamical processes. (author)

  18. Reliability Evaluation Of The City Transport Buses Under Actual Conditions

    Directory of Open Access Journals (Sweden)

    Rymarz Joanna

    2015-12-01

    Full Text Available The purpose of this paper was to present a reliability comparison of two types of city transport buses. Case study on the example of the well-known brands of city buses: Solaris Urbino 12 and Mercedes-Benz 628 Conecto L used at Municipal Transport Company in Lublin was presented in details. A reliability index for the most failure parts and complex systems for the period of time failures was determined. The analysis covered damages of the following systems: engine, electrical system, pneumatic system, brake system, driving system, central heating and air-conditioning and doors. Reliability was analyzed based on Weibull model. It has been demonstrated, that during the operation significant reliability differences occur between the buses produced nowadays.

  19. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 1: A new geomagnetic data composite

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2013-11-01

    Full Text Available We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field variations. This will enable us (in Part 2, Lockwood et al., 2013a to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845–1890 (inclusive and 1893–1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891–1892 and 1897–1907 and the nearby Seddin observatories (1908–1910 and intercalibration achieved using the Potsdam–Seddin sequence. The new index is termed IDV(1d because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010, inspired by the u index of Bartels (1932; however, we revert to using one-day (1d means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2–6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is

  20. Coronal mass ejections, interplanetary shocks in relation with forbush decreases associated with intense geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Patel, Nand Kumar; Prajapati, Mateswari

    2014-01-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  1. Stability studies needed to define the handling and transport conditions of sensitive pharmaceutical or biotechnological products.

    Science.gov (United States)

    Ammann, Claude

    2011-12-01

    Many pharmaceutical or biotechnological products require transport using temperature-controlled systems to keep their therapeutic properties. There are presently no official guidelines for testing pharmaceutical products in order to define suitable transport specifications. After reviewing the current guidance documents, this paper proposes a methodology for testing pharmaceutical products and defining appropriate transport conditions.

  2. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  3. Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials

    Science.gov (United States)

    Barletti, Luigi; Negulescu, Claudia

    2018-05-01

    We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.

  4. Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-03-01

    Many studies have attempted to quantify the coupling of energy from the solar wind into the magnetosphere. In this paper we parameterize the dependence of the magnetopause reconnection rate on interplanetary parameters from the OMNI data set. The reconnection rate is measured as the rate of expansion of the polar cap during periods when the nightside reconnection rate is thought to be low, determined from observations by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet (FUV) imager. Our fitting suggests that the reconnection rate is determined by the magnetic flux transport in the solar wind across a channel approximately 4 RE in width, with a small correction dependent on the solar wind speed, and a clock angle dependence. The reconnection rate is not found to be significantly dependent on the solar wind density. Comparison of the modeled reconnection rate with SuperDARN measurements of the cross-polar cap potential provides broad support for the magnitude of the predictions. In the course of the paper we discuss the relationship between the dayside reconnection rate and the cross-polar cap potential.

  5. Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Zhao, Xiaowei; Zhu, Bei; Yang, Zhongwei, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-10

    We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.

  6. A systematic study of wave conditions and sediment transport near Mormugao harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, M.P.M.

    Wave conditions and the nature of sediment transport in the Mormugao Harbour area have been evaluated in view of the proposed development project of this harbour It has been found from this study that generally high waves will be experienced...

  7. Behaviour of the interplanetary and magnetospheric electric fields during very intense storms

    International Nuclear Information System (INIS)

    Wu, Lei; Gendrin, R.; Higel, B.

    1982-01-01

    A study is made of the role which a positive (northward) component of the interplanetary magnetic field (IMF) Bsub(z) may play in triggering large magnetic storms. The study is made over a 15 year period (1964-1978) by selecting storms with Ksub(p) >= 7 0 and which are preceded by a Sudden Commencement (Ssc). The correlation between the geomagnetic index Ksub(m) and the three-hourly averaged Bsub(z) is established both on a statistical basis and on a case-by-case study. Storms associated with Bsub(z) > 0 are found to be less intense than those associated with Bsub(z) < 0, but major storms can be also triggered by solar wind events associated with a northward IMF. The relation-ship between interplanetary electric field Esub(γ) and Ksub(m) is also given. By using this relation together with the one between Esub(M) and Ksub(m) which has been established in previous studies (where Esub(M) is the magnetospheric convection electric field), it is possible to study the transfer efficiency of the magnetosphere. It is found that the transfer coefficient ΔEsub(M)/ΔEsub(γ) is much smaller for intense storms than for moderate ones, the latter having been studied in a previous paper (Wu Lei et al., 1981)

  8. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  9. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    International Nuclear Information System (INIS)

    Waber, H.N.; Hobbs, M.Y.; Frape, S.K.

    2013-01-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ 37 Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  10. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  11. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    Science.gov (United States)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  12. Interplanetary magnetic field according to measurements on the Fobos-1,-2 space vehicles. 3. Heliospheric substorm of August 5-7, 1988

    International Nuclear Information System (INIS)

    Ivanov, K.G.

    1995-01-01

    Three-phase disturbance of the interplanetary magnetic field was observed by FOBOS-1 and Fobos-2 space vehicles being at 10 million km distance from the Earth and by IMP-8 near-the-Earth satellite. Disturbance configuration and structure demonstrate that passing of nonstandard bend of heliospheric current layer is the reason of it. Structure, intensity and origination of disturbance enable to classify it as belonging to a category of heliospheric substorms. All three phases of interplanetary disturbance were represented in special near-the-Earth geomagnetic variations of polar cap. 9 refs

  13. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  14. Numerical investigations of solute transport in bimodal porous media under dynamic boundary conditions

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2016-04-01

    Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport

  15. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  16. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Waber, H.N. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Hobbs, M.Y. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Nuclear Waste Management Organization (NWMO), 22 St. Clair Avenue East, M4T 2S3 Toronto, Ontario (Canada); Frape, S.K. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ{sup 37}Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  17. Analysis of nuclide transport under natural convection and time dependent boundary condition using TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Javeri, V. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    1995-03-01

    After implementation of TOUGH2 at GRS in summer 91, it was first used to analyse the gas transport in a repository for the nuclear waste with negligible heat generation and to verify the results obtained with ECLIPSE/JAV 92/. Since the original version of TOUGH2 does not directly simulate the decay of radionuclide and the time dependent boundary conditions, it is not a appropriate tool to study the nuclide transport in a porous medium/PRU 87, PRU 91/. Hence, in this paper some modifications are proposed to study the nuclide transport under combined influence of natural convection diffusion, dispersion and time dependent boundary condition. Here, a single phase fluid with two liquid components is considered as in equation of state model for water and brine/PRU 91A/.

  18. Experiment on the diagnostics of the interplanetary and magnetospheric plasma on the ''Venera-11, 12'' automatic interplanetary stations and the ''Prognoz 7'' artificial Earth satellite

    International Nuclear Information System (INIS)

    Vajsberg, O.L.; Gorn, L.S.; Ermolaev, Yu.I.

    1979-01-01

    Solar wind with the Earth magnetosphere are studied. The experiments have been carried out at the ''Venera 11'', ''Venera 12'' automatic interplanetary stations and at the ''Prognoz 7'' artificial satellite of the Earth in 1978-79 with the help of the three identical combined plasma spectrometers. The SCS spectrometer measures the electron, proton and α particle spectra in the energy ranges of 10-200 eV, 250-5000 eV, and 500-10000 eV, respectively. Examples of energy spectra of charged particles are presented. Some characteristics of solar wind and the Earth magnetosphere plasma are discussed

  19. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  20. Sharp Trapping Boundaries in the Random Walk of Interplanetary Magnetic Field Lines

    Science.gov (United States)

    Ruffolo, D.; Chuychai, P.; Meechai, J.; Pongkitiwanichkul, P.; Kimpraphan, N.; Matthaeus, W. H.; Rowlands, G.

    2004-05-01

    Although magnetic field lines in space are believed to undergo a diffusive random walk in the long-distance limit, observed dropouts of solar energetic particles, as well as computer simulations, indicate sharply defined filaments in which interplanetary magnetic field lines have been temporarily trapped. We identify mechanisms that can explain such sharp boundaries in the framework of 2D+slab turbulence, a model that provides a good explanation of solar wind turbulence spectra and the parallel transport of solar energetic particles. Local trapping boundaries (LTBs) are empirically defined as trajectories of 2D turbulence where the mean 2D field is a local maximum. In computer simulations, the filaments (or ``islands'' in the two dimensions perpendicular to the mean field) that are most resistant to slab diffusion correspond closely to the mathematically defined LTBs, that is, there is a mathematical prescription for defining the trapping regions. Furthermore, we provide computational evidence and a theoretical explanation that strong 2D turbulence can inhibit diffusion due to the slab component. Therefore, while these filaments are basically defined by the small-scale topology of 2D turbulence, there can be sharp trapping boundaries where the 2D field is strongest. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NAG5-11603. G.R. thanks Mahidol University for its hospitality and the Thailand Commission for Higher Education for travel support.

  1. Physiological response of invasive mussel Limnoperna fortunei (Dunker, 1857 (Bivalvia: Mytilidae submitted to transport and experimental conditions

    Directory of Open Access Journals (Sweden)

    N. I. S. Cordeiro

    Full Text Available Abstract Successful animal rearing under laboratory conditions for commercial processes or laboratory experiments is a complex chain that includes several stressors (e.g., sampling and transport and incurs, as a consequence, the reduction of natural animal conditions, economic losses and inconsistent and unreliable biological results. Since the invasion of the bivalve Limnoperna fortunei (Dunker, 1857 in South America, several studies have been performed to help control and manage this fouling pest in industrial plants that use raw water. Relatively little attention has been given to the laboratory rearing procedure of L. fortunei, its condition when exposed to a stressor or its acclimation into laboratory conditions. Considering this issue, the aims of this study are to (i investigate L. fortunei physiological responses when submitted to the depuration process and subsequent air transport (without water/dry condition at two temperatures, based on glycogen concentrations, and (ii monitor the glycogen concentrations in different groups when maintained for 28 days under laboratory conditions. Based on the obtained results, depuration did not affect either of the groups when they were submitted to approximately eight hours of transport. The variation in glycogen concentration among the specimens that were obtained from the field under depurated and non-depurated conditions was significant only in the first week of laboratory growth for the non-depurated group and in the second week for the depurated group. In addition, the tested temperature did not affect either of the groups that were submitted to transport. The glycogen concentrations were similar to those of the specimens that were obtained from the field in third week, which suggests that the specimens acclimated to laboratory conditions during this period of time. Thus, the results indicate that the air transport and acclimation time can be successfully incorporated into experimental studies

  2. Reply to Comment on ``Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity'' by C. B. Wang and J. K. Chao

    Science.gov (United States)

    Ballatore, Paola

    2003-10-01

    The paper [2002] (the paper commented) shows that the statistical significance of the correlations between the interplanetary parameters and the geomagnetic indices (Kp or Dst) is generally less significant during the fastest solar wind. On the other hand, at these fast solar wind periods, the significance of the Kp versus Dst correlation is equal to or higher than during slower solar wind. These results, together with further observations related to substorm periods and with previously published findings, are interpreted in terms of a difference in the interplanetary-magnetospheric coupling for solar wind faster or slower than a certain threshold (identified between about 500 and 600 km/s). Specifically, it is suggested that a possible linear approximation of the geomagnetic-interplanetary coupling is more appropriate during solar wind speed (Vsw) slower than this threshold, being nonlinear processes more dominant during the fastest speeds. This reply highlights that the correlation coefficients shown by [2003] are in agreement with these findings. In addition, Wang and Chao show that the statistical significance of the difference between the correlation coefficients for Vsw ≥ 550 km/s and those for Vsw Wang and Chao is wrong. Moreover, Wang and Chao recalculate the correlations between the interplanetary parameters and the ΔDst instead of Dst; in fact they note that the time derivative of this index (not the index itself) is driven by the interplanetary medium. Here we note that on the contrary, they show that the correlation coefficients between interplanetary parameters and Dst are larger than those obtained using ΔDst and we suggest a possible interpretation in terms of nonlinearity.

  3. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  4. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-12

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  5. Compression of the Venusian ionosphere on May 10, 1979, by the interplanetary shock generated by the solar eruption of May 8, 1979

    International Nuclear Information System (INIS)

    Dryer, M.; Perez-de-Tejada, H.; Taylor, H.A. Jr.; Intriligator, D.S.; Mihalov, J.D.; Rompolt, B.

    1982-01-01

    An interplanetary shock wave that was produced by a solar eruption and its associated coronal transient on May 8, 1979, has been 'tracked' through interplanetary space to a rendezvous 2 days later with Venus. The interaction of the shock wave with the ionospheric obstacle at Venus produced a significant compression of the dayside ionosphere. It is believed that the tracking, as it were, was accomplished for the first time via the diagnostic observations provided by Hα and white light imagery near the sun and the plasma and field measurements of two, nearly radially aligned, spacecraft

  6. Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys

    Science.gov (United States)

    Konstantinov, M. S.; Thein, M.

    2017-07-01

    The method developed to avoid the complexity of solving the multipoint boundary value problem while optimizing interplanetary trajectories of the spacecraft with electric propulsion and a sequence of swing-bys is presented in the paper. This method is based on the use of the preliminary problem solutions for the impulsive trajectories. The preliminary problem analyzed at the first stage of the study is formulated so that the analysis and optimization of a particular flight path is considered as the unconstrained minimum in the space of the selectable parameters. The existing methods can effectively solve this problem and make it possible to identify rational flight paths (the sequence of swing-bys) to receive the initial approximation for the main characteristics of the flight path (dates, values of the hyperbolic excess velocity, etc.). These characteristics can be used to optimize the trajectory of the spacecraft with electric propulsion. The special feature of the work is the introduction of the second (intermediate) stage of the research. At this stage some characteristics of the analyzed flight path (e.g. dates of swing-bys) are fixed and the problem is formulated so that the trajectory of the spacecraft with electric propulsion is optimized on selected sites of the flight path. The end-to-end optimization is carried out at the third (final) stage of the research. The distinctive feature of this stage is the analysis of the full set of optimal conditions for the considered flight path. The analysis of the characteristics of the optimal flight trajectories to Jupiter with Earth, Venus and Mars swing-bys for the spacecraft with electric propulsion are presented. The paper shows that the spacecraft weighing more than 7150 kg can be delivered into the vicinity of Jupiter along the trajectory with two Earth swing-bys by use of the space transportation system based on the "Angara A5" rocket launcher, the chemical upper stage "KVTK" and the electric propulsion system

  7. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  8. Cosmic ray anisotropy along with interplanetary transients

    Science.gov (United States)

    Mishra, Rajesh Kumar

    The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.

  9. Modeling of water and solute transport under variably saturated conditions: state of the art

    International Nuclear Information System (INIS)

    Lappala, E.G.

    1980-01-01

    This paper reviews the equations used in deterministic models of mass and energy transport in variably saturated porous media. Analytic, quasi-analytic, and numerical solution methods to the nonlinear forms of transport equations are discussed with respect to their advantages and limitations. The factors that influence the selection of a modeling method are discussed in this paper; they include the following: (1) the degree of coupling required among the equations describing the transport of liquids, gases, solutes, and energy; (2) the inclusion of an advection term in the equations; (3) the existence of sharp fronts; (4) the degree of nonlinearity and hysteresis in the transport coefficients and boundary conditions; (5) the existence of complex boundaries; and (6) the availability and reliability of data required by the models

  10. On the use of a pulsed nuclear thermal rocket for interplanetary travel

    OpenAIRE

    Arias Montenegro, Francisco Javier

    2016-01-01

    The object of this work is a first assessment of the use of a pulsed nuclear thermal rocket for thrust and specific impulse (Isp) augmentation with particular reference to interplanetary travel. The basis of the novel space propulsion idea is the possibility of working in a bimodal fashion where the classical stationary nuclear thermal rocket (NTR) could be switch on or switch off as a pulsed reactor as desired by the mission planners. It was found that the key factor for Isp augmentation ...

  11. Interplanetary scintillations of the 3C 279 radiosource from RATAN-600 observations

    International Nuclear Information System (INIS)

    Shishova, T.D.; Mingaliev, M.G.; AN SSSR, Nizhnij Arkhyz. Spetsial'naya Astrofizicheskaya Observatoriya)

    1980-01-01

    In 1976 and 1977 observations of interplanetary scintillations of the 3C 279 radiosource were carred out at the RATAN-600 at centimeter wavelengths. At Lambda=3.9 cm the index of scintillations gets suturated at the distance R approximately equal to 4 Rsub(Sun) from the Sun. The estimation of solar wind velocity is approximately 140 km/s at R=5Rsub(Sun); it grows up to approximately 400 km/s at R approximately equal to 10 Rsub(Sun)

  12. Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1989-01-01

    The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.

  13. Diffusion of charged particles in strong large-scale random and regular magnetic fields

    International Nuclear Information System (INIS)

    Mel'nikov, Yu.P.

    2000-01-01

    The nonlinear collision integral for the Green's function averaged over a random magnetic field is transformed using an iteration procedure taking account of the strong random scattering of particles on the correlation length of the random magnetic field. Under this transformation the regular magnetic field is assumed to be uniform at distances of the order of the correlation length. The single-particle Green's functions of the scattered particles in the presence of a regular magnetic field are investigated. The transport coefficients are calculated taking account of the broadening of the cyclotron and Cherenkov resonances as a result of strong random scattering. The mean-free path lengths parallel and perpendicular to the regular magnetic field are found for a power-law spectrum of the random field. The analytical results obtained are compared with the experimental data on the transport ranges of solar and galactic cosmic rays in the interplanetary magnetic field. As a result, the conditions for the propagation of cosmic rays in the interplanetary space and a more accurate idea of the structure of the interplanetary magnetic field are determined

  14. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Woch, J.; Lundin, R.

    1992-01-01

    Magnetosheath particle precipitation in the polar cusp region is studied based on Viking hot plasma data obtained on meridional cusp crossings. Two distinctively different regions are commonly encountered on a typical pass. One region is characterized by high-density particle precipitation, with an ion population characterized by a convecting Maxwellian distribution. Typical magnetosheath parameters are inferred for the spectrum of the source population. The spectral shape of the ion population encountered in the second region suggests that here the magnetosheath ions have been energized by about 1 keV, corresponding to an ion velocity gain of about twice the magnetosheath Alfven velocity. The location of the region containing the accelerated plasma is dependent on the IMF B z component. For southward IMF the acceleration region is bounded by the ring current population on the equatorward side and by the unaccelerated magnetosheath plasma precipitation on the poleward side. For northward IMF the region is located at the poleward edge of the region with unaccelerated precipitation. The accelerated ion population is obviously transported duskward (dawnward) for a dawnward (duskward) directed IMF. These observations are interpreted as evidence for plasma acceleration due to magnetopause current sheet disruptions/merging of magnetospheric and interplanetary magnetic flux tubes

  15. Enhanced interplanetary panspermia in the TRAPPIST-1 system.

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-06-27

    We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.

  16. Doppler frequency in interplanetary radar and general relativity

    Science.gov (United States)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  17. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Nonkes, L.J.P.; Homberg, J.R.

    2013-01-01

    Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT)

  18. Two-step photoionization of hydrogen atoms in interplanetary space

    International Nuclear Information System (INIS)

    Gruntman, M.A.

    1990-01-01

    Photoionization is one of the key processes which determine the properties of fluxes of neutral atoms in interplanetary space. A new two-step channel (called indirect) of photoionization of hydrogen atoms is proposed. Hydrogen atoms are at first excited to states with principal quantum number n > 2, then decay to metastable H(2S) states, where they can be photoionized. Competing processes due to the interaction with solar wind plasma and solar radiation are considered and the photoionization rate through the proposed indirect channel is calculated. This rate depends on distance from the Sun as ∝ 1/R 4 at large distances (R > 1-2 a.u.) and as ∝ 1/R 2 at close approaches, where it is higher than the rate of direct photoionization. (author)

  19. Multielement analysis of interplanetary dust particles using TOF-SIMS

    Science.gov (United States)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  20. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  1. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  2. Solar, interplanetary and terrestrial features associated with periods of prolonged positive and negative Dst index

    International Nuclear Information System (INIS)

    Rajaram, G.

    1989-01-01

    From a survey of the published final values of the geomagnetic index D st for the period 1958-1972, we found long time intervals of over 25-30 days, during which this index remained consistently positive (D st +) or negative (D st -). A study is made of relevant parameters on the ground, in the magnetosphere, in the solar wind and on the Sun to seek out systematic features associated with the two conditions. In order to eliminate factors arising from seasonal and solar cycle variations, we selected pairs of D st + and D st - which involve successive months of the same year, or the same month of two successive years. Three parameters which show a systematic difference between D st + and D st - intervals are found to be 1) the state of solar photospheric magnetic fields 2) the flux density of solar MeV protons measured in the magnetosphere and 3) the southward component of the interplanetary magnetic field. While the effect of the last on geomagnetic activity has been well-discussed in the literature, it is suggested that the correlations of the first two to the conditions of D st + and D st - demand a careful scrutiny of the solar-terrestrial relationship. (author)

  3. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    Science.gov (United States)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  4. Long-range transport of air pollution under light gradient wind conditions

    International Nuclear Information System (INIS)

    Kurita, H.; Sasaki, K.; Muroga, H.; Ueda, H.; Wakamatsu, S.

    1985-01-01

    The long-range transport of air pollution on clear days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. Surface-level wind and pressure distributions over a 300 x 300 km area were analyzed, together with concentration isopleths of oxidants and suspended particles produced by photochemical reactions

  5. INTERPLANETARY SUPRATHERMAL He+ AND He++ OBSERVATIONS DURING QUIET PERIODS FROM 1 TO 9 AU AND IMPLICATIONS FOR PARTICLE ACCELERATION

    International Nuclear Information System (INIS)

    Hill, M. E.; Schwadron, N. A.; Hamilton, D. C.; DiFabio, R. D.; Squier, R. K.

    2009-01-01

    We measured quiet-time differential intensities of ∼2-60 keV nucleon -1 He + and He ++ during the 1999-2004, 1-9 AU portion of Cassini's interplanetary cruise to Saturn and found that the He + /He ++ composition ratio grows as the distance from the Sun r increases. An increase in the ratio is expected from the theoretical pickup ion and solar wind intensities, but the absolute He + intensity, counter to the predicted falling r -1 dependence of the density, is actually slightly increasing, and He ++ falls off much more slowly than the r -2 dependence one might expect from a population with a solar source. With an approximately r 2.2 radial dependence, our rigorous numerical transport and acceleration model (with stochastic acceleration) matches the higher-energy (>13 keV nucleon -1 ) measured He + /He ++ composition profiles well, as does our analytical theory. Two acceleration processes are likely needed: the composition ratios are explainable by stochastic acceleration while a velocity-dependent mechanism that acts beyond 1 AU equally on He + and He ++ is required to explain the spatial intensity profiles.

  6. Effects of Transport and Storage Conditions on Gene Expression in Blood Samples.

    Science.gov (United States)

    Malentacchi, Francesca; Pizzamiglio, Sara; Wyrich, Ralf; Verderio, Paolo; Ciniselli, Chiara; Pazzagli, Mario; Gelmini, Stefania

    2016-04-01

    Inappropriate handling of blood samples might induce or repress gene expression and/or lead to RNA degradation affecting downstream analysis. In particular, sample transport is a critical step for biobanking or multicenter studies because of uncontrolled variables (i.e., unstable temperature). We report the results of a pilot study implemented within the EC funded SPIDIA project, aimed to investigate the role of transport and storage of blood samples containing and not containing an RNA stabilizer. Blood was collected from a single donor both in EDTA and in PAXgene Blood RNA tubes. Half of the samples were sent to a second laboratory both at room temperature and at 4°C, whereas the remaining samples were stored at room temperature and at 4°C. Gene expression of selected genes (c-FOS, IL-1β, IL-8, and GAPDH) known to be induced or repressed by ex vivo blood handling and of blood-mRNA quality biomarkers identified and validated within the SPIDIA project, which allow for monitoring changes in unstabilized blood samples after collection and during transport and storage, were analyzed by RT-qPCR. If the shipment of blood in tubes not containing RNA stabilizer is not performed under a stable condition, gene profile studies can be affected by the effects of transport. Moreover, also controlled temperature shipment (4°C) can influence the expression of specific genes if blood is collected in tubes not containing a stabilizer. The use of dedicated biomarkers or time course experiments should be performed in order to verify potential bias on gene expression analysis due to sample shipment and storage conditions. Alternatively, the use of RNA stabilizer containing tubes can represent a reliable option to avoid ex vivo RNA changes.

  7. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

    NARCIS (Netherlands)

    Henkel, S.G.; Ter Beek, A.S.; Steinsiek, S.; Stagge, S.; Bettenbrock, K.; Teixeira De Mattos, M.J.; Sauter, T.; Sawodny, O.; Ederer, M.

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear

  8. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    Science.gov (United States)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  9. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  10. Interplanetary type II radio bursts and their association with CMEs and flares

    Science.gov (United States)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  11. THE INTERPLANETARY NETWORK RESPONSE TO LIGO GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D. [Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Boynton, W. [University of Arizona, Department of Planetary Sciences, Tucson, AZ 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 Germany (Germany); Connaughton, V.; Meegan, C. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Cline, T.; Gehrels, N., E-mail: khurley@ssl.berkeley.edu [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States)

    2016-09-20

    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15–150 keV fluences of roughly 5 ×10{sup −8}–5 × 10{sup −7} erg cm{sup −2}. We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi -GBM event reported in conjunction with GW150914.

  12. Intensity of low-frequency radiations and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1983-01-01

    The data of measurements of ELF/VLF radiations at ''Interkosmos-13'' artificial Earth satellite in auroral latitudes and in the polar cap in the vernal equinox of 1975 are compared with characteristics of interplanetary magnetic field (IMF). The absence of north-south asymmetry of variations of ELF/VLF-radiation Intensity in the outer ionosphere versus the IMF characteristics is noted. The intensity of natural ELF- and VLF-radiations depends in a complex way on parameters of the magnetospheric plasma: composition and concentration of ''cold'' particles, geomagnetic field intensity, properties of energetic particle fluxes. The considered variations in the radiation amplitude versus the IMF characteristics show the predominant role of the sector structure polarity and IMF Bsub(y) component sign

  13. Features of formation of car-traffic in a regional transportation system in conditions the multi-agents organization of a railway transportation

    Directory of Open Access Journals (Sweden)

    Aleksandr Leonidovich Kazakov

    2011-09-01

    Full Text Available As a result of structural reform of Russian railways, a host of agents that provide customers with loading resources, especially wagons for transport by railway. These processes reduce in efficiency of the car fleet, increasing transportation costs, shortage of cars for many customers, an increase of empty runs and, as a result, a depletion of a number of sections of the network carrying capacity at a reduced total volume of rail traffic. The article describes the reasons for this situation due to the mismatch occurred heterogeneity of rolling stock to existing planning conditions and tariffs. It is also shown that the inefficiency of decentralized car fleet contributes to the predominance of tree-type network, and the importance of this factor in the new environment has increased substantially. To ensure the efficient operation of rail transport as a systemic industry, providing mass-haul transport, it is proposed for integration into a regional logistics. Freight terminals regional logistics transportation and distribution system (RLTRS is appropriate to create on the basis of major freight railway stations. Thus, the adaptation of planning car traffic volume and train formation to modern standards, the establishment of tariff incentives and long-term changes in network configuration are considered as a prerequisite for the transformation of local transport and technological systems on the network of Russian railways into the integrated transport and logistics systems.

  14. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Directory of Open Access Journals (Sweden)

    Lee Na-Young

    2010-08-01

    Full Text Available Abstract Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells, as in vitro blood-placental barrier (BPB model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC activator in TR-TBT cells. Also, calcium ion (Ca2+ was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α, lipopolysaccharide (LPS and diethyl maleate (DEM significantly increased taurine uptake, but H2O2 and nitric oxide (NO donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus.

  15. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-01-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  16. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  17. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  18. Studies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions

    International Nuclear Information System (INIS)

    Grégoire, A.-C.; Kalilainen, J.; Cousin, F.; Mutelle, H.; Cantrel, L.; Auvinen, A.; Haste, T.; Sobanska, S.

    2015-01-01

    Highlights: • In oxidising conditions, Mo reacts with Cs and thus promotes gaseous iodine release. • In reducing conditions, CsI remains the dominant form for released iodine. • The nature of released iodine is well reproduced by the ASTEC code. - Abstract: The effect of molybdenum on iodine transport in the reactor coolant system (RCS) under PWR severe accident conditions was investigated in the framework of the EU SARNET project. Experiments were conducted at the VTT-Institute and at IRSN and simulations of the experimental results were performed with the ASTEC severe accident simulation code. As molybdenum affects caesium chemistry by formation of molybdates, it may have a significant impact on iodine transport in the RCS. Experimentally it has been shown that the formation of gaseous iodine is promoted in oxidising conditions, as caesium can be completely consumed to form caesium polymolybdates and is thus not available for reacting with gaseous iodine and leading to CsI aerosols. In reducing conditions, CsI remains the dominant form of iodine, as the amount of oxygen is not sufficient to allow formation of quantitative caesium polymolybdates. An I–Mo–Cs model has been developed and it reproduces well the experimental trends on iodine transport

  19. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Science.gov (United States)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  20. Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion made prior to amputation

    International Nuclear Information System (INIS)

    Maier, C.E.

    1989-01-01

    The first part of this study shows that axonal density is constant in the limb stump of the next proximal to the area of traumatic nerve degeneration caused by limb amputation. The results of the second part of this work reveal that a nerve conditioning lesion made two weeks prior to amputation is associated with accelerated limb regeneration and that this accelerated limb regeneration is accompanied by an earlier arrival of axons. This is the first demonstration of naturally occurring limb regeneration being enhanced. In this study SCb cytoskeletal proteins were identified and measured using SDS-PAGE and liquid scintillation counting. Proteins were measured at 7, 14, 21, and 28 days after 35 S-methionine injection and the normal rate of SCb transport determined to be 0.19 mm/day. A single axotomy does not enhance the rate of SCb transport but does increase the amount of labeled SCb proteins that are transported. When a conditioning lesion is employed prior to limb amputation and SCb proteins are measured at 7, 14, and 21 days after injection, there is a twofold acceleration in the rate of SCb transport and an increase in the amount of SCb proteins transported in conditioned axons

  1. Maritime transport operation in conditions of globalization

    Directory of Open Access Journals (Sweden)

    Tomasz Nowosielski

    2011-06-01

    Full Text Available The contemporary world economy is subject to dynamic integration processes that cause the most open countries in the free import and export goods. Intensive trade relations requires intercontinental free access to well-functioning transport systems. In the case of trade with distant partners, especially on other continents, an important criterion for the organization of cargo handling is a long range. Technological development of means of transport has meant that transport services have become a cheap and highly accessible to passengers and cargo.

  2. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    Science.gov (United States)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  3. Conceptual Design For Interplanetary Spaceship Discovery

    Science.gov (United States)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  4. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  5. Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium

    Science.gov (United States)

    Belcher, J. W.; Burchsted, R.

    1974-01-01

    Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.

  6. INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA

    International Nuclear Information System (INIS)

    Connick, David E.; Smith, Charles W.; Schwadron, Nathan A.

    2011-01-01

    We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr -1 at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr -1 for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

  7. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    Science.gov (United States)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  8. Multi-instrument observations of nightside plasma patches under conditions of IMF Bz positive

    Directory of Open Access Journals (Sweden)

    V. S. C. Howells

    2008-08-01

    Full Text Available Results are presented from two multi-instrument case studies showing patches of cold, long-lived plasma in the winter nightside ionosphere during times when the z-component of the Interplanetary Magnetic Field (IMF Bz was positive. These enhancements were coincident with the antisunward convective plasma drift, flowing from polar to nightside auroral latitudes. In the first case, on 5 December 2005 with IMF By negative, two regions of enhanced electron density were observed extended in MLT in the magnetic midnight sector separated by lower densities near midnight. It is likely that the earlier enhancement originated on the dayside near magnetic noon and was transported to the nightside sector in the convective flow, whilst the later feature originated in the morning magnetic sector. The lower densities separating the two enhancements were a consequence of a pair of lobe cells essentially blocking the direct antisunward cross polar flow from the dayside. A second case study on 4 February 2006 with IMF By positive revealed a single nightside enhancement likely to have originated in the morning magnetic sector. These multi-instrument investigations, incorporating observations by the EISCAT radar facility, the SuperDARN network and radio tomography, reveal that plasma flowing from the dayside can play a significant role in the nightside ionosphere under conditions of IMF Bz positive. The observations are reinforced by simulations of flux-tube transport and plasma decay.

  9. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  10. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  11. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  12. Climatology of transport and diffusion conditions along the United States Atlantic and Gulf coasts

    International Nuclear Information System (INIS)

    Raynor, G.S.; Hayes, J.V.

    1981-01-01

    A study of the atmospheric transport and diffusion climatology of the United States east and Gulf coasts was conducted to aid in planning and site selection for potentially polluting installations. This paper presents selected results from an extensive statistical study. Regular hourly observational data were obtained from 30 coastal stations from Maine to Texas and analyzed in terms of conditions important to emission transport and diffusion. The 30 stations included four pairs with one of each pair at a greater distance from the coast than the other but near the same latitude

  13. Seasonal and interplanetary magnetic field dependence of the field-aligned currents for both Northern and Southern Hemispheres

    Directory of Open Access Journals (Sweden)

    D. L. Green

    2009-04-01

    Full Text Available The configuration of the Earth's magnetosphere under various Interplanetary Magnetic Field (IMF and solar wind conditions alters the global distribution of Field-Aligned Currents (FACs at the high latitude ionospheres. We use magnetic field data obtained from the Iridium constellation to extend recent studies that infer the dependence of the global FAC configuration on IMF direction and magnitude, hemisphere and season. New results are a reduced IMF By influence on the FAC configuration for the winter hemisphere and a redistribution of FAC to the nightside for winter relative to the summer hemisphere. These effects are linked to the winter ionosphere conductance distribution being dominated by localised nightside enhancement associated with ionisation from energetic particle precipitation. A comparison of an estimated open-closed field line boundary (OCFLB with the Region 1 FAC locations shows reasonable agreement for summer FAC configurations. However, the OCFLB location is decoupled from the Region 1 FACs in winter, especially for IMF Bz>0.

  14. Stochastic diffusion of dust grains by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Wallis, M.K.

    1983-10-01

    The effects of the sectored Interplanetary Magnetic Field on charged dust grains orbiting around the sun under radiation pressure and Poynting-Robertson drag forces are examined for initially circular and non-inclined orbits. The distribution function of the charged grains satisfies a Fokker-Planck equation in which the sectored field is taken as a source of stochastic impulses. By adopting the integrals of the impulse-free motion as variable parameters, the Fokker-Planck equation can be properly treated as a diffusion equation. Analytic solutions of the resulting diffusion equation show that dust grains injected near the ecliptic plane are scattered strongly to high helio-latitudes. The scattering is more pronounced for small grains injected at large distances from the Sun. (author)

  15. Interplanetary fast shock diagnosis with the radio receiver on Ulysses

    Science.gov (United States)

    Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.

    1992-01-01

    The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.

  16. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    Science.gov (United States)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  17. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  18. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  19. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  20. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios

    2017-09-11

    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  1. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

    Directory of Open Access Journals (Sweden)

    Miguel Espina

    2016-03-01

    Full Text Available Background. Mesenchymal stromal cells (MSCs are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal, (II seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C, four time frames (24 h vs. 48 h; 48 h vs. 72 h, and (III three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml. Cell viability (Trypan Blue exclusion; percent and total number viable cell, proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6 and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability. In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%; this was not significant. Contrary, viability was unacceptably

  2. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  3. A review of planetary and space science projects presented at iCubeSat, the Interplanetary CubeSat Workshop

    Science.gov (United States)

    Johnson, Michael

    2015-04-01

    iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.

  4. Magnetic superstorm on August 4-5, 1972 in connection with a hydromagnetic structure of the interplanetary plasma stream from a powerful flare

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Mikerina, N.V.

    1977-01-01

    A comparison is made between the hydromagnetic structure of the interplanetary plasma flux from the powerful solar flare occurred on 4.08.1972 and the magnetic storm of 4-5.08.1972. The geomagnetic effects of the head impact layer of the interplanetary flux are being considered. The world-wide disturbances being most intensive in the Polar regions corresponded to the elements of the substructure of the impact layer. These disturbances are interpreted as the superposition of magnetic fields from reconnection currents on the magnetopause and in the neutral layer of the magnetosphere trail. The qualitative description of the effects under investigation has been made on the assumption that the magnetopause is a rotational impact wave

  5. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  6. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    Directory of Open Access Journals (Sweden)

    Kyle Hubbard

    2011-01-01

    Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

  7. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  8. The Future of Geomagnetic Storm Predictions: Implications from Recent Solar and Interplanetary Observations

    Science.gov (United States)

    Tsurutani, B. T.; Gonzalez, W. D.

    1995-01-01

    Within the last 7-8 years, there has been a substantial growth in out knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.

  9. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    2002-09-01

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  10. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.

    Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  11. Use of Faraday-rotation data from beacon satellites to determine ionospheric corrections for interplanetary spacecraft navigation

    Science.gov (United States)

    Royden, H. N.; Green, D. W.; Walson, G. R.

    1981-01-01

    Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.

  12. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.

  13. Interplanetary sector boundaries 1971--1973

    International Nuclear Information System (INIS)

    Klein, L.; Burlaga, L.F.

    1980-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU during the period January 1971 to January 1974 by the magnetometer on the Imp 6 spacecraft was discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high-resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin (averaging approx. =10 4 km) and the other being thick (averaging approx. =10 6 km). In many cases the field vector rotated in a plane from polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotationa and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to ( 0 ) the ecliptic plane. The high inclination of the sector boundary surfaces during 1971--1973 verifies a published prediction and may be related to the presence of large equatorial coronal holes at this time. An analysis of tangential discontinuities contained in 4-day periods about our events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries. Magnetic holes were found in thick sector boundaries, at a rate about 3 times that elsewhere. The holes were especially prevalent near stream interfaces, suggesting that they might be related to the convergence and/or slip of adjacent solar wind streams

  14. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions

    DEFF Research Database (Denmark)

    Moretto, T.; Ridley, A.J.; Engebretson, M.J.

    2000-01-01

    A high-density structure under northward interplanetary magnetic field B-z conditions is identified at the Wind and IMP 8 satellites, both in the solar wind on August 22, 1995. A compression of the magnetosphere is observed by the GOES 7 magnetometer within a few minutes of the pressure increase ...... the interpretation as events of traveling convection vortices, as has been suggested by past studies....

  15. Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions

    International Nuclear Information System (INIS)

    Vierke, Lena; Möller, Axel; Klitzke, Sondra

    2014-01-01

    The aim of this study was to gain an understanding of the transport of C 4–10 perfluoroalkyl carboxylic acids (PFCAs) and C 4,6,8 perfluoroalkyl sulfonic acids (PFSAs) in a water-saturated sediment column representing a riverbank filtration scenario under near-natural conditions. Short-chain PFCAs and PFSAs with up to six C-atoms showed complete tracer-like breakthrough. Longer chain ones were retarded due to sorption to the sediment or due to other processes in the aqueous phase. The study reports the first column derived sediment–water partition coefficients ranging from 0.01 cm 3 g −1 to 0.41 cm 3 g −1 for C 4,6 PFSAs and from 0.0 cm 3 g −1 to 6.5 cm 3 g −1 for C 4,5,6,8,9 PFCAs. The results clearly indicate that short-chain PFCAs and PFSAs may pose a problem if contaminated surface waters are used for drinking water production via riverbank filtration. Highlights: • Transport of per- and polyfluorinated compounds in a riverbank filtration scenario. • Investigations under near-natural conditions with a water-saturated sediment column. • Processes in water and sediment control the transport of analytes. • Short chain PFCAs and PFSAs are not retarded in the water-saturated sediment column. • First column derived sediment–water partition coefficients. -- Quantification of breakthrough of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) under conditions simulating a riverbank filtration scenario

  16. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  17. Robust routing for hazardous materials transportation with conditional value-at-risk on time-dependent networks.

    Science.gov (United States)

    2012-11-01

    New methods are proposed for mitigating risk in hazardous materials (hazmat) transportation, based on Conditional : Value-at-Risk (CVaR) measure, on time-dependent vehicular networks. While the CVaR risk measure has been : popularly used in financial...

  18. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    International Nuclear Information System (INIS)

    Lester, M.; Freeman, M.P.; Southwood, D.J.; Waldock, J.A.; Singer, H.J.

    1990-01-01

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at ∼ 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thence to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s -1 . the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s -1

  19. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  20. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  1. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)

    2017-01-10

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  2. 14 July 2000, a near-global coronal event and its association with energetic electron events detected in the interplanetary medium

    Czech Academy of Sciences Publication Activity Database

    Maia, D.; Pick, M.; Hawkins, S. E.; Fomichev, V. V.; Jiřička, Karel

    2001-01-01

    Roč. 204, 1/2 (2001), s. 199-214 ISSN 0038-0938 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejections * solar radio emissions * interplanetary particles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  3. Experience with fuel damage caused by abnormal conditions in handling and transporting operations

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1983-01-01

    Pacific Northwest Laboratory (PNL) conducted a study to determine the expected condition of spent USA light-water reactor (LWR) fuel upon arrival at interim storage or fuel reprocessing facilities or, if fuel is declared a waste, at disposal facilities. Initial findings were described in an earlier PNL paper at PATRAM '80 and in a report. Updated findings are described in this paper, which includes an evaluation of information obtained from the literature and a compilation of cases of known or suspected damage to fuel as a result of handling and/or transporting operations. To date, PNL has evaluated 123 actual cases (98 USA and 25 non-USA). Irradiated fuel was involved in all but 10 of the cases. From this study, it is calculated that the frequency of unusual occurrences involving fuel damage from handling and transporting operations has been low. The damage that did occur was generally minor. The current base of experience with fuel handling and transporting operations indicates that nearly all of these unusual occurrences had only a minor or negligible effect on spent fuel storage facility operations

  4. Analytical solution for multi-species contaminant transport in finite media with time-varying boundary conditions

    Science.gov (United States)

    Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...

  5. Coupling coefficient between the Pc3 frequency and the value of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gul'el'mi, A.V.

    1988-01-01

    Mean value and spread of coupling coefficient g between geomagnetic pulsation Ps3 frequency and interplanetary magnetic field (IMF) value are evaluated according to a set of all measurements described in literature and to additional measurements at Borok observatory (50 hour intervals in January, 1973). Attention is paid to a relatively small spread of g and to a weak g dependence on IMF orientation. The both facts are out of scope of the elementary Ps3 theory

  6. Forecasting intense geomagnetic activity using interplanetary magnetic field data

    Science.gov (United States)

    Saiz, E.; Cid, C.; Cerrato, Y.

    2008-12-01

    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  7. On interplanetary coronal mass ejection identification at 1 AU

    International Nuclear Information System (INIS)

    Mulligan, T.; Russell, C.T.; Gosling, J.T.

    1999-01-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978 - 1980. copyright 1999 American Institute of Physics

  8. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Directory of Open Access Journals (Sweden)

    J. K. Koestel

    2012-06-01

    Full Text Available Preferential flow is a widespread phenomenon that is known to strongly affect solute transport in soil, but our understanding and knowledge is still poor of the site factors and soil properties that promote it. To investigate these relationships, we assembled a database from the peer-reviewed literature containing information on 733 breakthrough curve experiments under steady-state flow conditions. Most of the collected experiments (585 of the 733 datasets had been conducted on undisturbed soil columns, although some experiments on repacked soil, clean sands, and glass beads were also included. In addition to the apparent dispersivity, we focused our attention on three indicators of preferential solute transport: namely the 5%-arrival time, the holdback factor, and the ratio of piston-flow and average transport velocities. Our results suggest that, in contrast to the 5%-arrival time and the holdback factor, the piston-flow to transport velocity ratio is not related to preferential macropore transport but rather to the exclusion or retardation of the applied tracer. Confirming that the apparent longitudinal dispersivity is positively correlated with the travel distance of the tracer, our results also illustrate that this relationship is refined if the normalized 5%-tracer arrival time is also taken into account. In particular, we found that the degree of preferential solute transport increases with apparent dispersivity and decreases with travel distance. A similar but weaker relationship was observed between apparent dispersivity, 5%-tracer arrival time, and lateral observation scale, such that the degree of preferential transport increases with lateral observation scale. However, we also found that the travel distance and the lateral observation scale in the investigated dataset are correlated, which makes it difficult to distinguish their influence on these transport characteristics. We also found that the strength of preferential transport

  9. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  10. Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    Science.gov (United States)

    Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.

    2014-01-01

    This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.

  11. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  12. The Inner Magnetosphere Plasma Response to Interplanetary Shocks: Van Allen Probes HOPE Observations

    Science.gov (United States)

    Winter, L. M.; Denton, M.; Ferradas, C.; Henderson, M. G.; Larsen, B.; Reeves, G.; Skoug, R. M.; Thomsen, M. F.

    2017-12-01

    The Van Allen Probes' Helium, Oxygen, Proton, and Electron (HOPE) sensors measure ion and electron populations in the plasmasphere, plasma sheet, and lower-energy ring current, providing unique observations at low energies (0.001-50 keV) and low L-shell (down to 1.5 RE). We use the capabilities of these two spacecraft to probe changes in the low energy particles in response to interplanetary (IP) shocks. We focus on changes in the plasma energies, composition, and pitch angle distributions following IP shocks and storm sudden commencements from 2012-2017 through a comparison of HOPE observations preceding and post shock.

  13. Effect of the Global Topology of the Interplanetary Magnetic Field on the Properties of Impulsive Acceleration Processes in Distant Regions of the Earth's Magnetospheric Tail

    International Nuclear Information System (INIS)

    Grigorenko, E.E.; Zelenyi, L.M.; Fedorov, A.O.; Sauvaud, J.-A.

    2005-01-01

    The paper is devoted to a statistical study of high-speed ion beams (beamlets) observed by the Interball-1 and Interball-2 satellites in the boundary region of the plasma sheet of the geomagnetic tail and in the high-latitude auroral regions of the Earth's magnetosphere. Beamlets result from nonlinear acceleration processes occurring in the current sheet in the distant regions of the geomagnetic tail. They propagate toward the Earth along the magnetic field lines and are detected in the boundary region of the plasma sheet and near the high-latitude boundary of the plasma sheet in the auroral region in the form of short (with a duration of 1-2 min) bursts of high-energy (with energies of about several tens of keV) ions. The sizes of the latitudinal zones where the beamlets are localized in the tail and in the auroral region are determined using the epoch superposition method. The relationship between the frequency of beamlet generation in the boundary region of the plasma sheet and the prehistory of the direction of the interplanetary magnetic field (the magnitude of a clock angle) is investigated. It was established that this direction exerts a global effect on the beamlet generation frequency; moreover, it was found that the beamlet generation frequency in the midnight local time sector of the tail and at the flanks depends differently on the direction of the interplanetary magnetic field. In the midnight sector, the beamlets are observed at almost all directions of the interplanetary field, whereas the frequency of their generation at the flanks is maximal only when the interplanetary magnetic field has a large y component

  14. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Science.gov (United States)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  15. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  16. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Department of Space Science/CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Dasgupta, B.; Khare, A.; Webb, G. M., E-mail: qh0001@uah.edu, E-mail: qiu@physics.montana.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ≳ 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  17. Acceleration of H, He, and heavy ions observed in the magnetosheath, magnetotail, and near-by interplanetary space

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.; Hovestadt, D.

    1975-01-01

    Pulses of electrons and ions composed of H, He, and heavier elements were observed in the magnetosheath, magnetotail, and near-by interplanetary space. From the spatial positions where these particles were detected and the ion flow directions we conclude that they were accelerated at the bow shock near the sub-solar point and in the near-earth region of the neutral sheet of the magnetotail. (orig.) [de

  18. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  19. An analysis of interplanetary scintillation as a method of measuring the angular sizes of radio sources

    International Nuclear Information System (INIS)

    Hajivassiliou, C.A.; Duffett-Smith, P.J.

    1990-01-01

    Interplanetary scintillation has been widely used at metre wavelengths for estimating the angular sizes of radio sources in the range 0.1-2.0 arcsec. The estimates are based on observations of either the width of the temporal power spectrum or the shape of the scintillation index-elongation curve. We present a mathematical model of the latter procedure which reveals the biases introduced into an IPS survey as a result of the estimation process. (author)

  20. A dynamic system to forecast ionospheric storm disturbances based on solar wind conditions

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    2005-06-01

    Full Text Available For the reliable performance of technologically advanced radio communications systems under geomagnetically disturbed conditions, the forecast and modelling of the ionospheric response during storms is a high priority. The ionospheric storm forecasting models that are currently in operation have shown a high degree of reliability during quiet conditions, but they have proved inadequate during storm events. To improve their prediction accuracy, we have to take advantage of the deeper understanding in ionospheric storm dynamics that is currently available, indicating a correlation between the Interplanetary Magnetic Field (IMF disturbances and the qualitative signature of ionospheric storm disturbances at middle latitude stations. In this paper we analyse observations of the foF2 critical frequency parameter from one mid-latitude European ionospheric station (Chilton in conjunction with observations of IMF parameters (total magnitude, Bt and Bz-IMF component from the ACE spacecraft mission for eight storm events. The determination of the time delay in the ionospheric response to the interplanetary medium disturbances leads to significant results concerning the forecast of the ionospheric storms onset and their development during the first 24 h. In this way the real-time ACE observations of the solar wind parameters may be used in the development of a real-time dynamic ionospheric storm model with adequate accuracy.

  1. Interplanetary outpost the human and technological challenges of exploring the outer planets

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    Water has been discovered on the Saturnian moon, Enceladus, and on Jupiter's moons, Europa, Ganymede, and Callisto. Where there is water, could there be life? Could this tantalizing possibility result in a manned mission to the outer planets? But how will such a mission be designed, what propulsion system will be used, and what hazards will the crewmembers face? Interplanetary Outpost describes step by step how the mission architecture will evolve, how crews will be selected and trained, and what the mission will entail from launch to landing. It addresses the effects that exteneded duration, radiation, communication, and isolation will have on the human body, and how not only performance but behavior might be affected.

  2. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  3. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Jy-An John, E-mail: wangja@ornl.gov

    2016-12-15

    Highlights: • A conformational potential effect of fuel assembly contact interaction induced transient shock. • Complex vibration modes and vibration load intensity were observed from fuel assembly system. • The project was able to link the periodic transient shock to spent fuel fatigue strength reduction. - Abstract: In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly. To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20 g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20 g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration

  4. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  5. Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.

  6. Status of the nation's local mass transportation: performance and conditions. Report to the congress, June 1988. Biennial report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This document is the third biennial Report of the Secretary of Transportation to the United States Congress on the current performance and condition of the Nation's public mass-transportation systems. It updates the information and recommendations of the previous report and should be of value to the Congress and the Department for developing policy and program requirements to administer the Federal mass-transportation assistance program.

  7. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots

    NARCIS (Netherlands)

    Peuke, A.D.; Gessler, A.; Trumbore, S.; Windt, C.W.; Homan, N.; Gerkema, E.; As, van H.

    2015-01-01

    Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks.By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were

  8. Automated trajectory planning for multiple-flyby interplanetary missions

    Science.gov (United States)

    Englander, Jacob

    Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner

  9. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and

  10. The interplanetary magnetic field observed by Juno enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-06-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  11. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

    Science.gov (United States)

    Oliveira, D. M.; Samsonov, A. A.

    2018-01-01

    The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

  12. The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-01-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  13. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.

    Science.gov (United States)

    Smirnova, Olga A; Cucinotta, Francis A

    2018-02-01

    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can

  14. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  15. Boundary and interface conditions for polarized radiation transport in a multilayer medium

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2011-01-01

    In many applications of radiation transport, it is important to consider the changes in the index of refraction that occur when the physical domain being studied consists of material regions with distinct electromagnetic properties. When polarization effects are taken into account, the radiation eld is characterized by a vector of four components known as Stokes vector. At an interface between two different material regions, the reflected and transmitted Stokes vectors are related to the incident Stokes vector by means of reflection and transmission matrices, which are derived from the Fresnel formulas for the amplitude coefficients of reflection and transmission. Having seen that most works on polarized radiation transport that allow for changes in the index of refraction exhibit discrepancies in their expressions for the transmission matrix, we present in this work a careful derivation of the relations between the reflected and transmitted Stokes vectors and the Stokes vector incident on an interface. We obtain a general form of a transmission factor that is required to ensure conservation of energy and we show that most of the discrepancies encountered in existing works are due to the use of improper forms of this factor. In addition, we derive explicit and compact expressions for the Fresnel boundary and interface conditions appropriate to the study of polarized radiation transport in a multilayer medium. (author)

  16. Non-Gaussianity and cross-scale coupling in interplanetary magnetic field turbulence during a rope-rope magnetic reconnection event

    Science.gov (United States)

    Miranda, Rodrigo A.; Schelin, Adriane B.; Chian, Abraham C.-L.; Ferreira, José L.

    2018-03-01

    In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness-kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope-rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind.

  17. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  18. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  19. The behaviour of transport from the fission products caesium and strontium in coated particles for high temperature reactors under irradiation conditions

    International Nuclear Information System (INIS)

    Zoller, P.

    1976-07-01

    At first survey is given about existing knowledge of the behaviour of caesium and strontium fission product transport in coated particles. In order to describe the complicated fission product transport mechanisms under irradiation conditions a suitable calculating model (SLIPPER) is taken over and modified to the special problems of an irradiation experiment. Fundamentally, the fission product transport is represented by the two contributions of diffusion and recoil, at which the diffusion is described by effective diffusion coefficients. In difference of that the possibility of a two-phase-diffusion is examined for the Cs diffusion in the fuel kernel. The model application on measuring results from irradiation experiments of KFA-Juelich and Mol-Belgien allowed the explanation from the characteristic of fission product transport in coated particles under irradiation conditions and produced effective diffusion coefficients for the fission products Cs and Sr. (orig.) [de

  20. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  1. A study of solar and interplanetary parameters of CMEs causing major geomagnetic storms during SC 23

    Directory of Open Access Journals (Sweden)

    C. Oprea

    2013-08-01

    Full Text Available In this paper we analyse 25 Earth-directed and strongly geoeffective interplanetary coronal mass ejections (ICMEs which occurred during solar cycle 23, using data provided by instruments on SOHO (Solar and Heliospheric Observatory, ACE (Advanced Composition Explorer and geomagnetic stations. We also examine the in situ parameters, the energy transfer into magnetosphere, and the geomagnetic indexes. We compare observed travel times with those calculated by observed speeds projected into the plane of the sky and de-projected by a simple model. The best fit was found with the projected speeds. No correlation was found between the importance of a flare and the geomagnetic Dst (disturbance storm time index. By comparing the in situ parameters with the Dst index we find a strong connection between some of these parameters (such as Bz, Bs · V and the energy transfer into the magnetosphere with the strength of the geomagnetic storm. No correlation was found with proton density and plasma temperature. A superposed epoch analysis revealed a strong dependence of the Dst index on the southward component of interplanetary magnetic field, Bz, and to the Akasofu coupling function, which evaluates the energy transfer between the ICME and the magnetosphere. The analysis also showed that the geomagnetic field at higher latitudes is disturbed before the field around the Earth's equator.

  2. Properties of Coronal Shocks at the Origin of SEP events Observed by Only One Single Spacecraft

    Science.gov (United States)

    Lario, D.; Kwon, R.

    2017-12-01

    The simultaneous observation of solar energetic particle (SEP) events by multiple spacecraft distributed in the interplanetary medium depends not only on the spatial separation among the different spacecraft, but also on the properties of the particle sources and the characteristics of the SEP transport in interplanetary space. Among the SEP events observed by STEREO-A, STEREO-B and/or near-Earth spacecraft during solar cycle 24, we select SEP events observed by a single spacecraft (specifically, the SEP events observed only by near-Earth spacecraft on 2012 April 5, 2011 September 4, and 2013 August 17). We analyze whether the properties of the coronal shock associated with the origin of the events (as seen in extreme-ultraviolet and white-light coronal images) differ from those associated with SEP events observed by two or three spacecraft. For the selected events we find that the associated CMEs are, in general, narrower than those associated with SEP events observed by two or three spacecraft. The confined extension of the parent coronal shock and the absence of magnetic connection between distant spacecraft and the regions of the expanding coronal shock able to efficiently accelerate SEPs seem to be the conditions leading to intense SEP events observed only over narrow regions of interplanetary space by spacecraft magnetically connected to regions close to the parent eruption site. Weak and gradual intensity increases observed in extended regions of space might involve transport processes and/or later connections established with interplanetary shocks. Systematic analyses of a larger number of events are required before drawing firm conclusions.

  3. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  4. Evaluation of stability of allergen extracts for sublingual immunotherapy during transport under unfavourable temperature conditions with an innovative thermal insulating packaging.

    Science.gov (United States)

    Puccinelli, P; Natoli, V; Dell'albani, I; Scurati, S; Incorvaia, C; Barbieri, S; Masieri, S; Frati, F

    2013-10-01

    Many pharmaceutical and biotechnological products are temperature-sensitive and should normally be kept at a controlled temperature, particularly during transport, in order to prevent the loss of their stability and activity. Therefore, stability studies should be performed for temperature-sensitive products, considering product characteristics, typical environmental conditions, and anticipating environmental extremes that may occur during product transport in a specific country. Staloral products for sublingual immunotherapy are temperature sensitive and are labelled for maintenance under refrigerated conditions (2-8°C). Given the peculiar climatic context of Italy and the great temperature fluctuations that may occur during transport, this study was aimed at evaluating the impact of a new engineered thermal insulating packaging for Staloral. In particular, the purpose was to assess whether the new packaging could create a container condition able to preserve the stability and immunological activity of the product during the transport phase throughout Italy. The results showed that the range of temperatures that can affect the product, in the area surrounding the product packaging, may reach a peak of 63°C during transport under the most unfavourable climatic conditions, i.e. in a non-refrigerated van during the summer season, from the site of production in France to the patient's house in Catania, the city with the highest temperatures in Italy. However, the highest temperature reached inside the vaccine did not exceed 45°C over a period of about 2 h. The ELISA inhibition test on samples subjected to the extreme temperature conditions previously defined (45°C) showed an immunological activity higher than 75% of that initially measured and was comparable to those obtained with samples stored at controlled temperature (5°C). This means that, even in the worst case scenario, the structure of the allergen extracts is not influenced and the vaccine potency is

  5. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    Science.gov (United States)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  6. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  7. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  8. Variations of ionospheric plasma concentration in the region of the main ionospheric through during the magnetic storm on 18-19.12, 1978 in relation to interplanetary magnetic field variations

    International Nuclear Information System (INIS)

    Gdalevich, G.L.; Eliseev, A.Yu.; Kolomijtsev, O.P.; Afonin, V.V.; Ozerov, V.D.; Soboleva, T.N.

    1986-01-01

    The variations of ion concentration in the region of the main ionospheric trough at the height approximately 500 km during the storm on 18-19, 12, 1978 are considered by data from ''Kosmos-900'' satellite. Three These changes in ion density are compared with variations of interplanetary medium parameters, in particular with Ey=-VBz, with the component of the interplanetary electric field. The comparison results are discussed. Exact correlation of ionospheric disturbance development with variations of interplanetary medium parameters is observed. This effect is expressed in the evening section both in the high and mean latitudes and it is obv ously caused by magnetosphere rearrangement in the region of the minimum pole trough, and on the equatorial wall - by convection field penetration to the mean latitude. The movement of the equatorial boundary of diffusion precipitations, which is much responsible for formation of the polar trough wall, corresponds to the boundary movement of corotating and convective plasma or to the last closed equipotentiality. But some delay of the precipitation boundary due to the responsiveness of precipitation processes is observed on the recovery phase

  9. THREE-DIMENSIONAL RECONSTRUCTIONS AND MASS DETERMINATION OF THE 2008 JUNE 2 LASCO CORONAL MASS EJECTION USING STELab INTERPLANETARY SCINTILLATION OBSERVATIONS

    International Nuclear Information System (INIS)

    Bisi, M. M.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Clover, J. M.; Tokumaru, M.; Fujiki, K.

    2010-01-01

    We examine and reconstruct the interplanetary coronal mass ejection (ICME) first seen in space-based coronagraph white-light difference images on 2008 June 1 and 2. We use observations of interplanetary scintillation (IPS) taken with the Solar-Terrestrial Environment Laboratory (STELab), Japan, in our three-dimensional (3D) tomographic reconstruction of density and velocity. The coronal mass ejection (CME) was first observed by the LASCO C3 instrument at around 04:17 UT on 2008 June 2. Its motion subsequently moved across the C3 field of view with a plane-of-the-sky velocity of 192 km s -1 . The 3D reconstructed ICME is consistent with the trajectory and extent of the CME measurements taken from the CDAW CME catalog. However, excess mass estimates vary by an order of magnitude from Solar and Heliospheric Observatory and Solar Terrestrial Relations Observatory coronagraphs to our 3D IPS reconstructions of the inner heliosphere. We discuss the discrepancies and give possible explanations for these differences as well as give an outline for future studies.

  10. Intensity fluctuations of mid-latitude background VLF-noises and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gorshkov, Yu.N.; Klejmenova, N.G.

    1986-01-01

    Influence of interplanetary magnetic field (IMF) sector structure polarity and also variations of solar wind velocity and density on the intensity of mid-latitude VLF background noises are studied. For analysis continuous observations of VLF radiations in Magadan Observatory (phi=53.7 deg, L=2.7) from November, 1972 to June, 1973 were used. It is shown that IMF sector sign has no sufficient effect on the level of mid-latitude VLF background noises at the frequences f < 4-5 kHz. In magnetoperturbed periods when IMF Bsub(z)-component was directed to the South and the Earth was in the region of high-speed plasma flux, in mid-latitudes abatement of intensity of VLF background noises was seen

  11. Solute transport in a well under slow-purge and no-purge conditions

    Science.gov (United States)

    Plummer, M. A.; Britt, S. L.; Martin-Hayden, J. M.

    2010-12-01

    Non-purge sampling techniques, such as diffusion bags and in-situ sealed samplers, offer reliable and cost-effective groundwater monitoring methods that are a step closer to the goal of real-time monitoring without pumping or sample collection. Non-purge methods are, however, not yet completely accepted because questions remain about how solute concentrations in an unpurged well relate to concentrations in the adjacent formation. To answer questions about how undisturbed well water samples compare to formation concentrations, and to provide the information necessary to interpret results from non-purge monitoring systems, we have conducted a variety of physical experiments and numerical simulations of flow and transport in and through monitoring wells under low-flow and ambient flow conditions. Previous studies of flow and transport in wells used a Darcy’s law - based continuity equation for flow, which is often justified under the strong, forced-convection flow caused by pumping or large vertical hydraulic potential gradients. In our study, we focus on systems with weakly forced convection, where density-driven free convection may be of similar strength. We therefore solved Darcy’s law for porous media domains and the Navier Stokes equations for flow in the well, and coupled solution of the flow equations to that of solute transport. To illustrate expected in-well transport behavior under low-flow conditions, we present results of three particular studies: (1) time-dependent effluent concentrations from a well purged at low-flow pumping rates, (2) solute-driven density effects in a well under ambient horizontal flow and (3) temperature-driven mixing in a shallow well subject to seasonal temperature variations. Results of the first study illustrate that assumptions about the nature of in-well flow have a significant impact on effluent concentration curves even during pumping, with Poiseuille-type flow producing more rapid removal of concentration differences

  12. Individual styles of professional operator's performance for the needs of interplanetary mission.

    Science.gov (United States)

    Boritko, Yaroslav; Gushin, Vadim; Zavalko, Irina; Smoleevskiy, Alexandr; Dudukin, Alexandr

    Maintenance of the cosmonaut’s professional performance reliability is one of the priorities of long-term space flights safety. Cosmonaut’s performance during long-term space flight decreases due to combination of the microgravity effects and inevitable degradation of skills during prolonged breaks in training. Therefore, the objective of the elaboration of countermeasures against skill decrement is very relevant. During the experiment with prolonged isolation "Mars-500" in IMBP two virtual models of professional operator’s activities were used to investigate the influence of extended isolation, monotony and confinement on professional skills degradation. One is well-known “PILOT-1” (docking to the space station), another - "VIRTU" (manned operations of planet exploration). Individual resistance to the artificial sensory conflict was estimated using computerized version of “Mirror koordinograf” with GSR registration. Two different individual performance styles, referring to the different types of response to stress, have been identified. Individual performance style, called "conservative control", manifested in permanent control of parameters, conditions and results of the operator’s activity. Operators with this performance style demonstrate high reliability in performing tasks. The drawback of the style is intensive resource expenditure - both the operator (physiological "cost") and the technical system operated (fuel, time). This style is more efficient while executing tasks that require long work with high reliability required according to a detailed protocol, such as orbital flight. Individual style, called "exploratory ", manifested in the search of new ways of task fulfillment. This style is accompanied by partial, periodic lack of control of the conditions and result of operator’s activity due to flexible approach to the tasks perfect implementation. Operators spent less resource (fuel, time, lower physiological "cost") due to high self

  13. 15N-urea transport and transformation in two deforsted Amazonian soils under laboratory conditions

    International Nuclear Information System (INIS)

    Victoria, R.L.; Libardi, P.L.; Reichardt, K.; Matsui, E.

    1982-01-01

    Brazilian agriculture is now expanding toward the Amazon region, where large new areas of virgin lands are being brought under cultivation. There is therefore an urgent need to better understand the conditions and characteristics of the soils of that region. In this study a Red Yellow Podzol and a Yellow Latosol were used to examine urea transport and transformation in the laboratory under water-saturated conditions. The soils were collected in an area that was deforested in 1976 and planted to tropical fruits since then. Soils were subjected to miscible displacement techniques under both continuous feed and pulse applications of urea to mathematically describe urea transport and transformation as functions of depth and time. Transformation mechanisms were considered to be first order kinetics. Urea was readily leached from both soils. Recovery of urea in the effluent of the 30 cm columns was 91%, for the Podzol and 86% for the Latosol. NH 4+ -N from urea hydrolysis was also readily leached and its recovery in the effluent was 4.2% for the Podzol and 11.2% for the Latosol. Very little nitrogen-including exchangeable NH 4+ -N and biomass nitrogen - was left in the columns of either soil at the end of the experiment. (orig.)

  14. Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?

    International Nuclear Information System (INIS)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.; Bame, S.J.; Luhmann, J.G.; Smith, E.J.

    1989-01-01

    Electron heat flux dropout events have been observed in the solar wind using the ISEE 3 plasma electron data set. These events manifest themselves as dropouts of the solar wind halo electrons which are normally found streaming outward along the local magnetic field. These dropouts leave nearly isotropic distributions of solar wind halo electrons, and consequently, the heat flux in these events is reduced to near the observational noise level. We have examined ISEE 3 data from shortly after launch (August 16, 1978) through the end of 1978 and identified 25 such events ranging in duration from 20 min to over 11 hours. Comparison with the ISEE 3 magnetometer data indicates that these intervals nearly always occur in conjunction with large rotations of the interplanetary magnetic field. Statistical analyses of the plasma and magnetic field data for the 25 dropout intervals indicate that heat flux dropouts generally occur in association with high plasma densities low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. A second set of 25 intervals chosen specifically to lie at large field rotations, but at times at which not heat flux dropouts were observed, do not show these characteristic plalsma variations. This suggests that the dropout intervals comprise a unique set of events. Since the hot halo electrons normally found streaming outward from the Sun along the interplanetary magnetic field (the solar wind electron heat flux) are a result of direct magnetic connection to the hot solar corona, heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the Sun and instead are connected to the outer heliosphere at both ends

  15. Stapledon's Interplanetary Man: A Commonwealth of Worlds and the Ultimate Purpose of Space Colonisation

    Science.gov (United States)

    Crawford, Ian A.

    In his 1948 lecture to the British Interplanetary Society Stapledon considered the ultimate purpose of colonising other worlds. Having examined the possible motivations arising from improved scientific knowledge and access to extraterrestrial raw materials, he concludes that the ultimate benefits of space colonisation will be the increased opportunities for developing human (and post-human) diversity, intellectual and aesthetic potential and, especially, `spirituality'. By the latter concept he meant a striving for ``sensitive and intelligent awareness of things in the universe (including persons), and of the universe as a whole.'' A key insight articulated by Stapledon in this lecture was that this should be the aspiration of all human development anyway, with or without space colonisation, but that the latter would greatly increase the scope for such developments. Another key aspect of his vision was the development of a diverse, but connected, `Commonwealth of Worlds' extending throughout the Solar System, and eventually beyond, within which human potential would be maximised. In this paper I analyse Stapledon's vision of space colonisation, and will conclude that his overall conclusions remain sound. However, I will also argue that he was overly utopian in believing that human social and political unity are prerequisites for space exploration (while agreeing that they are desirable objectives in their own right), and that he unnecessarily downplayed the more prosaic scientific and economic motivations which are likely to be key drivers for space exploration (if not colonisation) in the shorter term. Finally, I draw attention to some recent developments in international space policy which, although probably not influenced by Stapledon's work, are nevertheless congruent with his overarching philosophy as outlined in `Interplanetary Man?'.

  16. A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles

    Science.gov (United States)

    Hilpert, Markus; Johnson, William P.

    2018-01-01

    We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and nonmonotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near-surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of downgradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a one-dimensional (1-D) network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to nonmonotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when an NSFD colloid population is maintained. Then, nonmonotonic retention profiles result potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally observed downgradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed-form, analytical expressions for the shape, and the maximum of the colloid retention profile.

  17. The effect of bedload transport rates on bedform and planform morphological development in a laboratory meandering stream under varying flow conditions

    Science.gov (United States)

    Sullivan, C.; Good, R. G. R.; Binns, A. D.

    2017-12-01

    Sediment transport processes in streams provides valuable insight into the temporal evolution of planform and bedform geometry. The majority of previous experimental research in the literature has focused on bedload transport and corresponding bedform development in rectangular, confined channels, which does not consider planform adjustment processes in streams. In contrast, research conducted with laboratory streams having movable banks can investigate planform development in addition to bedform development, which is more representative of natural streams. The goal of this research is to explore the relationship between bedload transport rates and the morphological adjustments in meandering streams. To accomplish this, a series of experimental runs were conducted in a 5.6 m by 1.9 m river basin flume at the University of Guelph to analyze the bedload impacts on bed formations and planform adjustments in response to varying flow conditions. In total, three experimental runs were conducted: two runs using steady state conditions and one run using unsteady flow conditions in the form of a symmetrical hydrograph implementing quasi steady state flow. The runs were performed in a series of time-steps in order to monitor the evolution of the stream morphology and the bedload transport rates. Structure from motion (SfM) was utilized to capture the channel morphology after each time-step, and Agisoft PhotoScan software was used to produce digital elevation models to analyze the morphological evolution of the channel with time. Bedload transport rates were quantified using a sediment catch at the end of the flume. Although total flow volumes were similar for each run, the morphological evolution and bedload transport rates in each run varied. The observed bedload transport rates from the flume are compared with existing bedload transport formulas to assess their accuracy with respect to sediment transport in unconfined meandering channels. The measured sediment transport

  18. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  19. Physical and chemical characteristics of interplanetary dust particles

    International Nuclear Information System (INIS)

    Gruen, E.

    1981-01-01

    For the first time, the micrometeoroid experiment on board of Helios allowed the measurement of physical and chemical characteristics of interplanetary dust particles between 0.3AU and 1AU solar distance. During the first 10 orbits of Helios 1,235 impacts of micrometeoroids have been detected. 83 particles have been registered by the ecliptic sensor and 152 by the south sensor. Most of the particles detected by the ecliptic sensor had masses 10 -13 g -10 g and impacted the sensor from the apex direction. The particles observed by the south sensor had masses 10 -15 g -9 g and impacted the sensor from all directions with a slightly enhanced flux from solar direction. The average impact speed of particles with masses 10 -13 g -10 g was 15km/s. From 1AU to.3AU, the observed paritcle flux increased by a factor 5-10. The orbits of the registered particles are highly eccentric, e approx. >= 0.6, and some are hyperbolic. The mass spectra measured upon impact allow the classification of chondritic and iron-rich particles. Approx. 20% of the particles had low densities rho 3 . On 4 particles, a positive electric charge has been observed. (orig.) [de

  20. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  1. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  2. Interplanetary Overlay Network Bundle Protocol Implementation

    Science.gov (United States)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  3. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  4. Avaliação do estresse térmico em condição simulada de transporte de frangos de corte Evaluation of thermal stress in simulated condition of transportation on broiler chickens

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Neves da Silva

    2007-08-01

    Full Text Available Objetivou-se simular, em câmara climática, a condição ambiental de estresse térmico durante o transporte de aves até o abatedouro para avaliação da influência do estresse térmico sobre parâmetros fisiológicos e as características de carcaça de frangos de corte. Trinta frangos machos com 42 dias de idade foram pesados, alocados em caixas de transporte (10 aves/caixa e submetidos a condição de alto estresse térmico (35ºC e 85% UR para simular o transporte até o abatedouro. A cada tempo de exposição às condições de estresse (0, 30, 60, 90 e 120 minutos, foram retiradas duas aves de cada caixa para análises posteriores. Foram mensurados o peso corporal, a temperatura retal, a freqüência respiratória e o hematócrito e, em seguida, as aves foram abatidas para avaliação das características de carcaça (pesos da carcaça eviscerada, do peito, das pernas (coxa e sobrecoxa, do dorso e das vísceras. As características fisiológicas e de carcaça (perda de peso corporal e pesos de pernas, asas e dorso diferiram após a exposição das aves à condição de alto estresse. O tempo de exposição e a condição ambiental de transporte afetaram negativamente o metabolismo e o equilíbrio térmico corporal das aves.This experiment aimed to simulate thermal-stress-environment conditions in climatic chamber during the transportation of birds to slaughterhouse to evaluate the influence of these conditions on physiological parameters and carcass conformation in broiler chickens. Thirty chicks with 42 days old were weighted and distributed to transportation crates (10 chicks by crate, and submitted to high stress conditions (35ºC and 85% RH to simulate the transport to the slaughterhouse. At each time of exposition to the stress conditions (0, 30, 60, 90 and 120 minutes, two birds from each crate was withdrawn for further analyses. Body weight, rectal temperature, respiratory frequency and hematocrit value were measured, and after

  5. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  6. Advanced quadratures and periodic boundary conditions in parallel 3D Sn transport

    International Nuclear Information System (INIS)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-01-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric ( 2 o) and Pn-Tn (>S 2 o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  7. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  8. Effects of simvastatin on CAT-1-mediated arginine transport and NO level under high glucose conditions in conditionally immortalized rat inner blood-retinal barrier cell lines (TR-iBRB).

    Science.gov (United States)

    Tun, Temdara; Kang, Young-Sook

    2017-05-01

    Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  10. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  11. Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1977-01-01

    Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)

  12. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  13. AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, M.; Munakata, K.; Kato, C. [Department of Physics, Shinshu University, Matsumoto, Nagano 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Rockenbach, M.; Lago, A. Dal; Braga, C. R.; Mendonça, R. R. S. [National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP (Brazil); Schuch, N. J. [Southern Regional Space Research Center (CRS/INPE), P.O. Box 5021, 97110-970, Santa Maria, RS (Brazil); Jassar, H. K. Al; Sharma, M. M. [Physics Department, Kuwait University, P.O. Box 5969 Safat, 13060 (Kuwait); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia); Evenson, P. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority of Applied Education and Training, Kuwait City 72853 (Kuwait); Tokumaru, M., E-mail: 13st303f@shinshu-u.ac.jp, E-mail: kmuna00@shinshu-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-07-10

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  14. AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    International Nuclear Information System (INIS)

    Kozai, M.; Munakata, K.; Kato, C.; Kuwabara, T.; Rockenbach, M.; Lago, A. Dal; Braga, C. R.; Mendonça, R. R. S.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.; Tokumaru, M.

    2016-01-01

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G y , shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G z shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G z changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  15. Review of the Effects of Normal Conditions of Transport on Spent Fuel Integrity in Transportation Casks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junggoo; Yoo, Youngik; Lee, Seongki; Lim, Chaejoon [Korea Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-10-15

    Spent fuel(SF) storage capacity of each domestic nuclear power plant will reach a saturated state in the near future. Although there are several methods of SF disposal, interim storage is suggested as the most realistic and promising alternative. SF integrity evaluation is a regulatory requirement that is described in Part 71 of Code of Federal Regulations, Title 10 of the U..S. NRC licensing requirement. In this paper, the report is reviewed written by EPRI in US and it is helpful to a development of domestic SF integrity evaluation technology. EPRI report about integrity evaluation method on normal conditions of high burn-up spent fuel transport is reviewed. First, dynamic forces occurred in one-foot side drop are calculated. And deformation patterns and fuel rods responses by dynamic forces calculated from spent fuel and cask model are analyzed. It is shown that the damage of fuel rods is not occurred by the dynamic forces on normal conditions. Assembly distortion is not predicted, by virtue of the facts that the spacer grids do not experience significant permanent deformation. Axial forces, bending moments and pinch forces of fuel rods are calculated and compared with the results under the hypothetical accident conditions. No occurrence of transverse tearing mode that is the most serious damage mode in side drop case is predicted. Till now, in Korea, regulatory requirements related with structural integrity of spent fuel are not specified such as 10CFR71. To establish own regulation standards, producing and analyzing sufficient experimental data must be performed preferentially. Based on this, failure analysis and criteria establishment are necessary through modeling and analyzing of spent fuel.

  16. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    Science.gov (United States)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  17. Serotonin transporter genotype (5-HTTLPR): effects of neutral and undefined conditions on amygdala activation.

    Science.gov (United States)

    Heinz, Andreas; Smolka, Michael N; Braus, Dieter F; Wrase, Jana; Beck, Anne; Flor, Herta; Mann, Karl; Schumann, Gunter; Büchel, Christian; Hariri, Ahmad R; Weinberger, Daniel R

    2007-04-15

    A polymorphism of the human serotonin transporter gene (SCL6A4) has been associated with serotonin transporter expression and with processing of aversive stimuli in the amygdala. Functional imaging studies show that during the presentation of aversive versus neutral cues, healthy carriers of the short (s) allele showed stronger amygdala activation than long (l) carriers. However, a recent report suggested that this interaction is driven by amygdala deactivation during presentation of neutral stimuli in s carriers. Functional MRI was used to assess amygdala activation during the presentation of a fixation cross or affectively aversive or neutral visual stimuli in 29 healthy men. Amygdala activation was increased in s carriers during undefined states such as the presentation of a fixation cross compared with emotionally neutral conditions. This finding suggests that s carriers show stronger amygdala reactivity to stimuli and contexts that are relatively uncertain, which we propose are stressful.

  18. Survival of Ucides cordatus (Decapoda: Ocypodidae megalopae during transport under different conditions of density and duration

    Directory of Open Access Journals (Sweden)

    Robson Ventura

    2010-01-01

    Full Text Available Target areas for Ucides cordatus (Linnaeus, 1763 restocking programs are often located far from the laboratory where larval rearing is developed. During translocation, the larvae are submitted to highly stressful conditions due to handling, packing, and transport activities. The aim of the present study was to assess the mortality rates of U. cordatus megalopae caused by different transportation procedures. Megalopae at loading densities of 50, 150, and 300 ind.L-1 were packed in double polyethylene 12 x 25 cm plastic bags with 200 ml of marine water at salinity 30. The bags were filled with oxygen at a proportion of 1:2 parts of water and sealed tightly. The trepidations during transport were simulated by the use of a shaker device (800 vibrations/minute over periods of three and six hours inside a dark container. The survivorship rates of larvae after simulation were compared to those obtained in control groups, which consisted of plastic vials with megalopae at a loading density of 50 ind.L-1 maintained at rest. Immediately after the two transport simulations, there was no significant difference in survivorship between the treatments and the control. However, 24 hours after simulation some of the tested densities resulted in significantly lower survivorships. The results demonstrated that U. cordatus megalopae can tolerate six hours of shaking during transportation, at high densities with minimal mortality.

  19. New angular quadrature sets: effect on the conditioning number of the LTSN two dimensional transport matrix

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Romero, Debora Angrizano

    2009-01-01

    The main objective of this work is to utilize a new angular quadrature sets based on Legendre and Chebyshev polynomials, and to analyse their effects on the number of LTS N matrix conditioning for the problem of discrete coordinates of neutron transport with two dimension cartesian geometry with isotropic scattering, and an energy group, in non multiplicative homogenous domains

  20. MHD waves, reconnection, and plasma transport at the dayside magnetopause

    International Nuclear Information System (INIS)

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location

  1. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    Science.gov (United States)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  2. Laser Technology in Interplanetary Exploration: The Past and the Future

    Science.gov (United States)

    Smith, David E.

    2000-01-01

    Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.

  3. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  4. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  5. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    Science.gov (United States)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  6. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    OpenAIRE

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'D.

    2013-01-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at diff...

  7. The Interplanetary Network Supplement to the Fermi GBM Catalog - An AO-2 and AO-3 Guest Investigator Project

    Science.gov (United States)

    Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.; hide

    2012-01-01

    In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.

  8. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  9. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to the Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most

  10. Influence of the interplanetary driver type on the durations of main and recovery phases of magnetic storms

    OpenAIRE

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2013-01-01

    We study durations of main and recovery phases of magnetic storms induced by different types of large-scale solar-wind streams (Sheath, magnetic cloud (MC), Ejecta and CIR) on the basis of OMNI data base during 1976-2000. Durations of both main and recovery phases depend on types of interplanetary drivers. On the average, duration of main phase of storms induced by compressed regions (CIR and Sheath) is shorter than by MC and Ejecta while duration of recovery phase of CIR- and Sheath-induced ...

  11. Examination of Technetium Transport Through Soils Under Contrasting Redox Conditions: Batch and Column Work

    Science.gov (United States)

    Dozier, R.; Montgomery, D.; Wylie, E. M.; Dogan, M.; Moysey, S. M.; Powell, B. A.; Martinez, N. E.

    2015-12-01

    Experiments were performed under various reducing conditions to evaluate the transport behavior of technetium-99 (99Tc) in the presence of sandy clay loam soil from the Savannah River Site (SRS) and goethite, magnetite, and iron sulfide, which were selected for their increasing reducing potential. The experiments were conducted to investigate how redox reaction equilibria and rates affect the overall mobility of 99Tc as it transitions between the mobile Tc(VII) and immobile Tc(IV). Under oxygen-rich conditions, batch sorption isotherms measured for TcO4- across the concentration range 0.5 to 50 μg/L were linear with distribution coefficients (Kd) of 0.78 mL/g or lower, with decreasing sorption for goethite, magnetite, and iron sulfide, respectively. Addition of Na2S resulted in a marked increase in apparent 99Tc sorption to the solid phase, with Kd of 43 mL/g, 35 mL/g, and 29 mL/g, following the same mineral trend as previously. The increased Kd values are possibly due to reduction of Tc(VII) to Tc(IV), resulting in the formation of TcO2(s). SRS soil batch sorption isotherms measured for TcO4- across the same concentration range were also linear, with Kd of 0.7 mL/g for unadjusted pH, 5.1 mL/g for pH of around 6, and 6.7 mL/g for pH of around 4. Kinetic batch sorption tests showed less than 10% 99Tc sorption in an oxidizing environment and greater than 95% sorption in a reducing environment, with both reactions occurring on the order of minutes. In contrast, desorption experiments initiated by transferring the samples from a reducing environment (0.1% H2(g)/99.9% N2(g)) to atmospheric conditions resulted in a slow desorption step on the order of days. Column experiments conducted with the SRS sands indicate a retardation factor of 1.17 for 99Tc under oxygen rich conditions. Additional column experiments are being conducted to evaluate 99Tc transport dependencies on transitions between oxygen rich and poor conditions.

  12. Minimization for conditional simulation: Relationship to optimal transport

    Science.gov (United States)

    Oliver, Dean S.

    2014-05-01

    In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available. Although there are exact methods for sampling from the posterior (e.g. Markov chain Monte Carlo or acceptance/rejection), these methods tend to be computationally demanding when evaluation of the likelihood function is expensive, as it is for most geoscience applications. As an alternative, in this paper we discuss deterministic mappings of variables distributed according to the prior to variables distributed according to the posterior. Although any deterministic mappings might be equally useful, we will focus our discussion on a class of algorithms that obtain implicit mappings by minimization of a cost function that includes measures of data mismatch and model variable mismatch. Algorithms of this type include quasi-linear estimation, randomized maximum likelihood, perturbed observation ensemble Kalman filter, and ensemble of perturbed analyses (4D-Var). When the prior pdf is Gaussian and the observation operators are linear, we show that these minimization-based simulation methods solve an optimal transport problem with a nonstandard cost function. When the observation operators are nonlinear, however, the mapping of variables from the prior to the posterior obtained from those methods is only approximate. Errors arise from neglect of the Jacobian determinant of the transformation and from the possibility of discontinuous mappings.

  13. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  14. Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    Science.gov (United States)

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-05-28

    Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.

  15. Boron transport in plants: co-ordinated regulation of transporters

    Science.gov (United States)

    Miwa, Kyoko; Fujiwara, Toru

    2010-01-01

    Background The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis. Scope Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters. Conclusions The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B

  16. ANALYISIS OF TRANSPORTATION SYSTEMS AND TRANSPORTATION POLICIES IN TURKEY

    OpenAIRE

    Ali Payıdar AKGÜNGÖR; Abdulmuttalip DEMİREL

    2004-01-01

    Transportation systems have to be considered and analysed as a whole while transportation demand, becoming as a natural outcome of socioeconomic and socio-cultural structure, is being evaluated. It is desired that transportation system, which will be selected for both passenger and freight transport, should be rapid, economic, safe, causing least harm to environment and appropriate for the conditions of a country. However, it is difficult for a transportation system to have all these properti...

  17. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    Science.gov (United States)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  18. Influence of Humic Acid on the Transport and Deposition of Colloidal Silica under Different Hydrogeochemical Conditions

    Directory of Open Access Journals (Sweden)

    Jingjing Zhou

    2016-12-01

    Full Text Available The transport and deposition of colloids in aquifers plays an important role in managed aquifer recharge (MAR schemes. Here, the processes of colloidal silica transport and deposition were studied by displacing groundwater with recharge water. The results showed that significant amounts of colloidal silica transport occurred when native groundwater was displaced by HA solution. Solution contains varying conditions of ionic strength and ion valence. The presence of humic acid could affect the zeta potential and size of the colloidal silica, which led to obvious colloidal silica aggregation in the divalent ion solution. Humic acid increased colloidal silica transport by formation of non-adsorbing aqueous phase silica–HA complexes. The experimental and modeling results showed good agreement, indicating that the essential physics were accurately captured by the model. The deposition rates were less than 10−8 s−1 in deionized water and monovalent ion solution. Moreover, the addition of Ca2+ and increase of IS resulted in the deposition rates increasing by five orders of magnitude to 10−4 s−1. In all experiments, the deposition rates decreased in the presence of humic acid. Overall, the promotion of humic acid in colloidal silica was strongly associated with changes in water quality, indicating that they should receive greater attention during MAR.

  19. Comparison of 74-MHz interplanetary scintillation and IMP 7 observations of the solar wind during 1973

    Science.gov (United States)

    Coles, W. A.; Harmon, J. K.; Lazarus, A. J.; Sullivan, J. D.

    1978-01-01

    Solar wind velocities measured by earth-orbiting spacecraft are compared with velocities determined from interplanetary scintillation (IPS) observations for 1973, a period when high-velocity streams were prevalent. The spacecraft and IPS velocities agree well in the mean and are highly correlated. No simple model for the distribution of enhanced turbulence within streams is sufficient to explain the velocity comparison results for the entire year. Although a simple proportionality between density fluctuation level and bulk density is consistent with IPS velocities for some periods, some streams appear to have enhanced turbulence in the high-velocity region, where the density is low.

  20. The solar ionisation rate deduced from Ulysses measurements and its implications to interplanetary Lyman alpha-intensity

    Science.gov (United States)

    Summanen, T.; Kyroelae, E.

    1995-01-01

    We have developed a computer code which can be used to study 3-dimensional and time-dependent effects of the solar cycle on the interplanetary (IP) hydrogen distribution. The code is based on the inverted Monte Carlo simulation. In this work we have modelled the temporal behaviour of the solar ionisation rate. We have assumed that during the most of the time of the solar cycle there is an anisotopic latitudinal structure but right at the solar maximum the anisotropy disappears. The effects of this behaviour will be discussed both in regard to the IP hydrogen distribution and IP Lyman a a-intensity.

  1. The mean magnetic field of the sun - Method of observation and relation to the interplanetary magnetic field

    Science.gov (United States)

    Scherrer, P. H.; Wilcox, J. M.; Kotov, V.; Severnyi, A. B.; Howard, R.

    1977-01-01

    The mean solar magnetic field as measured in integrated light has been observed since 1968. Since 1970 it has been observed both at Hale Observatories and at the Crimean Astrophysical Observatory. The observing procedures at both observatories and their implications for mean field measurements are discussed. A comparison of the two sets of daily observations shows that similar results are obtained at both observatories. A comparison of the mean field with the interplanetary magnetic polarity shows that the IMF sector structure has the same pattern as the mean field polarity.

  2. Interplanetary scintillation observations of an unbiased sample of 90 Ooty occultation radio sources at 326.5 MHz

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.

    1989-01-01

    We present 327-MHz interplanetary scintillation (IPS) observations of an unbiased sample of 90 extragalactic radio sources selected from the ninth Ooty lunar occultation list. The sources are brighter than 0.75 Jy at 327 MHz and lie outside the galactic plane. We derive values, the fraction of scintillating flux density, and the equivalent Gaussian diameter for the scintillating structure. Various correlations are found between the observed parameters. In particular, the scintillating component weakens and broadens with increasing largest angular size, and stronger scintillators have more compact scintillating components. (author)

  3. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    Science.gov (United States)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  4. Analysis of corrosion product transport in PWR primary system under non-convective condition

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1992-02-01

    The increase of occupational radiation exposure (ORE) due to the increase of the operational period at existing nuclear power plant and also the publication of the new version of ICRP recommendation (ICRP publication No. 60) for radiological protection require much more strict reduction of radiation buildup in the nuclear power plant. The major sources of the radiation, i.e. the radioactive corrosion-products, are generated by the neutron activation of the corrosion products at the reactor core, and then the radioactive corrosion products are transported to the outside of the core, and accumulated near the steam generator side at PWR. Major radioactive corrosion-products of interest in PWR are Cr 51 ,: Mn 54 ,: Co 58 ,: Fe 59 and Co 60 . Among them Co 58 and Co 60 are known to contribute approximately more than 70% of the total ORE. Thus our main concerns are focused on predicting the transport and deposition of the Co radionuclides and suggesting the optimizing method which can minimize and control the ORE of the nuclear power plant. It is well known that Co-source is most effectively controlled by pH-solubility radiation control, and also some complex computer codes such as CORA and PACTOLE have been developed and revised to predict the corrosion product behavior. However these codes still imply some intrisic problems in simulating the real behavior of corrosion products in the reactor because of 1) the lack of important experimental data, coefficients and parameters of the transport and reactions under actual high temperature and pressure conditions, 2) no general theoretical modelling which can describe such many different mechanisms involved in the corrosion product movements, 3) the newly developed and measured behavior of the corrosion product transport mechanism. Since no sufficient and detailed information is available from the above-mentioned codes (also due to propriority problems), we concentrate on developing a new computer code, CP-TRAN (Corrosion

  5. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  6. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral

  7. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L [Department of Mathematics, Aveiro University, Aveiro 3810 (Portugal)], E-mail: lakshtanov@rambler.ru

    2008-06-27

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus.

  8. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    International Nuclear Information System (INIS)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L

    2008-01-01

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus

  9. MULTI-SPACECRAFT OBSERVATIONS AND TRANSPORT MODELING OF ENERGETIC ELECTRONS FOR A SERIES OF SOLAR PARTICLE EVENTS IN AUGUST 2010

    Energy Technology Data Exchange (ETDEWEB)

    Dröge, W.; Kartavykh, Y. Y. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Dresing, N.; Klassen, A. [Institut für Experimentelle und Angewandte Physik, Universität Kiel, D-24118 Kiel (Germany)

    2016-08-01

    During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ {sub ∥} in the range of 0.15–0.6 au, and values of λ {sub ⊥} in the range of 0.005–0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.

  10. Columnar to equiaxed transition in a refined Al-Cu alloy under diffusive and convective transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dupouy, M.D.; Camel, D.; Mazille, J.E. [CEA Centre d' Etudes et de Recherches sur les Materiaux, 38 - Grenoble (France); Hugon, I. [Lab. de Metallographie, DCC/DTE/SIM, CEA Valrho (France)

    2000-07-01

    The columnar-equiaxed transition under diffusive transport conditions was studied in microgravity (EUROMIR95 and spacelab-LMS96) by solidifying four Al-4wt%Cu alloys refined at different levels, with a constant cooling rate (1 K/min), both under nearly isothermal conditions and under a decreasing temperature gradient. Isothermal samples showed a homogeneous equiaxed structure with no fading of the refiner efficiency. Gradient samples revealed a continuous transition consisting of an orientation of the microsegregation parallel to the solidification direction, without any grain selection effect. For comparison, ground samples evidence the influence of the motion of both refiner particles and growing equiaxed grains. (orig.)

  11. Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles

    OpenAIRE

    Ogliore, R. C.; Butterworth, A. L.; Fakra, S. C.; Gainsforth, Z.; Marcus, M. A.; Westphal, A. J.

    2010-01-01

    The fragile structure of chondritic-porous interplanetary dust particles (CP- IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alteration have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured th...

  12. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  13. WAYS OF IMPROVEMENT RAILWAY TRANSPORT IN OVERPASS ECONOMIC CRISIS CONDITIONS

    Directory of Open Access Journals (Sweden)

    O. H. Deineka

    2010-05-01

    Full Text Available In the article a problem of adapting the railway transport to market requirements is presented and the ways of improving its competitiveness are investigated. Some measures and reserves of improving the operation efficiency for the railway transport are offered.

  14. The performance of intermodal inland waterway transport : Modeling conditions influencing its competitiveness

    NARCIS (Netherlands)

    Wiegmans, B.; Konings, J.W.

    2013-01-01

    In Europe, numerous obstacles have been identified which prevent the (extensive) use of intermodal transport. A major motivation to promote intermodal transport is that its cost performance is often assumed better than road-only transport. Considering that the cost of transport services remains one

  15. Windsock memory COnditioned RAM (CO-RAM) pressure effect: Forced reconnection in the Earth's magnetotail

    Science.gov (United States)

    Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.

    2014-08-01

    Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.

  16. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A

    1997-01-01

    Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed ...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin.......Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed...... in Xenopus oocytes. We present a method which allows short-term exposures to sugar under voltage clamp conditions. We demonstrate that water is cotransported with the solutes despite no osmotic differences between the external and intracellular solutions. There is a fixed ratio of 195:1 between the number...

  17. Some low-altitude cusp dependencies on the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Newell, P.T.; Meng, C.; Sibeck, D.G.; Lepping, R.

    1989-01-01

    Although it has become well established that the low-altitude polar cusp moves equatorward during intervals of southward interplanetary magnetic field (IMF B z y negative (positive) in the northern (southern) hemisphere and postnoon for B y positive (negative) in the northern (southern) hemisphere. The B y induced shift is much more pronounced for southward than for northward B z , a result that appears to be consistent with elementary considerations from, for example, the antiparallel merging model. No interhemispherical latitudinal differences in cusp positions were found that could be attributed to the IMF B x component. As expected, the cusp latitudinal position correlated reasonably well (0.70) with B z when the IMF had a southward component; the previously much less investigated correlation for B z northward proved to be only 0.18, suggestive of a half-wave rectifier effect. The ratio of cusp ion number flux precipitation for B z southward to that for B z northward was 1.75±0.12. The statistical local time (full) width of the cusp proper was found to be 2.1 hours for B z northward and 2.8 hours for B z southward. copyright American Geophysical Union 1989

  18. Water transport through the intestinal epithelial barrier under different osmotic conditions is dependent on LI-cadherin trans-interaction.

    Science.gov (United States)

    Weth, Agnes; Dippl, Carsten; Striedner, Yasmin; Tiemann-Boege, Irene; Vereshchaga, Yana; Golenhofen, Nikola; Bartelt-Kirbach, Britta; Baumgartner, Werner

    2017-04-03

    In the intestine water has to be reabsorbed from the chymus across the intestinal epithelium. The osmolarity within the lumen is subjected to high variations meaning that water transport often has to take place against osmotic gradients. It has been hypothesized that LI-cadherin is important in this process by keeping the intercellular cleft narrow facilitating the buildup of an osmotic gradient allowing water reabsorption. LI-cadherin is exceptional among the cadherin superfamily with respect to its localization along the lateral plasma membrane of epithelial cells being excluded from adherens junction. Furthermore it has 7 but not 5 extracellular cadherin repeats (EC1-EC7) and a small cytosolic domain. In this study we identified the peptide VAALD as an inhibitor of LI-cadherin trans-interaction by modeling the structure of LI-cadherin and comparison with the known adhesive interfaces of E-cadherin. This inhibitory peptide was used to measure LI-cadherin dependency of water transport through a monolayer of epithelial CACO2 cells under various osmotic conditions. If LI-cadherin trans-interaction was inhibited by use of the peptide, water transport from the luminal to the basolateral side was impaired and even reversed in the case of hypertonic conditions whereas no effect could be observed at isotonic conditions. These data are in line with a recently published model predicting LI-cadherin to keep the width of the lateral intercellular cleft small. In this narrow cleft a high osmolarity can be achieved due to ion pumps yielding a standing osmotic gradient allowing water absorption from the gut even if the faeces is highly hypertonic.

  19. On an effect of the interplanetary magnetic field sector structure on the upper Earth's ionosphere

    International Nuclear Information System (INIS)

    Kolomijtsev, O.P.; Livshits, M.A.; Soboleva, T.N.

    1985-01-01

    According to the data from vertical probing stations, changes are studied in the critical frequency and height of the ionosphere F2 layer after the Earth crosses the boundaries of the interplanetary magnetic field (IMF) sectors in the periods of equinox during decreases in the solar activity. A reversal of the IMF sign causes ionospheric effects, which in some cases are comparable, as to the value, with the effects observed in the presence of flares and strong geomagnetic perturbations. The IMF sector sign reversal is a key momentum, stimulating such changes in the Earth's magnetosphere state which result in the rearrangement of the ionosphere structure near the maximum of electron concentration on the planetary scale

  20. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  1. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); Odstrcil, Dusan [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO (United States)

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  2. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Temmer, Manuela; Rollett, Tanja; Möstl, Christian; Veronig, Astrid M.; Vršnak, Bojan; Odstrčil, Dusan

    2011-01-01

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉ , to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  3. Assessment of bridge abutment scour and sediment transport under various flow conditions

    Science.gov (United States)

    Gilja, Gordon; Valyrakis, Manousos; Michalis, Panagiotis; Bekić, Damir; Kuspilić, Neven; McKeogh, Eamon

    2017-04-01

    Safety of bridges over watercourses can be compromised by flow characteristics and bridge hydraulics. Scour process around bridge foundations can develop rapidly during low-recurrence interval floods when structural elements are exposed to increased flows. Variations in riverbed geometry, as a result of sediment removal and deposition processes, can increase flood-induced hazard at bridge sites with catastrophic failures and destructive consequences for civil infrastructure. The quantification of flood induced hazard on bridge safety generally involves coupled hydrodynamic and sediment transport models (i.e. 2D numerical or physical models) for a range of hydrological events covering both high and low flows. Modelled boundary conditions are usually estimated for their probability of occurrence using frequency analysis of long-term recordings at gauging stations. At smaller rivers gauging station records are scarce, especially in upper courses of rivers where weirs, drops and rapids are common elements of river bathymetry. As a result, boundary conditions that accurately represent flow patterns on modelled river reach cannot be often reliably acquired. Sediment transport process is also more complicated to describe due to its complexity and dependence to local flow field making scour hazard assessment a particularly challenging issue. This study investigates the influence of flow characteristics to the development of scour and sedimentation processes around bridge abutments of a single span masonry arch bridge in south Ireland. The impact of downstream weirs on bridge hydraulics through variation of downstream model domain type is also considered in this study. The numerical model is established based on detailed bathymetry data surveyed along a rectangular grid of 50cm spacing. Acquired data also consist of riverbed morphology and water level variations which are monitored continuously on bridge site. The obtained data are then used to compare and calibrate

  4. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  5. Effect of the interplanetary magnetic field azimuthal component on dynamics of magnetospheric substorms

    International Nuclear Information System (INIS)

    Troshichev, O.A.; Kotikov, A.L.; Bolotinskaya, B.D.

    1987-01-01

    The effect of azimuthal component of interplanetary magnetic field (IMF) on the dynamics of magnetospheric substorms is considered. The turning of the azimuthal component of IMF from the positive direction to the negative one and, vice versa, negative and positive impulses in B y -component at B z z -component to the North, positive impulses in B z -component, are investigated. The importance of corresponding variations in magnetic activity level is evaluated. It is shown that turning of B y -component from the positive direction to the negative one increases magnetic activity, whereas the reverse transition affects but slightly the level of magnetic activity in the Northern auroral zone. The turning of B z -component to the North also results in the increase of magnetic activity but with a less intensity than in the case of the negative turning in B y -component

  6. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  7. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  8. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    International Nuclear Information System (INIS)

    Molz, Fred J. III

    2010-01-01

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  9. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  10. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    Science.gov (United States)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  11. Study of interstellar helium from photometric observations at 58.4 nm of the interplanetary environment from Prognoz 6 satellite

    International Nuclear Information System (INIS)

    Dalaudier, Francis.

    1981-06-01

    This thesis is devoted to an ''interplanetary helium'' experiment, the aim of the work being to acquire a greater understanding of the local interstellar environment and its interaction with the solar system. Measurements made from the Prognoz 6 satellite on ultraviolet fluxes from hydrogen (121.6 nm) and neutral and ionized helium (58.4 nm and 30.4 nm respectively) were used to construct a computer model. Most of the work performed deals with comparing and interpreting the results obtained [fr

  12. Perspectives of transport logistics in the railway transport enterprises

    OpenAIRE

    Elagin, Yu; Obruch, A.

    2014-01-01

    In this paper, the authors study the main directions of development of transport logistics. Identified as the main types of general transport logistics, as well as the rail sector, in which logistics acquires a dominant role in terms of reform. Also highlights the main features of transport logistics for railway transport enterprises and proved the importance of integrating function in modern conditions of development. The authors noted that to ensure the effective development of railway tran...

  13. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  14. The Earth's magnetosphere is 165 R(sub E) long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field

    Science.gov (United States)

    Fedder, J. A.; Lyon, J. G.

    1995-01-01

    The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.

  15. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  16. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  17. The Swedish Interplanetary Society (1950-1969) and the formation of IAF and IAA

    Science.gov (United States)

    Ingemar Skoog, A.

    2011-06-01

    With a growing interest for rocket technology and space travel after WW II a number of new "space societies" were formed in the period 1948-1951 in addition to the ones already existing in Germany, the UK and the US since before WW II. Soon came the need for a common international platform for exchange of information and experience, and the concept of an international federation of astronautical societies emerged. Sweden was one of the 8 countries to sign the original declaration to create an International Astronautical Federation on October 2, 1950 in Paris at the 1st International Astronautical Congress. The Swedish Society for Space Research (Svenska Sällskapet för Rymdforskning) was formed a few days after the historical event in Paris. The name was soon to be changed to the Swedish Interplanetary Society (Svenska Interplanetariska Sällskapet, SIS). Sweden was one of the 10 countries to sign the IAF foundation in 1951 in London and in the following year the first Constitution of IAF in Stuttgart. The SIS quickly grow to a membership of several hundred persons and its membership in IAF promoted an intensive exchange of journals, and the annual participation at the IAC gave growth to start study projects on spacecraft and sounding rockets, and the publication of astronautical journals in Swedish. In 1957 the first Swede was elected vice-president of IAF. Not too long after the IAF foundation the idea of an international body of distinguished individuals emerged, in addition to the body of "member societies" (IAF). Upon the initiative of Theodor von Karman, Eugen Sänger and Andrew Haley the IAF council approval of an International Academy of Astronautical was given on August 15, 1960 during the 11th IAC in Stockholm. This IAC in Stockholm gave a large publicity to space research and astronautics in Sweden, and put the activities of the SIS in the focus of the general public. This paper presents the Swedish involvement in the foundation of IAF and IAA. It also

  18. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    Science.gov (United States)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  19. Study of coronal and interplanetary propagation of solar particles following the E450 solar flare on July 29, 1973

    International Nuclear Information System (INIS)

    Gombosi, T.; Somogyi, A.J.; Kolesov, G.Ya.; Kurt, V.G.; Kuzhevskii, B.M.; Logachev, Yu.I.; Savenko, I.A.; Shestopalov, I.P.

    1977-01-01

    Intensity profiles of protons and electrons of various energies measured onboard the high-apogee Prognos-3 satellite are analysed as well as the energy balance between the various flare produced phenomena. The general behaviour of the solar particle event following the 3B flare at E45 0 can be well described in terms of a simple model which takes into account coronal diffusion with a leakage time and a Krimigis' type interplanetary diffusion. The results suggest an inverse dependence of coronal diffusion coefficient on rigidity. (author)

  20. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions; Transfert de radioelements en zone non saturee. Etude experimentale et modelisation appliquees au Site Pilote de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Szenknect, St

    2003-10-15

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)